WorldWideScience

Sample records for emission tsee system

  1. Development of a thermally stimulated exoelectron emission (TSEE) system for dosimetric applications

    International Nuclear Information System (INIS)

    Rocha, Felicia del Gallo

    1997-01-01

    A thermally stimulated exoelectron emission measuring system (TSEE) with a counting (reader) and a heating system was designed, constructed and tested for the dosimetry of weakly penetrating radiations, such as alpha and beta particles and low energy X rays. The counting system consists of a 271 windowless gas-flow proportional counter, while the heating system is composed by a temperature programmer that provides linear heating of the samples. The characterization of the proportional counter was done, as well as the tests to verify the performance of the counting system with reference TSEE materials, such as beryllium oxide (BeO) and magnesium oxide (MgO) single crystals. The dosimetric characteristics of some materials as pure calcium sulphate (CaS0 4 ) sintered pellets and with 10% of graphite in its composition, lithium fluoride doped with magnesium, copper and phosphor (LiF:Mg,Cu,P), lithium fluoride (LiF) thin films on aluminum and stainless steel substrates and BeO on graphite substrates were studied. As an application, the feasibility of the use of pure calcium sulphate sintered pellets and others with 10% of graphite in area monitoring of an electron accelerator with variable energy was studied. The obtained results show the usefulness of this system in the dosimetry of weakly penetrating radiations. (author)

  2. TSEE from Fe-Cr alloy system and its application to the estimation of gasoline deterioration

    International Nuclear Information System (INIS)

    Shimada, H.; Nakajima, K.

    1983-01-01

    The exoelectron glow curves for oxide surface on Fe-Cr alloy were measured as a function of Cr content. It was seen that with increasing Cr content the total counts of thermally stimulated exoelectron emission (TSEE), threshold temperature for measuring the glow curve (starting temperature of the glow curve) and the activation energy clearly indicate a good coincidence with the oxidation process of the surface. The interaction of Fe-Cr alloy with gasoline was examined by applying the test for the oxidation induced period (ASTM D525). The induction period became minimum at about 4%Cr, and the deposit of gasoline gum was maximum at its composition. The results were compared with that of TSEE, and it was found that the catalytic effect of Fe-Cr alloy on the deterioration of gasoline is explained from the starting temperature of the glow curves. (author)

  3. Dosimetric properties of bio minerals applied to high-dose dosimetry using the TSEE technique

    International Nuclear Information System (INIS)

    Vila, G. B.; Caldas, L. V. E.

    2014-08-01

    The study of the dosimetric properties such as reproducibility, the residual signal, lower detection dose, dose-response curve and fading of the thermally stimulated emission exo electronic (TSEE) signal of Brazilian bio minerals has shown that these materials present a potential use as radiation dosimeters. The reproducibility within ± 10% for oyster shell, mother-of-pearl and coral reef samples showed that the signal dispersion is small when compared with the mean value of the measurements. The study showed that the residual signal can be eliminated with a thermal treatment at 300 grades C/1 h. The lower detection dose of 9.8 Gy determined for the oyster shell samples when exposed to beta radiation and 1.6 Gy for oyster shell and mother-of-pearl samples when exposed to gamma radiation can be considered good, taking into account the high doses of this study. The materials presented linearity at the dose response curves in some ranges, but the lack of linearity in other cases presents no problem since a good mathematical description is possible. The fading study showed that the loss of TSEE signal can be minimized if the samples are protected from interferences such as light, heat and humidity. Taking into account the useful linearity range as the main dosimetric characteristic, the tiger shell and oyster shell samples are the most suitable for high-dose dosimetry using the TSEE technique. (Author)

  4. Dosimetric properties of bio minerals applied to high-dose dosimetry using the TSEE technique

    Energy Technology Data Exchange (ETDEWEB)

    Vila, G. B.; Caldas, L. V. E., E-mail: gbvila@ipen.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    The study of the dosimetric properties such as reproducibility, the residual signal, lower detection dose, dose-response curve and fading of the thermally stimulated emission exo electronic (TSEE) signal of Brazilian bio minerals has shown that these materials present a potential use as radiation dosimeters. The reproducibility within ± 10% for oyster shell, mother-of-pearl and coral reef samples showed that the signal dispersion is small when compared with the mean value of the measurements. The study showed that the residual signal can be eliminated with a thermal treatment at 300 grades C/1 h. The lower detection dose of 9.8 Gy determined for the oyster shell samples when exposed to beta radiation and 1.6 Gy for oyster shell and mother-of-pearl samples when exposed to gamma radiation can be considered good, taking into account the high doses of this study. The materials presented linearity at the dose response curves in some ranges, but the lack of linearity in other cases presents no problem since a good mathematical description is possible. The fading study showed that the loss of TSEE signal can be minimized if the samples are protected from interferences such as light, heat and humidity. Taking into account the useful linearity range as the main dosimetric characteristic, the tiger shell and oyster shell samples are the most suitable for high-dose dosimetry using the TSEE technique. (Author)

  5. Thermically stimulated exoelectronic emissions and thermoluminescence of MgO

    International Nuclear Information System (INIS)

    Chubaci, J.F.D.

    1987-01-01

    In this work, studies were performed on the following topics: i) thermically stimulated exoelectronic emission (TSEE) in pure MgO single crystals ion implanted, submitted to thermal treatment with fast on slow cooling and water adsorption; ii) ultraviolet light effect on TSEE; iii) thermoluminescent emission; iv) crystallization of FeCoB amorphous alloys. (A.C.A.S.) [pt

  6. Surface effects during exoelectron-emission of BeO ceramics

    International Nuclear Information System (INIS)

    Siegel, V.; Kirchner, H.H.

    1979-01-01

    Studying the behaviour of the two thermally stimulated exoelectron emission (TSEE) maxima of BeO ceramics at about 270 0 C und 325 0 C it can be shown that the TSEE maximum at 270 0 C is closely connected with adsorption and desorption processes occuring on the surface of the samples. In particular, this TSEE maximum is strongly influenced as well by donor-like behaviour of adsorbed hydrogen and lithium as by acceptor-like behaviour of alcohols and nitrides of the lithium. The detailed surface processes leading to the apperance or disapperance of the TSEE maximum at 270 0 C are discussed. (orig.) [de

  7. Exoelectron emission from magnesium borate glass ceramics

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Yanagisawa, Hideo; Nakamichi, Hiroshi; Kikuchi, Riichi; Kawanishi, Masaharu.

    1986-01-01

    Thermally stimulated exoelectron emission (TSEE) of a magnesium borate glass ceramics was investigated for its application to dosemetric use. It has been found that the TSEE glow patterns of the magnesium borate glass ceramics as well as a Li 2 B 4 O 7 glass ceramics depend on the kind of the radiation used and that the heat resistance of the magnesium borate glass ceramics is higher than that of the Li 2 B 4 O 7 glass ceramics. Therefore, the TSEE glow patterns of the magnesium borate glass ceramics indicate a possibility to be used as the dose measurement for each kind of radiation in the mixed radiation field. (author)

  8. Thermally stimulated exoelectron emission from solid Xe

    International Nuclear Information System (INIS)

    Khyzhniy, I.V.; Grigorashchenko, O.N.; Savchenko, E.V.; Ponomarev, A.N.; Bondybey, V.E.

    2007-01-01

    Thermally-stimulated emission of exoelectrons and photons from solid Xe pre-irradiated by low-energy electrons were studied. A high sensitivity of thermally-stimulated luminescence (TSL) and thermally-stimulated exoelectron emission (TSEE) to sample prehistory was demonstrated. It was shown that electron traps in unannealed samples are characterized by much broader distribution of trap levels in comparison with annealed samples and their concentration exceeds in number that in annealed samples. Both phenomena, TSL and TSEE, were found to be triggered by release of electrons from the same kind of traps. The data obtained suggest a competition between two relaxation channels: charge recombination and electron transport terminated by TSL and TSEE. It was found that TSEE predominates at low temperatures while at higher temperatures TSL prevails. An additional relaxation channel, a photon-stimulated exoelectron emission pre-irradiated solid Xe, was revealed

  9. National Emission Information System

    International Nuclear Information System (INIS)

    Sajtakova, E.; Spisakova, K.

    2005-01-01

    In this presentation the Slovak National Emission Information System (NEIS) is presented. The NEIS represents hierarchical oriented modular system of acquisition, verification, saving and reporting of data about annual emissions and payments for pollution of atmosphere

  10. BP's emissions trading system

    International Nuclear Information System (INIS)

    Victor, David G.; House, Joshua C.

    2006-01-01

    Between 1998 and 2001, BP reduced its emissions of greenhouse gases by more than 10%. BP's success in cutting emissions is often equated with its use of an apparently market-based emissions trading program. However no independent study has ever examined the rules and operation of BP's system and the incentives acting on managers to reduce emissions. We use interviews with key managers and with traders in several critical business units to explore the bound of BP's success with emissions trading. No money actually changed hands when permits were traded, and the main effect of the program was to create awareness of money-saving emission controls rather than strong price incentives. We show that the trading system did not operate like a 'textbook' cap and trade scheme. Rather, the BP system operated much like a 'safety valve' trading system, where managers let the market function until the cost of doing so surpassed what the company was willing to tolerate

  11. Biogenic Emission Inventory System (BEIS)

    Science.gov (United States)

    Biogenic Emission Inventory System (BEIS) estimates volatile organic compound (VOC) emissions from vegetation and nitric oxide (NO) emission from soils. Recent BEIS development has been restricted to the SMOKE system

  12. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    Science.gov (United States)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S. V.

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below Ec) and at 415 K (0.9 below Ec); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below Ec known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below Ec is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  13. Emission tomography system

    International Nuclear Information System (INIS)

    Phelps, M.E.; Hoffman, E.J.; Williams, C.W.; Burgiss, S.G.

    1983-01-01

    In the present invention a positron emission tomographic system is provided in which the random photon coincidence background is determined for the lines of sight along which the positron annihiliations are located. The circuitry is arranged so that this background may be subtracted almost simultaneously from the total photon coincidence measurement, or may be stored in a temporary memory for latter subtraction. In this system, an appropriate coincidence resolution time is selected and coincidences of photons detected at 180 degree opposed detectors within the time resolution are recorded as the overall coincidence count. This total count includes a source(true events) count plus a background(random coincidences) count. The background count is determined by measuring photons detected at these same sets of photon detectors and employing the same coincidence resolution period, where the signals from one set of detectors are passed through a delay longer in time than this resolution period

  14. Exoelectron emission from surface layer of Li2B4O7 glass ceramics

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Katsube, Shizuko; Yanagisawa, Hideo; Kikuchi, Riichi; Kawanishi, Masaharu.

    1984-01-01

    The thermally stimulated exoelectron emission (TESS) of Li 2 B 4 O 7 glass ceramics was investigated for its application to the dosimetric use. It has been found the TSEE glow patterns of Li 2 B 4 O 7 glass ceramics and of the thin layer of LiF evaporated on Li 2 B 4 O 7 glass ceramics depend on the kind of radiations irradiated. The TSEE glow pattern of the duplicated structure sample indicated a possibility of determining the dose of each kind of radiation separately in the mixed radiation field. (author)

  15. Application of TSEE characteristics to high energy radiation dosimetry around an electron linear accelerator

    International Nuclear Information System (INIS)

    Yamamoto, T.; Nakasaku, S.; Kawanishi, M.

    1986-01-01

    The response of the exoelectron dosemeter to the absorbed dose has been investigated with the LiF sample irradiated with high energy electrons from a linear accelerator and γ rays from a 60 Co source. The energy absorbed in the thin surface layer, which can be related to the origins of exoelectron emission, is, in general, smaller than the energy liberated there by primary radiation. In this paper the surface dose is calculated by the Monte Carlo Code EGS4. It is pointed out that the air layer in front of the sample also plays an important role by supplying secondary electrons to the surface region of the sample. The emission density of exoelectrons from a LiF single crystal for unit absorbed dose is found to be 5 x 10 4 electrons.cm -2 .Gy -1 , and nearly constant independent of the low LET radiation type. (author)

  16. VOC emissions control systems

    International Nuclear Information System (INIS)

    Spessard, J.E.

    1993-01-01

    The air pollution control equipment marketplace offers many competing technologies for controlling emissions of volatile organic compounds (VOC) in air. If any technology was economically and technically superior under all conditions, it would be the only one on the market. In fact, each technology used to control VOCs is superior under some set of conditions. The reasons for choosing one control technology over another are situation-specific. Some general guidelines to VOC control technologies and the situations where each may be appropriate are presented in this article. The control technologies and applications are summarized in a table

  17. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    International Nuclear Information System (INIS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V.

    2001-01-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E c ) and at 415 K (0.9 below E c ); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E c known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E c is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species

  18. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    International Nuclear Information System (INIS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V.

    2004-01-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E c ) and at 415 K (0.9 below E c ); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E c known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E c is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species. (author)

  19. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V. E-mail: svb@physics.unipune.ernet.in

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E{sub c}) and at 415 K (0.9 below E{sub c}); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E{sub c} known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E{sub c} is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  20. MICRO AUTO GASIFICATION SYSTEM: EMISSIONS ...

    Science.gov (United States)

    A compact, CONEX-housed waste to energy unit, Micro Auto Gasification System (MAGS), was characterized for air emissions from burning of military waste types. The MAGS unit is a dual chamber gasifier with a secondary diesel-fired combustor. Eight tests were conducted with multiple waste types in a 7-day period at the Kilauea Military Camp in Hawai’i. The emissions characterized were chosen based on regulatory emissions limits as well as their ability to cause adverse health effects on humans: particulate matter (PM), mercury, heavy metals, volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Three military waste feedstock compositions reflecting the variety of wastes to be encountered in theatre were investigated: standard waste (SW), standard waste with increased plastic content (HP), standard waste without SW food components but added first strike ration (FSR) food and packaging material (termed FSR). A fourth waste was collected from the Kilauea dumpster that served the dining facility and room lodging (KMC). Limited scrubber water and solid ash residue samples were collected to obtain a preliminary characterization of these effluents/residues.Gasifying SW, HP, and KMC resulted in similar PCDD/PCDF stack concentrations, 0.26-0.27 ng TEQ/m3 at 7% O2, while FSR waste generated a notably higher stack concentration of 0.68 ng TEQ/m3 at 7% O2. The PM emission

  1. Competitiveness and linking of emission trading systems

    Energy Technology Data Exchange (ETDEWEB)

    Hausotter, Tobias; Steuwer, Sibyl; Taenzler, Dennis [adelphi, Berlin (Germany)

    2011-01-15

    The establishment of emission trading systems raises concerns among industries regarding international competitive disadvantages for the industries under an emissions cap. This study aims to assess competitiveness exposure of industrial sectors and presents policy measures to address these concerns. Moreover, the study provides a comparison of different existing approaches to competitiveness concerns proposed by regional emission trading systems. (orig.)

  2. Review Existing and Proposed Emissions Trading Systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper reviews key design features of mandatory emissions trading systems that had been established or were under consideration in 2010, with a particular focus on implications for the energy sector. Putting a price on greenhouse gas emissions is a cornerstone policy in climate change mitigation. To this end, many countries have implemented or are developing domestic emissions trading systems.

  3. Formation of (Xe2H)* centers in solid Xe via recombination: nonstationary luminescence and 'internal electron emission'

    International Nuclear Information System (INIS)

    Savchenko, E.V.; Khyzhniy, I.V.; Uyutov, S.A.; Gumenchuk, G.B.; Ponomarev, A.N.; Bondybey, V.E.; Beyer, M.K.

    2010-01-01

    The formation of excimers (Xe 2 H) * in solid Xe doped with molecular hydrogen under electron beam is studied using the original two-stage technique of nonstationary (NS) cathodoluminescence (CL) in combination with the current activation spectroscopy method - thermally stimulated exoelectron emission (TSEE). Charged species were generated using a high-density electron beam. The species produced were then probed with a low density beam on gradual sample heating. The near UV emission of the (Xe 2 H) * was used to monitor the neutralization process. It is found that the temperature behavior of the NS CL band of (Xe 2 H) * clearly correlates with the yield of TSEE measured after identical pre-irradiation of the sample. The fingerprints of the thermally stimulated detrapping of electrons - 'internal electron emission' in the spectrum of NS CL point to the essential role of neutralization reaction in the stability of the proton solvated by rare-gas atoms.

  4. Linking GHG Emission Trading Systems and Markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Several different types of links are possible between different GHG-mitigation systems. These include: Linking two or more emission trading schemes so that emissions trading can occur both within and between different schemes ('direct links'); and Linking emission trading systems to registries/mechanisms and systems that generate offsets from project based mechanisms or from direct purchases/transfers of AAUs ('indirect links').

  5. Acoustic emission leak monitoring system LMS-96

    International Nuclear Information System (INIS)

    Liska, J.; Cvrcek, M.; Mueller, L.

    1997-01-01

    On-line acoustic emission leak monitoring under industrial conditions of nuclear power plants is a problem with specific features setting specific demands on the leak monitoring system. The paper briefly reviews those problems (attenuation pattern of a real structure, acoustic background, alarm system, etc.) and the solution of some of them is discussed. Information is presented on the Acoustic Emission Leak Monitoring System LMS-96 by SKODA NUCLEAR MACHINERY and the system's function is briefly described. (author)

  6. Fragment emission from modestly excited nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Y. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility; Souza, R.T. de [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility; Chen, S.L. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility; Cornell, E.W. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility; Davin, B. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility; Fox, D. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility; Hamilton, T.M. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility; Mcdonald, K. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility; Tsang, M.B. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Glasmacher, T. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Dinius, J. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Gelbke, C.K. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Handzy, D.O. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry]|[Indiana Univ., Bloomington, IN (United States). Cyclotron Facility]|[Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Hsi, W.C.

    1996-07-08

    Fragment emission patterns occurring in nuclear systems of modest excitation are studied. Exclusive measurement of fragment emission in {sup 14}N+{sup 197}Au reactions at E/A=100, 130 and 156 MeV allows selection of central collisions where a single source dominates the decay. Low threshold measurement of IMF emission for these events allows investigation of the influence of detector threshold effects. The time scale of fragment emission is deduced using fragment-fragment velocity correlations. Comparisons are made to the predictions of a statistical decay model. (orig.).

  7. Automotive catalyst strategies for future emission systems

    International Nuclear Information System (INIS)

    Williamson, W.B.; Summers, J.C.; Scaparo, J.A.

    1992-01-01

    This paper reports that while significant advances in Pt/Rh three-way catalyst (TWC) formulations have been accomplished, the use of Pd-containing catalysts for three-way emission control are of interest for overall noble metal cost reduction, lower Rh usage, and potential durability improvements. Applications of Pd are demonstrated for replacement of Pt in conventional Pt/Rh TWC systems, for use in Pd-only three-way catalysts and for lowering methanol and formaldehyde emissions at close-coupled locations on a methanol-fueled vehicle. The individual contributions of Pt, Pd and Rh for aged three-way performance indicate significant advantages of using Pd over Pt. A comparison of vehicle system control strategies illustrates that higher system temperatures significantly lower HC emissions, while air/fuel control strategies are most critical in lowering NO x emissions

  8. Advanced CIDI Emission Control System Development

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key

  9. Environmental management control systems for carbon emissions

    Directory of Open Access Journals (Sweden)

    Nadia Di Giacomo

    2017-04-01

    Full Text Available Purpose – This paper aims to focus on a global consulting company and examine how it struggled to establish an effective environmental management control system for carbon emissions for its employees’ air travel. The organisation was motivated to reduce its carbon emissions both to comply with regulation and to enhance or maintain corporate reputation. Design/methodology/approach – The paper takes a case study approach, examining internal and external documents as well as conducting interviews with senior staff. Findings – The case study investigates how Beta’s management implemented a system to reduce carbon emissions. The organisation focused on air travel, but the study finds that employee travel preferences did not radically change. Rather than reduction in carbon emissions, as planned by head office, air travel carbon emissions actually increased during the period, and, as a consequence, the reported reduction targets were significantly adjusted downwards to meet the new realities. Practical implications – The study has implications for both policy and practice for organisations seeking to improve their sustainability performance. Originality/value – The study responds to calls in the literature to undertake research to identify how management practices might reduce negative sustainability impacts, as there is little evidence of what management practices and accounting tools are being adopted, particularly in relation to carbon emissions from air travel. The paper adds to the creation of new accounting, giving visibility to carbon emission management through case study analysis.

  10. Assessment of real driving emissions via portable emission measurement system

    Science.gov (United States)

    Clenci, A.; Sălan, V.; Niculescu, R.; Iorga-Simăn, V.; Zaharia, C.

    2017-10-01

    The European Commission approved a so-called Real Driving Emission (RDE) test in response to the criticisms to the current driving cycle used at chassis dyno for homologation purpose (NEDC): it is considered outdated and misleading since air pollutants in real driving conditions are considerably higher than the certification thresholds. So, what’s at stake is the air quality which degraded continuously despite the ever-increasing severity of the regulations during the last almost three decades. Thus, from September 2017, the RDE test will become part of the type approval process for all cars sold in Europe. As its name points out, it will include “real world driving” using a portable emissions measurement system (PEMS). The paper presents the RDE features (PEMS mounting, testing environment, boundary conditions, driving dynamics) and presents a case study on the influence of the driving style upon the tail-pipe emissions under the RDE testing. The results presented in the paper issued from the existing cooperation on this topic between University of Pitesti and Renault Technologie Roumanie

  11. High Efficiency, Low Emission Refrigeration System

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2016-08-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for

  12. The use of stimulated electron emission (SEE) in homeland security applications

    Science.gov (United States)

    Ing, H.; Andrews, H. R.; Facina, M.; Lee, W. T.; Niu, H. W.

    2012-06-01

    Certain insulating solids can store a fraction of the absorbed energy when irradiated by ionizing radiation. The stored energy can be released subsequently by heating or optical stimulation. As a result, light may be emitted through Thermoluminescence (TL) or Optically-Stimulated Luminescence (OSL) and electrons may be emitted through Thermally-Stimulated Electron Emission (TSEE) or Optically-Stimulated Electron Emission (OSEE). TL and OSL are widely used in current radiation dosimetry systems. However, despite considerable research effort during the early 1970s, SEE was not commonly adopted for dosimetry applications. One of the main reasons is that SEE is a surface phenomenon, while luminescence is a bulk phenomenon, making SEE more susceptible to humidity, absorption of gases, minor physical defects and handling, both before and after irradiation. Nevertheless, it has been recognized that SEE may be useful for homeland security applications in nuclear forensics, where dose accuracy is not the primary performance metric. In this research, we are investigating the use of SEE for nuclear forensic applications. Many common materials, both natural and man-made, exhibit the phenomenon, providing an opportunity to use the environment itself as an in-situ radiation detector. We have designed and constructed a unique prototype reader for conducting SEE measurements. We have demonstrated that the SEE measurements from a variety of materials are quantitatively reproducible and correlated to radiation exposure. Due to the broad applicability of SEE, significant additional studies are warranted to optimize this novel technique for nuclear forensic and other applications.

  13. Modelling carbon emissions in electric systems

    International Nuclear Information System (INIS)

    Lau, E.T.; Yang, Q.; Forbes, A.B.; Wright, P.; Livina, V.N.

    2014-01-01

    Highlights: • We model carbon emissions in electric systems. • We estimate emissions in generated and consumed energy with UK carbon factors. • We model demand profiles with novel function based on hyperbolic tangents. • We study datasets of UK Elexon database, Brunel PV system and Irish SmartGrid. • We apply Ensemble Kalman Filter to forecast energy data in these case studies. - Abstract: We model energy consumption of network electricity and compute Carbon emissions (CE) based on obtained energy data. We review various models of electricity consumption and propose an adaptive seasonal model based on the Hyperbolic tangent function (HTF). We incorporate HTF to define seasonal and daily trends of electricity demand. We then build a stochastic model that combines the trends and white noise component and the resulting simulations are estimated using Ensemble Kalman Filter (EnKF), which provides ensemble simulations of groups of electricity consumers; similarly, we estimate carbon emissions from electricity generators. Three case studies of electricity generation and consumption are modelled: Brunel University photovoltaic generation data, Elexon national electricity generation data (various fuel types) and Irish smart grid data, with ensemble estimations by EnKF and computation of carbon emissions. We show the flexibility of HTF-based functions for modelling realistic cycles of energy consumption, the efficiency of EnKF in ensemble estimation of energy consumption and generation, and report the obtained estimates of the carbon emissions in the considered case studies

  14. Restricted linking of emissions trading systems

    NARCIS (Netherlands)

    Schneider, Lambert; Lazarus, Michael; Lee, Carrie; Asselt, van Harro

    2017-01-01

    With over 17 emissions trading systems (ETSs) now in place across four continents, interest in linking ETSs is growing. Linking ETSs offers economic, political, and administrative benefits. It also faces major challenges. Linking can affect overall ambition, financial flows, and the location and

  15. MICRO AUTO GASIFICATION SYSTEM: EMISSIONS CHARACTERIZATION

    Science.gov (United States)

    A compact, CONEX-housed waste to energy unit, Micro Auto Gasification System (MAGS), was characterized for air emissions from burning of military waste types. The MAGS unit is a dual chamber gasifier with a secondary diesel-fired combustor. Eight tests were conducted with multipl...

  16. 21 CFR 892.1200 - Emission computed tomography system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emission computed tomography system. 892.1200... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1200 Emission computed tomography system. (a) Identification. An emission computed tomography system is a device intended to detect the...

  17. Development of novel emission tomography system

    Science.gov (United States)

    Fu, Geng

    In recent years, small animals, such as mice and rats, have been widely used as subjects of study in biomedical research while molecular biology and imaging techniques open new opportunities to investigate disease model. With the help of medical imaging techniques, researchers can investigate underlying mechanisms inside the small animal, which are useful for both early diagnosis and treatment monitoring. Based on tracer principle single photon emission computed tomography (SPECT) has increased popularity in small animal imaging due to its higher spatial resolution and variety of single-photon emitting radionuclides. Since the image quality strongly depends on the detector properties, both scintillation and semiconductor detectors are under active investigation for high resolution X-ray and gamma ray photon detection. The desired detector properties include high intrinsic spatial resolution, high energy resolution, and high detection efficiency. In this thesis study, we have made extensive efforts to develop novel emission tomography system, and evaluate the use of both semiconductor and ultra-high resolution scintillation detectors for small animal imaging. This thesis work includes the following three areas. Firstly, we have developed a novel energy-resolved photon counting (ERPC) detector. With the benefits of high energy resolution, high spatial resolution, flexible detection area, and a wide dynamic range of 27--200keV, ERPC detector is well-suited for small animal SPECT applications. For prototype ERPC detector excellent imaging (˜350microm) and spectroscopic performance (4keV Co-57 122keV) has been demonstrated in preliminary study. Secondly, to further improve spatial resolution to hundred-micron level, an ultra-high resolution Intensified EMCCD (I-EMCCD) detector has been designed and evaluated. This detector consists of the newly developed electron multiplying CCD (EMCCD) sensor, columnar CsI(Tl) scintillator, and an electrostatic de-magnifier (DM) tube

  18. Modeling regional-scale wildland fire emissions with the wildland fire emissions information system

    Science.gov (United States)

    Nancy H.F. French; Donald McKenzie; Tyler Erickson; Benjamin Koziol; Michael Billmire; K. Endsley; Naomi K.Y. Scheinerman; Liza Jenkins; Mary E. Miller; Roger Ottmar; Susan Prichard

    2014-01-01

    As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent...

  19. Water maser emission from exoplanetary systems

    Science.gov (United States)

    Cosmovici, C. B.; Pogrebenko, S.

    2018-01-01

    Since the first discovery of a Jupiter-mass planet in 1995 more than 2000 exo-planets have been found to exist around main sequence stars. The detection techniques are based on the radial velocity method (which involves the measurement of the star's wobbling induced by the gravitational field of the orbiting giant planets) or on transit photometry by using space telescopes (Kepler, Corot, Hubble and Spitzer) outside the absorbing Earth atmosphere. From the ground, as infrared observations are strongly limited by atmospheric absorption, radioastronomy offers almost the only possible way to search for water presence and abundance in the planetary atmospheres of terrestrial-type planets where life may evolve. Following the discovery in 1994 of the first water maser emission in the atmosphere of Jupiter induced by a cometary impact, our measurements have shown that the water maser line at 22 GHz (1.35 cm) can be used as a powerful diagnostic tool for water search outside the solar system, as comets are able to deliver considerable amounts of water to planets raising the fascinating possibility of extraterrestrial life evolution. Thus in 1999 we started the systematic search for water on 35 different targets up to 50 light years away from the Sun. Here we report the first detection of the water maser emission from the exoplanetary systems Epsilon Eridani, Lalande 21185 and Gliese 581. We have shown the peculiar feasibility of water detection and its importance in the search for exoplanetary systems especially for the Astrobiology programs, given the possibility of long period observations using powerful radiotelescopes equipped with adequate spectrometers.

  20. [Investigation of emission characteristics for light duty vehicles with a portable emission measurement system].

    Science.gov (United States)

    Wang, Hai-Kun; Fu, Li-Xin; Zhou, Yu; Lin, Xin; Chen, Ai-Zhong; Ge, Wei-hu; Du, Xuan

    2008-10-01

    Emission from 7 typical light-duty vehicles under actual driving conditions was monitored using a portable emission measurement system to gather data for characterization of the real world vehicle emission in Shenzhen, including the effects of driving modes on vehicle emission, comparison of fuel consumption based emission factors (g x L(-1) with mileage based emission factors (g x km(-1)), and the average emission factors of the monitored vehicles. The acceleration and deceleration modes accounted for 66.7% of total travel time, 80.3% of traveling distance and 74.6%-79.2% of vehicle emission; the acceleration mode contributed more than other driving modes. The fuel based emission factors were less dependent on the driving speed; they may be utilized in building macro-scale vehicle emission inventory with smaller sensitivity to the vehicle driving conditions. The effect of vehicle technology on vehicle emission was significant; the emission factors of CO, HC and NO(x) of carbureted vehicles were 19.9-20.5, 5.6-26.1 and 1.8-2.0 times the more advanced vehicles of Euro II, respectively. Using the ECE + EUDC driving cycle would not produce the desired real-world emission rates of light duty vehicles in a typical Chinese city.

  1. [Study on emission standard system of air pollutants].

    Science.gov (United States)

    Jiang, Mei; Zhang, Guo-Ning; Zhang, Ming-Hui; Zou, Lan; Wei, Yu-Xia; Ren, Chun

    2012-12-01

    Scientific and reasonable emission standard system of air pollutants helps to systematically control air pollution, enhance the protection of the atmospheric environment effect and improve the overall atmospheric environment quality. Based on the study of development, situation and characteristics of national air pollutants emission standard system, the deficiencies of system were pointed out, which were not supportive, harmonious and perfect, and the improvement measures of emission standard system were suggested.

  2. Direct nitrous oxide emissions in Mediterranean climate cropping systems

    NARCIS (Netherlands)

    Cayuela, Maria L.; Aguilera, Eduardo; Sanz-Cobena, Alberto; Adams, Dean C.; Abalos Rodriguez, Diego; Barton, Louise; Ryals, Rebecca; Silver, Whendee L.; Alfaro, Marta A.; Pappa, Valentini A.; Bouwman, Lex; Lassaletta, Luis

    2017-01-01

    Many recent reviews and meta-analyses of N2O emissions do not include data from Mediterranean studies. In this paper we present a meta-analysis of the N2O emissions from Mediterranean cropping systems, and propose a more robust and reliable regional emission factor (EF) for

  3. Low emissions system featured on compressor drive

    International Nuclear Information System (INIS)

    Curtis, T.

    1995-01-01

    A high speed power turbine is offered as an option with direct drive capability for pipeline compressors and other high-speed applications. As developed, it features ease of maintenance with rotor and nozzle assembly in a single cartridge to allow quick change-out or replacement of parts on site. The new compressor drive builds extensively on proven technology and is expected to provide lower installed and life-cycle costs per unit horsepower than previous units. During its development stages, M ampersand IE preformed cost and risk assessment of several design configurations and concluded that a derivative approach based on the standard unit was an optimal solution in the 39,000 shp range. A two-shaft gas turbine is expected to be applied in the industrial and commercial marine markets, including 50- and 60-Hertz power generation applications, pipeline compression, gas injection, and fast ferry commercial marine uses. Emissions controls for the system will include water or steam injection using a standard combustor or M and IE's DLE combustion system

  4. Mountain Plains Learning Experience Guide: Automotive Repair. Course: Emission Systems.

    Science.gov (United States)

    Schramm, C.; Osland, Walt

    One of twelve individualized courses included in an automotive repair curriculum, this course covers the theory, testing, and servicing of automotive emission control systems. The course is comprised of one unit, Fundamentals of Emission Systems. The unit begins with a Unit Learning Experience Guide that gives directions for unit completion. The…

  5. Modeling carbon emissions from urban traffic system using mobile monitoring.

    Science.gov (United States)

    Sun, Daniel Jian; Zhang, Ying; Xue, Rui; Zhang, Yi

    2017-12-01

    Comprehensive analyses of urban traffic carbon emissions are critical in achieving low-carbon transportation. This paper started from the architecture design of a carbon emission mobile monitoring system using multiple sets of equipment and collected the corresponding data about traffic flow, meteorological conditions, vehicular carbon emissions and driving characteristics on typical roads in Shanghai and Wuxi, Jiangsu province. Based on these data, the emission model MOVES was calibrated and used with various sensitivity and correlation evaluation indices to analyze the traffic carbon emissions at microscopic, mesoscopic and macroscopic levels, respectively. The major factors that influence urban traffic carbon emissions were investigated, so that emission factors of CO, CO 2 and HC were calculated by taking representative passenger cars as a case study. As a result, the urban traffic carbon emissions were assessed quantitatively, and the total amounts of CO, CO 2 and HC emission from passenger cars in Shanghai were estimated as 76.95kt, 8271.91kt, and 2.13kt, respectively. Arterial roads were found as the primary line source, accounting for 50.49% carbon emissions. In additional to the overall major factors identified, the mobile monitoring system and carbon emission quantification method proposed in this study are of rather guiding significance for the further urban low-carbon transportation development. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Emission operational strategy for combined cooling, heating, and power systems

    International Nuclear Information System (INIS)

    Fumo, Nelson; Mago, Pedro J.; Chamra, Louay M.

    2009-01-01

    Integrated Energy Systems (IES), as technology that use thermal activated components to recover waste heat, are energy systems that offer key solution to global warming and energy security through high overall energy efficiency and better fuel use. Combined Cooling, Heating, and Power (CCHP) Systems are IES that use recovered thermal energy from the prime mover to produce heating and cooling for the building. The CCHP operational strategy is critical and it has to be considered in a well designed system since it defines the ultimate goal for the benefits expected from the system. One of the most common operational strategies is the cost-oriented strategy, which allows the system to operate at the lowest cost. A primary energy strategy (PES) optimizes energy consumption instead of cost. However, as a result of the worldwide concern about global warming, projects that target reduction of greenhouse gas (GHG) emissions have gained a lot of interest. Therefore, for a CCHP system, an emission strategy (ES) would be an operational strategy oriented to minimize emission of pollutants. In this study, the use of an ES is proposed for CCHP systems targeted to reduce emission of pollutants. The primary energy consumption (PEC) reduction and carbon dioxide (CO 2 ) emission reduction obtained using the proposed ES are compared with results obtained from the use of a PES. Results show that lower emission of CO 2 is achieved with the ES when compared with the PES, which prove the advantage of the ES for the design of CCHP systems targeted to emissions reduction.

  7. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    Science.gov (United States)

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  8. Spontaneous emission control in a tunable hybrid photonic system

    NARCIS (Netherlands)

    Frimmer, M.; Koenderink, A.F.

    2013-01-01

    We experimentally demonstrate control of the rate of spontaneous emission in a tunable hybrid photonic system that consists of two canonical building blocks for spontaneous emission control, an optical antenna and a mirror, each providing a modification of the local density of optical states (LDOS).

  9. The emission trading E U system: Assessment and prospects

    International Nuclear Information System (INIS)

    Golini, G.

    2008-01-01

    The system of emission trading is a cap and trade mechanism aimed at reducing greenhouse gas emissions in an economically efficient way. It draws on Article 17 of the Kyoto Protocol and was established by directive 2003/87/CE amended by Directive 2004/101/EC. [it

  10. Carbon footprint and ammonia emissions of California beef production systems.

    Science.gov (United States)

    Stackhouse-Lawson, K R; Rotz, C A; Oltjen, J W; Mitloehner, F M

    2012-12-01

    Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH(3)) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH(3) emissions from representative beef production systems in California. The IFSM is a process-level farm model that simulates crop growth, feed production and use, animal growth, and the return of manure nutrients back to the land to predict the environmental impacts and economics of production systems. Ammonia emissions are determined by summing the emissions from animal housing facilities, manure storage, field applied manure, and direct deposits of manure on pasture and rangeland. All important sources and sinks of methane, nitrous oxide, and carbon dioxide are predicted from primary and secondary emission sources. Primary sources include enteric fermentation, manure, cropland used in feed production, and fuel combustion. Secondary emissions occur during the production of resources used on the farm, which include fuel, electricity, machinery, fertilizer, and purchased animals. The carbon footprint is the net exchange of all GHG in carbon dioxide equivalent (CO(2)e) units per kg of HCW produced. Simulated beef production systems included cow-calf, stocker, and feedlot phases for the traditional British beef breeds and calf ranch and feedlot phases for Holstein steers. An evaluation of differing production management strategies resulted in ammonia emissions ranging from 98 ± 13 to 141 ± 27 g/kg HCW and carbon footprints of 10.7 ± 1.4 to 22.6 ± 2.0 kg CO(2)e/kg HCW. Within the British beef production cycle, the cow-calf phase was responsible for 69 to 72% of total GHG emissions with 17 to 27% from feedlot sources. Holstein steers that entered the beef production system as a by-product of dairy production had the lowest carbon footprint because the emissions

  11. Emissions and targets of greenhouse gases not included in the Emission Trading System 2013-2020

    Energy Technology Data Exchange (ETDEWEB)

    Verdonk, M.

    2011-06-15

    This report evaluates the European Commission's (EC) proposal to calculate Member States' targets for emissions not included in the Emission Trading System (ETS) (as announced in the so-called Effort Sharing Decision). The calculation procedures and data sources proposed by the EC have been used for calculating non-ETS emission targets for the Netherlands, for the years from 2013 to 2020. In order to compare results, an alternative approach also was introduced and evaluated. In this approach more transparent data sources were used. Furthermore, the report updates the emission forecast of non-ETS emission levels in the Netherlands, for 2020, and evaluates the consequences of excluding uncertainties related to monitoring from the (updated) emission forecast. It is concluded that, for the Netherlands, the non-ETS emission caps as proposed by the EC would result in an emission cap of 105 Mt CO2 equivalent by 2020. This is higher than in the alternative approach, which would result in a cap of 103 Mt CO2 equivalents. The difference is explained by the different data sources that were used. A drawback of the data sources used in the EC proposal is the lack of transparency of part of the data, which resulted in an additional uncertainty as not all issues could be verified. However, other Member States may not have similar data sources available, in case the EC decides to adopt the alternative approach. The calculated emission caps are to be considered as estimates based on the most recent (but sometimes uncertain) statistics. The EC will determine the definite caps by the end of 2012. Based on a 2010 forecast, and including both an updated division of emissions into ETS and non-ETS emissions and a revised methodology for calculating nitrous oxide emissions, we estimate that non-ETS emissions in the Netherlands would be 104 Mt CO2 equivalents by 2020, with an uncertainty range of between 96 and 112 Mt CO2 equivalents. It is our conclusion that non-ETS emission

  12. System for reducing emissions during coke oven charging

    International Nuclear Information System (INIS)

    Schuecker, Franz-Josef

    2014-01-01

    This article describes a process which reduces emissions from coke production in coke plants. The focus is on the charging process, which can be partly responsible for the fact that statutory emissions limits, which were originally met, are exceeded as coke plants get older. This article presents a solution in the form of a newly developed system that allows the oven charging system - the charging car - to respond to age-related changes in the geometry of a coke oven and thereby reduce the level of emissions.

  13. Bulk energy storage increases United States electricity system emissions.

    Science.gov (United States)

    Hittinger, Eric S; Azevedo, Inês M L

    2015-03-03

    Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a "green" technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO2, SO2, and NOx for 20 eGRID subregions in the United States. We find that net system CO2 emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from -0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO2 emissions from storage operation range from -0.01 to 1.7 kg/MWh, depending on location and storage operation mode.

  14. Evaluation system for CO2 emission of hot asphalt mixture

    Directory of Open Access Journals (Sweden)

    Bo Peng

    2015-04-01

    Full Text Available The highway construction industry plays an important role in economic and development, but is also a primary source of carbon emission. Accordingly, with the global climate change, energy conservation and reduction of carbon emissions have become critical issues in the highway construction industry. However, to date, a model for the highway construction industry has not been established. Hence, to implement a low-carbon construction model for highways, this study divided asphalt pavement construction into aggregate stacking, aggregate supply, and other stages, and compiled a list of energy consumption investigation. An appropriate calculation model of CO2 emission was then built. Based on the carbon emission calculation model, the proportion of carbon emissions in each stage was analyzed. The analytic hierarchy process was used to establish the system of asphalt pavement construction with a judgment matrix, thereby enabling calculation of the weight coefficient of each link. In addition, the stages of aggregate heating, asphalt heating, and asphalt mixture mixing were defined as key stages of asphalt pavement construction. Carbon emissions at these stages accounted for approximately 90% of the total carbon emissions. Carbon emissions at each stage and their impact on the environment were quantified and compared. The energy saving construction schemes as well as the environmental and socioeconomic benefits were then proposed. Through these schemes, significant reductions in carbon emissions and costs can be achieved. The results indicate that carbon emissions reduce by 32.30% and 35.93%, whereas costs reduce by 18.58% and 6.03%. The proposed energy-saving and emission reduction scheme can provide a theoretical basis and technical support for the development of low-carbon highway construction.

  15. REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    Science.gov (United States)

    Large refrigeration systems are found in several applications including supermarkets, cold storage warehouses, and industrial processes. The sizes of these systems are a contributing factor to their problems of high refrigerant leak rates because of the thousands of connections, ...

  16. System-wide emissions implications of increased wind power penetration.

    Science.gov (United States)

    Valentino, Lauren; Valenzuela, Viviana; Botterud, Audun; Zhou, Zhi; Conzelmann, Guenter

    2012-04-03

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  17. Electricity system planning under the CO2 emission restriction

    International Nuclear Information System (INIS)

    Lim, Chae Young; Lee, Man Ki; Roh, Jae Hyung; Kim, Eun Hwan

    2004-01-01

    Objective of this study is to analyze how the restriction of CO 2 emission from power generation will affect the national electricity supply system. The role of nuclear power is investigated under the restriction of CO 2 emission in Korea. A simplified electricity system was modeled for the analysis. To analyze the impact of CO 2 emission restriction, 2 different scenarios were established and compared with the base scenario. The first scenario was 'CO 2 emission restriction with new nuclear power installation'. In this scenario, a CO 2 emission restriction of 0.11kg-C/kWh was imposed and there was no restriction on the nuclear power construction. While, in the second scenario, 'CO 2 emission restriction without new nuclear power installation' the same amount of CO 2 restriction was imposed with no consideration of nuclear power installation. It is found out that the current national emission target(0.11kg- C/kWh) in the electricity sector can not be achieved without nuclear and renewable(wind power) options considered

  18. Greenhouse Gas Emissions From Energy Systems: Comparison And Overview

    International Nuclear Information System (INIS)

    Dones, R.; Heck, T.; Hirschberg, S.

    2004-01-01

    The paper provides an overview and comparison of Greenhouse Gas Emissions associated with fossil, nuclear and renewable energy systems. In this context both the direct technology-specific emissions and the contributions from full energy chains within the Life Cycle Assessment framework are considered. Examples illustrating the differences between countries and regional electricity mixes are also provided. Core results presented here are based on the work performed at PSI, and by partners within the Swiss Centre for Life-Cycle Inventories. (author)

  19. Greenhouse Gas Emissions From Energy Systems: Comparison And Overview

    Energy Technology Data Exchange (ETDEWEB)

    Dones, R.; Heck, T.; Hirschberg, S

    2004-03-01

    The paper provides an overview and comparison of Greenhouse Gas Emissions associated with fossil, nuclear and renewable energy systems. In this context both the direct technology-specific emissions and the contributions from full energy chains within the Life Cycle Assessment framework are considered. Examples illustrating the differences between countries and regional electricity mixes are also provided. Core results presented here are based on the work performed at PSI, and by partners within the Swiss Centre for Life-Cycle Inventories. (author)

  20. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Richard Doin; Lamb, Kenneth Mitchel; Matejka, Leon Anthony; Nenni, Joseph A

    2002-02-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

  1. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory; ANNUAL

    International Nuclear Information System (INIS)

    Boardman, R.D.; Lamb, K.M.; Matejka, L.A.; Nenni, J.A.

    2002-01-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5

  2. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    International Nuclear Information System (INIS)

    Boardman, R.D.; Lamb, K.M.; Matejka, L.A.; Nenni, J.A.

    2002-01-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5

  3. A tiered observational system for anthropogenic methane emissions

    Science.gov (United States)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.

    2014-12-01

    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual

  4. Design of acoustic emission monitoring system based on VC++

    Science.gov (United States)

    Yu, Yang; He, Wei

    2015-12-01

    At present, a lot of companies at home and abroad have researched and produced a batch of specialized monitoring instruments for acoustic emission (AE). Most of them cost highly and the system function exists in less stable and less portability for the testing environment and transmission distance and other aspects. Depending on the research background and the status quo, a dual channel intelligent acoustic emission monitoring system was designed based on Microsoft Foundation Classes in Visual Studio C++ to solve some of the problems in the acoustic emission research and meet the needs of actual monitoring task. It contains several modules such as main module, acquisition module, signal parameters setting module and so on. It could give out corrosion AE waveform and signal parameters results according to the main menu selected parameters. So the needed information could be extracted from the experiments datum to solve the problem deeply. This soft system is the important part of AE detection g system.

  5. Simulating the Earth System Response to Negative Emissions

    Science.gov (United States)

    Jackson, R. B.; Milne, J.; Littleton, E. W.; Jones, C.; Canadell, J.; Peters, G. P.; van Vuuren, D.; Davis, S. J.; Jonas, M.; Smith, P.; Ciais, P.; Rogelj, J.; Torvanger, A.; Shrestha, G.

    2016-12-01

    The natural carbon sinks of the land and oceans absorb approximately half the anthropogenic CO2 emitted every year. The CO2 that is not absorbed accumulates in the Earth's atmosphere and traps the suns rays causing an increase in the global mean temperature. Removing this left over CO2 using negative emissions technologies (NETs) has been proposed as a strategy to lessen the accumulating CO2 and avoid dangerous climate change. Using CMIP5 Earth system model simulations this study assessed the impact on the global carbon cycle, and how the Earth system might respond, to negative emissions strategies applied to low emissions scenarios, over different times horizons from the year 2000 to 2300. The modeling results suggest that using NETs to remove atmospheric CO2 over five 50-year time horizons has varying effects at different points in time. The effects of anthropogenic and natural sources and sinks, can result in positive or negative changes in atmospheric CO2 concentration. Results show that historic emissions and the current state of the Earth System have impacts on the behavior of atmospheric CO2, as do instantaneous anthropogenic emissions. Indeed, varying background scenarios seemed to have a greater effect on atmospheric CO2 than the actual amount and timing of NETs. These results show how NETs interact with the physical climate-carbon cycle system and highlight the need for more research on earth-system dynamics as they relate to carbon sinks and sources and anthropogenic perturbations.

  6. Particulate matter emission from livestock houses: measurement methods, emission levels and abatement systems

    NARCIS (Netherlands)

    Winkel, Albert

    2016-01-01

    Animal houses are extremely dusty environments. Airborne particulate matter (PM) poses a health threat not only to the farmer and the animals, but, as a result of emissions from ventilation systems, also to residents living in livestock farming areas. In relation to this problem, the objectives

  7. Strategies to mitigate nitrous oxide emissions from herbivore production systems.

    Science.gov (United States)

    Schils, R L M; Eriksen, J; Ledgard, S F; Vellinga, Th V; Kuikman, P J; Luo, J; Petersen, S O; Velthof, G L

    2013-03-01

    Herbivores are a significant source of nitrous oxide (N(2)O) emissions. They account for a large share of manure-related N(2)O emissions, as well as soil-related N(2)O emissions through the use of grazing land, and land for feed and forage production. It is widely acknowledged that mitigation measures are necessary to avoid an increase in N(2)O emissions while meeting the growing global food demand. The production and emissions of N(2)O are closely linked to the efficiency of nitrogen (N) transfer between the major components of a livestock system, that is, animal, manure, soil and crop. Therefore, mitigation options in this paper have been structured along these N pathways. Mitigation technologies involving diet-based intervention include lowering the CP content or increasing the condensed tannin content of the diet. Animal-related mitigation options also include breeding for improved N conversion and high animal productivity. The main soil-based mitigation measures include efficient use of fertilizer and manure, including the use of nitrification inhibitors. In pasture-based systems with animal housing facilities, reducing grazing time is an effective option to reduce N(2)O losses. Crop-based options comprise breeding efforts for increased N-use efficiency and the use of pastures with N(2)-fixing clover. It is important to recognize that all N(2)O mitigation options affect the N and carbon cycles of livestock systems. Therefore, care should be taken that reductions in N(2)O emissions are not offset by unwanted increases in ammonia, methane or carbon dioxide emissions. Despite the abundant availability of mitigation options, implementation in practice is still lagging. Actual implementation will only follow after increased awareness among farmers and greenhouse gases targeted policies. So far, reductions in N(2)O emissions that have been achieved are mostly a positive side effect of other N-targeted policies.

  8. Greenhouse gas emissions from integrated urban drainage systems

    DEFF Research Database (Denmark)

    Mannina, Giorgio; Butler, David; Benedetti, Lorenzo

    2018-01-01

    As sources of greenhouse gas (GHG) emissions, integrated urban drainage systems (IUDSs) (i.e., sewer systems, wastewater treatment plants and receiving water bodies) contribute to climate change. This paper, produced by the International Working Group on Data and Models, which works under the IWA...

  9. Analysis of carbon dioxide emission from energy systems

    International Nuclear Information System (INIS)

    Ihara, S.; Koyama, S.

    1992-01-01

    A linear programming model MARKAL is used to explore technology options and cost for meeting energy demands while reducing CO 2 emissions from energy system of Japan. The model consists of an extension of the existing energy system and possible alternative energy technologies available during 45 years from 1983 to 2027. Using two scenarios of high- and low-energy demand, an optimal configuration of the model is examined under the mix of specified constraints on the use of technologies and fuels. The results show that energy conservation is robust in yielding reduction in CO 2 emissions under a variety of conditions, and that stringent constraints on the national CO 2 emissions produce major shifts in the market shares of fossil and non-fossil fuels that necessitate advanced technologies and an increase in the total system cost

  10. Fossil-Fuel C02 Emissions Database and Exploration System

    Science.gov (United States)

    Krassovski, M.; Boden, T.

    2012-04-01

    Fossil-Fuel C02 Emissions Database and Exploration System Misha Krassovski and Tom Boden Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production each year at global, regional, and national spatial scales. These estimates are vital to climate change research given the strong evidence suggesting fossil-fuel emissions are responsible for unprecedented levels of carbon dioxide (CO2) in the atmosphere. The CDIAC fossil-fuel emissions time series are based largely on annual energy statistics published for all nations by the United Nations (UN). Publications containing historical energy statistics make it possible to estimate fossil-fuel CO2 emissions back to 1751 before the Industrial Revolution. From these core fossil-fuel CO2 emission time series, CDIAC has developed a number of additional data products to satisfy modeling needs and to address other questions aimed at improving our understanding of the global carbon cycle budget. For example, CDIAC also produces a time series of gridded fossil-fuel CO2 emission estimates and isotopic (e.g., C13) emissions estimates. The gridded data are generated using the methodology described in Andres et al. (2011) and provide monthly and annual estimates for 1751-2008 at 1° latitude by 1° longitude resolution. These gridded emission estimates are being used in the latest IPCC Scientific Assessment (AR4). Isotopic estimates are possible thanks to detailed information for individual nations regarding the carbon content of select fuels (e.g., the carbon signature of natural gas from Russia). CDIAC has recently developed a relational database to house these baseline emissions estimates and associated derived products and a web-based interface to help users worldwide query these data holdings. Users can identify, explore and download desired CDIAC

  11. Improvement of cement plant dust emission by bag filter system

    Science.gov (United States)

    Wahyu Purnomo, Chandra; Budhijanto, Wiratni; Alfisyah, Muziibu; Triyono

    2018-03-01

    The limestone quarry in PT Indocement Tunggal Prakarsa (ITP) in Cirebon is considered as a complex quarry in terms of chemical composition and material hardness. From the beginning of the plant operation up to the end of 2015, the dust removal was rely on electrostatic precipitator (EP) system. Whenever limestone from specific quarry zones were incorporated into Raw Mill (RM) feed or there was an upset condition, the dust emission increased significantly. Beside higher demand of electricity, an EP system requires lower gas inlet temperature in order to remove the dust effectively which requires larger cooling water in the previous gas conditioning tower to cool down gas from 400 °C to about 100 °C. By considering the drawbacks, the EP system was replaced by a bag filter (BF) system. The BF allows higher temperature of gas inlet and it has higher dust removal efficiency. In this study, the efficiency of the two different dust removal systems is compared. The effect of process variables i.e. RM feed, kiln feed, inlet temperature and pressure, and small size particle fraction to the dust emission are studied by multivariate linier regression analysis. It is observed that the BF system can reduce significantly the dust emission from 30 to 6 mg/m3 and in the same time reducing CO2 emission by 0.24 ton/year from the electricity consumption saving.

  12. 330 kWe Packaged CHP System with Reduced Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Plahn, Paul [Cummins Power Generation, Minneapolis, MN (United States); Keene, Kevin [Cummins Power Generation, Minneapolis, MN (United States); Pendray, John [Cummins Power Generation, Minneapolis, MN (United States)

    2015-03-31

    The objective of this project was to develop a flexible, 330 kWe packaged Combined Heat and Power (CHP) system that can be deployed to commercial and light industrial applications at a lower total cost of ownership than current CHP solutions. The project resulted in a CHP system that is easy to use and inexpensive to install, offering world class customer support, while providing a low-emissions, higher-efficiency internal combustion engine for a CHP system of this size.

  13. Assessment of HAPs emissions from advanced power systems

    International Nuclear Information System (INIS)

    Erickson, T.A.; Brekke, D.W.

    1996-01-01

    The 1990 Clean Air Act Amendments (CAAA) identified 189 substances as air toxics or hazardous air pollutants (HAPs). Under the CAAA, the U. S. Environmental Protection Agency (EPA) must regulate emissions of these HAPs at their sources, including advanced power systems used for the production of electricity. Eleven trace elements are included in the CAAA list of HAPS, as shown in Table 1. The EPA will define those sources that require regulation and limit their emissions according to regulatory directives. This project focused on evaluating and manipulating the advanced power systems HAPs data currently available for presentation to the U.S. Department of Energy (DOE). Trace components included in the 189 HAPs of the 1990 CAAA are: antimony compounds; arsenic compounds; beryllium compounds; cadmium compounds; chromium compounds; cobalt compounds; lead compounds; manganese compounds; mercury compounds; nickel compounds; and selenium compounds. The review of trace element emissions from advanced power systems and hot-gas cleanup systems included data from Tidd Station, General Electric hot-gas cleanup, Louisiana Gasification Technology Incorporated, and the Cool Water plant. Very few other sources of information were located, and those that were contained significantly flawed information that was not of value to this project. To offset the shortage of information, thermochemical equilibrium predictions were used in evaluating advanced control systems. An outline of the systems reviewed is given in Table 2. In addition to the four demonstration and 1 full-scale systems reviewed, nine conventional systems were also reviewed for comparison with the advanced systems

  14. Low emission turbo compound engine system

    Science.gov (United States)

    Vuk,; Carl, T [Denver, IA

    2011-05-31

    A diesel or HHCI engine has an air intake and an exhaust for products of combustion. A pair of turbochargers receive the products of combustion in a series relationship and an exhaust aftertreatment device receive the products of combustion from the downstream turbine. A power turbine receives the output from the exhaust aftertreatment device and an EGR system of the power turbine passes a selected portion of the output to a point upstream of the upstream turbocharger compressor. A device adds fuel to the aftertreatment device to regenerate the particulate filter and the power turbine recoups the additional energy. The power turbine may be used to drive accessories or the prime output of the engine.

  15. Modelling nitrous oxide emissions from grazed grassland systems

    International Nuclear Information System (INIS)

    Wang Junye; Cardenas, Laura M.; Misselbrook, Tom H.; Cuttle, Steve; Thorman, Rachel E.; Li Changsheng

    2012-01-01

    Grazed grassland systems are an important component of the global carbon cycle and also influence global climate change through their emissions of nitrous oxide and methane. However, there are huge uncertainties and challenges in the development and parameterisation of process-based models for grazed grassland systems because of the wide diversity of vegetation and impacts of grazing animals. A process-based biogeochemistry model, DeNitrification-DeComposition (DNDC), has been modified to describe N 2 O emissions for the UK from regional conditions. This paper reports a new development of UK-DNDC in which the animal grazing practices were modified to track their contributions to the soil nitrogen (N) biogeochemistry. The new version of UK-DNDC was tested against datasets of N 2 O fluxes measured at three contrasting field sites. The results showed that the responses of the model to changes in grazing parameters were generally in agreement with observations, showing that N 2 O emissions increased as the grazing intensity increased. - Highlights: ► Parameterisation of grazing system using grazing intensity. ► Modification of UK D NDC for the UK soil and weather conditions. ► Validation of the UK D NDC against measured data of N 2 O emissions in three UK sites. ► Estimating influence of animal grazing practises on N 2 O emissions. - Grazing system was parameterised using grazing intensity and UK-DNDC model was modified and validated against measured data of N 2 O emissions in three UK sites.

  16. Assessment of Global Emissions, Local Emissions and Immissions of Different Heating Systems

    Directory of Open Access Journals (Sweden)

    Georg Erdmann

    2009-08-01

    Full Text Available This paper assesses and compares existing and new technologies for space heating in Germany (e.g., heat pumps, and solar thermal and wood pellet systems in terms of their environmental impacts. The various technologies were analyzed within the context of the new German legislation. The assessment was carried out on three levels: 1. Global emissions: a life cycle assessment was carried out in order to find the global environmental footprint of the various technologies; 2. Local emissions: the effects of local emissions on human health were analyzed; and 3. Immissions: the immissions were evaluated for the various technologies using a dispersion calculation. A special feature of this study is the substitution of frequently used database emission values by values obtained from field studies and our own measurements. The results show large differences between the different technologies: while electric heat pumps performed quite well in most categories, wood pellet systems performed the best with respect to climate change. The latter, however, are associated with high impacts in other environmental impact categories and on a local scale. The promotion of some technologies (especially systems based on fuel oil, a mixture of fuel oil and rapeseed oil, or a mixture of natural gas and biomethane by the newly introduced German legislation is doubtful. In terms of the immissions of wood pellet systems, it can be concluded that, even for extremely unfavorable meteorological conditions, the regulatory limits are not exceeded and the heating systems have a negligible influence on the total PM load in the ambient air.

  17. Estimating marginal CO2 emissions rates for national electricity systems

    International Nuclear Information System (INIS)

    Hawkes, A.D.

    2010-01-01

    The carbon dioxide (CO 2 ) emissions reduction afforded by a demand-side intervention in the electricity system is typically assessed by means of an assumed grid emissions rate, which measures the CO 2 intensity of electricity not used as a result of the intervention. This emissions rate is called the 'marginal emissions factor' (MEF). Accurate estimation of MEFs is crucial for performance assessment because their application leads to decisions regarding the relative merits of CO 2 reduction strategies. This article contributes to formulating the principles by which MEFs are estimated, highlighting the strengths and weaknesses in existing approaches, and presenting an alternative based on the observed behaviour of power stations. The case of Great Britain is considered, demonstrating an MEF of 0.69 kgCO 2 /kW h for 2002-2009, with error bars at +/-10%. This value could reduce to 0.6 kgCO 2 /kW h over the next decade under planned changes to the underlying generation mix, and could further reduce to approximately 0.51 kgCO 2 /kW h before 2025 if all power stations commissioned pre-1970 are replaced by their modern counterparts. Given that these rates are higher than commonly applied system-average or assumed 'long term marginal' emissions rates, it is concluded that maintenance of an improved understanding of MEFs is valuable to better inform policy decisions.

  18. Probe-Hole Field Emission Microscope System Controlled by Computer

    Science.gov (United States)

    Gong, Yunming; Zeng, Haishan

    1991-09-01

    A probe-hole field emission microscope system, controlled by an Apple II computer, has been developed and operated successfully for measuring the work function of a single crystal plane. The work functions on the clean W(100) and W(111) planes are measured to be 4.67 eV and 4.45 eV, respectively.

  19. Controlling nitrous oxide emissions from grassland livestock production systems

    NARCIS (Netherlands)

    Oenema, O.; Gebauer, G.; Rodriguez, M.; Sapek, A.; Jarvis, S.C.; Corré, W.J.; Yamulki, S.

    1998-01-01

    There is growing awareness that grassland livestock production systems are major sources of nitrous oxide (N2O). Controlling these emissions requires a thorough understanding of all sources and controlling factors at the farm level. This paper examines the various controlling factors and proposes

  20. EMISSIONS REDUCTION DATA FOR GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEMS

    Science.gov (United States)

    This study measured the pollutant emission reduction potential of 29 photovoltaic (PV) systems installed on residential and commercial building rooftops across the U.S. from 1993 through 1997. The U.S. Environmental Protection Agency (EPA) and 21 electric power companies sponsor...

  1. Methodology for methane emission inventory from Snam transmission system

    International Nuclear Information System (INIS)

    Premoli, M.; Riva, A.

    1997-01-01

    Methane, the main component of natural gas, is recognised as one of the most important contributors of the greenhouse effect, responsible for about 22% of the total. Several industries of natural gas, among which Snam, have undertaken intensive programs focused on the quantification of the total amounts of methane emitted in their operating activities. Snam elaborated a scientifically reliable methodology, for evaluating the annual methane emissions from its transmission system, based on a statistic approach using specific 'activity factors', that are the emitting equipment population and the frequency of emitting events, and emission factors. Part of the latter are based on GRI-EPA emission factors calculated for natural gas systems in the U.S. and adjusted to Snam system, and the other were measured during a field campaign on a random sample of previously identified large emission sources in Snam compressor and metering and regulating stations. The study showed that the methane release to the air from Snam natural gas transmission system was only the 0.1% of the total amount of methane in the natural gas imported and produced in Italy in 1993. (au)

  2. Environmental emissions of SOFC and SPFC system manufacture and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Karakoussis, V.; Leach, M.; Vorst, R. van der; Hart, D.; Lane, J.; Pearson, P.; Kilner, J.

    2000-07-01

    This report gives details of a study using Life Cycle Assessment (LCA) to examine the emissions and wastes produced in the manufacture of solid oxide and solid polymer fuel cells in order to identify any barrier to their commercial acceptance. The background to the study is traced, and the selection and definition of systems for studying are outlined. Life Cycle inventories for manufacture are explored focussing on material and energy inputs and emissions, and inventories and environmental burdens are considered. Potential commercial barriers for fuel cells from the environmental effects of manufacture and end-of-life are discussed, and recommendations for future work are given.

  3. Process system and method for fabricating submicron field emission cathodes

    Science.gov (United States)

    Jankowski, Alan F.; Hayes, Jeffrey P.

    1998-01-01

    A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.

  4. Some scenarios of CO2 emission from the energy system

    International Nuclear Information System (INIS)

    Liik, O.; Landsberg, M.

    1996-01-01

    After Estonia regained its independence, planning of energy policy became topical. Since 1989, several expert groups have worked on the urgent problems and developments of Estonia's power engineering. Comprehensive energy system planning by mathematical modeling was accomplished in 1994. Then Tallinn Technical University acquired the MARKAL model from the Swedish National Board for Industrial and Technical Development (NUTEK). The influence of air pollution constraints on energy system development was first investigated in 1995. At the end of 1995, under the U.S. Country Studies Program, a detailed analysis of future CO 2 emissions and their reduction options began. During 1990-1993, energy demand lowered due to economic decline and sharp rise in the fuel and energy prices as well as a decrease in electricity exports, has resulting in 50% reduction of CO 2 emissions. For the same reasons, Estonia has been able to meet the requirements set in the agreements on SO 2 and NO x emissions with no special measures or costs. To meet the rigid ing SO 2 restrictions and growing energy consumption in the future, Estonia must invest in abatement and in new clean and efficient oil-shale combustion technology. Along with the old oil-shale plants closing and electricity consumption growing, other fuels will be used. The increase in energy demand then should not be fast due to constantly rising prices and efficient energy use. Measures to reduce SO 2 , and NO x emissions will also reduce CO 2 . In MARKAL runs the 1990 level of CO 2 emissions will be exceeded only along with high demand growth and absence of emissions control. Restricted availability of imported fuels and nuclear power or enabling electricity import can change the results significantly. The results discussed here can also change because the data base is being improved (such as detailed description of energy networks, description of demand-side technologies, accounting of energy conservation measures, addition of

  5. Greenhouse gas emissions from on-site wastewater treatment systems

    Science.gov (United States)

    Somlai-Haase, Celia; Knappe, Jan; Gill, Laurence

    2016-04-01

    Nearly one third of the Irish population relies on decentralized domestic wastewater treatment systems which involve the discharge of effluent into the soil via a percolation area (drain field). In such systems, wastewater from single households is initially treated on-site either by a septic tank and an additional packaged secondary treatment unit, in which the influent organic matter is converted into carbon dioxide (CO2) and methane (CH4) by microbial mediated processes. The effluent from the tanks is released into the soil for further treatment in the unsaturated zone where additional CO2 and CH4 are emitted to the atmosphere as well as nitrous oxide (N2O) from the partial denitrification of nitrate. Hence, considering the large number of on-site systems in Ireland and internationally, these are potential significant sources of greenhouse gas (GHG) emissions, and yet have received almost no direct field measurement. Here we present the first attempt to quantify and qualify the production and emissions of GHGs from a septic tank system serving a single house in the County Westmeath, Ireland. We have sampled the water for dissolved CO2, CH4 and N2O and measured the gas flux from the water surface in the septic tank. We have also carried out long-term flux measurements of CO2 from the drain field, using an automated soil gas flux system (LI-8100A, Li-Cor®) covering a whole year semi-continuously. This has enabled the CO2 emissions from the unsaturated zone to be correlated against different meteorological parameters over an annual cycle. In addition, we have integrated an ultraportable GHG analyser (UGGA, Los Gatos Research Inc.) into the automated soil gas flux system to measure CH4 flux. Further, manual sampling has also provided a better understanding of N2O emissions from the septic tank system.

  6. Electrically induced spontaneous emission in open electronic system

    Science.gov (United States)

    Wang, Rulin; Zhang, Yu; Yam, Chiyung; Computation Algorithms Division (CSRC) Team; Theoretical; Computational Chemistry (HKU) Collaboration

    A quantum mechanical approach is formulated for simulation of electroluminescence process in open electronic system. Based on nonequilibrium Green's function quantum transport equations and combining with photon-electron interaction, this method is used to describe electrically induced spontaneous emission caused by electron-hole recombination. The accuracy and reliability of simulation depends critically on correct description of the electronic band structure and the electron occupancy in the system. In this work, instead of considering electron-hole recombination in discrete states in the previous work, we take continuous states into account to simulate the spontaneous emission in open electronic system, and discover that the polarization of emitted photon is closely related to its propagation direction. Numerical studies have been performed to silicon nanowire-based P-N junction with different bias voltage.

  7. Implementation of Portable Emissions Measurement Systems (PEMS) for the Real-driving Emissions (RDE) Regulation in Europe.

    Science.gov (United States)

    Giechaskiel, Barouch; Vlachos, Theodoros; Riccobono, Francesco; Forni, Fausto; Colombo, Rinaldo; Montigny, Francois; Le-Lijour, Philippe; Carriero, Massimo; Bonnel, Pierre; Weiss, Martin

    2016-12-04

    Vehicles are tested in controlled and relatively narrow laboratory conditions to determine their official emission values and reference fuel consumption. However, on the road, ambient and driving conditions can vary over a wide range, sometimes causing emissions to be higher than those measured in the laboratory. For this reason, the European Commission has developed a complementary Real-Driving Emissions (RDE) test procedure using the Portable Emissions Measurement Systems (PEMS) to verify gaseous pollutant and particle number emissions during a wide range of normal operating conditions on the road. This paper presents the newly-adopted RDE test procedure, differentiating six steps: 1) vehicle selection, 2) vehicle preparation, 3) trip design, 4) trip execution, 5) trip verification, and 6) calculation of emissions. Of these steps, vehicle preparation and trip execution are described in greater detail. Examples of trip verification and the calculations of emissions are given.

  8. Impact of biogenic emissions on feedbacks in the climate system

    Science.gov (United States)

    Krüger, Olaf

    2017-04-01

    Impact of biogenic emissions on feedbacks in the climate system Bio-geophysical feedback between marine or continental ecosystems and the atmosphere potentially can alter climate change. A prominent feedback loop which is under discussion since 1983 bases on the emission of biologically produced gases - molecular oxygen, sulphur containing compounds and possibly isoprene, supersaturated in oceanic waters - into the marine troposphere. These by-products of phytoplankton metabolism lead to aerosol production and procure sustained influence on climate via modulation of cloud optical properties. In this contribution some findings related to the above mentioned climate processes are presented with special emphasis on marine ecosystems. A comparison of marine and continental ecosystems is made and different processes with major impact on feedbacks in the climate system are discussed.

  9. Integrated biomass energy systems and emissions of carbon dioxide

    International Nuclear Information System (INIS)

    Boman, U.R.; Turnbull, J.H.

    1997-01-01

    Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) have been funding a number of case studies under the initiative entitled ''Economic Development through Biomass Systems Integration'', with the objective of investigating the feasibility of integrated biomass energy systems utilizing a dedicated feedstock supply system (DFSS) for energy production. This paper deals with the full fuel cycle for four of these case studies, which have been examined with regard to the emissions of carbon dioxide., CO 2 . Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 emissions from the DFSS. External energy is required for the production and transportation of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. However, by utilizing biomass with fossil fuels as external input fuels, we would get about 10-15 times more electric energy per unit fossil fuel, compared with a 100% coal power system. By introducing a DFSS on former farmland the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved and a significant amount of energy will be produced compared with an ordinary farm crop. Compared with traditional coal-based electricity production, the CO 2 emissions are in the most cases reduced significantly by as much as 95%. The important conclusion is the great potential for reducing greenhouse gas emissions through the offset of coal by biomass. (author)

  10. Integrated biomass energy systems and emissions of carbon dioxide

    International Nuclear Information System (INIS)

    Boman, U.R.; Turnbull, J.H.

    1996-01-01

    Electric Power Research Institute (EPRI) and US Department of Energy (DOE) have been funding a number of case studies under the initiative entitled 'Economic Development through Biomass Systems Integration', with the objective to investigate the feasibility of integrated biomass energy systems, utilizing a dedicated feedstock supply system (DFSS) for energy production. This paper deals with the full cycle for four of these case studies, which have been examined with regard to the emissions of greenhouse gases, especially CO 2 . Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 -emissions from DFSS. External energy is required for the production and transportation of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. But, by utilizing biomass with fossil fuels as external input fuels, we would get about 10-15 times more electric energy per unit fossil fuel, compared to a 100% coal power system. By introducing a DFSS on former farmland, the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved, and a significant amount of energy will be produced, compared to an ordinary farm crop. Compared to traditional coal based electricity production, the CO 2 -emissions are in most cases reduced significantly, as much as 95%. The important conclusion is the great potential of reducing greenhouse gas emissions through the offset of coal by biomass. 23 refs,, 8 figs, 2 tabs

  11. Calculation of CO2 emissions from the italian energy system

    International Nuclear Information System (INIS)

    Contaldi, M.; La Motta, S.

    2001-01-01

    The calculation of CO2 emissions from the Italian energy system is the object of this work. The inventory method used is the Reference Approach from the Intergovernmental Panel for Climate Change (IPCC, 1996 revised Guidelines for National Greenhouse Gas Inventories) and the energy consumption data are taken from the Italian Energy Balance edited by the Ministry of Industry. The years analysed are those from 1990 to 2000 [it

  12. Historical (1750–2014 anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS

    Directory of Open Access Journals (Sweden)

    R. M. Hoesly

    2018-01-01

    Full Text Available We present a new data set of annual historical (1750–2014 anthropogenic chemically reactive gases (CO, CH4, NH3, NOx, SO2, NMVOCs, carbonaceous aerosols (black carbon – BC, and organic carbon – OC, and CO2 developed with the Community Emissions Data System (CEDS. We improve upon existing inventories with a more consistent and reproducible methodology applied to all emission species, updated emission factors, and recent estimates through 2014. The data system relies on existing energy consumption data sets and regional and country-specific inventories to produce trends over recent decades. All emission species are consistently estimated using the same activity data over all time periods. Emissions are provided on an annual basis at the level of country and sector and gridded with monthly seasonality. These estimates are comparable to, but generally slightly higher than, existing global inventories. Emissions over the most recent years are more uncertain, particularly in low- and middle-income regions where country-specific emission inventories are less available. Future work will involve refining and updating these emission estimates, estimating emissions' uncertainty, and publication of the system as open-source software.

  13. Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS)

    Science.gov (United States)

    Hoesly, Rachel M.; Smith, Steven J.; Feng, Leyang; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pitkanen, Tyler; Seibert, Jonathan J.; Vu, Linh; Andres, Robert J.; Bolt, Ryan M.; Bond, Tami C.; Dawidowski, Laura; Kholod, Nazar; Kurokawa, June-ichi; Li, Meng; Liu, Liang; Lu, Zifeng; Moura, Maria Cecilia P.; O'Rourke, Patrick R.; Zhang, Qiang

    2018-01-01

    We present a new data set of annual historical (1750-2014) anthropogenic chemically reactive gases (CO, CH4, NH3, NOx, SO2, NMVOCs), carbonaceous aerosols (black carbon - BC, and organic carbon - OC), and CO2 developed with the Community Emissions Data System (CEDS). We improve upon existing inventories with a more consistent and reproducible methodology applied to all emission species, updated emission factors, and recent estimates through 2014. The data system relies on existing energy consumption data sets and regional and country-specific inventories to produce trends over recent decades. All emission species are consistently estimated using the same activity data over all time periods. Emissions are provided on an annual basis at the level of country and sector and gridded with monthly seasonality. These estimates are comparable to, but generally slightly higher than, existing global inventories. Emissions over the most recent years are more uncertain, particularly in low- and middle-income regions where country-specific emission inventories are less available. Future work will involve refining and updating these emission estimates, estimating emissions' uncertainty, and publication of the system as open-source software.

  14. A Preliminary Study Application Clustering System in Acoustic Emission Monitoring

    Directory of Open Access Journals (Sweden)

    Saiful Bahari Nur Amira Afiza

    2017-01-01

    Full Text Available Acoustic Emission (AE is a non-destructive testing known as assessment on damage detection in structural engineering. It also can be used to discriminate the different types of damage occurring in a composite materials. The main problem associated with the data analysis is the discrimination between the different AE sources and analysis of the AE signal in order to identify the most critical damage mechanism. Clustering analysis is a technique in which the set of object are assigned to a group called cluster. The objective of the cluster analysis is to separate a set of data into several classes that reflect the internal structure of data. In this paper was used k-means algorithm for partitioned clustering method, numerous effort have been made to improve the performance of application k-means clustering algorithm. This paper presents a current review on application clustering system in Acoustic Emission.

  15. Energy and air emission implications of a decentralized wastewater system

    International Nuclear Information System (INIS)

    Shehabi, Arman; Stokes, Jennifer R; Horvath, Arpad

    2012-01-01

    Both centralized and decentralized wastewater systems have distinct engineering, financial and societal benefits. This paper presents a framework for analyzing the environmental effects of decentralized wastewater systems and an evaluation of the environmental impacts associated with two currently operating systems in California, one centralized and one decentralized. A comparison of energy use, greenhouse gas emissions and criteria air pollutants from the systems shows that the scale economies of the centralized plant help lower the environmental burden to less than a fifth of that of the decentralized utility for the same volume treated. The energy and emission burdens of the decentralized plant are reduced when accounting for high-yield wastewater reuse if it supplants an energy-intensive water supply like a desalination one. The centralized facility also reduces greenhouse gases by flaring methane generated during the treatment process, while methane is directly emitted from the decentralized system. The results are compelling enough to indicate that the life-cycle environmental impacts of decentralized designs should be carefully evaluated as part of the design process. (letter)

  16. System for reducing emissions during coke oven charging; System zur Emissionsverringerung beim Fuellen von Koksoefen

    Energy Technology Data Exchange (ETDEWEB)

    Schuecker, Franz-Josef [ThyssenKrupp Industrial Solutions AG, Dortmund (Germany). Head of Oven Machine Dept., Coke Plant Technologies

    2014-10-01

    This article describes a process which reduces emissions from coke production in coke plants. The focus is on the charging process, which can be partly responsible for the fact that statutory emissions limits, which were originally met, are exceeded as coke plants get older. This article presents a solution in the form of a newly developed system that allows the oven charging system - the charging car - to respond to age-related changes in the geometry of a coke oven and thereby reduce the level of emissions.

  17. Systems and methods to mitigate NO.sub.x and HC emissions

    Science.gov (United States)

    Gupta, Aniket; Cunningham, Michael J.; Ruth, Michael J.; Chilumukuru, Krishna P.

    2017-06-14

    Systems and methods are provided for managing low temperature NO.sub.x and HC emissions, such as during a cold start of an internal combustion engine. The systems and methods include storing NO.sub.x and HC emissions at low temperatures and passively releasing and treating these emissions as the temperature of the exhaust system increases.

  18. Environmental systems analysis of biogas systems-Part I: Fuel-cycle emissions

    International Nuclear Information System (INIS)

    Boerjesson, Pal; Berglund, Maria

    2006-01-01

    Fuel-cycle emissions of carbon dioxide (CO 2 ), carbon oxide (CO), nitrogen oxides (NO x ), sulphur dioxide (SO 2 ), hydrocarbons (HC), methane (CH 4 ), and particles are analysed from a life-cycle perspective for different biogas systems based on six different raw materials. The gas is produced in large- or farm-scale biogas plants, and is used in boilers for heat production, in turbines for co-generation of heat and electricity, or as a transportation fuel in light- and heavy-duty vehicles. The analyses refer mainly to Swedish conditions. The levels of fuel-cycle emissions vary greatly among the biogas systems studied, and are significantly affected by the properties of the raw material digested, the energy efficiency of the biogas production, and the status of the end-use technology. For example, fuel-cycle emission may vary by a factor of 3-4, and for certain gases by up to a factor of 11, between two biogas systems that provide an equivalent energy service. Extensive handling of raw materials, e.g. ley cropping or collection of waste-products such as municipal organic waste, is often a significant source of emissions. Emission from the production phase of the biogas exceeds the end-use emissions for several biogas systems and for specific emissions. Uncontrolled losses of methane, e.g. leakages from stored digestates or from biogas upgrading, increase the fuel-cycle emissions of methane considerably. Thus, it is necessary to clearly specify the biogas production system and end-use technology being studied in order to be able to produce reliable and accurate data on fuel-cycle emission

  19. Impacts of Aging Emission Control Systems on In-Use Heavy-Duty Diesel Truck Emission Rates

    Science.gov (United States)

    Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.

    2017-12-01

    Heavy-duty diesel trucks are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems have become standard equipment on new trucks. Particle filters can also be installed as a retrofit on older engines. Prior work has shown that exhaust filters and SCR systems effectively reduce BC and NOx emission rates by up to 90 and 80%, respectively (Preble et al., ES&T 2015). There is concern, however, that DPFs may promote the formation of ultrafine particles (UFP) and increase tailpipe emissions of nitrogen dioxide (NO2). Additionally, urea-based SCR systems for NOx control may form nitrous oxide (N2O), an important contributor to stratospheric ozone depletion. The effectiveness of these emission controls has been thoroughly evaluated in the laboratory, but the long-term durability of in-use systems and their impacts on co-emitted species have not been well characterized. To evaluate the in-use performance of DPF and SCR systems, pollutant emissions from thousands of diesel trucks were measured over several years at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Pollutants present in the exhaust plumes of individual trucks were measured at high time resolution (≥1 Hz) as trucks passed under a mobile lab stationed on an overpass. Fuel-based emission factors (g pollutant emitted per kg fuel burned) were calculated for individual trucks and linked via recorded license plates to vehicle attributes, including engine model year and installed emission control systems. Use of DPFs reduced the BC emission rate by up to 95% at both locations. SCR systems were more effective at reducing NOx emissions under the uphill, highway driving conditions at the Caldecott Tunnel. The emission rates of co-emitted species NO2, UFP, and N2O depended on driving

  20. Life-cycle air emissions from PV power systems

    International Nuclear Information System (INIS)

    Watt, M.E.; Johnson, A.J.; Outhred, H.R.; Ellis, M.

    1998-01-01

    This paper addresses the air emission of grid supply versus grid-connected and off-grid photovoltaic power generation, using the framework of life-cycle assessment, in the contents of rural household energy supply in Australia. Emissions of carbon dioxide, sulphur dioxde and nitrous oxides are calculated for the three life-cycle stages of manufacture, use and disposal. Sensitivities to materials and data inputs, as well as to component efficiencies, lifetimes and sizing are discussed. For each supply option, demand management options, including insulation and appliance choice, and the substitution of solar heating or bottled gas for electricity are considered. The best option in all cases, in terms of life-cycle air emissions, is a grid-connected photovoltaic system used to supply an energy-efficient household with a mix of solar, gas and electric appliances. However, in financial terms, with current Australian energy prices, this option represents a high capital and life-cycle costs. Additionally, for the grid options, electricity costs do not significantly disadvantage the high demand scenarios. Both results provide a clear illustration of current Australian energy-pricing policies being in conflict with long-term environmental sustainability. (Author)

  1. Bayesian modelling of the emission spectrum of the Joint European Torus Lithium Beam Emission Spectroscopy system.

    Science.gov (United States)

    Kwak, Sehyun; Svensson, J; Brix, M; Ghim, Y-C

    2016-02-01

    A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are modelled with non-parametric Gaussian processes. All free parameters of the model, the intensities of the Li line, Bremsstrahlung background, and instrumental offset, are inferred using Bayesian probability theory with a Gaussian likelihood for photon statistics and electronic background noise. The prior distributions of the free parameters are chosen as Gaussians. Given these assumptions, the intensity of the Li line and corresponding uncertainties are analytically available using a Bayesian linear inversion technique. The proposed approach makes it possible to extract the intensity of Li line without doing a separate background subtraction through modulation of the Li beam.

  2. Vehicle emission factors of solid nanoparticles in the laboratory and on the road using Portable Emission Measurement Systems (PEMS

    Directory of Open Access Journals (Sweden)

    Barouch eGiechaskiel

    2015-12-01

    Full Text Available Emission inventories are used to quantify sources and identify trends in the emissions of air pollutants. They use vehicle-specific emission factors that are typically determined in the laboratory, through remote-sensing, vehicle chasing experiments and, more recently, on-board Portable Emission Measurement Systems (PEMS. Although PEMS is widely applied to measure gaseous pollutants, their application to Solid Particle Number (SPN emissions is new. In this paper, we discuss the current status of determining SPN emission factors both on the chassis dynamometer and on-road using PEMS-SPN. First, we determine the influence of the measurement equipment, ambient temperature, driving style and cycle characteristics, and the extra mass of the PEMS equipment on the SPN emissions. Afterward, we present the SPN emissions under type-approval conditions as well as on the road of two heavy-duty diesel vehicles equipped with Diesel Particulate Filter (DPF (one Euro VI, two light-duty diesel vehicles equipped with DPF, one light-duty vehicle equipped with a Port Fuel Injection engine (PFI, and seven Gasoline Direct Injection (GDI passenger cars (two Euro 6. We find that cold-start and strong accelerations tend to substantially increase SPN emissions. The two heavy-duty vehicles showed emissions around 2×10^13 p/km (Euro V truck and 6×10^10 p/km (Euro VI truck, respectively. One of the DPF-equipped light-duty vehicles showed emissions of 8×10^11 p/km, while the other one had one order of magnitude lower emissions. The PFI car had SPN emissions slightly higher than 1×10^12 p/km. The emissions of GDI cars spanned approximately from 8×10^11 p/km to 8×10^12 p/km. For the cars without DPF, the SPN emissions remained within a factor of two of the laboratory results. This factor was on average around 0.8 for the Euro 6 and 1.6 for the Euro 5 GDIs. The DPF equipped vehicles showed a difference of almost one order of magnitude between laboratory and on-road tests

  3. An automated blood sampling system used in positron emission tomography

    International Nuclear Information System (INIS)

    Eriksson, L.; Bohm, C.; Kesselberg, M.

    1988-01-01

    Fast dynamic function studies with positron emission tomography (PET), has the potential to give accurate information of physiological functions of the brain. This capability can be realised if the positron camera system accurately quantitates the tracer uptake in the brain with sufficiently high efficiency and in sufficiently short time intervals. However, in addition, the tracer concentration in blood, as a function of time, must be accurately determined. This paper describes and evaluates an automated blood sampling system. Two different detector units are compared. The use of the automated blood sampling system is demonstrated in studies of cerebral blood flow, in studies of the blood-brain barrier transfer of amino acids and of the cerebral oxygen consumption. 5 refs.; 7 figs

  4. Study of nuclear heat application systems for arresting CO2 emission

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto; Ogata, Kan; Yamada, Seiya.

    1996-11-01

    The objective of the paper is to investigate the systems for arresting CO 2 emission and for the effective utilization of fossil fuel. We studied the fossil fuel reforming systems to decrease the CO 2 emission rate per unit amount of heat generation by fossil fuel. Feed materials for reforming system were natural gas, crude oil, oil sand, oil shale and coal. Products by reforming were hydrogen, methane, methanol and gasoline. We examined CO 2 emission ratio of ten systems with different feed material and product. The CO 2 emission ratio was the ratio of CO 2 emission rate per unit amount of heat generation between the products and the feed materials, and was the important index. As the results, the CO 2 emission ratio for the coal to methane reforming system using steam gasifier had the lowest value of 51%. It means that the CO 2 emission rate of the product from the coal to methane reforming system was 51% of the emission rate of the feed material, that is, the system is very effective to arrest the CO 2 emission. The CO 2 emission ratio increases in the following order: the reforming systems from coal to methanol, heavy oil to hydrogen and natural gas to hydrogen. It was clarified that the system of coal to methane reforming was very effective for arresting CO 2 emission compared to the other systems, moreover the nuclear heat using rate and thermal efficiency of the plant of the system were the highest. (author)

  5. Subsystem selection for advanced low emission boiler system

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, L.W.; Farthing, G.A. [Babcock & Wilcox, Alliance, OH (United States). Research and Development Div.; Gorrell, R.L. [Babcock & Wilcox, Barberton, OH (United States). Fossil Power Div.

    1993-12-31

    In 1992 the Pittsburgh Energy Technology Center (PETC) initiated a new program called Combustion 2000. The purpose of the program was to address the design issues facing new and replacement coal-fired power plants. The work presented in this paper was conducted under the low-emission boiler system (LEBS) portion of the program. LEBS major goals are: NO{sub x} - No more than 0.20 lbs per million Btu of fuel input firing bituminous coal; SO{sub x} -- no more than 0.2 lbs of SO{sub 2} per million Btu firing coal with at least 3 lbs of sulfur per million btu; Particulate -- no more than 0.015 lbs per million Btu of fuel input; Waste and Air Toxics -- reduced; and Plant Efficiency -- no less than 38%. Other objectives include reducing waste generation, producing usable by-products, improving ash disposability, and increasing plant thermal efficiency while keeping the cost of electricity comparable to a state-of-the-art plant. The Babcock and Wilcox Company has completed the first year of work toward the development of an advanced low-emission boiler system (LEBS). The results of this work have led to a preliminary engineering design and a plan to address remaining technical uncertainties. This was accomplished by conducting a thorough technical assessment and performing a concept selection analysis. A summary of the results of this work is presented in this paper.

  6. Reduction of CO2 emissions from road transport in cities impact of dynamic route guidance system on greenhouse gas emission

    CERN Document Server

    Markiewicz, Michal

    2017-01-01

    Michal Markiewicz presents the outcomes of his research regarding the influence of dynamic route guidance system on overall emission of carbon dioxide from road transport in rural areas. Sustainable transportation in smart cities is a big challenge of our time, but before electric vehicles replace vehicles that burn fossil fuels we have to think about traffic optimization methods that reduce the amount of greenhouse gas emissions. Contents Comparison of Travel Time Measurements Using Floating Car Data and Intelligent Infrastructure Integration of Cellular Automata Traffic Simulator with CO2 Emission Model Impact of Dynamic Route Guidance System on CO2 Emission Naxos Vehicular Traffic Simulator Target Groups Lecturers and students of computer science, transportation and logistics Traffic engineers The Author Dr. Michal Markiewicz defended his PhD thesis in computer science at the University of Bremen,TZI Technologie-Zentrum Informatik und Informationstechnik, Germany. Currently, he is working on commercializat...

  7. An emission-line model for AM Herculis systems

    International Nuclear Information System (INIS)

    Ferrario, L.; Tuohy, I.R.; Wickramasinghe, D.T.; Australian National Univ., Canberra)

    1989-01-01

    The optical spectra of the AM Herculis binaries are characterized by extremely complex emission lines whose profiles can be resolved into at least three components which are formed in different regions of the accretion stream leading from the companion star toward the magnetic white dwarf. A theoretical model is presented for the radial velocity and velocity dispersion of the broad emission line component assuming that it originates mainly in the gas which is diverted out of the orbital plane and funneled onto the white dwarf surface along magnetic field lines. The model is used to locate the line-forming region in three AM Her variables: E1405-451, CW 1103+254, and EXO 033319-2554.2, using as constraints the radial velocity and velocity dispersion data. The analyses of these systems show that the material is threaded by the magnetic field in a very azimuthally extended coupling region located 0.5-0.75 of the way between the white dwarf and the inner Lagrange point. 36 refs

  8. Positron Emission Tomography imaging with the SmartPET system

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom)], E-mail: cooperrj@ornl.gov; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Harkness, L.J.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P.; Mather, A.R. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)

    2009-07-21

    The Small Animal Reconstruction Tomograph for Positron Emission Tomography (SmartPET) project is the development of a small animal Positron Emission Tomography (PET) demonstrator based on the use of High-Purity Germanium (HPGe) detectors and state of the art digital electronics. The experimental results presented demonstrate the current performance of this unique system. By performing high precision measurements of one of the SmartPET HPGe detectors with a range of finely collimated gamma-ray beams the response of the detector as a function of gamma-ray interaction position has been quantified, facilitating the development of parametric Pulse Shape Analysis (PSA) techniques and algorithms for the correction of imperfections in detector performance. These algorithms have then been applied to data from PET imaging measurements using two such detectors in conjunction with a specially designed rotating gantry. In this paper we show how the use of parametric PSA approaches allows over 60% of coincident events to be processed and how the nature and complexity of an event has direct implications for the quality of the resulting image.

  9. Creating a level playing field? The concentration and centralisation of emissions in the European Union Emissions Trading System

    International Nuclear Information System (INIS)

    Bryant, Gareth

    2016-01-01

    This article questions the assumption that carbon markets create a level playing field by exploring the relationship between the organisation of capital and the organisation of emissions in the European Union Emissions Trading System (EU ETS). It constructs a database by matching installations and owners to reveal that a relatively small number of large-scale coal-fired power stations, owned by a very small group of states and corporations, are responsible for a significant proportion of greenhouse gas emissions. The findings are analysed by considering how technological dependence on coal together with the corporate institutional form combine to support the socio-spatial concentration and centralisation of capital and emissions. Case studies of the consolidation of the seven largest polluting owners from Europe's coal-dependent electricity sector and the carbon trading strategies of the two largest polluters, RWE and E.ON, then assess the impacts of energy liberalisation and emissions trading policies. The article concludes that EU energy and climate policies are pulling in different directions by clustering responsibility for greenhouse gas emissions and diffusing responsibility to address climate change. The uneven distribution of emissions within the EU ETS makes an alternative policy approach that directly targets the biggest corporate and state polluters both feasible and necessary. - Highlights: • 20 ultimate owners are responsible for one-half of 2005–12 EU ETS emissions. • 83 installations are responsible for one-third of 2005–12 EU ETS emissions. • Focus on technological dependence on coal and the corporate institutional form. • Energy liberalisation policy has consolidated responsibility for emissions. • Carbon markets have diffused responsibility for addressing climate change.

  10. Annual CO-emissions of combined pellet and solar heating systems

    OpenAIRE

    Fiedler, Frank; Persson, Tomas

    2007-01-01

    Emissions are an important aspect of a pellet heating system. High carbon monoxide emissions are often caused by unnecessary cycling of the burner when the burner is operated below the lowest combustion power. Combining pellet heating systems with a solar heating system can significantly reduce cycling of the pellet heater and avoid the inefficient summer operation of the pellet heater. The aim of this paper was to study CO-emissions of the different types of systems and to compare the yearly...

  11. Characterization of the emissions impacts of hybrid excavators with a portable emissions measurement system (PEMS)-based methodology.

    Science.gov (United States)

    Cao, Tanfeng; Russell, Robert L; Durbin, Thomas D; Cocker, David R; Burnette, Andrew; Calavita, Joseph; Maldonado, Hector; Johnson, Kent C

    2018-04-13

    Hybrid engine technology is a potentially important strategy for reduction of tailpipe greenhouse gas (GHG) emissions and other pollutants that is now being implemented for off-road construction equipment. The goal of this study was to evaluate the emissions and fuel consumption impacts of electric-hybrid excavators using a Portable Emissions Measurement System (PEMS)-based methodology. In this study, three hybrid and four conventional excavators were studied for both real world activity patterns and tailpipe emissions. Activity data was obtained using engine control module (ECM) and global positioning system (GPS) logged data, coupled with interviews, historical records, and video. This activity data was used to develop a test cycle with seven modes representing different types of excavator work. Emissions data were collected over this test cycle using a PEMS. The results indicated the HB215 hybrid excavator provided a significant reduction in tailpipe carbon dioxide (CO 2 ) emissions (from -13 to -26%), but increased diesel particulate matter (PM) (+26 to +27%) when compared to a similar model conventional excavator over the same duty cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Characterization of time resolved photodetector systems for Positron Emission Tomography

    CERN Document Server

    Powolny, François

    The main topic of this work is the study of detector systems composed of a scintillator, a photodetector and readout electronics, for Positron Emission Tomography (PET). In particular, the timing properties of such detector systems are studied. The first idea is to take advantage of the good timing properties of the NINO chip, which is a fast preamplifier-discriminator developed for the ALICE Time of flight detector at CERN. This chip uses a time over threshold technique that is to be applied for the first time in medical imaging applications. A unique feature of this technique is that it delivers both timing and energy information with a single digital pulse, the time stamp with the rising edge and the energy from the pulse width. This entails substantial simplification of the entire readout architecture of a tomograph. The scintillator chosen in the detector system is LSO. Crystals of 2x2x10mm3 were used. For the photodetector, APDs were first used, and were then replaced by SiPMs to make use of their highe...

  13. Image-reconstruction algorithms for positron-emission tomography systems

    International Nuclear Information System (INIS)

    Cheng, S.N.C.

    1982-01-01

    The positional uncertainty in the time-of-flight measurement of a positron-emission tomography system is modelled as a Gaussian distributed random variable and the image is assumed to be piecewise constant on a rectilinear lattice. A reconstruction algorithm using maximum-likelihood estimation is derived for the situation in which time-of-flight data are sorted as the most-likely-position array. The algorithm is formulated as a linear system described by a nonseparable, block-banded, Toeplitz matrix, and a sine-transform technique is used to implement this algorithm efficiently. The reconstruction algorithms for both the most-likely-position array and the confidence-weighted array are described by similar equations, hence similar linear systems can be used to described the reconstruction algorithm for a discrete, confidence-weighted array, when the matrix and the entries in the data array are properly identified. It is found that the mean square-error depends on the ratio of the full width at half the maximum of time-of-flight measurement over the size of a pixel. When other parameters are fixed, the larger the pixel size, the smaller is the mean square-error. In the study of resolution, parameters that affect the impulse response of time-of-flight reconstruction algorithms are identified. It is found that the larger the pixel size, the larger is the standard deviation of the impulse response. This shows that small mean square-error and fine resolution are two contradictory requirements

  14. Carbon dioxide emissions effects of grid-scale electricity storage in a decarbonizing power system

    Science.gov (United States)

    Craig, Michael T.; Jaramillo, Paulina; Hodge, Bri-Mathias

    2018-01-01

    While grid-scale electricity storage (hereafter ‘storage’) could be crucial for deeply decarbonizing the electric power system, it would increase carbon dioxide (CO2) emissions in current systems across the United States. To better understand how storage transitions from increasing to decreasing system CO2 emissions, we quantify the effect of storage on operational CO2 emissions as a power system decarbonizes under a moderate and strong CO2 emission reduction target through 2045. Under each target, we compare the effect of storage on CO2 emissions when storage participates in only energy, only reserve, and energy and reserve markets. We conduct our study in the Electricity Reliability Council of Texas (ERCOT) system and use a capacity expansion model to forecast generator fleet changes and a unit commitment and economic dispatch model to quantify system CO2 emissions with and without storage. We find that storage would increase CO2 emissions in the current ERCOT system, but would decrease CO2 emissions in 2025 through 2045 under both decarbonization targets. Storage reduces CO2 emissions primarily by enabling gas-fired generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We further find that the market in which storage participates drives large differences in the magnitude, but not the direction, of the effect of storage on CO2 emissions.

  15. MTU locomotive drive systems for EU emissions stage IIIB

    Energy Technology Data Exchange (ETDEWEB)

    Wintruff, Ingo [MTU Friedrichshafen GmbH, Friedrichshafen (Germany)

    2011-05-15

    Emissions limits for diesel locomotives within the European Union are regulated by EU Non-road Directive 97/68/EC which places restrictions on the pollutants NOx, particulate, CO and HC. MTU has developed suitable diesel engines for EU Emissions stage IIIB. (orig.)

  16. Implementing a system of emissions trading to manage GHGs; La mise en oeuvre des systemes de quotas d'emission echangeables dans la gestion des emissions de GES

    Energy Technology Data Exchange (ETDEWEB)

    Webster, A. [Sherbrooke Univ., PQ (Canada)

    2005-06-01

    The exact geographical location of greenhouse gas (GHG) emissions has no bearing on climate change. In this context the Kyoto Protocol recognizes mechanisms of flexibility for countries to attain their GHG emissions reductions. Emission trading takes advantage of this flexibility, allowing GHGs to be sold, traded, or stockpiled. An emission quota allows the owner of an energy facility to emit a certain amount of GHGs throughout the year. If this quota is not used, it can be stockpiled for the following year or it could be traded to another enterprise and owner. If the amount of emissions exceeds the initial quotas, facilities can adopt different strategies, such as reducing their GHG purchasing quotas from national enterprises that have reduced their emissions or purchase quotas from international markets. The initial allocation of quotas is an important political decision since it determines the initial distribution of the GHG reduction effort. The establishment of a quota system can contribute to economical competition and can be used to fulfill environmental objectives regarding energy source development. It is also the most effective way to minimize greenhouse gas emissions and the associated environmental impacts. This paper reviewed the regulations regarding the design of the quota system; how the ceiling of emission levels was determined; the criteria for allocating the quotas and the rules for the exchange of emission quotas. Canada and the European countries have expressed interest in this system of emissions trading. 7 refs.

  17. Developments in acoustic emission for application to nuclear reactor systems

    International Nuclear Information System (INIS)

    Bentley, P.G.

    1982-01-01

    Developments in acoustic emission are summarised as they relate to the principal applications to nuclear reactors, and light water reactor pressure vessels in particular. Improvement in the understanding of acoustic emission has come from materials tests and these confirm the problems in applying the technique for in-service or periodic proof test monitoring of growing fatique cracks. Applications in LMFBR have confirmed that acoustic emission can be applied in the nuclear environment and the detection of stress corrosion cracking in both BWR and LMFBR seems possible. Some information is included on the developing interest in applying the techniques of acoustic emission for leak detection during shop hydro and in-service monitoring. Acoustic emission is also being developed for weld fabrication monitoring and recently introduced pattern recognition techniques are having a significant impact in this application. (author)

  18. Visualization of portal venous system by single photon emission CT

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T; Ikawa, T; Azuma, M; Matsuda, H; Yoshioka, H; Mitsutani, N; Koizumi, T

    1987-03-01

    Single photon emission CT (SPECT) was performed for the intra-abdominal blood pool with /sup 99m/Tc autologous red blood cells (RBC) in 15 patients with liver cirrhosis. Twenty mCi of /sup 99m/Tc-RBC labeled by in vivo technique were administered intravenously and tomographic imaging of the intra-abdominal vascular blood pool was performed as follows. For each subject, 64 views were obtained over 360 deg of elliptic rotation at 30 seconds per view using a high resolution low energy parallel-hole collimator. Portal vein and portosystemic collaterals were clearly observed in coronal images. In 12 of 15 patients, portal vein was delineated. Portosystemic collaterals such as coronary vein, splenorenal shunt and umbilical vein were also shown in 12 patients. These images were consistent with images obtained by scintiphotosplenoportography or arterial portography. Therefore, it is considered that SPECT study for the intra-abdominal blood pool is clinically very useful for the diagnosis of abnormality of portal venous system in portal hypertension.

  19. Biomass District Energy Trigeneration Systems: Emissions Reduction and Financial Impact

    International Nuclear Information System (INIS)

    Rentizelas, A.; Tolis, A.; Tatsiopoulos, I.

    2009-01-01

    Biomass cogeneration is widely used for district heating applications in central and northern Europe. Biomass trigeneration on the other hand, constitutes an innovative renewable energy application. In this work, an approved United Nations Framework Convention on Climate Change baseline methodology has been extended to allow the examination of biomass trigeneration applications. The methodology is applied to a case study in Greece to investigate various environmental and financial aspects of this type of applications. The results suggest that trigeneration may lead to significant emissions reduction compared to using fossil fuels or even biomass cogeneration and electricity generation. The emissions reduction achieved may be materialized into a considerable revenue stream for the project, if traded through a trading mechanism such as the European Union Greenhouse Gas Emission Trading Scheme. A sensitivity analysis has been performed to compensate for the high volatility of the emission allowances' value and the immaturity of the EU Trading Scheme, which prevent a reliable estimation of the related revenue. The work concludes that emission allowances trading may develop into one of the major revenue streams of biomass trigeneration projects, significantly increasing their financial yield and attractiveness. The impact on the yield is significant even for low future values of emission allowances and could become the main income revenue source of such projects, if emission allowances increase their value substantially. The application of trigeneration for district energy proves to lead to increased environmental and financial benefits compared to the cogeneration or electricity generation cases

  20. Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism

    International Nuclear Information System (INIS)

    Booij, J.; Tissingh, G.; Winogrodzka, A.; Royen, E.A. van

    1999-01-01

    Parkinsonism is a feature of a number of neurodegenerative diseases, including Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. The results of post-mortem studies point to dysfunction of the dopaminergic neurotransmitter system in patients with parkinsonism. Nowadays, by using single-photon emission tomography (SPET) and positron emission tomography (PET) it is possible to visualise both the nigrostriatal dopaminergic neurons and the striatal dopamine D 2 receptors in vivo. Consequently, SPET and PET imaging of elements of the dopaminergic system can play an important role in the diagnosis of several parkinsonian syndromes. This review concentrates on findings of SPET and PET studies of the dopaminergic neurotransmitter system in various parkinsonian syndromes. (orig.)

  1. Global distribution of N2O emissions from aquatic systems : natural emissions and anthropogenic effects

    NARCIS (Netherlands)

    Seitzinger, S.P.; Styles, R.V.; Kroeze, C.

    2000-01-01

    Context Abstract: Atmospheric concentrations of nitrous oxide, a greenhouse gas, are increasing due to human activities. Our analysis suggests that a third of global anthropogenic N2O emission is from aquatic sources (rivers, estuaries, continental shelves) and the terrestrial sources comprise the

  2. Nitrous oxide emissions in Chinese vegetable systems: A meta-analysis.

    Science.gov (United States)

    Wang, Xiaozhong; Zou, Chunqin; Gao, Xiaopeng; Guan, Xilin; Zhang, Wushuai; Zhang, Yueqiang; Shi, Xiaojun; Chen, Xinping

    2018-04-16

    China accounts for more than half of the world's vegetable production, and identifying the contribution of vegetable production to nitrous oxide (N 2 O) emissions in China is therefore important. We performed a meta-analysis that included 153 field measurements of N 2 O emissions from 21 field studies in China. Our goal was to quantify N 2 O emissions and fertilizer nitrogen (N) based-emission factors (EFs) in Chinese vegetable systems and to clarify the effects of rates and types of N fertilizer in both open-field and greenhouse systems. The results indicated that the intensive vegetable systems in China had an average N 2 O emission of 3.91 kg N 2 O-N ha -1 and an EF of 0.69%. Although the EF was lower than the IPCC default value of 1.0%, the average N 2 O emission was generally greater than in other cropping systems due to greater input of N fertilizers. The EFs were similar in greenhouse vs. open-field systems but N 2 O emissions were about 1.4 times greater in greenhouses. The EFs were not affected by N rate, but N 2 O emissions for both open-field and greenhouse systems increased with N rate. The total and fertilizer-induced N 2 O emissions, as well as EFs, were unaffected by the type of fertilizers in greenhouse system under same N rates. In addition to providing basic information about N 2 O emissions from Chinese vegetable systems, the results suggest that N 2 O emissions could be reduced without reducing yields by treating vegetable systems in China with a combination of synthetic N fertilizer and manure at optimized economic rates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Engine Performance (Section C: Emission Control Systems). Auto Mechanics Curriculum Guide. Module 3. Instructor's Guide.

    Science.gov (United States)

    Rains, Larry

    This engine performance (emission control systems) module is one of a series of competency-based modules in the Missouri Auto Mechanics Curriculum Guide. Topics of this module's five units are: positive crankcase ventilation (PCV) and evaporative emission control systems; exhaust gas recirculation (EGR); air injection and catalytic converters;…

  4. Engine Tune-up Service. Unit 6: Emission Control Systems. Student Guide. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Bacon, E. Miles

    This student guide is for Unit 6, Emission Control Systems, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with inspecting, testing, and servicing an emission control system. A companion review exercise book and posttests are available separately as CE 031 221-222. An introduction tells how this unit fits…

  5. Engine Tune-up Service. Unit 6: Emission Control Systems. Posttests. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Morse, David T.; May, Theodore R.

    This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 6, Emission Control Systems, available separately as CE 031 220. Focus of the posttests is inspecting, testing, and servicing emission control systems. One multiple choice posttest is provided that covers the seven performance objectives contained in…

  6. Greenhouse gas emissions and management practices that impact them in US rice systems

    Science.gov (United States)

    Previous reviews have quantified factors affecting greenhouse gas (GHG) emissions from Asian rice (Oryza sativa L.) systems, but not from rice systems typical for the United States, which often vary considerably particularly in practices (i.e., water and carbon management) that affect emissions. Usi...

  7. Engine Tune-up Service. Unit 6: Emission Control Systems. Review Exercise Book. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Bacon, E. Miles

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 6, Emission Control Systems, available separately as CE 031 220. Focus of the exercises and pretests is inspecting, testing, and servicing emission control systems. Pretests and performance checklists are provided for each of the…

  8. 47 CFR 90.691 - Emission mask requirements for EA-based systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Emission mask requirements for EA-based systems. 90.691 Section 90.691 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... of Ea-Based Smr Systems in the 809-824/851-869 Mhz Band § 90.691 Emission mask requirements for EA...

  9. Near-zero emissions combustor system for syngas and biofuels

    International Nuclear Information System (INIS)

    Yongho, Kim; Rosocha, Louis

    2010-01-01

    A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on

  10. OPTIONS FOR REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    Science.gov (United States)

    The report was prepared to assist personnel responsible for the design, construction, and maintenance of retail food refrigeration equipment in making knowledgeable decisions regarding the implementation of refrigerant-emissions-reducing practices and technologies. It characteriz...

  11. The Tree Drought Emission MONitor (Tree DEMON, an innovative system for assessing biogenic volatile organic compounds emission from plants

    Directory of Open Access Journals (Sweden)

    Marvin Lüpke

    2017-03-01

    Full Text Available Abstract Background Biogenic volatile organic compounds (BVOC emitted by plants play an important role for ecological and physiological processes, for example as response to stressors. These emitted compounds are involved in chemical processes within the atmosphere and contribute to the formation of aerosols and ozone. Direct measurement of BVOC emissions requires a specialized sample system in order to obtain repeatable and comparable results. These systems need to be constructed carefully since BVOC measurements may be disturbed by several side effects, e.g., due to wrong material selection and lacking system stability. Results In order to assess BVOC emission rates, a four plant chamber system was constructed, implemented and throughout evaluated by synthetic tests and in two case studies on 3-year-old sweet chestnut seedlings. Synthetic system test showed a stable sampling with good repeatability and low memory effects. The first case study demonstrated the capability of the system to screen multiple trees within a few days and revealed three different emission patterns of sweet chestnut trees. The second case study comprised an application of drought stress on two seedlings compared to two in parallel assessed seedlings of a control. Here, a clear reduction of BVOC emissions during drought stress was observed. Conclusion The developed system allows assessing BVOC as well as CO2 and water vapor gas exchange of four tree specimens automatically and in parallel with repeatable results. A canopy volume of 30 l can be investigated, which constitutes in case of tree seedlings the whole canopy. Longer lasting experiments of e.g., 1–3 weeks can be performed easily without any significant plant interference.

  12. First image from a combined positron emission tomography and field-cycled MRI system.

    Science.gov (United States)

    Bindseil, Geron A; Gilbert, Kyle M; Scholl, Timothy J; Handler, William B; Chronik, Blaine A

    2011-07-01

    Combining positron emission tomography and MRI modalities typically requires using either conventional MRI with a MR-compatible positron emission tomography system or a modified MR system with conventional positron emission tomography. A feature of field-cycled MRI is that all magnetic fields can be turned off rapidly, enabling the use of conventional positron emission tomography detectors based on photomultiplier tubes. In this demonstration, two photomultiplier tube-based positron emission tomography detectors were integrated with a field-cycled MRI system (0.3 T/4 MHz) by placing them into a 9-cm axial gap. A positron emission tomography-MRI phantom consisting of a triangular arrangement of positron-emitting point sources embedded in an onion was imaged in a repeating interleaved sequence of ∼1 sec MRI then 1 sec positron emission tomography. The first multimodality images from the combined positron emission tomography and field-cycled MRI system show no additional artifacts due to interaction between the systems and demonstrate the potential of this approach to combining positron emission tomography and MRI. Copyright © 2010 Wiley-Liss, Inc.

  13. Management of industrial sulfur dioxide and nitrogen oxides emissions in Alberta - description of the existing system

    International Nuclear Information System (INIS)

    Macdonald, W.S.; Bietz, B.F.

    1999-01-01

    In addition to being key primary air contaminants, sulfur dioxide and nitrogen oxides are also major contributors to acidic deposition. The current management system for controlling industrial sources of SO(2) and NO(x) emissions in Alberta was developed in the late 1960s/early 1970s. The focus is on control of point source emissions through the use of appropriate technology. The approach taken for managing SO(2) and NO(x) emissions is similar to the approach taken to other industrial air and wastewater pollutants in Alberta. It is a command and control regulatory system. There are three main industry categories in Alberta which emit SO(2): sour gas processing, oil sand plants and thermal power plants. For NO(x) emissions, the two main categories with emissions: are natural gas production and thermal power plants. The two main goals of the existing industrial air quality management systems are to ensire that: (1) emissions from industrial facilities are minimized through the use of best available demonstrated technology, and (2) ambient levels of air contaminants in the vicinity of industrial facilities do not exceed Alberta guidelines. The four main policies which support these two goals of the existing management system are described. There are a number of key components of the existing management system including: ambient guideline levels, source emission standards, plume dispersion modelling, ambient air and source emission monitoring, environmental reporting, emission inventories, and approvals. 32 refs., 13 figs

  14. Classification of nutrient emission sources in the Vistula River system

    International Nuclear Information System (INIS)

    Kowalkowski, Tomasz

    2009-01-01

    Eutrophication of the Baltic sea still remains one of the biggest problems in the north-eastern area of Europe. Recognizing the sources of nutrient emission, classification of their importance and finding the way towards reduction of pollution are the most important tasks for scientists researching this area. This article presents the chemometric approach to the classification of nutrient emission with respect to the regionalisation of emission sources within the Vistula River basin (Poland). Modelled data for mean yearly emission of nitrogen and phosphorus in 1991-2000 has been used for the classification. Seventeen subcatchements in the Vistula basin have been classified according to cluster and factor analyses. The results of this analysis allowed determination of groups of areas with similar pollution characteristics and indicate the need for spatial differentiation of policies and strategies. Three major factors indicating urban, erosion and agricultural sources have been identified as major discriminants of the groups. - Two classification methods applied to evaluate the results of nutrient emission allow definition of major sources of the emissions and classification of catchments with similar pollution.

  15. Direct nitrous oxide emissions in Mediterranean climate cropping systems : Emission factors based on a meta-analysis of available measurement data

    NARCIS (Netherlands)

    Cayuela, Maria L.; Aguilera, Eduardo; Sanz-Cobena, Alberto; Adams, Dean C.; Abalos, Diego; Barton, Louise; Ryals, Rebecca; Silver, Whendee L.; Alfaro, Marta A.; Pappa, Valentini A.; Smith, Pete; Garnier, Josette; Billen, Gilles; Bouwman, Lex; Bondeau, Alberte; Lassaletta, Luis

    2017-01-01

    Many recent reviews and meta-analyses of N2O emissions do not include data from Mediterranean studies. In this paper we present a meta-analysis of the N2O emissions from Mediterranean cropping systems, and propose a more robust and reliable regional emission factor (EF) for N2O, distinguishing the

  16. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    International Nuclear Information System (INIS)

    Barfuss, Brad C.; Barnett, J. M.; Ballinger, Marcel Y.

    2009-01-01

    Battelle-Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy's Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided

  17. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barfuss, Brad C.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2009-04-08

    Battelle—Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy’s Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided.

  18. Zero Emission Mobility Systems in Cities. Inductive Recharge System Planning in Urban Areas

    Directory of Open Access Journals (Sweden)

    Giulio Maternini

    2014-05-01

    Full Text Available In the last few years, “Sustainable” and “Smart” mobility became concepts of fundamental importance and led national government to adopt programmes and measures aimed at reducing the carbon emissions of private and commercial vehicles. The final goal is to pursue the EU objectives of reducing the greenhouse gases emission in transportation sector. The progressive electrification of the circulating vehicles represents a possible solution to the air pollution relating problems. A recent innovative research field, which could significantly contribute to the diffusion of the electric vehicles, consists of the inductive recharge systems for electric vehicles. This technology could also bring to considerably environmental and logistic advantages, especially in urban areas. Starting from the analysis of the main ongoing experimentations of these innovative systems in the world, the present paper proposes a possible application of the inductive recharge technology to the public transport vehicles, through the presentation of the case study of Brescia.

  19. Greenhouse gas emissions in an agroforestry system in the southeastern U.S.

    Science.gov (United States)

    Agroforestry systems can provide diverse ecosystem services and economic benefits that conventional farming practices cannot. Importantly, these systems have the potential to mitigate greenhouse gas emissions by reducing the need for external inputs, enhancing nutrient cycling and promoting C seques...

  20. How accounting for climate and health impacts of emissions could change the US energy system

    International Nuclear Information System (INIS)

    Brown, Kristen E.; Henze, Daven K.; Milford, Jana B.

    2017-01-01

    This study aims to determine how incorporating damages into energy costs would impact the US energy system. Damages from health impacting pollutants (NO_x, SO_2, particulate matter - PM, and volatile organic compounds - VOCs) as well as greenhouse gases (GHGs) are accounted for by applying emissions fees equal to estimated external damages associated with life-cycle emissions. We determine that in a least-cost framework, fees reduce emissions, including those not targeted by the fees. Emissions reductions are achieved through the use of control technologies, energy efficiency, and shifting of fuels and technologies used in energy conversion. The emissions targeted by fees decrease, and larger fees lead to larger reductions. Compared to the base case with no fees, in 2045, SO_2 emissions are reduced up to 70%, NO_x emissions up to 30%, PM_2_._5 up to 45%, and CO_2 by as much as 36%. Emissions of some pollutants, particularly VOCs and methane, sometimes increase when fees are applied. The co-benefit of reduction in non-targeted pollutants is not always larger for larger fees. The degree of co-reduced emissions depends on treatment of life-cycle emissions and the technology pathway used to achieve emissions reductions, including the mix of efficiency, fuel switching, and emissions control technologies. - Highlights: • Fees based on damages related to energy use are modeled on the US energy system. • Health impacting air pollutants and greenhouse gases are targeted by fees. • Both targeted and other pollutants are reduced compared to a system without fees. • Control technologies, energy efficiency, and shifts in fuels reduce emissions. • Co-benefits do not necessarily increase as fees increase.

  1. System for quantitative measurements of methane emission from dairy cattle in Denmark

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Lund, Peter; Johannes, Maike

    The methane emission from the digestive tract of cattle in Denmark accounts for 45% of the total methane emission based on the assumption that 6% of the gross energy is metabolized to methane. There is a lack of newer experimental data available for Danish cattle; therefore we have built a unit...... expectations for a system for exact measurements of methane emission in dairy cows at production level under close to natural in barn conditions, where cows’ behavior can be expected to be natural....

  2. Modelling Energy Systems and International Trade in CO2 Emission Quotas - The Kyoto Protocol and Beyond

    International Nuclear Information System (INIS)

    Persson, Tobias A.

    2002-01-01

    A transformation of the energy system in the 21st century is required if the CO 2 concentration in the atmosphere should be stabilized at a level that would prevent dangerous anthropogenic interference with the climate system. The industrialized countries have emitted most of the anthropogenic CO 2 released to the atmosphere since the beginning of the industrial era and still account for roughly two thirds of global fossil fuel related CO 2 emissions. Industrial country CO 2 emissions on a per capita basis are roughly five to ten times higher than those of developing countries. However, a global atmospheric CO 2 concentration target of 450 ppm, if adopted would require that global average per capita CO 2 emissions by the end of this century have to be comparable to those of developing countries today. The industrialized countries would have to reduce their emissions substantially and the emissions in developing countries could not follow a business-as-usual scenario. The transformation of the energy system and abatement of CO 2 emissions would need to occur in industrialized and developing countries. Energy-economy models have been developed to analyze of international trading in CO 2 emission permits. The thesis consists of three papers. The cost of meeting the Kyoto Protocol is estimated in the first paper. The Kyoto Protocol, which defines quantitative greenhouse gas emission commitments for industrialized countries over the period 2008-2012, is the first international agreement setting quantitative goals for abatement of CO 2 emissions from energy systems. The Protocol allows the creation of systems for trade in emission permits whereby countries exceeding their target levels can remain in compliance by purchasing surplus permits from other developed countries. However, a huge carbon surplus, which has been christened hot air, has been created in Russia and Ukraine since 1990 primarily because of the contraction of their economies. The current Unites States

  3. Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.

    Science.gov (United States)

    Pikoń, Krzysztof; Gaska, Krzysztof

    2010-07-01

    Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.

  4. Carbon dioxide and methane emissions from the Yukon River system

    Science.gov (United States)

    Striegl, Robert G.; Dornblaser, Mark M.; McDonald, Cory P.; Rover, Jennifer R.; Stets, Edward G.

    2012-01-01

    Carbon dioxide (CO2) and methane (CH4) emissions are important, but poorly quantified, components of riverine carbon (C) budgets. This is largely because the data needed for gas flux calculations are sparse and are spatially and temporally variable. Additionally, the importance of C gas emissions relative to lateral C exports is not well known because gaseous and aqueous fluxes are not commonly measured on the same rivers. We couple measurements of aqueous CO2 and CH4 partial pressures (pCO2, pCH4) and flux across the water-air interface with gas transfer models to calculate subbasin distributions of gas flux density. We then combine those flux densities with remote and direct observations of stream and river water surface area and ice duration, to calculate C gas emissions from flowing waters throughout the Yukon River basin. CO2emissions were 7.68 Tg C yr−1 (95% CI: 5.84 −10.46), averaging 750 g C m−2 yr−1 normalized to water surface area, and 9.0 g C m−2 yr−1 normalized to river basin area. River CH4 emissions totaled 55 Gg C yr−1 or 0.7% of the total mass of C emitted as CO2 plus CH4 and ∼6.4% of their combined radiative forcing. When combined with lateral inorganic plus organic C exports to below head of tide, C gas emissions comprised 50% of total C exported by the Yukon River and its tributaries. River CO2 and CH4 derive from multiple sources, including groundwater, surface water runoff, carbonate equilibrium reactions, and benthic and water column microbial processing of organic C. The exact role of each of these processes is not yet quantified in the overall river C budget.

  5. Enforcement and Environmental Quality in a Decentralized Emission Trading System

    Energy Technology Data Exchange (ETDEWEB)

    D' Amato, Alessio (Univ. of Rome, ' Tor Vergata' , Rome (Italy)); Valentini, Edilio (Univ. G. D' Annunzio di Chieti-Pescara, DEST, Fac. di Economia, Pescara (Italy))

    2008-07-01

    This paper addresses the issue of whether the powers of monitoring compliance and allocating allowances under emissions trading within an economic union should be centralized or delegated to single states. To this end, we develop a two stage game played by two governments choosing allowances and monitoring effort to achieve full compliance, and their respective polluting industries. We show that cost advantage in favor of national states is not sufficient to justify decentralization. Nevertheless, cost differential in monitoring violations can imply lower emissions and greater welfare under a decentralized institutional setting than under a centralized one

  6. Emission Spectrum Property of Modulated Atom-Field Coupling System

    International Nuclear Information System (INIS)

    Gao Yun-Feng; Feng Jian; Li Yue-Ke

    2013-01-01

    The emission spectrum of a two-level atom interacting with a single mode radiation field in the case of periodic oscillation coupling coefficient is investigated. A general expression for the emission spectrum is derived. The numerical results for the initial field in pure number stare are calculated. It is found that the effect of the coupling coefficient modulation on the spectral structure is very obvious in the case of a low modulation frequency and larger amplitude when the initial field is vacuum, which is potentially useful for exploring a modulated light source. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Evaluation of policy options to reform the EU Emissions Trading System. Effects on carbon price, emissions and the economy

    Energy Technology Data Exchange (ETDEWEB)

    Verdonk, M.; Brink, C.; Vollebergh, H.; Roelfsema, M.

    2013-04-15

    The EU Emissions Trading System (EU ETS) is a key instrument of EU climate policy, providing a clear reduction pathway for CO2 emissions. The current carbon price (of about 3 euros per tonne of CO2, April 2013) is much lower than previously expected (which was around 30 euros) and is likely to remain low for a long time. This fuels doubts about whether the ETS will remain a key policy instrument in the long term. Such doubts also increase investment uncertainty, which is likely to have a negative impact on further investments in low-carbon technologies needed for a low-carbon economy in 2050. In November 2012, the European Commission put forward six options for a more structural reform of the EU ETS. The proposed options vary from reducing the cap and expanding the ETS to include other sectors, to strengthening the ETS by measures directly affecting allowance prices. The Dutch Ministry of Infrastructure and the Environment (IenM) asked the PBL Netherlands Environmental Assessment Agency to assess the impact of these options. Four categories of options for reforming the ETS were evaluated: (1) reducing the supply of emission allowances; (2) expanding the ETS by including other sectors; (3) a minimum price for auctioned allowances; and (4) combining ETS with a carbon tax. Recently, the European Parliament voted against the European Commission's proposal to temporarily set aside emission allowances. In an earlier assessment of this proposal, PBL concluded that the impact of this backloading proposal on CO2 prices is likely to be limited, because the total amount of allowances up to 2020 would remain unchanged. All options analysed would reduce emissions and cause the emission price to increase. A minimum price on carbon, however, would provide the best opportunity to make the ETS more robust against unforeseen events, such as a further deterioration of the economy. Such a minimum price would result in more emission reductions if abatement proves to be cheaper

  8. Methane emissions from sugarcane vinasse storage and transportation systems: Comparison between open channels and tanks

    Science.gov (United States)

    Oliveira, Bruna Gonçalves; Carvalho, João Luís Nunes; Chagas, Mateus Ferreira; Cerri, Carlos Eduardo Pellegrino; Cerri, Carlos Clemente; Feigl, Brigitte Josefine

    2017-06-01

    Over the last few years the brazilian sugarcane sector has produced an average of 23.5 million liters of ethanol annually. This scale of production generates large amounts of vinasse, which depending on the manner that is disposed, can result significant greenhouse gas emissions. This study aimed to quantify the methane (CH4) emissions associated with the two most widespread systems of vinasse storage and transportation used in Brazil; open channel and those comprising of tanks and pipes. Additionally, a laboratory incubation study was performed with the aim of isolating the effects of vinasse, sediment and the interaction between these factors on CH4 emissions. We observed significant differences in CH4 emissions between the sampling points along the channels during both years of evaluation (2012-2013). In the channel system, around 80% of CH4 emissions were recorded from uncoated sections. Overall, the average CH4 emission intensity was 1.36 kg CO2eq m-3 of vinasse transported in open channels, which was 620 times higher than vinasse transported through a system of tanks and closed pipes. The laboratory incubation corroborated field results, suggesting that vinasse alone does not contribute significant emissions of CH4. Higher CH4 emissions were observed when vinasse and sediment were incubated together. In summary, our findings demonstrate that CH4 emissions originate through the anaerobic decomposition of organic material deposited on the bottom of channels and tanks. The adoption of coated channels as a substitute to uncoated channels offers the potential for an effective and affordable means of reducing CH4 emissions. Ultimately, the modernization of vinasse storage and transportation systems through the adoption of tank and closed pipe systems will provide an effective strategy for mitigating CH4 emissions generated during the disposal phase of the sugarcane ethanol production process.

  9. Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil.

    Science.gov (United States)

    Torres, Carlos Moreira Miquelino Eleto; Jacovine, Laércio Antônio Gonçalves; Nolasco de Olivera Neto, Sílvio; Fraisse, Clyde William; Soares, Carlos Pedro Boechat; de Castro Neto, Fernando; Ferreira, Lino Roberto; Zanuncio, José Cola; Lemes, Pedro Guilherme

    2017-12-01

    Agrosilvopastoral and silvopastoral systems can increase carbon sequestration, offset greenhouse gas (GHG) emissions and reduce the carbon footprint generated by animal production. The objective of this study was to estimate GHG emissions, the tree and grass aboveground biomass production and carbon storage in different agrosilvopastoral and silvopastoral systems in southeastern Brazil. The number of trees required to offset these emissions were also estimated. The GHG emissions were calculated based on pre-farm (e.g. agrochemical production, storage, and transportation), and on-farm activities (e.g. fertilization and machinery operation). Aboveground tree grass biomass and carbon storage in all systems was estimated with allometric equations. GHG emissions from the agroforestry systems ranged from 2.81 to 7.98 t CO 2 e ha -1 . Carbon storage in the aboveground trees and grass biomass were 54.6, 11.4, 25.7 and 5.9 t C ha -1 , and 3.3, 3.6, 3.8 and 3.3 t C ha -1 for systems 1, 2, 3 and 4, respectively. The number of trees necessary to offset the emissions ranged from 17 to 44 trees ha -1 , which was lower than the total planted in the systems. Agroforestry systems sequester CO 2 from the atmosphere and can help the GHG emission-reduction policy of the Brazilian government.

  10. Heat pumps as a way to Low or Zero Emission district heating systems

    Directory of Open Access Journals (Sweden)

    Jadwiszczak Piotr

    2017-01-01

    In traditional district heating (DH system heat is generated from fossil fuel (FF combustion in heating only boilers (HOB or in combined heat and power (CHP plants. It results in greenhouse gases and other pollutants emission. The reduction of emission is one of the main target in EU climate policy. Among the alternative technologies in DH heat pumps (HP play a crucial role and enable to decrease or even eliminate emission to create a low or zero emission (LZE DH system. The emission reduction effect of integration the large scale HP units into DH systems can by defined by four groups of factors: the share of HP in the heat demand, the heat source for HP, the driving energy for HP and heat sink for HP. This paper illustrates the main options for large scale HP units application for LZE DH based on HP technology.

  11. Low emission transport systems. Reduction of emissions with low-pollutant lubricants; Emissionsarmer Verkehr. Emissionsminderung durch schadstoffarme Schmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Keller, D; Boehncke, A; Mangelsdorf, I

    2001-07-01

    Due to the lower EURO 4 emission limits, exhaust aftertreatment systems for heavy- and light-duty vehicles will be necessary which are more efficient than the today 3-way- or oxidation-type catalysts. Practicable exhaust aftertreatment systems are, for example, particle traps, SCR or NOx- adsorber catalysts, and combinations of these systems. Most of these exhaust control devices require fuels with sulphur contents below 10 ppm. Then the sulphate emissions from lubricants containing about 0.5% sulphur is in the same order of magnitude as sulphate emissions from low sulfur fuels. Measured data on the influence of sulphur from lubricating oils on future exhaust treatment systems are very limited. Conclusions have mostly been drawn from experimental results with low sulphur fuels. It cannot be ruled out, especially for NOx- adsorbers, that sulphur will adversely affect performance, thus making a reduction of sulphur levels in engine oils necessary. As far as diesel exhaust is concerned lubricants contribute approximately 20 - 26% to total particulate matter and more than 50% to the soluble organic fraction (SOF). Ash deposits derived from additives that contain zinc, calcium, sulphur, or phosphorous are likely to block the newly developed particle filter systems. Also for diesel technologies incorporating precious-metal catalysts (e.g. DOC, CDPF, CR-DPF, Urea- SCR) low sulphur levels are advantageous because the mass of sulphate particulate matter formed from fuel or lubricant sulphur is reduced. Conventional three-way catalysts are less sensitive, the light-off temperature being mainly affected. In summary, all available studies suggest that the lower the level of sulphur the lower emissions are. Furthermore phosphorous (associated with the antiwear additive ZDTP) was shown to limit catalyst life and, together with thermal degradation, is responsible for reduced catalyst efficiency over time. Although there is still a lack of quantitative technical information, it

  12. Scenarios for a Nordic Power System without Greenhouse Gas Emissions

    DEFF Research Database (Denmark)

    Graabak, Ingeborg; Nilsson, Måns; Wu, Qiuwei

    2014-01-01

    The paper presents scenarios for power production without greenhouse gas (GHG) emissions in Denmark, Finland, Norway and Sweden by 2050. The Nordic region already has a high share of renewables in its power production portfolio (about 60% in 2010), and possibilities for further deployment are very...

  13. How to include farmers in the emission trading system?

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard

    2011-01-01

    The EU has committed itself to an ambitious 20 % reduction of greenhouse gases (GHG) by 2020 compared to the 1990 emissions level. Moreover, the EU goal beyond 2012 is to strengthen, expand and improve climate change initiatives. Therefore, there is a strong need to consider more carefully how...

  14. Advanced emission control system: CO2 sequestration using algae integrated management system (AIMS)

    International Nuclear Information System (INIS)

    Syed Isa Syed Alwi; Mohd Norsham Che Yahya; Ruzanna Abdul Rahman

    2010-01-01

    One of the companies under Algae tech, Sasaran Bio fuel Sdn. Bhd. provides project management, technology transfer and technical expertise to develop a solution to minimize and mitigate Carbon Dioxide (CO 2 ) emissions through the diversion of the CO 2 to open algal ponds and enclosed photo-bioreactors as algal propagation technologies to consume CO 2 waste stream. The company is presently consulting a listed company from Indonesia to address the technology know-how and implementation of microalgae development from the flue gas of the Groups power plants. Nowadays, one of the aspects that contribute to the air pollution is the emission of flue gases from the factories. So, we provide a system that can reduce the emission of flue gas to the atmosphere and at the same time, cultivate certain strain of algae. With the technology, Algae Integrated Management System (AIMS), it will be for sure a new beginning for way to reduce air pollution. The utilization of power plant resources for growing selected microalgae at a low energy cost for valuable products and bio-fuels while providing CO 2 sequestering. In the same time, it also a low cost algae agriculture. By doing so, it provides all year algae production which can be an income. This residual energy used CO 2 produced from power stations and industrial plants to feed the process (CO 2 recycling and bio-fixation) in cultivation of algae. This will be a low cost flue gas (CO 2 ) to the developer. In a nutshell, CO 2 Sequestration by algae reactors is a potential to reduce greenhouse gas emission by using the CO 2 in the stack gases to produce algae. (author)

  15. Measuring the respiratory gas exchange of grazing cattle using the GreenFeed emissions monitoring system

    Science.gov (United States)

    Ruminants are a significant source of enteric methane, which has been identified as a powerful greenhouse gas that contributes to climate change. With interest in developing technologies to decrease enteric methane emission, systems are currently being developed to measure the methane emission by c...

  16. Greenhouse gas emissions in an agroforestry system in the southeastern USA

    Science.gov (United States)

    Agroforestry systems may provide diverse ecosystem services and economic benefits that conventional agriculture cannot, e.g. potentially mitigating greenhouse gas emissions by enhancing nutrient cycling, since tree roots can capture nutrients not taken up by crops. However, greenhouse gas emission ...

  17. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    Science.gov (United States)

    The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...

  18. A look at some systemic properties of self-bioluminescent emission

    Science.gov (United States)

    Creath, Katherine

    2008-08-01

    Self-bioluminescent emission (SBE) is a type of biological chemiluminescence where photons are emitted as part of chemical reactions occurring during metabolic processes. This emission is also known as biophoton emission, ultraweak photon emission and ultraweak bioluminescence. This paper outlines research over the past century on some systemic properties of SBE as measured with biological detectors, photomultiplier detectors and ultra-sensitive imaging arrays. There is an apparent consensus in the literature that emission in the deep blue and ultraviolet (150-450nm) is related to DNA / RNA processes while emission in the red and near infrared (600-1000nm) is related to mitochondria and oxidative metabolisms involving reactive oxygen species, singlet oxygen and free radicals in plant, animal and human cells along with chlorophyll fluorescent decay in plants. Additionally, there are trends showing that healthy, unstressed and uninjured samples have less emission than samples that are unhealthy, stressed or injured. Mechanisms producing this emission can be narrowed down by isolating the wavelength region of interest and waiting for short-term fluorescence to decay leaving the ultraweak long-term metabolic emission. Examples of imaging this emission in healthy versus unhealthy, stressed versus unstressed, and injured versus uninjured plant parts are shown. Further discussion poses questions still to be answered related to properties such as coherence, photon statistics, and methodological means of isolating mechanisms.

  19. Vehicle emission implications of drivers' smart advisory system for traffic operations in work zones.

    Science.gov (United States)

    Li, Qing; Qiao, Fengxiang; Yu, Lei

    2016-05-01

    Wireless communication systems have been broadly applied in various complicated traffic operations to improve mobility and safety on roads, which may raise a concern about the implication of the new technology on vehicle emissions. This paper explores how the wireless communication systems improve drivers' driving behaviors and its contributions to the emission reduction, in terms of Operating Mode (OpMode) IDs distribution used in emission estimation. A simulated work zone with completed traffic operation was selected as a test bed. Sixty subjects were recruited for the tests, whose demographic distribution was based on the Census data in Houston, Texas. A scene of a pedestrian's crossing in the work zone was designed for the driving test. Meanwhile, a wireless communication system called Drivers Smart Advisory System (DSAS) was proposed and introduced in the driving simulation, which provided drivers with warning messages in the work zone. Two scenarios were designed for a leading vehicle as well as for a following vehicle driving through the work zone, which included a base test without any wireless communication systems, and a driving test with the trigger of the DSAS. Subjects' driving behaviors in the simulation were recorded to evaluate safety and estimate the vehicle emission using the Environmental Protection Agency (EPA) released emission model MOVES. The correlation between drivers' driving behavior and the distribution of the OpMode ID during each scenario was investigated. Results show that the DSAS was able to induce drivers to accelerate smoothly, keep longer headway distance and stop earlier for a hazardous situation in the work zone, which driving behaviors result in statistically significant reduction in vehicle emissions for almost all studied air pollutants (p-values range from 4.10E-51 to 2.18E-03). The emission reduction was achieved by the switching the distribution of the OpMode IDs from higher emission zones to lower emission zones

  20. Pacific Northwest National Laboratory Facility Radionuclide Emissions Units and Sampling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J. Matthew; Brown, Jason H.; Walker, Brian A.

    2012-04-01

    Battelle–Pacific Northwest Division operates numerous research and development (R&D) laboratories in Richland, WA, including those associated with Pacific Northwest National Laboratory (PNNL) on the U.S. Department of Energy (DOE)’s Hanford Site and PNNL Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all emission units that have the potential for radionuclide air emissions. Potential emissions are assessed annually by PNNL staff members. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission unit system performance, operation, and design information. For sampled systems, a description of the buildings, exhaust units, control technologies, and sample extraction details is provided for each registered emission unit. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided. Deregistered emission unit details are provided as necessary for up to 5 years post closure.

  1. The cost-effectiveness of household photovoltaic systems in reducing greenhouse gas emissions in Australia: Linking subsidies with emission reductions

    International Nuclear Information System (INIS)

    Burtt, D.; Dargusch, P.

    2015-01-01

    Highlights: • Payback period for Australian household PV fell to four years in 2011 and 2012. • PV became attractive due to high feed-in tariffs and declining PV costs. • Cost was AU$200/t CO 2 e in 2010, expected to be AU$65 to AU$100/t CO 2 e by 2020. • PV resulted in greenhouse gas emissions reducing by 3.7 million t CO 2 e in 2013. • PV expected to reduce greenhouse gas emissions by 8 million t CO 2 e in 2020. - Abstract: This paper examines the cost-effectiveness of subsidies (feed-in tariffs and renewable energy credits) paid for by electricity consumers to support the uptake of roof top photovoltaic (PV) systems by households in Australia. We estimate annual payback periods, and then regress these against the actual uptake of household PV and associated emission reductions, creating a relationship not apparent in other research. Sensitivity analysis reveals that the declining cost of PV panels had most impact on PV uptake followed by feed-in tariffs, renewable energy credits and the increasing cost of household electricity tariffs. Our modelling shows that feed-in tariffs were higher than necessary to achieve the resultant levels of PV uptake and that the low cost of PV panels and comparatively high electricity tariffs are likely to result in a continuing strong uptake of household PV in Australia. Our modelling shows that subsidies peaked in 2011 and 2012, with payback periods of three to four years, having since increased to five to six years. Emission reduction costs are expected to reduce from over AU$200 per t CO 2 e in 2013 to between AU$65 and AU$100 per t CO 2 e in 2020. Household PV reduced Australia’s emissions by 3.7 million t CO 2 e in 2013 (1.7% of Australia’s total emissions) and is expected to reach eight million tonnes (3.7% of Australia’s total emissions) by 2020

  2. Data acquisition and processing system of the electron cyclotron emission imaging system of the KSTAR tokamak

    International Nuclear Information System (INIS)

    Kim, J. B.; Lee, W.; Yun, G. S.; Park, H. K.; Domier, C. W.; Luhmann, N. C. Jr.

    2010-01-01

    A new innovative electron cyclotron emission imaging (ECEI) diagnostic system for the Korean Superconducting Tokamak Advanced Research (KSTAR) produces a large amount of data. The design of the data acquisition and processing system of the ECEI diagnostic system should consider covering the large data production and flow. The system design is based on the layered structure scalable to the future extension to accommodate increasing data demands. Software architecture that allows a web-based monitoring of the operation status, remote experiment, and data analysis is discussed. The operating software will help machine operators and users validate the acquired data promptly, prepare next discharge, and enhance the experiment performance and data analysis in a distributed environment.

  3. Cities' Role in Mitigating United States Food System Greenhouse Gas Emissions.

    Science.gov (United States)

    Mohareb, Eugene A; Heller, Martin C; Guthrie, Peter M

    2018-05-15

    Current trends of urbanization, population growth, and economic development have made cities a focal point for mitigating global greenhouse gas (GHG) emissions. The substantial contribution of food consumption to climate change necessitates urban action to reduce the carbon intensity of the food system. While food system GHG mitigation strategies often focus on production, we argue that urban influence dominates this sector's emissions and that consumers in cities must be the primary drivers of mitigation. We quantify life cycle GHG emissions of the United States food system through data collected from literature and government sources producing an estimated total of 3800 kg CO 2 e/capita in 2010, with cities directly influencing approximately two-thirds of food sector GHG emissions. We then assess the potential for cities to reduce emissions through selected measures; examples include up-scaling urban agriculture and home delivery of grocery options, which each may achieve emissions reductions on the order of 0.4 and ∼1% of this total, respectively. Meanwhile, changes in waste management practices and reduction of postdistribution food waste by 50% reduce total food sector emissions by 5 and 11%, respectively. Consideration of the scale of benefits achievable through policy goals can enable cities to formulate strategies that will assist in achieving deep long-term GHG emissions targets.

  4. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.

    Science.gov (United States)

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin

    2005-09-01

    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization.

  5. Important aspects of sinks for linking emission trading systems

    Energy Technology Data Exchange (ETDEWEB)

    Hirsbrunner, Simon; Taenzler, Dennis; Reuster, Lena [Adelphi Research gGmbH, Berlin (Germany)

    2011-06-15

    The discussion on how to design policy instruments to reduce emissions and enhance removals from land use, land use change, and forestry is likely to be a key feature of a future global climate protection framework and will also influence the design of an emerging global carbon market. By analyzing different ETSs it turns out that very specific provisions are in place to deal with carbon sinks. Different instruments, eligible activities and standards reflect the prevailing emissions profile and cultural preferences of a geographic area. The inclusion of forestry in a cap, for instance, makes provisions on additionality and non-permanence obsolete, but increases the relevance of other issues such as accounting and enforcement. (orig.)

  6. Continuous emission monitoring systems for power plants. The state-of-the-art

    International Nuclear Information System (INIS)

    Bamberger, J.A.

    1988-01-01

    Continuous monitoring of power plant emissions is performed to improve combustion and control equipment efficiency, and in response to various government agency requirements. This paper focuses upon recent developments in Continuous Emission Monitoring (CEM) and Systems (CEMS) for power plants. Topics presented include the perspective of the U.S. Environmental Protection Agency and the states: Continuous Monitoring of Power Plant Emissions - An EPA Perspective; Pennsylvania's Proposed Continuous Emission Monitoring System Data Telemetry Requirements for Municipal, Hospital and Infectious Waste Incinerators; the importance of quality assurance; Continuous Emission Monitoring and Quality Assurance Requirements for New Power Plants; Highlights of Pennsylvania's Continuous Emission Monitoring System Quality Assurance Program; improved system specifications and data acquisition methods; Improved Specifications for Continuous Emission Monitoring; A Microcomputer-Based Data Acquisition System for CEMS; CEMS applications; Expanded Use of CEMS in Acid Rain Control Programs: Opinions of Users, Control Agencies and Vendors; and an innovative measurement technique to assess electrostatic precipitator performance; The Assessment of Pulverized Coal Fly Ash Collection in Electrostatic Precipitators Using an Instrumental Assessment Technique

  7. ON THE STUDY OF GHG (GREENHOUSE GAS EMISSIONS IN RICE PRODUCTION SYSTEMS IN DARGAZ, IRAN

    Directory of Open Access Journals (Sweden)

    Ghorbanali RASSAM

    2015-12-01

    Full Text Available The most important issue which has attracted the attention of many scientists is the climate change and global warming due to greenhouse gas emission which has caused the world faced with a great human and environmental disaster. In this study, the amount of greenhouse gas (GHG emissions was estimated in the semi-traditional and semi-mechanized rice production systems in Dargaz region, Iran. All the agricultural and consuming inputs procedures responsible for greenhouse gas emissions were collected and recorded in both systems. The amount of GHG emission in semi-traditional and semi-mechanized was 813.17 and 968.31 kg CO2-eq ha-1, respectively. The fuel consumption with the share of 38.22% in semi-traditional method and 43.32% in semi-mechanized system had the largest share in GHG emission and using Nitrogen fertilizer on farms with the share of 31.97% in semi-traditional method and 26.91% in semi-mechanized system is in the second place of GHG emission. The semi-traditional system had greater GHG emissions in the unit of tone of harvested grain and unit of energy output. The use of alternative methods such as conservation tillage and organic fertilizers can be effective in improving the environmental status of the production area.

  8. An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS)

    Science.gov (United States)

    Luján, José M.; Bermúdez, Vicente; Dolz, Vicente; Monsalve-Serrano, Javier

    2018-02-01

    Recent investigations demonstrated that real-world emissions usually exceed the levels achieved in the laboratory based type approval processes. By means of on-board emissions measurements, it has been shown that nitrogen oxides emitted by diesel engines substantially exceed the limit imposed by the Euro 6 regulation. Thus, with the aim of complementing the worldwide harmonized light vehicles test cycle, the real driving emissions cycle will be introduced after 1 September 2017 to regulate the vehicle emissions in real-world driving situations. This paper presents on-board gaseous emissions measurements from a Euro 6 light-duty diesel vehicle in a real-world driving route using a portable emissions measurement system. The test route characteristics follow the requirements imposed by the RDE regulation. The analysis of the raw emissions results suggests that the greatest amount of nitrogen oxides and nitrogen dioxide are emitted during the urban section of the test route, confirming that lower speeds with more accelerations and decelerations lead to higher nitrogen oxides emissions levels than constant high speeds. Moreover, the comparison of the two calculation methods proposed by the real driving emissions regulation has revealed emissions rates differences ranging from 10% to 45% depending on the pollutant emission and the trip section considered (urban or total). Thus, the nitrogen oxides emissions conformity factor slightly varies from one method to the other.

  9. Importance of hydration in exoelectron emission from ceramic BeO

    International Nuclear Information System (INIS)

    Gammage, R.B.; Cheka, J.S.

    1976-01-01

    The influence of the state of hydration on the exoelectron emitting characteristics of BeO ceramic dosimeters for TSEE is very strong and very complex. For dosimetry the most unfavorable characteristics are a ruined TSEE peak shape and loss of intensity; this occurs if atmosphere moisture is allowed to condense onto, and evaporate from, the BeO surface. For unencapsulated dosimeters this occurs when the ambient temperature falls below the dew point. Immersion of irradiated detectors directly into liquid water for a few hours causes fading at a substantial rate, but surprisingly little change in the TSEE peak shape or intensity. The different behaviors with respect to immersion in liquid water and exposure to condensing atmospheric moisture present an enigma. Ceramic BeO TSEE dosimeters can only be used with confidence in atmospheres where below dew point conditions are avoidable, such as inside air conditioned buildings or encapsulated, dry air containers

  10. Simulation scenarios for rapid reduction in carbon dioxide emissions in the western electricity system

    International Nuclear Information System (INIS)

    Ford, Andrew

    2008-01-01

    This paper describes a computer simulation analysis of carbon dioxide emissions in the electric power system in the western United States. Legislation at both the state and federal level would impose a price on emissions via cap-and-trade in allowances for carbon dioxide emissions. The simulation scenarios for the western system indicate that dramatic reductions in emissions are possible with generating technologies that exist today. Wind and biomass generators play a key role even with conservative assumptions about their future costs. In contrast, generation from advanced technologies provide only a minor contribution by the year 2025. These scenarios provide support to those who argue that the US should move expeditiously to put a price on carbon dixoide emissions

  11. 40 CFR 60.1730 - How do I make sure my continuous emission monitoring systems are operating correctly?

    Science.gov (United States)

    2010-07-01

    ... emission monitoring systems are operating correctly? 60.1730 Section 60.1730 Protection of Environment... continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or carbon dioxide...

  12. 40 CFR 62.15185 - How do I make sure my continuous emission monitoring systems are operating correctly?

    Science.gov (United States)

    2010-07-01

    ... emission monitoring systems are operating correctly? 62.15185 Section 62.15185 Protection of Environment... make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or...

  13. 40 CFR 60.3039 - How do I make sure my continuous emission monitoring systems are operating correctly?

    Science.gov (United States)

    2010-07-01

    ... emission monitoring systems are operating correctly? 60.3039 Section 60.3039 Protection of Environment... emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure carbon monoxide and oxygen. (b...

  14. Pollutant emissions from vehicles with regenerating after-treatment systems in regulatory and real-world driving cycles.

    Science.gov (United States)

    Alvarez, Robert; Weilenmann, Martin; Novak, Philippe

    2008-07-15

    Regenerating exhaust after-treatment systems are increasingly employed in passenger cars in order to comply with regulatory emission standards. These systems include pollutant storage units that occasionally have to be regenerated. The regeneration strategy applied, the resultant emission levels and their share of the emission level during normal operation mode are key issues in determining realistic overall emission factors for these cars. In order to investigate these topics, test series with four cars featuring different types of such after-treatment systems were carried out. The emission performance in legislative and real-world cycles was monitored as well as at constant speeds. The extra emissions determined during regeneration stages are presented together with the methodology applied to calculate their impact on overall emissions. It can be concluded that exhaust after-treatment systems with storage units cause substantial overall extra emissions during regeneration mode and can appreciably affect the emission factors of cars equipped with such systems, depending on the frequency of regenerations. Considering that the fleet appearance of vehicles equipped with such after-treatment systems will increase due to the evolution of statutory pollutant emission levels, extra emissions originating from regenerations of pollutant storage units consequently need to be taken into account for fleet emission inventories. Accurately quantifying these extra emissions is achieved by either conducting sufficient repetitions of emission measurements with an individual car or by considerably increasing the size of the sample of cars with comparable after-treatment systems.

  15. Modeling methane emissions by cattle production systems in Mexico

    Science.gov (United States)

    Castelan-Ortega, O. A.; Ku Vera, J.; Molina, L. T.

    2013-12-01

    Methane emissions from livestock is one of the largest sources of methane in Mexico. The purpose of the present paper is to provide a realistic estimate of the national inventory of methane produced by the enteric fermentation of cattle, based on an integrated simulation model, and to provide estimates of CH4 produced by cattle fed typical diets from the tropical and temperate climates of Mexico. The Mexican cattle population of 23.3 million heads was divided in two groups. The first group (7.8 million heads), represents cattle of the tropical climate regions. The second group (15.5 million heads), are the cattle in the temperate climate regions. This approach allows incorporating the effect of diet on CH4 production into the analysis because the quality of forages is lower in the tropics than in temperate regions. Cattle population in every group was subdivided into two categories: cows (COW) and other type of cattle (OTHE), which included calves, heifers, steers and bulls. The daily CH4 production by each category of animal along an average production cycle of 365 days was simulated, instead of using a default emission factor as in Tier 1 approach. Daily milk yield, live weight changes associated with the lactation, and dry matter intake, were simulated for the entire production cycle. The Moe and Tyrrell (1979) model was used to simulate CH4 production for the COW category, the linear model of Mills et al. (2003) for the OTHE category in temperate regions and the Kurihara et al. (1999) model for the OTHE category in the tropical regions as it has been developed for cattle fed tropical diets. All models were integrated with a cow submodel to form an Integrated Simulation Model (ISM). The AFRC (1993) equations and the lactation curve model of Morant and Gnanasakthy (1989) were used to construct the cow submodel. The ISM simulates on a daily basis the CH4 production, milk yield, live weight changes associated with lactation and dry matter intake. The total daily CH

  16. Determination of OB/OD/SF Emission Factors Using Unmanned Aerial Systems

    Science.gov (United States)

    A presentation to the Demilitarization Symposium. This proposal will present the methods of tethered aerostat and unmanned aerial system for collection of plume samples and determination of emission factors form open burning, open detonation, and static firing for weapon demilita...

  17. Power train and emission control: allocation procedure by OBD-II system for automotive technology

    Science.gov (United States)

    Kalita, Porag

    2017-06-01

    OBD-II, systems were designed to maintain low emissions of in use vehicles, including light and medium duty vehicles. In 1989, the California code of Regulations (CCR) known as OBD - II was adopted by the California Air Resource Board (CARB) and the objective to reduce hydrocarbon (HC) emission caused by malfunction of the vehicles emission control systems. OBD-II provides additional information to engineer for diagnosis and repair of emissions related problems. OBD-II, standardizes on the amount of memory (Freeze Frame) it uses to store the readings of the vehicle sensor when it logs on emission related Intermittent Trouble code (IT). The intent of OBD-II, systems is to detect most vehicle malfunctions when performance of a power train component or system deteriorates to the point that the vehicle’s HC emission exceed standard. The vehicle operator is notified at the time when the vehicle begins to marginally exceed emission standards, by illuminating the Malfunctions Indicator Light (MIL).

  18. System for detecting acoustic emissions in multianvil experiments: Application to deep seismicity in the Earth

    International Nuclear Information System (INIS)

    Jung, Haemyeong; Fei Yingwei; Silver, Paul G.; Green, Harry W.

    2006-01-01

    One of the major goals in the experimental study of deep earthquakes is to identify slip instabilities at high pressure and high temperature (HPHT) that might be responsible for the occurrence of earthquakes. Detecting acoustic emissions from a specimen during faulting provides unique constraints on the instability process. There are few experimental studies reporting acoustic emissions under HPHT conditions, due to technical challenges. And those studies have used only one or at most two acoustic sensors during the experiments. Such techniques preclude the accurate location of the acoustic emission source region and thus the ability to distinguish real signal from noise that may be coming from outside the sample. We have developed a system for detecting acoustic emissions at HPHT. Here we present a four-channel acoustic emission detecting system working in the HPHT octahedral multianvil apparatus. Each channel has high resolution (12 bits) and a sampling rate of 30 MHz. In experiments at the pressures up to 6 GPa and temperatures up to 770 deg. C, we have observed acoustic emissions under various conditions. Analyzing these signals, we are able to show that this system permits us to distinguish between signal and noise, locate the source of the acoustic emission, and obtain reliable data on the radiation pattern. This system has greatly improved our ability to study faulting instabilities under high pressure and high temperature

  19. Greenhouse gas emissions from integrated urban drainage systems: Where do we stand?

    Science.gov (United States)

    Mannina, Giorgio; Butler, David; Benedetti, Lorenzo; Deletic, Ana; Fowdar, Harsha; Fu, Guangtao; Kleidorfer, Manfred; McCarthy, David; Steen Mikkelsen, Peter; Rauch, Wolfgang; Sweetapple, Chris; Vezzaro, Luca; Yuan, Zhiguo; Willems, Patrick

    2018-04-01

    As sources of greenhouse gas (GHG) emissions, integrated urban drainage systems (IUDSs) (i.e., sewer systems, wastewater treatment plants and receiving water bodies) contribute to climate change. This paper, produced by the International Working Group on Data and Models, which works under the IWA/IAHR Joint Committee on Urban Drainage, reviews the state-of-the-art and modelling tools developed recently to understand and manage GHG emissions from IUDS. Further, open problems and research gaps are discussed and a framework for handling GHG emissions from IUDSs is presented. The literature review reveals that there is a need to strengthen already available mathematical models for IUDS to take GHG into account.

  20. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong

    International Nuclear Information System (INIS)

    Yan, H.H.; Guo, H.; Ou, J.M.

    2014-01-01

    Highlights: • Halocarbon emissions from MVACS were characterized using bottom up approach. • Quantification of emission inventory was revealed using AUV Tools. • Potential emission reduction was estimated under 3 possible mitigation scenarios. • The results are useful for the policy makers to formulate and implement future phase-out schedule. - Abstract: During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO 2 -equivelant (CO 2 -eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10 5 tons CO 2 -eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong

  1. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Yan, H.H.; Guo, H., E-mail: ceguohai@polyu.edu.hk; Ou, J.M.

    2014-08-15

    Highlights: • Halocarbon emissions from MVACS were characterized using bottom up approach. • Quantification of emission inventory was revealed using AUV Tools. • Potential emission reduction was estimated under 3 possible mitigation scenarios. • The results are useful for the policy makers to formulate and implement future phase-out schedule. - Abstract: During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO{sub 2}-equivelant (CO{sub 2}-eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10{sup 5} tons CO{sub 2}-eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong.

  2. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong.

    Science.gov (United States)

    Yan, H H; Guo, H; Ou, J M

    2014-08-15

    During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO2-equivelant (CO2-eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10(5)tons CO2-eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. CO_2 emission trends of China's primary aluminum industry: A scenario analysis using system dynamics model

    International Nuclear Information System (INIS)

    Li, Qiang; Zhang, Wenjuan; Li, Huiquan; He, Peng

    2017-01-01

    China announced its promise on CO_2 emission peak. When and what level of CO_2 emission peak China's primary aluminum industry will reach is in suspense. In this paper, a system dynamic model is established, with five subsystems of economy development, primary aluminum production, secondary aluminum production, CO_2 emission intensity and policies making involved. The model is applied to examine potential CO_2 emission trends of China's primary aluminum industry in next fifteen years with three scenarios of “no new policies”, “13th five-year plan” and “additional policies”. Simulation results imply that: merely relying on rapid expansion of domestic scarps recycling and reuse could not mitigate CO_2 emission continuously. Combination of energy-saving technology application and electrolytic technology innovation, as well as promoting hydropower utilization in primary aluminum industry are necessary for long term low-carbon development. From a global prospective, enhancing international cooperation on new primary aluminum capacity construction in other countries, especially with rich low-carbon energy, could bring about essential CO_2 emission for both China's and global primary aluminum industry. - Highlights: • A system dynamic model is established for future CO_2 emission trend of China's primary aluminum industry. • Three potential policy scenarios are simulated. • The impacts of potential policies implication on the CO_2 emission trend are discussed.

  4. Model-predicted ammonia emission from two broiler houses with different rearing systems

    Directory of Open Access Journals (Sweden)

    Nilsa Duarte Silva Lima

    2015-10-01

    Full Text Available Ammonia (NH3 emissions from broiler production can affect human and animal health and may cause acidification and eutrophication of the surrounding environment. This study aimed to estimate ammonia emissions from broiler litter in two systems of forced ventilation, the tunnel ventilation (TV and the dark house (DH. The experiment was carried out on eight commercial broiler houses, and the age of the birds (day, d, pH and litter temperature were recorded. Broilers were reared on built-up wood shaving litter using an average flock density of 14 bird m–2. Temperature and relative humidity inside the broiler houses were recorded in the morning during the grow-out period. A factorial experimental design was adopted, with two types of houses, four replicates and two flocks with two replicates each. A deterministic model was used to predict ammonia emissions using the litter pH and temperature, and the day of grow-out. The highest litter temperature and pH were found at 42 d of growth in both housing systems. Mean ambient air temperature and relative humidity did not differ in either system. Mean model predicted ammonia emission was higher in the DH rearing system (5200 mg NH3 m−2h−1 at 42 d than in the TV system (2700 mg NH3m−2 h−1 at 42 d. TV presented the lowest mean litter temperature and pH at 42 d of growth. In the last week of the broilers’ grow-out cycle, estimated ammonia emissions inside DH reached 5700 mg m−2h−1 in one of the flocks. Ammonia emissions were higher inside DH, and they did not differ between flocks. Assuming a broiler market weight in Brazil of close to 2 kg, ammonia emissions were equivalent to 12 g NH3 bird-marketed−1. Model-predicted ammonia emissions provided comprehensible estimations and might be used in abatement strategies for NH3 emission.

  5. The improvement of CO2 emission reduction policies based on system dynamics method in traditional industrial region with large CO2 emission

    International Nuclear Information System (INIS)

    Li, Fujia; Dong, Suocheng; Li, Zehong; Li, Yu; Li, Shantong; Wan, Yongkun

    2012-01-01

    Some traditional industrial regions are characterized by high industrial proportion and large CO 2 emission. They are facing dual pressures of maintaining economic growth and largely reducing CO 2 emission. From the perspective of study of typological region, taking the typical traditional industrial region—Liaoning Province of China as a case, this study establishes a system dynamics model named EECP and dynamically simulates CO 2 emission trends under different conditions. Simulation results indicate, compared to the condition without CO 2 emission reduction policies, CO 2 emission intensity under the condition of implementing CO 2 emission reduction policies of “Twelfth Five-Year Plan” is decreased by 11% from 2009 to 2030, but the economic cost is high, making the policies implementation faces resistance. Then some improved policies are offered and proved by EECP model that they can reduce CO 2 emission intensity after 2021 and decrease the negative influence to GDP, realizing the improvement objects of reducing CO 2 emission and simultaneously keeping a higher economy growth speed. The improved policies can provide reference for making and improving CO 2 emission reduction policies in other traditional industrial regions with large CO 2 emission. Simultaneously, EECP model can provide decision-makers with reference and help for similar study of energy policy. - Highlights: ► We build EECP model for CO 2 emission reduction study in traditional industry region. ► By the model, we simulate CO 2 emission trend and improve emission reduction policy. ► By improvement, both CO 2 emission intensity and economic cost can be largely reduced. ► Besides CO 2 emission is reduced effectively, higher GDP increment speed is kept. ► EECP model can be widely used for making and improving regional energy policies.

  6. Alternatives for methane emission mitigation in livestock systems

    OpenAIRE

    Lascano,Carlos E.; Cárdenas,Edgar

    2010-01-01

    Human activities are contributing to Global Climate Change through the production of Green House Gases (GHG), which result in increased air, land and ocean temperatures and extreme changes in precipitation in regions of low and high rainfall. The most important GHG's are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). It is estimated that 18 % of the annual GHG emissions come from different types of livestock and that 37% of CH4, with higher global warming potential (23) relative...

  7. The fundamentals of the future international emissions trading system

    International Nuclear Information System (INIS)

    Stankeviciute, Loreta; Kitous, Alban; Criqui, Patrick

    2008-01-01

    The study aims to analyze the sectoral marginal abatements cost curves for a number of EU countries as well as to examine the efficiency aspects and the economic impacts for the major sectors of the ETS under different carbon market configurations in 2010 and 2020. To produce a consistent and realistic assessment, we employ sources such as GHG National Inventories, NAPs and POLES world energy model to constitute the sectoral base year and 2010, 2020 emission levels in different countries and regions. We then use the market analysis tool ASPEN, which enables to derive supply and demand from sectoral MACCs produced with the POLES model, and to evaluate the economic impacts on the carbon market participants. The paper shows that, in compliance with the Kyoto targets, the benefits of an enlarged carbon market are significant, since more than 50% of the abatement in the short term have to be achieved in ETS sectors, which may indeed use CDM or JI credits. A second major conclusion is that in 2020 the new flexibility margins provided by the adjustment of investments in new capacities compensate for the increase in pressure towards stronger emission reductions. This reduces the relative importance of the enlarged carbon market

  8. Short term economic emission power scheduling of hydrothermal energy systems using improved water cycle algorithm

    International Nuclear Information System (INIS)

    Haroon, S.S.; Malik, T.N.

    2017-01-01

    Due to the increasing environmental concerns, the demand of clean and green energy and concern of atmospheric pollution is increasing. Hence, the power utilities are forced to limit their emissions within the prescribed limits. Therefore, the minimization of fuel cost as well as exhaust gas emissions is becoming an important and challenging task in the short-term scheduling of hydro-thermal energy systems. This paper proposes a novel algorithm known as WCA-ER (Water Cycle Algorithm with Evaporation Rate) to inspect the short term EEPSHES (Economic Emission Power Scheduling of Hydrothermal Energy Systems). WCA has its ancestries from the natural hydrologic cycle i.e. the raining process forms streams and these streams start flowing towards the rivers which finally flow towards the sea. The worth of WCA-ER has been tested on the standard economic emission power scheduling of hydrothermal energy test system consisting of four hydropower and three thermal plants. The problem has been investigated for the three case studies (i) ECS (Economic Cost Scheduling), (ii) ES (Economic Emission Scheduling) and (iii) ECES (Economic Cost and Emission Scheduling). The results obtained show that WCA-ER is superior to many other methods in the literature in bringing lower fuel cost and emissions. (author)

  9. Intelligent Heat System - High-Energy Efficient Wood Stoves with Low Emissions. Emissions of Gases and Particles

    DEFF Research Database (Denmark)

    Illerup, Jytte Boll; Hansen, Brian Brun; Lin, Weigang

    2015-01-01

    performance has been verified by field tests in private homes. The main components of an Autopilot IHS wood stove are: a modern wood stove with three separate combustion air inlets, and a control system composing of measuring devices for vital process parameters and a system of controlling valves to regulate...... combustion charges and phases. The experiments showed that the digital control of the combustion process ensures constant and optimal temperatures and overall oxygen concentrations in the combustion chamber resulting in low PM and CO emissions.......A collaboration project between the CHEC research Centre, at DTU Chemical Engineering, and the stove manufacturing company HWAM A/S has been established during the last years and has led to development and marketing of wood stoves (Autopilot IHS) equipped with a digital control system. The improved...

  10. Developing Automatic Water Table Control System for Reducing Greenhouse Gas Emissions from Paddy Fields

    Science.gov (United States)

    Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.

    2018-05-01

    Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.

  11. Community system updating and extension concerning greenhouse gas emissions duties trading

    International Nuclear Information System (INIS)

    Arrieta-Langarika, I.

    2010-01-01

    Approving 29/2009/CE Directive, that amends Directive 2003/87/EC, relating to a trading system for allowances of greenhouse gas emissions in the Community, the European Union wants to improve this system, and, in that way, providing an appropriate tool for achieving the emissions reduction targets, set for 2020: in particular, reducing the emissions of carbon dioxide (CO 2 ) in a 20% compared to 1990 levels. Recognizing the virtues of this system as an innovative tool for reducing emissions, it should be harmonized through the use of common standards that ensure equal conditions of the facilities affected and their update, among others, increasing their scope and establishing a system of re-allocation to reduce emissions. At the same time, the regulation adopted by the EU should not address possible competition difficulties, that may arise for the industries affected by this emission trading system, more specifically, the problem of carbon leakage: the phenomenon refers to the risk that European industries must move outside the EU for not being able to cope with competition from other countries with less stringent limitations on this matter. In any case, the regime established by Directive 29/2009/CE is subject to possible changes in function of international countries might conclude. (Author) 8 refs.

  12. Tradeoffs between costs and greenhouse gas emissions in the design of urban transit systems

    International Nuclear Information System (INIS)

    Griswold, Julia B; Madanat, Samer; Horvath, Arpad

    2013-01-01

    Recent investments in the transit sector to address greenhouse gas emissions have concentrated on purchasing efficient replacement vehicles and inducing mode shift from the private automobile. There has been little focus on the potential of network and operational improvements, such as changes in headways, route spacing, and stop spacing, to reduce transit emissions. Most models of transit system design consider user and agency cost while ignoring emissions and the potential environmental benefit of operational improvements. We use a model to evaluate the user and agency costs as well as greenhouse gas benefit of design and operational improvements to transit systems. We examine how the operational characteristics of urban transit systems affect both costs and greenhouse gas emissions. The research identifies the Pareto frontier for designing an idealized transit network. Modes considered include bus, bus rapid transit (BRT), light rail transit (LRT), and metro (heavy) rail, with cost and emissions parameters appropriate for the United States. Passenger demand follows a many-to-many travel pattern with uniformly distributed origins and destinations. The approaches described could be used to optimize the network design of existing bus service or help to select a mode and design attributes for a new transit system. The results show that BRT provides the lowest cost but not the lowest emissions for our large city scenarios. Bus and LRT systems have low costs and the lowest emissions for our small city scenarios. Relatively large reductions in emissions from the cost-optimal system can be achieved with only minor increases in user travel time. (letter)

  13. Ammonia emission model for whole farm evaluation of dairy production systems.

    Science.gov (United States)

    Rotz, C Alan; Montes, Felipe; Hafner, Sasha D; Heber, Albert J; Grant, Richard H

    2014-07-01

    Ammonia (NH) emissions vary considerably among farms as influenced by climate and management. Because emission measurement is difficult and expensive, process-based models provide an alternative for estimating whole farm emissions. A model that simulates the processes of NH formation, speciation, aqueous-gas partitioning, and mass transfer was developed and incorporated in a whole farm simulation model (the Integrated Farm System Model). Farm sources included manure on the floor of the housing facility, manure in storage (if used), field-applied manure, and deposits on pasture (if grazing is used). In a comprehensive evaluation of the model, simulated daily, seasonal, and annual emissions compared well with data measured over 2 yr for five free stall barns and two manure storages on dairy farms in the eastern United States. In a further comparison with published data, simulated and measured barn emissions were similar over differing barn designs, protein feeding levels, and seasons of the year. Simulated emissions from manure storage were also highly correlated with published emission data across locations, seasons, and different storage covers. For field applied manure, the range in simulated annual emissions normally bounded reported mean values for different manure dry matter contents and application methods. Emissions from pastures measured in northern Europe across seasons and fertilization levels were also represented well by the model. After this evaluation, simulations of a representative dairy farm in Pennsylvania illustrated the effects of animal housing and manure management on whole farm emissions and their interactions with greenhouse gas emissions, nitrate leaching, production costs, and farm profitability. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.

    Science.gov (United States)

    Cai, Hao; Wang, Michael Q

    2014-10-21

    The climate impact assessment of vehicle/fuel systems may be incomplete without considering short-lived climate forcers of black carbon (BC) and primary organic carbon (POC). We quantified life-cycle BC and POC emissions of a large variety of vehicle/fuel systems with an expanded Greenhouse gases, Regulated Emissions, and Energy use in Transportation model developed at Argonne National Laboratory. Life-cycle BC and POC emissions have small impacts on life-cycle greenhouse gas (GHG) emissions of gasoline, diesel, and other fuel vehicles, but would add 34, 16, and 16 g CO2 equivalent (CO2e)/mile, or 125, 56, and 56 g CO2e/mile with the 100 or 20 year Global Warming Potentials of BC and POC emissions, respectively, for vehicles fueled with corn stover-, willow tree-, and Brazilian sugarcane-derived ethanol, mostly due to BC- and POC-intensive biomass-fired boilers in cellulosic and sugarcane ethanol plants for steam and electricity production, biomass open burning in sugarcane fields, and diesel-powered agricultural equipment for biomass feedstock production/harvest. As a result, life-cycle GHG emission reduction potentials of these ethanol types, though still significant, are reduced from those without considering BC and POC emissions. These findings, together with a newly expanded GREET version, help quantify the previously unknown impacts of BC and POC emissions on life-cycle GHG emissions of U.S. vehicle/fuel systems.

  15. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.; Feru, E.

    2015-01-01

    Rankine-cycleWasteHeatRecovery (WHR)systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine andWHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel

  16. 40 CFR 60.1240 - How do I make sure my continuous emission monitoring systems are operating correctly?

    Science.gov (United States)

    2010-07-01

    ... emission monitoring systems are operating correctly? 60.1240 Section 60.1240 Protection of Environment... Continuous Emission Monitoring § 60.1240 How do I make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous...

  17. A model for particle emission from a fissioning system

    International Nuclear Information System (INIS)

    Milek, B.; Reif, R.; Revai, J.

    1987-04-01

    The differential emission probability for a neutron emitted in a binary fission process due to non-adiabatic effects in the coupling of the single particle degrees of freedom to the accelerated relative motion of the fragments is investigated wihtin a model, which represents each nucleus by a non-deformed one-term separable potential. The derivation of measurable quantities from the asymptotic solution of the time-dependent Schroedinger equation for the single particle wave function is examined. Numerical calculations were performed for parameter values, which correspond to 252 Cf(sf). The calculated energy spectra and angular distributions of the emitted particles are presented in dependence on the mass asymmetry. (author)

  18. Studies of the brain cannabinoid system using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  19. Studies of the brain cannabinoid system using positron emission tomography

    International Nuclear Information System (INIS)

    Gatley, S.J.; Volkow, N.D.

    1995-01-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available

  20. Direct measurements show decreasing methane emissions from natural gas local distribution systems in the United States.

    Science.gov (United States)

    Lamb, Brian K; Edburg, Steven L; Ferrara, Thomas W; Howard, Touché; Harrison, Matthew R; Kolb, Charles E; Townsend-Small, Amy; Dyck, Wesley; Possolo, Antonio; Whetstone, James R

    2015-04-21

    Fugitive losses from natural gas distribution systems are a significant source of anthropogenic methane. Here, we report on a national sampling program to measure methane emissions from 13 urban distribution systems across the U.S. Emission factors were derived from direct measurements at 230 underground pipeline leaks and 229 metering and regulating facilities using stratified random sampling. When these new emission factors are combined with estimates for customer meters, maintenance, and upsets, and current pipeline miles and numbers of facilities, the total estimate is 393 Gg/yr with a 95% upper confidence limit of 854 Gg/yr (0.10% to 0.22% of the methane delivered nationwide). This fraction includes emissions from city gates to the customer meter, but does not include other urban sources or those downstream of customer meters. The upper confidence limit accounts for the skewed distribution of measurements, where a few large emitters accounted for most of the emissions. This emission estimate is 36% to 70% less than the 2011 EPA inventory, (based largely on 1990s emission data), and reflects significant upgrades at metering and regulating stations, improvements in leak detection and maintenance activities, as well as potential effects from differences in methodologies between the two studies.

  1. The on-board tailpipe emissions measurement system (TOTEMS) : proof\\0x2010 of\\0x2010concept.

    Science.gov (United States)

    2009-06-03

    An on-board tailpipe emissions instrumentation system was designed, assembled and tested as proof-of-concept : for the University of Vermonts Transportation Research Center (TRC) Signature Project #2 real-world vehicle : emissions data colle...

  2. PC-BEIS: a personal computer version of the biogenic emissions inventory system

    International Nuclear Information System (INIS)

    Pierce, T.E.; Waldruff, P.S.

    1991-01-01

    The US Environmental Protection Agency's Biogenic Emissions Inventory System (BEIS) has been adapted for use on IBM-compatible personal computers (PCs). PC-BEIS estimates hourly emissions of isoprene, α-pinene, other monoterpenes, and unidentified hydrocarbons for any county in the contiguous United States. To run the program, users must provide hourly data on ambient temperature, relative humidity, wind speed, cloud cover, and a code that identifies the particular county. This paper provides an overview of the method used to calculate biogenic emissions, shows an example application, and gives information on how to obtain a copy of the program

  3. Energy and complex industrial systems environmental emissions data reporting and acquisition

    International Nuclear Information System (INIS)

    Moskowitz, P.D.; Hamilton, L.D.

    1987-07-01

    The Joint International Atomic Energy Agency (IAEA), UNEP and WHO Project on Assessing and Managing Health and Environmental risks from Energy and Other Complex Technologies intends to complile emissions data for mportant energy systems and other complex technologies from a wide variety of countries. To facilitate data generation and compilation, this report: outlines data reporting protocols; identifies potential information sources; demonstrates how to estimate coefficients; presents some compiled US emission coefficients or criteria air pollutants for some energy process; and, compares national air emission standards for electricity generating plants in OECD member countries. 27 refs., 2 fis., 1 tabs

  4. Differential neutrino rates and emissivities from the plasma process in astrophysical systems

    International Nuclear Information System (INIS)

    Ratkovic, Sasa; Iyer Dutta, Sharada; Prakash, Madappa

    2003-01-01

    The differential rates and emissivities of neutrino pairs from an equilibrium plasma are calculated for the wide range of density and temperature encountered in astrophysical systems. New analytical expressions are derived for the differential emissivities which yield total emissivities in full agreement with those previously calculated. The photon and plasmon pair production and absorption kernels in the source term of the Boltzmann equation for neutrino transport are provided. The appropriate Legendre coefficients of these kernels, in forms suitable for multi-group flux-limited diffusion schemes are also computed

  5. Modification of electric and magnetic dipole emission in anisotropic plasmonic systems.

    Science.gov (United States)

    Noginova, N; Hussain, R; Noginov, M A; Vella, J; Urbas, A

    2013-10-07

    In order to investigate the effects of plasmonic environments on spontaneous emission of magnetic and electric dipoles, we have studied luminescence of Eu³⁺ ions in close vicinity to gold nanostrip arrays. Significant changes in the emission kinetics, emission polarization, and radiation patterns have been observed in the wavelength range corresponding to the plasmonic resonance. The effect of the plasmonic resonance on the magnetic dipole transition ⁵D₀-->⁷F₁ is found to be very different from its effect on the electric dipole transitions. This makes Eu³⁺₋ containing complexes promising for mapping local distributions of magnetic and electric fields in metamaterials and plasmonic systems.

  6. Bayesian modelling of the emission spectrum of the JET Li-BES system

    OpenAIRE

    Kwak, Sehyun; Svensson, J.; Brix, M.; Ghim, Y. -c.; Contributors, JET

    2015-01-01

    A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy (Li-BES) system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are mode...

  7. Model-predicted ammonia emission from two broiler houses with different rearing systems

    OpenAIRE

    Lima,Nilsa Duarte Silva; Garcia,Rodrigo Garófallo; Nääs,Irenilza Alencar; Caldara,Fabiana Ribeiro; Ponso,Roselaine

    2015-01-01

    Ammonia (NH3) emissions from broiler production can affect human and animal health and may cause acidification and eutrophication of the surrounding environment. This study aimed to estimate ammonia emissions from broiler litter in two systems of forced ventilation, the tunnel ventilation (TV) and the dark house (DH). The experiment was carried out on eight commercial broiler houses, and the age of the birds (day, d), pH and litter temperature were recorded. Broilers were reared on built-up w...

  8. Real-world operation conditions and on-road emissions of Beijing diesel buses measured by using portable emission measurement system and electric low-pressure impactor.

    Science.gov (United States)

    Liu, Zhihua; Ge, Yunshan; Johnson, Kent C; Shah, Asad Naeem; Tan, Jianwei; Wang, Chu; Yu, Linxiao

    2011-03-15

    On-road measurement is an effective method to investigate real-world emissions generated from vehicles and estimate the difference between engine certification cycles and real-world operating conditions. This study presents the results of on-road measurements collected from urban buses which propelled by diesel engine in Beijing city. Two widely used Euro III emission level buses and two Euro IV emission level buses were chosen to perform on-road emission measurements using portable emission measurement system (PEMS) for gaseous pollutant and Electric Low Pressure Impactor (ELPI) for particulate matter (PM) number emissions. The results indicate that considerable discrepancies of engine operating conditions between real-world driving cycles and engine certification cycles have been observed. Under real-world operating conditions, carbon monoxide (CO) and hydrocarbon (HC) emissions can easily meet their respective regulations limits, while brake specification nitrogen oxide (bsNO(x)) emissions present a significant deviation from its corresponding limit. Compared with standard limits, the real-world bsNO(x) emission of the two Euro III emission level buses approximately increased by 60% and 120% respectively, and bsNO(x) of two Euro IV buses nearly twice standard limits because Selective Catalytic Reduction (SCR) system not active under low exhaust temperature. Particle mass were estimated via particle size distribution with the assumption that particle density and diameter is liner. The results demonstrate that nanometer size particulate matter make significant contribution to total particle number but play a minor role to total particle mass. It is suggested that specific certified cycle should be developed to regulate bus engines emissions on the test bench or use PEMS to control the bus emissions under real-world operating conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system

    Science.gov (United States)

    Hüppi, R.; Felber, R.; Neftel, A.; Six, J.; Leifeld, J.

    2015-12-01

    Biochar, a carbon-rich, porous pyrolysis product of organic residues may positively affect plant yield and can, owing to its inherent stability, promote soil carbon sequestration when amended to agricultural soils. Another possible effect of biochar is the reduction in emissions of nitrous oxide (N2O). A number of laboratory incubations have shown significantly reduced N2O emissions from soil when mixed with biochar. Emission measurements under field conditions however are more scarce and show weaker or no reductions, or even increases in N2O emissions. One of the hypothesised mechanisms for reduced N2O emissions from soil is owing to the increase in soil pH following the application of alkaline biochar. To test the effect of biochar on N2O emissions in a temperate maize cropping system, we set up a field trial with a 20t ha-1 biochar treatment, a limestone treatment adjusted to the same pH as the biochar treatment (pH 6.5), and a control treatment without any addition (pH 6.1). An automated static chamber system measured N2O emissions for each replicate plot (n = 3) every 3.6 h over the course of 8 months. The field was conventionally fertilised at a rate of 160 kg N ha-1 in three applications of 40, 80 and 40 kg N ha-1 as ammonium nitrate. Cumulative N2O emissions were 52 % smaller in the biochar compared to the control treatment. However, the effect of the treatments overall was not statistically significant (p = 0.27) because of the large variability in the data set. Limed soils emitted similar mean cumulative amounts of N2O as the control. There is no evidence that reduced N2O emissions with biochar relative to the control is solely caused by a higher soil pH.

  10. Strategic research on CO2 emission reduction for China. Application of MARKAL to China energy system

    International Nuclear Information System (INIS)

    Wang Yongping

    1995-09-01

    MARKAL was applied to the energy system for analyzing the CO 2 emission reduction in China over the time period from 1990 to 2050. First the Chinese Reference Energy System (CRES) was established based on the framework of MARKAL model. The following conclusions can be drawn from this study. When shifting from scenario LH (low useful energy demand and high import fuel prices) to HL (high demand and low prices), another 33 EJ of primary energy will be consumed and another 2.31 billion tons of CO 2 will be emitted in 2050. Detailed analyses on the disaggregation of CO 2 emissions by Kaya Formula show. The energy intensity (primary energy/GDP) decreases much faster in scenario HL, but the higher growth rate of GDP per capita is the overwhelming factor that results in higher CO 2 emission per capita in the baseline case of scenario HL in comparison with LH. When the carbon taxes are imposed on CO 2 emissions, the residential sector will make the biggest contribution to CO 2 emission abatement from a long-term point of view. However, it's difficult to stabilize CO 2 emission per capita before 2030 in both scenarios even with heavy carbon taxes. When nuclear moratorium occurs, more 560 million tons of CO 2 will be emitted to the atmosphere in 2050 under the same CO 2 tax regime. From the analysis of value flow, CO 2 emission reduction depends largely on new or advanced technologies particularly in the field of electricity generation. The competent technologies switch to those CO 2 less-emitting technologies when surcharging CO 2 emissions. Nuclear power shows significant potential in saving fossil energy resources and reducing CO 2 emissions. (J.P.N.)

  11. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Sharma, Keshab; Khanal, Samir Kumar

    2014-02-01

    Aquaculture is one of the fastest-growing segments of the food economy in modern times. It is also being considered as an important source of greenhouse gas (GHG) emissions. To date, limited studies have been conducted on GHG emissions from aquaculture system. In this study, daily addition of fish feed and soluble starch at a carbon-to-nitrogen (C/N) ratio of 16:1 (w/w) was used to examine the effects of carbohydrate addition on nitrogen transformations and GHG emissions in a zero-water exchange intensive aquaculture system. The addition of soluble starch stimulated heterotrophic bacterial growth and denitrification, which led to lower total ammonia nitrogen, nitrite and nitrate concentrations in aqueous phase. About 76.2% of the nitrogen output was emitted in the form of gaseous nitrogen (i.e., N2 and N2O) in the treatment tank (i.e., aquaculture tank with soluble starch addition), while gaseous nitrogen accounted for 33.3% of the nitrogen output in the control tank (i.e., aquaculture tank without soluble starch addition). Although soluble starch addition reduced daily N2O emissions by 83.4%, it resulted in an increase of daily carbon dioxide (CO2) emissions by 91.1%. Overall, starch addition did not contribute to controlling the GHG emissions from the aquaculture system. © 2013.

  12. Positron emission tomography in degenerative disorders of the dopaminergic system

    Energy Technology Data Exchange (ETDEWEB)

    Karbe, H; Holthoff, V; Huber, M; Herholz, K; Wienhard, K; Wagner, R; Heiss, W D [Universitaetsklinik fuer Neurologie und Max-Planck-Institut fuer neurologische Forschung, Koeln (Germany)

    1992-01-01

    21 patients who had Parkinson's disease (PD), PD plus dementia of Alzheimer type (PDAT) or progressive supranuclear palsy (PSP), were studied with positron emission tomography (PET) using ({sup 18}F)-2-fluoro-2-deoxy-D-glucose (FDG). In one patient with strictly unilateral PD side differences in striatal dopa uptake were studied with 6-({sup 18}F)fluoro-L-dopa (F-dopa). In patients with PD PET with FDG did not show any significant change in regional cerebral metabolic rates for glucose (rCMR(Glu)). In PDAT glucose metabolism was generally reduced, the most severe decrease was found in parietal cortex. The metabolic pattern was similar to that typically found in patients with Alzheimer's disease (AD). In the patient with strictly unilateral PD rCMR(Glu) was normal, F-dopa PET, however, revealed a distinct reduction of dopa uptake in the contralateral putamen. In PSP glucose metabolism was significantly decreased in subcortical regions (caudatum, putamen and brainstem) and in frontal cortex. Thus PET demonstrated a clear difference of metabolic pattern between PDAT and PSP. (authors).

  13. Mitigating CH4 and N2O emissions from intensive rice production systems in northern Vietnam

    DEFF Research Database (Denmark)

    Tariq, Azeem; Vu, Quynh Duong; Jensen, Lars Stoumann

    2017-01-01

    -growing seasons in northern Vietnam, to evaluate the effectiveness of drainage patterns on methane (CH4) and nitrous oxide (N2O) emissions under farmers’ variable conditions. Two improved drainage practices (pre-planting plus midseason [PM] drainage and early-season plus midseason [EM] drainage) were compared...... with local practices of water management (midseason drainage [M] and conventional continuous flooding (control) [C]) with full residue [F] and reduced residue [R] (local practice of residue management) incorporation. The GHG mitigation potential of water regimes was tested in two water management systems...... (efficient field water management [EWM] system and inefficient field water management [IWM] system). In EWM system, EM resulted an average 14% and 55% reduction in CH4 emissions compared to M with R and F respectively. The EM lowered the CH4 emissions by 67% and 43% compared to C in the EWM and IWM...

  14. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    Energy Technology Data Exchange (ETDEWEB)

    Rathore, Kavita, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Munshi, Prabhat, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in [Nuclear Engineering and Technology Programme, Indian Institute of Technology Kanpur, Kanpur (India); Bhattacharjee, Sudeep, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2016-03-15

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actual processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal–oxide–semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H{sub α} (656 nm) and H{sub β} (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.

  15. Global and local emission impact assessment of distributed cogeneration systems with partial-load models

    International Nuclear Information System (INIS)

    Mancarella, Pierluigi; Chicco, Gianfranco

    2009-01-01

    Small-scale distributed cogeneration technologies represent a key resource to increase generation efficiency and reduce greenhouse gas emissions with respect to conventional separate production means. However, the diffusion of distributed cogeneration within urban areas, where air quality standards are quite stringent, brings about environmental concerns on a local level. In addition, partial-load emission worsening is often overlooked, which could lead to biased evaluations of the energy system environmental performance. In this paper, a comprehensive emission assessment framework suitable for addressing distributed cogeneration systems is formulated. Local and global emission impact models are presented to identify upper and lower boundary values of the environmental pressure from pollutants that would be emitted from reference technologies, to be compared to the actual emissions from distributed cogeneration. This provides synthetic information on the relative environmental impact from small-scale CHP sources, useful for general indicative and non-site-specific studies. The emission models are formulated according to an electrical output-based emission factor approach, through which off-design operation and relevant performance are easily accounted for. In particular, in order to address the issues that could arise under off-design operation, an equivalent load model is incorporated within the proposed framework, by exploiting the duration curve of the cogenerator loading and the emissions associated to each loading level. In this way, it is possible to quantify the contribution to the emissions from cogeneration systems that might operate at partial loads for a significant portion of their operation time, as for instance in load-tracking applications. Suitability of the proposed methodology is discussed with respect to hazardous air pollutants such as NO x and CO, as well as to greenhouse gases such as CO 2 . Two case study applications based on the emission

  16. Australian coal mine methane emissions mitigation potential using a Stirling engine-based CHP system

    International Nuclear Information System (INIS)

    Meybodi, Mehdi Aghaei; Behnia, Masud

    2013-01-01

    Methane, a major contributor to global warming, is a greenhouse gas emitted from coal mines. Abundance of coal mines and consequently a considerable amount of methane emission requires drastic measures to mitigate harmful effects of coal mining on the environment. One of the commonly adopted methods is to use emitted methane to fuel power generation systems; however, instability of fuel sources hinders the development of systems using conventional prime movers. To address this, application of Stirling engines may be considered. Here, we develop a techno-economic methodology for conducting an optimisation-based feasibility study on the application of Stirling engines as the prime movers of coal mine CHP systems from an economic and an environmental point of view. To examine the impact of environmental policies on the economics of the system, the two commonly implemented ones (i.e. a carbon tax and emissions trading scheme) are considered. The methodology was applied to a local coal mine. The results indicate that incorporating the modelled system not only leads to a substantial reduction in greenhouse gas emissions, but also to improved economics. Further, due to the heavy economic burden, the carbon tax scheme creates great incentive for coal mine industry to address the methane emissions. -- Highlights: •We study the application of Stirling engines in coal mine CHP systems. •We develop a thermo-economic approach based on the net present worth analysis. •We examine the impact of a carbon tax and ETS on the economics of the system. •The modeled system leads to a substantial reduction in greenhouse gas emissions. •Carbon tax provides a greater incentive to address the methane emissions

  17. Effects of temperature on nitrous oxide (N2O) emission from intensive aquaculture system.

    Science.gov (United States)

    Paudel, Shukra Raj; Choi, Ohkyung; Khanal, Samir Kumar; Chandran, Kartik; Kim, Sungpyo; Lee, Jae Woo

    2015-06-15

    This study examines the effects of temperature on nitrous oxide (N2O) emissions in a bench-scale intensive aquaculture system rearing Koi fish. The water temperature varied from 15 to 24 °C at interval of 3 °C. Both volumetric and specific rate for nitrification and denitrification declined as the temperature decreased. The concentrations of ammonia and nitrite, however, were lower than the inhibitory level for Koi fish regardless of temperature. The effects of temperature on N2O emissions were significant, with the emission rate and emission factor increasing from 1.11 to 1.82 mg N2O-N/d and 0.49 to 0.94 mg N2O-N/kg fish as the temperature decreased from 24 to 15 °C. A global map of N2O emission from aquaculture was established by using the N2O emission factor depending on temperature. This study demonstrates that N2O emission from aquaculture is strongly dependent on regional water temperatures as well as on fish production. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China

    International Nuclear Information System (INIS)

    He Feifei; Jiang Rongfeng; Chen Qing; Zhang Fusuo; Su Fang

    2009-01-01

    Nitrous oxide (N 2 O) emissions from a typical greenhouse vegetable system in Northern China were measured from February 2004 to January 2006 using a close chamber method. Four nitrogen management levels (NN, MN, CN, and SN) were used. N 2 O emissions occurred intermittently in the growing season, strongly correlating with N fertilization and irrigation. No peak emissions were observed after fertilization in the late Autumn season due to low soil temperature. 57-94% of the seasonal N 2 O emissions came from the initial growth stage, corresponding to the rewetting process in the soil. The annual N 2 O emissions ranged from 2.6 to 8.8 kg N ha -1 yr -1 , accounting for 0.27-0.30% of the annual nitrogen input. Compared with conventional N management, site-specific N management reduced N fertilization rate by 69% in 2004 and by 76% in 2005, and consequently reduced N 2 O emissions by 51% in 2004 and 27% in 2005, respectively. - High N 2 O emissions coming from the initial growth stage can be attributed to the rewetting process in the greenhouse soil.

  19. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  20. Development of a portable remote sensing system for measurement of diesel emissions from passing diesel trucks.

    Science.gov (United States)

    2011-04-08

    A wireless remote-sensing system has been developed for measurement of NOx and particulate matters (PM) emissions from passing diesel trucks. The NOx measurement system has a UV light source with quartz fiber optics that focused the light source into...

  1. Ammonia emission from aviary housing systems for laying hens : inventory, characteristics and solutions

    NARCIS (Netherlands)

    Groot Koerkamp, P.W.G.

    1998-01-01

    The development and practical application of welfare friendly aviary housing systems for laying hens, that generally emit more ammonia per hen than battery cage housing systems, would conflict with the Dutch policy to substantially reduce the total emission of ammonia from animal

  2. Electric-power systems planning and greenhouse-gas emission management under uncertainty

    International Nuclear Information System (INIS)

    Li, Y.P.; Huang, G.H.

    2012-01-01

    Highlight: ►A multistage stochastic integer programming model is developed for planning electric-power systems. ►Uncertain and dynamic information can be incorporated within a multilayer scenario tree. ►This can help minimize system cost under random energy demand and greenhouse gas (GHG) abatement goal. ►Results can support decisions of facility expansion, electricity supply and GHG mitigation. - Abstract: In this study, a multistage interval-stochastic integer programming model is formulated for managing greenhouse gas (GHG) emissions and planning electric-power systems under uncertainty. The developed model can reflect dynamic, interactive, and uncertain characteristics of energy systems. Besides, the model can be used for answering questions related to types, times, demands and mitigations of energy systems planning practices, with the objective of minimizing system cost over a long-time planning horizon. The solutions can help generate electricity-generation schemes and capacity-expansion plans under different GHG-mitigation options and electricity-demand levels. Tradeoffs among system cost, energy security, and emission management can also be tackled. A high system cost will increase renewable energy supply and reduce GHG emission, while a desire for a low cost will run into risks of a high energy deficiency and a high GHG emission.

  3. Marine Aerosol Precursor Emissions for Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Maltrud, Mathew Einar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-25

    Dimethyl sulfide (DMS) is generated by marine ecosystems and plays a major role in cloud formation over the ocean. Currently, Earth System Models use imposed flux of DMS from the ocean to the atmosphere that is independent of the climate state. We have added DMS as a prognostic variable to the Community Earth System Model (CESM) that depends on the distribution of phytoplankton species, and thus changes with climate.

  4. COST EFFECTIVE VOC EMISSION CONTROL STARTEGIES FOR MILITARY, AEROSPACE,AND INDUSTRIAL PAINT SPRAY BOOTH OPERATIONS: COMBINING IMPROVED VENTILATION SYSTEMS WITH INNOVATIVE, LOW COST EMISSION CONTROL TECHNOLOGIES

    Science.gov (United States)

    The paper describes a full-scale demonstration program in which several paint booths were modified for recirculation ventilation; the booth exhaust streams are vented to an innovative volatile organic compound (VOC) emission control system having extremely low operating costs. ...

  5. A Power System Optimal Dispatch Strategy Considering the Flow of Carbon Emissions and Large Consumers

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-08-01

    Full Text Available The carbon emissions trading market and direct power purchases by large consumers are two promising directions of power system development. To trace the carbon emission flow in the power grid, the theory of carbon emission flow is improved by allocating power loss to the load side. Based on the improved carbon emission flow theory, an optimal dispatch model is proposed to optimize the cost of both large consumers and the power grid, which will benefit from the carbon emissions trading market. Moreover, to better simulate reality, the direct purchase of power by large consumers is also considered in this paper. The OPF (optimal power flow method is applied to solve the problem. To evaluate our proposed optimal dispatch strategy, an IEEE 30-bus system is used to test the performance. The effects of the price of carbon emissions and the price of electricity from normal generators and low-carbon generators with regards to the optimal dispatch are analyzed. The simulation results indicate that the proposed strategy can significantly reduce both the operation cost of the power grid and the power utilization cost of large consumers.

  6. Delay-feedback control strategy for reducing CO2 emission of traffic flow system

    Science.gov (United States)

    Zhang, Li-Dong; Zhu, Wen-Xing

    2015-06-01

    To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.

  7. Application of an EGR system in a direct injection diesel engine to reduce NOx emissions

    Science.gov (United States)

    De Serio, D.; De Oliveira, A.; Sodré, J. R.

    2016-09-01

    This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.

  8. The Elusive Soft Emission from Hard X-ray Symbiotic System RT Cru

    Science.gov (United States)

    Karovska, Margarita

    2014-09-01

    RT Cru is a fascinating member of a new class of hard X-ray emitting symbiotic binaries showing X-ray emission extending to over 50keV. While its hard X-ray emission has been studied in detail, the soft component of the spectrum, including flares, remains elusive, since previous observations have focused on the high-energy regime. We propose Chandra HRC-S/LETG observations to determine the spatial, spectral, and temporal characteristics of the source of the soft X-ray emission with a goal to establish the origin of the soft component, and determine whether and how it is tied to the hard component. Determining the origin of the soft emission is a crucial piece of the puzzle to understanding the geometry, energetics, and the environment of WD accretion in this class of symbiotic systems.

  9. Design and Use of a Full Flow Sampling System (FFS) for the Quantification of Methane Emissions.

    Science.gov (United States)

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2016-06-12

    The use of natural gas continues to grow with increased discovery and production of unconventional shale resources. At the same time, the natural gas industry faces continued scrutiny for methane emissions from across the supply chain, due to methane's relatively high global warming potential (25-84x that of carbon dioxide, according to the Energy Information Administration). Currently, a variety of techniques of varied uncertainties exists to measure or estimate methane emissions from components or facilities. Currently, only one commercial system is available for quantification of component level emissions and recent reports have highlighted its weaknesses. In order to improve accuracy and increase measurement flexibility, we have designed, developed, and implemented a novel full flow sampling system (FFS) for quantification of methane emissions and greenhouse gases based on transportation emissions measurement principles. The FFS is a modular system that consists of an explosive-proof blower(s), mass airflow sensor(s) (MAF), thermocouple, sample probe, constant volume sampling pump, laser based greenhouse gas sensor, data acquisition device, and analysis software. Dependent upon the blower and hose configuration employed, the current FFS is able to achieve a flow rate ranging from 40 to 1,500 standard cubic feet per minute (SCFM). Utilization of laser-based sensors mitigates interference from higher hydrocarbons (C2+). Co-measurement of water vapor allows for humidity correction. The system is portable, with multiple configurations for a variety of applications ranging from being carried by a person to being mounted in a hand drawn cart, on-road vehicle bed, or from the bed of utility terrain vehicles (UTVs). The FFS is able to quantify methane emission rates with a relative uncertainty of ± 4.4%. The FFS has proven, real world operation for the quantification of methane emissions occurring in conventional and remote facilities.

  10. Design and Use of a Full Flow Sampling System (FFS) for the Quantification of Methane Emissions

    Science.gov (United States)

    Johnson, Derek R.; Covington, April N.; Clark, Nigel N.

    2016-01-01

    The use of natural gas continues to grow with increased discovery and production of unconventional shale resources. At the same time, the natural gas industry faces continued scrutiny for methane emissions from across the supply chain, due to methane's relatively high global warming potential (25-84x that of carbon dioxide, according to the Energy Information Administration). Currently, a variety of techniques of varied uncertainties exists to measure or estimate methane emissions from components or facilities. Currently, only one commercial system is available for quantification of component level emissions and recent reports have highlighted its weaknesses. In order to improve accuracy and increase measurement flexibility, we have designed, developed, and implemented a novel full flow sampling system (FFS) for quantification of methane emissions and greenhouse gases based on transportation emissions measurement principles. The FFS is a modular system that consists of an explosive-proof blower(s), mass airflow sensor(s) (MAF), thermocouple, sample probe, constant volume sampling pump, laser based greenhouse gas sensor, data acquisition device, and analysis software. Dependent upon the blower and hose configuration employed, the current FFS is able to achieve a flow rate ranging from 40 to 1,500 standard cubic feet per minute (SCFM). Utilization of laser-based sensors mitigates interference from higher hydrocarbons (C2+). Co-measurement of water vapor allows for humidity correction. The system is portable, with multiple configurations for a variety of applications ranging from being carried by a person to being mounted in a hand drawn cart, on-road vehicle bed, or from the bed of utility terrain vehicles (UTVs). The FFS is able to quantify methane emission rates with a relative uncertainty of ± 4.4%. The FFS has proven, real world operation for the quantification of methane emissions occurring in conventional and remote facilities. PMID:27341646

  11. Fuel Consumption and Vehicle Emission Models for Evaluating Environmental Impacts of the ETC System

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng

    2015-07-01

    Full Text Available The environmental outcome of the Electronic Toll Collection (ETC system is an important aspect in evaluating the impacts of the ETC system, which is influenced by various factors including the vehicle type, travel speed, traffic volume, and average queue length of Manual Toll Collection (MTC lanes. The primary objective of this paper is to develop a field data-based practical model for evaluating the effects of ETC system on the fuel efficiency and vehicle emission. First, laboratory experiments of seven types of vehicles under various scenarios for toll collection were conducted based on the Vehicle Emissions Testing System (VETS. The indicator calculation models were then established to estimate the comprehensive benefit of ETC system by comparing the test results of MTC lane and ETC lane. Finally, taking Beijing as a case study, the paper calibrated the model parameters, and estimated the monetization value of environmental benefit of the ETC system in terms of vehicle emissions reduction and fuel consumption decrease. The results shows that the applications of ETC system are expected to save fuel consumption of 4.1 million liters and reduce pollution emissions by 730.89 tons in 2013 in Beijing.

  12. Refueling emissions from cars in Japan: Compositions, temperature dependence and effect of vapor liquefied collection system

    Science.gov (United States)

    Yamada, Hiroyuki; Inomata, Satoshi; Tanimoto, Hiroshi

    2015-11-01

    Refueling emissions from cars available on the Japanese market, which were not equipped with specific controlling devices, were investigated. For the composition analysis, a proton transfer reaction plus switchable reagent ion mass spectrometry (PTR + SRI-MS), which is capable of real-time measurement, was used. In addition, the performance of a vapor liquefied collection system (VLCS), which is a recently developed controlling device, was evaluated and compared with an onboard refueling vapor recovery (ORVR) system. The refueling emission factor of uncontrolled vehicles at 20 °C was 1.02 ± 0.40 g/L in the case dispensing 20 L of fuel. The results of composition analysis indicated that the maximum incremental reactivity (MIR) of refueling emissions in Japan was 3.49 ± 0.83. The emissions consist of 80% alkanes and 20% alkenes, and aromatics and di-enes were negligible. C4 alkene had the highest impact on the MIR of refueling emissions. The amounts of refueling emissions were well reproduced by a function developed by MOVE2010 in the temperature range of 5-35 °C. The compositions of the refueling emissions varied in this temperature range, but the change in MIR was negligible. The trapping efficiency of VLCS was the same level as that of the ORVR (over 95%). The MIRs of refueling and evaporative emissions were strongly affected by that of the test fuel. This study and our previous study indicated that MIRbreakthrough ≈ MIRrefueling ≈ MIRfuel + 0.5 and MIRpermeation ≈ MIRfuel. The real-world estimated average MIRfuel in Japan was about 3.0.

  13. Mitigation of methane emission from Fakse landfill using a biowindow system

    International Nuclear Information System (INIS)

    Scheutz, Charlotte; Fredenslund, Anders M.; Chanton, Jeffrey; Pedersen, Gitte Bukh; Kjeldsen, Peter

    2011-01-01

    Landfills are significant sources of atmospheric methane (CH 4 ) that contributes to climate change, and therefore there is a need to reduce CH 4 emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called 'biocovers') to enhance biological oxidation of CH 4 . A full scale biocover system to reduce CH 4 emissions was installed at Fakse landfill, Denmark using composted yard waste as active material supporting CH 4 oxidation. Ten biowindows with a total area of 5000 m 2 were integrated into the existing cover at the 12 ha site. To increase CH 4 load to the biowindows, leachate wells were capped, and clay was added to slopes at the site. Point measurements using flux chambers suggested in most cases that almost all CH 4 was oxidized, but more detailed studies on emissions from the site after installation of the biocover as well as measurements of total CH 4 emissions showed that a significant portion of the emission quantified in the baseline study continued unabated from the site. Total emission measurements suggested a reduction in CH 4 emission of approximately 28% at the end of the one year monitoring period. This was supported by analysis of stable carbon isotopes which showed an increase in oxidation efficiency from 16% to 41%. The project documented that integrating approaches such a whole landfill emission measurements using tracer techniques or stable carbon isotope measurements of ambient air samples are needed to document CH 4 mitigation efficiencies of biocover systems. The study also revealed that there still exist several challenges to better optimize the functionality. The most important challenges are to control gas flow and evenly distribute the gas into the biocovers.

  14. A Systems Approach to Reducing Institutional GHG Emissions

    Science.gov (United States)

    Williamson, Sean R.

    2012-01-01

    Purpose: The purpose of this paper is to establish necessity and methods for considering greenhouse gas (GHG) mitigation policies at a system-level. The research emphasizes connecting narrowly focused GHG mitigation objectives (e.g. reduce single occupancy vehicle travel) with broader institutional objectives (e.g. growth in student population) to…

  15. USER'S GUIDE TO THE PERSONAL COMPUTER VERSION OF THE BIOGENIC EMISSIONS INVENTORY SYSTEM (PC-BEIS2)

    Science.gov (United States)

    The document is a user's guide for an updated Personal Computer version of the Biogenic Emissions Inventory System (PC-BEIS2), allowing users to estimate hourly emissions of biogenic volatile organic compounds (BVOCs) and soil nitrogen oxide emissions for any county in the contig...

  16. Data to calculate emissions intensity for individual beef cattle reared on pasture-based production systems

    Directory of Open Access Journals (Sweden)

    G.A. McAuliffe

    2018-04-01

    Full Text Available With increasing concern about environmental burdens originating from livestock production, the importance of farming system evaluation has never been greater. In order to form a basis for trade-off analysis of pasture-based cattle production systems, liveweight data from 90 Charolais × Hereford-Friesian calves were collected at a high temporal resolution at the North Wyke Farm Platform (NWFP in Devon, UK. These data were then applied to the Intergovernmental Panel on Climate Change (IPCC modelling framework to estimate on-farm methane emissions under three different pasture management strategies, completing a foreground dataset required to calculate emissions intensity of individual beef cattle.

  17. Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: Models and indicators

    International Nuclear Information System (INIS)

    Chicco, Gianfranco; Mancarella, Pierluigi

    2008-01-01

    The diffusion of cogeneration and trigeneration plants as local generation sources could bring significant energy saving and emission reduction of various types of pollutants with respect to the separate production of electricity, heat and cooling power. The advantages in terms of primary energy saving are well established. However, the potential of combined heat and power (CHP) and combined cooling heat and power (CCHP) systems for reducing the emission of hazardous greenhouse gases (GHG) needs to be further investigated. This paper presents and discusses a novel approach, based upon an original indicator called trigeneration CO 2 emission reduction (TCO 2 ER), to assess the emission reduction of CO 2 and other GHGs from CHP and CCHP systems with respect to the separate production. The indicator is defined in function of the performance characteristics of the CHP and CCHP systems, represented with black-box models, and of the GHG emission characteristics from conventional sources. The effectiveness of the proposed approach is shown in the companion paper (Part II: Analysis techniques and application cases) with application to various cogeneration and trigeneration solutions

  18. Simulating soil greenhouse emissions from Swiss long-term cropping system trials

    Science.gov (United States)

    Necpalova, Magdalena; Lee, Juhwan; Skinner, Colin; Büchi, Lucie; Berner, Alfred; Mäder, Paul; Mayer, Jochen; Charles, Raphael; van der Heijden, Marcel; Wittwer, Raphael; Gattinger, Andreas; Six, Johan

    2017-04-01

    There is an urgent need to identify and evaluate management practices for their bio-physical potential to mitigate greenhouse gas (GHG) emissions from agriculture. The cost and time required for direct management-specific GHG measurements limit the spatial and temporal resolution and the extent of data that can be collected. Biogeochemical process-based models such as DayCent can be used to bridge data gaps over space and time and estimate soil GHG emissions relevant to various climate change mitigation strategies. Objectives of this study were (a) to parameterize DayCent for common Swiss crops and crop-specific management practices using the Swiss long-term experimental data collected at four sites (Therwil, Frick, Changins, and Reckenholz); (b) to evaluate the model's ability to predict crop productivity, long-term soil carbon dynamics and N2O emissions from Swiss cropping systems; (c) to calculate a net soil GHG balance for all treatments (except for bio-dynamic) studied in long-term field experiments in Switzerland; and (d) to study the management effects and their interactions on soil GHG emissions at each experimental site. Model evaluation indicated that DayCent predicted crop productivity (rRMSE=0.29 r2=0.81, n=2614), change in soil carbon stock (rRMSE=0.14, r2=0.72, n=1289) and cumulative N2O emissions (rRMSE=0.25, r2=0.89, n=8) satisfactorily across all treatments and sites. Net soil GHG emissions were derived from changes in soil carbon, N2O emissions and CH4 oxidation on an annual basis using IPCC (2014) global warming potentials. Modelled net soil GHG emissions calculated for individual treatments over 30 years ranged from -594 to 1654 kg CO2 eq ha-1 yr-1. The highest net soil GHG emissions were predicted for conventional tillage and slurry application treatment at Frick, while soils under organic and reduced tillage management at Reckenholz acted as a net GHG sink. The statistical analyses using linear MIXED models indicated that net soil GHG

  19. International trade and Austria's livestock system: Direct and hidden carbon emission flows associated with production and consumption of products

    International Nuclear Information System (INIS)

    Gavrilova, Olga; Jonas, Matthias; Erb, Karlheinz; Haberl, Helmut

    2010-01-01

    The Kyoto Protocol created a framework of responsibilities and mechanisms to mitigate climate change by reducing the emissions of greenhouse gases (GHGs) into the atmosphere. The Protocol stipulates accounting and reporting of GHG emissions and removals, such as energy use, industrial processes, agriculture, waste and net emissions resulting from land use, land-use change and forestry (LULUCF) activities. Emissions reported according to the rules set by the Kyoto Protocol do not include GHG emissions outside a country's boundaries resulting from the production of imported goods or services. As a result, GHG accounts constructed according to the Kyoto Protocol reflect the GHG emissions resulting from the production system of a country, but not all the emissions resulting from the consumption of goods and services within the country. However, as previous studies demonstrate, a country's emission balance changes remarkably if emissions related to goods or services imported and exported are taken into account. Here, we go beyond the aforementioned studies which mainly focus on GHG emissions from fossil fuel combustion. We assess, in a first-order approach, upstream emissions that result from LULUC activities outside a country while the produced goods are consumed within the country. In our study we focus on Austria's livestock system to elucidate the difference between production and consumption-related emissions accounting approaches. We study direct and 'hidden' (embodied) GHG emissions associated with Austria's bilateral trade in livestock and livestock-related products, based on the integration of full carbon accounting (FCA) and life cycle analysis (LCA). (author)

  20. Characterization and concentrations of polycyclic aromatic hydrocarbons in emissions from different heating systems in Damascus, Syria.

    Science.gov (United States)

    Alkurdi, Farouk; Karabet, François; Dimashki, Marwan

    2014-04-01

    Traffic has long been recognized as the major contributor to polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Stationary combustion sources, including residential space heating systems, are also a major contributor to PAH emissions. The aim of this study was to determine the profile and concentration of PAHs in stack flue gas emissions from different kinds of space heaters in order to increase the understanding of the scale of the PAH pollution problem caused by this source. This study set out to first assess the characteristics of PAHs and their corresponding benzo[a]pyrene equivalent emissions from a few types of domestic heaters and central heating systems to the urban atmosphere. The study, enabled for the first time, the characterization of PAHs in stationary combustion sources in the city of Damascus, Syria. Nine different types of heating systems were selected with respect to age, design, and type of fuel burned. The concentrations of 15 individual PAH compounds in the stack flue gas were determined in the extracts of the collected samples using high-performance liquid chromatography system (HPLC) equipped with ultraviolet-visible and fluorescence detectors. In general, older domestic wood stoves caused considerably higher PAH emissions than modern domestic heaters burning diesel oil. The average concentration of ΣPAH (sum of 15 compounds) in emissions from all types of studied heating systems ranged between 43 ± 0.4 and 316 ± 1.4 μg/m(3). Values of total benzo[a]pyrene equivalent ranged between 0.61 and 15.41 μg/m(3).

  1. A Novel Four-Dimensional Energy-Saving and Emission-Reduction System and Its Linear Feedback Control

    Directory of Open Access Journals (Sweden)

    Minggang Wang

    2012-01-01

    Full Text Available This paper reports a new four-dimensional energy-saving and emission-reduction chaotic system. The system is obtained in accordance with the complicated relationship between energy saving and emission reduction, carbon emission, economic growth, and new energy development. The dynamics behavior of the system will be analyzed by means of Lyapunov exponents and equilibrium points. Linear feedback control methods are used to suppress chaos to unstable equilibrium. Numerical simulations are presented to show these results.

  2. Analysis and Design of International Emission Trading Markets Applying System Dynamics Techniques

    Science.gov (United States)

    Hu, Bo; Pickl, Stefan

    2010-11-01

    The design and analysis of international emission trading markets is an important actual challenge. Time-discrete models are needed to understand and optimize these procedures. We give an introduction into this scientific area and present actual modeling approaches. Furthermore, we develop a model which is embedded in a holistic problem solution. Measures for energy efficiency are characterized. The economic time-discrete "cap-and-trade" mechanism is influenced by various underlying anticipatory effects. With a systematic dynamic approach the effects can be examined. First numerical results show that fair international emissions trading can only be conducted with the use of protective export duties. Furthermore a comparatively high price which evokes emission reduction inevitably has an inhibiting effect on economic growth according to our model. As it always has been expected it is not without difficulty to find a balance between economic growth and emission reduction. It can be anticipated using our System Dynamics model simulation that substantial changes must be taken place before international emissions trading markets can contribute to global GHG emissions mitigation.

  3. Analysis of Transport Policy Effect on CO2 Emissions Based on System Dynamics

    Directory of Open Access Journals (Sweden)

    Shuang Liu

    2015-01-01

    Full Text Available CO2 emission from the transport sector attracts the attention of both transport and climate change policymakers because of its share in total green house gas emissions and the forecast of continuous growth reported in many countries. This paper takes the urban transport in Beijing as a case and builds a system dynamics model for analysis of the motorization trend and the assessment of CO2 emissions mitigation policy. It is found that the urban transport condition and CO2 emissions would be more serious with the growth of vehicle ownership and travel demand. Compared with the baseline do-nothing scenario, the CO2 emissions could be reduced from 3.8% to 24.3% in 2020 by various transport policies. And the policy of controlling the number of passenger cars which has been carried out in Beijing and followed by some cities could achieve good results, which may help to increase the proportion of public transit to 55.6% and reduce the CO2 emission by 18.3% compared with the baseline scenario in 2020.

  4. The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Dumortier, Jerome; Hayes, Dermot J; Carriquiry, Miguel; Elobeid, Amani; Fabiosa, Jacinto F; Dong, Fengxia; Du Xiaodong; Martin, Pamela A; Mulik, Kranti

    2012-01-01

    We couple a global agricultural production and trade model with a greenhouse gas model to assess leakage associated with modified beef production in the United States. The effects on emissions from agricultural production (i.e., methane and nitrous oxide emissions from livestock and crop management) as well as from land-use change, especially grazing system, are assessed. We find that a reduction of US beef production induces net carbon emissions from global land-use change ranging from 37 to 85 kg CO 2 -equivalent per kg of beef annualized over 20 years. The increase in emissions is caused by an inelastic domestic demand as well as more land-intensive cattle production systems internationally. Changes in livestock production systems such as increasing stocking rate could partially offset emission increases from pasture expansion. In addition, net emissions from enteric fermentation increase because methane emissions per kilogram of beef tend to be higher globally. (letter)

  5. Tradeable CO2 emission permits. A quantitative analysis of a TEP system between Annex I countries

    International Nuclear Information System (INIS)

    Koutstaal, P.R.; Kram, T.; Van Rooijen, S.N.M.

    1997-11-01

    Tradeable emission permits can be a cost-effective way to achieve emission reductions between countries or firms. In this study, the role of trading CO 2 emission permits between the Annex I countries of the FCCC is analysed. It is assumed that only countries are allowed to trade and that there is a perfect market without transaction costs and strategic behaviour. For several cases, the consequences for abatement costs, before and after trade, the volume of permits traded and emissions per capita are studied. Moreover, the gains from trade are determined. This study was undertaken before the Kyoto conference, therefore as a starting point for the different cases it was assumed that all countries should reduce their emissions with 10%. The cases studied are: a flat rate of 10% for each country; the differentiated EU distribution combined with a 10% reduction for the other OECD countries; and the so-called Triptych approach applied to all OECD countries. Two trading systems are considered, one covering only the OECD countries and one which also covers Middle and Eastern European countries (in a simplified way). Furthermore, two extreme cases are studied for the OECD trading scheme: equal costs (after trade) per unit of GNP and equal emission per capita (before trade). Tradeable emission permits will considerably reduce total costs compared with no trade by about 50%. The EU will considerably reduce total costs compared with no trade by about 50%. The EU will be a net exporter of permits in an OECD trading scheme (without Middle and Eastern Europe), mainly because the low costs possibilities for reduction of CO 2 emissions in Germany and the United Kingdom. 13 refs

  6. DEMONSTRATION OF AN ADVANCED INTEGRATED CONTROL SYSTEM FOR SIMULTANEOUS EMISSIONS REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Suzanne Shea; Randhir Sehgal; Ilga Celmins; Andrew Maxson

    2002-02-01

    The primary objective of the project titled ''Demonstration of an Advanced Integrated Control System for Simultaneous Emissions Reduction'' was to demonstrate at proof-of-concept scale the use of an online software package, the ''Plant Environmental and Cost Optimization System'' (PECOS), to optimize the operation of coal-fired power plants by economically controlling all emissions simultaneously. It combines physical models, neural networks, and fuzzy logic control to provide both optimal least-cost boiler setpoints to the boiler operators in the control room, as well as optimal coal blending recommendations designed to reduce fuel costs and fuel-related derates. The goal of the project was to demonstrate that use of PECOS would enable coal-fired power plants to make more economic use of U.S. coals while reducing emissions.

  7. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    Science.gov (United States)

    Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  8. 40 CFR 60.2940 - How do I make sure my continuous emission monitoring systems are operating correctly?

    Science.gov (United States)

    2010-07-01

    ... emission monitoring systems are operating correctly? 60.2940 Section 60.2940 Protection of Environment... monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure carbon monoxide and oxygen. (b) Complete your...

  9. Road dust emissions from paved roads measured using different mobile systems.

    Science.gov (United States)

    Pirjola, Liisa; Johansson, Christer; Kupiainen, Kaarle; Stojiljkovic, Ana; Karlsson, Hans; Hussein, Tareq

    2010-12-01

    Very few real-world measurements of road dust suspension have been performed to date. This study compares two different techniques (referred to as Sniffer and Emma) to measure road dust emissions. The main differences between the systems are the construction of the inlet, different instruments for recording particulate matter (PM) levels, and different loads on the wheel axes (the weight of Sniffer was much higher than that of Emma). Both systems showed substantial small-scale variations of emission levels along the road, likely depending on-road surface conditions. The variations observed correlated quite well, and the discrepancies are likely a result of variations in dust load on the road surface perpendicular to the driving direction that cause variations in the measurements depending on slightly different paths driven by the two vehicles. Both systems showed a substantial influence on the emission levels depending on the type of tire used. The summer tire showed much lower suspension than the winter tires (one nonstudded and one studded). However, the relative importance of the nonstudded versus studded tire was rather different. For the ratio of studded/nonstudded, Emma shows higher values on all road sections compared with Sniffer. Both techniques showed increased emission levels with increasing vehicle speed. When the speed increased from 50 to 80 km hr(-1), the relative concentrations increased by 30-170% depending on the tire type and dust load. However, for road sections that were very dirty, Sniffer showed a much higher relative increase in the emission level with the nonstudded tire. Sniffer's absolute concentrations were mostly higher than Emma's. Possible reasons for the differences are discussed in the paper. Both systems can be used for studying relative road dust emissions and for designing air quality management strategies.

  10. Emissions of N2O from peat soils under different cropping systems

    Science.gov (United States)

    Norberg, Lisbet; Berglund, Örjan; Berglund, Kerstin

    2016-04-01

    Drainage of peatlands for agriculture use leads to an increase in nitrogen turnover rate causing emissions of N2O to the atmosphere. Agriculture contributes to a substantial part of the anthropogenic emissions of N2O therefore mitigation options for the farmers are important. Here we present a field study with the aim to investigate if the choice of cropping system can mitigate the emission of N2O from cultivated organic soils. The sites used in the study represent fen peat soils with a range of different soil properties located in different parts of southern Sweden. All sites are on active farms with good drainage. N2O emissions from the soil under two different crops grown on the same field, with the same soil type, drainage intensity and weather conditions, are compared by gas sampling. The crops included are oat, barley, carrot, potato and grassland. Three or four sampling occasions during the growing season in 2010 were carried out with static chambers. The N2O emission is calculated from the linear increase of gas concentration in the chamber headspace during the incubation time of 40 minutes. Parallel to the gas sampling soil temperature and soil moisture are measured and some soil properties determined. The result from the gas sampling and measurements show no significant difference in seasonal average N2O emission between the compared crops at any site. There are significant differences in N2O emissions between the compared crops at some of the single sampling occasions but the result vary and no crop can be pointed out as a mitigation option. The seasonal average N2O emissions varies from 16±17 to 1319±1971 μg N2O/m2/h with peaks up to 3317 μg N2O/m2/h. The N2O emission rate from peat soils are determined by other factors than the type of crops grown on the field. The emission rates vary during the season and especially between sites. Although all sites are fen peat soil the soil properties are different, e.g. carbon content varies between 27-43% and

  11. Global freshwater thermal emissions from steam-electric power plants with once-through cooling systems

    International Nuclear Information System (INIS)

    Raptis, Catherine E.; Pfister, Stephan

    2016-01-01

    Large quantities of heat are rejected into freshwater bodies from power plants employing once-through cooling systems, often leading to temperature increases that disturb aquatic ecosystems. The objective of this work was to produce a high resolution global picture of power-related freshwater thermal emissions and to analyse the technological, geographical and chronological patterns behind them. The Rankine cycle was systematically solved for ∼2400 generating units with once-through cooling systems, distinguishing between simple and cogenerative cycles, giving the rejected heat as a direct output. With large unit sizes, low efficiencies, and high capacity factors, nuclear power plants reject 3.7 GW heat into freshwater on average, contrasting with 480 MW rejected from coal and gas power plants. Together, nuclear and coal-fuelled power plants from the 1970s and 1980s account for almost 50% of the rejected heat worldwide, offering motivation for their phasing out in the future. Globally, 56% of the emissions are rejected into rivers, pointing to potential areas of high thermal pollution, with the rest entering lakes and reservoirs. The outcome of this work can be used to further investigate the identified thermal emission hotspots, and to calculate regionalized water temperature increase and related impacts in environmental, energy-water nexus studies and beyond. - Highlights: • The thermodynamic cycles of ∼2400 power units with once-through cooling were solved. • Global freshwater heat emissions depend on technology, geography & chronology. • Half the global emissions come from nuclear and coal plants from the 70s & 80s. • Hotspots of freshwater thermal emissions were identified globally. • Global georeferenced emissions are available for use in water temperature models.

  12. Scaling laws for perturbations in the ocean-atmosphere system following large CO2 emissions

    Science.gov (United States)

    Towles, N.; Olson, P.; Gnanadesikan, A.

    2015-07-01

    Scaling relationships are found for perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir (LOSCAR) model (Zeebe et al., 2009; Zeebe, 2012b), we calculate perturbations to atmosphere temperature, total carbon, ocean temperature, total ocean carbon, pH, alkalinity, marine-sediment carbon, and carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The peak perturbations in the atmosphere and ocean variables are then fit to power law functions of the form of γ DαEβ, where D is the event duration, E is its total carbon emission, and γ is a coefficient. Good power law fits are obtained for most system variables for E up to 50 000 PgC and D up to 100 kyr. Although all of the peak perturbations increase with emission rate E/D, we find no evidence of emission-rate-only scaling, α + β = 0. Instead, our scaling yields α + β ≃ 1 for total ocean and atmosphere carbon and 0 < α + β < 1 for most of the other system variables.

  13. Scaling laws for perturbations in the ocean–atmosphere system following large CO2 emissions

    Directory of Open Access Journals (Sweden)

    N. Towles

    2015-07-01

    Full Text Available Scaling relationships are found for perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir (LOSCAR model (Zeebe et al., 2009; Zeebe, 2012b, we calculate perturbations to atmosphere temperature, total carbon, ocean temperature, total ocean carbon, pH, alkalinity, marine-sediment carbon, and carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The peak perturbations in the atmosphere and ocean variables are then fit to power law functions of the form of γ DαEβ, where D is the event duration, E is its total carbon emission, and γ is a coefficient. Good power law fits are obtained for most system variables for E up to 50 000 PgC and D up to 100 kyr. Although all of the peak perturbations increase with emission rate E/D, we find no evidence of emission-rate-only scaling, α + β = 0. Instead, our scaling yields α + β ≃ 1 for total ocean and atmosphere carbon and 0 < α + β < 1 for most of the other system variables.

  14. Relative emissions intensity of dairy production systems: employing different functional units in life-cycle assessment.

    Science.gov (United States)

    Ross, S A; Topp, C F E; Ennos, R A; Chagunda, M G G

    2017-08-01

    This study aimed to assess the merit and suitability of individual functional units (FU) in expressing greenhouse gas emissions intensity in different dairy production systems. An FU provides a clearly defined and measurable reference to which input and output data are normalised. This enables the results from life-cycle assessment (LCA) of different systems to be treated as functionally equivalent. Although the methodological framework of LCA has been standardised, selection of an appropriate FU remains ultimately at the discretion of the individual study. The aim of the present analysis was to examine the effect of different FU on the emissions intensities of different dairy production systems. Analysis was based on 7 years of data (2004 to 2010) from four Holstein-Friesian dairy systems at Scotland's Rural College's long-term genetic and management systems project, the Langhill herd. Implementation of LCA accounted for the environmental impacts of the whole-farm systems and their production of milk from 'cradle to farm gate'. Emissions intensity was determined as kilograms of carbon dioxide equivalents referenced to six FU: UK livestock units, energy-corrected milk yield, total combined milk solids yield, on-farm land used for production, total combined on- and off-farm land used for production, and the proposed new FU-energy-corrected milk yield per hectare of total land used. Energy-corrected milk was the FU most effective for reflecting differences between the systems. Functional unit that incorporated a land-related aspect did not find difference between systems which were managed under the same forage regime, despite their comprising different genetic lines. Employing on-farm land as the FU favoured grazing systems. The proposed dual FU combining both productivity and land use did not differentiate between emissions intensity of systems as effectively as the productivity-based units. However, this dual unit displayed potential to quantify in a simple way

  15. User needs for a standardized CO2 emission assessment methodology for intelligent transport systems

    NARCIS (Netherlands)

    Mans, D.; Rekiel, J.; Wolfermann, A.; Klunder, G.

    2012-01-01

    The Amitran FP7 project will define a reference methodology to assess the impact of intelligent transport systems on CO2 emissions. The methodology is intended to be used as a reference by future projects and covers both passenger and freight transport. The project will lead to a validated

  16. The integrated modeling system STONE for calculating nutrient emissions from agriculture in the Netherlands

    NARCIS (Netherlands)

    Wolf, J.; Beusen, A.H.W.; Groenendijk, P.; Kroon, T.; Rötter, R.P.; Zeijts, van H.

    2003-01-01

    For the Netherlands, a nutrient emission modeling system, called STONE, has been developed. It was designed for evaluation at the national and regional scale of the effects of changes in the agricultural sector (e.g. changes in fertilizer recommendations and cropping patterns) and in policy measures

  17. Dynamic modelling of nitrous oxide emissions from three Swedish sludge liquor treatment systems

    DEFF Research Database (Denmark)

    Lindblom, E.; Arnell, M.; Flores-Alsina, X.

    2016-01-01

    The objective of this paper is to model the dynamics and validate the results of nitrous oxide (N2O)emissions from three Swedish nitrifying/denitrifying, nitritation and anammox systems treating real anaerobic digester sludge liquor. The Activated Sludge Model No. 1 is extended to describe N2O...

  18. Nitrogen management impacts nitrous oxide emissions under varying cotton irrigation systems in the American Desert Southwest

    Science.gov (United States)

    Irrigation of food and fiber crops worldwide continues to increase. Nitrogen (N) from fertilizers is a major source of the potent greenhouse gas nitrous oxide (N2O) in irrigated cropping systems. Nitrous oxide emissions data are scarce for crops in the arid Western US. The objective of these studies...

  19. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes

    NARCIS (Netherlands)

    Hu, X.K.; Su, F.; Ju, X.T.; Gao, B.; Oenema, O.; Christie, P.; Huang, B.X.; Jiang, R.F.; Zhang, F.S.

    2013-01-01

    Here, we report on a two-years field experiment aimed at the quantification of the emissions of nitrous oxide (N2O) and methane (CH4) from the dominant wheat maize double cropping system in North China Plain. The experiment had 6 different fertilization strategies, including a control treatment,

  20. Full-energy-chain analysis of greenhouse gas emissions for solar thermal electric power generation systems

    International Nuclear Information System (INIS)

    Norton, B.; Lawson, W.R.

    1997-01-01

    Technical attributes and environmental impacts of solar thermal options for centralized electricity generation are discussed. In particular, the full-energy-chain, including embodied energy and energy production, is considered in relation to greenhouse gas emission arising from solar thermal electricity generation. Central receiver, parabolic dish, parabolic trough and solar pond systems are considered. (author)

  1. Integrated Energy & Emission Management for Heavy-Duty Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  2. Optimization of distortion product otoacoustic emission (DPOAE) measurements with the system IL096

    DEFF Research Database (Denmark)

    de Toro, Miguel Angel Aranda; Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte

    2007-01-01

    Measurements of distortion product otoacoustic emissions (DPOAEs) at Aalborg University are performed with the commercial system ILO96 from Otodynamics. The default measuring setup is not adequate for monitoring the recovery of DPOAEs after noise exposure because (1) data collection is interrupte...

  3. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  4. A vertex including emission of spin fields for an arbitrary bc system

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Madsen, R.A.; Roland, K.

    1990-01-01

    We construct the (N+2M) Point Vertex involving the emission of N Neveu-Schwarz and 2M Ramond states for a bosonic and fermionic bc system with a bockground charge Q. From it one can compute correlation functions on the sphere involving any number of spin fields. We show in detail that the vertex satisfies overlap conditions. (orig.)

  5. Characteristics of a single photon emission tomography system with a wide field gamma camera

    International Nuclear Information System (INIS)

    Mathonnat, F.; Soussaline, F.; Todd-Pokropek, A.E.; Kellershohn, C.

    1979-01-01

    This text summarizes a work study describing the imagery possibilities of a single photon emission tomography system composed of a conventional wide field gamma camera, connected to a computer. The encouraging results achieved on the various phantoms studied suggest a significant development of this technique in clinical work in Nuclear Medicine Departments [fr

  6. Fast ion emission from the plasma produced by the PALS laser system

    Czech Academy of Sciences Publication Activity Database

    Wolowski, J.; Badziak, J.; Boody, F. P.; Hora, H.; Hnatowicz, Vladimír; Jungwirth, Karel; Krása, Josef; Láska, Leoš; Parys, P.; Peřina, Vratislav; Pfeifer, Miroslav; Rohlena, Karel; Ryc, L.; Ullschmied, Jiří; Woryna, E.

    2002-01-01

    Roč. 44, - (2002), s. 1277-1283 ISSN 0741-3335 Institutional research plan: CEZ:AV0Z1048901 Keywords : emission * plasma produced * PALS laser system ? Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.121, year: 2002

  7. Distributions of emissions intensity for individual beef cattle reared on pasture-based production systems.

    Science.gov (United States)

    McAuliffe, G A; Takahashi, T; Orr, R J; Harris, P; Lee, M R F

    2018-01-10

    Life Cycle Assessment (LCA) of livestock production systems is often based on inventory data for farms typical of a study region. As information on individual animals is often unavailable, livestock data may already be aggregated at the time of inventory analysis, both across individual animals and across seasons. Even though various computational tools exist to consider the effect of genetic and seasonal variabilities in livestock-originated emissions intensity, the degree to which these methods can address the bias suffered by representative animal approaches is not well-understood. Using detailed on-farm data collected on the North Wyke Farm Platform (NWFP) in Devon, UK, this paper proposes a novel approach of life cycle impact assessment that complements the existing LCA methodology. Field data, such as forage quality and animal performance, were measured at high spatial and temporal resolutions and directly transferred into LCA processes. This approach has enabled derivation of emissions intensity for each individual animal and, by extension, its intra-farm distribution, providing a step towards reducing uncertainty related to agricultural production inherent in LCA studies for food. Depending on pasture management strategies, the total emissions intensity estimated by the proposed method was higher than the equivalent value recalculated using a representative animal approach by 0.9-1.7 kg CO 2 -eq/kg liveweight gain, or up to 10% of system-wide emissions. This finding suggests that emissions intensity values derived by the latter technique may be underestimated due to insufficient consideration given to poorly performing animals, whose emissions becomes exponentially greater as average daily gain decreases. Strategies to mitigate life-cycle environmental impacts of pasture-based beef productions systems are also discussed.

  8. Combined solar and pellet heating systems : Study of energy use and CO-emissions

    OpenAIRE

    Fiedler, Frank

    2006-01-01

    In this study 4 solar and pellet heating systems have been studied with the help of annual dynamic simulations. Two of the systems comprised a pellet stove and two systems were solar combisystems; one with a store integrated pellet burner, the other with a separate pellet boiler. The aim was to evaluate their thermal performance and their CO-emissions. The systems have been modelled based on lab measurements of the single system components. The used models allow a detailed study of the dynami...

  9. Enteric methane emissions and their response to agro-ecological and livestock production systems dynamics in Zimbabwe.

    Science.gov (United States)

    Svinurai, Walter; Mapanda, Farai; Sithole, Dingane; Moyo, Elisha N; Ndidzano, Kudzai; Tsiga, Alois; Zhakata, Washington

    2018-03-01

    Without disregarding its role as one of the key sources of sustainable livelihoods in Zimbabwe and other developing countries, livestock production contributes significantly to greenhouse gas (GHG) emissions through enteric fermentation. For the livestock sector to complement global efforts to mitigate climate change, accurate estimations of GHG emissions are required. Methane emissions from enteric fermentation in Zimbabwe were quantified over 35years under four production systems and five agro-ecological regions. The Intergovernmental Panel on Climate Change emission factor methodology was used to derive CH 4 emissions from seven livestock categories at national level. Emission intensities based on human population, domestic export of livestock meat and climate variables were used to assess emission drivers and predict future emission trends. Over the past 35years, enteric fermentation CH 4 emissions from all livestock categories ranged between 158.3 and 204.3Ggyear -1 . Communal lands, typified by indigenous livestock breeds, had the highest contribution of between 58% and 75% of the total annual emissions followed by livestock from large scale commercial (LSC) farms. The decreasing livestock population on LSC farms and consequent decline in production could explain the lack of a positive response of CH 4 emissions to human population growth, and decreasing emissions per capita over time at -0.3kg CH 4 capita -1 year -1 . The emissions trend showed that even if Zimbabwe's national livestock population doubles in 2030 relative to the 2014 estimates, the country would still remain with similar magnitude of CH 4 emission intensity as that of 1980. No significant correlations (P>0.05) were found between emissions and domestic export of beef and pork. Further research on enhanced characterisation of livestock species, population and production systems, as well as direct measurements and modelling of emissions from indigenous and exotic livestock breeds were

  10. TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES DONALDSON COMPANY INC.SERIES 6100 DIESEL OXIDATION CATALYST MUFFLER AND SPIRACLE CLOSED CRANKCASE FILTRATION SYSTEM

    Science.gov (United States)

    This report is on an environmental verification of the emissions characteristics of a Donaldson Corp. catalytic muffler and catalyic crankcase emissions control. It was found the systems reduced emissions.

  11. Change impact analysis on the life cycle carbon emissions of energy systems – The nuclear example

    International Nuclear Information System (INIS)

    Nian, Victor

    2015-01-01

    Highlights: • This paper evaluates the life cycle carbon emission of nuclear power in a scenario based approach. • It quantifies the impacts to the LCA results from the change in design parameters. • The methodology can give indications towards preferred or favorable designs. • The findings contribute to the life cycle inventories of energy systems. - Abstract: The life cycle carbon emission factor (measured by t-CO 2 /GW h) of nuclear power is much lower than those of fossil fueled power generation technologies. However, the fact of nuclear energy being a low carbon power source comes with many assumptions. These assumptions range from system and process definitions, to input–output definitions, to system boundary and cut-off criteria selections, and life cycle inventory dataset. However, there is a somewhat neglected but critical aspect – the design aspect. This refers to the impacts on the life cycle carbon emissions from the change in design parameters related to nuclear power. The design parameters identified in this paper include: (1) the uranium ore grade, (2) the critical process technologies, represented by the average initial enrichment concentration of 235 U in the reactor fuel, and (3) the size of the nuclear power reactor (measured by the generating capacity). If not properly tested, assumptions in the design aspect can lead to an erroneous estimation on the life cycle carbon emission factor of nuclear power. In this paper, a methodology is developed using the Process Chain Analysis (PCA) approach to quantify the impacts of the changes in the selected design parameters on the life cycle carbon emission factor of nuclear power. The concept of doing so broadens the scope of PCAs on energy systems from “one-off” calculation to analysis towards favorable/preferred designs. The findings from the analyses can serve as addition to the life cycle inventory database for nuclear power as well as provide indications for the sustainability of

  12. Evaluating Greenhouse Gas Emissions Reporting Systems for Agricultural Waste Burning Using MODIS Active Fires

    Science.gov (United States)

    Lin, H.; Jin, Y.; Giglio, L.; Foley, J. A.; Randerson, J. T.

    2010-12-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CO2, CH4 and N2O from these fires annually. We evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries and the consistency of emissions reporting among countries. We also evaluated the success of the individual countries in capturing interannual variability and long-term trends in agricultural fire activity. We combined global crop maps with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) active fire detections. At a global scale, we recommend adding ground nuts, cocoa, cotton and oil palm, and removing potato, oats, pulse other and rye from the UNFCCC list of 14 crops. This leads to an overall increase of 6% of the active fires covered by the reporting system. Optimization led to a different recommended list for Annex 1 countries. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 10% to 20%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico and Nigeria) would capture over 58% of active fires in croplands worldwide. Analyses of interannual trends from the U.S. and Australia showed the importance of both intensity of fire use and crop production in controlling year-to-year variations in agricultural fire emissions. Remote sensing provides an efficient tool for an independent assessment of current UNFCCC emissions reporting system; and, if combined with census data, field experiments and expert opinion, has the potential for improving the robustness of the next generation inventory

  13. A multicrystal two dimensional BGO detector system for positron emission tomography

    International Nuclear Information System (INIS)

    Casey, M.E.; Nutt, R.

    1986-01-01

    This paper presents a discussion of a new multicrystal detector system as it is implemented in Positron Emission Tomography. The system consists of a 32 x 8 matrix of BGO crystals, a tuned light pipe, and four photomultipliers. The electronics that decodes the position consists of fast preamps, gated integrators, and level comparators. This detector represents a major development toward reducing the cost of PET

  14. Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Capstone Turbine Corporation

    2007-12-31

    In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

  15. Investigations on burning efficiency and exhaust emission of in-line type emulsified fuel system

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Y.K. [National Chinyi University of Technology (Taiwan). Dept. of Mechanical Engineering; Cheng, H.C. [Point Environmental Protection Technology Company Limited (Taiwan)

    2011-07-28

    In this research, the burning efficiency as well as exhaust emission of a new water-in-oil emulsified fuel system was studied. This emulsified system contains two core processes, the first one is to mix 97% water with 3% emulsifier by volume, and get the milk-like emulsified liquid, while the second one is to compound the milk-like emulsified liquid with heavy oil then obtain the emulsified fuel. In order to overcome the used demulsification problem during in reserve or in transport, this system was designed as a made and use in-line type. From the results of a series of burning tests, the fuel saving can be 8--15%. Also, from the comparison of decline for the heat value and total energy output of emulsified fuel, one can find that the water as the dispersed phase in the combustion process will lead to a micro-explosion as well as the water gas effect, both can raise the combustion temperature and burning efficiency. By comparing the waste gas emission of different types of emulsified fuel, one can know that, the CO2 emission reduces approximately 14%, and NOx emission reduces above 46%, meaning the reduction of the exhaust gas is truly effective. From the exhaust temperature of tail pipe, the waste heat discharge also may reduce 27%, it is quite advantageous to the global warming as well as earth environmental protection.

  16. Development of a Carbon Emission Calculations System for Optimizing Building Plan Based on the LCA Framework

    Directory of Open Access Journals (Sweden)

    Feifei Fu

    2014-01-01

    Full Text Available Life cycle thinking has become widely applied in the assessment for building environmental performance. Various tool are developed to support the application of life cycle assessment (LCA method. This paper focuses on the carbon emission during the building construction stage. A partial LCA framework is established to assess the carbon emission in this phase. Furthermore, five typical LCA tools programs have been compared and analyzed for demonstrating the current application of LCA tools and their limitations in the building construction stage. Based on the analysis of existing tools and sustainability demands in building, a new computer calculation system has been developed to calculate the carbon emission for optimizing the sustainability during the construction stage. The system structure and detail functions are described in this paper. Finally, a case study is analyzed to demonstrate the designed LCA framework and system functions. This case is based on a typical building in UK with different plans of masonry wall and timber frame to make a comparison. The final results disclose that a timber frame wall has less embodied carbon emission than a similar masonry structure. 16% reduction was found in this study.

  17. Electron cyclotron emission from optically thin plasma in compact helical system

    International Nuclear Information System (INIS)

    Idei, Hiroshi; Kubo, Shin; Hosokawa, Minoru; Iguchi, Harukazu; Ohkubo, Kunizo; Sato, Teruyuki.

    1994-01-01

    A frequency spectrum of second harmonic electron cyclotron emission was observed for an optically thin plasma produced by fundamental electron cyclotron heating in a compact helical system. A radial electron temperature profile deduced from this spectrum neglecting the multiple reflections effect shows a clear difference from that measured by Thomson scattering. We relate the spectrum with the electron temperature profile by the modified emission model including the scrambling effect. The scrambling effect results from both mode conversion and change in the trajectory due to multiple reflections of the emitting ray at the vessel wall. The difference between the two temperature profiles is explained well by using the modified emission model. Reconstruction of the electron temperature profile from the spectrum using this model is also discussed. (author)

  18. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems

    Science.gov (United States)

    Vaquero, Juan José; Kinahan, Paul

    2017-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024

  19. Transport and Environment Database System (TRENDS): Maritime Air Pollutant Emission Modelling

    DEFF Research Database (Denmark)

    Georgakaki, Aliki; Coffey, Robert; Lock, Grahm

    2005-01-01

    This paper reports the development of the maritime module within the framework of the Transport and Environment Database System (TRENDS) project. A detailed database has been constructed for the calculation of energy consumption and air pollutant emissions. Based on an in-house database...... changes from findings reported in Methodologies for Estimating air pollutant Emissions from Transport (MEET). The database operates on statistical data provided by Eurostat, which describe vessel and freight movements from and towards EU 15 major ports. Data are at port to Maritime Coastal Area (MCA...... with a view to this purpose, are mentioned. Examples of the results obtained by the database are presented. These include detailed air pollutant emission calculations for bulk carriers entering the port of Helsinki, as an example of the database operation, and aggregate results for different types...

  20. Where is the X-ray emission coming from in RT Cru Symbiotic System?

    Science.gov (United States)

    Karovska, Margarita

    2014-11-01

    RT Cru is a member of a new sub-class of symbiotic interacting binaries with copious hard X-ray emission. It consists of a high-mass WD (>1.3 Ms) accreting from the wind of an M giant, and it is an important system to study in order to constrain precursor conditions for asymmetric PN and SN Ia. The Chandra HRC-I observation (Dec 2012), and an overlapping Swift observation, detected intermittent soft X-ray flaring, and we find evidence for a significant soft component in the spectrum. The flaring could be a consequence of clumped absorption columns moving in and out of the line of sight, or the variations could be due to changes at the accretion boundary layer. Further observations are needed to determine the origin of the soft emission and its relation to the hard emission.

  1. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    Science.gov (United States)

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  2. Whispering gallery mode emission from a composite system of J-aggregates and photonic microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Melnikau, Dzmitry; Savateeva, Diana [Centro de Física de Materiales (MPC, CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Po Manuel de Lardizabal 5, Donostia, San Sebastian 20018 (Spain); Rusakov, Konstantin I. [Department of Physics, Brest State Technical University, Brest 224017 (Belarus); Rakovich, Yury P., E-mail: Yury.Rakovich@ehu.es [Centro de Física de Materiales (MPC, CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Po Manuel de Lardizabal 5, Donostia, San Sebastian 20018 (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)

    2014-01-15

    We report on development and characterization of Whispering Gallery Modes spherical microcavities integrated with organic dye molecules in a J-aggregate state. The microcavities are studied using micro-photoluminescence spectroscopy, and fluorescence lifetime imaging confocal microscopy. Directional emission of light from the microcavity is also experimentally demonstrated and attributed to the photonic jets generated in the microsphere. -- Highlights: • Report on the development and characterization of hybrid system consisting of thin shell of J-aggregates and spherical Whispering Gallery Mode microcavity. • An investigation of spontaneous emission rate in the shell of J-aggregates integrated with a Whispering Gallery Mode cavity. • Demonstration of directional emission from Whispering Gallery Mode cavity with J-aggregates which is highly desirable functionality for both micro- and nano-scale cavities.

  3. Need for a marginal methodology in assessing natural gas system methane emissions in response to incremental consumption.

    Science.gov (United States)

    Mac Kinnon, Michael; Heydarzadeh, Zahra; Doan, Quy; Ngo, Cuong; Reed, Jeff; Brouwer, Jacob

    2018-05-17

    Accurate quantification of methane emissions from the natural gas system is important for establishing greenhouse gas inventories and understanding cause and effect for reducing emissions. Current carbon intensity methods generally assume methane emissions are proportional to gas throughput so that increases in gas consumption yield linear increases in emitted methane. However, emissions sources are diverse and many are not proportional to throughput. Insights into the causal drivers of system methane emissions, and how system-wide changes affect such drivers are required. The development of a novel cause-based methodology to assess marginal methane emissions per unit of fuel consumed is introduced. The carbon intensities of technologies consuming natural gas are critical metrics currently used in policy decisions for reaching environmental goals. For example, the low-carbon fuel standard in California uses carbon intensity to determine incentives provided. Current methods generally assume methane emissions from the natural gas system are completely proportional to throughput. The proposed cause-based marginal emissions method will provide a better understanding of the actual drivers of emissions to support development of more effective mitigation measures. Additionally, increasing the accuracy of carbon intensity calculations supports the development of policies that can maximize the environmental benefits of alternative fuels, including reducing greenhouse gas emissions.

  4. Nitrous oxide emissions in cover crop-based corn production systems

    Science.gov (United States)

    Davis, Brian Wesley

    Nitrous oxide (N2O) is a potent greenhouse gas; the majority of N2O emissions are the result of agricultural management, particularly the application of N fertilizers to soils. The relationship of N2O emissions to varying sources of N (manures, mineral fertilizers, and cover crops) has not been well-evaluated. Here we discussed a novel methodology for estimating precipitation-induced pulses of N2O using flux measurements; results indicated that short-term intensive time-series sampling methods can adequately describe the magnitude of these pulses. We also evaluated the annual N2O emissions from corn-cover crop (Zea mays; cereal rye [Secale cereale], hairy vetch [Vicia villosa ], or biculture) production systems when fertilized with multiple rates of subsurface banded poultry litter, as compared with tillage incorporation or mineral fertilizer. N2O emissions increased exponentially with total N rate; tillage decreased emissions following cover crops with legume components, while the effect of mineral fertilizer was mixed across cover crops.

  5. Experimental analysis of CO2 emissions from agricultural soils subjected to five different tillage systems in Lithuania

    International Nuclear Information System (INIS)

    Buragienė, Sidona; Šarauskis, Egidijus; Romaneckas, Kęstutis; Sasnauskienė, Jurgita; Masilionytė, Laura; Kriaučiūnienė, Zita

    2015-01-01

    Intensive agricultural production strongly influences the global processes that determine climate change. Thus, tillage can play a very important role in climate change. The intensity of soil carbon dioxide (CO 2 ) emissions, which contribute to the greenhouse effect, can vary depending on the following factors: the tillage system used, meteorological conditions (which vary in different regions of the world), soil properties, plant residue characteristics and other factors. The main purpose of this research was to analyse and assess the effects of autumn tillage systems with different intensities on CO 2 emissions from soils during different seasons and under the climatic conditions of Central Lithuania. The research was conducted at the Experimental Station of Aleksandras Stulginskis University from 2009 to2012; and in 2014. The soils at the experimental site were classified as Eutric Endogleyic Planosol (Drainic). The investigations were conducted using five tillage systems with different intensities, typical of the Baltic Region. Deep conventional ploughing was performed at a depth of 230–250 mm, shallow ploughing was conducted at a depth of 120–150 mm, deep loosening was conducted at depths of 250–270 mm, and shallow loosening was conducted at depths of 120–150 mm. The fifth system was a no-tillage system. Overall, autumn tillage resulted in greater CO 2 emissions from the soil over both short- and long-term periods under the climatic conditions of Central Lithuania, regardless of the tillage system applied. The highest soil CO 2 emissions were observed for the conventional deep ploughing tillage system, and the lowest emissions were observed for the no-tillage system. The meteorological conditions greatly influenced the CO 2 emissions from the soil during the spring. Soil CO 2 emissions were enhanced as precipitation and the air and soil temperatures increased. Long-term investigations regarding the dynamics of CO 2 emissions from soils during the

  6. 40 CFR Table 31 to Subpart Uuu of... - Continuous Monitoring Systems for HAP Emissions From Sulfur Recovery Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Monitoring Systems for HAP Emissions From Sulfur Recovery Units 31 Table 31 to Subpart UUU of Part 63 Protection of Environment..., Subpt. UUU, Table 31 Table 31 to Subpart UUU of Part 63—Continuous Monitoring Systems for HAP Emissions...

  7. A plant chamber system with downstream reaction chamber to study the effects of pollution on biogenic emissions

    NARCIS (Netherlands)

    Timovsky, J.; Gankema, Paulien; Pierik, Ronald; Holzinger, Rupert

    2014-01-01

    A system of two plant chambers and a downstream reaction chamber has been set up to investigate the emission of biogenic volatile organic compounds (BVOCs) and possible effects of pollutants such as ozone. The system can be used to compare BVOC emissions from two sets of differently treated plants,

  8. 40 CFR 63.7925 - What emissions limitations and work practice standards must I meet for closed vent systems and...

    Science.gov (United States)

    2010-07-01

    ... What emissions limitations and work practice standards must I meet for closed vent systems and control... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What emissions limitations and work practice standards must I meet for closed vent systems and control devices? 63.7925 Section 63.7925...

  9. Enhanced Emission of Quantum System in Si-Ge Nanolayer Structure.

    Science.gov (United States)

    Huang, Zhong-Mei; Huang, Wei-Qi; Dong, Tai-Ge; Wang, Gang; Wu, Xue-Ke

    2016-12-01

    It is very interesting that the enhanced peaks near 1150 and 1550 nm are observed in the photoluminescence (PL) spectra in the quantum system of Si-Ge nanolayer structure, which have the emission characteristics of a three-level system with quantum dots (QDs) pumping and emission of quasi-direct-gap band, in our experiment. In the preparing process of Si-Ge nanolayer structure by using a pulsed laser deposition method, it is discovered that the nanocrystals of Si and Ge grow in the (100) and (111) directions after annealing or electron beam irradiation. The enhanced PL peaks with multi-longitudinal-mode are measured at room temperature in the super-lattice of Si-Ge nanolayer quantum system on SOI.

  10. A theoretical model for the control of an enforcement system on emissions of pollutants

    International Nuclear Information System (INIS)

    Villegas, Clara Ines

    2005-01-01

    A theoretical proposal for the development of an enforcement strategy is presented on this paper. The proposal guaranties full compliance of an emission charge system with self-report presence. The proposed models are static, and mostly based on those proposed by Strandlund and Chavez (2000) for a transferable permits system with self -report presence. Theoretical models were developed for three possible violations: self-report violation, maximum emission limits violation and payment violation. Based in theoretical results, a simulation was implemented with hypothetical data: 20 regulated firms with different marginal abatement cost functions. The variation in charge amount, Monitory costs, abatement cost, self-report value and total cost are analyzed, with each of the theoretical models under different scenarios. Our results show that the behavior of the different variables remains unchanged under the three static models, and that the only variations occur inside the scenarios. Our results can serve as a tool for the formulation and design of taxing systems

  11. Examination of a climate stabilization pathway via zero-emissions using Earth system models

    International Nuclear Information System (INIS)

    Nohara, Daisuke; Tsutsui, J; Watanabe, S; Tachiiri, K; Hajima, T; Okajima, H; Matsuno, T

    2015-01-01

    Long-term climate experiments up to the year 2300 have been conducted using two full-scale complex Earth system models (ESMs), CESM1(BGC) and MIROC-ESM, for a CO 2 emissions reduction pathway, termed Z650, where annual CO 2 emissions peak at 11 PgC in 2020, decline by 50% every 30 years, and reach zero in 2160. The results have been examined by focusing on the approximate linear relationship between the temperature increase and cumulative CO 2 emissions. Although the temperature increase is nearly proportional to the cumulative CO 2 emissions in both models, this relationship does not necessarily provide a robust basis for the restriction of CO 2 emissions because it is substantially modulated by non-CO 2 forcing. CO 2 -induced warming, estimated from the atmospheric CO 2 concentrations in the models, indicates an approximate compensation of nonlinear changes between fast-mode responses to concentration changes at less than 10 years and slow-mode response at more than 100 years due to the thermal inertia of the ocean. In this estimate, CESM1(BGC) closely approximates a linear trend of 1.7 °C per 1000 PgC, whereas MIROC-ESM shows a deviation toward higher temperatures after the emissions peak, from 1.8 °C to 2.4 °C per 1000 PgC over the range of 400–850 PgC cumulative emissions corresponding to years 2000–2050. The evolution of temperature under zero emissions, 2160–2300, shows a slight decrease of about 0.1 °C per century in CESM1(BGC), but remains almost constant in MIROC-ESM. The fast-mode response toward the equilibrium state decreases with a decrease in the airborne fraction owing to continued CO 2 uptake (carbon cycle inertia), whereas the slow-mode response results in more warming owing to continued heat uptake (thermal inertia). Several specific differences are noted between the two models regarding the degree of this compensation and in some key regional aspects associated with sustained warming and long-term climate risks. Overall, elevated

  12. 40 CFR 63.1015 - Closed vent systems and control devices; or emissions routed to a fuel gas system or process.

    Science.gov (United States)

    2010-07-01

    ... devices; or emissions routed to a fuel gas system or process. 63.1015 Section 63.1015 Protection of... fuel gas system or process. (a) Compliance schedule. The owner or operator shall comply with this... emissions from equipment leaks to a fuel gas system or process shall comply with the provisions of subpart...

  13. Emission-dependent supply chain and environment-policy-making in the ‘cap-and-trade’ system

    International Nuclear Information System (INIS)

    Du, Shaofu; Zhu, Lili; Liang, Liang; Ma, Fang

    2013-01-01

    The paper focuses on a so-called emission-dependent supply chain consisting of one single emission-dependent manufacturer and one single emission permit supplier in the ‘cap-and-trade’ system, where emission permit becomes requisite for production. We consider the emission cap of emission-dependent manufacturer allocated by the government as a kind of environmental policy and formally investigate its influence on decision-makings within the concerned emission-dependent supply chain as well as distribution fairness in social welfare. It is proved that the system-wide and the manufacturer's profits increase with the emission cap while the permit supplier's decreases. There is room for manufacturer and permit supplier to coordinate the supply chain to get more profit in a certain condition. - Highlights: ► We model an emission-dependent supply chain with a permit supplier and a firm. ► We game-theoretically analyze their optimal decisions in a ‘cap-and-trade' system. ► It is possible to coordinate the supply chain in a certain condition. ► The effect of emission cap as an environment policy is considered. ► Bernoulli–Nash Social Welfare Function is employed to analyze the optimal cap

  14. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, Laura [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brown, Austin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Newes, Emily [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Markel, Tony [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schroeder, Alex [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yimin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chipman, Peter [U.S. Department of Transportation, Washington, D.C. (United States); Johnson, Shawn [U.S. Department of Transportation, Washington, D.C. (United States)

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  15. Integrated dry NO{sub x}/SO{sub 2} emissions control system: integrated system test report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.A.; Muzio, L.J. [Fossil Energy Research Corp., Laguna Hills, CA (United States); Hunt, T. [Public Service Co. of Colorado, Denver, CO (United States)

    1997-04-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System Program, is a Clean Coal Technology III demonstration, being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, a 100 MWe, down-fired utility boiler burning a low-sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) Dry Sorbent Injection (DSI) and duct humidification for SO{sub 2} removal. This report documents the final phase of the test program, in which the overall performance of the integrated system was evaluated. Previous testing has shown that the goal of 70 percent NO{sub x} removal was easily achieved with the combination of low-NO{sub x} burners, overfire air, and urea-based SNCR. Similarly, the ability of the sodium-based DSI system to achieve 70 percent SO{sub 2} removal was also demonstrated previously. The integrated tests demonstrated the synergistic benefit of operating the SNCR and sodium-based DSI systems concurrently. With the automatic control system set to limit the NH{sub 3} emissions to less than 8 ppm, the NO{sub 2} emissions from the sodium-based DSI system were reduced by nominally 50 percent compared to operation with the DSI system alone. Comparably, the combined operation reduced NH{sub 3} emissions, as reflected by a higher urea injection rate for a fixed NH{sub 3} emission limit. With combined DSI and SNCR operation, an ammonia odor problem was encountered around the Unit 4 ash silo (this did not occur with the SNCR system operated alone at comparable NH{sub 3} slip levels). This odor problem is attributed to the sodium changing the rate at which NH{sub 3} is released from the ash when it is wetted for truck transport to the disposal site.

  16. Effects of organic matter application on methane emission from paddy fields adopting organic farming system

    Directory of Open Access Journals (Sweden)

    P Nungkat

    2015-01-01

    Full Text Available A study that was aimed to determine the effect of the use of organic manure and azolla on methane emission on paddy field of organic systems was conducted on paddy fields in the Gempol Village, Sambirejo District of Sragen Regency, Indonesia. The experimental design performed for this study was a completely randomized block design consisting of three factors; the factor I was rice cultivars (Mira-1; Mentik Wangi; Merah Putih; factor II was dose of organic manure (0 t/ha and 10 t/ha and factor III was Azolla inoculums dose (0 t/ha and 2 t/ha. Gas sampling was conducted 3 times in one growing season when the rice plants reached ages of 38, 66 and 90 days after planting. The results showed that there was no correlation between the uses of organic fertilizers for rice production on methane emission. The increase of methane emission was very much influenced by the redox potential. Methane emission from Mira-1 field was higher than that from Mentik Wangi and Merah Putih fields. Emission of methane gas from Mira-1 field ranged from -509.82 to 791.34 kg CH4/ha; that from Wangi ranged from -756.77 to d 547.50 kg CH4/ha and that from Merah Putih ranged from -399.63 to 459.94 kg CH4/ha. Application of 10 t organic manure /ha and 2 t azolla/ha in Mentik Wangi reduced methane emissions with a high rice production compared to Merah Putih and Mira-1.

  17. Atmospheric emissions modeling of energetic biomass alternatives using system dynamics approach

    International Nuclear Information System (INIS)

    Szarka, N.; University of Concepcion; Kakucs, O.; Wolfbauer, J.; Bezama, A.

    2008-01-01

    To simulate the quantitative effects of regional biomass alternatives for energetic purpose (BfE) on air pollutant emissions, a system dynamics model was developed and applied for the EuRegion Austrian-Hungarian cross-border area. The dynamic simulation program Vensim R was used to build an overall regional model with economic, social and environmental sectors. Within this model, the here-introduced regional air pollution sub-model (RegAir) includes the important human-made emissions of 10 pollutants resulting from all relevant source sectors within the region investigated. Emissions from activities related to biomass production, transport, conversion and final energy consumption were built in detail. After building and calibrating the RegAir model, seven quantitative test scenarios were defined and implemented into the world. Through the scenarios simulation, effects on air emissions were followed and compared over time. The results of these simulations show a significant reduction of CO 2 emission, especially in cases where fossil fuel displacement in heating devices is achieved on the largest scale. On the contrary, traditional air pollutants increase by most BfE options. The results of the RegAir model simulations of BfE alternatives over two decades provide useful quantifications of various air emissions and identify the less pollutant BfE alternatives in the dynamic context of the relevant air pollution sources of the region. After minor structural modification and appropriate calibration, RegAir can be applied to other regions as well. However, it is stated that, to finally decide on the overall most-appropriate options at a regional level, other environmental as well as economic and social effects must be taken into consideration, being the latter the goal of the mentioned overall regional model which serves as a model frame to the RegAir tool. (author)

  18. PARTICULATE MATTER CONCENTRATION AND EMISSION FACTOR IN THREE DIFFERENT LAYING HEN HOUSING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Annamaria Costa

    2009-09-01

    Full Text Available The aim of this study was to evaluate PM10 concentration in three different laying hens houses (traditional battery cages with aerated open manure storage, aviary system and vertical tiered cages with manure belts with forced air drying and to evaluate particulate matter emission into atmosphere during one year of observation. Internal and external temperature and relative humidity, ventilation rate, PM10 concentration have been continuously monitored in order to evaluate particulate matter concentration changes during the day and the season and to define PM10 emission factors. PM10 concentration was corrected by gravimetric technique to lower measurements error. In the aviary system house, TSP and fine particulate matter (particles smaller than 2.5 micron concentration was measured. Average yearly PM10 concentration was remarkably higher in the aviary system house with 0.215 mg m-3 vs 108 mg m-3 for the ventilated belt house and vs 0.094 mg m-3 for the traditional battery cages house. In the Aviary system housing, TSP concentration was 0.444 mg m-3 and PM2.5 was 0.032 mg m-3, highlighting the existence of a severe working environment for men and animals. Recorded values for PM10 emission were 0.433 mg h-1 hen-1 for battery cages housing type, 0.081 mg h-1 hen-1 for ventilated belt cages house, values lower than those available in literature, while the aviary system housing type showed the highest PM10 emission (1.230 mg h-1 hen-1 with appreciable peaks during the morning, together with the increased animal activity and daily farmer operations, as feed administration, cleaning and droppings removal.

  19. The influence of the waterjet propulsion system on the ships' energy consumption and emissions inventories.

    Science.gov (United States)

    Durán-Grados, Vanesa; Mejías, Javier; Musina, Liliya; Moreno-Gutiérrez, Juan

    2018-08-01

    In this study we consider the problems associated with calculating ships' energy and emission inventories. Various related uncertainties are described in many similar studies published in the last decade, and applying to Europe, the USA and Canada. However, none of them have taken into account the performance of ships' propulsion systems. On the one hand, when a ship uses its propellers, there is no unanimous agreement on the equations used to calculate the main engines load factor and, on the other, the performance of waterjet propulsion systems (for which this variable depends on the speed of the ship) has not been taken into account in any previous studies. This paper proposes that the efficiency of the propulsion system should be included as a new parameter in the equation that defines the actual power delivered by a ship's main engines, as applied to calculate energy consumption and emissions in maritime transport. To highlight the influence of the propulsion system on calculated energy consumption and emissions, the bottom-up method has been applied using data from eight fast ferries operating across the Strait of Gibraltar over the course of one year. This study shows that the uncertainty about the efficiency of the propulsion system should be added as one more uncertainty in the energy and emission inventories for maritime transport as currently prepared. After comparing four methods for this calculation, the authors propose a new method for eight cases. For the calculation of the Main Engine's fuel oil consumption, differences up to 22% between some methods were obtained at low loads. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Multipoint dynamically reconfigure adaptive distributed fiber optic acoustic emission sensor (FAESense) system for condition based maintenance

    Science.gov (United States)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar

    2010-09-01

    This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.

  1. CO2 emissions mitigation potential of solar home systems under clean development mechanism in India

    International Nuclear Information System (INIS)

    Purohit, Pallav

    2009-01-01

    The Government of India has taken several initiatives for promotion of solar energy systems in the country during the last two decades. A variety of policy measures have been adopted which include provision of financial and fiscal incentives to the potential users of solar energy systems however, only 0.4 million solar home systems (SHSs) have been installed so far that is far below their respective potential. One of the major barriers is the high costs of investments in these systems. The clean development mechanism (CDM) of the Kyoto Protocol provides industrialized (Annex-I) countries with an incentive to invest in emission reduction projects in developing (non-Annex-I) countries to achieve a reduction in carbon dioxide (CO 2 ) emissions at lowest cost that also promotes sustainable development in the host country. SHSs could be of interest under the CDM because they directly displace greenhouse gas (GHG) emissions while contributing to sustainable rural development, if developed correctly. In this study an attempt has been made to estimate the CO 2 mitigation potential of SHSs under CDM in India.

  2. Selected emissions and efficiencies of energy systems based on logging and sawmill residues

    International Nuclear Information System (INIS)

    Maelkki, Helena; Virtanen, Yrjoe

    2003-01-01

    Bioenergy has an important role in the implementation of the Kyoto agreement in Finland. The main sources of wood residues for energy production are logging areas and sawmills. The use of forest chips can be of great significance in reducing carbon dioxide emissions by replacing fossil fuels. Increasing the use of forest chips has environmental benefits, but it also includes possible environmental disadvantages. Therefore, system research is needed to assess the forest chip utilisation prospects for their environmental quality to secure sustainable forest management. Life-cycle methodology was developed and applied to assess environmental burdens and impacts of the logging and sawmill residues throughout the whole fuel chain from the forest to energy production. According to the study, the energy efficiencies of the forest chip systems are quite high. Net CO 2 emissions of the systems are low owing to the low input of external primary energy required to operate the systems. Although wood energy is renewable, it has many similarities with fossil fuels, e.g. as the emissions of the conversion phase are significant

  3. Assessment of the Electrification of the Road Transport Sector on Net System Emissions

    Science.gov (United States)

    Miller, James

    As worldwide environmental consciousness grows, electric vehicles (EVs) are becoming more common and despite the incredible potential for emissions reduction, the net emissions of the power system supply side plus the transportation system are dependent on the generation matrix. Current EV charging patterns tend to correspond directly with the peak consumption hours and have the potential to increase demand sharply allowing for only a small penetration of Electric Vehicles. Using the National Household Travel Survey (NHTS) data a model is created for vehicle travel patterns using trip chaining. Charging schemes are modeled to include uncontrolled residential, uncontrolled residential/industrial charging, optimized charging and optimized charging with vehicle to grid discharging. A charging profile is then determined based upon the assumption that electric vehicles would directly replace a percentage of standard petroleum-fueled vehicles in a known system. Using the generation profile for the specified region, a unit commitment model is created to establish not only the generation dispatch, but also the net CO2 profile for variable EV penetrations and charging profiles. This model is then used to assess the impact of the electrification of the road transport sector on the system net emissions.

  4. System-wide and Superemitter Policy Options for the Abatement of Methane Emissions from the U.S. Natural Gas System

    Science.gov (United States)

    Mayfield, E. N.; Robinson, A. L.; Cohon, J. L.

    2017-12-01

    This work assesses trade-offs between system-wide and superemitter policy options for reducing methane emissions from compressor stations in the U.S. transmission and storage system. Leveraging recently collected national emissions and activity data sets, we developed a new process-based emissions model implemented in a Monte Carlo simulation framework to estimate emissions for each component and facility in the system. We find that approximately 83% of emissions, given the existing suite of technologies, have the potential to be abated, with only a few emission categories comprising a majority of emissions. We then formulate optimization models to determine optimal abatement strategies. Most emissions across the system (approximately 80%) are efficient to abate, resulting in net benefits ranging from 160M to 1.2B annually across the system. The private cost burden is minimal under standard and tax instruments, and if firms market the abated natural gas, private net benefits may be generated. Superemitter policies, namely, those that target the highest emitting facilities, may reduce the private cost burden and achieve high emission reductions, especially if emissions across facilities are highly skewed. However, detection across all facilities is necessary regardless of the policy option and there are nontrivial net benefits resulting from abatement of relatively low-emitting sources.

  5. Energy systems and the climate dilemma Reflecting the impact on CO2 emissions by reconstructing regional energy systems

    International Nuclear Information System (INIS)

    Carlson, Annelie

    2003-01-01

    Global warming is one of the most important environmental issues today. One step for the European Union to fulfil the Kyoto protocol, stating a worldwide decrease of emissions of greenhouse gases, is to treat the environment as a scarce resource by attributing costs for environmental impact. This accompanied with considering the European electricity market as one common market, where coal condensing power is the marginal production, lead to the possibility to reduce CO 2 -emissions in Europe by reconstructing energy systems at a local scale in Sweden. A regional energy system model is used to study possibilities to replace electricity and fossil fuel used for heating with biomass and how a reconstruction can affect the emissions of CO 2 . An economic approach is used where cost-effective technical measures are analysed using present conditions and by including monetary values of externalities. The analysis shows that, by acting economically rational, a large amount of electricity and fossil fuel should, in three out of four cases, be replaced leading to a substantial reduction of CO 2 emissions

  6. A Gas Chromatographic Continuous Emissions Monitoring System for the Determination of VOCs and HAPs.

    Science.gov (United States)

    Coleman, William M; Gordon, Bert M

    1996-01-01

    This article describes a new gas chromatography-based emissions monitoring system for measuring volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). The system is composed of a dual-column gas chromatograph equipped with thermal conductivity detectors, in which separation is optimized for fast chromatography. The system has the necessary valving for stream selection, which allows automatic calibration of the system at predetermined times and successive measurement of individual VOCs before and after a control device. Nine different VOCs (two of which are HAPs), plus methane (CH4) and carbon dioxide (CO2) are separated and quantified every two minutes. The accuracy and precision of this system has been demonstrated to be greater than 95%. The system employs a mass flow measurement device and also calculates and displays processed emission data, such as control device efficiency and total weight emitted during given time periods. Two such systems have been operational for one year in two separate gravure printing facilities; minimal upkeep is required, about one hour per month. One of these systems, used before and after a carbon adsorber, has been approved by the pertinent local permitting authority.

  7. Non-exhaust emission measurement system of the mobile laboratory SNIFFER

    Science.gov (United States)

    Pirjola, L.; Kupiainen, K. J.; Perhoniemi, P.; Tervahattu, H.; Vesala, H.

    In this paper we describe and quality assure the sampling system of a mobile research laboratory SNIFFER which was shown to be a useful tool for studying emission levels of respirable dust from street surfaces. The dust plume had bimodal structure; another mode rising to higher altitudes whereas the other mode remained at lower altitudes. The system was tested on a route in Helsinki, Finland, during spring 2005 and 2006. The PM 2.5 and PM 10 were positively correlated and the PM levels increased with the vehicle speed. SNIFFER was able to identify the characteristic emission levels on different streets. A clear downward trend in the concentrations was observed in all street locations between April and June. The composition of the street dust collected by SNIFFER was compared with springtime PM 10 aerosol samples from the air quality monitoring stations in Helsinki. The results showed similarities in the abundance and composition of the mineral fraction but contained significantly more salt particles.

  8. Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems

    Directory of Open Access Journals (Sweden)

    Akhil Kadiyala

    2016-06-01

    Full Text Available This study evaluated the life cycle greenhouse gas (GHG emissions from different hydroelectricity generation systems by first performing a comprehensive review of the hydroelectricity generation system life cycle assessment (LCA studies and then subsequent computation of statistical metrics to quantify the life cycle GHG emissions (expressed in grams of carbon dioxide equivalent per kilowatt hour, gCO2e/kWh. A categorization index (with unique category codes, formatted as “facility type-electric power generation capacity” was developed and used in this study to evaluate the life cycle GHG emissions from the reviewed hydroelectricity generation systems. The unique category codes were labeled by integrating the names of the two hydro power sub-classifications, i.e., the facility type (impoundment (I, diversion (D, pumped storage (PS, miscellaneous hydropower works (MHPW and the electric power generation capacity (micro (µ, small (S, large (L. The characterized hydroelectricity generation systems were statistically evaluated to determine the reduction in corresponding life cycle GHG emissions. A total of eight unique categorization codes (I-S, I-L, D-µ, D-S, D-L, PS-L, MHPW-µ, MHPW-S were designated to the 19 hydroelectricity generation LCA studies (representing 178 hydropower cases using the proposed categorization index. The mean life cycle GHG emissions resulting from the use of I-S (N = 24, I-L (N = 8, D-µ (N = 3, D-S (N = 133, D-L (N = 3, PS-L (N = 3, MHPW-µ (N = 3, and MHPW-S (N = 1 hydroelectricity generation systems are 21.05 gCO2e/kWh, 40.63 gCO2e/kWh, 47.82 gCO2e/kWh, 27.18 gCO2e/kWh, 3.45 gCO2e/kWh, 256.63 gCO2e/kWh, 19.73 gCO2e/kWh, and 2.78 gCO2e/kWh, respectively. D-L hydroelectricity generation systems produced the minimum life cycle GHGs (considering the hydroelectricity generation system categories with a representation of at least two cases.

  9. Using axicons for depth discrimination in excitation-emission laser scanning imaging systems

    Science.gov (United States)

    Iglesias, Ignacio

    2017-10-01

    Besides generating good approximations to zero-order Bessel beams, an axicon lens coupled to a spatial filter can be used to collect light while preserving information on the depth coordinate of the source location. To demonstrate the principle, we describe an experimental excitation-emission fluorescence imaging system that uses an axicon twice: to generate an excitation Bessel beam and to collect the emitted light.

  10. Device with Complex System for Heat Utilization and Reduction of Hazardous Air Emissions

    Directory of Open Access Journals (Sweden)

    O. V. Kascheeva

    2012-01-01

    Full Text Available Investigations concern heat utilization and reduction of hazardous emissions occurring in residential buildings and accompanying operation of a great number of industrial enterprises in particular heat and power objects, and firstly, heat-generating units of small power located in densely populated residential areas without centralized heat supply.The investigation target is to reduce cost of heat produced by independent system of building heat supply, reduction of air pollution  due to hazardous gas emissions and reduction of heat pollution of the environment as a result of building ventilation system operation, ventilation of their internal and external sewerage network and higher reliability of their operation.The target is achieved because the device with complex system for heat utilization and reduction of hazardous air emissions has additionally an assembly tank for mixing flue gases, ventilation emissions and atmospheric air, heat pump. Evaporation zone of the pump is a condensator of the gas mixture and its condensate zone contains a heat supply line for a heat consumer. The line is equipped with assembling  and distributing collectors, pipeline connecting the heat supply line with the system of direct and return delivery water from a boiler house, a separator for division of liquid and gaseous mixture phases, neutralizing devices for separate reduction of concentrations of hazardous and odorous substances being released in gaseous and liquid portions of the mixture, a pipeline for periodic supply of air with higher concentration of hazardous and odorous substances in the boiler furnace. The supplied air is obtained as a result of its passing through gas filters at their regeneration when their exchange capacity is exhausted.

  11. Study on Leak Detection of the Pipeline System by Acoustic Emission

    International Nuclear Information System (INIS)

    Yoon, D. J.; Kim, C. J.

    1987-01-01

    Leak detection testing for the pipeline system was performed by the acoustic emission method. It was found that the detected signal spectrum was influenced by the frequency response of sensors and pressure changes. AE parameters and frequency spectrum distributions were used to analyze the leak signals. The slope rise time of AE parameters were the important factors for distinguishing leak signals. The amplitude of leak signal was more affected by the changes of leak, rate and pressure than those of leak type

  12. Adaptive Observer for Nonlinearly Parameterised Hammerstein System with Sensor Delay – Applied to Ship Emissions Reduction

    DEFF Research Database (Denmark)

    Nielsen, Kræn V.; Blanke, Mogens; Eriksson, Lars

    2017-01-01

    Taking offspring in a problem of ship emission reduction by exhaust gas recirculation control for large diesel engines, an underlying generic estimation challenge is formulated as a problem of joint state and parameter estimation for a class of multiple-input single-output Hammerstein systems...... observer is shown on simulated cases, on tests with a large diesel engine on test bed and on tests with a container vessel....

  13. Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system

    International Nuclear Information System (INIS)

    Fang, Guochang; Tian, Lixin; Sun, Mei; Fu, Min

    2012-01-01

    A novel three-dimensional energy-saving and emission-reduction chaotic system is proposed, which has not yet been reported in present literature. The system is established in accordance with the complicated relationship between energy-saving and emission-reduction, carbon emissions and economic growth. The dynamic behavior of the system is analyzed by means of Lyapunov exponents and bifurcation diagrams. With undetermined coefficient method, expressions of homoclinic orbits of the system are obtained. The Šilnikov theorem guarantees that the system has Smale horseshoes and the horseshoes chaos. Artificial neural network (ANN) is used to identify the quantitative coefficients in the simulation models according to the statistical data of China, and an empirical study of the real system is carried out with the results in perfect agreement with actual situation. It is found that the sooner and more perfect energy-saving and emission-reduction is started, the easier and sooner the maximum of the carbon emissions will be achieved so as to reduce carbon emissions and energy intensity. Numerical simulations are presented to demonstrate the results. -- Highlights: ► Use non-linear dynamical method to model the energy-saving and emission-reduction system. ► The energy-saving and emission-reduction attractor is obtained. ► Identify the unknown parameters of the energy-saving and emission-reduction system based on the statistical data. ► Evaluating the achievements of energy-saving and emission-reduction by the time-varying energy intensity calculation formula. ► Some statistical results based on the statistical data in China are presented, which are vivid and adherent to the reality.

  14. Cost and emissions impacts of plug-in hybrid vehicles on the Ohio power system

    International Nuclear Information System (INIS)

    Sioshansi, Ramteen; Fagiani, Riccardo; Marano, Vincenzo

    2010-01-01

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology that can reduce vehicles' fuel consumption, decreasing transportation-related emissions and dependence on imported oil. The net emission and cost impacts of PHEV use are intimately connected with the electricity generator mix used for PHEV charging, which will in turn depend on when during the day PHEVs are recharged. This paper analyzes the effects of a PHEV fleet in the state of Ohio. The analysis considers two different charging scenarios-a controlled and an uncontrolled scenario-which offer the grid operator different levels of control over the timing of PHEV charging. The analysis shows that PHEV use could result in major reductions in gasoline consumption of close to 70% per vehicle compared to a conventional vehicle (CV) under both charging scenarios. Moreover, despite the high penetrations of coal in the Ohio power system, net CO 2 emissions from a PHEV could be up to 24% lower than that of a CV in the uncontrolled case, however, CO 2 and NO x emissions would increase in both scenarios.

  15. Combined emission economic dispatch of power system including solar photo voltaic generation

    International Nuclear Information System (INIS)

    Khan, Naveed Ahmed; Awan, Ahmed Bilal; Mahmood, Anzar; Razzaq, Sohail; Zafar, Adnan; Sidhu, Guftaar Ahmed Sardar

    2015-01-01

    Highlights: • Combined Emission Economic Dispatch Problem has been solved with inclusion of solar power plants. • Mixed Integer Optimization Problem has been solved using Particle Swarm Optimization. • Static and dynamic case studies have been considered. • Clouds effect with 15% and 30% reduced radiations has also been taken into account. • Simulation results prove the effectiveness of proposed model. - Abstract: Reliable and inexpensive electricity provision is one of the significant research objectives since decades. Various Economic Dispatch (ED) methods have been developed in order to address the challenge of continuous and sustainable electricity provision at optimized cost. Rapid escalation of fuel prices, depletion of fossil fuel reserves and environmental concerns have compelled us to incorporate the Renewable Energy (RE) resources in the energy mix. This paper presents Combined Emission Economic Dispatch (CEED) models developed for a system consisting of multiple Photo Voltaic (PV) plants and thermal units. Based on the nature of decision variables, our proposed model is essentially a Mixed Integer Optimization Problem (MIOP). Particle Swarm Optimization (PSO) is used to solve the optimization problem for a scenario involving six conventional and thirteen PV plants. Two test cases, Combined Static Emission Economic Dispatch (SCEED) and Combined Dynamic Emission Economic Dispatch (DCEED), have been considered. SCEED is performed for full solar radiation level as well as for reduced radiation level due to clouds effect. Simulation results have proved the effectiveness of the proposed model

  16. The response of the climate system to very high greenhouse gas emission scenarios

    International Nuclear Information System (INIS)

    Sanderson, Benjamin M; O'Neill, Brian C; Kiehl, Jeffrey T; Meehl, Gerald A; Knutti, Reto; Washington, Warren M

    2011-01-01

    Well informed decisions on climate policy necessitate simulation of the climate system for a sufficiently wide range of emissions scenarios. While recent literature has been devoted to low emissions futures, the potential for very high emissions has not been thoroughly explored. We specify two illustrative emissions scenarios that are significantly higher than the A1FI scenario, the highest scenario considered in past IPCC reports, and simulate them in a global climate model to investigate their climate change implications. Relative to the A1FI scenario, our highest scenario results in an additional 2 K of global mean warming above A1FI levels by 2100, a complete loss of arctic summer sea-ice by 2070 and an additional 43% sea level rise due to thermal expansion above A1FI levels by 2100. Regional maximum temperature increases from late 20th century values are 50-100% greater than A1FI increases, with some regions such as the Central US, the Tibetan plateau and Alaska showing a 300-400% increase above A1FI levels.

  17. The response of the climate system to very high greenhouse gas emission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, Benjamin M; O' Neill, Brian C; Kiehl, Jeffrey T; Meehl, Gerald A [National Center for Atmospheric Research, Boulder, CO (United States); Knutti, Reto; Washington, Warren M, E-mail: bsander@ucar.edu [Institute for Atmospheric and Climate Science, ETH Zurich (Switzerland)

    2011-07-15

    Well informed decisions on climate policy necessitate simulation of the climate system for a sufficiently wide range of emissions scenarios. While recent literature has been devoted to low emissions futures, the potential for very high emissions has not been thoroughly explored. We specify two illustrative emissions scenarios that are significantly higher than the A1FI scenario, the highest scenario considered in past IPCC reports, and simulate them in a global climate model to investigate their climate change implications. Relative to the A1FI scenario, our highest scenario results in an additional 2 K of global mean warming above A1FI levels by 2100, a complete loss of arctic summer sea-ice by 2070 and an additional 43% sea level rise due to thermal expansion above A1FI levels by 2100. Regional maximum temperature increases from late 20th century values are 50-100% greater than A1FI increases, with some regions such as the Central US, the Tibetan plateau and Alaska showing a 300-400% increase above A1FI levels.

  18. Net emission coefficient for CO–H2 thermal plasmas with the consideration of molecular systems

    International Nuclear Information System (INIS)

    Billoux, T.; Cressault, Y.; Gleizes, A.

    2015-01-01

    This paper deals with the calculation of net emission coefficients (NECs) for CO–H 2 thermal plasmas. This task required the elaboration of a complete spectroscopic database including atoms and molecules formed by carbon, oxygen and hydrogen elements. We have used a systematic line by line method to calculate all the main radiative contributions which are the atomic and molecular continua, the atomic lines and the molecular (diatomic and polyatomic) lines. The main diatomic electronic systems for CO–H 2 plasmas and the triatomic molecular bands were considered. We present some variations of the net emission coefficient versus temperature, for various pressures and for two relative proportions of the components. The role of the diatomic molecules is important at temperatures lower than 5000 K whereas the net emission coefficient presents an unusual peak at temperature around 1000 K, due to the presence of the CO 2 molecule presenting a strong infrared radiation. Finally, the results show that the NEC slightly depends on the relative proportion of CO and H 2 . - highlights: • We calculate radiative losses from CO–H 2 thermal plasmas. • We use the up-to-date atomic and molecular databases. • The influence of CO 2 molecule is very important at low temperature. • The relative maximum of the net emission coefficient at low temperature is unusual

  19. Discovery of radio emission from the symbiotic X-ray binary system GX 1+4

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-02-01

    We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accretes from the stellar wind of an M-type giant companion. We measure a 9 GHz radio flux density of 105.3 ± 7.3 μJy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that strong magnetic fields (≥1012 G) do not necessarily suppress jet formation.

  20. Efficiency of an emissions payment system for nitrogen in sewage treatment plants - a case study.

    Science.gov (United States)

    Malmaeus, J Mikael; Ek, Mats; Åmand, Linda; Roth, Susanna; Baresel, Christian; Olshammar, Mikael

    2015-05-01

    An emissions payment system for nitrogen in Swedish sewage treatment plants (STPs) was evaluated using a semi-empirical approach. The system was based on a tariff levied on each unit of nitrogen emitted by STPs, and profitable measures to reduce nitrogen emissions were identified for twenty municipal STPs. This was done through direct involvement with the plant personnel and the results were scaled up to cover all treatment plants larger than 2000 person equivalents in the Swedish tributary areas of the Kattegat and the Baltic Proper. The sum of costs and nitrogen reductions were compared with an assumed command-and-control regulation requiring all STPs to obtain 80% total nitrogen reduction in their effluents. Costs for the latter case were estimated using a database containing standard estimates for reduction costs by six specified measures. For both cases a total reduction target of 3000 tonnes of nitrogen was set. We did not find that the emissions payment system was more efficient in terms of total reduction costs, although some practical and administrative advantages could be identified. Our results emphasize the need to evaluate the performance of policy instruments on a case-by-case basis since the theoretical efficiency is not always reflected in practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Design of a continuous emissions monitoring system at a manufacturing facility recycling hazardous waste

    International Nuclear Information System (INIS)

    Harlow, G.; Bartman, C.D.; Renfroe, J.

    1991-01-01

    In March 1988, Marine Shale Processors, Inc. (MSP) initiated a project to incorporate a continuous emissions monitoring system (CEMS) at its manufacturing facility in Amelia, Louisiana, which recycles hazardous material into light-weight, general purpose aggregate. The stimuli for the project were: To quantify stack gas emissions for the purpose of risk assessment; To use the data generated for process control and evaluation purposes; and, MSP's commitment to advance the science of continuous monitoring of stack gas emissions. In order to successfully respond to these goals, MSP sought a system which could monitor combustion products such as NOx, SO 2 , HCl and CO 2 , as well as speciated organic compounds. Several analytical technologies and sampling system designs were reviewed to determine the best fit to satisfy the requirements. A process mass spectrometer and a heated sample extraction subsystem were selected for the project. The purpose of this paper is to review the available analytical technologies for CEMS and sample extraction subsystems and to describe the CEMS now installed at MSP

  2. Novel microelectrode-based online system for monitoring N2O gas emissions during wastewater treatment.

    Science.gov (United States)

    Marques, Ricardo; Oehmen, Adrian; Pijuan, Maite

    2014-11-04

    Clark-type nitrous oxide (N2O) microelectrodes are commonly used for measuring dissolved N2O levels, but have not previously been tested for gas-phase applications, where the N2O emitted from wastewater systems can be directly quantified. In this study, N2O microelectrodes were tested and validated for online gas measurements, and assessed with respect to their temperature, gas flow, composition dependence, gas pressure, and humidity. An exponential correlation between temperature and sensor signal was found, whereas gas flow, composition, pressure, and humidity did not have any influence on the signal. Two of the sensors were tested at different N2O concentration ranges (0-422.3, 0-50, 0-10, and 0-2 ppmv N2O) and exhibited a linear response over each range. The N2O emission dynamics from two laboratory scale sequencing batch reactors performing ammonia or nitrite oxidation were also monitored using one of the microsensors and results were compared with two other analytical methods. Results show that N2O emissions were accurately described with these microelectrodes and support their application for assessing gaseous N2O emissions from wastewater treatment systems. Advantages of the sensors as compared to conventional measurement techniques include a wider quantification range of N2O fluxes, and a single measurement system that can assess both liquid and gas-phase N2O dynamics.

  3. Particles and emissions from a diesel engine equipped with a humid air motor system

    Energy Technology Data Exchange (ETDEWEB)

    Nord, Kent; Zurita, Grover; Tingvall, Bror; Haupt, Dan [Luleaa Univ. of Technology (Sweden). Div. of Environmental Technology

    2002-02-01

    A system for reduction of NO{sub x}, humid air motor system (HAM), has been connected to an eleven liters diesel engine. Earlier studies have demonstrated the system's capacity to lower NO{sub x}-emissions from diesel engines. The present study is directed to investigate their influence of the system on the emissions of particles, aldehydes and noise while at the same time monitoring essential engine parameters, water consumption and verifying the NO{sub x} reducing ability. The system has been tested under the various conditions stated in 13-mode cycle ECE R-49. Additional tests have been necessary for sampling and measurements of particles and noise. The results show that HAM caused a large reduction of the NO{sub x} emissions while the engine performance was almost unaffected. Average reduction of NO{sub x} during the different modes of ECE R-49 was 51,1%. The reduction was directly related to the humidity of the inlet air and a further reduction can be anticipated with higher humidity. Samples have also been taken for acetaldehydes and formaldehyde. The results suggest a large reduction of aldehydes, in the range of 78 to 100%, when using HAM. Unfortunately it cannot be excluded that the results obtained are a result of a combination of high air humidity and the sampling technique used. The influence of the system on the emission of hydrocarbons was negligible while a moderate increase in the emission of carbon monoxide was noticed. No confident relationship between air humidity and the observed effects could be detected. Particle number concentrations and size distribution have also been measured. The measurements showed that the particle number concentrations was usually increased when HAM was coupled to the engine. The increase in particle number concentration, observed in five out of six running modes, varied between 46 and 148%. There was no trend indicating a shift in mean particle diameter when using HAM. Noise level and cylinder pressure have also

  4. Reduced Nitrous Oxide Emissions in Tomato Cropping Systems under Drip Irrigation and Fertigation

    Science.gov (United States)

    Kennedy, T.; Suddick, E. C.; Six, J. W.

    2011-12-01

    In California, agriculture and forestry account for 8% of the total greenhouse gas (GHG) emissions, of which 50% is accounted for by nitrous oxide (N2O). Furrow irrigation and high temperatures in the Central Valley, together with conventional fertilization, are ideal for the production of food, but also N2O. These conditions lead to high N2O fluxes, but also mean there is great potential to reduce N2O emissions by optimizing fertilizer use and irrigation practices. Improving fertilizer use by better synchronizing nitrogen (N) availability and crop demand can reduce N losses and fertilizer costs. Smaller, more frequent fertilizer applications can increase the synchrony between available soil N and crop N uptake. Fertigation allows for more control over how much N is being added and can therefore allow for better synchrony throughout the growing season. In our study, we determined how management practices, such as fertilization, irrigation, tillage and harvest, affect direct N2O emissions in typical tomato cropping systems. We evaluated two contrasting irrigation managements and their associated fertilizer application method, i.e. furrow irrigation and knife injection versus drip irrigation and fertigation. Across two tomato-growing seasons, we found that shifts in fertilizer and irrigation water management directly affect GHG emissions. Seasonal N2O fluxes were 3.4 times lower under drip versus furrow irrigation. In 2010, estimated losses of fertilizer N as N2O were 0.60 ± 0.06 kg N2O-N ha-1 yr-1 in the drip system versus 2.06 ± 0.11 N2O-N kg ha-1 yr-1 in the furrow system, which was equivalent to 0.29% and 0.87% of the added fertilizer, respectively. Carbon dioxide (CO2) emissions were also lower in the drip system (2.21 ± 0.16 Mg CO2-C ha-1 yr-1) than the furrow system (4.65 ± 0.23 Mg CO2-C ha-1 yr-1). Soil mineral N, dissolved organic carbon and soil moisture also varied between the two systems and correlated positively with N2O and CO2 emissions, depending

  5. Predictive emission monitoring system (PEMS) for emission control in biomass fired plants; Predikterande emissionsmaetsystem (PEMS) foer emissionskontroll i biobraensleeldade foerbraenningsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Harnevie, H; Sarkoezi, L; Trenkle, S

    1996-08-01

    An alternative method for estimation of NO{sub x}-emissions from biomass fired plants has been investigated. The method, `Predictive emission monitoring` (PEMS), implicates the creation of a mathematical formula. The formula expresses the relations between NO{sub x}-emissions and various operating and external parameters, such as flue gas temperature, excess combustion air and heat load. In this study the applicability of PEMS has been tested for two plants both of type travelling stokers. The most important results of the study are: PEMS is suitable for emission monitoring for some types of biomass fired plants (for example travelling stokers) even if the plant is fired with fuel with varying water content. In most cases it should be sufficient if the relation is based on oxygen level in the flue gas and plant load, with the possible addition of flue gas temperature and/or furnace temperature rate. These parameters are usually measured in any case, which means that no additional investment in instrumentation is necessary. In this study many measured parameters (for example the throttle levels) did not affect the NO{sub x}-emissions. A PEMS relation is only applicable for a specific plant and for a fixed validity range. Thus the function should be performed in such a way that it covers the limits of the operating parameters of the plant. Usage of different fuels or drift optimization can only be done within the validity range. Good combustion conditions could be necessary to receive a usable PEMS-function. Before creating the PEMS-function the combustion and the emission levels must be optimized. In plants with very fluctuating combustion, for example fixed stokers, it is possible that PEMS leads to not satisfying results. The total cost for a PEM-function can be calculated to be about 50-70% compared to a CEM during a period of a decade. 8 refs, 13 figs, 15 tabs, 8 appendices

  6. Relaxation processes and structural transformations in amorphous Co-Fe-Si-B alloys

    International Nuclear Information System (INIS)

    Dus-Sitek, M.; Olszowski, Z.

    1994-01-01

    The thermostimulated electron emission (TSEE) method was applied for determination of relaxation and crystallization processes in amorphous alloys. By using the analogy of DTA-method, the activation energy of relaxation and crystallization processes has been determined from the measurements of changes of TSEE temperature maxima depending on the heating rate

  7. An inexact two-stage stochastic energy systems planning model for managing greenhouse gas emission at a municipal level

    International Nuclear Information System (INIS)

    Lin, Q.G.; Huang, G.H.

    2010-01-01

    Energy management systems are highly complicated with greenhouse-gas emission reduction issues and a variety of social, economic, political, environmental and technical factors. To address such complexities, municipal energy systems planning models are desired as they can take account of these factors and their interactions within municipal energy management systems. This research is to develop an interval-parameter two-stage stochastic municipal energy systems planning model (ITS-MEM) for supporting decisions of energy systems planning and GHG (greenhouse gases) emission management at a municipal level. ITS-MEM is then applied to a case study. The results indicated that the developed model was capable of supporting municipal energy systems planning and environmental management under uncertainty. Solutions of ITS-MEM would provide an effective linkage between the pre-regulated environmental policies (GHG-emission reduction targets) and the associated economic implications (GHG-emission credit trading).

  8. Carbon emission and sequestration of urban turfgrass systems in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Ling [School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China); Shi, Zhengjun [Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Science, Shenzhen (China); Chu, L.M., E-mail: leemanchu@cuhk.edu.hk [School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China)

    2014-03-01

    Climate change is more than just a global issue. Locally released carbon dioxide may lead to a rise in global ambient temperature and influence the surrounding climate. Urban greenery may mitigate this as they can remove carbon dioxide by storing carbon in substrates and vegetation. On the other hand, urban greenery systems which are under intense management and maintenance may contribute to the emission of carbon dioxide or other greenhouse gases. The impact of urban greenery on carbon balance in major metropolitan areas thus remains controversial. We investigated the carbon footprints of urban turf operation and maintenance by conducting a research questionnaire on different Hong Kong turfs in 2012, and showed that turf maintenance contributed 0.17 to 0.63 kg Ce m{sup −2} y{sup −1} to carbon emissions. We also determined the carbon storage of turfs at 0.05 to 0.21 kg C m{sup −2} for aboveground grass biomass and 1.26 to 4.89 kg C m{sup −2} for soils (to 15 cm depth). We estimated that the carbon sink capacity of turfs could be offset by carbon emissions in 5–24 years under current management patterns, shifting from carbon sink to carbon source. Our study suggested that maintenance management played a key role in the carbon budget and footprint of urban greeneries. The environmental impact of turfgrass systems can be optimized by shifting away from empirically designed maintenance schedules towards rational ones based on carbon sink and emission principles. - Highlights: • Carbon storage capacity at 0.05 to 0.21 kg C m{sup −2} for grasses and 1.26 to 4.89 kg C m{sup −2} for soils (to 15 cm depth). • Turf maintenance contributed to carbon emissions at 0.17 to 0.63 kg Ce (carbon equivalent) m{sup −2} y{sup −1}. • Turf system respiration was negatively correlated with soil carbon capacity but only in the wet season. • Carbon stored in turfs could be offset by maintenance carbon emissions in 5–24 years.

  9. Carbon emission and sequestration of urban turfgrass systems in Hong Kong

    International Nuclear Information System (INIS)

    Kong, Ling; Shi, Zhengjun; Chu, L.M.

    2014-01-01

    Climate change is more than just a global issue. Locally released carbon dioxide may lead to a rise in global ambient temperature and influence the surrounding climate. Urban greenery may mitigate this as they can remove carbon dioxide by storing carbon in substrates and vegetation. On the other hand, urban greenery systems which are under intense management and maintenance may contribute to the emission of carbon dioxide or other greenhouse gases. The impact of urban greenery on carbon balance in major metropolitan areas thus remains controversial. We investigated the carbon footprints of urban turf operation and maintenance by conducting a research questionnaire on different Hong Kong turfs in 2012, and showed that turf maintenance contributed 0.17 to 0.63 kg Ce m −2 y −1 to carbon emissions. We also determined the carbon storage of turfs at 0.05 to 0.21 kg C m −2 for aboveground grass biomass and 1.26 to 4.89 kg C m −2 for soils (to 15 cm depth). We estimated that the carbon sink capacity of turfs could be offset by carbon emissions in 5–24 years under current management patterns, shifting from carbon sink to carbon source. Our study suggested that maintenance management played a key role in the carbon budget and footprint of urban greeneries. The environmental impact of turfgrass systems can be optimized by shifting away from empirically designed maintenance schedules towards rational ones based on carbon sink and emission principles. - Highlights: • Carbon storage capacity at 0.05 to 0.21 kg C m −2 for grasses and 1.26 to 4.89 kg C m −2 for soils (to 15 cm depth). • Turf maintenance contributed to carbon emissions at 0.17 to 0.63 kg Ce (carbon equivalent) m −2 y −1 . • Turf system respiration was negatively correlated with soil carbon capacity but only in the wet season. • Carbon stored in turfs could be offset by maintenance carbon emissions in 5–24 years

  10. Comparative study of gas-analyzing systems designed for continuous monitoring of TPP emissions

    Science.gov (United States)

    Kondrat'eva, O. E.; Roslyakov, P. V.

    2017-06-01

    Determining the composition of combustion products is important in terms of both control of emissions into the atmosphere from thermal power plants and optimization of fuel combustion processes in electric power plants. For this purpose, the concentration of oxygen, carbon monoxide, nitrogen, and sulfur oxides in flue gases is monitored; in case of solid fuel combustion, fly ash concentration is monitored as well. According to the new nature conservation law in Russia, all large TPPs shall be equipped with continuous emission monitoring and measurement systems (CEMMS) into the atmosphere. In order to ensure the continuous monitoring of pollutant emissions, direct round-the-clock measurements are conducted with the use of either domestically produced or imported gas analyzers and analysis systems, the operation of which is based on various physicochemical methods and which can be generally used when introducing CEMMS. Depending on the type and purposes of measurement, various kinds of instruments having different features may be used. This article represents a comparative study of gas-analysis systems for measuring the content of polluting substances in exhaust gases based on various physical and physicochemical analysis methods. It lists basic characteristics of the methods commonly applied in the area of gas analysis. It is proven that, considering the necessity of the long-term, continuous operation of gas analyzers for monitoring and measurement of pollutant emissions into the atmosphere, as well as the requirements for reliability and independence from aggressive components and temperature of the gas flow, it is preferable to use optical gas analyzers for the aforementioned purposes. In order to reduce the costs of equipment comprising a CEMMS at a TPP and optimize the combustion processes, electrochemical and thermomagnetic gas analyzers may also be used.

  11. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system

    International Nuclear Information System (INIS)

    Scheutz, Charlotte; Pedersen, Rasmus Broe; Petersen, Per Haugsted; Jørgensen, Jørgen Henrik Bjerre; Ucendo, Inmaculada Maria Buendia; Mønster, Jacob G.; Samuelsson, Jerker; Kjeldsen, Peter

    2014-01-01

    Highlights: • An innovative biocover system was constructed on a landfill cell to mitigate the methane emission. • The biocover system had a mitigation efficiently of typically 80%. • The system also worked efficiently at ambient temperatures below freezing. • A whole landfill emission measurement tool was required to document the biocover system efficiency. - Abstract: Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options

  12. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system

    Energy Technology Data Exchange (ETDEWEB)

    Scheutz, Charlotte; Pedersen, Rasmus Broe [Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Petersen, Per Haugsted [Ramboll Denmark A/S, DK-5100 Odense C (Denmark); Jørgensen, Jørgen Henrik Bjerre [Klintholm I/S, DK-5874 Hasselager (Denmark); Ucendo, Inmaculada Maria Buendia; Mønster, Jacob G. [Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Samuelsson, Jerker [FluxSense AB/Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Kjeldsen, Peter, E-mail: pekj@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2014-07-15

    Highlights: • An innovative biocover system was constructed on a landfill cell to mitigate the methane emission. • The biocover system had a mitigation efficiently of typically 80%. • The system also worked efficiently at ambient temperatures below freezing. • A whole landfill emission measurement tool was required to document the biocover system efficiency. - Abstract: Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options.

  13. Energy and Greenhouse Gas Emission Assessment of Conventional and Solar Assisted Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Xiaofeng Li

    2015-11-01

    Full Text Available Energy consumption in the buildings is responsible for 26% of Australia’s greenhouse gas emissions where cooling typically accounts for over 50% of the total building energy use. The aim of this study was to investigate the potential for reducing the cooling systems’ environmental footprint with applications of alternative renewable energy source. Three types of cooling systems, water cooled, air cooled and a hybrid solar-based air-conditioning system, with a total of six scenarios were designed in this work. The scenarios accounted for the types of power supply to the air-conditioning systems with electricity from the grid and with a solar power from highly integrated building photovoltaics (BIPV. Within and between these scenarios, systems’ energy performances were compared based on energy modelling while the harvesting potential of the renewable energy source was further predicted based on building’s detailed geometrical model. The results showed that renewable energy obtained via BIPV scenario could cover building’s annual electricity consumption for cooling and reduce 140 tonnes of greenhouse gas emissions each year. The hybrid solar air-conditioning system has higher energy efficiency than the air cooled chiller system but lower than the water cooled system.

  14. A System of Tradable Permits to Control Emission of Greenhouse Gases in Norway. Challenges for the Petroleum Industry

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, Per

    1998-07-01

    This presentation discusses the instruments of climate policy, comments on carbon taxes, outlines a tradable permits system, tradable permits and the petroleum industry, revenue from the offshore, and clarifies impact for the petroleum industry. Measures to reduce emissions are grouped into four: (1) Taxes on the emitted quantity, (2) Regulations that force companies to use certain processes or technologies, (3) Emission permits, (4) Information.

  15. Greenhouse gas emissions from the mineralisation process in a Sludge Treatment Reed Bed system: Seasonal variation and environmental impact

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen; Scheutz, Charlotte

    2017-01-01

    Greenhouse gas emission data from the mineralisation process in Sludge Treatment Reed Bed systems (STRB) are scarce. The aim of this study was to quantify the emission rates of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and to investigate seasonal variations in order to estimate ...

  16. 40 CFR Table 10 to Subpart Uuu of... - Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units 10 Table 10 to Subpart UUU of Part 63 Protection of... Organic HAP Emissions From Catalytic Cracking Units As stated in § 63.1565(b)(1), you shall meet each...

  17. 40 CFR Table 17 to Subpart Uuu of... - Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Reforming Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Reforming Units 17 Table 17 to Subpart UUU of Part 63 Protection of... Organic HAP Emissions From Catalytic Reforming Units As stated in § 63.1566(b)(1), you shall meet each...

  18. Emissions and emission reduction systems in the coal derivative production facilities of a coking plant. Emissionsquellen in Kohlenwertstoffbetrieben von Kokereien und Massnahmen zu ihrer Verminderung

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Coking plants may present odour unisances to their vicinity although these odours are no health problem. Typical odorants emitted by a coking plant are: Hydrogen sulfide, mercaptanes, carbon sulfide, naphthaline, phenol and ammonia. The odour threshold of these substances may be quite close to the analytical detection limit. There are a large number of emission sources, e.g. production and storage containers, baths, tar sinks, and ventilation systems. The report describes the possible sources of emissions as well as the countermeasures available at the present state of the art.

  19. Examination of the optimal operation of building scale combined heat and power systems under disparate climate and GHG emissions rates

    International Nuclear Information System (INIS)

    Howard, B.; Modi, V.

    2017-01-01

    Highlights: • CHP attributable reductions, not viable by electric generation alone, are defined. • Simplified operating strategy heuristics are optimal under specific circumstances. • Phosphoric acid fuel cells yield the largest reductions except in the extremes. • Changes in baseline emissions affect the optimal system capacity and operating hours. - Abstract: This work aims to elucidate notions concerning the ideal operation and greenhouse gas (GHG) emissions benefits of combined heat and power (CHP) systems by investigating how various metrics change as a function of the GHG emissions from the underlying electricity source, building use type and climate. Additionally, a new term entitled “CHP Attributable” reductions is introduced to quantify the benefits from the simultaneous use of thermal and electric energy, removing benefits achieved solely from fuel switching and generating electricity more efficiently. The GHG emission benefits from implementing internal combustion engine, microturbines, and phosphoric acid (PA) fuel cell based CHP systems were evaluated through an optimization approach considering energy demands of prototypical hospital, office, and residential buildings in varied climates. To explore the effect of electric GHG emissions rates, the ideal operation of the CHP systems was evaluated under three scenarios: “High” GHG emissions rates, “Low” GHG emissions rates, and “Current” GHG emissions rate for a specific location. The analysis finds that PA fuel cells achieve the highest GHG emission reductions in most cases considered, though there are exceptions. Common heuristics, such as electric load following and thermal load following, are the optimal operating strategy under specific conditions. The optimal CHP capacity and operating hours both vary as a function of building type, climate and GHG emissions rates from grid electricity. GHG emissions reductions can be as high as 49% considering a PA fuel cell for a

  20. A High-Performance VME-Based Acquisition System for Positron Emission Mammography

    International Nuclear Information System (INIS)

    Abbott, D.J.; Weisenberger, A.; Majewski, S.; Kieper, D.; Kross, B.; Popov, V.; Wojcik, R.; Raylman, R.R.

    2001-01-01

    A prototype for a practical and economical breast imaging system for cancer detection is currently under development at Jefferson Lab. The latest advances in bright, fast, crystal scintillators, compact position-sensitive photomultipliers (PSPMT), and high-performance digitizing and readout electronics are being used to develop a compact imager based on Positron Emission Tomography (PET). To facilitate the performance demands of the detector as well as the high number of readout channels, the data acquisition system is built around an intelligent, self-contained, VME form-factor

  1. Landfill methane emission mitigation – How to construct and document a full‐scale biocover system

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2014-01-01

    Landfills receiving organic wastes produce biogas (landfill gas – LFG) containing methane (CH4). Landfills are significant sources of methane, which contributes to climate change. As an alternative to gas utilization systems or as a follow‐on technology when a gas utilization system gets non...... rate can be obtained in soils, compost and other materials, high enough to significant reduce the methane emission from landfills. The process has been scaled up by DTU Environment to a full‐scale implemented technology at two Danish landfills. Now the Danish government has decided to establish bio...

  2. Emissions of PCDD/Fs, PCBs, and PAHs from a modern diesel engine equipped with catalyzed emission control systems.

    Science.gov (United States)

    Laroo, Christopher A; Schenk, Charles R; Sanchez, L James; McDonald, Joseph

    2011-08-01

    Exhaust emissions of 17 2,3,7,8-substituted chlorinated dibenzo-p-dioxin/furan (CDD/F) congeners, tetra-octa CDD/F homologues, 12 2005 WHO chlorinated biphenyls (CB) congeners, mono-nona CB homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from a model year 2008 Cummins ISB engine were investigated. Testing included configurations composed of different combinations of aftertreatment including a diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF), copper zeolite urea selective catalytic reduction (SCR), iron zeolite SCR, and ammonia slip catalyst. Results were compared to a baseline engine out configuration. Testing included the use of fuel that contained the maximum expected chlorine (Cl) concentration of U.S. highway diesel fuel and a Cl level 1.5 orders of magnitude above. Results indicate there is no risk for an increase in polychlorinated dibenzo-p-dioxin/furan and polychlorinated biphenyl emissions from modern diesel engines with catalyzed aftertreatment when compared to engine out emissions for configurations tested in this program. These results, along with PAH results, compare well with similar results from modern diesel engines in the literature. The results further indicate that polychlorinated dibenzo-p-dioxin/furan emissions from modern diesel engines both with and without aftertreatment are below historical values reported in the literature as well as the current inventory value.

  3. The Impact of the EU Emissions Trading System on CO{sub 2} Intensity in Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Widerberg, Anna (Dept. of Economics, Goeteborgs Univ., Goeteborg (Sweden)); Wraake, Markus (Swedish Environmental Research Institute Ltd., Stockholm (Sweden)). e-mail: markus.wrake@ivl.se

    2009-07-15

    Prior to the launch of the EU Emissions Trading System (EU ETS) in 2005, the electricity sector was widely proclaimed to have more low-cost emission abatement opportunities than other sectors. If this were true, effects of the EU ETS on carbon dioxide (CO{sub 2}) emissions would likely be visible in the electricity sector. Our study looks at the effect of the price of emission allowances (EUA) on CO{sub 2} emissions from Swedish electricity generation, using an econometric time series analysis for the period 2004-2008. We control for effects of other input prices and hydropower reservoir levels. Our results do not indicate any link between the price of EUA and the CO{sub 2} emissions of Swedish electricity production. A number of reasons may explain this result and we conclude that other determinants of fossil fuel use in Swedish electricity generation probably diminished the effects of the EU ETS

  4. Global atmospheric response to emissions from a proposed reusable space launch system

    Science.gov (United States)

    Larson, Erik J. L.; Portmann, Robert W.; Rosenlof, Karen H.; Fahey, David W.; Daniel, John S.; Ross, Martin N.

    2017-01-01

    Modern reusable launch vehicle technology may allow high flight rate space transportation at low cost. Emissions associated with a hydrogen fueled reusable rocket system are modeled based on the launch requirements of developing a space-based solar power system that generates present-day global electric energy demand. Flight rates from 104 to 106 per year are simulated and sustained to a quasisteady state. For the assumed rocket engine, H2O and NOX are the primary emission products; this also includes NOX produced during reentry heating. For a base case of 105 flights per year, global stratospheric and mesospheric water vapor increase by approximately 10 and 100%, respectively. As a result, high-latitude cloudiness increases in the lower stratosphere and near the mesopause by as much as 20%. Increased water vapor also results in global effective radiative forcing of about 0.03 W/m2. NOX produced during reentry exceeds meteoritic production by more than an order of magnitude, and along with in situ stratospheric emissions, results in a 0.5% loss of the globally averaged ozone column, with column losses in the polar regions exceeding 2%.

  5. The phenomenon of nucleon emission at high angular momentum states of fused compound systems

    CERN Document Server

    Rajasekaran, T R; Santhosh-Kumar, S

    2003-01-01

    Nucleon emission from high spin fused compound systems is analyzed in the framework of the statistical theory of hot rotating (STHR) nuclei. This is an elaborate version of our earlier work and we present our results for sup 1 sup 5 sup 6 Er, sup 1 sup 6 sup 6 Er, sup 1 sup 6 sup 8 Yb and sup 1 sup 8 sup 8 Hg. We predict an increase in neutron emission for sup 1 sup 6 sup 6 Er due to the abrupt decrease in neutron separation energy around I approx 55h. Since the drop in the separation energy is closely associated with the structural changes in the rotating nuclei, relative increase in neutron emission probability around certain values of angular momentum may be construed as evidence for the shape transition. A similar effect is predicted for sup 1 sup 6 sup 8 Yb around I approx 55h. We also extend the microscopic cranked Nilsson method (CNM) to hot nuclear systems and compare the results with that of the STHR method. The two methods yield different results for triaxially deformed nuclei although for biaxial d...

  6. Modelling Holocene carbon accumulation and methane emissions of boreal wetlands – an Earth system model approach

    Directory of Open Access Journals (Sweden)

    R. J. Schuldt

    2013-03-01

    Full Text Available Since the Last Glacial Maximum, boreal wetlands have accumulated substantial amounts of peat, estimated at 180–621 Pg of carbon. Wetlands have significantly affected the atmospheric greenhouse gas composition in the past and will play a significant role in future changes of atmospheric CO2 and CH4 concentrations. In order to investigate those changes with an Earth system model, biogeochemical processes in boreal wetlands need to be accounted for. Thus, a model of peat accumulation and decay was developed and included in the land surface model JSBACH of the Max Planck Institute Earth System Model (MPI-ESM. Here we present the evaluation of model results from 6000 yr BP to the pre-industrial period. Over this period of time, 240 Pg of peat carbon accumulated in the model in the areas north of 40° N. Simulated peat accumulation rates agree well with those reported for boreal wetlands. The model simulates CH4 emissions of 49.3 Tg CH4 yr−1 for 6000 yr BP and 51.5 Tg CH4 yr−1 for pre-industrial times. This is within the range of estimates in the literature, which range from 32 to 112 Tg CH4 yr−1 for boreal wetlands. The modelled methane emission for the West Siberian Lowlands and Hudson Bay Lowlands agree well with observations. The rising trend of methane emissions over the last 6000 yr is in agreement with measurements of Antarctic and Greenland ice cores.

  7. Climate-Smart Livestock Systems: An Assessment of Carbon Stocks and GHG Emissions in Nicaragua.

    Directory of Open Access Journals (Sweden)

    Lucía Gaitán

    Full Text Available Livestock systems in the tropics can contribute to mitigate climate change by reducing greenhouse gas (GHG emissions and increasing carbon accumulation. We quantified C stocks and GHG emissions of 30 dual-purpose cattle farms in Nicaragua using farm inventories and lifecycle analysis. Trees in silvo-pastoral systems were the main C stock above-ground (16-24 Mg ha-1, compared with adjacent secondary forests (43 Mg C ha-1. We estimated that methane from enteric fermentation contributed 1.6 kg CO2-eq., and nitrous oxide from excreta 0.4 kg CO2-eq. per kg of milk produced. Seven farms that we classified as climate-smart agriculture (CSA out of 16 farms had highest milk yields (6.2 kg cow-1day-1 and lowest emissions (1.7 kg CO2-eq. per kg milk produced. Livestock on these farms had higher-quality diets, especially during the dry season, and manure was managed better. Increasing the numbers of CSA farms and improving CSA technology will require better enabling policy and incentives such as payments for ecosystem services.

  8. Climate-Smart Livestock Systems: An Assessment of Carbon Stocks and GHG Emissions in Nicaragua.

    Science.gov (United States)

    Gaitán, Lucía; Läderach, Peter; Graefe, Sophie; Rao, Idupulapati; van der Hoek, Rein

    2016-01-01

    Livestock systems in the tropics can contribute to mitigate climate change by reducing greenhouse gas (GHG) emissions and increasing carbon accumulation. We quantified C stocks and GHG emissions of 30 dual-purpose cattle farms in Nicaragua using farm inventories and lifecycle analysis. Trees in silvo-pastoral systems were the main C stock above-ground (16-24 Mg ha-1), compared with adjacent secondary forests (43 Mg C ha-1). We estimated that methane from enteric fermentation contributed 1.6 kg CO2-eq., and nitrous oxide from excreta 0.4 kg CO2-eq. per kg of milk produced. Seven farms that we classified as climate-smart agriculture (CSA) out of 16 farms had highest milk yields (6.2 kg cow-1day-1) and lowest emissions (1.7 kg CO2-eq. per kg milk produced). Livestock on these farms had higher-quality diets, especially during the dry season, and manure was managed better. Increasing the numbers of CSA farms and improving CSA technology will require better enabling policy and incentives such as payments for ecosystem services.

  9. Directional sound beam emission from a configurable compact multi-source system

    KAUST Repository

    Zhao, Jiajun

    2018-01-12

    We propose to achieve efficient emission of highly directional sound beams from multiple monopole sources embedded in a subwavelength enclosure. Without the enclosure, the emitted sound fields have an indistinguishable or omnidirectional radiation directivity in far fields. The strong directivity formed in the presence of the enclosure is attributed to interference of sources under degenerate Mie resonances in the enclosure of anisotropic property. Our numerical simulations of sound emission from the sources demonstrate the radiation of a highly directed sound beam of unidirectional or bidirectional patterns, depending on how the sources are configured inside the enclosure. Our scheme, if achieved, can solve the challenging problem of poor directivity of a subwavelength sound system, and can guide beam forming and collimation by miniaturized devices.

  10. Modeling of Spray System Operation under Hydrogen and Steam Emissions in NPP Containment during Severe Accident

    Directory of Open Access Journals (Sweden)

    Vadim E. Seleznev

    2011-01-01

    Full Text Available The paper describes one of the variants of mathematical models of a fluid dynamics process inside the containment, which occurs in the conditions of operation of spray systems in severe accidents at nuclear power plant. The source of emergency emissions in this case is the leak of the coolant or rupture at full cross-section of the main circulating pipeline in a reactor building. Leak or rupture characteristics define the localization and the temporal law of functioning of a source of emergency emission (or accrued operating of warmed up hydrogen and steam in the containment. Operation of this source at the course of analyzed accident models should be described by the assignment of the relevant Dirichlet boundary conditions. Functioning of the passive autocatalytic recombiners of hydrogen is described in the form of the complex Newton boundary conditions.

  11. The electronics system for the LBNL positron emission mammography (PEM) camera

    CERN Document Server

    Moses, W W; Baker, K; Jones, W; Lenox, M; Ho, M H; Weng, M

    2001-01-01

    Describes the electronics for a high-performance positron emission mammography (PEM) camera. It is based on the electronics for a human brain positron emission tomography (PET) camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An application-specified integrated circuit (ASIC) services the photodetector (PD) array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field-programmable gate arrays (FPGAs) and lookup RAMs are used to apply crystal-by-crystal correction factors and measure the energy deposit and the interaction depth (based on the PD/PMT ratio). Additional FPGAs provide event multiplexing, derandomization, coincidence detection, and real-time rebinning. Embedded PC/104 microprocessors provide communication, real-time control, and configure the system. Extensive use of FPGAs make the overall design extremely flexible, all...

  12. Mitigation of methane emission from Fakse landfill using a biowindow system

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Fredenslund, Anders Michael; Chanton, Jeffrey

    2011-01-01

    Landfills are significant sources of atmospheric methane (CH4) that contributes to climate change, and therefore there is a need to reduce CH4 emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called “biocovers”) to enhance biological...... of biocover systems. The study also revealed that there still exist several challenges to better optimize the functionality. The most important challenges are to control gas flow and evenly distribute the gas into the biocovers.......Landfills are significant sources of atmospheric methane (CH4) that contributes to climate change, and therefore there is a need to reduce CH4 emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called “biocovers”) to enhance biological...

  13. Carbon emission trading system of China: a linked market vs. separated markets

    Science.gov (United States)

    Liu, Yu; Feng, Shenghao; Cai, Songfeng; Zhang, Yaxiong; Zhou, Xiang; Chen, Yanbin; Chen, Zhanming

    2013-12-01

    The Chinese government intends to upgrade its current provincial carbon emission trading pilots to a nationwide scheme by 2015. This study investigates two of scenarios: separated provincial markets and a linked inter-provincial market. The carbon abatement effects of separated and linked markets are compared using two pilot provinces of Hubei and Guangdong based on a computable general equilibrium model termed Sino-TERMCo2. Simulation results show that the linked market can improve social welfare and reduce carbon emission intensity for the nation as well as for the Hubei-Guangdong bloc compared to the separated market. However, the combined system also distributes welfare more unevenly and thus increases social inequity. On the policy ground, the current results suggest that a well-constructed, nationwide carbon market complemented with adequate welfare transfer policies can be employed to replace the current top-down abatement target disaggregation practice.

  14. Rational bioenergy utilisation in energy systems and impacts on CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Wahlund, Bertil

    2003-04-01

    The increased use of biomass in energy systems is an important strategy to reduce CO{sub 2} emissions. The purpose of this thesis has been to analyse the opportunities for Sweden to further reduce CO{sub 2} emissions in the energy system, by rationally utilising woody biomass energy. The characteristics of current commercially operating biofuel-based CHP plants in Sweden are surveyed and systematically presented. A consistent and transparent comprehensive reference base for system comparisons is given. Furthermore, the fuel effectiveness and contribution to CO{sub 2} reduction is calculated. The governmental subsidies of the CHP plants investment, expressed as cost of specific CO{sub 2} reduction, appears to be low. The competitiveness of biomass-fuelled energy production in relation to fossil-based production with carbon capture is analysed, showing that the biomass-fuelled systems provide a competitive option, in terms of cost of electricity and efficiencies. The remaining Swedish woody biofuel potential of at least 100 PJ/yr is principally available in regions with a biomass surplus. Transportation is therefore required to enable its utilisation in national and international markets. Refining the biofuel feedstock to pellets, or even further refining to motor fuels (DME, methanol or ethanol) or power, could facilitate this transport. Different options for fuel refining are studied and compared. The entire fuel chain, from fuel feedstock to end users, is considered and CO{sub 2} emissions are quantified. Substituting fuel pellets for coal appears to be the most cost effective alternative and shows the largest CO{sub 2} reduction per energy unit biofuel. Motor fuels appear more costly and give about half the CO{sub 2} reduction. Transportation of the upgraded biofuel pellets is highly feasible from CO{sub 2} emissions point of view and does not constitute a hindrance for further utilisation, i.e. the pellets can be transported over long distances efficiently with

  15. Preliminary Development of Online Monitoring Acoustic Emission System for the Integrity of Research Reactor Components

    Science.gov (United States)

    Bakhri, S.; Sumarno, E.; Himawan, R.; Akbar, T. Y.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    Three research reactors owned by BATAN have been more than 25 years. Aging of (Structure, System and Component) SSC which is mainly related to mechanical causes become the most important issue for the sustainability and safety operation. Acoustic Emission (AE) is one of the appropriate and recommended methods by the IAEA for inspection as well as at the same time for the monitoring of mechanical SSC related. However, the advantages of AE method in detecting the acoustic emission both for the inspection and the online monitoring require a relatively complex measurement system including hardware software system for the signal detection and analysis purposes. Therefore, aim of this work was to develop an AE system based on an embedded system which capable for doing both the online monitoring and inspection of the research reactor’s integrity structure. An embedded system was selected due to the possibility to install the equipment on the field in extreme environmental condition with capability to store, analyses, and send the required information for further maintenance and operation. The research was done by designing the embedded system based on the Field Programmable Gate Array (FPGA) platform, because of their execution speed and system reconfigurable opportunities. The AE embedded system is then tested to identify the AE source location and AE characteristic under tensile material testing. The developed system successfully acquire the AE elastic waveform and determine the parameter-based analysis such as the amplitude, peak, duration, rise time, counts and the average frequency both for the source location test and the tensile test.

  16. Field and laboratory emission cell automation and control system for investigating surface chemistry reactions

    Science.gov (United States)

    Flemmer, Michael M.; Ham, Jason E.; Wells, J. R.

    2007-01-01

    A novel system [field and laboratory emission cell (FLEC) automation and control system] has been developed to deliver ozone to a surface utilizing the FLEC to simulate indoor surface chemistry. Ozone, humidity, and air flow rate to the surface were continuously monitored using an ultraviolet ozone monitor, humidity, and flow sensors. Data from these sensors were used as feedback for system control to maintain predetermined experimental parameters. The system was used to investigate the chemistry of ozone with α-terpineol on a vinyl surface over 72h. Keeping all other experimental parameters the same, volatile organic compound emissions from the vinyl tile with α-terpineol were collected from both zero and 100ppb(partsper109) ozone exposures. System stability profiles collected from sensor data indicated experimental parameters were maintained to within a few percent of initial settings. Ozone data from eight experiments at 100ppb (over 339h) provided a pooled standard deviation of 1.65ppb and a 95% tolerance of 3.3ppb. Humidity data from 17 experiments at 50% relative humidity (over 664h) provided a pooled standard deviation of 1.38% and a 95% tolerance of 2.77%. Data of the flow rate of air flowing through the FLEC from 14 experiments at 300ml/min (over 548h) provided a pooled standard deviation of 3.02ml/min and a 95% tolerance range of 6.03ml/min. Initial experimental results yielded long term emissions of ozone/α-terpineol reaction products, suggesting that surface chemistry could play an important role in indoor environments.

  17. Preliminary performance and operating results from the integrated dry NOx/SO2 emissions control system

    International Nuclear Information System (INIS)

    Hunt, T.; Schott, G.; Smith, R.; Muzio, L.; Jones, D.; Mali E.; Arrigoni, T.

    1993-01-01

    The Integrated Dry NO x /SO 2 Emissions Control System was installed at Public Service Company of Colorado's Arapaho 4 generating station in 1992 in cooperation with the U.S. Department of Energy (DOE) and and the Electric Power Research Institute (EPRI). This full scale 100 MWe demonstration combines low-NO x burners, overfire air, and selective noncatalytic reduction (SNCR) for NO x control and dry sorbent injection with humidification for SO 2 control. Operation and testing of the Integrated Dry NO x /SO 2 Emissions Control System began in August 1992 and will continue through mid 1994. Preliminary results of the NO x control technologies show that the original system goal of 70% NO x removal has been easily met and that NO x removals of up to 80% are possible at full load with the combustion and SNCR systems. Testing of the dry sorbent injection system with low sulfur coal began in April 1993 using a calcium-based reagent. A maximum SO 2 removal of 40% has been achieved with duct injection of commercial calcium hydroxide and humidification to a 25 degrees F approach to saturation. Sodium-based dry sorbent injection is expected to achieved up to a 70% SO 2 reduction

  18. Upgradation of an Apple IIe based DC arc atomic emission spectrometer to a PC based system

    International Nuclear Information System (INIS)

    Sampathkumar, R.; Ravindranath, S.V.G.; Patil, P.B.; Deshpande, S.S.; Saha, T.K.; Handu, V.K.

    2004-01-01

    The analysis of Uranium metal and its compounds used as reactor fuel for the presence of impurities especially Cd and B which have a high neutron capture cross section is routinely performed in Spectroscopy Division. The DC Arc Atomic Emission Spectrometer in the Division was employing an Apple IIe computer for performing the control and data acquisition jobs. The system was upgraded to a PC based data acquisition system and the necessary software to perform the spectro chemical analysis has been developed. This becomes necessary in a scenario where the commercially available Atomic Emission Spectrometers are no longer equipped with DC arc source. Also the Apple IIe computer which was performing the control and data acquisition has gone obsolete and its spares are no longer available. Therefore, to derive the benefits of using DC arc as excitation source the system was upgraded to a PC based system. This paper describes the upgraded system and the various software features relating to the mode of data acquisition, method of analysis, data processing etc. implemented as required by the analysts. (author)

  19. Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems.

    Science.gov (United States)

    Weller, Sebastian; Janz, Baldur; Jörg, Lena; Kraus, David; Racela, Heathcliff S U; Wassmann, Reiner; Butterbach-Bahl, Klaus; Kiese, Ralf

    2016-01-01

    Global rice agriculture will be increasingly challenged by water scarcity, while at the same time changes in demand (e.g. changes in diets or increasing demand for biofuels) will feed back on agricultural practices. These factors are changing traditional cropping patterns from double-rice cropping to the introduction of upland crops in the dry season. For a comprehensive assessment of greenhouse gas (GHG) balances, we measured methane (CH4 )/nitrous oxide (N2 O) emissions and agronomic parameters over 2.5 years in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) in upland cultivation. Introduction of upland crops in the dry season reduced irrigation water use and CH4 emissions by 66-81% and 95-99%, respectively. Moreover, for practices including upland crops, CH4 emissions in the subsequent wet season with paddy rice were reduced by 54-60%. Although annual N2 O emissions increased two- to threefold in the diversified systems, the strong reduction in CH4 led to a significantly lower (P < 0.05) annual GWP (CH4  + N2 O) as compared to the traditional double-rice cropping system. Measurements of soil organic carbon (SOC) contents before and 3 years after the introduction of upland crop rotations indicated a SOC loss for the R-M system, while for the other systems SOC stocks were unaffected. This trend for R-M systems needs to be followed as it has significant consequences not only for the GWP balance but also with regard to soil fertility. Economic assessment showed a similar gross profit span for R-M and R-R, while gross profits for R-A were reduced as a consequence of lower productivity. Nevertheless, regarding a future increase in water scarcity, it can be expected that mixed lowland-upland systems will expand in SE Asia as water requirements were cut by more than half in both rotation systems with upland crops. © 2015 John Wiley & Sons Ltd.

  20. Effects of mass airflow rate through an open-circuit gas quantification system when measuring carbon emissions.

    Science.gov (United States)

    Gunter, Stacey A; Bradford, James A; Moffet, Corey A

    2017-01-01

    Methane (CH) and carbon dioxide (CO) represent 11 and 81%, respectively, of all anthropogenic greenhouse gas emissions. Agricultural CH emissions account for approximately 43% of all anthropogenic CH emissions. Most agricultural CH emissions are attributed to enteric fermentation within ruminant livestock; hence, the heightened interest in quantifying and mitigating this source. The automated, open-circuit gas quantification system (GQS; GreenFeed, C-Lock, Inc., Rapid City, SD) evaluated here can be placed in a pasture with grazing cattle and can measure their CH and CO emissions with spot sampling. However, improper management of the GQS can have an erroneous effect on emission estimates. One factor affecting the quality of emission estimates is the airflow rates through the GQS to ensure a complete capture of the breath cloud emitted by the animal. It is hypothesized that at lower airflow rates this cloud will be incompletely captured. To evaluate the effect of airflow rate through the GQS on emission estimates, a data set was evaluated with 758 CO and CH emission estimates with a range in airflows of 10.7 to 36.6 L/s. When airflow through the GQS was between 26.0 and 36.6 L/s, CO and CH emission estimates were not affected ( = 0.14 and 0.05, respectively). When airflow rates were less than 26.0 L/s, CO and CH emission estimates were lower and decreased as airflow rate decreased ( emissions are underestimated. Maintaining mass airflow through a GQS at rates greater than 26 L/s is important for producing high quality CO and CH emission estimates.

  1. Analysis of Emission Effects Related to Drivers’ Compliance Rates for Cooperative Vehicle-Infrastructure System at Signalized Intersections

    Directory of Open Access Journals (Sweden)

    Ruohua Liao

    2018-01-01

    Full Text Available Unknown remaining time of signal phase at a signalized intersection generally results in extra accelerations and decelerations that increase variations of operating conditions and thus emissions. A cooperative vehicle-infrastructure system can reduce unnecessary speed changes by establishing communications between vehicles and the signal infrastructure. However, the environmental benefits largely depend on drivers’ compliance behaviors. To quantify the effects of drivers’ compliance rates on emissions, this study applied VISSIM 5.20 (Planung Transport Verkehr AG, Karlsruhe, Germany to develop a simulation model for a signalized intersection, in which light duty vehicles were equipped with a cooperative vehicle-infrastructure system. A vehicle-specific power (VSP-based model was used to estimate emissions. Based on simulation data, the effects of different compliance rates on VSP distributions, emission factors, and total emissions were analyzed. The results show the higher compliance rate decreases the proportion of VSP bin = 0, which means that the frequencies of braking and idling were lower and light duty vehicles ran more smoothly at the intersection if more light duty vehicles complied with the cooperative vehicle-infrastructure system, and emission factors for light duty vehicles decreased significantly as the compliance rate increased. The case study shows higher total emission reductions were observed with higher compliance rate for all of CO2, NOx, HC, and CO emissions. CO2 was reduced most significantly, decreased by 16% and 22% with compliance rates of 0.3 and 0.7, respectively.

  2. Analysis of Emission Effects Related to Drivers' Compliance Rates for Cooperative Vehicle-Infrastructure System at Signalized Intersections.

    Science.gov (United States)

    Liao, Ruohua; Chen, Xumei; Yu, Lei; Sun, Xiaofei

    2018-01-12

    Unknown remaining time of signal phase at a signalized intersection generally results in extra accelerations and decelerations that increase variations of operating conditions and thus emissions. A cooperative vehicle-infrastructure system can reduce unnecessary speed changes by establishing communications between vehicles and the signal infrastructure. However, the environmental benefits largely depend on drivers' compliance behaviors. To quantify the effects of drivers' compliance rates on emissions, this study applied VISSIM 5.20 (Planung Transport Verkehr AG, Karlsruhe, Germany) to develop a simulation model for a signalized intersection, in which light duty vehicles were equipped with a cooperative vehicle-infrastructure system. A vehicle-specific power (VSP)-based model was used to estimate emissions. Based on simulation data, the effects of different compliance rates on VSP distributions, emission factors, and total emissions were analyzed. The results show the higher compliance rate decreases the proportion of VSP bin = 0, which means that the frequencies of braking and idling were lower and light duty vehicles ran more smoothly at the intersection if more light duty vehicles complied with the cooperative vehicle-infrastructure system, and emission factors for light duty vehicles decreased significantly as the compliance rate increased. The case study shows higher total emission reductions were observed with higher compliance rate for all of CO₂, NO x , HC, and CO emissions. CO₂ was reduced most significantly, decreased by 16% and 22% with compliance rates of 0.3 and 0.7, respectively.

  3. Analysis of Emission Effects Related to Drivers’ Compliance Rates for Cooperative Vehicle-Infrastructure System at Signalized Intersections

    Science.gov (United States)

    Liao, Ruohua; Yu, Lei; Sun, Xiaofei

    2018-01-01

    Unknown remaining time of signal phase at a signalized intersection generally results in extra accelerations and decelerations that increase variations of operating conditions and thus emissions. A cooperative vehicle-infrastructure system can reduce unnecessary speed changes by establishing communications between vehicles and the signal infrastructure. However, the environmental benefits largely depend on drivers’ compliance behaviors. To quantify the effects of drivers’ compliance rates on emissions, this study applied VISSIM 5.20 (Planung Transport Verkehr AG, Karlsruhe, Germany) to develop a simulation model for a signalized intersection, in which light duty vehicles were equipped with a cooperative vehicle-infrastructure system. A vehicle-specific power (VSP)-based model was used to estimate emissions. Based on simulation data, the effects of different compliance rates on VSP distributions, emission factors, and total emissions were analyzed. The results show the higher compliance rate decreases the proportion of VSP bin = 0, which means that the frequencies of braking and idling were lower and light duty vehicles ran more smoothly at the intersection if more light duty vehicles complied with the cooperative vehicle-infrastructure system, and emission factors for light duty vehicles decreased significantly as the compliance rate increased. The case study shows higher total emission reductions were observed with higher compliance rate for all of CO2, NOx, HC, and CO emissions. CO2 was reduced most significantly, decreased by 16% and 22% with compliance rates of 0.3 and 0.7, respectively. PMID:29329214

  4. Design of Static Wireless Charging System for Electric Vehicles with Focus on Magnetic Coupling and Emissions

    DEFF Research Database (Denmark)

    Batra, Tushar

    summarizes the research findings of the study. Wireless charging system as per state of art design approach consists of four major blocks: primary power electronics, inductors, secondary power electronics including load and resonant circuits (capacitors). The first contribution of this project is addition...... as an equivalent power source and transmission system including the load similar to other electric system like grids. Secondly, design parameters of output power, circuit efficiency and voltage or current stress across resonant components can be expressed as simple functions of the five blocks. Inductors......-parallel are compared in term of the emissions for similar power rating. Series-parallel topology has slight advantage over its series-series counterpart on account of additional inductive secondary current component as advised by the results. At the end, a wireless charging system has been designed and constructed...

  5. Compact three-dimensional super-resolution system based on fluorescence emission difference microscopy

    Science.gov (United States)

    Zhu, Dazhao; Chen, Youhua; Fang, Yue; Hussain, Anwar; Kuang, Cuifang; Zhou, Xiaoxu; Xu, Yingke; Liu, Xu

    2017-12-01

    A compact microscope system for three-dimensional (3-D) super-resolution imaging is presented. The super-resolution capability of the system is based on a size-reduced effective 3-D point spread function generated through the fluorescence emission difference (FED) method. The appropriate polarization direction distribution and manipulation allows the panel active area of the spatial light modulator to be fully utilized. This allows simultaneous modulation of the incident light by two kinds of phase masks to be performed with a single spatial light modulator in order to generate a 3-D negative spot. The system is more compact than standard 3-D FED systems while maintaining all the advantages of 3-D FED microscopy. The experimental results demonstrated the improvement in 3-D resolution by nearly 1.7 times and 1.6 times compared to the classic confocal resolution in the lateral and axial directions, respectively.

  6. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems

    Science.gov (United States)

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C.; Thornton, Philip K.; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-01-01

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system. PMID:24344273

  7. The Best (and Worst) of GHG Emission Trading Systems: Comparing the EU ETS with Its Followers

    International Nuclear Information System (INIS)

    Borghesi, Simone; Montini, Massimiliano

    2016-01-01

    The European Emission Trading System (EU ETS) is generally considered as the prototype system for the other Emission Trading Systems (ETSs) for the reduction of greenhouse gases (GHGs) that are rapidly spreading around the world. To get a deeper understanding on the actual capacity of the EU ETS to stand as a model for the other ETSs, the present paper discusses the differences and similarities of the EU ETS with respect to the other main ETSs and the emerging trends that these systems seem to share, comparing the different cap-and-trade regimes in order to identify the best practices and the desirable features that future ETSs should have. As emerges from the comparative analysis performed in this article, although the followers share some common flaws with the EU ETS, they have also shown the capacity to innovate and possibly devise alternative ways to manage their own ETS regimes, which may in the long term jeopardize the EU leadership in the ETSs context.

  8. The Best (and Worst) of GHG Emission Trading Systems: Comparing the EU ETS with Its Followers

    Energy Technology Data Exchange (ETDEWEB)

    Borghesi, Simone, E-mail: simone.borghesi@unisi.it; Montini, Massimiliano [University of Siena, Siena (Italy)

    2016-07-29

    The European Emission Trading System (EU ETS) is generally considered as the prototype system for the other Emission Trading Systems (ETSs) for the reduction of greenhouse gases (GHGs) that are rapidly spreading around the world. To get a deeper understanding on the actual capacity of the EU ETS to stand as a model for the other ETSs, the present paper discusses the differences and similarities of the EU ETS with respect to the other main ETSs and the emerging trends that these systems seem to share, comparing the different cap-and-trade regimes in order to identify the best practices and the desirable features that future ETSs should have. As emerges from the comparative analysis performed in this article, although the followers share some common flaws with the EU ETS, they have also shown the capacity to innovate and possibly devise alternative ways to manage their own ETS regimes, which may in the long term jeopardize the EU leadership in the ETSs context.

  9. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems.

    Science.gov (United States)

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C; Thornton, Philip K; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-12-24

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system.

  10. A greenhouse-gas information system monitoring and validating emissions reporting and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Jonietz, Karl K [Los Alamos National Laboratory; Dimotakis, Paul E [JPL/CAL TECH; Roman, Douglas A [LLNL; Walker, Bruce C [SNL

    2011-09-26

    Current GHG-mitigating regimes, whether internationally agreed or self-imposed, rely on the aggregation of self-reported data, with limited checks for consistency and accuracy, for monitoring. As nations commit to more stringent GHG emissions-mitigation actions and as economic rewards or penalties are attached to emission levels, self-reported data will require independent confirmation that they are accurate and reliable, if they are to provide the basis for critical choices and actions that may be required. Supporting emissions-mitigation efforts and agreements, as well as monitoring energy- and fossil-fuel intensive national and global activities would be best achieved by a process of: (1) monitoring of emissions and emission-mitigation actions, based, in part, on, (2) (self-) reporting of pertinent bottom-up inventory data, (3) verification that reported data derive from and are consistent with agreed-upon processes and procedures, and (4) validation that reported emissions and emissions-mitigation action data are correct, based on independent measurements (top-down) derived from a suite of sensors in space, air, land, and, possibly, sea, used to deduce and attribute anthropogenic emissions. These data would be assessed and used to deduce and attribute measured GHG concentrations to anthropogenic emissions, attributed geographically and, to the extent possible, by economic sector. The validation element is needed to provide independent assurance that emissions are in accord with reported values, and should be considered as an important addition to the accepted MRV process, leading to a MRV&V process. This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a

  11. Effects of liming and nitrogen fertilizer application on soil acidity and gaseous nitrogen oxide emissions in grassland systems

    NARCIS (Netherlands)

    Oenema, O.; Sapek, A.

    2000-01-01

    This book contains 10 articles on the EU research project COGANOG (Controlling Gaseous Nitrogen Oxide Emissions from Grassland Farming Systems in Europe). The papers present the results of studies on the effects of liming and N fertilizer application

  12. A small, lightweight multipollutant sensor system for ground-mobile and aerial emission sampling from open area sources

    Science.gov (United States)

    Characterizing highly dynamic, transient, and vertically lofted emissions from open area sources poses unique measurement challenges. This study developed and applied a multipollutant sensor and integrated sampler system for use on mobile applications including tethered balloons ...

  13. Information report on greenhouse gas emission trading systems, in the name of the Sustainable Development and Land Management Commission

    International Nuclear Information System (INIS)

    2010-01-01

    In its first part, this report explains the choice of trading systems due to the impossibility to define taxes on carbon emissions and to the influence of international negotiations. It also describes the operation of the European system with its three allocation phases (an experimental framework between 2005 and 2007, an actually constraining framework between 2008 and 2012, and a sustainable frame from 2013), and outlines the realistic character of emission reduction objective by 2020. It identifies and discusses the weaknesses of the European system, notably due to an insufficiently regulated market and to a partial taking into account of emission. The second part identifies ways to improve the system by extending it (including new sectors, taking some particular emissions into account, and valuing carbon sequestration), by preserving the competitiveness of European industries, and by aiming at the construction of a de-carbonated Europe

  14. The EU system for emissions trading after year 2012; EU:s system foer handel med utslaeppsraetter efter 2012

    Energy Technology Data Exchange (ETDEWEB)

    Normand, Mathias; Mjureke, David (eds.)

    2007-01-15

    The Government has instructed the Swedish Energy Agency and the Swedish Environmental Protection Agency to put forward a proposal for how the EU Emissions Trading Scheme (EU ETS) should be developed after 2012, subject to the overall objective of continuing to reduce emissions with the aim of achieving the long-term objectives of the Convention on Climate Change. In its Council Conclusions (7619/1/05) the EU has interpreted the long-term objectives of the Convention on Climate Change as aiming to achieve emission reductions of 15-30 % in the industrialised countries by 2020. According to Council Conclusions (13435/05), the EU has also decided that the Emissions Trading Scheme should continue after 2012. The starting point for this report is that, after 2012, the Scheme will be a key instrument in achieving cost-efficient emission reductions, not only within the EU but also globally, and regardless of whether, with effect from 2013, the Scheme has become a part of an international climate regime, or is serving as a transition to some future new international climate regime. The purpose of this report is to provide a proposal for how the Emissions Trading Scheme should be developed after 2012. The aim is to construct a system that helps to reduce global emissions of greenhouse gases (maintaining climate integrity), that assists measures being taken where they are cheapest (cost efficiency), that is accepted by parties concerned and by the general public (confidence inspiring), and which does not adversely affect the competitiveness of business or industry (competition-neutral). The Agencies recommend that Sweden should adopt the following standpoints concerning development of the EU Emissions Trading Scheme after 2012. (Recommended changes to the system presuppose a harmonised implementation throughout the EU.): In connection with international negotiations, Sweden should press for the Emissions Trading Scheme to be developed in such a way as to make it possible to

  15. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further

  16. Environmental impact of emissions from incineration plants in comparison to typical heating systems

    Science.gov (United States)

    Wielgosiński, Grzegorz; Namiecińska, Olga; Czerwińska, Justyna

    2018-01-01

    In recent years, five modern municipal waste incineration plants have been built in Poland. Next ones are being constructed and at the same time building of several others is being considered. Despite positive experience with the operation of the existing installations, each project of building a new incinerator raises a lot of emotions and social protests. The main argument against construction of an incineration plant is the emission of pollutants. The work compares emissions from municipal waste incineration plants with those from typical heating plants: in the first part, for comparison large heating plants equipped with pulverized coal-fired boilers (OP-140), stoker-fired boilers (three OR-32 boilers) or gas blocks with heat output of about 100 MW have been selected, while the second part compares WR-10 and WR-25 stoker-fired boilers most popular in our heating industry with thermal treatment systems for municipal waste or refuse-derived-fuel (RDF) with similar heat output. Both absolute emission and impact - immission of pollutants in vicinity of the plant were analyzed.

  17. Environmental impact of emissions from incineration plants in comparison to typical heating systems

    Directory of Open Access Journals (Sweden)

    Wielgosiński Grzegorz

    2018-01-01

    Full Text Available In recent years, five modern municipal waste incineration plants have been built in Poland. Next ones are being constructed and at the same time building of several others is being considered. Despite positive experience with the operation of the existing installations, each project of building a new incinerator raises a lot of emotions and social protests. The main argument against construction of an incineration plant is the emission of pollutants. The work compares emissions from municipal waste incineration plants with those from typical heating plants: in the first part, for comparison large heating plants equipped with pulverized coal-fired boilers (OP-140, stoker-fired boilers (three OR-32 boilers or gas blocks with heat output of about 100 MW have been selected, while the second part compares WR-10 and WR-25 stoker-fired boilers most popular in our heating industry with thermal treatment systems for municipal waste or refuse-derived-fuel (RDF with similar heat output. Both absolute emission and impact - immission of pollutants in vicinity of the plant were analyzed.

  18. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling

    Science.gov (United States)

    Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar

    2017-12-01

    Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.

  19. Integrated Dry NOx/SO2 Emissions Control System, A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-10-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round III, the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System (IDECS), as described in a Report to Congress (U.S. Department of Energy 1991). The desire to reduce emissions of nitrogen oxides (NO, nitric oxide, and NO{sub 2}, nitrogen dioxide, collectively referred to as NO{sub x}) and sulfur dioxide (SO{sub 2}) by up to 70 percent at a minimum capital expenditure, while limiting waste production to dry solids that can be handled by conventional ash-removal equipment, prompted Public Service Company of Colorado (PSCC) to submit the proposal for the IDECS project. In March 1991, PSCC entered into a cooperative agreement with DOE to conduct the study. The project was sited at PSCC's Arapahoe Steam Electric Generating Station in Denver, Colorado. The purpose of this CCT project was to demonstrate the reduction of NO{sub x} and SO{sub 2} emissions by installing a combination of existing and emerging technologies, which were expected to work synergistically to reduce emissions. The technologies were low-NO{sub x} burners (LNBS), overfire air (OFA), and selective noncatalytic reduction (SNCR) for NO{sub x} reduction; and dry sorbent injection (DSI), both with and without flue-gas humidification (FGH), for SO{sub 2} reduction. DOE provided 50 percent of the total project funding of $26.2 million.

  20. Integrated Dry NOx/SO2 Emissions Control System, A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2001-01-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round III, the Integrated Dry NO(sub x)/SO(sub 2) Emissions Control System (IDECS), as described in a Report to Congress (U.S. Department of Energy 1991). The desire to reduce emissions of nitrogen oxides (NO, nitric oxide, and NO(sub 2), nitrogen dioxide, collectively referred to as NO(sub x)) and sulfur dioxide (SO(sub 2)) by up to 70 percent at a minimum capital expenditure, while limiting waste production to dry solids that can be handled by conventional ash-removal equipment, prompted Public Service Company of Colorado (PSCC) to submit the proposal for the IDECS project. In March 1991, PSCC entered into a cooperative agreement with DOE to conduct the study. The project was sited at PSCC's Arapahoe Steam Electric Generating Station in Denver, Colorado. The purpose of this CCT project was to demonstrate the reduction of NO(sub x) and SO(sub 2) emissions by installing a combination of existing and emerging technologies, which were expected to work synergistically to reduce emissions. The technologies were low-NO(sub x) burners (LNBS), overfire air (OFA), and selective noncatalytic reduction (SNCR) for NO(sub x) reduction; and dry sorbent injection (DSI), both with and without flue-gas humidification (FGH), for SO(sub 2) reduction. DOE provided 50 percent of the total project funding of$26.2 million

  1. Net carbon dioxide emissions from alternative firewood-production systems in Australia

    International Nuclear Information System (INIS)

    Paul, K.I.; Booth, T.H.; Jovanovic, T.; Polglase, P.J.; Elliott, A.; Kirschbaum, M.U.F.

    2006-01-01

    The use of firewood for domestic heating has the potential to reduce fossil-fuel use and associated CO 2 emissions. The level of possible reductions depends upon the extent to which firewood off-sets the use of fossil fuels, the efficiency with which wood is burnt, and use of fossil fuels for collection and transport of firewood. Plantations grown for firewood also have a cost of emissions associated with their establishment. Applying the FullCAM model and additional calculations, these factors were examined for various management scenarios under three contrasting firewood production systems (native woodland, sustainably managed native forest, and newly established plantations) in low-medium rainfall (600-800mm) regions of south-eastern Australia. Estimates of carbon dioxide emissions per unit of heat energy produced for all scenarios were lower than for non-renewable energy sources (which generally emit about 0.3-1.0kgCO 2 kWh -1 ). Amongst the scenarios, emissions were greatest when wood was periodically collected from dead wood in woodlands (0.11kgCO 2 kWh -1 ), and was much lower when obtained from harvest residues and dead wood in native forests ( 2 kWh -1 ). When wood was obtained from plantations established on previously cleared agricultural land, use of firewood led to carbon sequestration equivalent to -0.06kgCO 2 kWh -1 for firewood obtained from a coppiced plantation, and -0.17kgCO 2 kWh -1 for firewood collected from thinnings, slash and other residue in a plantation grown for sawlog production. An uncertainty analysis, where inputs and assumptions were varied in relation to a plausible range of management practices, identified the most important influencing factors and an expected range in predicted net amount of CO 2 emitted per unit of heat energy produced from burning firewood. (author)

  2. Modeling long-term carbon residue in the ocean-atmosphere system following large CO2 emissions

    Science.gov (United States)

    Towles, N. J.; Olson, P.; Gnanadesikan, A.

    2013-12-01

    We use the LOSCAR carbon cycle model (Zeebe et al., 2009; Zeebe, 2012) to calculate the residual carbon in the ocean and atmosphere following large CO2 emissions. We consider the system response to CO2 emissions ranging from 100 to 20000 PgC, and emission durations from 100 yr to 100 kyr, subject to a wide range of system parameters such as the strengths of silicate weathering and the oceanic biological carbon pump. We define the carbon gain factor as the ratio of residual carbon in the ocean-atmosphere to the total emitted carbon. For moderate sized emissions shorter than about 50 kyr, we find that the carbon gain factor grows during the emission and peaks at about 1.7, primarily due to the erosion of carbonate marine sediments. In contrast, for longer emissions, the carbon gain factor peaks at a smaller value, and for very large emissions (more than 5000 PgC), the gain factor decreases with emission size due to carbonate sediment exhaustion. This gain factor is sensitive to model parameters such as low latitude efficiency of the biological pump. The timescale for removal of the residual carbon (reducing the carbon gain factor to zero) depends strongly on the assumed sensitivity of silicate weathering to atmospheric pCO2, and ranges from less than one million years to several million years.

  3. Greenhouse gas emissions of an agro-biogas energy system: Estimation under the Renewable Energy Directive

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Roberto, E-mail: roberto.rana@unifg.it; Ingrao, Carlo; Lombardi, Mariarosaria; Tricase, Caterina

    2016-04-15

    Agro-biogas from energy crops and by-products is a renewable energy carrier that can potentially contribute to climate change mitigation. In this context, application of the methodology defined by the Renewable Energy Directive 2009/28/EC (RED) was performed in order to estimate the 100-year Global Warming Potential (GWP{sub 100}) associated with an agro-biogas supply chain (SC) in Southern Italy. Doing so enabled calculation of Greenhouse Gas (GHG) emission saving in order to verify if it is at least equal to 35% compared to the fossil fuel reference system, as specified by the RED. For the assessment, an attributional Life Cycle Assessment (LCA) approach (International Organization for Standardization (ISO), 2006a,b) was integrated with the RED methodology applied following the guidelines reported in COM(2010)11 and updated by SWD(2014)259 and Report EUR 27215 EN (2015). Moreover, primary data were collected with secondary data extrapolated from the Ecoinvent database system. Results showed that the GWP{sub 100} associated with electricity production through the biogas plant investigated was equal to 111.58 g CO{sub 2eq} MJ{sub e}{sup −1} and so a 40.01% GHG-emission saving was recorded compared to the RED reference. The highest contribution comes from biomass production and, in particular, from crop cultivation due to production of ammonium nitrate in the overall amount used for crop cultivation. Based upon the findings of the study, the GHG saving calculated slightly exceeds the related minimum proposed by the RED: therefore, improvements are needed anyway. In particular, the authors documented that through replacement of ammonium nitrate with urea the GHG-emission saving would increase to almost 68%, thus largely satisfying the RED limit. In addition, the study highlighted that conservation practices, such as NT, can significantly enable reduction of the GHG-emissions coming from agricultural activities. Therefore, those practices should be increasingly

  4. Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing

    International Nuclear Information System (INIS)

    Bessa, Vanessa M.T.; Prado, Racine T.A.

    2015-01-01

    Growing global concern regarding climate change motivates technological studies to minimize environmental impacts. In this context, solar water heating (SWH) systems are notably prominent in Brazil, primarily because of the abundance of solar energy in the country. However, SWH designs have not always been perfectly developed. In most projects, the installation option of the solar system only considers the electric power economy aspects and not the particular characteristics of each climatic zone. Thus, the primary objective of this paper is to assess the potential of carbon dioxide reduction with the use of SWH in comparison with electric showers in social housing in several Brazilian climatic zones. The Brazilian government authorities have created public policies to encourage the use of these technologies primarily among the low-income population. The results of this paper indicate that hot climactic regions demonstrate a low reduction of CO 2 emissions with SWH installations. Thus, solar radiation is not useful for water heating in those regions, but it does lead to a large fraction of household cooling loads, implying a demand for electrical energy for air conditioning or requiring the adoption of passive techniques to maintain indoor temperatures below threshold values. -- Graphical abstract: Display Omitted -- Highlights: •Brazil has created public policies to increase the use of solar water heating in social housing. •We have evaluated the potential for reduction of CO 2 emissions installing solar water heating. •We have found that the coldest regions have the greatest potential for reducing emissions. •Passive technologies for thermal comfort in hot climate households are more useful than solar water heating systems

  5. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Krishnendu [Ohio Medical Physics Consulting, Dublin, Ohio 43017 (United States); Straus, Kenneth J.; Glick, Stephen J. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Chen, Yu. [Department of Radiation Oncology, Columbia University, New York, New York 10032 (United States)

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  6. MODELING THE RADIO EMISSION FROM Cyg OB2 NO. 5: A QUADRUPLE SYSTEM?

    International Nuclear Information System (INIS)

    Kennedy, M.; Dougherty, S. M.; Fink, A.; Williams, P. M.

    2010-01-01

    Fifty observations at frequencies between 1.4 GHz and 43 GHz of the 6.6 day O6.5-7+O5.5-6 binary Cyg OB2 No. 5 using the Very Large Array over 20 years are re-examined. The aim is to determine the location and character of the previously detected variable radio emission. The radio emission from the system consists of a primary component that is associated with the binary, and a non-thermal source (NE), 0.''8 to the NE of the binary that has been ascribed to a wind-collision region (WCR) between the stellar winds of the binary and that of a B-type star (Star D) to the NE. Previous studies have not accounted for the potential contribution of NE to the total radio emission, most especially in observations where the primary and NE sources are not resolved as separate sources. NE shows no evidence of variation in 23 epochs where it is resolved separately from the primary radio component, demonstrating that the variable emission arises in the primary component. Since NE is non-variable, the radio flux from the primary can now be well determined for the first time, most especially in observations that do not resolve both the primary and NE components. The variable radio emission from the primary component has a period of 6.7 ± 0.3 years which is described by a simple model of a non-thermal source orbiting within the stellar wind envelope of the binary. Such a model implies the presence of a third, unresolved stellar companion (Star C) orbiting the 6.6 day binary with a period of 6.7 years and independent of Star D to the NE. The variable non-thermal emission arises from either a WCR between Star C and the binary system, or possibly from Star C directly. The model gives a mass-loss rate of 3.4 x 10 -5 M sun yr -1 for Cyg OB2 No. 5, unusually high for an Of supergiant and comparable to that of WR stars, and consistent with an unusually strong He I 1.083 μm emission line, also redolent of WR stars. An examination of radial velocity observations available from the

  7. A method to quickly test the emissivity with an infrared thermal imaging system within a small distance

    Science.gov (United States)

    Wang, Xuan-yu; Hu, Rui; Wang, Rui-xin

    2015-10-01

    A simple method has been set up to quickly test the emissivity with an infrared thermal imaging system within a small distance according to the theory of measuring temperature by infrared system, which is based on the Planck radiation law and Lambert-beer law. The object's temperature is promoted and held on by a heater while a temperature difference has been formed between the target and environment. The emissivity of human skin, galvanized iron plate, black rubber and liquid water has been tested under the condition that the emissivity is set in 1.0 and the testing distance is 1m. According to the invariance of human's body temperature, a testing curve is established to describe that the thermal imaging temperatures various with the emissivity which is set in from 0.9 to 1.0. As a result, the method has been verified. The testing results show that the emissivity of human skin is 0.95. The emissivity of galvanized iron plate, black rubber and liquid water decreases with the increase of object's temperature. The emissivity of galvanized iron plate is far smaller than the one of human skin, black rubber or water. The emissivity of water slowly linearly decreases with the increase of its temperature. By the study, within a small distance and clean atmosphere, the infrared emissivity of objects may be expediently tested with an infrared thermal imaging system according to the method, which is promoting the object's temperature to make it different from the environment temperature, then simultaneously measures the environmental temperature, the real temperature and thermal imaging temperature of the object when the emissivity is set in 1.0 and the testing distance is 1.0m.

  8. Tidal pressure induced neutrino emission as an energy dissipation mechanism in binary pulsar systems

    International Nuclear Information System (INIS)

    Lamoreaux, S.K.; Ignatovich, V.K.

    1995-01-01

    We briefly review possible systematic limitations to the inferred General Relativity tests in binary pulsar systems, then propose a new mechanism whereby orbital energy can drive the electron-proton vs. neutron density away from equilibrium, and the concomitant neutrino (or antineutrino) emission represents an orbital energy dissipation. Of the total orbital energy loss rate, we estimate the fractional contribution of this mechanism as 8x10 -6 , whereas the observational accuracy is at the level of 7x10 -3 , and agrees with the predicted rate of gravitational radiation. 10 refs

  9. Evaluating Uncertainty in GHG Emission Scenarios: Mapping IAM Outlooks With an Energy System Phase Space

    Science.gov (United States)

    Ritchie, W. J.; Dowlatabadi, H.

    2017-12-01

    Climate change modeling relies on projections of future greenhouse gas emissions and other phenomena leading to changes in planetary radiative forcing (RF). Pathways for long-run fossil energy use that map to total forcing outcomes are commonly depicted with integrated assessment models (IAMs). IAMs structure outlooks for 21st-century emissions with various theories for developments in demographics, economics, land-use, energy markets and energy service demands. These concepts are applied to understand global changes in two key factors relevant for scenarios of carbon emissions: total energy use (E) this century and the carbon intensity of that energy (F/E). A simple analytical and graphical approach can also illustrate the full range of outcomes for these variables to determine if IAMs provide sufficient coverage of the uncertainty space for future energy use. In this talk, we present a method for understanding uncertainties relevant to RF scenario components in a phase space. The phase space of a dynamic system represents significant factors as axes to capture the full range of physically possible states. A two-dimensional phase space of E and F/E presents the possible system states that can lead to various levels of total 21st-century carbon emissions. Once defined in this way, a phase space of these energy system coordinates allows for rapid characterization of large IAM scenario sets with machine learning techniques. This phase space method is applied to the levels of RF described by the Representative Concentration Pathways (RCPs). The resulting RCP phase space identifies characteristics of the baseline energy system outlooks provided by IAMs for IPCC Working Group III. We conduct a k-means cluster analysis to distinguish the major features of IAM scenarios for each RCP range. Cluster analysis finds the IAM scenarios in AR5 illustrate RCPs with consistent combinations of energy resources. This suggests IAM scenarios understate uncertainty ranges for future

  10. Dynamic modelling of nitrous oxide emissions from three Swedish sludge liquor treatment systems

    DEFF Research Database (Denmark)

    Lindblom, E.; Arnell, M.; Flores-Alsina, X.

    2014-01-01

    The objective of this paper is to model the dynamics and validate the results of nitrous oxide (N2O)emissions from three Swedish nitrifying/denitrifying, nitritation and anammox systems treating real anaerobic digester sludge liquor. The Activated Sludge Model No. 1 is extended to describe N2O...... production by both heterotrophic and autotrophic denitrification. In addition, mass transfer equations are implemented to characterize the dynamics of N2O in the water and the gas phases.The biochemical model is simulated and validated for two hydraulic patterns: (1) a sequencing batch reactor; and, (2...

  11. A modal approach to light emission and propagation in coupled cavity waveguide systems

    DEFF Research Database (Denmark)

    Gregersen, Niels; Kristensen, P. T.; de Lasson, Jakob Rosenkrantz

    2016-01-01

    We theoretically investigate systems of optical cavities coupled to waveguides,which necessitates the introduction of non-trivial radiation conditions and normalization procedures. In return, the approach provides simple and accurate modeling of Green functions,Purcell factors and perturbation...... corrections, as well as an alternative approach to the so-calledcoupled mode theory. In combination, these results may form part of the foundations for highly efficient, yet physically transparent models of light emission and propagation in both classical and quantum integrated photonic circuits....

  12. Heavy metal analysis in soils and vegetation for assessing emission fields near tunnel ventilation systems

    International Nuclear Information System (INIS)

    Peer, T.

    1992-01-01

    In the environment of the ventilation system of the Tauern and Katschberg tunnels, lead, cadmium, zinc and copper were determined in soil and vegetation samples in order to determine the emission fields. Thalli of Pseudevernia furfuracea in addition were used as active monitors. The surface-level exhaust portals produce relatively small atmospheric pollution fields. Via the detached exhaust tower at Urbanalm/Mosermandl (2.000 msm), a long-distance transport: Lead concentrations in soils are above average as far away as 1.5 kms of distance. The solubility of heavy metals increases in the order Pb [de

  13. Positron emission tomography - a new technique for studies of the central nervous system

    International Nuclear Information System (INIS)

    Eriksson, Lars; Dahlbom, Magnus; Widen, Lennart

    1990-01-01

    Positron emission tomography (PET) has become an important tool to study the central nervous system. Examples of such studies are cerebral blood flow and metabolism and determination of receptor characteristics of the brain. In the following the basic principles and the physics behind PET are given. Different aspects are discussed such as detector design, image reconstruction and data analyses. Since quantification is essential in PET, data have to be corrected for absorption, scatter and random coincidences. These corrections and their influence on image data are discussed. A review of state-of-the-art PET research of the brain is given. (author)

  14. Positron emission tomography - a new technique for observing fluid behaviour in engineering systems

    International Nuclear Information System (INIS)

    Stewart, P.A.E.; Rogers, J.D.; Skelton, R.T.

    1988-01-01

    Positron emission tomography promises to become a powerful new technique for flow tracing and measurement within metal structures in general and operating engines in particular. The principles involved are outlined, and a mobile positron camera system being developed jointly by Rolls-Royce, Castrol, the University of Birmingham and the Rutherford-Appleton Laboratory of the SERC is described. Finally, illustrative examples of the camera's capability are presented drawn from its use to study lubricating fluid flow in the bearings of a Viper gas turbine engine on test up to 100% full power. (author)

  15. [Progress in microalgae culture system for biodiesel combined with reducing carbon dioxide emission].

    Science.gov (United States)

    Su, Hongyang; Zhou, Xuefei; Xia, Xuefen; Sun, Zhen; Zhang, Yalei

    2011-09-01

    Wastewater resources, CO2 emission reduction and microalgae biodiesel are considered as current frontier fields of energy and environmental researches. In this paper, we reviewed the progress in system of microalgae culture for biodiesel production by wastewater and stack gas. Multiple factors including microalgal species, nutrition, culture methods and photobioreactor, which were crucial to the cultivation of microalgae for biodiesel production, were discussed in detail. A valuable culture system of microalgae for biodiesel production or other high value products combined with the treatment of wastewater by microalgae was put forward through the optimizations of algal species and culture technology. The culture system coupled with the treatment of wastewater, the reduction of CO2 emission with the cultivation of microalgae for biodiesel production will reduce the production cost of microalgal biofuel production and the treatment cost of wastewater simultaneously. Therefore, it would be a promising technology with important environmental value, social value and economic value to combine the treatment of wastewater with the cultivation of microalgae for biodiesel production.

  16. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, M. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); BME NTI, Budapest (Hungary); Anda, G.; Réfy, D.; Zoletnik, S. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); Czopf, A.; Erdei, G. [Department of Atomic Physics, BME IOP, Budapest (Hungary); Guszejnov, D.; Kovácsik, Á.; Pokol, G. I. [BME NTI, Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  17. Oak Ridge Toxic Substances Control Act (TSCA) Incinerator test bed for continuous emissions monitoring systems (CEMS)

    International Nuclear Information System (INIS)

    Gibson, L.V. Jr.

    1997-01-01

    The Toxic Substances Control Act (TSCA) Incinerator, located on the K-25 Site at Oak Ridge, Tennessee, continues to be the only operational incinerator in the country that can process hazardous and radioactively contaminated polychlorinated biphenyl (PCB) waste. During 1996, the US Department of Energy (DOE) Environmental Management Office of Science and Technology (EM-50) and Lockheed Martin Energy Systems established a continuous emissions monitoring systems (CEMS) test bed and began conducting evaluations of CEMS under development to measure contaminants from waste combustion and thermal treatment stacks. The program was envisioned to promote CEMS technologies meeting requirements of the recently issued Proposed Standards for Hazardous Waste Combustors as well as monitoring technologies that will allay public concerns about mixed waste thermal treatment and accelerate the development of innovative treatment technologies. Fully developed CEMS, as well as innovative continuous or semi-continuous sampling systems not yet interfaced with a pollutant analyzer, were considered as candidates for testing and evaluation. Complementary to other Environmental Protection Agency and DOE sponsored CEMS testing and within compliant operating conditions of the TSCA Incinerator, prioritization was given to multiple metals monitors also having potential to measure radionuclides associated with particulate emissions. In August 1996, developers of two multiple metals monitors participated in field activities at the incinerator and a commercially available radionuclide particulate monitor was acquired for modification and testing planned in 1997. This paper describes the CEMS test bed infrastructure and summarizes completed and planned activities

  18. Comparative analysis of greenhouse gas emissions of various residential heating systems in the Canadian provinces

    International Nuclear Information System (INIS)

    Pare, D.

    2010-04-01

    The Kyoto Protocol compels signatory countries to reduce their greenhouse gas emissions by at least 5 percent by 2010 as compared to 1990 levels. In Canada, however, questions remain regarding the effects of greenhouse gases as they relate to the adoption of geoexchange systems in certain provinces because of the sources of electricity. This report presented a comprehensive analysis of the specific and strategic role of geoexchange technology, and ground source heat pumps in particular. The purpose was to compare, on a common basis, the greenhouse gas emissions of different residential heating systems utilized in the Canadian provinces. Comparisons were conducted from an environmental standpoint, and excluded the exergy and economic aspect, or other related issues. The report discussed the methodology and hypotheses of the study and presented the results for Canada, and for each province. It was concluded that according to the hypotheses employed for the purposes of this study, geoexchange systems offer a solution for greenhouse gas reduction and climatic change in all of the analyzed scenarios, with few exceptions and for a specific scenario. 32 refs., 37 tabs., 12 figs., 4 appendices.

  19. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  20. Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus

    Science.gov (United States)

    Breton, Leo Alphonse Gerard (Inventor)

    2002-01-01

    A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.

  1. Status of emission release and associated problems in energy systems analysis

    International Nuclear Information System (INIS)

    Yasukawa, Shigeru; Mankin, Shuichi; Sato, Osamu; Koyama, Shigeo; Ihara, Seijiro.

    1987-11-01

    OECD/IEA/ETSAP (Energy Technology System Analysis Project) has been started in March 1976. Since initiation of the projects, JAERI and ETL (Electrotechnical Laboratory) have been participating in the projects as operating agent of Japan. From last October, the ETSAP has initiated its Annex III programme, which pursues the problems laid down in energy-environment relationships. Main research objective of the programme is to investigate through the systems analysis ''how various environmental constrains would affect the pattern of fuel and technology use and the choice and timing of implementation of abatement technologies''. In this report, we describe the status of emission release in Japan and associated problems in energy system analysis which has been investigated at the start of these research programme mentioned above. (author)

  2. Total greenhouse gas emissions related to the Dutch crop production system

    NARCIS (Netherlands)

    Kramer, K.J.; Moll, H.C.; Nonhebel, S.

    1999-01-01

    This article discusses the greenhouse gas emissions (CO2, CH4, N2O) related to Dutch agricultural crop production. Emissions occur during agricultural processes (direct emissions) as well as in the life cycle of the required inputs (indirect emissions). An integrated approach assesses the total

  3. An investigation into positron emission tomography contouring methods across two treatment planning systems

    International Nuclear Information System (INIS)

    Young, Tony; Som, Seu; Sathiakumar, Chithradevi; Holloway, Lois

    2013-01-01

    Positron emission tomography (PET) imaging has been used to provide additional information regarding patient tumor location, size, and staging for radiotherapy treatment planning purposes. This additional information reduces interobserver variability and produces more consistent contouring. It is well recognized that different contouring methodology for PET data results in different contoured volumes. The goal of this study was to compare the difference in PET contouring methods for 2 different treatment planning systems using a phantom dataset and a series of patient datasets. Contouring methodology was compared on the ADAC Pinnacle Treatment Planning System and the CMS XiO Treatment Planning System. Contours were completed on the phantom and patient datasets using a number of PET contouring methods—the standardized uptake value 2.5 method, 30%, 40%, and 50% of the maximum uptake method and the signal to background ratio method. Differences of >15% were observed for PET-contoured volumes between the different treatment planning systems for the same data and the same PET contouring methodology. Contoured volume differences between treatment planning systems were caused by differences in data formatting and display and the different contouring tools available. Differences in treatment planning system as well as contouring methodology should be considered carefully in dose-volume contouring and reporting, especially between centers that may use different treatment planning systems or those that have several different treatment planning systems

  4. Modelling nitrous oxide emissions from organic and conventional cereal-based cropping systems under different management, soil and climate factors

    DEFF Research Database (Denmark)

    Doltra, J; Olesen, Jørgen E; Báez, D

    2015-01-01

    Mitigation of greenhouse gas emissions from agriculture should be assessed across cropping systems and agroclimatic regions. In this study, we investigate the ability of the FASSET model to analyze differences in the magnitude of N2O emissions due to soil, climate and management factors in cereal...... on the seasonal soil N2O fluxes than the environmental factors. Overall, in its current version FASSET reproduced the effects of the different factors investigated on the cumulative seasonal soil N2O emissions but temporally it overestimated emissions from nitrification and denitrification on particular days when...... soil operations, ploughing or fertilization, took place. The errors associated with simulated daily soil N2O fluxes increased with the magnitude of the emissions. For resolving causes of differences in simulated and measured fluxes more intensive and temporally detailed measurements of N2O fluxes...

  5. Seasonal CH4 and N2O emissions and plant growth characteristics of several cultivars in direct seeded rice systems

    Science.gov (United States)

    Simmonds, M.; Anders, M. M.; Adviento-Borbe, M. A.; Van Kessel, C.; McClung, A.; Linquist, B.

    2014-12-01

    Understanding cultivar effects on field greenhouse gas (GHG) emissions in rice (Oryza sativa L.) systems is needed to improve the accuracy of predictive models used for estimating GHG emissions, and to determine to what extent choice of cultivar may have on GHG mitigation. We compared CH4 and N2O emissions, global warming potential (GWP = N2O + CH4), yield-scaled GWP (GWPY = GWP Mg-1 grain), and plant growth characteristics of 8 cultivars within 4 study sites in California and Arkansas. Seasonal CH4 emissions differed between cultivars by a factor of 2.1 and 1.3 at one California and one Arkansas site, respectively. Nitrous oxide emissions were negligible, comprised food security.

  6. An Optimization Scheduling Model for Wind Power and Thermal Power with Energy Storage System considering Carbon Emission Trading

    Directory of Open Access Journals (Sweden)

    Huan-huan Li

    2015-01-01

    Full Text Available Wind power has the characteristics of randomness and intermittence, which influences power system safety and stable operation. To alleviate the effect of wind power grid connection and improve power system’s wind power consumptive capability, this paper took emission trading and energy storage system into consideration and built an optimization model for thermal-wind power system and energy storage systems collaborative scheduling. A simulation based on 10 thermal units and wind farms with 2800 MW installed capacity verified the correctness of the models put forward by this paper. According to the simulation results, the introduction of carbon emission trading can improve wind power consumptive capability and cut down the average coal consumption per unit of power. The introduction of energy storage system can smooth wind power output curve and suppress power fluctuations. The optimization effects achieve the best when both of carbon emission trading and energy storage system work at the same time.

  7. Nitrous oxide emissions from corn-soybean systems in the midwest.

    Science.gov (United States)

    Parkin, Timothy B; Kaspar, Thomas C

    2006-01-01

    Soil N2O emissions from three corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems in central Iowa were measured from the spring of 2003 through February 2005. The three managements systems evaluated were full-width tillage (fall chisel plow, spring disk), no-till, and no-till with a rye (Secale cereale L. 'Rymin') winter cover crop. Four replicate plots of each treatment were established within each crop of the rotation and both crops were present in each of the two growing seasons. Nitrous oxide fluxes were measured weekly during the periods of April through October, biweekly during March and November, and monthly in December, January, and February. Two polyvinyl chloride rings (30-cm diameter) were installed in each plot (in and between plant rows) and were used to support soil chambers during the gas flux measurements. Flux measurements were performed by placing vented chambers on the rings and collecting gas samples 0, 15, 30, and 45 min following chamber deployment. Nitrous oxide fluxes were computed from the change in N2O concentration with time, after accounting for diffusional constraints. We observed no significant tillage or cover crop effects on N2O flux in either year. In 2003 mean N2O fluxes were 2.7, 2.2, and 2.3 kg N2O-N ha(-1) yr(-1) from the soybean plots under chisel plow, no-till, and no-till + cover crop, respectively. Emissions from the chisel plow, no-till, and no-till + cover crop plots planted to corn averaged 10.2, 7.9, and 7.6 kg N2O-N ha(-1) yr(-1), respectively. In 2004 fluxes from both crops were higher than in 2003, but fluxes did not differ among the management systems. Fluxes from the corn plots were significantly higher than from the soybean plots in both years. Comparison of our results with estimates calculated using the Intergovernmental Panel on Climate Change default emission factor of 0.0125 indicate that the estimated fluxes underestimate measured emissions by a factor of 3 at our sites.

  8. Modelling the impacts of a carbon emission-differentiated vehicle tax system on CO2 emissions intensity from new vehicle purchases in Ireland

    International Nuclear Information System (INIS)

    Giblin, S.; McNabola, A.

    2009-01-01

    The increasing awareness of the effects of climate change on the environment and the economic pressure on oil supply has focused international attention on reducing CO 2 emissions and energy usage across all sectors. In order to meet their Kyoto protocol commitments and in line with European Union policy, the Irish government has introduced a carbon-based tax system for new vehicles purchased from the 1st of July 2008. This new legislation aims to reduce carbon emissions in the transport sector, a sector which is responsible for a significant proportion of both. This paper presents the results of the development, calibration, and application of a car choice model which predicts the changes in CO 2 emissions intensity from new vehicle purchases as a result of the changes in vehicle tax policy and fuel price in Ireland. The model also predicts the impact of such changes on tax revenue for the Irish government and the changes in the split between the number of diesel and petrol vehicles purchased. The investigation found that the introduction of these new carbon-based taxes in Ireland will result in a reduction of 3.6-3.8% in CO 2 emissions intensity and a reduction in annual tax revenue of EUR191 M. (author)

  9. Introducing the emissions trading system to China’s electricity sector: Challenges and opportunities

    International Nuclear Information System (INIS)

    Teng, Fei; Wang, Xin; Zhiqiang, LV

    2014-01-01

    We examine the challenges and opportunities to introduce emissions trading (ETS) in China’s electricity sector, in which the interaction between ETS and electricity market reform plays a major role. China’s electricity sector is currently in a slow progress towards a more competitive and market-based system. Both equal share dispatching policy and regulated wholesale and retail pricing policies pose significant challenges for implementation of ETS in China’s electricity sector. One of the important points of ETS is to give a price for carbon emissions and establish a cost pass-through mechanism (reminded that the essential of carbon pricing is to put a price on carbon emissions that is equal to discounted value of the external damages). It should be regarded as a part of broader policy package for energy and resources price reform. This will require that any low-carbon power policy should be considered as a part of whole policy package aiming at further liberalizing the electricity sector in China. Three policy options are identified to incorporate ETS with electricity reform under different circumstances. A combination of those three options is also proposed to break the lock and reinforce the positive interaction between ETS and the transition towards a competitive electricity system, in link with current pilot ETS designs. A roadmap to introduce ETS in a stepwise manner is suggested. - Highlights: • We assess the institutional barriers of electricity market to ETS in China. • Major challenges to ETS come from equal share dispatching an regulated pricing policies. • Several options are examined to reconcile the ETS and electricity market in China

  10. Methane emission from a paddy field with pre-germinated system in Brazilian Southeast

    Science.gov (United States)

    Lima, M. A.; Luiz, A. J. B.; Villela, O. V.

    2017-12-01

    Methane is a major gas of greenhouse effect from agricultural activities, and the flooded paddy field is one of its sources. Methane production in the soil, under this cultivation, varies over the cropping season, due to plant physiological changes, climatic conditions, crop handling and local soil conditions, factors that, together, influence methane emissions and their amplitudes. Local measurements of CH4 emissions are essential for the improvement of national and regional gas emission inventories. Most part of the studies has been carried out in temperate and subtropical climate regions. This study aimed to determine the accumulated CH4 emission from a rice field with two different rice varieties under tropical climate. The CH4 emission assessments were held in the experimental area maintained by APTA (Agricultural Technology State Agency) in Pindamonhangaba, State of São Paulo (22°55' S, 45°30' W), Brazil, in two growing seasons (2013/4 and 2014/5). The soil is a Gleysol with clayey or loamy-clayey texture. The experiment had two varieties (IAC-105 and Epagri-106) in four blocks using pre-germinated system under continuously flooding management with addition of urea (80 kg N ha-1) as fertilizer. Gas efflux determination used the chamber-based method. The chambers (60 x 60 cm) of aluminum and insulating material were composed by permanent anchors, extensors and lids equipped with temperature sensor, fans and septum for sampling. The gas was sampled each five minutes till 25 minutes by using 60 mL BD plastic syringes and transferred to evacuated 12 mL LABCO vials. Gas sampling occurred once to twice a week and samples were analyzed using a Shimadzu GC-2014 gas chromatograph. Seasonal CH4 flux has varied from 3.1 to 11.8 g CH4 m-2. We have carried out a similar experiment in 2015/6 and 2016/2017 seasons and further analysis of all data will be done for assessment of the relation gas flux/productivity.

  11. Table making system for feed forward control to improve transient emissions; Katoji haiki gas joka table no sakusei system

    Energy Technology Data Exchange (ETDEWEB)

    Sakamaki, T; Morita, S; Takada, Y [Osaka City University, Osaka (Japan)

    1997-10-01

    Intake manifold fuel injection type engines have a weak point that the emissions are not so good in transient operation, because the balance of fuel adhesion and evaporation goes out, so that three way catalyst does not work in good efficiency. For this countermeasure, it is effective to add feed forward control to conventional O2 feedback one. In order to achieve this feed forward control, the fuel table is necessary, and to make it needs enormous time and effort even for one target type engine. To overcome this difficulty, table making system was constructed, and expected result was obtained. 4 refs., 8 figs.

  12. Experimental analysis of CO{sub 2} emissions from agricultural soils subjected to five different tillage systems in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Buragienė, Sidona [Institute of Agricultural Engineering and Safety, Aleksandras Stulginskis University, Studentu str. 15A, LT-53361 Akademija, Kaunas distr. (Lithuania); Šarauskis, Egidijus, E-mail: egidijus.sarauskis@asu.lt [Institute of Agricultural Engineering and Safety, Aleksandras Stulginskis University, Studentu str. 15A, LT-53361 Akademija, Kaunas distr. (Lithuania); Romaneckas, Kęstutis, E-mail: kestas.romaneckas@asu.lt [Institute of Agroecosystems and Soil Science, Aleksandras Stulginskis University, Studentu str. 11, Akademija LT-53361, Kaunas dist. (Lithuania); Sasnauskienė, Jurgita, E-mail: jurgita.sasnauskiene@asu.lt [Institute of Environment and Ecology, Aleksandras Stulginskis University, Studentu str. 11, Akademija LT-53361, Kaunas dist. (Lithuania); Masilionytė, Laura, E-mail: laura.masilionyte@gmail.com [Joniskelis Experimental Station, Lithuanian Research Centre for Agriculture and Forestry, Joniskelis, LT-39301 Pasvalys distr. (Lithuania); Kriaučiūnienė, Zita, E-mail: zita.kriauciuniene@asu.lt [Experimental Station, Aleksandras Stulginskis University, Rapsu str. 7, LT-53363 Noreikiskes, Kaunas distr. (Lithuania)

    2015-05-01

    Intensive agricultural production strongly influences the global processes that determine climate change. Thus, tillage can play a very important role in climate change. The intensity of soil carbon dioxide (CO{sub 2}) emissions, which contribute to the greenhouse effect, can vary depending on the following factors: the tillage system used, meteorological conditions (which vary in different regions of the world), soil properties, plant residue characteristics and other factors. The main purpose of this research was to analyse and assess the effects of autumn tillage systems with different intensities on CO{sub 2} emissions from soils during different seasons and under the climatic conditions of Central Lithuania. The research was conducted at the Experimental Station of Aleksandras Stulginskis University from 2009 to2012; and in 2014. The soils at the experimental site were classified as Eutric Endogleyic Planosol (Drainic). The investigations were conducted using five tillage systems with different intensities, typical of the Baltic Region. Deep conventional ploughing was performed at a depth of 230–250 mm, shallow ploughing was conducted at a depth of 120–150 mm, deep loosening was conducted at depths of 250–270 mm, and shallow loosening was conducted at depths of 120–150 mm. The fifth system was a no-tillage system. Overall, autumn tillage resulted in greater CO{sub 2} emissions from the soil over both short- and long-term periods under the climatic conditions of Central Lithuania, regardless of the tillage system applied. The highest soil CO{sub 2} emissions were observed for the conventional deep ploughing tillage system, and the lowest emissions were observed for the no-tillage system. The meteorological conditions greatly influenced the CO{sub 2} emissions from the soil during the spring. Soil CO{sub 2} emissions were enhanced as precipitation and the air and soil temperatures increased. Long-term investigations regarding the dynamics of CO{sub 2

  13. DISTRIBUTED GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEM EMISSION OFFSET ASSESSMENT: STATISTICAL TEST OF SIMULATED- AND MEASURED-BASED DATA

    Science.gov (United States)

    This study assessed the pollutant emission offset potential of distributed grid-connected photovoltaic (PV) power systems. Computer-simulated performance results were utilized for 211 PV systems located across the U.S. The PV systems' monthly electrical energy outputs were based ...

  14. The Peculiar Binary System AE Aquarii from its Characteristic Multi-wavelength Emission

    Directory of Open Access Journals (Sweden)

    Oruru B.

    2014-01-01

    Full Text Available The multi-wavelength properties of the novalike variable system AE Aquarii are discussed in terms of the interaction between the accretion inflow from a late-type main sequence star and the magnetosphere of a fast rotating white dwarf. This results in an efficient magnetospheric propeller process and particle acceleration. The spin-down of the white dwarf at a period rate of 5.64×10−14 s s−1 results in a huge spin-down luminosity of Ls−d ≃ 6 10×33 erg s−1. Hence, the observed non-thermal hard X-ray emission and VHE and TeV gamma-ray emission may suggest that AE Aquarii can be placed in the category of spin-powered pulsars. Besides, observed hard X-ray luminosity of LX,hard ≤ 5 × 1030 erg s−1 constitutes 0.1 % of the total spin-down luminosity of the white dwarf. This paper will discuss some recent theoretical studies and data analysis of the system.

  15. Very High Radiation Detector for the LHC BLM System Based on Secondary Electron Emission

    CERN Document Server

    Dehning, B; Holzer, EB; Kramer, D

    2007-01-01

    Beam Loss Monitoring (BLM) system plays a vital role in the active protection of the LHC accelerators elements. It should provide the number of particles lost from the primary hadron beam by measuring the radiation field induced by their interaction with matter surrounding the beam pipe. The LHC BLM system will use ionization chambers as standard detectors but in the areas where very high dose rates are expected, the Secondary Emission Monitor (SEM) chambers will be employed because of their high linearity, low sensitivity and fast response. The SEM needs a high vacuum for proper operation and has to be functional for up to 20 years, therefore all the components were designed according to the UHV requirements and a getter pump was included. The SEM electrodes are made of Ti because of its Secondary Emission Yield (SEY) stability. The sensitivity of the SEM was modeled in Geant4 via the Photo-Absorption Ionization module together with custom parameterization of the very low energy secondary electron production...

  16. Emissions reduction in the UK: accommodating waste production from sulphur abatement systems

    Energy Technology Data Exchange (ETDEWEB)

    Crofts, C. (British Coal, London (UK). Operational Research Executive)

    1990-01-01

    Concern for the atmosphere environment has resulted in EC legislation limiting sulphur dioxide emissions. The emission limits are being met by the installation of flue gas desulphurisation and advanced coal combustion systems, which produce large quantities of waste for utilisation or disposal. There are now environmental, economic and regulatory reasons for industry to provide comprehensive assessment of waste disposal/utilisation issues during the design stage of a project. This paper considers the management of waste produced from the limestone/gypsum and spray dry FGD processes, and from advanced coal combustion equipment. The assessment shows that environmentally acceptable methods of disposal and utilisation can be identified for these wastes. It is expected that a substantial proportion of FGD gypsum will be utilized in the manufacture of plasterboard, bag plaster and cement. There may also be opportunities for utilisation of spray dry waste and waste from advanced coal combustion systems in structural and agricultural applications. Landfill would be an appropriate form of disposal for the wastes considered in this paper, but utilisation options offer environmentally superior alternatives to disposal justifying further research. 19 refs., 3 figs.

  17. Atom localization via controlled spontaneous emission in a five-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhiping; Yu Benli; Zhu Jun; Cao Zhigang; Zhen Shenglai; Wu Xuqiang; Xu Feng

    2012-01-01

    We investigate the one- and two-dimensional atom localization behaviors via spontaneous emission in a coherently driven five-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of atom localization behaviors can be significantly improved via adjusting the system parameters. More importantly, the two-dimensional atom localization patterns reveal that the maximal probability of finding an atom within the sub-wavelength domain of the standing waves can reach unity when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization. - Highlights: ► One- and two-dimensional atom localization behaviors via spontaneous emission in five-level atoms are investigated. ► An assisting radio-frequency field is used to control the atom localization behaviors. ► High-precision and high-resolution two-dimensional atom localization can be realized in this scheme.

  18. Inter-comparison between Hermesv2.0 and TNO-MAC-II emission data using the Caliope air quality system (Spain)

    NARCIS (Netherlands)

    Guevara, M.; Pay, M.T.; Martinez, F.; Soret, A.; Denier van der Gon, H.A.C.; Baldasano, J.M.

    2014-01-01

    This work examines and compares the performance of two emission datasets on modelling air quality concentrations for Spain: (i) the High-Elective Resolution Modelling Emissions System (HERMESv2.0) and (ii) the TNO-MACC-II emission inventory. For this purpose, the air quality system CALIOPE-AQFS

  19. Mitigation Emission Strategy Based on Resonances from a Power Inverter System in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Li Zhai

    2016-05-01

    Full Text Available Large dv/dt and di/dt outputs of power devices in the DC-fed motor power inverter can generate conducted and/or radiated emissions through parasitics that interfere with low voltage electric systems in electric vehicles (EVs and nearby vehicles. The electromagnetic interference (EMI filters, ferrite chokes, and shielding added in the product process based on the “black box” approach can reduce the emission levels in a specific frequency range. However, these countermeasures may also introduce an unexpected increase in EMI noises in other frequency ranges due to added capacitances and inductances in filters resonating with elements of the power inverter, and even increase the weight and dimension of the power inverter system in EVs with limited space. In order to predict the interaction between the mitigation techniques and power inverter geometry, an accurate model of the system is needed. A power inverter system was modeled based on series of two-port network measurements to study the impact of EMI generated by power devices on radiated emission of AC cables. Parallel resonances within the circuit can cause peaks in the S21 (transmission coefficient between the phase-node-to-chassis voltage and the center-conductor-to-shield voltage of the AC cable connecting to the motor and Z11 (input impedance at Port 1 between the Insulated gate bipolar transistor (IGBT phase node and chassis at those resonance frequencies and result in enlarged noise voltage peaks at Port 1. The magnitude of S21 between two ports was reduced to decrease the amount of energy coupled from the noise source between the phase node and chassis to the end of the AC cable by lowering the corresponding quality factor. The equivalent circuits were built by analyzing current-following paths at three critical resonance frequencies. Interference voltage peaks can be suppressed by mitigating the resonances. The capacitances and inductances generating the parallel resonances and

  20. Greenhouse gas emission and exergy analyses of an integrated trigeneration system driven by a solid oxide fuel cell

    International Nuclear Information System (INIS)

    Chitsaz, Ata; Mahmoudi, S. Mohammad S.; Rosen, Marc A.

    2015-01-01

    Exergy and greenhouse gas emission analyses are performed for a novel trigeneration system driven by a solid oxide fuel cell (SOFC). The trigeneration system also consists of a generator-absorber heat exchanger (GAX) absorption refrigeration system and a heat exchanger to produce electrical energy, cooling and heating, respectively. Four operating cases are considered: electrical power generation, electrical power and cooling cogeneration, electrical power and heating cogeneration, and trigeneration. Attention is paid to numerous system and environmental performance parameters, namely, exergy efficiency, exergy destruction rate, and greenhouse gas emissions. A maximum enhancement of 46% is achieved in the exergy efficiency when the SOFC is used as the primary mover for the trigeneration system compared to the case when the SOFC is used as a standalone unit. The main sources of irreversibility are observed to be the air heat exchanger, the SOFC and the afterburner. The unit CO 2 emission (in kg/MWh) is considerably higher for the case in which only electrical power is generated. This parameter is reduced by half when the system is operates in a trigeneration mode. - Highlights: • A novel trigeneration system driven by a solid oxide fuel cell is analyzed. • Exergy and greenhouse gas emission analyses are performed. • Four special cases are considered. • An enhancement of up to 46% is achieved in exergy efficiency. • The CO 2 emission drops to a relatively low value for the tri-generation case

  1. Soil and crop residue CO2-C emission under tillage systems in sugarcane-producing areas of southern Brazil

    Directory of Open Access Journals (Sweden)

    Luís Gustavo Teixeira

    2013-10-01

    Full Text Available Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp. residues to the short-term CO2-C loss, we studied the influence of several tillage systems: heavy offset disk harrow (HO, chisel plow (CP, rotary tiller (RT, and sugarcane mill tiller (SM in 2008, and CP, RT, SM, moldboard (MP, and subsoiler (SUB in 2009, with and without sugarcane residues relative to no-till (NT in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47 % and 41 %, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.

  2. Research on Bifurcation and Chaos in a Dynamic Mixed Game System with Oligopolies Under Carbon Emission Constraint

    Science.gov (United States)

    Ma, Junhai; Yang, Wenhui; Lou, Wandong

    This paper establishes an oligopolistic game model under the carbon emission reduction constraint and investigates its complex characteristics like bifurcation and chaos. Two oligopolistic manufacturers comprise three mixed game models, aiming to explore the variation in the status of operating system as per the upgrading of benchmark reward-penalty mechanism. Firstly, we set up these basic models that are respectively distinguished with carbon emission quantity and study these models using different game methods. Then, we concentrate on one typical game model to further study the dynamic complexity of variations in the system status, through 2D bifurcation diagrams and 4D parameter adjustment features based on the bounded rationality scheme for price, and the adaptive scheme for carbon emission. The results show that the carbon emission constraint has significant influence on the status variation of two-oligopolistic game operating systems no matter whether it is stable or chaotic. Besides, the new carbon emission regulation meets government supervision target and achieves the goal of being environment friendly by motivating the system to operate with lower carbon emission.

  3. Construction and Operation of a Ventilated Hood System for Measuring Greenhouse Gas and Volatile Organic Compound Emissions from Cattle

    Directory of Open Access Journals (Sweden)

    Yongjing Zhao

    2011-12-01

    Full Text Available Recent interest in greenhouse gas emissions from ruminants, such as cattle, has spawned a need for affordable, precise, and accurate methods for the measurement of gaseous emissions arising from enteric fermentation. A new head hood system for cattle designed to capture and quantify emissions was recently developed at the University of California, Davis. The system consists of two head hoods, two vacuum pumps, and an instrumentation cabinet housing the required data collection equipment. This system has the capability of measuring carbon dioxide, methane, ethanol, methanol, water vapor, nitrous oxide, acetic acid emissions and oxygen consumption in real-time. A unique aspect of the hoods is the front, back, and sides are made of clear polycarbonate sheeting allowing the cattle a full range of vision during gas sampling. Recovery rates for these slightly negative pressure chambers were measured ranging from 97.6 to 99.3 percent. This system can capture high quality data for use in improving emission inventories and evaluating gaseous emission mitigation strategies.

  4. Greenhouse gas emissions of an agro-biogas energy system: Estimation under the Renewable Energy Directive.

    Science.gov (United States)

    Rana, Roberto; Ingrao, Carlo; Lombardi, Mariarosaria; Tricase, Caterina

    2016-04-15

    Agro-biogas from energy crops and by-products is a renewable energy carrier that can potentially contribute to climate change mitigation. In this context, application of the methodology defined by the Renewable Energy Directive 2009/28/EC (RED) was performed in order to estimate the 100-year Global Warming Potential (GWP100) associated with an agro-biogas supply chain (SC) in Southern Italy. Doing so enabled calculation of Greenhouse Gas (GHG) emission saving in order to verify if it is at least equal to 35% compared to the fossil fuel reference system, as specified by the RED. For the assessment, an attributional Life Cycle Assessment (LCA) approach (International Organization for Standardization (ISO), 2006a,b) was integrated with the RED methodology applied following the guidelines reported in COM(2010)11 and updated by SWD(2014)259 and Report EUR 27215 EN (2015). Moreover, primary data were collected with secondary data extrapolated from the Ecoinvent database system. Results showed that the GWP100 associated with electricity production through the biogas plant investigated was equal to 111.58gCO2eqMJe(-1) and so a 40.01% GHG-emission saving was recorded compared to the RED reference. The highest contribution comes from biomass production and, in particular, from crop cultivation due to production of ammonium nitrate in the overall amount used for crop cultivation. Based upon the findings of the study, the GHG saving calculated slightly exceeds the related minimum proposed by the RED: therefore, improvements are needed anyway. In particular, the authors documented that through replacement of ammonium nitrate with urea the GHG-emission saving would increase to almost 68%, thus largely satisfying the RED limit. In addition, the study highlighted that conservation practices, such as NT, can significantly enable reduction of the GHG-emissions coming from agricultural activities. Therefore, those practices should be increasingly adopted for cultivation of energy

  5. Speech processing system demonstrated by positron emission tomography (PET). A review of the literature

    International Nuclear Information System (INIS)

    Hirano, Shigeru; Naito, Yasushi; Kojima, Hisayoshi

    1996-01-01

    We review the literature on speech processing in the central nervous system as demonstrated by positron emission tomography (PET). Activation study using PET has been proved to be a useful and non-invasive method of investigating the speech processing system in normal subjects. In speech recognition, the auditory association areas and lexico-semantic areas called Wernicke's area play important roles. Broca's area, motor areas, supplementary motor cortices and the prefrontal area have been proved to be related to speech output. Visual speech stimulation activates not only the visual association areas but also the temporal region and prefrontal area, especially in lexico-semantic processing. Higher level speech processing, such as conversation which includes auditory processing, vocalization and thinking, activates broad areas in both hemispheres. This paper also discusses problems to be resolved in the future. (author) 42 refs

  6. [Research on the emission spectrum of NO molecule's γ-band system by corona discharge].

    Science.gov (United States)

    Zhai, Xiao-dong; Ding, Yan-jun; Peng, Zhi-min; Luo, Rui

    2012-05-01

    The optical emission spectrum of the gamma-band system of NO molecule, A2 sigma+ --> X2 pi(r), has been analyzed and calculated based on the energy structure of NO molecule' doublet states. By employing the theory of diatomic molecular Spectra, some key parameters of equations for the radiative transition intensity were evaluated theoretically, including the potentials of the doublet states of NO molecule's upper and lower energy levels, the electronic transition moments calculated by using r-centroid approximation method, and the Einstein coefficient of different vibrational and rotational levels. The simulated spectrum of the gamma-band system was calculated as a function of different vibrational and rotational temperature. Compared to the theoretical spectroscopy, the measured results were achieved from corona discharge experiments of NO and N2. The vibrational and rotational temperatures were determined approximately by fitting the measured spectral intensities with the calculated ones.

  7. Emission of Biophotons and Adjustable Sounds by the Fascial System: Review and Reflections for Manual Therapy.

    Science.gov (United States)

    Bordoni, Bruno; Marelli, Fabiola; Morabito, Bruno; Sacconi, Beatrice

    2018-01-01

    Every body structure is wrapped in connective tissue or fascia, creating a structural continuity that gives form and function to every tissue and organ. The fascial tissue is uniformly distributed throughout the body, enveloping, interacting with and permeating blood vessels, nerves, viscera, meninges, bones and muscles, creating various layers at different depths and forming a tridimensional metabolic and mechanical matrix. This article reviews the literature on the emission of biophotons and adjustable sounds by the fascial system, because these biological changes could be a means of local and systemic cellular communication and become another assessment tool for manual (therapy) practitioners. This is the first article that discusses these topics in a single text, attempting to bring such information into an area of application that is beneficial to osteopaths, chiropractors, and manual therapists.

  8. High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system.

    Science.gov (United States)

    Ding, Chunling; Li, Jiahua; Yu, Rong; Hao, Xiangying; Wu, Ying

    2012-03-26

    A scheme for realizing two-dimensional (2D) atom localization is proposed based on controllable spontaneous emission in a coherently driven cycle-configuration atomic system. As the spatial-position-dependent atom-field interaction, the frequency of the spontaneously emitted photon carries the information about the position of the atom. Therefore, by detecting the emitted photon one could obtain the position information available, and then we demonstrate high-precision and high-resolution 2D atom localization induced by the quantum interference between the multiple spontaneous decay channels. Moreover, we can achieve 100% probability of finding the atom at an expected position by choosing appropriate system parameters under certain conditions.

  9. Integrated dry NO{sub x}/SO{sub 2} emissions control system performance summary

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, T. [Public Service Company of Colorado, Denver, CO (United States); Muzio, L.J.; Smith, R. [Fossil Energy Research Corp., Laguna Hills, CA (United States); Jones, D. [NOELL, Inc., Long Beach, CA (United States); Hebb, J.L. [Dept. of Energy, Pittsburgh, PA (United States); Stallings, J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-31

    The Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System was installed at Public Service Company of Colorado`s Arapahoe 4 generating station in 1992 in cooperation with the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). This full-scale 100 MWe demonstration combines low-NO{sub x} burners, overfire, air, and selective non-catalytic reduction (SNCR) for NO{sub x} control and dry sorbent injection (DSI) with or without humidification for SO{sub 2} control. Operation and testing of the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System began in August 1992 and will continue through 1996. Results of the NO{sub x} control technologies show that the original system goal of 70% NO{sub x} removal has been easily met and the combustion and SNCR systems can achieve NO{sub x} removals of up to 80% at full load. Duct injection of commercial calcium hydroxide has achieved a maximum SO{sub 2} removal of nearly 40% while humidifying the flue gas to a 20 F approach to saturation. Sodium-based dry sorbent injection has provided SO{sub 2} removal of over 70% without the occurrence of a visible NO{sub 2} plume. Recent test work has improved SNCR performance at low loads and has demonstrated that combined dry sodium injection and SNCR yields both lower NO{sub 2} levels and NH{sub 3} slip than either technology alone.

  10. Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism

    NARCIS (Netherlands)

    Booij, J.; Tissingh, G.; Winogrodzka, A.; van Royen, E. A.

    1999-01-01

    Parkinsonism is a feature of a number of neurodegenerative diseases, including Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. The results of post-mortem studies point to dysfunction of the dopaminergic neurotransmitter system in patients with parkinsonism. Nowadays,

  11. A plant chamber system with downstream reaction chamber to study the effects of pollution on biogenic emissions.

    Science.gov (United States)

    Timkovsky, J; Gankema, P; Pierik, R; Holzinger, R

    2014-01-01

    A system of two plant chambers and a downstream reaction chamber has been set up to investigate the emission of biogenic volatile organic compounds (BVOCs) and possible effects of pollutants such as ozone. The system can be used to compare BVOC emissions from two sets of differently treated plants, or to study the photochemistry of real plant emissions under polluted conditions without exposing the plants to pollutants. The main analytical tool is a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) which allows online monitoring of biogenic emissions and chemical degradation products. The identification of BVOCs and their oxidation products is aided by cryogenic trapping and subsequent in situ gas chromatographic analysis.

  12. Occasional large emissions of nitrous oxide and methane observed in stormwater biofiltration systems

    International Nuclear Information System (INIS)

    Grover, Samantha P.P.; Cohan, Amanda; Chan, Hon Sen; Livesley, Stephen J.; Beringer, Jason; Daly, Edoardo

    2013-01-01

    Designed, green infrastructures are becoming a customary feature of the urban landscape. Sustainable technologies for stormwater management, and biofilters in particular, are increasingly used to reduce stormwater runoff volumes and peaks as well as improve the water quality of runoff discharged into urban water bodies. Although a lot of research has been devoted to these technologies, their effect in terms of greenhouse gas fluxes in urban areas has not been yet investigated. We present the first study aimed at quantifying greenhouse gas fluxes between the soil of stormwater biofilters and the atmosphere. N 2 O, CH 4 , and CO 2 were measured periodically over a year in two operational vegetated biofiltration cells at Monash University in Melbourne, Australia. One cell had a saturated zone at the bottom, and compost and hardwood mulch added to the sandy loam filter media. The other cell had no saturated zone and was composed of sandy loam. Similar sedges were planted in both cells. The biofilter soil was a small N 2 O source and a sink for CH 4 for most measurement events, with occasional large emissions of both N 2 O and CH 4 under very wet conditions. Average N 2 O fluxes from the cell with the saturated zone were almost five-fold greater (65.6 μg N 2 O–N m −2 h −1 ) than from the other cell (13.7 μg N 2 O–N m −2 h −1 ), with peaks up to 1100 μg N 2 O–N m −2 h −1 . These N 2 O fluxes are of similar magnitude to those measured in other urban soils, but with larger peak emissions. The CH 4 sink strength of the cell with the saturated zone (− 3.8 μg CH 4 –C m −2 h −1 ) was lower than the other cell (− 18.3 μg CH 4 –C m −2 h −1 ). Both cells of the biofilter appeared to take up CH 4 at similar rates to other urban lawn systems; however, the biofilter cells displayed occasional large CH 4 emissions following inflow events, which were not seen in other urban systems. CO 2 fluxes increased with soil temperature in both cells, and

  13. Occasional large emissions of nitrous oxide and methane observed in stormwater biofiltration systems

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Samantha P.P., E-mail: samantha.grover@monash.edu [Department of Civil Engineering, Monash University, Clayton, Victoria, 3800 (Australia); Cohan, Amanda, E-mail: acoh5@student.monash.edu [Department of Civil Engineering, Monash University, Clayton, Victoria, 3800 (Australia); Chan, Hon Sen, E-mail: hon.sen.chan@gmail.com [Department of Civil Engineering, Monash University, Clayton, Victoria, 3800 (Australia); Livesley, Stephen J., E-mail: sjlive@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, Richmond, Victoria, 3121 (Australia); Beringer, Jason, E-mail: jason.beringer@monash.edu [School of Geography and Environmental Science, Monash University, Clayton, Victoria, 3800 (Australia); Monash Water for Liveability, Monash University, Clayton, Victoria, 3800 (Australia); Daly, Edoardo, E-mail: edoardo.daly@monash.edu [Department of Civil Engineering, Monash University, Clayton, Victoria, 3800 (Australia); Monash Water for Liveability, Monash University, Clayton, Victoria, 3800 (Australia)

    2013-11-01

    Designed, green infrastructures are becoming a customary feature of the urban landscape. Sustainable technologies for stormwater management, and biofilters in particular, are increasingly used to reduce stormwater runoff volumes and peaks as well as improve the water quality of runoff discharged into urban water bodies. Although a lot of research has been devoted to these technologies, their effect in terms of greenhouse gas fluxes in urban areas has not been yet investigated. We present the first study aimed at quantifying greenhouse gas fluxes between the soil of stormwater biofilters and the atmosphere. N{sub 2}O, CH{sub 4}, and CO{sub 2} were measured periodically over a year in two operational vegetated biofiltration cells at Monash University in Melbourne, Australia. One cell had a saturated zone at the bottom, and compost and hardwood mulch added to the sandy loam filter media. The other cell had no saturated zone and was composed of sandy loam. Similar sedges were planted in both cells. The biofilter soil was a small N{sub 2}O source and a sink for CH{sub 4} for most measurement events, with occasional large emissions of both N{sub 2}O and CH{sub 4} under very wet conditions. Average N{sub 2}O fluxes from the cell with the saturated zone were almost five-fold greater (65.6 μg N{sub 2}O–N m{sup −2} h{sup −1}) than from the other cell (13.7 μg N{sub 2}O–N m{sup −2} h{sup −1}), with peaks up to 1100 μg N{sub 2}O–N m{sup −2} h{sup −1}. These N{sub 2}O fluxes are of similar magnitude to those measured in other urban soils, but with larger peak emissions. The CH{sub 4} sink strength of the cell with the saturated zone (− 3.8 μg CH{sub 4}–C m{sup −2} h{sup −1}) was lower than the other cell (− 18.3 μg CH{sub 4}–C m{sup −2} h{sup −1}). Both cells of the biofilter appeared to take up CH{sub 4} at similar rates to other urban lawn systems; however, the biofilter cells displayed occasional large CH{sub 4} emissions following

  14. Gaseous emission during the composting of pig feces from Chinese Ganqinfen system.

    Science.gov (United States)

    Jiang, Tao; Schuchardt, Frank; Li, Guo Xue; Guo, Rui; Luo, Yi Ming

    2013-01-01

    The Ganqinfen system - a process of manually cleaning animal feces by means of a shovel - is a widely used manure separating method in Chinese pig farms. Ganqinfen pig feces and chopped corn stalks were mixed at the ratio of 7:1, and composted in 1.5 m(3) rotting boxes for 70 d. Evolution of CH(4), N(2)O and NH(3) during composting, and the effects of turning and covering, were studied in this research. Results showed that 20-39% and 0.5-4% of total nitrogen were lost in the form of NH(3) and N(2)O respectively, and 0.1-0.9% of initial organic carbon was emitted as CH(4). Turning enhanced air exchange in the piles, thus decreasing CH(4) emission by 83-93% and shortening the maturing period. When trials were finished, all non-turned piles were separated to three layers by moisture content. This structure caused the N(2)O losses of non-turning treatments to be 6-12.7 times higher than that of turning treatments. Covering materials reduced air exchange at the surface of the pile, thus decreasing the O(2) supply and consequently increasing CH(4) production by 33-45%. Covering also reduced NH(3) emission by 4-34%. For the composting of Ganqinfen pig feces, we suggest that a program of turning twice weekly without covering will result in compost that is sufficiently matured after 6 wk with the lowest resultant greenhouse gas emission. Copyright © 2012. Published by Elsevier Ltd.

  15. Strategic research on CO{sub 2} emission reduction for China. Application of MARKAL to China energy system

    Energy Technology Data Exchange (ETDEWEB)

    Yongping, Wang [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-09-01

    MARKAL was applied to the energy system for analyzing the CO{sub 2} emission reduction in China over the time period from 1990 to 2050. First the Chinese Reference Energy System (CRES) was established based on the framework of MARKAL model. The following conclusions can be drawn from this study. When shifting from scenario LH (low useful energy demand and high import fuel prices) to HL (high demand and low prices), another 33 EJ of primary energy will be consumed and another 2.31 billion tons of CO{sub 2} will be emitted in 2050. Detailed analyses on the disaggregation of CO{sub 2} emissions by Kaya Formula show. The energy intensity (primary energy/GDP) decreases much faster in scenario HL, but the higher growth rate of GDP per capita is the overwhelming factor that results in higher CO{sub 2} emission per capita in the baseline case of scenario HL in comparison with LH. When the carbon taxes are imposed on CO{sub 2} emissions, the residential sector will make the biggest contribution to CO{sub 2} emission abatement from a long-term point of view. However, it`s difficult to stabilize CO{sub 2} emission per capita before 2030 in both scenarios even with heavy carbon taxes. When nuclear moratorium occurs, more 560 million tons of CO{sub 2} will be emitted to the atmosphere in 2050 under the same CO{sub 2} tax regime. From the analysis of value flow, CO{sub 2} emission reduction depends largely on new or advanced technologies particularly in the field of electricity generation. The competent technologies switch to those CO{sub 2} less-emitting technologies when surcharging CO{sub 2} emissions. Nuclear power shows significant potential in saving fossil energy resources and reducing CO{sub 2} emissions. (J.P.N.).

  16. Tomographic evaluation of a dual-head positron emission tomography system

    International Nuclear Information System (INIS)

    Efthimiou, N; Maistros, S; Tripolitis, X; Panayiotakis, G; Samartzis, A; Loudos, G

    2011-01-01

    In this paper we present the performance evaluation results, in the planar and tomographic modes, of a low-cost positron emission tomography camera dedicated to small-animal imaging. The system consists of two pixelated Lu 2 SiO 5 crystals, two Hamamatsu H8500 position sensitive photomultiplier tubes, fast amplification electronics and an FPGA-USB-based read-out system. The parameters that have been studied are (i) saturation as a function of the head distance and photon acceptance angle, (ii) effect of the number of projections and half or complete head's rotation, (iii) spatial resolution as a function of the head distance, (iv) spatial resolution as a function of acceptance angle, (v) system's sensitivity as a function of these parameters and (vi) performance in small mice imaging. Image reconstruction has been carried out using open source software developed by our group (QSPECT), which is designed mainly for SPECT imaging. The results indicate that the system has a linear response for activities up to at least 2 MBq, which are typical in small-animal imaging. Best tomographic spatial resolution was measured to be ∼2 mm. The system has been found suitable for imaging of small mice both in the planar and tomographic modes

  17. DB Riley-low emission boiler system (LEBS): Superior power for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Beittel, R. [DB Riley, Inc., Worcester, MA (United States); Ruth, L.A. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    In conjunction with the US Department of Energy, DB Riley, Inc., is developing a highly advanced coal-fired power-generation plant called the Low Emission Boiler Systems (LEBS). By the year 2000, LEBS will provide the US electric power industry with a reliable, efficient, cost-effective, environmentally superior alternative to current technologies. LEBS incorporates significant advances in coal combustion, supercritical steam boiler design, environmental control, and materials development. The system will include a state-of-the-art steam cycle operating at supercritical steam conditions; a slagging combustor that produces vitrified ash by-products; low nitrogen oxide (NOx) burners; a new, dry, regenerable flue gas cleanup system (copper oxide process) for simultaneously capturing sulfur dioxide (SO{sub 2}) and nitrogen oxides (NOx); a pulse-jet fabric filter for particulate capture; and a low-temperature heat-recovery system. The copper oxide flue gas cleanup system, which has been under development at DOE`s Pittsburgh field center, removes over 98% of SO{sub 2} and 95% of NOx from flue gas. A new moving-bed design provides efficient sorbent utilization that lowers the cleanup process cost. The captured SO{sub 2} can be converted to valuable by-products such as sulfuric acid and/or element sulfur, and the process generates no waste.

  18. Cost, Emissions, and Customer Service Trade-Off Analysis In Pickup and Delivery Systems.

    Science.gov (United States)

    2011-05-01

    This research offers a novel formulation for including emissions into fleet assignment and vehicle routing, and for the : trade-offs faced by fleet operators between cost, emissions, and service quality. This approach enables evaluation of : the impa...

  19. A Multiple Period Problem in Distributed Energy Management Systems Considering CO2 Emissions

    Science.gov (United States)

    Muroda, Yuki; Miyamoto, Toshiyuki; Mori, Kazuyuki; Kitamura, Shoichi; Yamamoto, Takaya

    Consider a special district (group) which is composed of multiple companies (agents), and where each agent responds to an energy demand and has a CO2 emission allowance imposed. A distributed energy management system (DEMS) optimizes energy consumption of a group through energy trading in the group. In this paper, we extended the energy distribution decision and optimal planning problem in DEMSs from a single period problem to a multiple periods one. The extension enabled us to consider more realistic constraints such as demand patterns, the start-up cost, and minimum running/outage times of equipment. At first, we extended the market-oriented programming (MOP) method for deciding energy distribution to the multiple periods problem. The bidding strategy of each agent is formulated by a 0-1 mixed non-linear programming problem. Secondly, we proposed decomposing the problem into a set of single period problems in order to solve it faster. In order to decompose the problem, we proposed a CO2 emission allowance distribution method, called an EP method. We confirmed that the proposed method was able to produce solutions whose group costs were close to lower-bound group costs by computational experiments. In addition, we verified that reduction in computational time was achieved without losing the quality of solutions by using the EP method.

  20. Diets in methane emissions during rumination process in cattle production systems

    Directory of Open Access Journals (Sweden)

    Luz Elena Santacoloma Varón

    2011-05-01

    Full Text Available The population of ruminants in the world is increasing, since its products constitute a source of protein of high nutritional value for the human population; nevertheless, this increase, will contribute in great proportion to the global warming and to the deterioration of the ozone layer, since between the subproducts of the ruminal fermentation, carbonic gas and methane are found. &e last one is produced by the anaerobic bacteria present in the rumen that di'erent types of substrata use, principally H2 and CO2. &e action of the bacteria producers of methane depends to a great extent on the type of substrata presented in the diet, and of the chemical and physical characteristics of the same one. &erefore, it is possible to diminish the e'ects that the productive systems of ruminants have on the environment, o'ering the animals nutritional alternatives that besides reducing the emission of methane to the atmosphere, will also reduce the energetic losses that for this concept it presents in the ruminants. In the present review the idea of using forages of the tropic that contain secondary metabolics that could concern the population of protozoan’s combined with forages of high nutritional value is presented and the idea of obtaining very good proved productive results is possible to simultaneously diminishes the gas emission of methane to the atmosphere

  1. Framework for the assessment of PEMS (Portable Emissions Measurement Systems) uncertainty.

    Science.gov (United States)

    Giechaskiel, Barouch; Clairotte, Michael; Valverde-Morales, Victor; Bonnel, Pierre; Kregar, Zlatko; Franco, Vicente; Dilara, Panagiota

    2018-06-13

    European regulation 2016/427 (the first package of the so-called Real-Driving Emissions (RDE) regulation) introduced on-road testing with Portable Emissions Measurement Systems (PEMS) to complement the chassis dynamometer laboratory (Type I) test for the type approval of light-duty vehicles in the European Union since September 2017. The Not-To-Exceed (NTE) limit for a pollutant is the Type I test limit multiplied by a conformity factor that includes a margin for the additional measurement uncertainty of PEMS relative to standard laboratory equipment. The variability of measured results related to RDE trip design, vehicle operating conditions, and data evaluation remain outside of the uncertainty margin. The margins have to be reviewed annually (recital 10 of regulation 2016/646). This paper lays out the framework used for the first review of the NO x margin, which is also applicable to future margin reviews. Based on experimental data received from the stakeholders of the RDE technical working group in 2017, two NO x margin scenarios of 0.24-0.43 were calculated, accounting for different assumptions of possible zero drift behaviour of the PEMS during the tests. The reduced uncertainty margin compared to the one foreseen for 2020 (0.5) reflects the technical improvement of PEMS over the past few years. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Emissions Trading and behaviour of firms: the contribution of the Decision Support System

    International Nuclear Information System (INIS)

    Esposito De Falco, S.

    2008-01-01

    The problem of the influence exerted on the firms behaviour from the introduction of the mechanisms of regulation of the Emissions Trading (E T) is the heart of this work. In fact, following the approach of the new-institutionalist school of Powell and Di Maggio, we wanted to test how much the business can be influenced by both the action of public and private institutions and the interaction with the socio-economical environment where it acts. In this context we tried to analyse the consequences induced by the dictates of the Kyoto Protocol on the strategic choices of the companies, with reference, above all, to the tendencies to change and innovation. The hypothesis of search is that mechanisms of regulation of the E T may change the competitive behaviour of the companies, for the advantage to pay the emissions permits rather than innovate the technological processes. To sustain such an hypothesis we developed a Decision Support System able to simulate the businesses behaviour after the share allotment. The work ends with a simulation carried out on the energy manufacturing equipment from which it is possible to make some considerations about the limited effectiveness of the mechanisms of regulation of the E T to stimulate virtuous businesses behaviours oriented to innovation. [it

  3. Very High Energy Emission from the Binary System Cyg X-3

    Science.gov (United States)

    Sinitsyna, V. G.; Sinitsyna, V. Yu.

    2018-03-01

    Cyg X-3 is actively studied in the entire range of the electromagnetic spectrum from the radio band to ultrahigh energies. Based on the detection of ultrahigh-energy gamma-ray emission, it has been suggested that Cyg X-3 could be one of the most powerful sources of charged cosmic-ray particles in the Galaxy. We present the results of long-term observations of the Cygnus X-3 region at energies 800 GeV-100 TeV by the SHALON mirror Cherenkov telescope. In 1995 the SHALON observations revealed a new Galactic source of very high energy gamma-ray emission coincident in its coordinates with the microquasar Cyg X-3. To reliably identify the detected source with Cyg X-3, an analysis has been performed and an orbital period of 4.8 h has been found, which is a signature of Cyg X-3. A series of flares in Cyg X-3 at energies >800 GeV and their correlation with the activity in the X-ray and radio bands have been observed. The results obtained in a wide energy range for Cyg X-3, including those during the periods of relativistic jet events, are needed to find the connection and to understand the different components of an accreting binary system.

  4. SEMS operating as a proven system for screening real-world NOx and NH3 emissions

    NARCIS (Netherlands)

    Vermeulen, R.J.; Goethem, S. van; Baarbe, H.L.; Zuidgeest, L.W.M.; Spreen, J.S.; Vonk, W.A.

    2014-01-01

    NOx emissions of heavy-duty and light-duty diesel vehicles depend strongly on the driving conditions. The introduction of combined emission reduction technologies in Euro VI vehicles have demonstrated that NOx emissions become less predictable when the data is based on relatively short test cycles.

  5. Effect of hybrid system battery performance on determining CO2 emissions of hybrid electric vehicles in real-world conditions

    International Nuclear Information System (INIS)

    Alvarez, Robert; Schlienger, Peter; Weilenmann, Martin

    2010-01-01

    Hybrid electric vehicles (HEVs) can potentially reduce vehicle CO 2 emissions by using recuperated kinetic vehicle energy stored as electric energy in a hybrid system battery (HSB). HSB performance affects the individual net HEV CO 2 emissions for a given driving pattern, which is considered to be equivalent to unchanged net energy content in the HSB. The present study investigates the influence of HSB performance on the statutory correction procedure used to determine HEV CO 2 emissions in Europe based on chassis dynamometer measurements with three identical in-use examples of a full HEV model featuring different mileages. Statutory and real-world driving cycles and full electric vehicle operation modes have been considered. The main observation is that the selected HEVs can only use 67-80% of the charge provided to the HSB, which distorts the outcomes of the statutory correction procedure that does not consider such irreversibility. CO 2 emissions corrected according to this procedure underestimate the true net CO 2 emissions of one HEV by approximately 13% in real-world urban driving. The correct CO 2 emissions are only reproduced when considering the HSB performance in this driving pattern. The statutory procedure for correcting HEV CO 2 emissions should, therefore, be adapted.

  6. Modeling of Regionalized Emissions (MoRE into Water Bodies: An Open-Source River Basin Management System

    Directory of Open Access Journals (Sweden)

    Stephan Fuchs

    2017-03-01

    Full Text Available An accurate budget of substance emissions is fundamental for protecting freshwater resources. In this context, the European Union asks all member states to report an emission inventory of substances for river basins. The river basin management system MoRE (Modeling of Regionalized Emissions was developed as a flexible open-source instrument which is able to model pathway-specific emissions and river loads on a catchment scale. As the reporting tool for the Federal Republic of Germany, MoRE is used to model annual emissions of nutrients, heavy metals, micropollutants like polycyclic aromatic hydrocarbons (PAH, Bis(2-ethylhexylphthalate (DEHP, and certain pharmaceuticals. Observed loads at gauging stations are used to validate the calculated emissions. In addition to its balancing capabilities, MoRE can consider different variants of input data and quantification approaches, in order to improve the robustness of different modeling approaches and to evaluate the quality of different input data. No programming skills are required to set up and run the model. Due to its flexible modeling base, the effect of reduction measures can be assessed. Within strategic planning processes, this is relevant for the allocation of investments or the implementation of specific measures to reduce the overall pollutant emissions into surface water bodies and therefore to meet the requirements of water policy.

  7. Correction of head movements in positron emission tomography using point source tracking system: a simulation study.

    Science.gov (United States)

    Nazarparvar, Babak; Shamsaei, Mojtaba; Rajabi, Hossein

    2012-01-01

    The motion of the head during brain positron emission tomography (PET) acquisitions has been identified as a source of artifact in the reconstructed image. In this study, a method is described to develop an image-based motion correction technique for correcting the post-acquisition data without using external optical motion-tracking system such as POLARIS. In this technique, GATE has been used to simulate PET brain scan using point sources mounted around the head to accurately monitor the position of the head during the time frames. The measurement of head motion in each frame showed a transformation in the image frame matrix, resulting in a fully corrected data set. Using different kinds of phantoms and motions, the accuracy of the correction method is tested and its applicability to experimental studies is demonstrated as well.

  8. System and method for making metallic iron with reduced CO.sub.2 emissions

    Science.gov (United States)

    Kiesel, Richard F; Englund, David J; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

    2014-10-14

    A method and system for making metallic iron nodules with reduced CO.sub.2 emissions is disclosed. The method includes: assembling a linear hearth furnace having entry and exit portions, at least a conversion zone and a fusion zone, and a moving hearth adapted to move reducible iron bearing material through the furnace on contiguous hearth sections; assembling a shrouded return substantially free of air ingress extending adjacent at least the conversion and fusion zones of the furnace through which hearth sections can move from adjacent the exit portion to adjacent the entry portion of the furnace; transferring the hearth sections from the furnace to the shrouded return adjacent the exit portion; reducing reducible material in the linear hearth furnace to metallic iron nodules; and transporting gases from at least the fusion zone to the shrouded return to heat the hearth sections while in the shrouded return.

  9. Noncondensable hydrogen sulfide incineration with brine scrubbing air emissions control system

    International Nuclear Information System (INIS)

    Goddard, W.B.; Goddard, C.B.; McClain, D.W.

    1990-01-01

    This paper reports on the technical and institutional feasibility of incinerating hydrogen sulfide (H2S) contained in geothermal noncondensable gases, and the use of geothermal brine for sulfur dioxide scrubbing and absorption as an Air Emissions Control System (AECS), for geothermal power plant, that have been documented through engineering analysis in the Phase I grant study funded through the California Department of Health Services (DOHS), Hazardous Materials Reduction Grant Program and hosted by California Energy Company (CECI). Grant funding for Phase II now has been approved to proceed with the project through the pilot plant design phase. This innovative AECS does not necessitate the use of hazardous materials or produce hazardous wastes. Cost savings were documented compared to injection pump operation or conventional AECS without the use of hazardous materials. The phase II project is to design, improve, research and develop a source reduction demonstration pilot plant geothermal noncondensable H2S incineration AECS

  10. 40 CFR 63.1034 - Closed vent systems and control devices; or emissions routed to a fuel gas system or process...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Closed vent systems and control devices; or emissions routed to a fuel gas system or process standards. 63.1034 Section 63.1034 Protection... routed to a fuel gas system or process standards. (a) Compliance schedule. The owner or operator shall...

  11. South American smoke coverage and flux estimations from the Fire Locating and Modeling of Burning Emissions (FLAMBE') system.

    Science.gov (United States)

    Reid, J. S.; Westphal, D. L.; Christopher, S. A.; Prins, E. M.; Gasso, S.; Reid, E.; Theisen, M.; Schmidt, C. C.; Hunter, J.; Eck, T.

    2002-05-01

    The Fire Locating and Modeling of Burning Emissions (FLAMBE') project is a joint Navy, NOAA, NASA and university project to integrate satellite products with numerical aerosol models to produce a real time fire and emissions inventory. At the center of the program is the Wildfire Automated Biomass Burning Algorithm (WF ABBA) which provides real-time fire products and the NRL Aerosol Analysis and Prediction System to model smoke transport. In this presentation we give a brief overview of the system and methods, but emphasize new estimations of smoke coverage and emission fluxes from the South American continent. Temporal and smoke patterns compare reasonably well with AERONET and MODIS aerosol optical depth products for the 2000 and 2001 fire seasons. Fluxes are computed by relating NAAPS output fields and MODIS optical depth maps with modeled wind fields. Smoke emissions and transport fluxes out of the continent can then be estimated by perturbing the modeled emissions to gain agreement with the satellite and wind products. Regional smoke emissions are also presented for grass and forest burning.

  12. An evaluation of negative-emission transportation-energy systems for the US

    Science.gov (United States)

    Larson, E. D.; Meerman, J. C.

    2017-12-01

    We present technical, economic, and carbon footprint evaluations of alternative technological pathways for negative emissions transportation energy from sustainably-sourced lignocellulosic biomass in the U.S. We combine the understanding of alternative technological pathways with spatially-resolved projections of the sustainable supply of lignocellulosic biomass and with future demands for transportation services to provide insights on the extent to which biomass-based energy might be able to help meet mid-century U.S. transportation energy needs and carbon mitigation targets. Biomass conversion routes included in our evaluations are biochemical, biocatalytic, thermocatalytic hydropyrolysis, and thermochemical gasification/synthesis to produce liquid fuels fungible with petroleum-derived fuels, and thermochemical conversion to hydrogen (for fuel cell vehicles) or electricity (for battery electric vehicles). Lifecycle net negative emissions are achieved for each system via soil carbon buildup during biomass production and/or capture of CO2 at the conversion facility and underground storage. Co-processing of some fossil fuel is considered in some cases to improve economics. For self-consistency in the analysis across systems, a common set of technical, economic and carbon footprint input parameters are adopted. Capital cost estimates are harmonized by taking into account scale of facilities, level of engineering details available in generating a cost estimate, and the technology readiness level (TRL) of components and the process as a whole. Implications for economics of future commercial plants are investigated, considering alternative prospective reductions in capital and operating costs (via "learning by doing") and alternative carbon mitigation policies.

  13. Effects of Fuel Type and Fuel Delivery System on Pollutant Emissions of Pride and Samand Vehicles

    Directory of Open Access Journals (Sweden)

    Akbar Sarhadi

    2017-04-01

    Full Text Available This research was aimed to study the effect of the type of fuel delivery system (petrol, dedicated or bifuel, the type of consumed fuel (petrol or gas, the portion of consumed fuel and also the duration of dual-fuelling in producing carbon monoxide, carbon dioxide and unburned hydrocarbons from Pride and Samand. According to research objectives, data gathering from 2000 vehicles has been done by visiting Hafiz Vehicle Inspection Center every day for 2 months. The results of this survey indicated that although there is no significant difference between various fuel delivery systems in terms of producing the carbon monoxide, carbon dioxide and unburned hydrocarbons by Samand, considering the emission amount of carbon dioxide, the engine performance of Pride in bifuel and dedicated state in GTXI and 132 types is more unsatisfactory than that of petrol state by 0.3 and 0.4%, respectively. On the other hand, consuming natural gas increases the amount of carbon monoxide emission in dual- fuel Pride by 0.18% and decreases that in dual-fuel Samand by 1.2%, which signifies the better design of Samand in terms of fuel pumps, used kit type and other engine parts to use this alternative fuel compared to Pride. Since the portion of consumed fuel and also duration of dual-fuelling does not have a significant effect on the amount of output pollutants from the studied vehicles, it can be claimed that the output substances from the vehicle exhaust are more related to the vehicle’s condition than the fuel type.

  14. [Engineering development of advanced coal-fired low-emission boiler systems]. Technical progress report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wesnor, J.D.; Bakke, E. [ABB Environmental Systems, Birmingham, AL (United States); Bender, D.J.; Kaminski, R.S. [Raytheon Engineers and Constructors, Inc., Philadelphia, PA (United States)

    1995-12-31

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emisssion boiler systems. The primary objectives are: NO{sub x} emissions, lb/million Btu; SO{sub 2} emissions, lb/million Btu; particulate emissions, lb/million Btu; and net plant efficiency, not less than 42%. The secondary objectives are: improved ash disposability; reduced waste generation; and reduced air toxics emissions. Accomplishments to date are summarized for the following tasks: task 1, project planning and management; task 7, component development and optimization; task 8, preliminary POC test facility design; task 9, subsystem test design and plan; task 10, subsystem test unit construction; and task 11, subsystem test operation and evaluation.

  15. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.

    Science.gov (United States)

    Moix, Jeremy M; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  16. Analyzing a self-managed CHP system for greenhouse cultivation as a profitable way to reduce CO2-emissions

    International Nuclear Information System (INIS)

    Compernolle, Tine; Witters, Nele; Van Passel, Steven; Thewys, Theo

    2011-01-01

    To counter global warming, a transition to a low-carbon economy is needed. The greenhouse sector can contribute by installing Combined Heat and Power (CHP) systems, known for their excellent energy efficiency. Due to the recent European liberalization of the energy market, glass horticulturists have the opportunity to sell excess electricity to the market and by tailored policy and support measures, regional governments can fill the lack of technical and economic knowledge, causing initial resistance. This research investigates the economic and environmental opportunities using two detailed cases applying a self managed cogeneration system. The Net Present Value is calculated to investigate the economic feasibility. The Primary Energy Saving, the CO 2 Emission Reduction indicator and an Emission Balance are applied to quantify the environmental impact. The results demonstrate that a self-managed CHP system is economic viable and that CO 2 emissions are reduced.

  17. Methane Emissions from the Natural Gas Transmission and Storage System in the United States.

    Science.gov (United States)

    Zimmerle, Daniel J; Williams, Laurie L; Vaughn, Timothy L; Quinn, Casey; Subramanian, R; Duggan, Gerald P; Willson, Bryan; Opsomer, Jean D; Marchese, Anthony J; Martinez, David M; Robinson, Allen L

    2015-08-04

    The recent growth in production and utilization of natural gas offers potential climate benefits, but those benefits depend on lifecycle emissions of methane, the primary component of natural gas and a potent greenhouse gas. This study estimates methane emissions from the transmission and storage (T&S) sector of the United States natural gas industry using new data collected during 2012, including 2,292 onsite measurements, additional emissions data from 677 facilities and activity data from 922 facilities. The largest emission sources were fugitive emissions from certain compressor-related equipment and "super-emitter" facilities. We estimate total methane emissions from the T&S sector at 1,503 [1,220 to 1,950] Gg/yr (95% confidence interval) compared to the 2012 Environmental Protection Agency's Greenhouse Gas Inventory (GHGI) estimate of 2,071 [1,680 to 2,690] Gg/yr. While the overlap in confidence intervals indicates that the difference is not statistically significant, this is the result of several significant, but offsetting, factors. Factors which reduce the study estimate include a lower estimated facility count, a shift away from engines toward lower-emitting turbine and electric compressor drivers, and reductions in the usage of gas-driven pneumatic devices. Factors that increase the study estimate relative to the GHGI include updated emission rates in certain emission categories and explicit treatment of skewed emissions at both component and facility levels. For T&S stations that are required to report to the EPA's Greenhouse Gas Reporting Program (GHGRP), this study estimates total emissions to be 260% [215% to 330%] of the reportable emissions for these stations, primarily due to the inclusion of emission sources that are not reported under the GHGRP rules, updated emission factors, and super-emitter emissions.

  18. Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Na; Cai, Ruixian

    2013-01-01

    Based on the principle of cascade utilization of multiple energy resources, a gas-steam combined cycle power system integrated with solar thermo-chemical fuel conversion and CO 2 capture has been proposed and analyzed. The collected solar heat at 550 °C drives the endothermic methane reforming and is converted to the produced syngas chemical exergy, and then released as high-temperature thermal energy via combustion for power generation, achieving its high-efficiency heat-power conversion. The reforming reaction is integrated with a hydrogen separation membrane, which continuously withdraws hydrogen from the reaction zone and enables nearly full methane conversion. The CO 2 enriched gas being concentrated in the retentate zone is collected and processed with pre-combustion decarbonization. The system is thermodynamically simulated using the ASPEN PLUS code. The results show that with 91% CO 2 captured, the specific CO 2 emission is 25 g/kWh. An exergy efficiency of 58% and thermal efficiency of 51.6% can be obtained. A fossil fuel saving ratio of 31.2% is achievable with a solar thermal share of 28.2%, and the net solar-to-electricity efficiency based on the gross solar heat incident on the collector is about 36.4% compared with the same gas-steam combined cycle system with an equal CO 2 removal ratio obtained by post-combustion decarbonization. - Highlights: ► A solar-assisted hybrid combined cycle power system has been proposed and analyzed. ► The system integrates power generation with solar-driven reforming and CO 2 capture. ► solar heat upgrading and high-efficiency heat-to-power conversion are achieved. ► membrane reforming enables high CH 4 conversion and pre-combustion CO 2 capture. ► The system thermodynamic performances have been investigated and compared

  19. Evaluation of SHM system produced by additive manufacturing via acoustic emission and other NDT methods.

    Science.gov (United States)

    Strantza, Maria; Aggelis, Dimitrios G; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny

    2015-10-21

    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called "effective structural health monitoring" (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals.

  20. The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems

    Energy Technology Data Exchange (ETDEWEB)

    Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

    1994-06-01

    Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

  1. Integration of acoustic emission systems within Integri-TechTM analysis system for structural health monitoring of pressurised engineering plant

    International Nuclear Information System (INIS)

    Ghouri, A A; Galbraith, Walter; Pierce, S Gareth; Gachagan, Anthony; Rafferty, Steven; Pickwell, Andy

    2015-01-01

    The aim of this Acoustic Emission (AE) based Structural Health Monitoring project is to enable accurate location of AE sources in pressurised engineering plant and to use AE source location data to establish defect locations for use within Integri-Tech TM ; a finite element based analysis, monitoring and fitness for service assessment system. Integri-Tech TM is a windows based system which carries out combined analysis and assessment providing fatigue life and remnant life calculations and inspection priorities presenting the results in an accessible web portal format. The software uses finite element stress models created in the companion software Model Wizard. The AE monitoring system that has been developed can be used with an array of up to four AE broad band sensor channels with associated signal processing. Using a flexible approach in MATLAB, the authors have developed algorithms which were used for analysing the received AE signals to extract information about the nature and location of the source. The ability to carry out source location and possibly perform real time monitoring (detecting cracking as it occurs) is attractive feature of the AE system developed for this project. The time of arrival (TOA) data was used by Integri-Tech TM software to calculate source location using its own built-in algorithm, and this was verified independently using a MATLAB approach. (paper)

  2. Energy efficiency in a water supply system: Energy consumption and CO2 emission

    Directory of Open Access Journals (Sweden)

    Helena M. Ramos

    2010-09-01

    Full Text Available This paper presents important fundamentals associated with water and energy efficiency and highlights the importance of using renewable energy sources. A model of multi-criteria optimization for energy efficiency based on water and environmental management policies, including the preservation of water resources and the control of water pressure and energy consumption through a hybrid energy solution, was developed and applied to a water supply system. The methodology developed includes three solutions: (1 the use of a water turbine in pipe systems where pressures are higher than necessary and pressure-reducing valves are installed, (2 the optimization of pumping operation according to the electricity tariff and water demand, and (3 the use of other renewable energy sources, including a wind turbine, to supply energy to the pumping station, with the remaining energy being sold to the national electric grid. The use of an integrated solution (water and energy proves to be a valuable input for creating benefits from available hydro energy in the water supply system in order to produce clean power, and the use of a wind source allows for the reduction of energy consumption in pumping stations, as well as of the CO2 emission to the atmosphere.

  3. Energy efficiency in a water supply system:Energy consumption and CO2 emission

    Institute of Scientific and Technical Information of China (English)

    Helena M.RAMOS; Filipe VIEIRA; Didia I.C.COVAS

    2010-01-01

    This paper presents important fundamentals associated with water and energy efficiency and highlights the importance of using renewable energy sources.A model of multi-criteria optimization for energy efficiency based on water and environmental management policies,including the preservation of water resources and the control of water pressure and energy consumption through a hybrid energy solution,was developed and applied to a water supply system.The methodology developed includes three solutions:(1)the use of a water turbine in pipe systems where pressures are higher than necessary and pressure-reducing valves are installed,(2)the optimization of pumping operation according to the electricity tariff and water demand,and(3)the use of other renewable energy sources,including a wind turbine,to supply energy to the pumping station,with the remaining energy being sold to the national electric grid.The use of an integrated solution(water and energy)proves to be a valuable input for creating benefits from available hydro energy in the water supply system in order to produce clean power,and the use of a wind source allows for the reduction of energy consumption in pumping stations,as well as of the CO2 emission to the atmosphere.

  4. Effect of feeding strategies and cropping systems on greenhouse gas emission from Wisconsin certified organic dairy farms.

    Science.gov (United States)

    Liang, D; Sun, F; Wattiaux, M A; Cabrera, V E; Hedtcke, J L; Silva, E M

    2017-07-01

    Organic agriculture continues to expand in the United States, both in total hectares and market share. However, management practices used by dairy organic producers, and their resulting environmental impacts, vary across farms. This study used a partial life cycle assessment approach to estimate the effect of different feeding strategies and associated crop production on greenhouse gas emissions (GHG) from Wisconsin certified organic dairy farms. Field and livestock-driven emissions were calculated using 2 data sets. One was a 20-yr data set from the Wisconsin Integrated Cropping System Trial documenting management inputs, crop and pasture yields, and soil characteristics, used to estimate field-level emissions from land associated with feed production (row crop and pasture), including N 2 O and soil carbon sequestration. The other was a data set summarizing organic farm management in Wisconsin, which was used to estimate replacement heifer emission (CO 2 equivalents), enteric methane (CH 4 ), and manure management (N 2 O and CH 4 ). Three combinations of corn grain (CG) and soybean (SB) as concentrate (all corn = 100% CG; baseline = 75% CG + 25% SB; half corn = 50% CG + 50% SB) were assigned to each of 4 representative management strategies as determined by survey data. Overall, GHG emissions associated with crop production was 1,297 ± 136 kg of CO 2 equivalents/t of ECM without accounting for soil carbon changes (ΔSC), and GHG emission with ΔSC was 1,457 ± 111 kg of CO 2 equivalents/t of ECM, with greater reliance on pasture resulting in less ΔSC. Higher levels of milk production were a major driver associated with reduction in GHG emission per metric tonne of ECM. Emissions per metric tonne of ECM increased with increasing proportion of SB in the ration; however, including SB in the crop rotation decreased N 2 O emission per metric tonne of ECM from cropland due to lower applications of organically approved N fertility inputs. More SB at the expense of CG

  5. Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO2 emissions

    Directory of Open Access Journals (Sweden)

    S. Feng

    2016-07-01

    Full Text Available Megacities are major sources of anthropogenic fossil fuel CO2 (FFCO2 emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA megacity area. The Weather Research and Forecasting (WRF-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as  ∼  1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010. Our results show no significant difference between moderate-resolution (4 km and high-resolution (1.3 km simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution and Hestia-LA (1.3 km resolution fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of

  6. A RESOLVED CENSUS OF MILLIMETER EMISSION FROM TAURUS MULTIPLE STAR SYSTEMS

    International Nuclear Information System (INIS)

    Harris, Robert J.; Andrews, Sean M.; Wilner, David J.; Kraus, Adam L.

    2012-01-01

    We present a high angular resolution millimeter-wave dust continuum imaging survey of circumstellar material associated with the individual components of 23 multiple star systems in the Taurus-Auriga young cluster. Combined with previous measurements in the literature, these new data permit a comprehensive look at how the millimeter luminosity (a rough tracer of disk mass) relates to the separation and mass of a stellar companion. Approximately one-third (28%-37%) of the individual stars in multiple systems have detectable millimeter emission, an incidence rate half that for single stars (∼62%) which does not depend on the number of companions. There is a strong, positive correlation between the luminosity and projected separation (a p ) of a stellar pair. Wide pairs (a p > 300 AU) have a similar luminosity distribution as single stars, medium pairs (a p ≈ 30-300 AU) are a factor of five fainter, and close pairs (a p < 30 AU) are ∼5× fainter yet (aside from a small, but notable population of bright circumbinary disks). In most cases, the emission is dominated by a disk around the primary (or a wide tertiary in hierarchical triples), but there is no clear relationship between luminosity and stellar mass ratio. A direct comparison of resolved disk sizes with predictions from tidal truncation models yields mixed results; some disks are much larger than expected given the projected distances of their companions. We suggest that the presence of a stellar companion impacts disk properties at a level comparable to the internal evolution mechanisms that operate in an isolated system, with both the multiple star formation process itself and star-disk tidal interactions likely playing important roles in the evolution of circumstellar material. From the perspective of the mass content of the disk reservoir, we expect that (giant) planet formation is inhibited around the components of close pairs or secondaries, but should be as likely as for single stars around the

  7. Emission potentials of future diesel fuel injection systems; Emissionspotentiale zukuenftiger Diesel-Einspritzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Schommers, J.; Breitbach, H.; Stotz, M.; Schnabel, M. [DaimlerChrysler AG (Germany)

    2007-07-01

    The historical evolution of the diesel engine correlates strongly with fuel injection system developments. Mercedes-Benz contributed significantly to the recent success of the diesel engine, being one of the first car manufacturers to introduce a modern common rail diesel engine in the Mercedes C220 CDI in 1997. The excellent characteristics of modern diesel engines resulted in a 50% market share in newly registered cars in Germany. These characteristics have to be further improved in the next years to keep the diesel engine attractive. Emissions and at the same time fuel consumption and noise need to be further reduced, while engine power has to go up. For Mercedes-Benz key steps to reach these goals are lower compression ratio, higher boost pressures, higher exhaust gas recirculation rates and better EGR cooling, multiple injection patterns and components with stable application parameters over lifetime. Important requirements for future fuel injection systems are high spray momentum, good stability over lifetime, good robustness of injected quantities for varying injection patterns and a low shot-to-shot variation of injected quantities. The high spray momentum has to be achieved especially for small injections and for part load operating points with low pressures. Therefore, the needle opening and closing velocities are of special importance. With special focus on the above requirements, different injector concepts were hydraulically evaluated. Both concepts in serial production and under development from system suppliers, as well as Mercedes-Benz developed prototype injector concepts were chosen. The concepts analysed are a servo-hydraulically driven injector with control piston, two servo-hydraulically driven injectors without control piston with differently adjusted hydraulics, and a direct driven injector, where the needle is driven directly from an actuator without servo-hydraulic amplification. The hydraulic investigations show an excellent performance of

  8. Greenhouse Gas Emission Reduction Due to Improvement of Biodegradable Waste Management System

    Science.gov (United States)

    Bendere, R.; Teibe, I.; Arina, D.; Lapsa, J.

    2014-12-01

    To reduce emissions of greenhouse gas (GHG) from landfills, the European Union (EU) Landfill Directive 1999/31/EC requires that there be a progressive decrease in the municipal biodegradable waste disposal. The main problem of waste management (WM) in Latvia is its heavy dependence on the waste disposal at landfills. The poorly developed system for the sorted municipal waste collection and the promotion of landfilling as a major treatment option led to the disposal of 84% of the total collected municipal waste in 2012, with a high biodegradable fraction. In Latvia, the volume of emissions due to activities of the WM branch was 5.23% (632.6 CO2 eq.) of the total GHG emissions produced in the National economy in 2010 (12 097 Gg CO2 eq., except the land use, land-use change and forestry). Having revised the current situation in the management of biodegradable waste in Latvia, the authors propose improvements in this area. In the work, analysis of environmental impact was carried out using Waste Management Planning System (WAMPS) software in the WM modelling scenarios. The software computes the emissions, energy and turnover of waste streams for the processes within the WM system such as waste collection and transportation, composting, anaerobic digestion, and the final disposal (landfilling or incineration). The results of WAMPS modelling are presented in four categories associated with the environmental impact: acidification, global warming, eutrophication and photo-oxidant formation, each characterised by a particular emission. These categories cover an integrated WM system, starting with the point when products turn to waste which is then thrown into the bin for waste at its generation source, and ending with the point where the waste transforms either into useful material (recycled material, biogas or compost) or contributes to emissions into environment after the final disposal at a landfill or an incineration plant Rakstā veikts pašvaldības bioloģiski no

  9. Long term energy and emission implications of a global shift to electricity-based public rail transportation system

    International Nuclear Information System (INIS)

    Chaturvedi, Vaibhav; Kim, Son H.

    2015-01-01

    With high reliance on light-duty vehicles in the present, the future of global transportation system is also geared towards private modes, which has significant energy and emission implications. Public transportation has been argued as an alternative strategy for meeting the rising transportation demands of the growing world, especially the poor, in a sustainable and energy efficient way. The present study analyzes an important yet under-researched question – what are the long-term energy and emission implications of an electric rail based passenger transportation system for meeting both long and short distance passenter transportation needs? We analyze a suite of electric rail share scenarios with and without climate policy. In the reference scenario, the transportation system will evolve towards dominance of fossil based light-duty vehicles. We find that an electric rail policy is more successful than an economy wide climate policy in reducing transport sector energy demand and emissions. Economy wide emissions however can only be reduced through a broader climate policy, the cost of which can be reduced by hundreds of billions of dollars across the century when implemented in combination with the transport sector focused electric rail policy. Moreover, higher share of electric rail enhances energy security for oil importing nations and reduces vehicular congestion and road infrastructure requirement as well. -- Highlights: •Economy wide carbon price policy will have little impact on transportation emissions. •Focused energy and emission mitigation policies required for transportation sector. •Large global shift towards electric rail based public transport is one possible option. •Transport sector focused policy will have marginal impact on total global emissions. •A combined transport sector and economy wide policy can reduce costs significantly

  10. Optimizing the e-beam profile of a single carbon nanotube field emission device for electric propulsion systems

    Directory of Open Access Journals (Sweden)

    Juliano Fujioka Mologni

    2010-04-01

    Full Text Available Preliminary studies on field emission (FE arrays comprised of carbon nanotubes (CNT as an electron source for electric propulsion system show remarkably promising results. Design parameters for a carbon nanotube (CNT field-emission device operating on triode configuration were numerically simulated and optimized in order to enhance the e-beam focusing quality. An additional focus gate (FG was integrated to the device to control the profile of the emitted e-beam. An axisymmetric finite element model was developed to calculate the electric field distribution on the vacuum region and a modified Fowler-Nordheim (FN equation was used to evaluate the current density emission and the effective emitter area. Afterward, a FE simulation was employed in order to calculate the trajectory of the emitted electrons and define the electron-optical properties of the e-beam. The integration of the FG was fully investigated via computational intelligence techniques. The best performance device according to our simulations presents a collimated e-beam profile that suits well for field emission displays, magnetic field detection and electron microscopy. The automated computational design tool presented in this study strongly benefits the robust design of integrated electron-optical systems for vacuum field emission applications, including electrodynamic tethering and electric propulsion systems.

  11. An alternative approach to continuous compliance monitoring and turbine plant optimization using a PEMS (predictive emission monitoring system)

    International Nuclear Information System (INIS)

    Swanson, B.G.; Lawrence, P.

    2009-01-01

    This paper reviewed the use of a predictive emissions monitoring system (PEMS) at 3 different gas turbine facilities in the United States and highlighted the costs and benefits of using a PEMS for documenting emissions of priority pollutants and greenhouse gases (GHG). The PEMS interfaces directly to the turbine control system and represents a lower cost alternative to the traditional continuous emission monitoring system (CEMS). The PEMS can track combustion efficiency through modeling of the turbine's operation and emissions. Excess emissions can be tracked and the causes of pollution can be determined and mitigated. The PEMS installed at the 3 turbine plants must meet rigorous performance specification criteria and the sites perform ongoing quality assurance tasks such as periodic audits with portable analyzers. The PEMS is much less expensive to install, operate, and maintain compared to the standard CEMS gas analyzer. Empirical PEMS achieves very high accuracy levels and has demonstrated superior reliability over CEMS for various types of continuous process applications under existing air compliance regulations in the United States. Annual accuracy testing at the gas turbine sites have shown that the PEMS predictions are usually within 5 per cent of the reference method. PEMS can be certified as an alternative to gas analyzer based CEMS for nitrogen oxides and carbon dioxide compliance and for GHG trading purposes. 5 refs., 8 figs.

  12. Numerical analysis on the combustion and emission characteristics of forced swirl combustion system for DI diesel engines

    International Nuclear Information System (INIS)

    Su, LiWang; Li, XiangRong; Zhang, Zheng; Liu, FuShui

    2014-01-01

    Highlights: • A new combustion system named FSCS for DI diesel engines was proposed. • Fuel/air mixture formation was improved for the application of FSCS. • The FSCS showed a good performance on emission characteristics. - Abstract: To optimize the fuel/air mixture formation and improve the environmental effect of direct injection (DI) diesel engines, a new forced swirl combustion system (FSCS) was proposed concerned on unique design of the geometric shape of the combustion chamber. Numerical simulation was conducted to verify the combustion and emission characteristics of the engines with FSCS. The fuel/air diffusion, in-cylinder velocity distribution, turbulent kinetic energy and in-cylinder temperature distribution were analyzed and the results shown that the FSCS can increase the area of fuel/air diffusion and improve the combustion. The diesel engine with FSCS also shown excellent performance on emission. At full load condition, the soot emission was significantly reduced for the improved fuel/air mixture formation. There are slightly difference for the soot and NO emission between the FSCS and the traditional omega combustion system at lower load for the short penetration of the fuel spray

  13. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    Science.gov (United States)

    Wang, Guihua; Ogden, Joan M.; Chang, Daniel P. Y.

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air quality

  14. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    International Nuclear Information System (INIS)

    Guihua Wang; Ogden, Joan M.; Chang, Daniel P.Y.

    2007-01-01

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x ) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air

  15. Development of an angled Si-PM-based detector unit for positron emission mammography (PEM) system

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Kouhei, E-mail: nakanishi.kouhei@c.mbox.nagoya-u.ac.jp; Yamamoto, Seiichi

    2016-11-21

    Positron emission mammography (PEM) systems have higher sensitivity than clinical whole body PET systems because they have a smaller ring diameter. However, the spatial resolution of PEM systems is not high enough to detect early stage breast cancer. To solve this problem, we developed a silicon photomultiplier (Si-PM) based detector unit for the development of a PEM system. Since a Si-PM's channel is small, Si-PM can resolve small scintillator pixels to improve the spatial resolution. Also Si-PM based detectors have inherently high timing resolution and are able to reduce the random coincidence events by reducing the time window. We used 1.5×1.9×15 mm LGSO scintillation pixels and arranged them in an 8×24 matrix to form scintillator blocks. Four scintillator blocks were optically coupled to Si-PM arrays with an angled light guide to form a detector unit. Since the light guide has angles of 5.625°, we can arrange 64 scintillator blocks in a nearly circular shape (a regular 64-sided polygon) using 16 detector units. We clearly resolved the pixels of the scintillator blocks in a 2-dimensional position histogram where the averages of the peak-to-valley ratios (P/Vs) were 3.7±0.3 and 5.7±0.8 in the transverse and axial directions, respectively. The average energy resolution was 14.2±2.1% full-width at half-maximum (FWHM). By including the temperature dependent gain control electronics, the photo-peak channel shifts were controlled within ±1.5% with the temperature from 23 °C to 28 °C. With these results, in addition to the potential high timing performance of Si-PM based detectors, our developed detector unit is promising for the development of a high-resolution PEM system.

  16. A robust calibration technique for acoustic emission systems based on momentum transfer from a ball drop

    Science.gov (United States)

    McLaskey, Gregory C.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-01-01

    We describe a technique to estimate the seismic moment of acoustic emissions and other extremely small seismic events. Unlike previous calibration techniques, it does not require modeling of the wave propagation, sensor response, or signal conditioning. Rather, this technique calibrates the recording system as a whole and uses a ball impact as a reference source or empirical Green’s function. To correctly apply this technique, we develop mathematical expressions that link the seismic moment $M_{0}$ of internal seismic sources (i.e., earthquakes and acoustic emissions) to the impulse, or change in momentum $\\Delta p $, of externally applied seismic sources (i.e., meteor impacts or, in this case, ball impact). We find that, at low frequencies, moment and impulse are linked by a constant, which we call the force‐moment‐rate scale factor $C_{F\\dot{M}} = M_{0}/\\Delta p$. This constant is equal to twice the speed of sound in the material from which the seismic sources were generated. Next, we demonstrate the calibration technique on two different experimental rock mechanics facilities. The first example is a saw‐cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa confining pressure. The second example is a 2 m long fault cut in a granite sample and deformed in a large biaxial apparatus at lower stress levels. Using the empirical calibration technique, we are able to determine absolute source parameters including the seismic moment, corner frequency, stress drop, and radiated energy of these magnitude −2.5 to −7 seismic events.

  17. Response of Freshwater Systems to Local and Global Changes in Mercury Emissions

    Directory of Open Access Journals (Sweden)

    Levin L.

    2013-04-01

    Full Text Available Lakes and other waterways, and the biota in those waterways, receiving their mercury burden primarily via atmospheric deposition can be expected to exhibit responses to changes in deposition over an extended time period. A projected control strategy for power plant emissions of mercury was imposed on modeled U.S. plants, while international emissions were modeled for two Chinese emission scenarios: a “business-as-usual” scenario and an “expedited controls” scenario. Levels of mercury in fish were simulated in a New England lake located close to a large U.S. power plant. Results indicated that fish responses to mercury emissions changes were spread over several years, and that even severe reductions in U.S. emissions were masked by non-U.S. emissions growth.

  18. Nitrous oxide emissions from an intermittent aeration activated sludge system of an urban wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    William Z. de Mello

    2013-01-01

    Full Text Available This study investigated the emission of N2O during the sequential aerated (60-min and non-aerated (30-min stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP. N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.

  19. Inductively coupled plasma-atomic emission spectroscopy glovebox assembly system at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-01-01

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ''cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  20. Development of the GEM-MACH-FireWork System: An Air Quality Model with On-line Wildfire Emissions within the Canadian Operational Air Quality Forecast System

    Science.gov (United States)

    Pavlovic, Radenko; Chen, Jack; Beaulieu, Paul-Andre; Anselmp, David; Gravel, Sylvie; Moran, Mike; Menard, Sylvain; Davignon, Didier

    2014-05-01

    A wildfire emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the U.S.A., including Alaska, fire location information is needed for both of these large countries. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This "on the fly" approach to the insertion of the fire emissions provides flexibility and efficiency since on-line meteorology is used and computational overhead in emissions pre-processing is reduced. GEM-MACH-FireWork, an experimental wildfire version of GEM-MACH, was run in real-time mode for the summers of 2012 and 2013 in parallel with the normal operational version. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions and computed objective scores will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions into the operational air quality forecast system.

  1. Challenges and opportunities for improving eco-efficiency of tropical forage-based systems to mitigate greenhouse gas emissions

    Directory of Open Access Journals (Sweden)

    Michael Peters

    2013-12-01

    Full Text Available Forage-based livestock production plays a key role in national and regional economies, for food security and poverty alleviation, but is considered a major contributor to agricultural GHG emissions. While demand for livestock products is predicted to increase, there is political and societal pressure both to reduce environmental impacts and to convert some of the pasture area to alternative uses, such as crop production and environmental conservation. Thus, it is essential to develop approaches for sustainable intensification of livestock systems to mitigate GHG emissions, addressing biophysical, socio-economic and policy challenges. This paper highlights the potential of improved tropical forages, linked with policy incentives, to enhance livestock production, while reducing its environmental footprint. Emphasis is on crop-livestock systems. We give examples for sustainable intensification to mitigate GHG emissions, based on improved forages in Brazil and Colombia, and suggest future perspectives.

  2. The Effect of Organic and Conventional Cropping Systems on CO2 Emission from Agricultural Soils: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Stefano Grego

    2011-02-01

    Full Text Available The effects of different agricultural systems on soil organic carbon content and CO2 emission are investigated in this work. In a long-term experiment a conventional system, characterized by traditional agricultural practices (as deep tillage and chemical inputs was compared with an organic one, including green manure and organic fertilizers. Both systems have a three-year crop rotation including pea – durum wheat – tomato; the organic system is implemented with the introduction of common vetch (Vicia sativa L. and sorghum (Sorghum vulgare bicolor as cover crops. In the year 2006 (5 years after the experimentation beginning was determined the soil C content and was measured the CO2 emissions from soil. The first results showed a trend of CO2 production higher in organic soils in comparison with conventional one. Among the two compared cropping systems the higher differences of CO2 emission were observed in tomato soil respect to the durum wheat and pea soils, probably due to the vetch green manuring before the tomato transplanting. These results are in agreement with the total organic carbon content and water soluble carbon (WSC, which showed the highest values in organic soil. The first observations suggest a higher biological activity and CO2 emission in organic soil than conventional one, likely due to a higher total carbon soil content.

  3. Potential reduction of carbon dioxide emissions from the use of electric energy storage on a power generation unit/organic Rankine system

    International Nuclear Information System (INIS)

    Mago, Pedro J.; Luck, Rogelio

    2017-01-01

    Highlights: • A power generation organic Rankine cycle with electric energy storage is evaluated. • The potential carbon dioxide emissions reduction of the system is evaluated. • The system performance is evaluated for a building in different climate zones. • The system emissions and cost are compared with those of conventional systems. • Use of carbon emissions cap and trade programs on the system is evaluated. - Abstract: This paper evaluates the potential carbon dioxide emissions reduction from the implementation of electric energy storage to a combined power generation unit and an organic Rankine cycle relative to a conventional system that uses utility gas for heating and utility electricity for electricity needs. Results indicate that carbon dioxide emission reductions from the operation of the proposed system are directly correlated to the ratio of the carbon dioxide emission conversion factor for electricity to that of the fuel. The location where the system is installed also has a strong influence on the potential of the proposed system to save carbon dioxide emissions. Finally, it is shown that by using carbon emissions cap and trade programs, it is possible to establish a frame of reference to compare/exchange operational cost gains with carbon dioxide emission reductions/gains.

  4. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland.

    Directory of Open Access Journals (Sweden)

    Marty R Schmer

    Full Text Available Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L. and switchgrass (Panicum virgatum L. field trial under differing harvest strategies and nitrogen (N fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG reductions of -29 to -396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates. Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha-1 of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable t