WorldWideScience

Sample records for emergency response support

  1. Scaling-up Support for Emergency Response Organizations

    NARCIS (Netherlands)

    Oomes, A.H.J.; Neef, R.M.

    2005-01-01

    We present the design of an information system that supports the process of scaling-up of emergency response organizations. This process is vital for effective emergency response but tends to go awry in practice. Our proposed system consists of multiple distributed agents that are capable of

  2. Real-time information support for managing plant emergency responses

    International Nuclear Information System (INIS)

    Cain, D.G.; Lord, R.J.; Wilkinson, C.D.

    1983-01-01

    The Three Mile Island Unit 2 accident highlighted the need to develop a systematic approach to managing plant emergency responses, to identify a better decision-making process, and to implement real-time information support for decision-making. The overall process management function is described and general information requirements for management of plant emergencies are identified. Basic information systems are being incorporated and future extensions and problem areas are discussed. (U.K.)

  3. Expert system technology to support emergency response: its prospects and limitations

    International Nuclear Information System (INIS)

    Belardo, S.; Wallace, W.A.

    1988-01-01

    The capabilities for computer technologies to provide decision support in emergency response are now well recognized. The information flow prior to, during, and after potentially catastrophic events must be managed in order to have effective response. We feel strongly that computer technology can be a crucial component in this management process. We will first review a relatively new facet of computer technology - expert systems. We will then provide a conceptual framework for decision making under crisis, a situation typified by emergency response. We follow with a discussion of a prototype expert system for response to an accident at a nuclear power generation facility. Our final section discusses the potential advantages and limitations of expert system technology in emergency response. (author)

  4. Development of supporting system for emergency response to maritime transport accidents involving radioactive material

    International Nuclear Information System (INIS)

    Odano, N.; Matsuoka, T.; Suzuki, H.

    2004-01-01

    National Maritime Research Institute has developed a supporting system for emergency response of competent authority to maritime transport accidents involving radioactive material. The supporting system for emergency response has functions of radiation shielding calculation, marine diffusion simulation, air diffusion simulation and radiological impact evaluation to grasp potential hazard of radiation. Loss of shielding performance accident and loss of sealing ability accident were postulated and impact of the accidents was evaluated based on the postulated accident scenario. Procedures for responding to emergency were examined by the present simulation results

  5. UAVs Use for the Support of Emergency Response Teams Specific Missions

    Directory of Open Access Journals (Sweden)

    Sorin-Gabriel CONSTANTINESCU

    2013-03-01

    Full Text Available This article presents various methods of implementation for a new technology concerning the assessment and coordination of emergency situations, which is based upon the usage of Unmanned Aerial Vehicles (UAVs. The UAV platform is equipped with optical electronic sensors and other types of sensors, being an aerial surveillance device as efficient as any other classically piloted platform. While currently being in service as military operations support for various operation theaters, they can also be used for assisting emergency response teams, providing full national coverage. For these special response teams, the ability to carry out overview, surveillance or information gathering activities and locating fixed or mobile targets are key components for the successful accomplishment of their missions, which have the purpose of saving lives and properties and of limiting the damage done to the surrounding environment. More concretely, the presented scenarios are: response in emergency situations, extinguishing of large-scale fires, testing of chemically, biologically or radioactively polluted areas and assessment of natural disasters.

  6. Nuclear emergency response exercises and decision support systems - integrating domestic experience with international reference systems

    International Nuclear Information System (INIS)

    Slavnicu, D.S.; Vamanu, D.V.; Gheorghiu, D.; Acasandrei, V.T.; Slavnicu, E.

    2010-01-01

    The paper glosses on the experience of a research-oriented team routinely involved in emergency preparedness and response management activities, with the assimilation, implementation, and application of decision support systems (DSS) of continental reference in Europe, and the development of supportive, domestic radiological assessment tools. Two exemplary nuclear alert exercises are discussed, along with solutions that emerged during drill planning and execution, to make decision support tools of various origins and strength to work synergistically and complement each other. (authors)

  7. Radiological emergency response for community agencies with cognitive task analysis, risk analysis, and decision support framework.

    Science.gov (United States)

    Meyer, Travis S; Muething, Joseph Z; Lima, Gustavo Amoras Souza; Torres, Breno Raemy Rangel; del Rosario, Trystyn Keia; Gomes, José Orlando; Lambert, James H

    2012-01-01

    Radiological nuclear emergency responders must be able to coordinate evacuation and relief efforts following the release of radioactive material into populated areas. In order to respond quickly and effectively to a nuclear emergency, high-level coordination is needed between a number of large, independent organizations, including police, military, hazmat, and transportation authorities. Given the complexity, scale, time-pressure, and potential negative consequences inherent in radiological emergency responses, tracking and communicating information that will assist decision makers during a crisis is crucial. The emergency response team at the Angra dos Reis nuclear power facility, located outside of Rio de Janeiro, Brazil, presently conducts emergency response simulations once every two years to prepare organizational leaders for real-life emergency situations. However, current exercises are conducted without the aid of electronic or software tools, resulting in possible cognitive overload and delays in decision-making. This paper describes the development of a decision support system employing systems methodologies, including cognitive task analysis and human-machine interface design. The decision support system can aid the coordination team by automating cognitive functions and improving information sharing. A prototype of the design will be evaluated by plant officials in Brazil and incorporated to a future trial run of a response simulation.

  8. Supporting system in emergency response plan for nuclear material transport accidents

    International Nuclear Information System (INIS)

    Nakagome, Y.; Aoki, S.

    1993-01-01

    As aiming to provide the detailed information concerning nuclear material transport accidents and to supply it to the concerned organizations by an online computer, the Emergency Response Supporting System has been constructed in the Nuclear Safety Technology Center, Japan. The system consists of four subsystems and four data bases. By inputting initial information such as name of package and date of accident, one can obtain the appropriate initial response procedures and related information for the accident immediately. The system must be useful for protecting the public safety from nuclear material transport accidents. But, it is not expected that the system shall be used in future. (J.P.N.)

  9. Emergency support centre concept for the enhanced CANDU 6

    International Nuclear Information System (INIS)

    Nadimian, R.M.; Leger, R.

    2013-01-01

    In a two-unit Enhanced CANDU 6 (EC6) design, the overall management of an emergency is by the plant emergency support staff using the Emergency Support Centre (ESC). The ESC is a shared facility between both units and is separate from the plant control rooms. ESC is used to provide support for managing overall emergency response, coordinating radiological and environmental assessments, determining recommended public protective actions, and coordinating emergency response activities with federal, provincial, and municipal agencies. Such a facility provides provisions to protect its occupants from hazards resulting from accident conditions, and applicable natural external hazards. (author)

  10. Transport accident emergency response plan

    International Nuclear Information System (INIS)

    Vallette-Fontaine, M.; Frantz, P.

    1998-01-01

    To comply with the IAEA recommendations for the implementation of an Emergency Response Plan as described in Safety Series 87, Transnucleaire, a company deeply involved in the road and rail transports of the fuel cycle, masters means of Emergency Response in the event of a transport accident. This paper aims at analyzing the solutions adopted for the implementation of an Emergency Response Plan and the development of a technical support and adapted means for the recovery of heavy packagings. (authors)

  11. Development of computerized supporting system for emergency response in nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Jae Il

    1992-02-01

    In emergency situation of nuclear power plants, effective use of emergency operating procedures (EOPs) is a crucial part of the emergency response process. However, there are several problems in the emergency operating procedures because of the form of the written procedures. They are voluminous and complicate for effective references under high stress situation. Inevitably, it takes time that could be better spent employing measures to control and stabilize to select the correct procedures and apply the decision logic. In this study, a computerized supporting system has been developed to reduce the operator error possibility under emergency situations of nuclear power plant. Using on-line input parameters, the system can determine the status of the critical safety functions and can find appropriate procedures and necessary operator actions automatically. Moreover, the system can help the operator decision making in the core melt accident situation. By tracking the EOP in an on-line mode, most steps concerning checking or verifying plant state are processed automatically without operator participations. Therefore, the interactions between the system and the operator are simplified significantly and the possibility of human error is reduced

  12. Study of arcview GIS application in the nuclear power plant emergency response decision support system

    International Nuclear Information System (INIS)

    Li Peng; Chen Lin; Dong Binjiang

    2003-01-01

    It is very significant to apply the technique of GIS to the development of the Nuclear Power Plant Emergency Response Decision Support System. On the basis of the software system ArcView. This paper investigate the framework, the function and the development methods of the system. (authors)

  13. A decision support system for emergency response to major nuclear accidents

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Christou, M.D.

    1997-01-01

    A methodology for the optimization of the short-term emergency response in the event of a nuclear accident is presented. The method seeks an optimum combination of protective actions in the presence of a multitude of conflicting objectives and under uncertainty. Conflicting objectives arise in the attempt to minimize simultaneously the potential adverse effects of an accident and the associated socioeconomic impacts. Additional conflicting objectives arise whenever an emergency plan tends to decrease a particular health effect, such as acute deaths, while it increases another, such as latent deaths. The uncertainty is due to the multitude of possible accident scenarios and their respective probability of occurrence, the stochastic variability in the weather conditions, and the variability and/or lack of knowledge of the parameters of the risk assessment models. A multiobjective optimization approach is adopted. An emergency protection plan consists of defining a protective action at each spatial cell around the plant. Three criteria are used as the objective functions of the problem, namely, acute fatalities, latent effects, and socioeconomic cost. The optimization procedure defines the efficient frontier, i.e., all emergency plans that are not dominated by another in all three criteria. No value trade-offs are necessary up to this point. The most preferred emergency plan is then chosen among the set of efficient plans. Finally, the methodology is integrated into a computerized decision support system, and its use is demonstrated in a realistic application

  14. The U.S. Department of Energy, National Nuclear Security Agency's Use of Geographic Information Systems for Nuclear Emergency Response Support

    International Nuclear Information System (INIS)

    Guber, A. L.

    2001-01-01

    The U.S, Department of Energy (DOE), National Nuclear Security Agency's (NNSA) Remote Sensing Laboratory (RSL) provides Geographic Information System (GIS) support during nuclear emergency response activities. As directed by the NNSA, the RSL GIS staff maintains databases and equipment for rapid field deployment during an emergency response. When on location, GIS operators provide information products to on-site emergency managers as well as to emergency managers at the DOE Headquarters (HQ) Emergency Operations Center (EOC) in Washington, D.C. Data products are derived from multiple information sources in the field including radiological prediction models, field measurements taken on the ground and from the air, and pertinent information researched on the Internet. The GIS functions as a central data hub where it supplies the information to response elements in the field, as well as to headquarters officials at HQ during emergency response activities

  15. Online Decision Support System (IRODOS) - an emergency preparedness tool for handling offsite nuclear emergency

    International Nuclear Information System (INIS)

    Vinod Kumar, A.; Oza, R.B.; Chaudhury, P.; Suri, M.; Saindane, S.; Singh, K.D.; Bhargava, P.; Sharma, V.K.

    2009-01-01

    A real time online decision support system as a nuclear emergency response system for handling offsite nuclear emergency at the Nuclear Power Plants (NPPs) has been developed by Health, Safety and Environment Group, Bhabha Atomic Research Centre (BARC), Department of Atomic Energy (DAE) under the frame work of 'Indian Real time Online Decision Support System 'IRODOS'. (author)

  16. IAEA emergency response network ERNET. Emergency preparedness and response. Date effective: 1 December 2002

    International Nuclear Information System (INIS)

    2003-04-01

    The Parties to the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency have undertaken to co-operate among themselves and with the IAEA in facilitating the prompt provision of assistance in the event of a nuclear accident or radiological emergency, and in minimizing the consequences and in protecting life, property and the environment from the effects of any radioactive releases. As part of the IAEA strategy for supporting such co-operation, the Secretariat of the IAEA is establishing a global Emergency Response Network (ERNET) of teams suitably qualified to respond rapidly, on a regional basis, to nuclear accidents or radiological emergencies. This manual sets out the criteria and requirements to be met by ERNET teams. It is intended for use by institutions in Member States in developing, applying and maintaining their emergency response capabilities and in implementing quality assurance programmes within the context of ERNET. The manual is worded on the assumption that a State Competent Authority designated as the body responsible for reacting to nuclear accidents or radiological emergencies which occur outside the jurisdiction of that State will be the State Contact Point for receiving requests for assistance from the IAEA under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency

  17. IAEA emergency response network ERNET. Emergency preparedness and response. Date effective: 1 December 2000

    International Nuclear Information System (INIS)

    2000-12-01

    The Parties to the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency have undertaken to co-operate among themselves and with the IAEA in facilitating the prompt provision of assistance in the event of a nuclear accident or radiological emergency, and in minimizing the consequences and in protecting life, property and the environment from the effects of any radioactive releases. As part of the IAEA strategy for supporting such co-operation, the Secretariat of the IAEA is establishing a global Emergency Response Network (ERNET) of teams suitably qualified to respond rapidly, on a regional basis, to nuclear accidents or radiological emergencies. This manual sets out the criteria and requirements to be met by ERNET teams. It is intended for use by institutions in Member States in developing, applying and maintaining their emergency response capabilities and in implementing quality assurance programmes within the context of ERNET. The manual is worded on the assumption that a State Competent Authority designated as the body responsible for reacting to nuclear accidents or radiological emergencies which occur outside the jurisdiction of that State will be the State Contact Point for receiving requests for assistance from the IAEA under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency

  18. Functional criteria for emergency response facilities. Technical report (final)

    International Nuclear Information System (INIS)

    1981-02-01

    This report describes the facilities and systems to be used by nuclear power plant licensees to improve responses to emergency situations. The facilities include the Technical Support Center (TSC), Onsite Operational Support Center (OSC), and Nearsite Emergency Operations Facility (EOF), as well as a brief discussion of the emergency response function of the control room. The data systems described are the Safety Parameter Display System (SPDS) and Nuclear Data Link (NDL). Together, these facilities and systems make up the total Emergency Response Facilities (ERFs). Licensees should follow the guidance provided both in this report and in NUREG-0654 (FEMA-REP-1), Revision 1, for design and implementation of the ERFs

  19. Nuclear accident/radiological emergency assistance plan. NAREAP - edition 2000. Emergency preparedness and response

    International Nuclear Information System (INIS)

    2000-01-01

    The purpose of the Nuclear Accident/Radiological Emergency Assistance Plan (NAREAP) is to describe the framework for systematic, integrated, co-ordinated, and effective preparedness and response for a nuclear accident or radiological emergency involving facilities or practices that may give rise to a threat to health, the environment or property. The purpose of the NAREAP is: to define the emergency response objectives of the Agency's staff in a nuclear accident or a radiological emergency; to assign responsibilities for performing the tasks and authorities for making the decisions that comprise the Agency staff's response to a nuclear accident or radiological emergency; to guide the Agency managers who must ensure that all necessary tasks are given the necessary support in discharging the Agency staff responsibilities and fulfilling its obligations in response to an emergency; to ensure that the development and maintenance of detailed and coherent response procedures are well founded; to act as a point of reference for individual Agency staff members on their responsibilities (as an individual or a team member) throughout a response; to identify interrelationships with other international intergovernmental Organizations; and to serve as a training aid to maintain readiness of personnel. The NAREAP refers to the arrangements of the International Atomic Energy Agency and of the United Nations Security and Safety Section at the Vienna International Centre (UNSSS-VIC) that may be necessary for the IAEA to respond to a nuclear accident or radiological emergency, as defined in the Early Notification and Assistance Conventions. It covers response arrangements for any situation that may have actual, potential or perceived radiological consequences and that could require a response from the IAEA, as well as the arrangements for developing, maintaining and exercising preparedness. The implementing procedures themselves are not included in the NAREAP, but they are required

  20. Generic procedures for medical response during a nuclear or radiological emergency. Emergency preparedness and response

    International Nuclear Information System (INIS)

    2005-04-01

    The aim of this publication is to serve as a practical resource for planning the medical response to a nuclear or radiological emergency. It fulfils in part functions assigned to the IAEA under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), namely, to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. Effective medical response is a necessary component of the overall response to nuclear or radiological (radiation) emergencies. In general, the medical response may represent a difficult challenge for the authorities due to the complexity of the situation, often requiring specialized expertise, and special organizational arrangements and materials. To be effective, adequate planning and preparedness are needed. This manual, if implemented, should help to contribute to coherent international response. The manual provides the practical tools and generic procedures for use by emergency medical personnel during an emergency situation. It also provides guidance to be used at the stage of preparedness for development of medical response capabilities. The manual also addresses mass casualty emergencies resulting from malicious acts involving radioactive material. This part was supported by the Nuclear Security Fund. The manual was developed based on a number of assumptions about national and local capabilities. Therefore, it must be reviewed and revised as part of the planning process to match the potential accidents, threats, local conditions and other unique characteristics of the facility where it may be used

  1. Radiological emergency response - a functional approach

    International Nuclear Information System (INIS)

    Chowdhury, P.

    1998-01-01

    The state of Louisiana's radiological emergency response programme is based on the federal guidance 'Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants' (NUREG-0654, FEMA-REP-1 Rev. 1). Over the past 14 years, the planning and implementation of response capabilities became more organized and efficient; the training programme has strengthened considerably; co-ordination with all participating agencies has assumed a more co-operative role, and as a result, a fairly well integrated response planning has evolved. Recently, a more 'functional' approach is being adopted to maximize the programme's efficiency not only for nuclear power plant emergency response, but radiological emergency response as a whole. First, several broad-based 'components' are identified; clusters of 'nodes' are generated for each component; these 'nodes' may be divided into 'sub-nodes' which will contain some 'attributes'; 'relational bonds' among the 'attributes' will exist. When executed, the process begins and continues with the 'nodes' assuming a functional and dynamic role based on the nature and characteristics of the 'attributes'. The typical response based on stand-alone elements is thus eliminated, the overlapping of functions is avoided, and a well structured and efficient organization is produced, that is essential for today's complex nature of emergency response. (author)

  2. Towards accurate emergency response behavior

    International Nuclear Information System (INIS)

    Sargent, T.O.

    1981-01-01

    Nuclear reactor operator emergency response behavior has persisted as a training problem through lack of information. The industry needs an accurate definition of operator behavior in adverse stress conditions, and training methods which will produce the desired behavior. Newly assembled information from fifty years of research into human behavior in both high and low stress provides a more accurate definition of appropriate operator response, and supports training methods which will produce the needed control room behavior. The research indicates that operator response in emergencies is divided into two modes, conditioned behavior and knowledge based behavior. Methods which assure accurate conditioned behavior, and provide for the recovery of knowledge based behavior, are described in detail

  3. An emergency response plan for transportation

    International Nuclear Information System (INIS)

    Fontaine, M.V.; Guerel, E.

    2000-01-01

    Transnucleaire is involved in road and rail transport of nuclear fuel cycle materials. To comply with IAEA recommendations, Transnucleaire has to master methods of emergency response in the event of a transport accident. Considering the utmost severe situations, Transnucleaire has studied several cases and focused especially on an accident involving a heavy cask. In France, the sub-prefect of each department is in charge of the organisation of the emergency teams. The sub-prefect may request Transnucleaire to supply experts, organisation, equipment and technical support. The Transnucleaire Emergency Response Plan covers all possible scenarios of land transport accidents and relies on: (i) an organisation ready for emergency situations, (ii) equipment dedicated to intervention, and (iii) training of its own experts and specialised companies. (author)

  4. Emergency preparedness and response plan for nuclear facilities in Indonesia

    International Nuclear Information System (INIS)

    Nur Rahmah Hidayati; Pande Made Udiyani

    2009-01-01

    All nuclear facilities in Indonesia are owned and operated by the National Nuclear Energy Agency (BATAN). The programs and activities of emergency planning and preparedness in Indonesia are based on the existing nuclear facilities, i.e. research reactors, research reactor fuel fabrication plant, radioactive waste treatment installation and radioisotopes production installation. The assessment is conducted to learn of status of emergency preparedness and response plan for nuclear facilities in Indonesia and to support the preparation of future Nuclear Power Plant. The assessment is conducted by comparing the emergency preparedness and response system in Indonesia to the system in other countries such as Japan and Republic of Korea, since the countries have many Nuclear Power Plants and other nuclear facilities. As a result, emergency preparedness response plan for existing nuclear facility in Indonesia has been implemented in many activities such as environmental monitoring program, facility monitoring equipment, and the continuous exercise of emergency preparedness and response. However, the implementation need law enforcement for imposing the responsibility of the coordinators in National Emergency Preparedness Plan. It also needs some additional technical support systems which refer to the system in Japan or Republic of Korea. The systems must be completed with some real time monitors which will support the emergency preparedness and response organization. The system should be built in NPP site before the first NPP will be operated. The system should be connected to an Off Site Emergency Center under coordination of BAPETEN as the regulatory body which has responsibility to control of nuclear energy in Indonesia. (Author)

  5. Study on the action guidelines for medical support team for nuclear and radiological emergency

    International Nuclear Information System (INIS)

    Liu Chang'an; Liu Ying; Geng Xiusheng

    2006-01-01

    Objective: To study the action guidelines for medical support team for nuclear and radiological emergency. Methods: It is based on the experience and lessons learned in the course of meeting the emergencies preparedness and response of nuclear and radiological emergencies in China and abroad with the reference of the relevant reports of International Atomic Energy Agency. Results: Essential requirements and practical recommendations for the roles, responsibilities, emergency preparedness, principles and procedures of medical assistance at the scene, as well as the radiological protection of medical support team were provided. Conclusion: The document mentioned above can be applied to direct the establishment, effective medical preparedness and response of the medical support team for nuclear and radiological emergency. (authors)

  6. Manual for first responders to a radiological emergency. Emergency preparedness and response

    International Nuclear Information System (INIS)

    2008-01-01

    Under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. As stated in IAEA Safety Standards Series No. GS-R-2 'Preparedness and Response for a Nuclear or Radiological Emergency', which establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, 'first responders shall take all practicable and appropriate actions to minimize the consequences of a nuclear or radiological emergency'. The IAEA General Conference, in resolution GC(49)/RES/9, continues to encourage Member States 'to adopt the relevant Agency standards, procedures and practical tools' and underlines 'the need for first responders to have appropriate training for dealing with ionizing radiation during nuclear and radiological emergencies'. This publication is intended to assist in meeting these requirements and to fulfil Article 5 of the Assistance Convention. Its aim is to provide practical guidance for those who will respond during the first few hours to a radiological emergency (referred to here as 'first responders') and for national officials who would support this early response. It provides guidance in the form of action guides, instructions, and supporting data that can be easily applied by a State to build a basic capability to respond to a radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This report, published as part of the IAEA Emergency Preparedness and Response Series, replaces and builds on IAEA-TECDOC-1162 in the area of early response and first responders' actions. It takes account of the

  7. Emergency preparedness 1995 site support plan WBS 6.7.2.3

    International Nuclear Information System (INIS)

    Faulk, S.M.

    1994-09-01

    The Emergency Preparedness Program provides an emergency management system including occurrence notification; development, coordination, and direction of planning, preparedness, and readiness assurance for response to emergency events on the Hanford Site; and emergency management support to Department of Energy, Richland Operations Office (RL)

  8. Emergency response and radiation monitoring systems in Russian regions

    International Nuclear Information System (INIS)

    Arutyunyan, R.; Osipiyants, I.; Kiselev, V.; Ogar, K; Gavrilov, S.

    2008-01-01

    Full text: Preparedness of the emergency response system to elimination of radiation incidents and accidents is one of the most important elements of ensuring safe operation of nuclear power facilities. Routine activities on prevention of emergency situations along with adequate, efficient and opportune response actions are the key factors reducing the risks of adverse effects on population and environment. Both high engineering level and multiformity of the nuclear branch facilities make special demands on establishment of response system activities to eventual emergency situations. First and foremost, while resolving sophisticated engineering and scientific problems emerging during the emergency response process, one needs a powerful scientific and technical support system.The emergency response system established in the past decade in Russian nuclear branch provides a high efficiency of response activities due to the use of scientific and engineering potential and experience of the involved institutions. In Russia the responsibility for population protection is imposed on regional authority. So regional emergence response system should include up-to-date tools of radiation monitoring and infrastructure. That's why new activities on development of radiation monitoring and emergency response system were started in the regions of Russia. The main directions of these activities are: 1) Modernization of the existing and setting-up new facility and territorial automatic radiation monitoring systems, including mobile radiation surveillance kits; 2) Establishment of the Regional Crisis Centres and Crisis Centres of nuclear and radiation hazardous facilities; 3) Setting up communication systems for transfer, acquisition, processing, storage and presentation of data for participants of emergency response at the facility, regional and federal levels; 4) Development of software and hardware systems for expert support of decision-making on protection of personnel, population

  9. A mobile computer system to support first responders to a radiological emergency

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Antonio J.D. da, E-mail: antoniojoseds@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Pos-Graduacao em Informatica; Santos, Joao R. dos; Pereira, Claudio M.N.A.; Carvalho, Paulo V.R., E-mail: paulov@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Decision-making in emergency situations is characterized by its speed, pressure, and especially the uncertainty of information. Uninformed decisions or decisions based on unreliable data may lead to inappropriate actions. Although several studies that aim to combine different databases and provide full information to emergency response operation commanders can be found, only few of them are dedicated to radiological emergencies situations and even less are those that aim to provide support for the emergency first responder. We developed a system to support first responders to deal with radiological emergencies using cognitive task analysis techniques to elicit the tacitly knowledge of practitioners to grasp what information is really needed during radiological emergency response. (author)

  10. A mobile computer system to support first responders to a radiological emergency

    International Nuclear Information System (INIS)

    Silva, Antonio J.D. da

    2013-01-01

    Decision-making in emergency situations is characterized by its speed, pressure, and especially the uncertainty of information. Uninformed decisions or decisions based on unreliable data may lead to inappropriate actions. Although several studies that aim to combine different databases and provide full information to emergency response operation commanders can be found, only few of them are dedicated to radiological emergencies situations and even less are those that aim to provide support for the emergency first responder. We developed a system to support first responders to deal with radiological emergencies using cognitive task analysis techniques to elicit the tacitly knowledge of practitioners to grasp what information is really needed during radiological emergency response. (author)

  11. Technical support and emergency centre

    International Nuclear Information System (INIS)

    Bohun, L.; Kapisovsk y, M.

    1997-01-01

    This paper presents technical support and emergency management center which will be on two places: Mochovce NPP Emergency Centre (Technical support center and Support working center) and Reserve Emergency Centre in Levice (Reserve emergency center and Environmental Evaluation Center). The main aims of the emergency management centers are: the management and coordination of all persons and organisations; provision of the all information needed to evaluation of the accident and its mitigation; continuous evaluation of the potential or real radiological consequences; taking measure for an early notification of the governmental bodies and the organizations, warning and protection of the public; and other aims. In the next part the data for technical support and emergency centre are discussed

  12. Using risk based tools in emergency response

    International Nuclear Information System (INIS)

    Dixon, B.W.; Ferns, K.G.

    1987-01-01

    Probabilistic Risk Assessment (PRA) techniques are used by the nuclear industry to model the potential response of a reactor subjected to unusual conditions. The knowledge contained in these models can aid in emergency response decision making. This paper presents requirements for a PRA based emergency response support system to date. A brief discussion of published work provides background for a detailed description of recent developments. A rapid deep assessment capability for specific portions of full plant models is presented. The program uses a screening rule base to control search space expansion in a combinational algorithm

  13. A model national emergency response plan for radiological accidents

    International Nuclear Information System (INIS)

    1993-09-01

    The IAEA has supported several projects for the development of a national response plan for radiological emergencies. As a results, the IAEA has developed a model National Emergency Response Plan for Radiological Accidents (RAD PLAN), particularly for countries that have no nuclear power plants. This plan can be adapted for use by countries interested in developing their own national radiological emergency response plan, and the IAEA will supply the latest version of the RAD PLAN on computer diskette upon request. 2 tabs

  14. United States Department of Energy radiological emergency response programme - a national capability

    International Nuclear Information System (INIS)

    Gordon-Hagerty, L.E.

    1993-01-01

    In order to respond to a radiological emergency, the United States Department of Energy (USDOE) maintains seven emergency response assets and capabilities in support of a radiological emergency of any proportion within the continental United States and abroad. The seven emergency response assets and capabilities include: Accident Response Group; Aerial Measuring Systems; Atmospheric Release Advisory Capability; Federal Radiological Monitoring and Assessment Center; Nuclear Emergency Search Team; Radiation Emergency Assistance Center/Training Site; and Radiological Assistance Program. Presently, USDOE maintains the most comprehensive national radiological emergency response assets in the United States, capable of dealing with any type of emergency involving nuclear materials. In all, the Department's assets are available to support any type of accident/incident involving radioactive materials in coordination with other United States Federal agencies, as well as state and local governments, as required. (author)

  15. Design and operation of the emergency support center, CAE

    International Nuclear Information System (INIS)

    Caro, R. J.; Lopez Trillo, E.

    2016-01-01

    The enhancements developed in Spain in the area of Emergency Management, as consequence of the accident at the Fukushima Dai-Ichi NPP in 2011, included the definition of new emergency response centers; Alternative Center for Emergency Management (CAGE) on each NPP and the Emergency Support Center (CAE), shared by all NPPs. This article summarizes the main features and operation activities undertaken since the establishment of the new CAE, centralized, external to the NPPs shared by all Spanish plants and managed by Tecnatom. (Author)

  16. Challenges in designing interactive systems for emergency response

    DEFF Research Database (Denmark)

    Kristensen, Margit; Kyng, Morten; Nielsen, Esben Toftdahl

    2007-01-01

    and visions as ways to bridge between fieldwork and literature studies on the one hand and the emerging computer based prototypes on the other. Our case concerns design of innovative interactive systems for support in emergency response, including patient identification and monitoring as well as construction......This paper presents research on participatory design of interactive systems for emergency response. We present the work by going through the design method with a focus on the new elements that we developed for the participatory design toolkit, in particular we emphasize the use of challenges...

  17. Emergency response in the Newfoundland offshore industry

    Energy Technology Data Exchange (ETDEWEB)

    Dempsey, J. [Cormorant Ltd., St. John' s, NL (Canada)

    2006-07-01

    This presentation reviewed current offshore oil activities with respect to safety issues regarding year-round marine operations in a harsh environment. Considerable logistics support is required for all offshore activities, including seismic and geotechnical surveys; exploration and production drilling; well testing; subsea construction; on-site production; and, delivery to market. Response to an offshore emergency must address the urgency of the incident along with stakeholder concerns. This presentation described the different types of emergencies and addressed issues regarding contingency planning; preventative measures; response philosophy; response scope; response at site; emergency management; communications links; and, oil spill response. The following current operations were highlighted: ExxonMobil's production drilling from the gravity-based concrete platform at Hibernia; Petro-Canada's production drilling at the Terra Nova FPSO; Husky Energy's production drilling at White Rose; and Chevron Canada's exploration drilling at the Orphan Basin. It was noted that in an emergency situation, the focus is on the welfare of offshore personnel. On an average day, the total offshore population is in the order of 1000 workers, all registered in the Personnel Logistics System which is updated with the departure of every helicopter from St. John's, Newfoundland or from the offshore platform. It is possible to prepare for foreseeable emergency incidents such as fire, explosion or gas leaks; spills to the marine environment; structural damage or collisions; persons lost at sea; helicopter or support vessel accidents; vessel sinking; sabotage; serious injuries or loss of life; severe ice events; and, loss of well control. The establishment of permanent safety zones at the Hibernia, White Rose and Terra Nova production fields are among the preventative measures, along with standby vessels that provide a rescue service for offshore installations

  18. Emergency response in the Newfoundland offshore industry

    International Nuclear Information System (INIS)

    Dempsey, J.

    2006-01-01

    This presentation reviewed current offshore oil activities with respect to safety issues regarding year-round marine operations in a harsh environment. Considerable logistics support is required for all offshore activities, including seismic and geotechnical surveys; exploration and production drilling; well testing; subsea construction; on-site production; and, delivery to market. Response to an offshore emergency must address the urgency of the incident along with stakeholder concerns. This presentation described the different types of emergencies and addressed issues regarding contingency planning; preventative measures; response philosophy; response scope; response at site; emergency management; communications links; and, oil spill response. The following current operations were highlighted: ExxonMobil's production drilling from the gravity-based concrete platform at Hibernia; Petro-Canada's production drilling at the Terra Nova FPSO; Husky Energy's production drilling at White Rose; and Chevron Canada's exploration drilling at the Orphan Basin. It was noted that in an emergency situation, the focus is on the welfare of offshore personnel. On an average day, the total offshore population is in the order of 1000 workers, all registered in the Personnel Logistics System which is updated with the departure of every helicopter from St. John's, Newfoundland or from the offshore platform. It is possible to prepare for foreseeable emergency incidents such as fire, explosion or gas leaks; spills to the marine environment; structural damage or collisions; persons lost at sea; helicopter or support vessel accidents; vessel sinking; sabotage; serious injuries or loss of life; severe ice events; and, loss of well control. The establishment of permanent safety zones at the Hibernia, White Rose and Terra Nova production fields are among the preventative measures, along with standby vessels that provide a rescue service for offshore installations. Supply vessels are also

  19. Criteria for preparation and evaluation of radiological emergency response plans and preparedness in support of nuclear power plants. Interim report

    International Nuclear Information System (INIS)

    1980-01-01

    The purpose of this document is to provide a common reference and interim guidance source for: state and local governments and nuclear facility operators in the development of radiological emergency response plans and preparedness in support of nuclear power plants; and Nuclear Regulatory Commission (NRC), Federal Emergency Management Agency (FEMA) and other Federal agency personnel engaged in the review of state, local government, and licensee plans and preparedness

  20. Improvment, extension and integration of operational decision support systems for nuclear emergency management (DSSNET)

    International Nuclear Information System (INIS)

    Ehrhardt, J.

    2005-07-01

    The DSSNET network was established in October 2000 with the overall objective to create an effective and accepted framework for better communication and understanding between the community of institutions involved in operational off-site emergency management and the many and diverse RTD institutes further developing methods and tools in this area, in particular decision support systems (DSS), for making well informed and consistent judgements with respect to practical improvements of emergency response in Europe. 37 institutions from 21 countries of East and West Europe have been members of the network with about half of them responsible for operational emergency management. The objectives of the network have been numerous and the more important ones include: to ensure that future RTD is more responsive to user needs, to inform the user community of new developments and their potential for improving emergency response, to improve operational decision support systems from feedback of operational experience, to identify how information and data exchange between countries can be improved, to promote greater coherence among operational decision support systems and to encourage shared development of new and improved decision support systems features, and to improve the practicability of operational decision support systems. To stimulate the communication and feedback between the operational and the RTD community, problem-oriented emergency exercises were performed, which covered the various time phases of an accident and which extended from the near range to farther distances with frontier crossing transport of radionuclides. The report describes the objectives of the DSSNET, the five emergency exercises performed and the results of their evaluation. They provided valuable insight and lessons for operators and users of decision support systems, in particular the need for much more intensive training and exercising with decision support systems and their interaction with

  1. Radiological emergency response planning in Pennsylvania

    International Nuclear Information System (INIS)

    Henderson, O.K.

    1981-01-01

    The most important aspect of emergency preparedness is to recognize and accept the fact that there exists a potential for a problem or a condition and that it requires some attention. Emergency plans should be sufficiently flexible so as to accommodate the emergency situation as it unfolds. Of the several emergency responses that may be taken following a nuclear power plant accident evacuation evokes the greatest attention and discussion as to whether it is truly a feasible option. Movements of people confined to mass care facilities or on life support systems involve special requirements. The Three Mile Island accident has been the most studied nuclear incident in the history of the nuclear power reactor industry. The findings of these reports will have a major influence on nuclear power issues as they are addressed in the future. The question remains as to whether the political leadership will be willing to provide the resources required by the emergency plan. Future safety and emergency response to nuclear accidents depend upon Government and industry acting responsibly and not merely responding to regulations. The Three Mile Island accident has had some beneficial side effects for the emergency management community. It has: increased the level of awareness and importance of emergency planning; served as a catalyst for the sharing of experiences and information; encouraged standardization of procedures; and emphasized the need for identifying and assigning responsibilities. The Emergency Management Organization in responding to a disaster situation does not enjoy the luxury of time. It needs to act decisively and correctly. It does not often get a second chance. Governments, at all levels, and the nuclear power industry have been put on notice as a result of Three Mile Island. The future of nuclear energy may well hang in the balance, based upon the public's perception of the adequacy of preparedness and safety measures being taken. (author)

  2. Evaluating nuclear power plant crew performance during emergency response drills

    International Nuclear Information System (INIS)

    Rabin, D.

    1999-01-01

    The Atomic Energy Control Board (AECB) is responsible for the regulation of the health, safety and environmental consequences of nuclear activities in Canada. Recently, the Human Factors Specialists of the AECB have become involved in the assessment of emergency preparedness and emergency response at nuclear facilities. One key contribution to existing AECB methodology is the introduction of Behaviourally Anchored Rating Scales (BARS) to measure crew interaction skills during emergency response drills. This report presents results of an on-going pilot study to determine if the BARS provide a reliable and valid means of rating the key dimensions of communications, openness, task coordination and adaptability under simulated emergency circumstances. To date, the objectivity of the BARS is supported by good inter-rater reliability while the validity of the BARS is supported by the agreement between ratings of crew interaction and qualitative and quantitative observations of crew performance. (author)

  3. Radiological emergencies the first response

    International Nuclear Information System (INIS)

    2011-11-01

    This national training course about radiological emergencies first answer include: Targets and preparation for emergency response in case of a nuclear or radiological accident. Operations center, action guide for fire fighting, medical coverage, forensic test, first aid, basic instrumentation for radiation, safety equipment, monitoring radiation, gamma rays, personnel exposed protection , radiation exposure rate, injury and illness for radiation, cancer risk, contamination, decontamination and treatment, markers, personnel dosimetry, training, medical and equipment transportation, shielded and tools. Psychological, physical (health and illness), economical (agriculture and industry) and environment impacts. Terrorist attacks, security belts. Support and international agreements (IAEA)

  4. Wind emergency response system

    International Nuclear Information System (INIS)

    Garrett, A.J.; Buckner, M.R.; Mueller, R.A.

    1981-01-01

    The WIND system is an automated emergency response system for real-time predictions of the consequences of liquid and airborne releases from SRP. The system consists of a minicomputer and associated peripherals necessary for acquisition and handling of large amounts of meteorological data from a local tower network and the National Weather Service. The minicomputer uses these data and several predictive models to assess the impact of accidental releases. The system is fast and easy to use, and output is displayed both in tabular form and as trajectory map plots for quick interpretation. The rapid response capabilities of the WIND system have been demonstrated in support of SRP operations

  5. Addressing the gap between public health emergency planning and incident response

    Science.gov (United States)

    Freedman, Ariela M; Mindlin, Michele; Morley, Christopher; Griffin, Meghan; Wooten, Wilma; Miner, Kathleen

    2013-01-01

    Objectives: Since 9/11, Incident Command System (ICS) and Emergency Operations Center (EOC) are relatively new concepts to public health, which typically operates using less hierarchical and more collaborative approaches to organizing staff. This paper describes the 2009 H1N1 influenza outbreak in San Diego County to explore the use of ICS and EOC in public health emergency response. Methods: This study was conducted using critical case study methodology consisting of document review and 18 key-informant interviews with individuals who played key roles in planning and response. Thematic analysis was used to analyze data. Results: Several broad elements emerged as key to ensuring effective and efficient public health response: 1) developing a plan for emergency response; 2) establishing the framework for an ICS; 3) creating the infrastructure to support response; 4) supporting a workforce trained on emergency response roles, responsibilities, and equipment; and 5) conducting regular preparedness exercises. Conclusions: This research demonstrates the value of investments made and that effective emergency preparedness requires sustained efforts to maintain personnel and material resources. By having the infrastructure and experience based on ICS and EOC, the public health system had the capability to surge-up: to expand its day-to-day operation in a systematic and prolonged manner. None of these critical actions are possible without sustained funding for the public health infrastructure. Ultimately, this case study illustrates the importance of public health as a key leader in emergency response. PMID:28228983

  6. Exploring mHealth Participation for Emergency Response Communities

    Directory of Open Access Journals (Sweden)

    David G. Schwartz

    2017-03-01

    Full Text Available We explore the challenges of participation by members of emergency response communities who share a similar condition and treatment, and are called upon to participate in emergency events experienced by fellow members. Smartphones and location-based social networking technologies present an opportunity to re-engineer certain aspects of emergency medical response. Life-saving prescription medication extended in an emergency by one individual to another occurs on a micro level, anecdotally documented. We illustrate the issues and our approach through the example of an app to support patients prone to anaphylaxis and prescribed to carry epinephrine auto-injectors. We address unique participation challenges in an mHealth environment in which interventions are primarily short-term interactions which require clear and precise decision-making and constant tracking of potential participants in responding to an emergency medical event. The conflicting effects of diffused responsibility and shared identity are identified as key factors in modeling participation.

  7. Emergency Support Function 15: Communication Synchronization during Defense Support of Civil Authorities Operations

    Science.gov (United States)

    2015-06-12

    for the future. I would like to thank my parents Juan and Helen for their love, support, and guidance; your hard work and sacrifices have given me...required support to civil authortities during emergency relief operations.9 Once civil authorites are capable of resuming responsibility for the...Freeman posit the researcher has an understanding of the cognitive styles of the program stakeholders which will increase access and comprehension of

  8. Satellite and Aerial Remote Sensing in Support of Disaster Response Operations Conducted by the Texas Division of Emergency Management

    Science.gov (United States)

    Wells, G. L.; Tapley, B. D.; Bettadpur, S. V.; Howard, T.; Porter, B.; Smith, S.; Teng, L.; Tapley, C.

    2014-12-01

    The effective use of remote sensing products as guidance to emergency managers and first responders during field operations requires close coordination and communication with state-level decision makers, incident commanders and the leaders of individual strike teams. Information must be tailored to meet the needs of different emergency support functions and must contain current (ideally near real-time) data delivered in standard formats in time to influence decisions made under rapidly changing conditions. Since 2003, a representative of the University of Texas Center for Space Research (CSR) has served as a member of the Governor's Emergency Management Council and has directed the flow of information from remote sensing observations and high performance computing modeling and simulations to the Texas Division of Emergency Management in the State Operations Center. The CSR team has supported response and recovery missions resulting from hurricanes, tornadoes, flash floods, wildfires, oil spills and other natural and man-made disasters in Texas and surrounding states. Through web mapping services, state emergency managers and field teams have received threat model forecasts, real-time vehicle tracking displays and imagery to support search-and-clear operations before hurricane landfall, search-and-rescue missions following floods, tactical wildfire suppression, pollution monitoring and hazardous materials detection. Data servers provide near real-time satellite imagery collected by CSR's direct broadcast receiving system and post data products delivered during activations of the United Nations International Charter on Space and Major Disasters. In the aftermath of large-scale events, CSR is charged with tasking state aviation resources, including the Air National Guard and Texas Civil Air Patrol, to acquire geolocated aerial photography of the affected region for wide area damage assessment. A data archive for each disaster is available online for years following

  9. Advanced simulation and management software for nuclear emergency training and response

    International Nuclear Information System (INIS)

    Rose, K.W.

    2011-01-01

    The importance of training of safety personnel to deal with real world scenarios is prevalent amongst nuclear emergency preparedness and response organizations. For the development of training tools we have committed to ensure that field procedures, data collection software and decision making tools be identical during training sessions as they would be during a real emergency. By identifying the importance of a fully integrated tool, we have developed a safety support system capable of both functioning in training mode and real mode, enabling emergency response organizations to train more efficiently and effectively. This new fully integrated emergency management tool is called S3-FAST also known as Safety Support Systems - Field Assessment Survey Tool. (orig.)

  10. Disaster Monitoring and Emergency Response Services in China

    Science.gov (United States)

    Wu, J.; Han, X.; Zhou, Y.; Yue, P.; Wang, X.; Lu, J.; Jiang, W.; Li, J.; Tang, H.; Wang, F.; Li, X.; Fan, J.

    2018-04-01

    The Disaster Monitoring and Emergency Response Service(DIMERS) project was kicked off in 2017 in China, with the purpose to improve timely responsive service of the institutions involved in the management of natural disasters and man-made emergency situations with the timely and high-quality products derived from Space-based, Air-based and the in-situ Earth observation. The project team brought together a group of top universities and research institutions in the field of Earth observations as well as the operational institute in typical disaster services at national level. The project will bridge the scientific research and the response services of massive catastrophe in order to improve the emergency response capability of China and provide scientific and technological support for the implementation of the national emergency response strategy. In response to the call for proposal of "Earth Observation and Navigation" of 2017 National Key R&D Program of China, Professor Wu Jianjun, the deputy chairman of Faculty of Geographical Science of Beijing Normal University, submitted the Disaster Monitoring and Emergency Response Service (DIMERS) project, jointly with the experts and scholars from Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Wuhan University, China Institute of Earthquake Forecasting of China Earthquake Administration and China Institute of Water Resources and Hydropower Science. After two round evaluations, the proposal was funded by Ministry of Science and Technology of China.

  11. Decision support for emergency management

    International Nuclear Information System (INIS)

    Andersen, V.

    1989-05-01

    A short introduction will be given to the Nordic project ''NKA/INF: Information Technology for Accident and Emergency Management'', which is now in its final phase. To perform evaluation of the project, special scenarious have been developed, and experiments based on these will be fulfilled and compared with experiments without use of the decision support system. Furthermore, the succeeding European project, ''IT Support for Emergency Management - ISEM'', with the purpose of developing a decision support system for complex and distributed decision making in emergency management in full scale, will be described and the preliminary conceptual model for the system will be presented. (author)

  12. Development of a Rapidly Deployed Department of Energy Emergency Response Element

    International Nuclear Information System (INIS)

    Riland, C.A.; Hopkins, R.C.; Tighe, R.J.

    1999-01-01

    The Federal Radiological Emergency Response Plan (FRERP) directs the Department of Energy (DOE) to maintain a viable, timely, and fully documented response option capable of supporting the responsible Lead Federal Agency in the event of a radiological emergency impacting any state or US territory (e.g., CONUS). In addition, the DOE maintains a response option to support radiological emergencies outside the continental US (OCONUS). While the OCUNUS mission is not governed by the FREP, this response is operationally similar to that assigned to the DOE by the FREP. The DOE is prepared to alert, activate, and deploy radiological response teams to augment the Radiological Assistance Program and/or local responders. The Radiological Monitoring and Assessment Center (RMAC) is a phased response that integrates with the Federal Radiological Monitoring and Assessment Center (FRMAC) in CONUS environments and represents a stand-alone DOE response for OCONUS environments. The FRMAC/RMAC Phase I was formally ''stood up'' as an operational element in April 1999. The FRMAC/RMAC Phase II proposed ''stand-up'' date is midyear 2000

  13. Explanation of procedure on site medical emergency response for nuclear accident

    International Nuclear Information System (INIS)

    Liu Yulong; Jiang Zhong

    2012-01-01

    National occupational health standard-Procedure on Site Medical Emergency Response for Nuclear Accident has been approved and issued by the Ministry of Health. This standard is formulated according to the Emergency Response Law of the People's Republic of China, Law of the People 's Republic of China on Prevention and Control of Occupational Diseases, Regulations on Emergency Measures for Nuclear Accidents at Nuclear Power Plants, and Health Emergency Plans for Nuclear and Radiological Accidents of Ministry of Health, supporting the use of On-site Medical Emergency Planning and Preparedness for Nuclear Accidents and Off-site Medical Emergency Planning and Preparedness for Nuclear Accidents. Nuclear accident on-site medical response procedure is a part of the on-site emergency plan. The standard specifies the basic content and requirements of the nuclear accident on-site medical emergency response procedures of nuclear facilities operating units to guide and regulate the work of nuclear accident on-site medical emergency response of nuclear facilities operating units. The criteria-related contents were interpreted in this article. (authors)

  14. Multi-objective evolutionary emergency response optimization for major accidents

    International Nuclear Information System (INIS)

    Georgiadou, Paraskevi S.; Papazoglou, Ioannis A.; Kiranoudis, Chris T.; Markatos, Nikolaos C.

    2010-01-01

    Emergency response planning in case of a major accident (hazardous material event, nuclear accident) is very important for the protection of the public and workers' safety and health. In this context, several protective actions can be performed, such as, evacuation of an area; protection of the population in buildings; and use of personal protective equipment. The best solution is not unique when multiple criteria are taken into consideration (e.g. health consequences, social disruption, economic cost). This paper presents a methodology for multi-objective optimization of emergency response planning in case of a major accident. The emergency policy with regards to protective actions to be implemented is optimized. An evolutionary algorithm has been used as the optimization tool. Case studies demonstrating the methodology and its application in emergency response decision-making in case of accidents related to hazardous materials installations are presented. However, the methodology with appropriate modification is suitable for supporting decisions in assessing emergency response procedures in other cases (nuclear accidents, transportation of hazardous materials) or for land-use planning issues.

  15. Manual for first responders to a radiological emergency. Emergency preparedness and response. Publication date: June 2007

    International Nuclear Information System (INIS)

    2007-08-01

    Under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. As stated in IAEA Safety Standards Series No. GS-R-2 'Preparedness and Response for a Nuclear or Radiological Emergency', which establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, 'first responders shall take all practicable and appropriate actions to minimize the consequences of a nuclear or radiological emergency'. The IAEA General Conference, in resolution GC(49)/RES/9, continues to encourage Member States 'to adopt the relevant Agency standards, procedures and practical tools' and underlines 'the need for first responders to have appropriate training for dealing with ionizing radiation during nuclear and radiological emergencies'. This publication is intended to assist in meeting these requirements and to fulfil Article 5 of the Assistance Convention. Its aim is to provide practical guidance for those who will respond during the first few hours to a radiological emergency (referred to here as 'first responders') and for national officials who would support this early response. It provides guidance in the form of action guides, instructions, and supporting data that can be easily applied by a State to build a basic capability to respond to a radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This report, published as part of the IAEA Emergency Preparedness and Response Series, replaces and builds on IAEA-TECDOC-1162 in the area of early response and first responders' actions. It takes account of the

  16. Manual for first responders to a radiological emergency. Emergency preparedness and response. Publication date: October 2006

    International Nuclear Information System (INIS)

    2006-10-01

    Under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. As stated in IAEA Safety Standards Series No. GS-R-2 'Preparedness and Response for a Nuclear or Radiological Emergency', which establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, 'first responders shall take all practicable and appropriate actions to minimize the consequences of a nuclear or radiological emergency'. The IAEA General Conference, in resolution GC(49)/RES/9, continues to encourage Member States 'to adopt the relevant Agency standards, procedures and practical tools' and underlines 'the need for first responders to have appropriate training for dealing with ionizing radiation during nuclear and radiological emergencies'. This publication is intended to assist in meeting these requirements and to fulfil Article 5 of the Assistance Convention. Its aim is to provide practical guidance for those who will respond during the first few hours to a radiological emergency (referred to here as 'first responders') and for national officials who would support this early response. It provides guidance in the form of action guides, instructions, and supporting data that can be easily applied by a State to build a basic capability to respond to a radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This report, published as part of the IAEA Emergency Preparedness and Response Series, replaces and builds on IAEA-TECDOC-1162 in the area of early response and first responders' actions. It takes account of the

  17. Integrated simulation of emergency response in disasters

    International Nuclear Information System (INIS)

    Kanno, Taro; Furuta, Kazuo

    2005-01-01

    An integrated simulation system of emergency response in disasters is under development that can consider various factors of disasters, such as disaster phenomena, activities of response organizations, resident behavior, and their environment. The aim of this system is to provide support for design and assessment of disaster management systems. This paper introduces the conceptual design of the entire system and presents simulators of organizational behavior in nuclear and earthquake disasters. (author)

  18. Emergency response facility technical data system of Taiwan Power Company

    International Nuclear Information System (INIS)

    Lin, E.; Liang, T.M.

    1987-01-01

    Taiwan Power Company (Taipower) has developed its emergency response facility program since 1981. This program is integrated with the following activities to enhance the emergency response capability of nuclear power plants: (1) survey of the plant instrumentation based on the requirements of R.G. 1.97; (2) improvement of plant specific emergency operating procedures based on the emergency response guidelines developed by the Owners group; (3) implementation of the detailed control room design review with the consideration of human engineering and task analysis; and (4) organization, staff and communication of emergency planning of nuclear power plant. The emergency response facility programs of Taipower are implemented in Chinshan (GE BWR4/MARK I), Kuosheng (GE BWR6/MARK III) and Maanshan (W PWR). The major items included in each program are: (1) to establish new buildings for On-Site Technical Support Center, Near-Site Emergency Operation Facility; (2) to establish an Emergency Executive Center at Taipower headquarters; (3) to establish the communication network between control room and emergency response facilities; and (4) to install a dedicated Emergency Response Facility Technical Data System (ERFTDS) for each plant. The ERFTDS provides the functions of data acquisition, data processing, data storage and display in meeting with the requirements of NUREG 0696. The ERFTDS is designed with plant specific requirements. These specific requirements are expected to be useful not only for the emergency condition but also for normal operation conditions

  19. Chinese experience on medical response to radiation emergencies

    International Nuclear Information System (INIS)

    Liu, Ying; Qin, Bin; Lei, Cuiping; Chen, Huifang; Han, Yuhong

    2008-01-01

    Full text: Chinese Center for Medical Response to Radiation Emergency (CCMRRE) was established in 1992, based on the National Institute for Radiological Protection, China CDC (NIRP, China CDC). CCMRRE is a liaison of WHO/REMPAN and functions as a national and professional institute for medical preparedness and response to emergencies involving radioactive material. CCMRRE participates in drafting National Medical Assistant Program for Radiation Emergency and relevant technical documents, develops preventive measures and technique means of medical preparedness and response to radiation emergency. CCMRRE is responsible for medical response to radiological or nuclear accident on national level. CCMRRE holds training courses, organizes drills and provides technical support to local medical organizations in practicing medical preparedness and response to radiation emergency. CCMRRE collects, analyzes and exchanges information on medical response to radiological and nuclear emergency and establishes relevant database. CCMRRE also guides and participates in radiation pollution monitoring on accident sites. In the past ten years, we accumulate much knowledge and experience on medical response to radiation emergencies. In this context, we will discuss Xinzhou Accident, which took place in 1992 and involved in three deaths, and Ha'erbin Accident that took place in 2005 and involved one death. A father and two brothers in Xinzhou Accident died of over-exposed to 60 Co source and misdiagnosis and improper treatment, which indicates that most general practitioners are uncertain about the health consequences of exposure to ionizing radiation and the medical management of exposed patients. When Ha'erbin Accident happened in 2005, the local hospital gave the right diagnosis and treatment based on the clinic symptoms and signs, which prevent more people suffering from over-expose to 192 Ir source. The distinct changes comes from the education and training to primary doctors related

  20. An expert system for improving nuclear emergency response

    International Nuclear Information System (INIS)

    Salame-Alfie, A.; Goldbogen, G.C.; Ryan, R.M.; Wallace, W.A.; Yeater, M.L.

    1987-01-01

    The accidents at TMI-2 and Chernobyl have produced initiatives aimed at improving nuclear plant emergency response capabilities. Among them are the development of emergency response facilities with capabilities for the acquisition, processing, and diagnosis of data which are needed to help coordinate plant operations, engineering support and management under emergency conditions. An effort in this direction prompted the development of an expert system. EP (EMERGENCY PLANNER) is a prototype expert system that is intended to help coordinate the overall management during emergency conditions. The EP system was built using the GEN-X expert system shell. GEN-X has a variety of knowledge representation mechanisms including AND/OR trees, Decision trees, and IF/THEN tables, and runs on an IBM PC-XT or AT computer or compatible. Among the main features, EP is portable, modular, user friendly, can interact with external programs and interrogate data bases. The knowledge base is made of New York State (NYS) Procedures for Emergency Classification, NYS Radiological Emergency Preparedness Plan (REPP) and knowledge from experts of the NYS Radiological Emergency Preparedness Group and the Office of Radiological Health and Chemistry of the New York Power Authority (NYPA)

  1. Preparedness and Emergency Response Learning Centers: supporting the workforce for national health security.

    Science.gov (United States)

    Richmond, Alyson L; Sobelson, Robyn K; Cioffi, Joan P

    2014-01-01

    The importance of a competent and prepared national public health workforce, ready to respond to threats to the public's health, has been acknowledged in numerous publications since the 1980s. The Preparedness and Emergency Response Learning Centers (PERLCs) were funded by the Centers for Disease Control and Prevention in 2010 to continue to build upon a decade of focused activities in public health workforce preparedness development initiated under the Centers for Public Health Preparedness program (http://www.cdc.gov/phpr/cphp/). All 14 PERLCs were located within Council on Education for Public Health (CEPH) accredited schools of public health. These centers aimed to improve workforce readiness and competence through the development, delivery, and evaluation of targeted learning programs designed to meet specific requirements of state, local, and tribal partners. The PERLCs supported organizational and community readiness locally, regionally, or nationally through the provision of technical consultation and dissemination of specific, practical tools aligned with national preparedness competency frameworks and public health preparedness capabilities. Public health agencies strive to address growing public needs and a continuous stream of current and emerging public health threats. The PERLC network represented a flexible, scalable, and experienced national learning system linking academia with practice. This system improved national health security by enhancing individual, organizational, and community performance through the application of public health science and learning technologies to frontline practice.

  2. Developing AN Emergency Response Model for Offshore Oil Spill Disaster Management Using Spatial Decision Support System (sdss)

    Science.gov (United States)

    Balogun, Abdul-Lateef; Matori, Abdul-Nasir; Wong Toh Kiak, Kelvin

    2018-04-01

    Environmental resources face severe risks during offshore oil spill disasters and Geographic Information System (GIS) Environmental Sensitivity Index (ESI) maps are increasingly being used as response tools to minimize the huge impacts of these spills. However, ESI maps are generally unable to independently harmonize the diverse preferences of the multiple stakeholders' involved in the response process, causing rancour and delay in response time. This paper's Spatial Decision Support System (SDSS) utilizes the Analytic Hierarchy Process (AHP) model to perform tradeoffs in determining the most significant resources to be secured considering the limited resources and time available to perform the response operation. The AHP approach is used to aggregate the diverse preferences of the stakeholders and reach a consensus. These preferences, represented as priority weights, are incorporated in a GIS platform to generate Environmental sensitivity risk (ESR) maps. The ESR maps provide a common operational platform and consistent situational awareness for the multiple parties involved in the emergency response operation thereby minimizing discord among the response teams and saving the most valuable resources.

  3. Reflections on the emergency preparations and responses of China to Fukushima nuclear accident in Japan

    International Nuclear Information System (INIS)

    Chen Xiaoqiu; Li Bing; Yu Shaoqing

    2012-01-01

    This paper reviewed the emergency response of Japan in Fukushima nuclear accident, provided and discussed the issues should be of concern on emergency preparedness and response in future: (1) modifying the existing emergency preparedness and response system; (2) consolidating the concept of emergency preparedness as the ultimate level of defense-in-depth; (3) promoting the emergency response decision-making support capabilities; (4) valuing the information opening of involving nuclear news and radiation environmental information. (authors)

  4. Gamification for data gathering in emergency response exercises

    NARCIS (Netherlands)

    Meesters, Kenny; Ruhe, Aaron; Soetanto, Marvin; Munkvold, R.; Kolås, L.

    2015-01-01

    Our paper describes how gamification can be implemented in an emergency response exercise. In particular, we focus on the potential of gamification to support self-evaluation processes through the automated gathering of data about the participants' performance. Disaster-exercises are typically

  5. A case of timely satellite image acquisitions in support of coastal emergency environmental response management

    Science.gov (United States)

    Ramsey, Elijah W.; Werle, Dirk; Lu, Zhong; Rangoonwala, Amina; Suzuoki, Yukihiro

    2009-01-01

    The synergistic application of optical and radar satellite imagery improves emergency response and advance coastal monitoring from the realm of “opportunistic” to that of “strategic.” As illustrated by the Hurricane Ike example, synthetic aperture radar imaging capabilities are clearly applicable for emergency response operations, but they are also relevant to emergency environmental management. Integrated with optical monitoring, the nearly real-time availability of synthetic aperture radar provides superior consistency in status and trends monitoring and enhanced information concerning causal forces of change that are critical to coastal resource sustainability, including flooding extent, depth, and frequency.

  6. PHMC post-NPH emergency response training

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1997-01-01

    This document describes post-Natural Phenomena Hazard (NPH) emergency response training that was provided to two teams of Project Hanford Management Contractors (PHMC) staff that will be used to assess potential structural damage that may occur as a result of a significant natural phenomena event. This training supports recent plans and procedures to use trained staff to inspect structures following an NPH event on the Hanford Site

  7. PHMC post-NPH emergency response training

    Energy Technology Data Exchange (ETDEWEB)

    Conrads, T.J.

    1997-04-08

    This document describes post-Natural Phenomena Hazard (NPH) emergency response training that was provided to two teams of Project Hanford Management Contractors (PHMC) staff that will be used to assess potential structural damage that may occur as a result of a significant natural phenomena event. This training supports recent plans and procedures to use trained staff to inspect structures following an NPH event on the Hanford Site.

  8. Ad hoc networking and ambient intelligence to support future disaster response

    NARCIS (Netherlands)

    Jones, Valerie M.; Karagiannis, Georgios; Heemstra de Groot, S.M.

    2005-01-01

    We present a vision of how ambient intelligent environments may be used in future to support the emergency services during first response to a major incident. A futuristic scenario is presented where, for each of the emergency services, Ambient Intelligence (AmI) technologies are used to support

  9. Ad hoc networking and ambient intelligence to support future disaster response

    NARCIS (Netherlands)

    Jones, Valerie M.; Karagiannis, Georgios; Heemstra de Groot, S.M.; Afifi, H.; Zeghlache, D.

    We present a vision of how ambient intelligent environments may be used in future to support the emergency services during first response to a major incident. A futuristic scenario is presented where, for each of the emergency services, Ambient Intelligence (AmI) technologies are used to support

  10. Occupational Safety and Health System for Workers Engaged in Emergency Response Operations in the USA.

    Science.gov (United States)

    Toyoda, Hiroyuki; Kubo, Tatsuhiko; Mori, Koji

    2016-12-03

    To study the occupational safety and health systems used for emergency response workers in the USA, we performed interviews with related federal agencies and conducted research on related studies. We visited the Federal Emergency Management Agency (FEMA) and National Institute for Occupational Safety and Health (NIOSH) in the USA and performed interviews with their managers on the agencies' roles in the national emergency response system. We also obtained information prepared for our visit from the USA's Occupational Safety and Health Administration (OSHA). In addition, we conducted research on related studies and information on the website of the agencies. We found that the USA had an established emergency response system based on their National Incident Management System (NIMS). This enabled several organizations to respond to emergencies cooperatively using a National Response Framework (NRF) that clarifies the roles and cooperative functions of each federal agency. The core system in NIMS was the Incident Command System (ICS), within which a Safety Officer was positioned as one of the command staff supporting the commander. All ICS staff were required to complete a training program specific to their position; in addition, the Safety Officer was required to have experience. The All-Hazards model was commonly used in the emergency response system. We found that FEMA coordinated support functions, and OSHA and NIOSH, which had specific functions to protect workers, worked cooperatively under NRF. These agencies employed certified industrial hygienists that play a professional role in safety and health. NIOSH recently executed support activities during disasters and other emergencies. The USA's emergency response system is characterized by functions that protect the lives and health of emergency response workers. Trained and experienced human resources support system effectiveness. The findings provided valuable information that could be used to improve the

  11. IAEA response assistance network. Incident and Emergency Centre. Emergency preparedness and response. Date effective: 1 May 2006

    International Nuclear Information System (INIS)

    2006-03-01

    This publication is intended to serve as a tool for supporting the provision of international assistance in the case of nuclear or radiological incident or emergency, cooperation between States, their Competent Authorities and the IAEA, and harmonization of response capabilities of States offering assistance. The publication is issued under the authority of the Director General of the IAEA: (1) under the auspices of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the Assistance Convention) [1], to promote, facilitate and support cooperation between States Parties to coordinate and/or provide assistance to a State Party and/or Member State; and (2) in the case of an incident or emergency, as statutory functions, to provide for the application of its safety standards, upon request by a Member State, and to act as an intermediary for the purposes of securing the performance of services or the supplying of materials, equipment or facilities by one Member State for another. The publication sets out the following: a) the RANET concept and the organizational structure for providing assistance; b) functions, responsibilities and activities within the RANET; c) the RANET response operations and arrangements needed for preparedness; and d) the prerequisites for RANET membership and conditions of registration. The RANET is divided into four sections. After the introduction in Section 1, the RANET concept, objectives and scope are described in Section 2. Section 3 presents the concept of operations of the RANET and Section 4 describes expected tasks, capabilities and resources. In addition, EPR-RANET (2006) has three supporting documents, which are issued separately, as follows: 1. Assistance Action Plans with samples of Assistance Action Plans for providing international assistance. 2. Registry with the details of the registry and instructions on how to register national assistance capabilities for the RANET. 3. Technical Guidelines

  12. The Student Volunteer Army: a 'repeat emergent' emergency response organisation.

    Science.gov (United States)

    Carlton, Sally; Mills, Colleen E

    2017-10-01

    This paper seeks to contribute to understanding of the factors associated with an effective emergent emergency response organisation and to provide new insights into this understudied area. It examines, through an analysis of a range of textual resources, the emergence and re-emergence of the Student Volunteer Army (SVA) during the devastating earthquakes in Canterbury, New Zealand, in 2010-11. This evaluation is conducted in relation to the four key features of an effective emergency response organisation: adaptability; direction; leadership; and communication. In addition, the paper aims to further understanding of 'emergency entrepreneurship' and thus of the values and strategies that underpin social entrepreneur organisations in times of normalcy. The paper concludes that the unique position of the SVA as a 'repeat emergent' emergency response organisation enabled it to innovate continually and to improve repeatedly its systems, relationships, and image, such that it exhibited features common to emergent and established emergency response organisations. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  13. Risk-based emergency decision support

    International Nuclear Information System (INIS)

    Koerte, Jens

    2003-01-01

    In the present paper we discuss how to assist critical decisions taken under complex, contingent circumstances, with a high degree of uncertainty and short time frames. In such sharp-end decision regimes, standard rule-based decision support systems do not capture the complexity of the situation. At the same time, traditional risk analysis is of little use due to variability in the specific circumstances. How then, can an organisation provide assistance to, e.g. pilots in dealing with such emergencies? A method called 'contingent risk and decision analysis' is presented, to provide decision support for decisions under variable circumstances and short available time scales. The method consists of nine steps of definition, modelling, analysis and criteria definition to be performed 'off-line' by analysts, and procedure generation to transform the analysis result into an operational decision aid. Examples of pilots' decisions in response to sudden vibration in offshore helicopter transport method are used to illustrate the approach

  14. International IAEA Emergency Response Workshop in Fukushima Concludes

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: An IAEA workshop aimed at further strengthening nuclear and radiological emergency preparedness and response capabilities concluded today in Fukushima, Japan. More than 40 participants from 18 countries took part in the four-day Response and Assistance Network (RANET) workshop, which included a field exercise in areas affected following the March 2011 accident at TEPCO's Fukushima Daiichi Nuclear Power Station. During the exercise, participants conducted radiation monitoring and environmental sampling and analysis. They measured the contamination level of the ground surface and conducted gamma spectrum analysis and vehicle-based monitoring - activities that are conducted following any nuclear or radiological incident or emergency. Results were then compared amongst participants. RANET is a network currently comprising 22 countries through which the IAEA can facilitate the provision of expert support and equipment on request under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency. Pat Kenny, IAEA RANET Officer, said the workshop provided an opportunity to practice cooperation between international teams that would be deployed through RANET following an emergency. 'By bringing together so many experts from different countries in one place, the workshop helped us learn how international teams can work together to provide assistance in a nuclear or radiological emergency situation,' he said. 'It also enabled us to improve the coordination of such assistance, and it gave participants the opportunity to learn from each other.' The workshop was the first activity conducted from the IAEA RANET Capacity Building Centre, a new training centre based in the city of Fukushima that was designated earlier this week with the support of the Japanese Foreign Ministry and Fukushima Prefecture. The Centre will host RANET and other training courses, workshops and exercises aimed at enhancing nuclear emergency preparedness and response

  15. Tactical and strategic decision-making aids for nuclear power plant emergency response

    International Nuclear Information System (INIS)

    Cain, D.G.

    1987-01-01

    This paper examines the prospective role of computer-based decision aids for nuclear power plant emergency response. The role of these systems is subordinate to human activities, but in a complementary manner these systems process decision logic more accurately and foster a more thorough understanding of emergency situations than might other wise be possible. Within this context two decision support systems being developed are discussed. Both of these systems utilize technology derived from artificial intelligence, focussing on two different facets of emergency response. An automated emergency operating procedures (EOP) tracking expert system is described as a tactical aid for control room operator response. A reactor emergency action level monitor (REALM) expert system is proposed as a strategic decision aid for site emergency response. The discrimination between tactical and strategic decision-making is an intrinsic part of this examination

  16. Measuring strategy of Support Centre RIVM for nuclear emergencies

    International Nuclear Information System (INIS)

    Pruppers, M.J.M.; Smetsers, R.C.G.M.

    1994-11-01

    The accident at the Chernobyl nuclear power station in April 1986 and its consequences were reason for the Dutch government to evaluate and improve the facilities and the preparedness for nuclear emergency management in the Netherlands. The results of the evaluation have been elaborated in operational terms in the National Plan for Nuclear Emergency Planning and Response (EPR). During an accident with radioactive material the Technical Information Group (TIG) coordinates the measuring activities of the so-called Support Centres. According to the EPR, measuring activities of Support Centre RIVM are focussed on the collection and processing of data on emissions, concentrations, depositions and radiation doses from soil and air. This report describes the measuring strategy of RIVM for nuclear emergencies. The measuring strategy and the measuring plan, the latter deduced from the measuring strategy, concentrate on explicit answers to the following central questions: what has to be measured, by whom, where, when and how, and why? The demands of the TIG and the specification of tasks and operational facilities of Support Centre RIVM are considered as starting-points, limiting conditions and constraints for the measuring strategy. These items are converted to explicit choices for the measuring strategy and the default measuring plan. This report further includes a list of contacts of Support Centre RIVM with other (research) institutes, inside and outside the Netherlands, which may be relevant during a nuclear emergency. 3 figs., 2 tabs., 22 refs

  17. DSSNET, a network of users and developers of decision support systems for emergency response in Europe

    International Nuclear Information System (INIS)

    Salfeld, H.C.; Raskob, W.

    2002-01-01

    Following the Chernobyl accident, computerised systems for off-site management and response in case of a nuclear accident were developed and installed in many European countries. Some of the systems are in use in only one country, whereas other systems have found broader application in Europe. Examples of these systems are IMIS (D), ARGOS (DK), running in Denmark, Lithuania and Poland and RODOS, a real-time on-line decision support system for nuclear emergency management in Europe, which is now installed for operational or test-operational use in many European countries. During the development and installation phases of these decision support systems the necessity emerged, that there is a need for an intensive feedback between developers and users. Therefore, under the 5. Framework Programme of the European Commission a network has been installed to intensify the communication and increase the understanding between the operational community and the many and diverse disciplines involved in RD for improvement, extension and integration of operational decision support systems for nuclear emergency management, called DSSNET. This poster demonstrates how the network is organised, namely with different work groups, exercises and meetings. Each working group addresses one of seven work packages: - Preparation and conduct of exercises (WP1), - User interfaces, results and interaction with decision makers (WP2), - Exchange of data information relevant for decision-making (WP3), System functions, networks and processing of on-line data (WP4), European database (WP5), Coordination of the network (WP6), Hydrological modelling (WP7). Main focus is given to WP4, in which information of on-line monitoring from more than 10 European counties is collected. Information was collated with the help of questionnaires which are send out on a regular basis. The evaluation of the various questionnaires summarises the different systems in use for stack monitoring, retrieving on

  18. ISEM: Europe's ESPRIT support for emergency management

    International Nuclear Information System (INIS)

    Andersen, V.

    1991-01-01

    The CEC-supported ISEM project to develop Information technology Support for Emergency Management was started in 1989. Two specific applications to demonstrate the ISEM system were selected; a NPP accident and a chemical plant emergency. An Emergency Management System provides user-friendly facilities for communication between the numerous local, regional and national organizations

  19. Experiences of an Engineer working in Reactor Safety and Emergency Response

    Science.gov (United States)

    Osborn, Douglas

    2015-04-01

    The U.S. Department of Energy's Federal Radiological Monitoring and Assessment Center Consequence Management Home Team (FRMAC/CMHT) Assessment Scientist's roles, responsibilities incorporate the FRMAC with other federal, state, and local agencies during a nuclear/radiological emergency. Before the Consequence Management Response Team arrives on-site, the FRMAC/CMHT provides technical and logistical support to the FRMAC and to state, local, and tribal authorities following a nuclear/radiological event. The FRMAC/CMHT support includes analyzing event data, evaluating hazards that relate to protection of the public, and providing event information and data products to protective action decision makers. The Assessment Scientist is the primary scientist responsible for performing calculations and analyses and communicating results to the field during any activation of the FRMAC/CMHT assets. As such, the FRMAC/CMHT Assessment Scientist has a number of different roles and responsibilities to fill depending upon the type of response that is required. Additionally, the Sandia National Laboratories (SNL) Consequence Assessment Team (CAT) Consequence Assessor roles, responsibilities involve hazardous materials operational emergency at SNL New Mexico facilities (SNL/NM) which include loss of control over radioactive, chemical, or explosive hazardous materials. When a hazardous materials operational emergency occurs, key decisions must be made in order to regain control over the hazards, protect personnel from the effects of the hazards, and mitigate impacts on operations, facilities, property, and the environment. Many of these decisions depend in whole or in part on the evaluation of potential consequences from a loss of control over the hazards. As such, the CAT has a number of different roles and responsibilities to fill depending upon the type of response that is required. Primary consequence-based decisions supported by the CAT during a hazardous materials operational

  20. Information technology support for emergency management

    International Nuclear Information System (INIS)

    Uuspaeae, P.

    1990-01-01

    Information systems for distributed decision support for emergency management are considered. Specific applications include nuclear power plant emergencies. Emergencies in other industries such as chemical industry may also be considered. Research in the ISEM project is briefly summarized

  1. Global approach of emergency response, reflection analysis

    International Nuclear Information System (INIS)

    Velasco Garcia, E.; Garcia Ahumada, F.; Albaladejo Vidal, S.

    1998-01-01

    The emergency response management approach must be dealt with adequately within company strategy, since a badly managed emergency situation can adversely affect a company, not only in terms of asset, but also in terms of the negative impact on its credibility, profitability and image. Thereby, it can be said that there are three main supports to manage the response in an emergency situation. a) Diagnosis b) Prognosis. c) Communications. To reach these capabilities it is necessary a co-ordination of different actions at the following levels. i. Facility Operation implies Local level. ii. Facility Property implies National level iii. Local Authority implies Local level iv. National Authority implies National level Taking into account all the last, these following functions must be covered: a) Management: incorporating communication, diagnosis and prognosis areas. b) Decision: incorporating communication and information means. c) Services: in order to facilitate the decision, as well as the execution of this decision. d) Analysis: in order to facilitate the situations that make easier to decide. e) Documentation: to seek the information for the analysts and decision makers. (Author)

  2. Emergency preparedness and response in transport of radioactive material

    International Nuclear Information System (INIS)

    Takani, Michio

    2008-01-01

    Nuclear power has been providing clean, affordable electricity in many parts of the world for nearly half a century. The national and international transport of nuclear fuel cycle materials is essential to support this activity. To sustain the nuclear power industry, fuel cycle materials have to be transported safely and efficiently. The nature of the industry is such that most countries with large-scale nuclear power industries cannot provide all the necessary fuel services themselves and consequently nuclear fuel cycle transport activities are international. The radioactive material transport industry has an outstanding safety record spanning over 45 years; however the transport of radioactive materials cannot and most not be taken for granted. Efficient emergency preparedness and response in the transport of radioactive material is an important element to ensure the maximum safety in accident conditions. The World Nuclear Transport Institute (WNTI), founded by International Nuclear Services (INS) of the United Kingdom, AREVA of France an the Federation of Electric Power Companies (FEPC) of Japan, represents the collective interest of the radioactive material transport sector, and those who rely on safe, effective and reliable transport. As part of its activities, WNTI has conducted two surveys through its members on emergency preparedness and response in the transport of radioactive material and emergency exercises. After recalling the International Atomic Energy Agency approach on emergency response, this paper will be discussing the main conclusion of surveys, in particular the national variations in emergency response and preparedness on the national and local levels of regulations, the emergency preparedness in place, the emergency response organisation (who and how), communication and exercises. (author)

  3. Decision support system for the response to infectious disease emergencies based on WebGIS and mobile services in China.

    Science.gov (United States)

    Li, Ya-pin; Fang, Li-qun; Gao, Su-qing; Wang, Zhen; Gao, Hong-wei; Liu, Peng; Wang, Ze-Rui; Li, Yan-Li; Zhu, Xu-Guang; Li, Xin-Lou; Xu, Bo; Li, Yin-Jun; Yang, Hong; de Vlas, Sake J; Shi, Tao-Xing; Cao, Wu-Chun

    2013-01-01

    For years, emerging infectious diseases have appeared worldwide and threatened the health of people. The emergence and spread of an infectious-disease outbreak are usually unforeseen, and have the features of suddenness and uncertainty. Timely understanding of basic information in the field, and the collection and analysis of epidemiological information, is helpful in making rapid decisions and responding to an infectious-disease emergency. Therefore, it is necessary to have an unobstructed channel and convenient tool for the collection and analysis of epidemiologic information in the field. Baseline information for each county in mainland China was collected and a database was established by geo-coding information on a digital map of county boundaries throughout the country. Google Maps was used to display geographic information and to conduct calculations related to maps, and the 3G wireless network was used to transmit information collected in the field to the server. This study established a decision support system for the response to infectious-disease emergencies based on WebGIS and mobile services (DSSRIDE). The DSSRIDE provides functions including data collection, communication and analyses in real time, epidemiological detection, the provision of customized epidemiological questionnaires and guides for handling infectious disease emergencies, and the querying of professional knowledge in the field. These functions of the DSSRIDE could be helpful for epidemiological investigations in the field and the handling of infectious-disease emergencies. The DSSRIDE provides a geographic information platform based on the Google Maps application programming interface to display information of infectious disease emergencies, and transfers information between workers in the field and decision makers through wireless transmission based on personal computers, mobile phones and personal digital assistants. After a 2-year practice and application in infectious disease

  4. Decision support system for the response to infectious disease emergencies based on WebGIS and mobile services in China.

    Directory of Open Access Journals (Sweden)

    Ya-pin Li

    Full Text Available For years, emerging infectious diseases have appeared worldwide and threatened the health of people. The emergence and spread of an infectious-disease outbreak are usually unforeseen, and have the features of suddenness and uncertainty. Timely understanding of basic information in the field, and the collection and analysis of epidemiological information, is helpful in making rapid decisions and responding to an infectious-disease emergency. Therefore, it is necessary to have an unobstructed channel and convenient tool for the collection and analysis of epidemiologic information in the field.Baseline information for each county in mainland China was collected and a database was established by geo-coding information on a digital map of county boundaries throughout the country. Google Maps was used to display geographic information and to conduct calculations related to maps, and the 3G wireless network was used to transmit information collected in the field to the server. This study established a decision support system for the response to infectious-disease emergencies based on WebGIS and mobile services (DSSRIDE. The DSSRIDE provides functions including data collection, communication and analyses in real time, epidemiological detection, the provision of customized epidemiological questionnaires and guides for handling infectious disease emergencies, and the querying of professional knowledge in the field. These functions of the DSSRIDE could be helpful for epidemiological investigations in the field and the handling of infectious-disease emergencies.The DSSRIDE provides a geographic information platform based on the Google Maps application programming interface to display information of infectious disease emergencies, and transfers information between workers in the field and decision makers through wireless transmission based on personal computers, mobile phones and personal digital assistants. After a 2-year practice and application in

  5. A quick earthquake disaster loss assessment method supported by dasymetric data for emergency response in China

    Science.gov (United States)

    Xu, Jinghai; An, Jiwen; Nie, Gaozong

    2016-04-01

    Improving earthquake disaster loss estimation speed and accuracy is one of the key factors in effective earthquake response and rescue. The presentation of exposure data by applying a dasymetric map approach has good potential for addressing this issue. With the support of 30'' × 30'' areal exposure data (population and building data in China), this paper presents a new earthquake disaster loss estimation method for emergency response situations. This method has two phases: a pre-earthquake phase and a co-earthquake phase. In the pre-earthquake phase, we pre-calculate the earthquake loss related to different seismic intensities and store them in a 30'' × 30'' grid format, which has several stages: determining the earthquake loss calculation factor, gridding damage probability matrices, calculating building damage and calculating human losses. Then, in the co-earthquake phase, there are two stages of estimating loss: generating a theoretical isoseismal map to depict the spatial distribution of the seismic intensity field; then, using the seismic intensity field to extract statistics of losses from the pre-calculated estimation data. Thus, the final loss estimation results are obtained. The method is validated by four actual earthquakes that occurred in China. The method not only significantly improves the speed and accuracy of loss estimation but also provides the spatial distribution of the losses, which will be effective in aiding earthquake emergency response and rescue. Additionally, related pre-calculated earthquake loss estimation data in China could serve to provide disaster risk analysis before earthquakes occur. Currently, the pre-calculated loss estimation data and the two-phase estimation method are used by the China Earthquake Administration.

  6. Decision-making support system based on MAS for emergency response to nuclear accidents of marine pressurized-water reactor

    International Nuclear Information System (INIS)

    Chen Dengke; Zhang Dafa; Jiang Wei; Chen Yonghong

    2007-01-01

    Emergency decision-making to Marine Pressurized-Water Reactor (MPWR) was severely restricted by the complex environment. To enhance the emergency decision-making ability of MPWR, reducing the effect of emergencies, an emergency Decision-making Support System (DSS) which based on Multi-agent System (MAS) was presented. In the system, the HLA/RTI was used as the support environment, and the structure and the Control Agent (SCA), Analyse Agent (AA), Countermeasure Agent (CA), Evaluation Agent (EVA) and Environment Agent (ENA) were designed. The MAS were with the characteristics of autonomy, reactivity and initiative, which were fully used in the system to make effective decision for emergencies. (authors)

  7. Applications of complex terrain meteorological models to emergency response management

    International Nuclear Information System (INIS)

    Yamada, Tetsuji; Leone, J.M. Jr.; Rao, K.S.; Dickerson, M.H.; Bader, D.C.; Williams, M.D.

    1989-01-01

    The Office of Health and Environmental Research (OHER), US Department of Energy (DOE), has supported the development of mesoscale transport and diffusion and meteorological models for several decades. The model development activities are closely tied to the OHER field measurement program which has generated a large amount of meteorological and tracer gas data that have been used extensively to test and improve both meteorological and dispersion models. This paper briefly discusses the history of the model development activities associated with the OHER atmospheric science program. The discussion will then focus on how results from this program have made their way into the emergency response community in the past, and what activities are presently being pursued to improve real-time emergency response capabilities. Finally, fruitful areas of research for improving real-time emergency response modeling capabilities are suggested. 35 refs., 5 figs

  8. Medical Preparedness and Response for a Nuclear or Radiological Emergency. Training Materials

    International Nuclear Information System (INIS)

    2014-01-01

    In almost all nuclear and radiological emergencies, local emergency services (e.g. local medical, law enforcement, and fire brigades) will have the most important role in the early response. Within hours, hospitals may also have an important role to play in the response at the local level. Since nuclear and radiological emergencies are rare, medical responders often have little or no experience in dealing with this type of emergency and inexperience may lead to an inadequate response. For this reason, training in medical preparedness and response for a nuclear or radiological emergency is an important aspect of preparedness and response activities. These materials are designed for use at a training course on medical preparedness and response for a nuclear or radiological emergency. They contain a wide range of lectures and supporting materials, which cover the basic topics and more specific areas of medical preparedness and response. Therefore, in planning their specific courses, organizers are encouraged to choose those lectures and supportive materials from the CD-ROM that best match their training priorities. Materials on the CD-ROM address the following areas: • Terrorism in Perspective; • Malicious Act Scenarios; • Providing Information to the Medical Community and the Public; • Medical Response to a Radiation Mass Casualty Event; • Handling of Contaminated Persons in Malicious Events; • Planning and Preparedness for Medical Response to Malicious Events with Radioactive Material; • Handling the Bodies of Decedents Contaminated with Radioactive Material; • Radiation Emergencies: Scope of the Problem; • Common Sources of Radiation; • Basic Concepts of Ionizing Radiation; • Basic Concepts of Radiation Protection; • Biological Effects of Ionizing Radiation – Basic Notions; • Basics of Radiopathology; • External Radioactive Contamination; • Internal Radioactive Contamination; • Acute Radiation Syndrome; • Cutaneous Radiation

  9. Distinguishing human responses to radiological emergencies

    International Nuclear Information System (INIS)

    Johnson, J.H. Jr.; Ziegler, D.J.

    1983-01-01

    Inherent in the revised emergency planning regulations recently issued by the federal government is the assumption that people will follow official protective action advisories during a nuclear reactor accident. In this paper the authors argue that this is an unrealistic assumption and present empirical evidence which supports the proposition that a radiological emergency in likely to give rise to a high degree of extreme public behavior. Their analyses indicate that less than one-third of the households on Long Island are likely to follow instructions in the event of an accident at the Shoreham Nuclear Power Station. Among the families who would not follow instructions, some would underreact but most would overreact. Perceived distance from the plant and age of household head appear to be the strongest discriminators among those who are most likely to follow orders, those most likely to underreact, and those most likely to overreact. Implications for radiological emergency preparedness and response planning are discussed. 71 references, 3 figures, 8 tables

  10. Emergency response workers workshop

    International Nuclear Information System (INIS)

    Agapeev, S.A.; Glukhikh, E.N.; Tyurin, R.L.

    2012-01-01

    A training workshop entitled Current issues and potential improvements in Rosatom Corporation emergency prevention and response system was held in May-June, 2012. The workshop combined theoretical training with full-scale practical exercise that demonstrated the existing innovative capabilities for radiation reconnaissance, diving equipment and robotics, aircraft, emergency response and rescue hardware and machinery. This paper describes the activities carried out during the workshop [ru

  11. Improved nuclear emergency management system reflecting lessons learned from the emergency response at Fukushima Daini Nuclear Power Station after the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Kawamura, Shinichi; Narabayashi, Tadashi

    2016-01-01

    Three nuclear reactors at Fukushima Daini Nuclear Power Station lost all their ultimate heat sinks owing to damage from the tsunami caused by the Great East Japan Earthquake on March 11, 2011. Water was injected into the reactors by alternate measures, damaged cooling systems were restored with promptly supplied substitute materials, and all the reactors were brought to a cold shutdown state within four days. Lessons learned from this experience were identified to improve emergency management, especially in the areas of strategic response planning, logistics, and functions supporting response activities continuing over a long period. It was found that continuous planning activities reflecting information from plant parameters and response action results were important, and that relevant functions in emergency response organizations should be integrated. Logistics were handled successfully but many difficulties were experienced. Therefore, their functions should be clearly established and improved by emergency response organizations. Supporting emergency responders in the aspects of their physical and mental conditions was important for sustaining continuous response. As a platform for improvement, the concept of the Incident Command System was applied for the first time to a nuclear emergency management system, with specific improvement ideas such as a phased approach in response planning and common operation pictures. (author)

  12. Financial assistance to states and tribes to support emergency preparedness and response and the safe transportation of hazardous shipments: 1996 Update

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, J.A.; Leyson, J.; Lester, M.K.

    1996-07-01

    This report revises and updates the 1995 report Financial Assistance to States and Tribes to Support Emergency Preparedness and Response and the Safe Transportation of Hazardous Shipments, PNL-10260 (UC-620). The presentation of data and some of the data reported have been changed; these data supersede those presented in the earlier publication. All data have been updated to fiscal year 1995, with the exception of FEMA data that are updated to fiscal year 1994 only. The report identifies and summarizes existing sources of financial assistance to States and Tribes in preparing and responding to transportation emergencies and ensuring the safe transportation of hazardous shipments through their jurisdictions. It is intended for use as an information resource for the U.S. Department of Energy`s Office of Environmental Management (EM), Office of Transportation, Emergency Management, and Analytical Services (EM-76).

  13. Financial assistance to states and tribes to support emergency preparedness and response and the safe transportation of hazardous shipments: 1996 Update

    International Nuclear Information System (INIS)

    Bradbury, J.A.; Leyson, J.; Lester, M.K.

    1996-07-01

    This report revises and updates the 1995 report Financial Assistance to States and Tribes to Support Emergency Preparedness and Response and the Safe Transportation of Hazardous Shipments, PNL-10260 (UC-620). The presentation of data and some of the data reported have been changed; these data supersede those presented in the earlier publication. All data have been updated to fiscal year 1995, with the exception of FEMA data that are updated to fiscal year 1994 only. The report identifies and summarizes existing sources of financial assistance to States and Tribes in preparing and responding to transportation emergencies and ensuring the safe transportation of hazardous shipments through their jurisdictions. It is intended for use as an information resource for the U.S. Department of Energy's Office of Environmental Management (EM), Office of Transportation, Emergency Management, and Analytical Services (EM-76)

  14. Emergency planning and response preparedness in Slovenia

    International Nuclear Information System (INIS)

    Martincic, R.; Frlin-Lubi, A.; Usenicnik, B.

    2000-01-01

    Disasters do occur and so do nuclear or radiological accidents. Experience has shown that advance emergency response preparedness is essential in order to mitigate the consequences of an accident. In Slovenia, the Civil Protection Organization is the responsible authority for emergency preparedness and response to any kind of disasters. The Krko Nuclear Power Plant is the only nuclear power plant in Slovenia. To date the plant has operated safely and no serious incidents have been recorded. Slovenia nevertheless, maintains a high level of emergency preparedness, which is reflected in the area of prevention and safety and in the area of emergency response preparedness. The emergency management system for nuclear emergencies is incorporated into an overall preparedness and response system. The paper presents an overview of nuclear or radiological emergency response preparedness in Slovenia and its harmonization with the international guidelines. (author)

  15. Emergency response information within the National LLW Information Management System

    International Nuclear Information System (INIS)

    Paukert, J.G.; Fuchs, R.L.

    1986-01-01

    The U.S. Department of Energy, with operational assistance from EG and G Idaho, Inc., maintains the National Low-Level Waste Information Management System, a relational data base management system with extensive information collection and reporting capabilities. The system operates on an IBM 4341 main-frame computer in Idaho Falls, Idaho and is accessible through terminals in 46 states. One of the many programs available on the system is an emergency response data network, which was developed jointly by EG and G Idaho, Inc. and the Federal Emergency Management Agency. As a prototype, the program comprises emergency response team contacts, policies, activities and decisions; federal, state and local government contacts; facility and support center locations; and news releases for nine reactor sites in the southeast. The emergency response program provides a method for consolidating currently fragmented information into a central and user-friendly system. When the program is implemented, immediate answers to response questions will be available through a remote terminal or telephone on a 24-hour basis. In view of current hazardous and low-level waste shipment rates and future movements of high-level waste, the program can offer needed and timely information for transportation as well as site incident response

  16. NNSA/NV Consequence Management Capabilities for Radiological Emergency Response

    International Nuclear Information System (INIS)

    Bowman, D. R.

    2002-01-01

    The U.S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) provides an integrated Consequence Management (CM) response capability for the (NNSA) in the event of a radiological emergency. This encompasses planning, technical operations, and home team support. As the lead organization for CM planning and operations, NNSA/NV coordinates the response of the following assets during the planning and operational phases of a radiological accident or incident: (1) Predictive dispersion modeling through the Atmospheric Release Advisory Capability (ARAC) at Lawrence Livermore National Laboratory (LLNL) and the High Consequence Assessment Group at Sandia National Laboratories (SNL); (2) Regional radiological emergency assistance through the eight Radiological Assistance Program (RAP) regional response centers; (3) Medical advice and assistance through the Radiation Emergency Assistance Center/Training Site (REAC/TS) in Oak Ridge, Tennessee; (4) Aerial radiological mapping using the fixed-wing and rotor-wing aircraft of the Aerial Measuring System (AMS); (5) Consequence Management Planning Teams (CMPT) and Consequence Management Response Teams (CMRT) to provide CM field operations and command and control. Descriptions of the technical capabilities employed during planning and operations are given below for each of the elements comprising the integrated CM capability

  17. Radiological emergency: Malaysian preparedness and response

    International Nuclear Information System (INIS)

    Yusof, M. A. W.; Ali, H. M.

    2011-01-01

    Planning and preparation in advance for radiological emergencies can help to minimise potential public health and environmental threats if and when an actual emergency occurs. During the planning process, emergency response organisations think through how they would respond to each type of incident and the resources that will be needed. In Malaysia, planning, preparation for and response to radiological emergencies involve many parties. In the event of a radiological emergency and if it is considered a disaster, the National Security Council, the Atomic Energy Licensing Board and the Malaysian Nuclear Agency (Nuclear Malaysia) will work together with other federal agencies, state and local governments, first responders and international organisations to monitor the situation, contain the release, and clean up the contaminated site. Throughout the response, these agencies use their protective action guidelines. This paper discusses Malaysian preparedness for, and response to, any potential radiological emergency. (authors)

  18. The Brazilian emergency response system

    International Nuclear Information System (INIS)

    Santos, Raul dos

    1997-01-01

    With the objective of improving the response actions to potential or real emergency situations generated by radiological or nuclear accidents, the Brazilian National Nuclear Energy Commission (CNEN) installed an integrated response system on a 24 hours basis. All the natiowide notifications on events that may start an emergency situation are converged to this system. Established since July 1990, this system has received around 300 notifications in which 5% were classified as potential emergency situation. (author)

  19. An emergency response centre (ERC) for the preparedness and response to nuclear and radiological emergencies

    International Nuclear Information System (INIS)

    Pradeepkumar, K.S.; Sharma, D.N.; Abani, M.C.

    2001-01-01

    This paper discusses the requirement for a state of the art Emergency Response Centre (ERC) to be developed and kept in readiness for the quick response to any nuclear or radiological emergencies. For an effective response to any major nuclear emergency an ERC having the facilities of i) environmental dose rate monitoring network established using both mobile and fixed units ii) on-line meteorological data collection and information station iii) on-line computation and prediction of isodose curves in real time and iv) properly developed and tested monitoring methodologies are essential. Vehicles with on-line data transfer facility to the ERC and equipped with different type of monitoring systems can function as Mobile Monitoring Laboratories (MMLs) and can help in quick decision making even during a radiological emergency far away from the ERC. (author)

  20. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China

    Directory of Open Access Journals (Sweden)

    Weili Duan

    2015-07-01

    Full Text Available In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs is a significant issue in China. An emergency response system (ERS was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

  1. 48 CFR 452.236-77 - Emergency Response.

    Science.gov (United States)

    2010-10-01

    ... contracts: Emergency Response (NOV 1996) (a) Contractor's Responsibility for Fire Fighting. (1) The... emergency work (anticipated to be restricted to fire fighting). An equitable adjustment for the temporary... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Emergency Response. 452...

  2. IT support for emergency management - ISEM

    International Nuclear Information System (INIS)

    Andersen, V.

    1990-11-01

    The project is aimed at the development of an integrated information system capable of supporting the complex, dynamic distributed decision making in the management of emergencies. Emphasis will be put on definition of a system architecture and on development of an application generator and tools to support the full life cycle of the system. The development will be driven by the requirements derived from emergency organisations in two different industries. Care is taken that the results are easily applicable and adaptable to other organisations. (author)

  3. Land Transport Emergency Response Technology Report

    International Nuclear Information System (INIS)

    DOTSON, LORI J.; PIERCE, JIM D.

    2003-01-01

    Sandia National Laboratories was tasked by the Japan Nuclear Cycle Development Institute (JNC) to provide assistance in developing an emergency response plan for radioactive material transportation activities. Those tasks included compiling radioactive materials (RAM) transportation accident data FR-om the open literature and databases, investigating emergency response plans for radioactive materials transport in the United States, and developing specific recommendations for the JNC' nuclear material transport emergency response plan, based on information gathered during the first two tasks. These recommendations include developing a RAM database, a public transparency Internet website, an emergency response inFR-astructure designed specifically for transportation needs, and a clear set of directives to provide authority in the case of transportation accidents or incidents involving RAM

  4. How the Nuclear Applications Laboratories Help in Strengthening Emergency Response

    International Nuclear Information System (INIS)

    2014-01-01

    Safety is one of the most important considerations when engaging in highly advanced scientific and technological activities. In this respect, utilizing the potential of nuclear technology for peaceful purposes also involves risks, and nuclear techniques themselves can be useful in strengthening emergency response measures related to the use of nuclear technology. In the case of a nuclear incident, the rapid measurement and subsequent monitoring of radiation levels are top priorities as they help to determine the degree of risk faced by emergency responders and the general public. Instruments for the remote measurement of radioactivity are particularly important when there are potential health risks associated with entering areas with elevated radiation levels. The Nuclear Science and Instrumentation Laboratory (NSIL) — one of the eight laboratories of the Department of Nuclear Sciences and Applications (NA) in Seibersdorf, Austria — focuses on developing a variety of specialized analytical and diagnostic instruments and methods, and transferring knowledge to IAEA Member States. These include instruments capable of carrying out remote measurements. This emergency response work carried out by the NA laboratories supports health and safety in Member States and supports the IAEA’s mandate to promote the safe and peaceful use of nuclear energy

  5. Emergency response preparedness: the French experience of large scale exercises

    International Nuclear Information System (INIS)

    Chanson, D.; Desnoyers, B.; Chabane, J.M.

    2004-01-01

    In compliance with the IAEA regulations for the transport of radioactive material in the event of accidents during transport of radioactive material, emergency provisions to protect persons, property and environment have to be established and developed by the relevant national organisations. In France, the prefect of the department where the accident occurs is responsible for decisions and measures required to ensure the protection of both population and property at risk owing to the accident. During an accident, the ministers concerned provide the prefect with recommendations and information, in order to help him take the requisite decisions. On their side, the nuclear industry and transport companies also have to be prepared to intervene and to support the authorities at their request, depending on their capacities and their specialities. To prepare the emergency teams properly and acquire effective emergency plans, training exercises have to be conducted regularly with every ministerial department involved, the nuclear industry and transport companies, members of the public and the media. Then, the feedback from such exercises shall be taken into account to improve the emergency procedures. This paper will introduce: - emergency response preparedness: what is required by the relevant regulations? - emergency response preparedness: how is France organised? - the French experience of conducting large training exercises simulating accidents involving the transport of radioactive material; - the main difficulties and lessons learned; - the perspectives

  6. Training and exercises of the Emergency Response Team at the Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    Yearwood, D.D.

    1988-01-01

    The Los Alamos National Laboratory Plutonium Facility has an active Emergency Response Team. The Emergency Response Team is composed of members of the operating and support groups within the Plutonium Facility. In addition to their initial indoctrination, the members are trained and certified in first-aid, CPR, fire and rescue, and the use of self-contained-breathing-apparatus. Training exercises, drills, are conducted once a month. The drills consist of scenarios which require the Emergency Response Team to apply CPR and/or first aid. The drills are performed in the Plutonium Facility, they are video taped, then reviewed and critiqued by site personnel. Through training and effective drills and the Emergency Response Team can efficiently respond to any credible accident which may occur at the Plutonium Facility. 3 tabs

  7. Using principles from emergency management to improve emergency response plans for research animals.

    Science.gov (United States)

    Vogelweid, Catherine M

    2013-10-01

    Animal research regulatory agencies have issued updated requirements for emergency response planning by regulated research institutions. A thorough emergency response plan is an essential component of an institution's animal care and use program, but developing an effective plan can be a daunting task. The author provides basic information drawn from the field of emergency management about best practices for developing emergency response plans. Planners should use the basic principles of emergency management to develop a common-sense approach to managing emergencies in their facilities.

  8. Southern states radiological emergency response laws and regulations

    International Nuclear Information System (INIS)

    1990-06-01

    The purpose of this report is to provide a summary of the emergency response laws and regulations in place in the various states within the southern region for use by legislators, emergency response planners, the general public and all persons concerned about the existing legal framework for emergency response. SSEB expects to periodically update the report as necessary. Radiation protection regulations without emergency response provisions are not included in the summary. The radiological emergency response laws and regulations of the Southern States Energy Compact member states are in some cases disparate. Several states have very specific laws on radiological emergency response while in others, the statutory law mentions only emergency response to ''natural disasters.'' Some states have adopted extensive regulations on the topic, others have none. For this reason, any general overview must necessarily discuss laws and regulations in general terms. State-by-state breakdowns are given for specific states

  9. Basic data of emergency response centre

    International Nuclear Information System (INIS)

    Jenieek, O.

    1995-01-01

    Emergency Response Centre (ERC) of Czech Republic is a highly specialized institution belonging to Nuclear Safety State Administration (SONS), which assures its activities both organizationally and technically. Main function of the ERC in the case of nuclear emergency is to fulfil the needs of SONS, Governmental Committee for Nuclear Emergencies in ER (GCNE ER) and the regional organs of State Authorities concerning the emergency planning and preparedness, evaluation of nuclear emergency consequences, including the emergency management and response. In the case of major failure or accident on NPP, the ERC carries out the performance analysis and review of a given NPP. It also monitors the dosimetric situation and transfers the recommendation to GCNE ER, Regional Emergency Management Committees and to NPP

  10. Integration of Tactical Emergency Casualty Care Into the National Tactical Emergency Medical Support Competency Domains.

    Science.gov (United States)

    Pennardt, Andre; Callaway, David W; Kamin, Rich; Llewellyn, Craig; Shapiro, Geoff; Carmona, Philip A; Schwartz, Richard B

    2016-01-01

    Tactical emergency medical support (TEMS) is a critical component of the out-of-hospital response to domestic high-threat incidents such as hostage scenarios, warrant service, active shooter or violent incidents, terrorist attacks, and other intentional mass casualty-producing acts. From its grass-roots inception in the form of medical support of select law enforcement special weapons and tactics (SWAT) units in the 1980s, the TEMS subspecialty of prehospital care has rapidly grown and evolved over the past 40 years. The National TEMS Initiative and Council (NTIC) competencies and training objectives are the only published recommendations of their kind and offer the opportunity for national standardization of TEMS training programs and a future accreditation process. Building on the previous work of the NTIC and the creation of acknowledged competency domains for TEMS and the acknowledged civilian translation of TCCC by the Committee for Tactical Emergency Casualty Care (C-TECC), the Joint Review Committee (JRC) has created an opportunity to bring forward the work in a form that could be operationally useful in an all-hazards and whole of community format. 2016.

  11. Deployment of Small Unmanned Aerial Systems (sUAS) in Emergency and Disaster Response Scenarios to Support Local Emergency Management Agencies

    Science.gov (United States)

    Calamaio, C. L.; Walker, J.; Beck, J. M.; Graves, S. J.; Johnson, C.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are working closely with the Madison County Emergency Management Agency (EMA), GeoHuntsville's UAS Working Group, and the NOAA UAS Program Office, to conduct a series of practical demonstrations testing the use of small unmanned aerial systems (sUAS) for emergency response activities in Madison County, Alabama. These exercises demonstrate the use of UAS to detect and visualize hazards in affected areas via the delivery of aerial imagery and associated data products to law enforcement first responders in a variety of different scenarios, for example, search and rescue, tornado track mapping, damage assessment, and situational awareness/containment during active shooter incidents. In addition to showcasing the use of UAS as a tool for emergency services, these pilot exercises provide the opportunity to engage the appropriate stakeholders from several communities including first responders, geospatial intelligence, active members of the unmanned systems industry, and academia. This presentation will showcase the challenges associated with delivering quality data products for emergency services in a timely manner as well as the related challenges in integrating the technology into local emergency management.

  12. Adaptive workflow simulation of emergency response

    NARCIS (Netherlands)

    Bruinsma, Guido Wybe Jan

    2010-01-01

    Recent incidents and major training exercises in and outside the Netherlands have persistently shown that not having or not sharing information during emergency response are major sources of emergency response inefficiency and error, and affect incident mitigation outcomes through workflow planning

  13. Radiation emergency response in Illinois, Alabama, and Texas

    International Nuclear Information System (INIS)

    Larsen, D.K.; Chester, R.O.

    1978-03-01

    The objective of this study was to examine state radiation emergency response and to locate any areas of emergency planning in need of improvement. This report briefly presents a summary of laws and defining documents governing radiation emergency response, describes the existing and projected need for such response, and presents the authors' analyses of the evolution of state response plans and their application to radiation incidents. Three states' programs are discussed in detail: Illinois, Alabama, and Texas. These states were selected because they have quite different emergency-response programs. Therefore, these state programs provide a wide variety of approaches to state radiation emergency response

  14. Emergency planning and response - role nad responsibilities of the regulatory body

    International Nuclear Information System (INIS)

    Nizamska, M.

    1999-01-01

    The development of a emergency plan and organisation of adequate emergency preparedness in case of radiological accident in NPP cannot be effective without the appropriate preparatory work. In most countries, also in Republic of Bulgaria, several organisations are identified to have a potential role to play in a radiological emergency. For these reason is very important to have a national organisation, with a mandate to organise, inspect and co-ordinate the possibility of ministries and institution to react in case of radiological emergency, i.e. to quarantine the possibility for implementation of adequate counter measure for protection of the population and environment in case of radiological emergency in NPP. For the purposes of the emergency planning and response the NPP operator, ministries and the institutions developed an Emergency plan - NPP Emergency Plan and National Emergency Plan. The development of the emergency plans will be impossible without the good co-operation of the organisations which have a responsibilities in a radiological emergency. Once emergency plans are adopted, each individual organisation, also the NPP operator, must ensure that in can carry out its role effectively in accordance with the emergency plan and can develop the appropriate organisation for action and implementation of protection counter measures. For testing the emergency plans a regular exercise must be organised. Periodic reviews of the plan and modifications, based on actual events and exercise experience must be performed. The main aim of these report is to present the Bulgarian emergency planning organisation and response by explaining the national emergency panning and response legislation, implementation of IAEA recommendations and exercise experience

  15. Evaluation of management of communication in the actions of preparedness and response to nuclear and radiological emergencies

    Energy Technology Data Exchange (ETDEWEB)

    Mello Filho, Mauro Otto de Cavalcanti; Beserra, Marcela Tatiana Fernandes, E-mail: maurootto@cefet-rj.br, E-mail: maurootto@gmail.com, E-mail: mbeserra@cefet-rj.br [Centro Federal de Educacao Celso Sucknow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil); Wasserman, Maria Angelica Vergara, E-mail: mwasserman@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Wasserman, Julio Cesar de Faria Alvim, E-mail: geowass@vm.uff.br [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2013-07-01

    The use of practices involving the use of ionizing radiation in diverse areas of knowledge increases every day. This growth warning about the increased probability of accidents, radiological and nuclear emergencies, with possible consequences for the public, workers and the environment. Within this scenario, it is clear that studies and reassessments of the emergency response actions, receive proposals for continuous improvement. The achievement of the objectives of the response must be sustained by tactical, operation and logistics optimized processes. The articulation through communication between the teams involved in the response must be adaptable to each accident or emergency, respecting its size. The objectives of this study is to perform an assessment on the management of communication in the actions of Preparedness and Response to Nuclear and Radiological Emergencies. This assessment is supported by best practices of the Incident Command System (ICS) and the Institute of Project Management (Project Management Institute-PMI). For this purpose, based on models referred were established performance indicators supported by the BSC (Balanced Scorecard). These indicators allowed to evaluate more objectively the performance of the communication processes associated with each phase of the response. The study resulted in the proposed model documents aiming to assist planning of communications exercises in preparation and response actions, supported and adapted the best practices of PMI. These methodologies were evaluated by real cases selected from radiological and nuclear emergencies published by the International Atomic Energy Agency (IAEA). (author)

  16. Evaluation of management of communication in the actions of preparedness and response to nuclear and radiological emergencies

    International Nuclear Information System (INIS)

    Mello Filho, Mauro Otto de Cavalcanti; Beserra, Marcela Tatiana Fernandes; Wasserman, Maria Angelica Vergara; Wasserman, Julio Cesar de Faria Alvim

    2013-01-01

    The use of practices involving the use of ionizing radiation in diverse areas of knowledge increases every day. This growth warning about the increased probability of accidents, radiological and nuclear emergencies, with possible consequences for the public, workers and the environment. Within this scenario, it is clear that studies and reassessments of the emergency response actions, receive proposals for continuous improvement. The achievement of the objectives of the response must be sustained by tactical, operation and logistics optimized processes. The articulation through communication between the teams involved in the response must be adaptable to each accident or emergency, respecting its size. The objectives of this study is to perform an assessment on the management of communication in the actions of Preparedness and Response to Nuclear and Radiological Emergencies. This assessment is supported by best practices of the Incident Command System (ICS) and the Institute of Project Management (Project Management Institute-PMI). For this purpose, based on models referred were established performance indicators supported by the BSC (Balanced Scorecard). These indicators allowed to evaluate more objectively the performance of the communication processes associated with each phase of the response. The study resulted in the proposed model documents aiming to assist planning of communications exercises in preparation and response actions, supported and adapted the best practices of PMI. These methodologies were evaluated by real cases selected from radiological and nuclear emergencies published by the International Atomic Energy Agency (IAEA). (author)

  17. Southern states radiological emergency response laws and regulations

    International Nuclear Information System (INIS)

    1989-07-01

    The purpose of this report is to provide a summary of the emergency response laws and regulations in place in the various states within the southern region for use by legislators, emergency response planners, the general public and all persons concerned about the existing legal framework for emergency response. SSEB expects to periodically update the report as necessary. Radiation protection regulations without emergency response provisions are not included in the summary

  18. The TransPetro emergency response system

    Energy Technology Data Exchange (ETDEWEB)

    Filho, A.T.F.; Cardoso, V.F.; Carbone, R.; Berardinelli, R.P. [Petrobras-TransPetro, Rio de Janeiro (Brazil); Carvalho, M.T.M.; Casanova, M.A. [Pontificia Univ. Catolica, Rio de Janeiro (Brazil). Dept. de Informatica, TeCGraf

    2004-07-01

    Petrobras-TransPetro developed the TransPetro Emergency Response System in response to emergency situations at large oil pipelines or at terminal facilities located in sea or river harbour areas. The standard of excellence includes full compliance with environmental regulations set by the federal government. A distributed workflow management software called InfoPAE forms the basis of the system in which actions are defined, along with geographic and conventional data. The first prototype of InfoPAE was installed in 1999. Currently it is operational in nearly 80 installations. The basic concepts and functionality of the TransPetro Emergency Response System were outlined in this paper with reference to the mitigative actions that are based on an evaluation of the organization of the emergency teams; the communication procedures; characterization of the installations; definition of accidental scenarios; environmental sensitivity maps; simulation of oil spill trajectories and dispersion behaviour; geographical data of the area surrounding the installations; and, other conventional data related to the installations, including available equipment. The emergency response team can take action as soon as an accident is detected. The action plan involves characterizing several scenarios and delegating mitigative actions to specific sub-teams, each with access to geographic data on the region where the emergency occurred. 13 refs., 3 figs.

  19. Emergency response strategies

    International Nuclear Information System (INIS)

    Carrilo, D.; Dias de la Cruz, F.

    1984-01-01

    In the present study is estimated, on the basis of a release category (PWR4) and several accident scenarios previously set up, the emergency response efficacy obtained in the application of different response strategies on each of the above mentioned scenarios. The studied strategies contemplate the following protective measures: evacuation, shelter and relocation. The radiological response has been obtained by means of CRAC2 (Calculation of Reactor Accident Consequences) code, and calculated in terms of absorbed dose equivalent (Whole body and thyroid), as well as early and latent biological effects. (author)

  20. Improvement, extension and integration of operational decision support systems for nuclear emergency management (DSSNET)

    International Nuclear Information System (INIS)

    Raskob, W.

    2007-01-01

    The DSSNET network was established in October 2000 with the overall objective to create an effective and accepted framework for better communication and understanding between the community of institutions involved m operational off-site emergency management and the many and diverse Research and Technological Development (RTD) institutes further developing methods and tools in this area, in particular decision support systems (DSS), for making well informed and consistent judgements with respect to practical improvements of emergency response in Europe. 37 institutions from 21 countries of East and West Europe have been members of the network with about half of them responsible for operational emergency management. To stimulate the communication and feedback between the operational and the RTD community, problem-oriented emergency exercises were performed, which covered the various time phases of an accident and which extended from the near range to farther distances with frontier crossing transport of radionuclides. This paper concentrates on the five emergency exercises conducted in the frame of the project. (orig.)

  1. Hazardous Materials Management and Emergency Response (HAMMER)

    Data.gov (United States)

    Federal Laboratory Consortium — The Volpentest Hazardous Materials Management and Emergency Response (HAMMER) Federal Training Center is a safety and emergency response training center that offers...

  2. Department of Defense support to spill response operations

    International Nuclear Information System (INIS)

    Ducey, D.L. Jr.; Walker, A.H.

    1993-01-01

    The Department of Defense (DOD), operating through the Directorate of Military Support in the Department of the Army, supports state, local and other federal agency response operations in a wide range of natural and man-caused emergencies. Examples within the past six years include the Ashland Oil tank collapse in Floreffe, Pennsylvania, Exxon Valdez cleanup, Loma Prieta earthquake, hurricanes Hugo and Andrew, Mexico City earthquake, Armero (Columbia) volcanic eruption, and Puerto Rico floods and mud slides. From March 24 to September 27, 1989, the period of the Exxon Valdez initial cleanup operations, DOD provided military and civilian personnel, US Navy ships for housing response workers, cargo and medical evacuation aircraft (fixed wing and helicopters), skimmers, modified dredges, landing craft, Dracones, Zodiak boats, radios, computers, and other miscellaneous equipment. This was in addition to assets of the Alaska Army and Air National Guard, which were committed by the governor. Support was provided to the US Coast Guard on scene coordinator and supervised by the Alaska Oil Spill Joint Task Force. The General Accounting Office, in its January 1990 report, Federal Costs Resulting from the Exxon Valdez Oil Spill, estimated that DOD spent $62.8 million through September 30, 1989, the largest expenditure by any federal agency. Use of military resources is a realistic scenario in certain situations. Primary responders at the federal and state level should understand how to request and employ these assets. This paper provides a background on DOD support to disaster relief operations, and discusses the types of support available to agencies responding to natural or man-caused emergencies, request and approval mechanisms, the Department of Defence organization to provide support, and reimbursement of the department

  3. The development of Operational Intervention Levels (OILs) for Soils - A decision support tool in nuclear and radiological emergency response

    Science.gov (United States)

    Lee Zhi Yi, Amelia; Dercon, Gerd; Blackburn, Carl; Kheng, Heng Lee

    2017-04-01

    In the event of a large-scale nuclear accident, the swift implementation of response actions is imperative. For food and agriculture, it is important to restrict contaminated food from being produced or gathered, and to put in place systems to prevent contaminated produce from entering the food chain. Emergency tools and response protocols exist to assist food control and health authorities but they tend to focus on radioactivity concentrations in food products as a means of restricting the distribution and sale of contaminated produce. Few, if any, emergency tools or protocols focus on the food production environment, for example radioactivity concentrations in soils. Here we present the Operational Intervention Levels for Soils (OIL for Soils) concept, an optimization tool developed at the IAEA to facilitate agricultural decision making and to improve nuclear emergency preparedness and response capabilities. Effective intervention relies on the prompt availability of radioactivity concentration data and the ability to implement countermeasures. Sampling in food and agriculture can be demanding because it may involve large areas and many sample types. In addition, there are finite resources available in terms of manpower and laboratory support. Consequently, there is a risk that timely decision making will be hindered and food safety compromised due to time taken to sample and analyse produce. However, the OILs for Soils concept developed based on experience in Japan can help in this situation and greatly assist authorities responsible for agricultural production. OILs for Soils - pre-determined reference levels of air dose rates linked to radionuclide concentrations in soils - can be used to trigger response actions particularly important for agricultural and food protection. Key considerations in the development of the OILs for Soils are: (1) establishing a pragmatic sampling approach to prioritize and optimize available resources and data requirements for

  4. A Tactical Emergency Response Management System (Terms ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... information is a result of collaboration between accident response personnel. ... Tactical Emergency Response Management System (TERMS) which unifies all these different ... purpose of handling crisis and emergency.

  5. Emergency Response Resources guide for nuclear power plant emergencies

    International Nuclear Information System (INIS)

    1992-07-01

    On August 28 and September 18, 1990, the States of Louisiana and Mississippi, Gulf States Utilities, five local parishes, six Federal agencies, and the American Nuclear Insurers participated in a post-emergency TABLETOP exercise in Baton Rouge, Louisiana. One of the products developed from that experience was this guide for understanding the responsibilities and obtaining resources for specific needs from the various participants, particularly from those organizations within the Federal Government. This first revision of that guide broadens the focus of the original document. Also, new information defines the major Federal response facilities. This guide should assist State and local government organizations with identifying and obtaining those resources for the post-emergency response when their resources have been exhausted

  6. Development of national level preparedness for response to nuclear and radiological emergencies

    International Nuclear Information System (INIS)

    Pradeepkumar, K.S.

    2014-01-01

    In India, DAE being the nodal agency for technical support for response to any radiation emergency nuclear disaster and various nuclear and radiological emergency scenarios and their impacts are identified. To reduce their consequences development of methodologies for detection and quick impact assessment, trained First Responders and Quick Response Teams (QRTs), twenty two DAE Emergency Response Centers, mobile and aerial radiation monitoring systems, aerial and ground based validation trials etc. are carried out. Study related to radiological threats and simulated RDD experiments conducted using stable isotopes indicates that radiation levels for distances more than 50 m will not be very high as hotspots may be restricted to nearby area. The biggest challenge from an RDD explosion will be handling of the radioactive contamination and 'fear factor' compared to radiation exposure to public or First Responders. Level and pattern of radioactive contamination on ground following releases during nuclear accidents and minimum strength of orphan radioactive sources to be detected are taken into account for optimizing systems and monitoring methodology required for emergency preparedness

  7. Report on the emergency evacuation review team on emergency response plans for the Perry and Davis-Besse nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This book is a report by Ohio's Emergency Evacuation Review Team, at the request of Governor Richard Celeste. The Team concludes that the current emergency response plan for Ohio's reactors is inadequate to protect the public and recommends changes in the current emergency plant requirements. The report also includes a summary of the litigation that has occurred since Celeste withdrew his support for the plans, a list of experts consulted, and sources used to prepare the report. An important document, and a study which every state should undertake

  8. SAVANNAH RIVER SITE CAPABILITIES FOR CONDUCTING INGESTION PATHWAY CONSEQUENCE ASSESSMENTS FOR EMERGENCY RESPONSE

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, C

    2007-12-11

    Potential airborne releases of radioactivity from facilities operated for the U. S. Department of Energy at the Savannah River Site could pose significant consequences to the public through the ingestion pathway. The Savannah River National Laboratory has developed a suite of technologies needed to conduct assessments of ingestion dose during emergency response, enabling emergency manager at SRS to develop initial protective action recommendation for state agencies early in the response and to make informed decisions on activation of additional Federal assets that would be needed to support long-term monitoring and assessment activities.

  9. Oil Notifications: Emergency Response Notification System (ERNS) fact sheet

    International Nuclear Information System (INIS)

    1992-04-01

    The Emergency Response Notification System (ERNS) is a national computer database which provides the only centralized mechanism for documenting and verifying incident notification information as initially reported to the National Response Center (NRC), the U.S. Environmental Protection Agency (EPA), and to a limited extent, the U.S. Coast Guard (USCG). The initial notification data may be followed up with updated information from various Federal, State and local response authorities, as appropriate. ERNS contains data that can be used to analyze release notifications, support emergency planning efforts, and assist decision makers in developing spill prevention programs. The fact sheet provides summary information on notifications of releases of oil reported in accordance with the Clean Water Act (CWA). Under Section 311 of the CWA, discharges of oil which: (1) cause a sheen to appear on the surface of the water; (2) violate applicable water quality standards; or (3) cause sludge or emulsion to be deposited beneath the surface of the water or adjoining shoreline, must be reported to the NRC

  10. Radiological Emergency Response Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Quality Data Asset includes all current and historical emergency radiological response event and incident of national significance data and surveillance, monitoring,...

  11. Application of ONERS decision support system for off-site emergency exercise at Kalpakkam

    International Nuclear Information System (INIS)

    Baskaran, R.; Srinivas, C.V.; Rakesh, P.T.; Venkatesan, R.; Venkatraman, B.

    2016-01-01

    A radiation accident in any of the nuclear facilities leading to release of large quantities of radioactivity to environment calls for quick estimation of likely radiation doses to the public, environmental monitoring and its projection on spatial maps for taking necessary actions for mitigation. The MAPS in association with other DAE units and district administration conducted off site emergency exercise (OSEE) on 18 th August 2015 in the Emergency Planning Zone (EPZ) around the Kalpakkam site. The Online Nuclear Emergency Response System (ONERS) - Decision Support System (DSS) developed by IGCAR in collaboration with ISRO was used for generating radiological dose estimates for preparation of event chronology during the OSEE-2015

  12. Real-Time Surveillance in Emergencies Using the Early Warning Alert and Response Network.

    Science.gov (United States)

    Cordes, Kristina M; Cookson, Susan T; Boyd, Andrew T; Hardy, Colleen; Malik, Mamunur Rahman; Mala, Peter; El Tahir, Khalid; Everard, Marthe; Jasiem, Mohamad; Husain, Farah

    2017-11-01

    Humanitarian emergencies often result in population displacement and increase the risk for transmission of communicable diseases. To address the increased risk for outbreaks during humanitarian emergencies, the World Health Organization developed the Early Warning Alert and Response Network (EWARN) for early detection of epidemic-prone diseases. The US Centers for Disease Control and Prevention has worked with the World Health Organization, ministries of health, and other partners to support EWARN through the implementation and evaluation of these systems and the development of standardized guidance. Although protocols have been developed for the implementation and evaluation of EWARN, a need persists for standardized training and additional guidance on supporting these systems remotely when access to affected areas is restricted. Continued collaboration between partners and the Centers for Disease Control and Prevention for surveillance during emergencies is necessary to strengthen capacity and support global health security.

  13. Rapid post-earthquake modelling of coseismic landslide intensity and distribution for emergency response decision support

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    2017-09-01

    Full Text Available Current methods to identify coseismic landslides immediately after an earthquake using optical imagery are too slow to effectively inform emergency response activities. Issues with cloud cover, data collection and processing, and manual landslide identification mean even the most rapid mapping exercises are often incomplete when the emergency response ends. In this study, we demonstrate how traditional empirical methods for modelling the total distribution and relative intensity (in terms of point density of coseismic landsliding can be successfully undertaken in the hours and days immediately after an earthquake, allowing the results to effectively inform stakeholders during the response. The method uses fuzzy logic in a GIS (Geographic Information Systems to quickly assess and identify the location-specific relationships between predisposing factors and landslide occurrence during the earthquake, based on small initial samples of identified landslides. We show that this approach can accurately model both the spatial pattern and the number density of landsliding from the event based on just several hundred mapped landslides, provided they have sufficiently wide spatial coverage, improving upon previous methods. This suggests that systematic high-fidelity mapping of landslides following an earthquake is not necessary for informing rapid modelling attempts. Instead, mapping should focus on rapid sampling from the entire affected area to generate results that can inform the modelling. This method is therefore suited to conditions in which imagery is affected by partial cloud cover or in which the total number of landslides is so large that mapping requires significant time to complete. The method therefore has the potential to provide a quick assessment of landslide hazard after an earthquake and may therefore inform emergency operations more effectively compared to current practice.

  14. Simulation analysis of the use of emergency resources during the emergency response to a major fire

    NARCIS (Netherlands)

    Zhou, Jianfeng; Reniers, G.L.L.M.E.

    2016-01-01

    During an emergency response to an accident or disaster, emergency response actions often need to use various emergency resources. The use of resources plays an important role in the successful implementation of emergency response, but there may be conflicts in the use of resources for emergency

  15. Emergency response to mass casualty incidents in Lebanon.

    Science.gov (United States)

    El Sayed, Mazen J

    2013-08-01

    The emergency response to mass casualty incidents in Lebanon lacks uniformity. Three recent large-scale incidents have challenged the existing emergency response process and have raised the need to improve and develop incident management for better resilience in times of crisis. We describe some simple emergency management principles that are currently applied in the United States. These principles can be easily adopted by Lebanon and other developing countries to standardize and improve their emergency response systems using existing infrastructure.

  16. OEM Emergency Response Information

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Emergency Management retains records of all incident responses in which it participates. This data asset includes three major sources of information:...

  17. AEROS: a real-time emergency response system for atmospheric releases of toxic material

    International Nuclear Information System (INIS)

    Nasstrom, J.S.; Greenly, G.D.

    1986-01-01

    The Atmospheric Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory has developed a sophisticated computer-based real-time emergency response system for radiotoxic releases into the atmosphere. The ARAC Emergency Response Operating System (AEROS) has a centralized computer facility linked to remote site computers, meteorological towers, and meteorological data sources. The system supports certain fixed sites, but has the ability to respond to accidents at arbitrary locations. Product quality and response time are optimized by using complex three-dimensional dispersion models; extensive on-line data bases; automated data processing; and an efficient user interface, employing graphical computer displays and computer-displayed forms. Upon notification, the system automatically initiates a response to an emergency and proceeds through preliminary calculations, automatically processing accident information, meteorological data, and model parameters. The model calculations incorporate mass-consistent three-dimensional wind fields, terrain effects, and particle-in-cell diffusion. Model products are color images of dose or deposition contours overlaid on a base map

  18. Post-emergency response resources guide

    International Nuclear Information System (INIS)

    1991-07-01

    On August 28 and September 18, 1990, the States of Louisiana and Mississippi, Gulf States Utilities, five local parishes, six Federal agencies, and the American Nuclear Insurers participated in a post-emergency TABLETOP exercise in Baton Rouge, Louisiana. One of the products developed from that experience is this guide for understanding the responsibilities and obtaining resources for specific needs from the various participants, particularly those organizations within the federal government. This guide should assist state and local government organizations with identifying and obtaining those resources for the post-emergency response when theirs have been exhausted

  19. Emergency response planning in Pennsylvania

    International Nuclear Information System (INIS)

    Reilly, M.A.

    1988-01-01

    In the decade since the accident at Three Mile Island, emergency planning for response to these events has undergone a significant change in Pennsylvania, as elsewhere. Changes respond to federal guidance and to state agency initiatives. The most singular change is the practice of implementing a protective action throughout the entire emergency planning zone (EPZ). Due to Pennsylvania agency experiences during the accident, the decision was made soon after to develop a staff of nuclear engineers, each giving special day-to-day attention to a specific nuclear power station in the state. Changes in communications capabilities are significant, these being dedicated phone lines between the Commonwealth and each power station, and the reorientation of the Department of Environmental Resources radio network to accommodate direction of field monitoring teams from Harrisburg. Changes that are being or will be implemented in the near future include assessing the emergency response data system for electronic delivery of plant parameter data form facilities during accidents, increased participation in exercises, emergency medical planning, and training, the inclusion of all 67 counties in Pennsylvania in an ingestion EPZ, and the gradual severance of dependence on land-line emergency communication systems

  20. Timing criteria for supplemental BWR emergency response equipment

    International Nuclear Information System (INIS)

    Bickel, John H.

    2015-01-01

    The Great Tohuku Earthquake and subsequent Tsunami represented a double failure event which destroyed offsite power connections to Fukushima-Daiichi site and then destroyed on-site electrical systems needed to run decay heat removal systems. The accident could have been mitigated had there been supplemental portable battery chargers, supplemental pumps, and in-place piping connections to provide alternate decay heat removal. In response to this event in the USA, two national response centers, one in Memphis, Tennessee, and another in Phoenix, Arizona, will begin operation. They will be able to dispatch supplemental emergency response equipment to any nuclear plant in the U.S. within 24 hours. In order to define requirements for supplemental nuclear power plant emergency response equipment maintained onsite vs. in a regional support center it is necessary to confirm: (a) the earliest time such equipment might be needed depending on the specific scenario, (b) the nominal time to move the equipment from a storage location either on-site or within the region of a nuclear power plant, and (c) the time required to connect in the supplemental equipment to use it. This paper describes an evaluation process for a BWR-4 with a Mark I Containment starting with: (a) severe accident simulation to define best estimate times available for recovery based on the specific scenario, (b) identify the key supplemental response equipment needed at specific times to accomplish recovery of key safety functions, and (c) evaluate what types of equipment should be warehoused on-site vs. in regional response centers. (authors)

  1. Off-site response for radiological emergencies

    International Nuclear Information System (INIS)

    Eldridge, J.S.; Oakes, T.W.; Hubbard, H.M.; Hibbitts, H.W.

    1982-01-01

    Environmental radiological surveillance under emergency conditions at off-site locations is one of the advisory functions provided by DOE within the ORO jurisdiction. The Department of Environmental Management of ORNL has been requested to provide sampling and analytical assistance at such emergency response activities. We have assembled and identified specific individuals and equipment to provide a rapid response force to perform field measurements for environmental radioactivity releases as a consequence of nuclear accidents. Survey teams for sample collection and field measurements are provided along with analytical assistance to operate the radioactivity measuring equipment in the DOE emergency van

  2. Planning and implementing nuclear emergency response facilities

    International Nuclear Information System (INIS)

    Williams, D.H.

    1983-01-01

    After Three Mile Island, Arkansas Nuclear One produced a planning document called TMI-2 Response Program. Phase I of the program defined action plans in nine areas: safety assessment, training, organization, public information, communication, security, fiscal-governmental, technical and logistical support. Under safety assessment, the staff was made even better prepared to handle radioactive material. Under training, on site simulators for each unit at ANO were installed. The other seven topics interface closely with each other. An emergency control center is diagrammed. A habitable technical support system was created. A media center, with a large media area, and an auditorium, was built. Electric door strike systems increased security. Phone networks independently run via microwave were installed. Until Three Mile Island, logistical problems were guesswork. That incident afforded an opportunity to better identify and prepare for these problems

  3. Assessing Emergency Preparedness and Response Capacity Using Community Assessment for Public Health Emergency Response Methodology: Portsmouth, Virginia, 2013.

    Science.gov (United States)

    Kurkjian, Katie M; Winz, Michelle; Yang, Jun; Corvese, Kate; Colón, Ana; Levine, Seth J; Mullen, Jessica; Ruth, Donna; Anson-Dwamena, Rexford; Bayleyegn, Tesfaye; Chang, David S

    2016-04-01

    For the past decade, emergency preparedness campaigns have encouraged households to meet preparedness metrics, such as having a household evacuation plan and emergency supplies of food, water, and medication. To estimate current household preparedness levels and to enhance disaster response planning, the Virginia Department of Health with remote technical assistance from the Centers for Disease Control and Prevention conducted a community health assessment in 2013 in Portsmouth, Virginia. Using the Community Assessment for Public Health Emergency Response (CASPER) methodology with 2-stage cluster sampling, we randomly selected 210 households for in-person interviews. Households were questioned about emergency planning and supplies, information sources during emergencies, and chronic health conditions. Interview teams completed 180 interviews (86%). Interviews revealed that 70% of households had an emergency evacuation plan, 67% had a 3-day supply of water for each member, and 77% had a first aid kit. Most households (65%) reported that the television was the primary source of information during an emergency. Heart disease (54%) and obesity (40%) were the most frequently reported chronic conditions. The Virginia Department of Health identified important gaps in local household preparedness. Data from the assessment have been used to inform community health partners, enhance disaster response planning, set community health priorities, and influence Portsmouth's Community Health Improvement Plan.

  4. Emergency response training with the BNL plant analyzer

    International Nuclear Information System (INIS)

    Cheng, H.S.; Guppy, J.G.; Mallen, A.N.; Wulff, W.

    1987-01-01

    Presented is the experience in the use of the BNL Plant Analyzer for NRC emergency response training to simulated accidents in a BWR. The unique features of the BNL Plant Analyzer that are important for the emergency response training are summarized. A closed-loop simulation of all the key systems of a power plant in question was found essential to the realism of the emergency drills conducted at NRC. The faster than real-time simulation speeds afforded by the BNL Plant Analyzer have demonstrated its usefulness for the timely conduct of the emergency response training

  5. Towards integrated crisis support of regional emergency networks.

    Science.gov (United States)

    Caro, D H

    1999-01-01

    Emergency and crisis management pose multidimensional information systems challenges for communities across North America. In the quest to reduce mortality and morbidity risks and to increase the level of crisis preparedness, regional emergency management networks have evolved. Integrated Crisis Support Systems (ICSS) are enabling information technologies that assist emergency managers by enhancing the ability to strategically manage and control these regional emergency networks efficiently and effectively. This article underscores the ICCS development, control and leadership issues and their promising implications for regional emergency management networks.

  6. SICOEM: emergency response data system

    International Nuclear Information System (INIS)

    Martin, A.; Villota, C.; Francia, L.

    1993-01-01

    The main characteristics of the SICOEM emergency response system are: -direct electronic redundant transmission of certain operational parameters and plant status informations from the plant process computer to a computer at the Regulatory Body site, - the system will be used in emergency situations, -SICOEM is not considered as a safety class system. 1 fig

  7. SICOEM: emergency response data system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Villota, C.; Francia, L. (UNESA, Madrid (Spain))

    1993-01-01

    The main characteristics of the SICOEM emergency response system are: -direct electronic redundant transmission of certain operational parameters and plant status informations from the plant process computer to a computer at the Regulatory Body site, - the system will be used in emergency situations, -SICOEM is not considered as a safety class system. 1 fig.

  8. Ontario Power Generation Fukushima emergency response drill strengthens and lessons learned - Ontario Power Generation Fukushima Emergency Response Drill Highlights

    International Nuclear Information System (INIS)

    Miller, David W.

    2014-01-01

    Japan's Fukushima Daiichi severe nuclear accident in March 2011 has resulted in a reassessment of nuclear emergency response and preparedness in Canada. On May 26, 27 and 28, 2014 Ontario Power Generation (OPG) conducted the first North American full scale nuclear emergency response exercise designed to include regional, provincial and federal bodies as well as the utility. This paper describes the radiological aspects of the OPG Exercise Unified Response (ExUR) with emphasis on deployment of new Fukushima equipment on the Darlington site, management of emergency workers deplored in the vicinity of Darlington to collect environmental samples and radiation measurements, performance of dose calculations, communication of dose projections and protective actions to local, provincial and federal agencies and conduct of vehicle, truck and personnel monitoring and decontamination facilities. The ExUR involved more than 1000 personnel from local, provincial and federal bodies. Also, 200 OPG employees participated in the off-site emergency response duties. The objective of the ExUR was to test and enhance the preparedness of the utility (OPG), government and non-government agencies and communities to respond to a nuclear emergency. The types of radiological instrumentation and mobile facilities employed are highlighted in the presentation. The establishment of temporary emergency rooms with 8 beds and treatment facilities to manage potentially contaminated injuries from the nuclear emergency is also described. (author)

  9. Implementation of new policy and principles of harmonisation of nuclear emergency preparedness in conditions of emergency Response Centre of the Nuclear Regulatory Authority of the Slovak Republic

    International Nuclear Information System (INIS)

    Janko, K.; Zatlkajova, H.; Sladek, V.

    2003-01-01

    With respect to Chernobyl accident the changes in understanding of nuclear emergency preparedness have initiated a developing process resulting in an effective enhancement of conditions ensuring adequate response to nuclear or radiological accidents of emergency situations in many countries. The Slovak Nuclear Regulatory Authority (UJD) in frame of co-operations with IAEA, EC, OECD/NEA and other international organisations has actively participated in this challenging work targeting implementation of international experience and best practices in the country. The new international policy (principles declared e.g. in 'Memorandum of Understanding', IAEA, Vienna, 1997) based on experiences propagating importance of regional co-operation, harmonised approach and clear strategy for protective measures implementation in case of a nuclear or radiological accident has influenced the development also in Slovakia. The implementation process in the country was supported by changes in legal conditions regulating peaceful use of nuclear energy [1,2] including basic rules for emergency preparedness published in the second half of 1990 years. The principles of emergency preparedness in Slovakia fully support regional harmonisation and co-operation. Effective implementation of international practice and sharing of experience substantially contributed to the level of emergency response in the country and to the harmonisation of emergency response preparedness creating also conditions for an efficient regional integration. (authors)

  10. Southern states radiological emergency response laws and regulations

    International Nuclear Information System (INIS)

    1989-02-01

    The radiological emergency response laws and regulations of the Southern States Energy Compact member states are in some cases disparate. Several states have very specific laws on radiological emergency response while in others, the statutory law mentions only emergency response to ''natural disasters.'' Some states have adopted extensive regulations on the topic; others have none. For this reason, any general overview must necessarily discuss laws and regulations in general terms

  11. Emergency preparedness and response for the non-reactor countries

    International Nuclear Information System (INIS)

    Buglova, E.

    2000-01-01

    Preparedness and response for nuclear and radiological accidents in the countries without nuclear power plants (NPP) have some peculiarities. Accident at the Chernobyl NPP clearly showed the necessity of effective response for non-reactor countries in the case of transboundary release. Experience obtained in Belarus is providing evidence for the necessity of changing some aspects of emergency preparedness. The results of analysis made of some protective actions taken during the early stage of the accident form the basis for recommendations provided this paper. Real experience is supported by model predictions of the consequences for the hypothetical accident at a NPP close to the Belarus. (author)

  12. Status and developing of nuclear emergency response techniques in China

    International Nuclear Information System (INIS)

    Jiangang, Zhang; Bing, Zhao; Rongyao, Tang; Xiaoxiao, Xu

    2008-01-01

    Full text: Nuclear Emergency preparedness and response in China is consistent with international basic principle of nuclear safety and emergency response. Nuclear emergency response techniques in China developed with nuclear power from 1980s. The status of nuclear emergency techniques in China are: 1) China have plentiful experiences and abilities in the fields of nuclear facility emergency planning and preparedness, nuclear accident consequence assessment, emergency monitoring, and emergency advisory; 2) Emergency assistance ability in China has a foundation, however it cannot satisfy national requirement; 3) Emergency planning and preparedness is not based on hazard assessment; 4) Remote monitoring and robot techniques in not adaptable to the requirements of nuclear emergency response; 5) A consistent emergency assessment system is lack in China. In this paper, it is analyzed what is the developing focal points of nuclear emergency response techniques in China, and it is proposed that the main points are: a) To develop the research of emergency preparedness on the base of hazard analysis; b) To improve remote monitoring and robot ability during nuclear emergency; c) To develop the response technique research with anti-terrorism. (author)

  13. Some Qualitative Requirements for Testing of Nuclear Emergency Response Robots

    International Nuclear Information System (INIS)

    Eom, Heungseop; Cho, Jai Wan; Choi, Youngsoo; Jeong, Kyungmin

    2014-01-01

    Korea Atomic Energy Research Institute (KAERI) is carrying out the project 'Development of Core Technology for Remote Response in Nuclear Emergency Situation', and as a part of the project, we are studying the reliability and performance requirements of nuclear emergency response robots. In this paper, we described some qualitative requirements for testing of nuclear emergency response robots which are different to general emergency response robots. We briefly introduced test requirements of general emergency response robots and described some qualitative aspects of test requirements for nuclear emergency response robots. When considering an immature field-robot technology and variety of nuclear emergency situations, it seems hard to establish quantitative test requirements of these robots at this time. However, based on studies of nuclear severe accidents and the experience of Fukushima NPP accident, we can expect some test requirements including quantitative ones for nuclear emergency response robots

  14. Radiological Emergency Response Health and Safety Manual

    Energy Technology Data Exchange (ETDEWEB)

    D. R. Bowman

    2001-05-01

    This manual was created to provide health and safety (H&S) guidance for emergency response operations. The manual is organized in sections that define each aspect of H and S Management for emergency responses. The sections are as follows: Responsibilities; Health Physics; Industrial Hygiene; Safety; Environmental Compliance; Medical; and Record Maintenance. Each section gives guidance on the types of training expected for managers and responders, safety processes and procedures to be followed when performing work, and what is expected of managers and participants. Also included are generic forms that will be used to facilitate or document activities during an emergency response. These ensure consistency in creating useful real-time and archival records and help to prevent the loss or omission of information.

  15. Science in Emergency Response at CDC: Structure and Functions.

    Science.gov (United States)

    Iskander, John; Rose, Dale A; Ghiya, Neelam D

    2017-09-01

    Recent high-profile activations of the US Centers for Disease Control and Prevention (CDC) Emergency Operations Center (EOC) include responses to the West African Ebola and Zika virus epidemics. Within the EOC, emergency responses are organized according to the Incident Management System, which provides a standardized structure and chain of command, regardless of whether the EOC activation occurs in response to an outbreak, natural disaster, or other type of public health emergency. By embedding key scientific roles, such as the associate director for science, and functions within a Scientific Response Section, the current CDC emergency response structure ensures that both urgent and important science issues receive needed attention. Key functions during emergency responses include internal coordination of scientific work, data management, information dissemination, and scientific publication. We describe a case example involving the ongoing Zika virus response that demonstrates how the scientific response structure can be used to rapidly produce high-quality science needed to answer urgent public health questions and guide policy. Within the context of emergency response, longer-term priorities at CDC include both streamlining administrative requirements and funding mechanisms for scientific research.

  16. Radioactive materials transportation emergency response plan

    International Nuclear Information System (INIS)

    Karmali, N.

    1987-05-01

    Ontario Hydro transports radioactive material between its nuclear facilities, Atomic Energy of Canada Limited at Chalk River Laboratories and Radiochemical Company in Kanata, on a regular basis. Ontario Hydro also occasionally transports to Whiteshell Laboratories, Hydro-Quebec and New Brunswick Electric Power Commission. Although there are stringent packaging and procedural requirements for these shipments, Ontario Hydro has developed a Radioactive Materials Transportation Emergency Response Plan in the event that there is an accident. The Transportation Emergency Response plan is based on six concepts: 1) the Province id divided into three response areas with each station (Pickering, Darlington, Bruce) having identified response areas; 2) response is activated via a toll-free number. A shift supervisor at Pickering will answer the call, determine the hazards involved from the central shipment log and provide on-line advice to the emergency worker. At the same time he will notify the nearest Ontario Hydro area office to provide initial corporate response, and will request the nearest nuclear station to provide response assistance; 3) all stations have capability in terms of trained personnel and equipment to respond to an accident; 4) all Ontario Hydro shipments are logged with Pickering NGS. Present capability is based on computerized logging with the computer located in the shift office at Pickering to allow quick access to information on the shipment; 5) there is a three tier structure for emergency public information. The local Area Manager is the first Ontario Hydro person at the scene of the accident. The responding facility technical spokesperson is the second line of Corporate presence and the Ontario Hydro Corporate spokesperson is notified in case the accident is a media event; and 6) Ontario Hydro will respond to non-Hydro shipments of radioactive materials in terms of providing assistance, guidance and capability. However, the shipper is responsible

  17. Emergency response arrangements for the transport of radioactive materials

    International Nuclear Information System (INIS)

    Morgan-Warren, E.

    2004-01-01

    Response arrangements are required for the transport of radioactive materials, under both transport and health and safety legislation, to safeguard persons, property and the environment in the event of incidents and emergencies. Responsibilities fall on both government and industry: government is responsible for ensuring public safety and providing information and reassurance. This responsibility is discharged for each type of incident by a nominated ''lead department'', supported as appropriate by other government departments and agencies; for their part, operators are obliged to have arrangements in place for dealing with the practicalities of any reasonably foreseeable incident, including recovery and onward transport of a package, and any required clean-up or restoration of the environment. This paper outlines both the government and industry arrangements in Great Britain. The principles of response and intervention are discussed, together with the lead department concept, regulatory requirements, and the plans developed by the transport industry to ensure a nation-wide response capability

  18. Emergency response arrangements for the transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Morgan-Warren, E. [Radioactive Materials Transport Div., Dept. for Transport, London (United Kingdom)

    2004-07-01

    Response arrangements are required for the transport of radioactive materials, under both transport and health and safety legislation, to safeguard persons, property and the environment in the event of incidents and emergencies. Responsibilities fall on both government and industry: government is responsible for ensuring public safety and providing information and reassurance. This responsibility is discharged for each type of incident by a nominated ''lead department'', supported as appropriate by other government departments and agencies; for their part, operators are obliged to have arrangements in place for dealing with the practicalities of any reasonably foreseeable incident, including recovery and onward transport of a package, and any required clean-up or restoration of the environment. This paper outlines both the government and industry arrangements in Great Britain. The principles of response and intervention are discussed, together with the lead department concept, regulatory requirements, and the plans developed by the transport industry to ensure a nation-wide response capability.

  19. Guidance Manual for preparing Nuclear and Radiological Emergency Preparedness and Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Muhammed, Kabiru [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Seung-Young [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    The Nuclear and Radiological Emergency Preparedness and Response Plan(NREPRP) describes the capabilities, responsibilities and authorities of government agencies and a conceptual basis for integrating the activities of these agencies to protect public health and safety. The NREPRP addresses issues related to actual or perceived radiation hazard requiring a national response in order to: i. Provide co-ordination of a response involving multi-jurisdictions or significant national responsibilities; or ii. Provide national support to state and local governments. The objective of this research is to establish Guidance Manual for preparing a timely, organized and coordinated emergency response plan for Authorities/agencies to promptly and adequately determine and take actions to protect members of the public and emergency workers. The manual will not provide sufficient details for an adequate response. This level of details is contained in standard operating procedures that are being developed based on the plan developed. Base on the data obtain from integrated planning levels and responsibility sharing, the legal document of major government agencies participating in NREPRP form the legal basis for the response plan. Also the following documents should be some international legal binding documents. Base on the international safety requirement and some countries well developed NREPRP, we have drafted a guidance manual for new comer countries for easy development of their countries NREPRP. Also we have taken in to consideration lessons learn from most accident especially Fukushima accident.

  20. Guidance Manual for preparing Nuclear and Radiological Emergency Preparedness and Response Plan

    International Nuclear Information System (INIS)

    Muhammed, Kabiru; Jeong, Seung-Young

    2014-01-01

    The Nuclear and Radiological Emergency Preparedness and Response Plan(NREPRP) describes the capabilities, responsibilities and authorities of government agencies and a conceptual basis for integrating the activities of these agencies to protect public health and safety. The NREPRP addresses issues related to actual or perceived radiation hazard requiring a national response in order to: i. Provide co-ordination of a response involving multi-jurisdictions or significant national responsibilities; or ii. Provide national support to state and local governments. The objective of this research is to establish Guidance Manual for preparing a timely, organized and coordinated emergency response plan for Authorities/agencies to promptly and adequately determine and take actions to protect members of the public and emergency workers. The manual will not provide sufficient details for an adequate response. This level of details is contained in standard operating procedures that are being developed based on the plan developed. Base on the data obtain from integrated planning levels and responsibility sharing, the legal document of major government agencies participating in NREPRP form the legal basis for the response plan. Also the following documents should be some international legal binding documents. Base on the international safety requirement and some countries well developed NREPRP, we have drafted a guidance manual for new comer countries for easy development of their countries NREPRP. Also we have taken in to consideration lessons learn from most accident especially Fukushima accident

  1. New functions of the este system - new possibilities for emergency response

    International Nuclear Information System (INIS)

    Carny, P.

    2005-01-01

    The ESTE system (Emergency Source Term Evaluation) is support instrument for off-site emergency response and its main objective is to assist to the crisis staff: - to mitigate radiological consequences of significant releases; - to manage the protective measures; - to manage emergency monitoring. At national level the ESTE system are implemented at the Emergency Response Centre of the Czech Republic (SUJB) and Austrian versions are implemented at the Crisis Centre of the Austrian Republic (BMLFUW). ESTE system can now be utilized not only in close (40 km) vicinity of the point of the release (NPP), but radiological impacts are now calculated across the whole country or over the country border. Puff Trajectory Model (PTM) with the background of geographical information system (GIS) is included in este. Numerical weather prediction data (wind fields) predicted for the whole or the part of the country are online connected with este and utilized for the puffs movement simulation and impacts calculations. It means that not only meteorological data from the point of release (measured or predicted), but 'meteorological data wind field' predicted for larger region across the country are used by the este system. (author)

  2. Emergency Response to Radioactive Material Transport Accidents

    International Nuclear Information System (INIS)

    EL-shinawy, R.M.K.

    2009-01-01

    Although transport regulations issued by IAEA is providing a high degree of safety during transport opertions,transport accidents involving packages containing radioactive material have occurred and will occur at any time. Whenever a transport accident involving radioactive material accurs, and many will pose no radiation safety problems, emergency respnose actioms are meeded to ensure that radiation safety is maintained. In case of transport accident that result in a significant relesae of radioactive material , loss of shielding or loss of criticality control , that consequences should be controlled or mitigated by proper emergency response actions safety guide, Emergency Response Plamming and Prepardness for transport accidents involving radioactive material, was published by IAEA. This guide reflected all requirememts of IAEA, regulations for safe transport of radioactive material this guide provide guidance to the publicauthorites and other interested organziation who are responsible for establishing such emergency arrangements

  3. Hanford Emergency Response Plan

    International Nuclear Information System (INIS)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures

  4. Hanford Emergency Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures.

  5. IEA Response System for Oil Supply Emergencies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-15

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available -- focusing on stockdraw -- and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security.

  6. IEA Response System for Oil Supply Emergencies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available -- focusing on stockdraw -- and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security.

  7. Technical support and preparations for the response to radiological emergencies

    International Nuclear Information System (INIS)

    Cardenas H, J.; Ramos V, E.O.; Fernandez G, I.M.; Capote F, E.; Zerquera J, T.; Garcia L, O.; Lopez B, G.; Molina P, D.; Lamdrid B, A.I.; Benitez N, J.C.; Salgado M, M.; Lopez F, Y.; Jerez V, P.

    2006-01-01

    The work picks up the efforts directed to elevate the technical capacity of the answer in front of the radiological emergencies. Expressing them by means of the actions carried out as for teaching, research and development and intervention before accidental radiological events. The same one reflects the leading role of the participant institutions in those marks of the answer system to radiological emergencies that for its technical level it satisfies the national and international demands in the matter. In execution of the mentioned goals research projects guided to endow to the national system of methodologies and procedures for the administration of radiological emergencies have been executed that favor the improvement of its technical and organizational capacities. As well as the postulates of the National Plan of Measures for Case of Catastrophes in the corresponding to radiological accidents. (Author)

  8. Support for the Development of Technological Innovations: Promoting Responsible Social Uses.

    Science.gov (United States)

    Legault, Georges A; Verchère, Céline; Patenaude, Johane

    2018-04-01

    How can technological development, economic development, and the claims from society be reconciled? How should responsible innovation be promoted? The "responsible social uses" approach proposed here was devised with these considerations in view. In this article, a support procedure for promoting responsible social uses (RSU) is set out and presented. First, the context in which this procedure emerged, which incorporates features of both the user-experience approach and that of ethical acceptability in technological development, is specified. Next, the characteristic features of the procedure are presented, that is, its purpose, fundamental orientation, and component parts as experimented by partners. Third, the RSU approach is compared with other support approaches and considered in term of how each approach assumes responsible innovation. Briefly, the RSU procedure is a way of addressing the issue of responsible innovation through an effective integration of social concerns.

  9. Nuclear and Radiological Emergency Management and Rehabilitation Strategies: Towards a EU approach for decision support tools

    International Nuclear Information System (INIS)

    Raskob, W.; Gering, F.; Lochard, J.; Nisbet, A.; Starostova, V.; Tomic, B.

    2011-01-01

    Highlights: → European emergency management and rehabilitation was strengthened. → Development of generic European handbooks for urban and agricultural areas. → Decision support systems became more operational. → Harmonisation of tools in Europe has been promoted. - Abstract: The 5-year multi-national project EURANOS (European Approach to Nuclear and Radiological Emergency Management and Rehabilitation Strategies), funded by the European Commission and 23 European Member States, started in April 2004. Integrating 17 national emergency management organisations with 33 research institutes, it brings together best practices, knowledge and technology to enhance the preparedness for Europe's response to any radiation emergency and long term contamination. Key objectives of the project are to collate information on the likely effectiveness and consequences of a wide range of countermeasures, to provide guidance to emergency management organisations and decision makers on the establishment of an appropriate response strategy and to further enhance advanced decision support systems (DSS), in particular, RODOS (Real-time On-line Decisions Support) decision support system), through feedback from their operational use. Further, the project aims to create regional initiatives leading to information exchange based on state-of-the-art information technologies, to develop guidance which assists Member States in developing a framework for the sustainable rehabilitation of living conditions in contaminated areas and to maintain and enhance knowledge and competence through emergency exercises, training and education, thus fostering best practice in emergency response. The project is divided into three major research activities and a set of demonstration projects which are split in two phases lasting over two and three years, respectively. The research activities address specific issues previously identified by the users or by previous research in the area. They are focused

  10. First Response to Medical Emergency

    International Nuclear Information System (INIS)

    Manisah Saedon; Sarimah Mahat; Muhamad Nurfalah Karoji; Hasnul Nizam Osman

    2015-01-01

    Accident or medical emergencies, both minor and critical, occurs each day and can happen in any workplace. In any medical emergencies, time is a critical factor because the first person to arrive at the scene of an accident has a key role in the rescue of a victim. With the knowledge of some common medical procedures and emergency actions, this first responder can make a positive contribution to the welfare of the accident victim. In some cases, this contribution can make difference between life and death. Improper response to medical emergencies by an untrained person can result in worsen injuries or death. Therefore, first aids training are necessary to provide the information. (author)

  11. Oil supply security: the emergency response potential of IEA countries

    International Nuclear Information System (INIS)

    1995-01-01

    This work deals with the oil supply security and more particularly with the emergency response potential of International Energy Agency (IEA) countries. The first part describes the changing pattern of IEA emergency response requirements. It begins with the experience from the past, then gives the energy outlook to 2010 and ends with the emergency response policy issues for the future. The second part is an overview on the IEA emergency response potential which includes the organisation, the emergency reserves, the demand restraint and the other response mechanisms. The third part gives the response potential of individual IEA countries. The last part deals with IEA emergency response in practice and more particularly with the gulf crisis of 1990-1991. It includes the initial problems raised by the gulf crisis, the adjustment and preparation and the onset of military action with the IEA response.(O.L.). 7 figs., 85 tabs

  12. Understanding Public Responses to Emerging Technologies

    NARCIS (Netherlands)

    Macnaghten, Philip; Davies, S.R.; Kearnes, Matthew

    2015-01-01

    Previous studies aimed at understanding public responses to emerging technologies have given limited attention to the social and cultural processes through which public concerns emerge. When probed, these have tended to be explained either in cognitive social psychological terms, typically in the

  13. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response

    International Nuclear Information System (INIS)

    2012-05-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  14. Application of geographical information system (GIS) for the preparedness for response to nuclear emergencies

    International Nuclear Information System (INIS)

    Chaudhury, Probal; Pradeepkumar, K.S.; Saindane, S.S.; Suri, M.M.K.; Sharma, D.N.

    2005-01-01

    As recommended by International Atomic Energy Agency (IAEA), preparedness for response to nuclear/radiological emergencies is essential for all nations including those not having nuclear facilities. Methodology and systems for quick assessment of radiological impact following any large scale radioactive release/contamination in the environment are already developed. Efforts are being made to provide Geographical Information System (GIS) support for enhancing the capability of quick decision making on the implementation of countermeasures and to strengthen the Emergency Preparedness Program. This requires development of the database of nuclear facilities, roads, buildings, agriculture land, population density and geolocating using geocoded addresses. GIS helps in the creation of custom maps that spatially show several data layers pertinent to the cities/area around the nuclear power plants. The GIS based software imports and spatially displays the predicted movement of radioactive plume and helps in the revision of emergency plans based on the periodic inputs from various systems and monitoring teams. These tools, allow the Emergency Response Centers to take decisions regarding the progress, success and future direction of response in large cities/complex sites. (author)

  15. ARAC: A support capability for emergency managers

    Energy Technology Data Exchange (ETDEWEB)

    Pace, J.C.; Sullivan, T.J.; Baskett, R.L. [and others

    1995-08-01

    This paper is intended to introduce to the non-radiological emergency management community the 20-year operational history of the Atmospheric Release Advisory Capability (ARAC), its concept of operations, and its applicability for use in support of emergency management decision makers. ARAC is a centralized federal facility for assessing atmospheric releases of hazardous materials in real time, using a robust suite of three-dimensional atmospheric transport and diffusion models, extensive geophysical and source-description databases, automated meteorological data acquisition systems, and experienced staff members. Although originally conceived to respond to nuclear accidents, the ARAC system has proven to be extremely adaptable, and has been used successfully during a wide variety of nonradiological hazardous chemical situations. ARAC represents a proven, validated, operational support capability for atmospheric hazardous releases.

  16. Radiological emergency response - a functional approach

    International Nuclear Information System (INIS)

    Chowdhury, Prosanta

    1997-01-01

    The radiological emergency response program in the State of Louisiana is discussed. The improved approach intends to maximize the efficiency for both nuclear power plant and radiological emergency response as a whole. Several broad-based components are identified: cluster of 'nodes' are generated for each component; these 'nodes' may be divided into 'sub-nodes' which will contain some 'attributes'; 'relational bonds' among the 'attributes' will exist. When executed, the process begins and continues with the 'nodes' assuming a functional and dynamic role based on the nature and characteristics of the 'attributes'. The typical response based on stand-alone elements is eliminated; overlapping of functions is avoided, and is produced a well-structure and efficient organization

  17. Numerical models and their role in emergency response: a perspective on dispersion modeling for emergency preparedness

    International Nuclear Information System (INIS)

    Greenly, G.D.; Dickerson, M.H.

    1983-03-01

    Numerical models on several levels of complexity should be available to the emergency response planner. They are a basic tool but must be used in conjunction with both measurements and experience. When these tools are used in a complimentary fashion they greatly enhance the capability of the consequence manager to respond in an emergency situation. Because each accident or incident develops it's own characteristics and requirements the system must be capable of a flexible response. Interaction and feedback between model results from a suite of models and measurements (including airborne measurements) serve the emergency response planner's spectrum of needs, ranging from planning exercises and emergency precalculations to a real-time emergency response

  18. Aquatic emergency response model at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1987-01-01

    The Savannah River Plant emergency response plans include a stream/river emergency response model to predict travel times, maximum concentrations, and concentration distributions as a function of time at selected downstream/river locations from each of the major SRP installations. The menu driven model can be operated from any of the terminals that are linked to the real-time computer monitoring system for emergency response

  19. Method for developing arrangements for response to a nuclear or radiological emergency. Updating IAEA-TECDOC-953. Emergency preparedness and response. Publication date: October 2003

    International Nuclear Information System (INIS)

    2003-09-01

    In 1997 the IAEA compiled, consolidated and organized existing information, and published the TECDOC-953 'Method for Development of Emergency Response Preparedness for Nuclear or Radiological Accidents'. Subsequently this publication was used extensively by the IAEA for training and for evaluation of emergency response programmes. In November 1999 a technical committee meeting (TCM) with representatives of over 20 States reviewed and provided feedback on IAEA-TECDOC-953. In March 2002, the IAEA's Board of Governors approved a Safety Requirements publication, 'Preparedness and Response for a Nuclear or Radiological Emergency', jointly sponsored by seven international organizations, which establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. The IAEA General Conference in resolution GC(46)/RES/9 encouraged Member States to implement, if necessary, instruments for improving their own preparedness and response capabilities for nuclear and radiological incidents and accidents, including their arrangements for responding to acts involving the malicious use of nuclear or radioactive material and to threats of such acts, and has further encouraged them to implement the Safety Requirements for Preparedness and Response to a Nuclear or Radiological Emergency. The obligations, responsibilities and requirements for preparedness and response for radiation emergencies are set out in the safety standards, in particular the 1996 'International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources'. Consensus information on relevant radiation protection criteria was established in 1994 and published in 'Intervention Criteria in a Nuclear or Radiation Emergency'. Several other guides and publications in the area of emergency preparedness and response had previously been issued. The present publication now being issued in the Emergency Preparedness and

  20. Behavioral Emergency Response Team: Implementation Improves Patient Safety, Staff Safety, and Staff Collaboration.

    Science.gov (United States)

    Zicko, Cdr Jennifer M; Schroeder, Lcdr Rebecca A; Byers, Cdr William S; Taylor, Lt Adam M; Spence, Cdr Dennis L

    2017-10-01

    Staff members working on our nonmental health (non-MH) units (i.e., medical-surgical [MS] units) were not educated in recognizing or deescalating behavioral emergencies. Published evidence suggests a behavioral emergency response team (BERT) composed of MH experts who assist with deescalating behavioral emergencies may be beneficial in these situations. Therefore, we sought to implement a BERT on the inpatient non-MH units at our military treatment facility. The objectives of this evidence-based practice process improvement project were to determine how implementation of a BERT affects staff and patient safety and to examine nursing staffs' level of knowledge, confidence, and support in caring for psychiatric patients and patients exhibiting behavioral emergencies. A BERT was piloted on one MS unit for 5 months and expanded to two additional units for 3 months. Pre- and postimplementation staff surveys were conducted, and the number of staff assaults and injuries, restraint usage, and security intervention were compared. The BERT responded to 17 behavioral emergencies. The number of assaults decreased from 10 (pre) to 1 (post); security intervention decreased from 14 to 1; and restraint use decreased from 8 to 1. MS staffs' level of BERT knowledge and rating of support between MH staff and their staff significantly increased. Both MS and MH nurses rated the BERT as supportive and effective. A BERT can assist with deescalating behavioral emergencies, and improve staff collaboration and patient and staff safety. © 2017 Sigma Theta Tau International.

  1. The IAEAs incident and emergency centre: the global focal point for nuclear and radiological emergency preparedness and response

    Energy Technology Data Exchange (ETDEWEB)

    Buglova, E.

    2016-08-01

    The continuous use of nuclear power to generate electricity and the continued threat of radioactive materials being used for nefarious reasons reminds us of the importance to stay prepared to respond to nuclear or radiological emergencies. Stringent nuclear safety and nuclear security requirements, the training of personnel, operational checks and legal frameworks cannot always prevent radiation-related emergencies. Though these events can range in severity, each has the potential to cause harm to the public, employees, patients, property and the environment. Until the Chernobyl nuclear accident in 1986, there was no international information exchange system. Immediately following that accident, the international community negotiated the so-called Emergency Conventions to ensure that the country suffering an accident with an international transboundary release of radioactive material would issue timely, authenticated information, while the States that could field technical support, would do so in a coordinated fashion. The Conventions also place specific legal obligations on the International Atomic energy Agency (IAEA) with regard to emergency preparedness and response. (Author)

  2. Emergent leadership among tenants with psychiatric disabilities living in supported housing.

    Science.gov (United States)

    Piat, Myra; Sabetti, Judith; Padgett, Deborah

    2018-06-01

    The overall aim of this study was to explore the experiences of people with psychiatric disabilities living as tenants in independent, supported apartments for the first time. Supported housing provides an alternative to structured, custodial housing models, such as foster homes, or board-and-care homes, for clients in public mental health systems. This article reports findings on how leadership emerged among tenants after making the transition from custodial to supported housing. Semi-structured interviews were conducted with tenants (n = 24) and included questions on their housing history, current living situation, relationships with staff, participation, and understanding or experience of leadership. Interviews were transcribed verbatim, codes generated, and a thematic analysis conducted using a constructivist approach. The findings revealed an understanding and appreciation of leadership among tenants, who identified six pathways to leadership in their housing as a response to unmet tenant needs. Most tenant leaders emerged outside of formal authority or power structures. Supported housing provides a unique social setting and empowering community where the potential of persons with psychiatric disabilities to assume leadership may be realized and further developed. Mental health professionals working in community housing networks are well placed to harness these face-to-face tenant communities, and their natural leaders, as an additional tool in promoting tenant recovery, mutual help, neighbourhood integration, and the broader exercise of citizenship. © 2017 Australian College of Mental Health Nurses Inc.

  3. MOCAT project: support tool to the management of the emergencies in the nuclear power plant of Santa Maria of Garona

    International Nuclear Information System (INIS)

    Calleja, J. L.

    2010-01-01

    Santa Maria de Garona NPP, as part of its continuous improvement philosophy, has decided to undertake the modernization of its Technical Support Center (CAT with the aim of improving the emergency management, provided in the Internal Emergency Plan. To this end, Tecnatom, applying the know-how acquired and within its line of technological innovation, has designed the Technical Support Center modernization project, MOCAT, in collaboration with Garona NPP. This project is basically the application of new information and communications technologies to the management of the information available on the CAT, and the computerization of the procedures for the responsible from the different areas of the CAT, which it is going to contribute significantly to the improvement of the security, allowing a better understanding of the state of the plant in emergency as well as a faster and smoother decision making, and an improved training and education of those responsible for the CAT in emergency management. (Author) 8 refs.

  4. The development of nuclear power and emergency response

    International Nuclear Information System (INIS)

    Pan Ziqiang

    2007-01-01

    Nuclear power is a safe, clean energy, which has been evidenced by the history of nuclear power development. Nuclear power is associated with very low risk but not equal to zero. Accident emergency response and preparedness is a final barrier necessary to reduce potential risks that may arise from nuclear power plants, which must be enhanced. In the course of accident emergency response and preparedness, it is highly necessary to draw domestic and foreign experiences and lessons. Lastly, the paper presents the discussions of some issues which merit attention with respect to emergency response and preparedness in China. (authors)

  5. Police Mental Health Partnership project: Police Ambulance Crisis Emergency Response (PACER) model development.

    Science.gov (United States)

    Huppert, David; Griffiths, Matthew

    2015-10-01

    To review internationally recognized models of police interactions with people experiencing mental health crises that are sometimes complex and associated with adverse experience for the person in crisis, their family and emergency service personnel. To develop, implement and review a partnership model trial between mental health and emergency services that offers alternative response pathways with improved outcomes in care. Three unique models of police and mental health partnership in the USA were reviewed and used to develop the PACER (Police Ambulance Crisis Emergency Response) model. A three month trial of the model was implemented and evaluated. Significant improvements in response times, the interactions with and the outcomes for people in crisis were some of the benefits shown when compared with usual services. The pilot showed that a partnership involving mental health and police services in Melbourne, Australia could be replicated based on international models. Initial data supported improvements compared with usual care. Further data collection regarding usual care and this new model is required to confirm observed benefits. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  6. Formal modelling of processes and tasks to support use and search of geo-information in emergency response

    NARCIS (Netherlands)

    Zlatanova, S.

    2010-01-01

    Many Command& Control or Early warning systems have been developed providing access to large amounts of data (and metadata) via geo-portals, or by accessing predefined data sets relaying on Spatial Data Infrastructure. However, the users involved in emergency response are usually not geoinformation

  7. Design and operation of the emergency support center, CAE; Diseno y explotacion del centro de apoyo en emergencias, CAE

    Energy Technology Data Exchange (ETDEWEB)

    Caro, R. J.; Lopez Trillo, E.

    2016-08-01

    The enhancements developed in Spain in the area of Emergency Management, as consequence of the accident at the Fukushima Dai-Ichi NPP in 2011, included the definition of new emergency response centers; Alternative Center for Emergency Management (CAGE) on each NPP and the Emergency Support Center (CAE), shared by all NPPs. This article summarizes the main features and operation activities undertaken since the establishment of the new CAE, centralized, external to the NPPs shared by all Spanish plants and managed by Tecnatom. (Author)

  8. Two-Graph Building Interior Representation for Emergency Response Applications

    Science.gov (United States)

    Boguslawski, P.; Mahdjoubi, L.; Zverovich, V.; Fadli, F.

    2016-06-01

    Nowadays, in a rapidly developing urban environment with bigger and higher public buildings, disasters causing emergency situations and casualties are unavoidable. Preparedness and quick response are crucial issues saving human lives. Available information about an emergency scene, such as a building structure, helps for decision making and organizing rescue operations. Models supporting decision-making should be available in real, or near-real, time. Thus, good quality models that allow implementation of automated methods are highly desirable. This paper presents details of the recently developed method for automated generation of variable density navigable networks in a 3D indoor environment, including a full 3D topological model, which may be used not only for standard navigation but also for finding safe routes and simulating hazard and phenomena associated with disasters such as fire spread and heat transfer.

  9. TWO-GRAPH BUILDING INTERIOR REPRESENTATION FOR EMERGENCY RESPONSE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    P. Boguslawski

    2016-06-01

    Full Text Available Nowadays, in a rapidly developing urban environment with bigger and higher public buildings, disasters causing emergency situations and casualties are unavoidable. Preparedness and quick response are crucial issues saving human lives. Available information about an emergency scene, such as a building structure, helps for decision making and organizing rescue operations. Models supporting decision-making should be available in real, or near-real, time. Thus, good quality models that allow implementation of automated methods are highly desirable. This paper presents details of the recently developed method for automated generation of variable density navigable networks in a 3D indoor environment, including a full 3D topological model, which may be used not only for standard navigation but also for finding safe routes and simulating hazard and phenomena associated with disasters such as fire spread and heat transfer.

  10. Radiological emergency response - a functional approach

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Prosanta [Louisiana Radiation Protection Div., Baton Rouge, LA (United States)

    1997-12-31

    The radiological emergency response program in the State of Louisiana is discussed. The improved approach intends to maximize the efficiency for both nuclear power plant and radiological emergency response as a whole. Several broad-based components are identified: cluster of `nodes` are generated for each component; these `nodes` may be divided into `sub-nodes` which will contain some `attributes`; `relational bonds` among the `attributes` will exist. When executed, the process begins and continues with the `nodes` assuming a functional and dynamic role based on the nature and characteristics of the `attributes`. The typical response based on stand-alone elements is eliminated; overlapping of functions is avoided, and is produced a well-structure and efficient organization 1 ref., 6 figs.; e-mail: prosanta at deq.state.la.us

  11. Decision support for off-site emergency preparedness in Europe

    International Nuclear Information System (INIS)

    Kelly, G.N.; Ehrhardt, J.

    1996-01-01

    The decision support system, RODOS, for off-site emergency management in the event of a future accident is being developed with support from the European Commission. The development is being carried out within a large and fully integrated international project involving about forty institutes from sixteen countries in Eastern and Western Europe. RODOS has been designed to provide comprehensive (i.e. applicable at all distances, at all times and to all important countermeasures) decision support and to be applicable throughout Europe. The background to the development of RODOS is described in this paper together with its basic features, its current status and plans for its further development. Given the context of this Special Issue, particular attention is given to the contribution made by institutes in the former Soviet Union to the development of RODOS and plans for its implementation in these countries. The benefits of the system are increasingly being recognised following the completion of the pilot version in 1995. Of particular importance is its potential role as part of a wider European network, the existence of which would promote a more effective and coherent response to any future nuclear accident that might affect Europe. (Author)

  12. Emergency preparedness and response

    International Nuclear Information System (INIS)

    Griffiths, M.

    1996-01-01

    After the Chernobyl accident, it became painfully obvious to the international community that there was an urgent need to establish a system for the coordination of international disaster assistance. It became the task of the United Nations Office for Disaster Relief (UNDRO) to develop such a system. The former UNDRO was subsumed into the Department of Humanitarian Affairs (DHA), established in January 1992 on the basis of UN General Assembly Resolution 46/182 adopted in December 1991, and the disaster relief system presently found in DHA is a further evolution of the system established by UNDRO. One particular importance in relation to nuclear accidents is the fact that UNDRO and the International Atomic Energy Agency (IAEA) signed a Memorandum of Understanding defining their respective responsibilities and the need for cooperation in case of accidents involving the unintentional release of nuclear radiation. In essence, the MOU makes it clear that the responsibilities of the IAEA, in connection with accidents at Nuclear Power Plants, related to the technical and radiological aspects, in particular to accident prevention, to the on-site preparedness, and to remedial measures within the 30-km zone outside the NPP. DHA's responsibilities, on the other hand, relate to the general preparedness and the rescue efforts outside the 30 km zone. In this respect, the preparedness and emergency response system is no different from the system employed in any other type of sudden-onset emergency

  13. Medical response to radiation emergencies in Argentina

    International Nuclear Information System (INIS)

    Gisone, Pablo A.; Perez, Maria del R.; Dubner, Diana L.; Michelin, Severino C.; Vazquez, M.; Demayo, O.

    2006-01-01

    Although radiation accidents are not frequent, the increasing use of radioisotopes in medicine and industry increases the likelihood of such accidental situations. Additionally, risks posed by the malevolent use of radiation sources have been highlighted during the last few years. In this context, the enhancement of national capabilities for medical assistance of victims in radiation emergencies becomes relevant. This communication describes the organization of medical response to radiation emergencies existing in Argentina. A three-level system for medical response has been developed: pre-hospital response given on-site by local emergency services, assistance provided by emergency departments of local general hospitals and central reference hospitals for treatment of acute radiation syndrome, cutaneous radiation syndrome and internal contamination. An education and training program is regularly executed at the three levels, including theoretical background as well as practical training. Guidelines and protocols for medical handling of victims have been elaborated and implemented. Research and development of new strategies for diagnosis and treatment of radiation injuries are promoted by ARN in close collaboration with physicians belonging to reference hospitals. (author)

  14. Southern State Radiological Transportation Emergency Response Training Course Summary

    International Nuclear Information System (INIS)

    1990-09-01

    The Southern States Energy Board (SSEB) is an interstate compact organization that serves 16 states and the commonwealth of Puerto Rico with information and analysis in energy and environmental matters. Nuclear waste management is a topic that has garnered considerable attention in the SSEB region in the last several years. Since 1985, SSEB has received support from the US Department of Energy for the regional analysis of high-level radioactive waste transportation issues. In the performance of its work in this area, SSEB formed the Advisory Committee on High-Level Radioactive Materials Transportation, which comprises representatives from impacted states and tribes. SSEB meets with the committee semi-annually to provide issue updates to members and to solicit their views on activities impacting their respective states. Among the waste transportation issues considered by SSEB and the committee are shipment routing, the impacts of monitored retrievable storage, state liability in the event of an accident and emergency preparedness and response. This document addresses the latter by describing the radiological emergency response training courses and programs of the southern states, as well as federal courses available outside the southern region

  15. Supporting the Social Media Needs of Emergency Public Information Officers with Human-Centered Design and Development

    Science.gov (United States)

    Hughes, Amanda Lee

    2012-01-01

    Emergency response agencies, which operate as command-and-control organizations, push information to members of the public with too few mechanisms to support communication flowing back. Recently, information communication technologies (ICTs) such as social media have challenged this one-way model by allowing the public to participate in emergency…

  16. Beyond defense-in-depth: cost and funding of state and local government radiological emergency response plans and preparedness in support of commercial nuclear power stations

    International Nuclear Information System (INIS)

    Salomon, S.N.

    1979-10-01

    Inadequate, sporadic, uncertain and frustrating are words local, state and Federal officials use to describe the current hodgepodge funding approach to State and local government radiological emergency response plans and preparedeness in support of commercial nuclear power stations. The creation of a Radiological Emergency Response Plans and Preparedness Fund for State and Local Government is offered as a preferred solution. Monies for the Fund could be derived from a one time Fee of $1 million levied on the operator of each nuclear power station. Every five years, adjustments could be made in the Fee to assure full recovery of costs because of inflation, revised criteria and other cost related factors. Any surplus would be refunded to the utilities. Any state that has obtained NRC concurrence or is in the process could be reimbursed for previous expenditures up to two years prior to NRC concurrence. Concurrence in all state and local government plans is the objective of the funding program. The Fund should be administered by the Nuclear Regulatory Commission. The report also discusses actions by Federal and state agencies and points to long range considerations, such as a training institute, including transportation and non-commercial and other fixed nuclear facilities, where preparedness could be enhanced by a coherent funding mechanism. All recommendations are based on an inquiry by the Office of state Programs, NRC, into the historical and future costs and funding of radiological emergency response plans and preparedness at the state and local government levels and are derived from discussions with many local, State and Federal officials

  17. A prototype nuclear emergency response decision making expert system

    International Nuclear Information System (INIS)

    Chang, C.; Shih, C.; Hong, M.; Yu, W.; Su, M.; Wang, S.

    1990-01-01

    A prototype of emergency response expert system developed for nuclear power plants, has been fulfilled by Institute of Nuclear Energy Research. Key elements that have been implemented for emergency response include radioactive material dispersion assessment, dynamic transportation evacuation assessment, and meteorological parametric forecasting. A network system consists of five 80386 Personal Computers (PCs) has been installed to perform the system functions above. A further project is still continuing to achieve a more complicated and fanciful computer aid integral emergency response expert system

  18. Development of a decision support system for off-site emergency management in the early phase of a nuclear accident

    International Nuclear Information System (INIS)

    Datta, D.; Sharma, R.M.

    2002-01-01

    Full text: Experience gained after the Chernobyl accident clearly demonstrated the importance of improving administrative, organizational and technical emergency management arrangements in India. The more important areas where technical improvements were needed were early warning monitoring, communication networks for the rapid and reliable exchange of radiological and other information and decision support systems for off-site emergency management. A PC based artificial intelligent software has been developed to have a decision support system that can easily implement to manage off-site nuclear emergency and subsequently analyze the off-site consequences of the nuclear accident. A decision support tool, STEPS (source term estimate based on plant status), that provides desired input to the present software was developed. The tool STEPS facilitates meta knowledge of the system. The paper describes the details of the design of the software, functions of various modules, tuning of respective knowledge base and overall its scope in real sense in nuclear emergency preparedness and response

  19. Emergency response packaging: A conceptual outline

    International Nuclear Information System (INIS)

    Luna, R.E.; McClure, J.D.; Bennett, P.C.; Wheeler, T.A.

    1992-01-01

    The Packaging and Transportation Needs in the 1990's (PATN) component of the Transportation Assessment and Integration (TRAIN) program (DOE Nov. 1991) was designed to survey United States Department of Energy programs, both ongoing and planned, to identify needs for packaging and transportation services over the next decade. PATN also identified transportation elements that should be developed by the DOE Office of Environmental Restoration and Waste Management (DOE EM) Transportation Management Program (TMP). As a result of the predominant involvement of the TMP in radioactive material shipment issues and DOE EM's involvement with waste management issues, the primary focus of PATN was on waste packaging issues. Pending DOE regulations will formalize federal guidelines and regulations for transportation of hazardous and radioactive materials within the boundaries of DOE reservations and facilities and reflect a growing awareness of concern regarding safety environmental responsibility activities on DOE reservations. Future practices involving the transportation of radioactive material within DOE reservations will closely parallel those used for commercial and governmental transportation across the United States. This has added to the perceived need for emergency recovery packaging and emergency response features on primary packaging, for both on-site shipments and shipments between DOE facilities (off-site). Historically, emergency response and recovery functions of packaging have not been adequately considered in packaging design and construction concepts. This paper develops the rationale for emergency response packaging, including both overpack concepts for repackaging compromised packaging and primary packaging redesign to facilitate the recovery of packages via mobile remote handling equipment. The rationale will examine concepts for determination of likely use patterns to identify types of shipments where recovery packaging may have the most favorable payoff

  20. Evaluation criteria for emergency response plans in radiological transportation

    International Nuclear Information System (INIS)

    Lindell, M.K.; Perry, R.W.

    1980-01-01

    This paper identifies a set of general criteria which can be used as guides for evaluating emergency response plans prepared in connection with the transportation of radiological materials. The development of criteria takes the form of examining the meaning and role of emergency plans in general, reviewing the process as it is used in connection with natural disasters and other nonnuclear disasters, and explicitly considering unique aspects of the radiological transportation setting. Eight areas of critical importance for such response plans are isolated: notification procedures; accident assessment; public information; protection of the public at risk; other protective responses; radiological exposure control; responsibility for planning and operations; and emergency response training and exercises. (Auth.)

  1. Study on IAEA international emergency response exercise convEx-3

    International Nuclear Information System (INIS)

    Yamamoto, Kazuya

    2007-05-01

    The International Atomic Energy Agency (IAEA) carried out a large-scale international emergency response exercise in 2005 under the designated name of ConvEx-3(2005), at Romania. This review report summarizes a study about ConvEx-3(2005) based on several related open literature. The ConvEx-3 was conducted in accordance with Agency's safety standard series and requirements in the field of Emergency Preparedness and Response. The study on the preparation, conduct and evaluation of ConvEx-3(2005) exercise is expected to provide very useful knowledge for development of drills and educational programs conducted by Nuclear Emergency Assistance and Training Center (NEAT). Especially, study on the exercise evaluations is instrumental in improving evaluations of drills planned by the national government and local governments. As international cooperation among Asian countries in the field of nuclear emergency preparedness and response is going to realize, it is very useful to survey and consider scheme and methodology about international emergency preparedness, response and exercise referring the knowledge of this ConvEx-3 study. The lessons learned from this study of ConvEx-3(2005) are summarized in four chapters; methodology of exercises and educational programs, exercise evaluation process, amendments/verification of the emergency response plan of NEAT, and technical issues of systems for emergency response and assistance of NEAT relevant to interface for international emergency communication. (author)

  2. Caire - A real-time feedback system for emergency response

    International Nuclear Information System (INIS)

    Braun, H.; Brenk, H.D.; de Witt, H.

    1991-01-01

    In cases of nuclear emergencies it is the primary task of emergency response forces and decision making authorities to act properly. Whatever the specific reason for the contingency may be, a quick and most accurate estimate of the radiation exposure in consequence of the emergency must be made. This is a necessary prerequisite for decisions on protective measures and off-site emergency management. With respect to this fact ant the recent experience of the Chernobyl accident, remote monitoring systems have increased their importance as an inherent part of environmental surveillance installations in the FRG and in other countries. The existing systems in Germany are designed to cover both, routine operation and emergency situations. They provide site specific meteorological data, gross effluent dose rates, and dose rate measurements at on-site and approximately 30 off-site locations in the vicinity of a plant. Based on such telemetric surveillance networks an advanced automatic on-line system named CAIRE (Computer Aided Response to Emergencies) has been developed as a real time emergency response tool for nuclear facilities. this tool is designed to provide decision makers with most relevant radiation exposure data of the population at risk. The development phase of CAIRE has already been finished. CAIRE is now in an operational status and available for applications in emergency planning and response

  3. Review of off-site emergency preparedness and response plan of Indian NPPs based on experience of Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Singh, Hukum; Dash, M.; Shukla, Vikas; Vijayan, P.; Krishnamurthy, P.R.

    2012-01-01

    Preparedness and Response Plans. Inclusion of additional topics related to multi unit events in Emergency Preparedness Plan, loss of support infrastructure during accident etc should be included in Emergency Preparedness and Response Plan. The paper emphasizes use of redundant and diverse communication system, Decision Support Systems like IRODOS, evolution of site specific intervention levels, development of event based criteria instead of domain concept etc.

  4. Review of off-site emergency preparedness and response plan of Indian NPPs based on experience of Fukushima nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hukum; Dash, M.; Shukla, Vikas; Vijayan, P.; Krishnamurthy, P.R., E-mail: vshukla@aerb.gov.in [Operating Plants Safety Division, Atomic Energy Regulatory Board, Mumbai (India)

    2012-07-01

    Preparedness and Response Plans. Inclusion of additional topics related to multi unit events in Emergency Preparedness Plan, loss of support infrastructure during accident etc should be included in Emergency Preparedness and Response Plan. The paper emphasizes use of redundant and diverse communication system, Decision Support Systems like IRODOS, evolution of site specific intervention levels, development of event based criteria instead of domain concept etc.

  5. Emergency response planning in hospitals, United States: 2003-2004.

    Science.gov (United States)

    Niska, Richard W; Burt, Catharine W

    2007-08-20

    This study presents baseline data to determine which hospital characteristics are associated with preparedness for terrorism and natural disaster in the areas of emergency response planning and availability of equipment and specialized care units. Information from the Bioterrorism and Mass Casualty Preparedness Supplements to the 2003 and 2004 National Hospital Ambulatory Medical Care Surveys was used to provide national estimates of variations in hospital emergency response plans and resources by residency and medical school affiliation, hospital size, ownership, metropolitan statistical area status, and Joint Commission accreditation. Of 874 sampled hospitals with emergency or outpatient departments, 739 responded for an 84.6 percent response rate. Estimates are presented with 95 percent confidence intervals. About 92 percent of hospitals had revised their emergency response plans since September 11, 2001, but only about 63 percent had addressed natural disasters and biological, chemical, radiological, and explosive terrorism in those plans. Only about 9 percent of hospitals had provided for all 10 of the response plan components studied. Hospitals had a mean of about 14 personal protective suits, 21 critical care beds, 12 mechanical ventilators, 7 negative pressure isolation rooms, and 2 decontamination showers each. Hospital bed capacity was the factor most consistently associated with emergency response planning and availability of resources.

  6. Evaluation of the Emergency Education Response for Syrian Refugee Children and Host Communities in Jordan

    NARCIS (Netherlands)

    Culbertson, S.; Ling, T.; Henham, M.L.; Corbett, J.; Karam, R.; Pankowska, P.K.P.; Saunders, C.L.; Bellasio, J.; Baruch, B.

    2016-01-01

    The Emergency Education Response Programme (EER), launched by UNICEF, the Government of Jordan and partners in 2012, aims to provide free public formal education, as well as safe and appropriate supportive educational services, for Syrian refugee children living in Jordan. RAND's evaluation

  7. Meteorological monitoring for dose assessment and emergency response modeling - how much is enough?

    International Nuclear Information System (INIS)

    Glantz, C.S.

    1990-01-01

    Individuals responsible for emergency response or environmental/dose assessment routinely ask if there are enough meteorological data to adequately support their objectives. The answer requires detailed consideration of the intended applications, capabilities of the atmospheric dispersion model data, pollutant release characteristics, terrain in the modeling region, and size and distribution of the human population in the modeling domain. The meteorologist's detailed knowledge of, and experience in, studying atmospheric transport and diffusion can assist in determining the appropriate level of meteorological monitoring

  8. ANS-8.23: Criticality accident emergency planning and response

    International Nuclear Information System (INIS)

    Pruvost, N.L.

    1991-01-01

    A study group has been formed under the auspices of ANS-8 to examine the need for a standard on nuclear criticality accident emergency planning and response. This standard would be ANS-8.23. ANSI/ANS-8.19-1984, Administrative Practices for Nuclear Criticality Safety, provides some guidance on the subject in Section 10 titled -- Planned Response to Nuclear Criticality Accidents. However, the study group has formed a consensus that Section 10 is inadequate in that technical guidance in addition to administrative guidance is needed. The group believes that a new standard which specifically addresses emergency planning and response to a perceived criticality accident is needed. Plans for underway to request the study group be designated a writing group to create a draft of such a new standard. The proposed standard will divide responsibility between management and technical staff. Generally, management will be charged with providing the necessary elements of emergency planning such as a criticality detection and alarm system, training, safe evacuation routes and assembly areas, a system for timely accountability of personnel, and an effective emergency response organization. The technical staff, on the other hand, will be made responsible for establishing specific items such as safe and clearly posted evacuation evacuation routes and dose criteria for personnel assembly areas. The key to the question of responsibilities is that management must provide the resources for the technical staff to establish the elements of an emergency response effort

  9. Emergency response planning and preparedness for transport accidents involving radioactive material

    International Nuclear Information System (INIS)

    1988-01-01

    The purpose of this Guide is to provide assistance to public authorities and others (including consignors and carriers of radioactive materials) who are responsible for ensuring safety in establishing and developing emergency response arrangements for responding effectively to transport accidents involving radioactive materials. This Guide is concerned mainly with the preparation of emergency response plans. It provides information which will assist those countries whose involvement with radioactive materials is just beginning and those which have already developed their industries involving radioactive materials and attendant emergency plans, but may need to review and improve these plans. The need for emergency response plans and the ways in which they are implemented vary from country to country. In each country, the responsible authorities must decide how best to apply this Guide, taking into account the actual shipments and associated hazards. In this Guide the emergency response planning and response philosophy are outlined, including identification of emergency response organizations and emergency services that would be required during a transport accident. General consequences which could prevail during an accident are described taking into account the IAEA Regulations for the Safe Transport of Radioactive Material. 43 refs, figs and tabs

  10. Emergency Response and the International Charter Space and Major Disasters

    Science.gov (United States)

    Jones, B.; Lamb, R.

    2011-12-01

    Responding to catastrophic natural disasters requires information. When the flow of information on the ground is interrupted by crises such as earthquakes, landslides, volcanoes, hurricanes, and floods, satellite imagery and aerial photographs become invaluable tools in revealing post-disaster conditions and in aiding disaster response and recovery efforts. USGS is a global clearinghouse for remotely sensed disaster imagery. It is also a source of innovative products derived from satellite imagery that can provide unique overviews as well as important details about the impacts of disasters. Repeatedly, USGS and its resources have proven their worth in assisting with disaster recovery activities in the United States and abroad. USGS has a well-established role in emergency response in the United States. It works closely with the Federal Emergency Management Agency (FEMA) by providing first responders with satellite and aerial images of disaster-impacted sites and products developed from those images. The combination of the USGS image archive, coupled with its global data transfer capability and on-site science staff, was instrumental in the USGS becoming a participating agency in the International Charter Space and Major Disasters. This participation provides the USGS with access to international members and their space agencies, to information on European and other global member methodology in disaster response, and to data from satellites operated by Charter member countries. Such access enhances the USGS' ability to respond to global emergencies and to disasters that occur in the United States (US). As one example, the Charter agencies provided imagery to the US for over 4 months in response to the Gulf oil spill. The International Charter mission is to provide a unified system of space data acquisition and delivery to those affected by natural or man-made disasters. Each member space agency has committed resources to support the provisions of the Charter and

  11. Geographic Information System (GIS) Emergency Support for the May 2000 Cerro Grande Wildfire, Los Alamos, New Mexico, USA

    Energy Technology Data Exchange (ETDEWEB)

    C.R.Mynard; G.N.Keating; P.M.Rich; D.R. Bleakly

    2003-05-01

    In May 2000 the Cerro Grande wildfire swept through Los Alamos, New Mexico, burning approximately 17,400 ha (43,000 acres) and causing evacuation of Los Alamos National Laboratory (LANL) and the communities of Los Alamos and White Rock. An integral part of emergency response during the fire was the use of geographic information system (GIS) technology, which continues to be used in support of post-fire restoration and environmental monitoring. During the fire Laboratory GIS staff and volunteers from other organizations worked to produce maps and provide support for emergency managers, including at an emergency GIS facility in Santa Fe. Subsequent to the fire, Laboratory GIS teams supported the multiagency Burned Area Emergency Rehabilitation (BAER) team to provide GIS data and maps for planning mitigation efforts. The GIS teams continue to help researchers, operations personnel, and managers deal with the tremendous changes caused by the fire. Much of the work is under the auspices of the Cerro Grande Rehabilitation Project (CGRP) to promote recovery from fire damage, improve information exchange, enhance emergency management, and conduct mitigation activities. GIS efforts during the fire provided important lessons about institutional matters, working relationships, and emergency preparedness. These lessons include the importance of (1) an integrated framework for assessing natural and human hazards in a landscape context; (2) a strong GIS capability for emergency response; (3) coordinated emergency plans for GIS operations; (4) a method for employees to report their whereabouts and receive authoritative information during an evacuation; (5) GIS data that are complete, backed-up, and available during an emergency; (6) adaptation of GIS to the circumstances of the emergency; (7) better coordination in the GIS community; (8) better integration of GIS into LANL operations; and (9) a central data warehouse for data and metadata. These lessons are important for planning

  12. Responses to emergencies in Mexico and Central America

    International Nuclear Information System (INIS)

    Diaz, E.F.

    1986-01-01

    Radiation emergencies have two main aspects: radiation safety, which concerns control of the radiation source, and, more importantly, health effects, which entail diagnoses, treatment, and rehabilitation. The physician participates directly in a radiation emergency because he or she is the professional who knows best the human body and the methodology to re-establish health. However, because these types of incidents are infrequent, many physicians are poorly prepared to deal with such emergencies. Two main aspects of emergency response plans are: (1) prevention, including public education for behavior and planning for appropriate response; and (2) application, including prophylactic measures, assessing the extent of exposure and contamination, controlling public anxiety, and managing and treating the victims

  13. A FTA-based method for risk decision-making in emergency response

    DEFF Research Database (Denmark)

    Liu, Yang; Li, Hongyan

    2014-01-01

    Decision-making problems in emergency response are usually risky and uncertain due to the limited decision data and possible evolvement of emergency scenarios. This paper focuses on a risk decisionmaking problem in emergency response with several distinct characteristics including dynamic...... evolvement process of emergency, multiple scenarios, and impact of response actions on the emergency scenarios. A method based on Fault Tree Analysis (FTA) is proposed to solve the problem. By analyzing the evolvement process of emergency, the Fault Tree (FT) is constructed to describe the logical relations...

  14. Emergency response preparedness analysis for radioactive materials transportation

    International Nuclear Information System (INIS)

    Parentela, E.M.; Burli, S.S.; Sathisan, S.K.; Vodrazka, W.C.

    1994-01-01

    This paper evaluates the emergency response capabilities of first responders, specifically fire services, within the state of Nevada. It addresses issues relating to the available emergency responders such as general capabilities, jurisdictions, and response times. Graphical displays of the response units and attribute tables were created using GIS ARC/INFO. These coverages, plus the existing Census Bureau TIGER Files and highway network for the state of Nevada, were utilized to determine approximate service areas of each response unit, population density served by each response unit, population density served by each response unit and the areas that can be served by a response unit for 3, 5, 10, and 30 minutes response times. Results of the analysis enabled identification of the critical areas along the proposed highway route corridor

  15. Development of emergency response plans for community water ...

    African Journals Online (AJOL)

    All water services systems, irrespective of size, location etc., should have emergency response plans (ERPs) to guide officials, stakeholders and consumers through emergencies, as part of managing risks in the water supply system. Emergencies in the water supply system may result from, among other causes, natural ...

  16. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Chinese Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  17. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  18. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Chinese Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  19. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  20. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  1. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  2. An environmental scan of emergency response systems and services in remote First Nations communities in Northern Ontario.

    Science.gov (United States)

    Mew, E J; Ritchie, S D; VanderBurgh, D; Beardy, J L; Gordon, J; Fortune, M; Mamakwa, S; Orkin, A M

    2017-01-01

    Approximately 24,000 Ontarians live in remote Indigenous communities with no road access. These communities are a subset of Nishnawbe Aski Nation (NAN), a political grouping of 49 First Nations communities in Northern Ontario, Canada. Limited information is available regarding the status of emergency care in these communities. We aimed to understand emergency response systems, services, and training in remote NAN communities. We used an environmental scan approach to compile information from multiple sources including community-based participatory research. This included the analysis of data collected from key informant interviews (n=10) with First Nations community health leaders and a multi-stakeholder roundtable meeting (n=33) in October 2013. Qualitative analysis of the interview data revealed four issues related to emergency response systems and training: (1) inequity in response capacity and services, (2) lack of formalised dispatch systems, (3) turnover and burnout in volunteer emergency services, and (4) challenges related to first aid training. Roundtable stakeholders supported the development of a community-based emergency care system to address gaps. Existing first response, paramedical, and ambulance service models do not meet the unique geographical, epidemiological and cultural needs in most NAN communities. Sustainable, context-appropriate, and culturally relevant emergency care systems are needed.

  3. An Ontology-Underpinned Emergency Response System for Water Pollution Accidents

    Directory of Open Access Journals (Sweden)

    Xiaoliang Meng

    2018-02-01

    Full Text Available With the unceasing development and maturation of environment geographic information system, the response to water pollution accidents has been digitalized through the combination of monitoring sensors, management servers, and application software. However, most of these systems only achieve the basic and general geospatial data management and functional process tasks by adopting mechanistic water-quality models. To satisfy the sustainable monitoring and real-time emergency response application demand of the government and public users, it is a hotspot to study how to make the water pollution information being semantic and make the referred applications intelligent. Thus, the architecture of the ontology-underpinned emergency response system for water pollution accidents is proposed in this paper. This paper also makes a case study for usability testing of the water ontology models, and emergency response rules through an online water pollution emergency response system. The system contributes scientifically to the safety and sustainability of drinking water by providing emergency response and decision-making to the government and public in a timely manner.

  4. Nuclear and radiation emergency evaluation and decision-making support system for ministry of environmental protection

    International Nuclear Information System (INIS)

    Yue Huiguo; Lin Quanyi; Zhang Jiangang

    2010-01-01

    This article introduces the design features and main functions of The Nuclear and Radiation Emergency Evaluation and Decision Support System. The Ministry of Environmental Protection will construct a complete set of evaluation and decision-making system at the Nuclear Safety Center of Ministry of Environmental Protection to cope with the sudden event. The system will provide a comprehensive technical support for the consequence evaluation and decision-making of anti-terrorism event according to the responsibility of MEP in the sudden event, with the data provided by the MEP's anti-terrorism information platform. (authors)

  5. A new emergency response model for MACCS. Final report

    International Nuclear Information System (INIS)

    Chanin, D.I.

    1992-01-01

    Under DOE sponsorship, as directed by the Los Alamos National Laboratory (LANL), the MACCS code (version 1.5.11.1) [Ch92] was modified to implement a series of improvements in its modeling of emergency response actions. The purpose of this effort has been to aid the Westinghouse Savannah River Company (WSRC) in its performance of the Level III analysis for the Savannah River Site (SRS) probabilistic risk analysis (PRA) of K Reactor [Wo90]. To ensure its usefulness to WSRC, and facilitate the new model's eventual merger with other MACCS enhancements, close cooperation with WSRC and the MACCS development team at Sandia National Laboratories (SNL) was maintained throughout the project. These improvements are intended to allow a greater degree of flexibility in modeling the mitigative actions of evacuation and sheltering. The emergency response model in MACCS version 1.5.11.1 was developed to support NRC analyses of consequences from severe accidents at commercial nuclear power plants. The NRC code imposes unnecessary constraints on DOE safety analyses, particularly for consequences to onsite worker populations, and it has therefore been revamped. The changes to the code have been implemented in a manner that preserves previous modeling capabilities and therefore prior analyses can be repeated with the new code

  6. 45 CFR 673.5 - Emergency response plan.

    Science.gov (United States)

    2010-10-01

    ... ensure that: (a) The vessel owner's or operator's shipboard oil pollution emergency plan, prepared and... Pollution from Ships, 1973, as modified by the Protocol of 1978 relating thereto (MARPOL 73/78), has provisions for prompt and effective response action to such emergencies as might arise in the performance of...

  7. ASTER and USGS EROS disaster response: emergency imaging after Hurricane Katrina

    Science.gov (United States)

    Duda, Kenneth A.; Abrams, Michael

    2005-01-01

    The value of remotely sensed imagery during times of crisis is well established, and the increasing spatial and spectral resolution in newer systems provides ever greater utility and ability to discriminate features of interest (International Charter, Space and Major Disasters, 2005). The existing suite of sensors provides an abundance of data, and enables warning alerts to be broadcast for many situations in advance. In addition, imagery acquired soon after an event occurs can be used to assist response and remediation teams in identifying the extent of the affected area and the degree of damage. The data characteristics of the Advanced Spaceborne Thermal Emission and Refl ection Radiometer (ASTER) are well-suited for monitoring natural hazards and providing local and regional views after disaster strikes. For this reason, and because of the system fl exibility in scheduling high-priority observations, ASTER is often tasked to support emergency situations. The Emergency Response coordinators at the United States Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) work closely with staff at the National Aeronautics and Space Administration (NASA) Land Processes Distributed Active Archive Center (LP DAAC) at EROS and the ASTER Science Team as they fulfi ll their mission to acquire and distribute data during critical situations. This article summarizes the role of the USGS/EROS Emergency Response coordinators, and provides further discussion of ASTER data and the images portrayed on the cover of this issue

  8. Physiological responses of astronaut candidates to simulated +Gx orbital emergency re-entry.

    Science.gov (United States)

    Wu, Bin; Xue, Yueying; Wu, Ping; Gu, Zhiming; Wang, Yue; Jing, Xiaolu

    2012-08-01

    We investigated astronaut candidates' physiological and pathological responses to +Gx exposure during simulated emergency return from a running orbit to advance astronaut +Gx tolerance training and medical support in manned spaceflight. There were 13 male astronaut candidates who were exposed to a simulated high +Gx acceleration profile in a spacecraft during an emergency return lasting for 230 s. The peak value was 8.5 G. Subjective feelings and symptoms, cardiovascular and respiratory responses, and changes in urine component before, during, and after +Gx exposure were investigated. Under high +Gx exposure, 15.4% of subjects exhibited arrhythmia. Heart rate (HR) increased significantly and four different types of HR response curves were distinguished. The ratio of QT to RR interval on the electrocardiograms was significantly increased. Arterial oxygen saturation (SaO2) declined with increasing G value and then returned gradually. SaO2 reached a minimum (87.7%) at 3 G during the decline phase of the +Gx curve. Respiratory rate increased significantly with increasing G value, while the amplitude and area of the respiratory waves were significantly reduced. The overshoot appeared immediately after +Gx exposure. A few subjects suffered from slight injuries, including positive urine protein (1/13), positive urinary occult blood (1/13), and a large area of petechiae on the back (1/13). Astronaut candidates have relatively good tolerance to the +Gx profile during a simulation of spacecraft emergent ballistic re-entry. However, a few subjects exhibited adverse physiological responses and slight reversible pathological injuries.

  9. USGS Provision of Near Real Time Remotely Sensed Imagery for Emergency Response

    Science.gov (United States)

    Jones, B. K.

    2014-12-01

    The use of remotely sensed imagery in the aftermath of a disaster can have an important impact on the effectiveness of the response for many types of disasters such as floods, earthquakes, volcanic eruptions, landslides, and other natural or human-induced disasters. Ideally, responders in areas that are commonly affected by disasters would have access to archived remote sensing imagery plus the ability to easily obtain the new post event data products. The cost of obtaining and storing the data and the lack of trained professionals who can process the data into a mapping product oftentimes prevent this from happening. USGS Emergency Operations provides remote sensing and geospatial support to emergency managers by providing access to satellite images from numerous domestic and international space agencies including those affiliated with the International Charter Space and Major Disasters and their space-based assets and by hosting and distributing thousands of near real time event related images and map products through the Hazards Data Distribution System (HDDS). These data may include digital elevation models, hydrographic models, base satellite images, vector data layers such as roads, aerial photographs, and other pre and post disaster data. These layers are incorporated into a Web-based browser and data delivery service, the Hazards Data Distribution System (HDDS). The HDDS can be made accessible either to the general public or to specific response agencies. The HDDS concept anticipates customer requirements and provides rapid delivery of data and services. This presentation will provide an overview of remotely sensed imagery that is currently available to support emergency response operations and examples of products that have been created for past events that have provided near real time situational awareness for responding agencies.

  10. Modeling operators' emergency response time for chemical processing operations.

    Science.gov (United States)

    Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam

    2014-01-01

    Operators have a crucial role during emergencies at a variety of facilities such as chemical processing plants. When an abnormality occurs in the production process, the operator often has limited time to either take corrective actions or evacuate before the situation becomes deadly. It is crucial that system designers and safety professionals can estimate the time required for a response before procedures and facilities are designed and operations are initiated. There are existing industrial engineering techniques to establish time standards for tasks performed at a normal working pace. However, it is reasonable to expect the time required to take action in emergency situations will be different than working at a normal production pace. It is possible that in an emergency, operators will act faster compared to a normal pace. It would be useful for system designers to be able to establish a time range for operators' response times for emergency situations. This article develops a modeling approach to estimate the time standard range for operators taking corrective actions or following evacuation procedures in emergency situations. This will aid engineers and managers in establishing time requirements for operators in emergency situations. The methodology used for this study combines a well-established industrial engineering technique for determining time requirements (predetermined time standard system) and adjustment coefficients for emergency situations developed by the authors. Numerous videos of workers performing well-established tasks at a maximum pace were studied. As an example, one of the tasks analyzed was pit crew workers changing tires as quickly as they could during a race. The operations in these videos were decomposed into basic, fundamental motions (such as walking, reaching for a tool, and bending over) by studying the videos frame by frame. A comparison analysis was then performed between the emergency pace and the normal working pace operations

  11. Meteorological considerations in emergency response capability at nuclear power plant

    International Nuclear Information System (INIS)

    Fairobent, J.E.

    1985-01-01

    Meteorological considerations in emergency response at nuclear power plants are discussed through examination of current regulations and guidance documents, including discussion of the rationale for current regulatory requirements related to meteorological information for emergency response. Areas discussed include: major meteorological features important to emergency response; onsite meteorological measurements programs, including redundant and backup measurements; access to offsite sources of meteorological information; consideration of real-time and forecast conditions and atmospheric dispersion modeling

  12. Generic Procedures for Medical Response During a Nuclear or Radiological Emergency

    International Nuclear Information System (INIS)

    2009-01-01

    The aim of this manual is to provide the medical community with practical guidance for medical emergency preparedness and response, describing the tasks and actions of different members of the national, regional or local medical infrastructure in accordance with international standards. This document provides generic response procedures for medical personnel responding to different types of radiation emergencies and at the different stages of the emergency response (at the scene of the emergency, pre-hospital, hospital), and during the early post-emergency stage (about 1-2 months afterwards).

  13. California Earthquake Clearinghouse: Advocating for, and Advancing, Collaboration and Technology Interoperability, Between the Scientific and Emergency Response Communities, to Produce Actionable Intelligence for Situational Awareness, and Decision Support

    Science.gov (United States)

    Rosinski, A.; Beilin, P.; Colwell, J.; Hornick, M.; Glasscoe, M. T.; Morentz, J.; Smorodinsky, S.; Millington, A.; Hudnut, K. W.; Penn, P.; Ortiz, M.; Kennedy, M.; Long, K.; Miller, K.; Stromberg, M.

    2015-12-01

    The Clearinghouse provides emergency management and response professionals, scientific and engineering communities with prompt information on ground failure, structural damage, and other consequences from significant seismic events such as earthquakes or tsunamis. Clearinghouse activations include participation from Federal, State and local government, law enforcement, fire, EMS, emergency management, public health, environmental protection, the military, public and non-governmental organizations, and private sector. For the August 24, 2014 S. Napa earthquake, over 100 people from 40 different organizations participated during the 3-day Clearinghouse activation. Every organization has its own role and responsibility in disaster response; however all require authoritative data about the disaster for rapid hazard assessment and situational awareness. The Clearinghouse has been proactive in fostering collaboration and sharing Essential Elements of Information across disciplines. The Clearinghouse-led collaborative promotes the use of standard formats and protocols to allow existing technology to transform data into meaningful incident-related content and to enable data to be used by the largest number of participating Clearinghouse partners, thus providing responding personnel with enhanced real-time situational awareness, rapid hazard assessment, and more informed decision-making in support of response and recovery. The Clearinghouse efforts address national priorities outlined in USGS Circular 1242, Plan to Coordinate NEHRP post-earthquake investigations and S. 740-Geospatial Data Act of 2015, Sen. Orrin Hatch (R-UT), to streamline and coordinate geospatial data infrastructure, maximizing geospatial data in support of the Robert T. Stafford Act. Finally, the US Dept. of Homeland Security, Geospatial Management Office, recognized Clearinghouse's data sharing efforts as a Best Practice to be included in the forthcoming 2015 HLS Geospatial Concept of Operations.

  14. Generic procedures for assessment and response during a radiological emergency

    International Nuclear Information System (INIS)

    2000-08-01

    One of the most important aspects of managing a radiological emergency is the ability to promptly and adequately determine and take actions to protect members of the public and emergency workers. Radiological accident assessment must take account of all critical information available at any time and must be an iterative and dynamic process aimed at reviewing the response as more detailed and complete information becomes available. This manual provides the tools, generic procedures and data needed for an initial response to a non-reactor radiological accident. This manual is one out of a set of IAEA publications on emergency preparedness and response, including Method for the Development of Emergency Response Preparedness for Nuclear or Radiological Accidents (IAEA-TECDOC-953), Generic Assessment Procedures for Determining Protective Actions During a Reactor Accident (IAEA-TECDOC-955) and Intervention Criteria in a Nuclear or Radiation Emergency (Safety Series No. 109)

  15. Emergency Neurological Life Support: Intracerebral Hemorrhage.

    Science.gov (United States)

    Jauch, Edward C; Pineda, Jose A; Hemphill, J Claude

    2015-12-01

    Intracerebral hemorrhage (ICH) is a subset of stroke due to bleeding within the parenchyma of the brain. It is potentially lethal, and survival depends on ensuring an adequate airway, reversal of coagulopathy, and proper diagnosis. ICH was chosen as an Emergency Neurological Life Support protocol because intervention within the first critical hour may improve outcome, and it is critical to have site-specific protocols to drive care quickly and efficiently.

  16. Emergency response technical centre of the IPSN

    International Nuclear Information System (INIS)

    Dallendre, R.

    2000-01-01

    The Institute for Nuclear Safety and Protection (IPSN), the technical support of the French nuclear safety authority, provides the technical support needed for protect the surrounding population from the consequences of radioactive releases. In the event of an accident arising at a nuclear facility, the IPSN would set up an Emergency Response Technical Centre (CTC) at Fontenay-aux-Roses. The IPSN's objectives are: (a) to diagnose the state of the nuclear facility and monitor its development, (b) to prepare prognosis for the evolution of the accident and to give an estimation of the associated consequences according to the situation evolution, (c) to estimate the risk of radioactive releases and the consequences on man and on the environment, mainly on the basis of weather forecasts and on the prognosis. This diagnosis-prognosis approach is build-up with the information on the state of the installation given by: the concerned site via audio-conference system and telescope, the security panels of the nuclear plant via networks. To perform its missions, the CTC, which has to be both safe and secure, uses multiple telecommunication resources to dialogue with partners and also mapping computer systems, data bases and software tools: (a) the SESAME system, which gives, during an accident of a PWR, a calculation method for the diagnosis-prognosis aforesaid, (b) the CONRAD system, which calculates the atmospheric dispersal of radioactive substances and consequences in the environment in the early phase of an accident, (c) the ASTRAL code, which allows to cope with long lasting situations. In order to be operational, the IPSN expert regularly undergo training in emergency situation management and participate in exercises organised by the government authorities. (author)

  17. Report to Congress on status of emergency response planning for nuclear power plants

    International Nuclear Information System (INIS)

    1981-03-01

    This report responds to a request (Public Law 96-295, Section 109) for the Nuclear Regulatory Commission (NRC) to report to Congress on the status of emergency response planning in support of nuclear power reactors. The report includes information on the status of this planning as well as on the Commission actions relating to emergency preparedness. These actions include a summary of the new regulatory requirements and the preliminary results of two comprehensive Evacuation Time Estimate studies; one requested by the NRC including 50 nuclear power plant sites and one conducted by the Federal Emergency Management Agency (FEMA) for 12 high population density sites. FEMA provided the information in this report on the status of State and local planning, including projected schedules for joint State/county/licensee emergency preparedness exercises. Included as Appendicies are the NRC Emergency Planning Final Regulations, 10 CFR Part 50 (45 FR 55402), the FEMA Proposed Rule, 'Review and Approval of State and Local Radiological Emergency Plans and Preparedness', 44 CFR Part 350 (45 FR 42341) and the NRC/FEMA Memorandums of Understanding

  18. Enhancing nuclear emergency response through international co-operation

    International Nuclear Information System (INIS)

    Ugletveit, F.; Aaltonen, H.

    2003-01-01

    Full text: A large number of different national plans and procedures have been established and substantial resources allocated world wide with varying comprehensiveness and quality depending an the national requirements and the possible threat scenarios considered. These national plans are only to a small degree harmonized. It is clear that it is the responsibility of the authorities in the respective countries or utilities under their jurisdiction, to decide upon and implement appropriate response actions to a nuclear emergency. The basic needs for responding properly are: infrastructure in terms of plans, procedures etc.; information regarding the accident, its development and consequences; resources in terms of expertise, man power and tools for acquiring and processing information, making assessments and decisions and carry out the actions. When a large number of countries are making assessments and decisions for their own country and providing the public with information, it is important that assessments, decisions and public information become correct, complete and consistent across boarders. In order to achieve this, they should all have access to the same information as basis for their actions. Lack of information or wrong information could easily lead to wrong assessments, wrong decisions and misleading information to the public. If there is a serious nuclear emergency somewhere that could potentially affect several or many States in one way or another, 'everyone' would like to know 'everything' that happens 'everywhere'. In this case, all States should have the obligation to share with the international community the relevant information they have available themselves and that could be of interest for other States responding to the situation. During a serious nuclear or radiological emergency, the demand for different kinds of resources is huge and could, in many countries, probably exceed national capabilities. Looking at the situation in a global

  19. IEA Response System for Oil Supply Emergencies (2012 update)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available -- focusing on stockdraw -- and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security.

  20. An overview of the Environmental Response Team's air surveillance procedures at emergency response activities

    Energy Technology Data Exchange (ETDEWEB)

    Turpin, R.D.; Campagna, P.R. (U.S. Environmental Protection Agency, Edison, NJ (USA))

    The Safety and Air Surveillance Section of the United States Environmental Protection Agency's Environmental Response Team responds to emergency air releases such as tire fires and explosions. The air surveillance equipment and procedures used by the organization are described, and case studies demonstrating the various emergency response activities are presented. Air response activities include emergency air responses, occupational and human health air responses and remedial air responses. Monitoring and sampling equipment includes photoionization detectors, combustible gas meters, real-time aerosol monitors, personal sampling pumps, and high flow pumps. Case histories presented include disposal of dioxane from a cotton plant, response to oil well fires in Kuwait, disposal of high pressure cylinders in American Samoa, and response to hurricane Hugo. 3 refs., 1 tab.

  1. A research of virtual reality engineering for emergency response in radioactive materials transport

    International Nuclear Information System (INIS)

    Watabe, Naoto; Hagiwara, Yutaka; Nakajima, Chikahito; Itoh, Norihiko

    2000-01-01

    As the result of typical nuclear accidents in last few years, people began to pay attention to the emergency response in nuclear accidents. CRIEPI developed the concept of support system for all of normal condition, emergency condition and education during transport, using Virtual Reality technique and other up-to-date engineering. This system consist of three subsystems, namely 'on-site' for normal condition, 'on-site support system' for emergency condition and 'education system' for transport workers training. Each subsystem contains computer, communication devices, display, video camera, various sensors, data base and control or analysis programs. This system needs the following characteristics; 1) Using Virtual Reality technique, it is practicable for users to produce the hypothetical accident scenes and to show data, graphs and text messages on a see-through type head-mounted display. 2) Each subsystem refers the common data bases for route soundings, accident probability estimation and environment impact assessment and so on. 3) In the case of accident, it can smoothly transfer from 'on-site support system' for normal condition to 'on-site support system' for emergency condition. 4) It is capable to communicate by digital full duplex communication between on-site and the control center. 5) Movie from video camera and observed data from on-site monitoring posts are transmitted to the control center, analyzed with the central computer, then returned to on-site transportation team for visualization on each head mounted displays of crew. Some technology, mainly in the field for communication, have been developed up to now, but the others are expected to realize in near future. CRIEPI will constantly make efforts for those development. (author)

  2. Emergency preparedness and response: achievements, future needs and opportunities

    International Nuclear Information System (INIS)

    Kelly, G.N.

    2000-01-01

    The Chernobyl accident had a profound effect on emergency preparedness and response world-wide and particularly within Europe. Deficiencies in arrangements for dealing with such a large accident, at both national and international levels (eg, world trade in foodstuffs), led to many problems of both a practical and political nature. Many lessons were learnt and considerable resources have since been committed to improve emergency preparedness and avoid similar problems in future. Improvements have been made at national, regional and international levels and have been diverse in nature. Some of the more notable at an international level are the convention on early notification, limits for the contamination of foodstuffs in international trade and broad agreement on the principles of intervention (albeit less so on their practical interpretation). At a regional level, many bi and multi-lateral agreements have been brought into to force for the timely exchange of information and the efficacy of these arrangements is increasingly being demonstrated by regional exercises. At a national level, the improvements have been diverse, ranging from the installation of extensive networks of gamma monitors to provide early warning of an accident to more robust and effective arrangements between the many organisations with a role or responsibility in an emergency. More than a decade after Chernobyl, it is timely to reflect on what has been achieved in practice and, in particular, whether there is a need for further improvement and, if so, where these aspects will be addressed in the context of the likelihood the decreasing resources will be allocated to this area in future as memories fade post Chernobyl. Particular attention will be given to: the potential for advances in informatics, communications and decision support to provide better emergency preparedness and response at reduced cost; the adequacy of guidance on intervention for the long tern management of containment areas

  3. Some issues on nuclear and radiological emergency preparedness and response in China

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1999-01-01

    The nuclear emergency preparedness and response have comprehensively been developed over ten years in China. In order to promote the sound development of emergency preparedness and response, it is useful to retrospect the process of emergency preparedness and response, to summarize the experiences and absorb the experiences from foreign countries. The main issues are as follows: 1) The preparedness and response to nuclear and radiological accident is basically the same as the response to any accident involving hazardous material. 2) The classification of emergency planning, not only for nuclear facilities, but also irradiation installation, etc. 3) The hazard assessment-- a top priority. 4) The emergency planning zones. 5) Psychological impact

  4. Roles and contributions of pharmacists in regulatory affairs at the Centers for Disease Control and Prevention for public health emergency preparedness and response.

    Science.gov (United States)

    Bhavsar, Tina R; Kim, Hye-Joo; Yu, Yon

    To provide a general description of the roles and contributions of three pharmacists from the Regulatory Affairs program (RA) at the Centers for Disease Control and Prevention (CDC) who are involved in emergency preparedness and response activities, including the 2009 pandemic influenza A (H1N1) public health emergency. Atlanta, GA. RA consists of a staff of nine members, three of whom are pharmacists. The mission of RA is to support CDC's preparedness and emergency response activities and to ensure regulatory compliance for critical medical countermeasures against potential threats from natural, chemical, biological, radiological, or nuclear events. RA was well involved in the response to the H1N1 outbreak through numerous activities, such as submitting multiple Emergency Use Authorization (EUA) requests to the Food and Drug Administration, including those for medical countermeasures to be deployed from the Strategic National Stockpile, and developing the CDC EUA website (www.cdc.gov/h1n1flu/eua). RA will continue to support current and future preparedness and emergency response activities by ensuring that the appropriate regulatory mechanisms are in place for the deployment of critical medical countermeasures from the Strategic National Stockpile against threats to public health.

  5. Emergency Response of Iranian Hospitals Against Disasters: A Practical Framework for Improvement.

    Science.gov (United States)

    Janati, Ali; Sadeghi-Bazargani, Homayoun; Hasanpoor, Edris; Sokhanvar, Mobin; HaghGoshyie, Elaheh; Salehi, Abdollah

    2018-04-01

    Hospital emergency management is a continuous process that requires monolithic integration of planning and response attempts with local and national schemes. The aim of the current study is to evaluate emergency response by hospitals against potential disasters in Tabriz, north-west Iran. A cross-sectional study was conducted in the city of Tabriz, in Iran, in 2016. The study population included all hospitals in Tabriz. A total of 18 hospitals were assessed. The hospital emergency response checklist was used to collect data. Tool components included command and control, communication, safety and security, triage, surge capacity, continuity of essential services, human resources, logistics and supply management, and post-disaster recovery. Data entry and analysis were carried out using SPSS software (version 20). The results showed that the emergency response rate of hospitals was 54.26% in Tabriz. The lowest response rates were for Shafaa hospital (18.89%) and the highest response rates were for Razi Hospital (91.67%). The components of hospital emergency response were assessed to be between 48.07% (surge capacity) and 58.95% (communication). On the basis of the World Health Organization checklist, the emergency response rate for hospitals in Tabriz was only 54.26%. Therefore, hospital emergency responses against disasters have to be improved and must be made to reach 100%. It is essential to design a comprehensive framework for hospital emergency response. (Disaster Med Public Health Preparedness. 2018;12:166-171).

  6. Nuclear and radiological emergency management and rehabilitation strategies: towards a EU approach for decision support tools (EURANOS)

    International Nuclear Information System (INIS)

    Raskob, W.; Gering, F.; Lochard, J.; Nisbet, A.; Starostova, V.; Tomic, B.

    2010-01-01

    The 5-year multi-national project EURANOS, funded by the European Commission and 23 European Member States, started in April 2004. Integrating 17 national emergency management organisations with 33 research institutes, it brings together best practices, knowledge and technology to enhance the preparedness for Europe's response to any radiation emergency and long term contamination. Key objectives of the project are to collate information on the likely effectiveness and consequences of a wide range of countermeasures, to provide guidance to emergency management organisations and decision makers on the establishment of an appropriate response strategy and to further enhance advanced decision support systems (DSS), in particular, RODOS, through feedback from their operational use. Further, the project aims to create regional initiatives leading to information exchange based on state-of-the-art information technologies, to develop guidance which assists Member States in developing a framework for the sustainable rehabilitation of living conditions in contaminated areas

  7. Integrating Social Media Monitoring Into Public Health Emergency Response Operations.

    Science.gov (United States)

    Hadi, Tamer A; Fleshler, Keren

    2016-10-01

    Social media monitoring for public health emergency response and recovery is an essential response capability for any health department. The value of social media for emergency response lies not only in the capacity to rapidly communicate official and critical incident information, but as a rich source of incoming data that can be gathered to inform leadership decision-making. Social media monitoring is a function that can be formally integrated into the Incident Command System of any response agency. The approach to planning and required resources, such as staffing, logistics, and technology, is flexible and adaptable based on the needs of the agency and size and scope of the emergency. The New York City Department of Health and Mental Hygiene has successfully used its Social Media Monitoring Team during public health emergency responses and planned events including major Ebola and Legionnaires' disease responses. The concepts and implementations described can be applied by any agency, large or small, interested in building a social media monitoring capacity. (Disaster Med Public Health Preparedness. 2016;page 1 of 6).

  8. Financial assistance to States and tribes to support emergency preparedness and response and the safe transportation of hazardous shipments

    International Nuclear Information System (INIS)

    Bradbury, J.A.; Jones, M.L.

    1995-01-01

    This report identifies and summarizes existing sources of financial assistance to States and Indian tribes in preparing and responding to transportation emergencies and ensuring the safe transportation of hazardous shipments through their jurisdictions. The report has been prepared as an information resource for the US Department of Energy's Office of Environmental Restoration and Waste Management, Office of Transportation, Emergency Management and Analytical Services. The report discusses funding programs administered by the following Federal agencies: Federal Emergency Management Agency; Department of Transportation; the Environmental Protection Agency; and the Department of Energy. Also included is a summary of fees assessed by some States on carriers of hazardous materials and hazardous waste. The discussion of programs is supplemented by an Appendix that provides a series of tables summarizing funding sources and amounts. The report includes several conclusions concerning the level of funding provided to Indian tribes, the relative ranking of funding sources and the variation among States in overall revenues for emergency response and safe transportation

  9. Innovations in emergency response plans : making the useful application of the 2007 CDA guidelines for emergency response plans

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, A.J. [Columbia Power Corp., Castlegar, BC (Canada)

    2008-07-01

    Columbia Power Corporation (CPC) changed its perspective and approach to emergency response plans (ERP) between 2002 and 2007 from one of administrative necessity to one of important functional reference. The new 2007 Canadian Dam Association Guidelines helped facilitate that transition for both CPC and all dam owners. As part of the licensing requirements for its new facility, CPC had an ERP commissioned and developed in 2002. A potential dam safety event occurred in 2004, which necessitated the need for the ERP to be put to use. However, at the time, it was found to be lacking in functionality for field personnel. As a result, CPC recognized the significance of having a functional ERP for field staff and undertook a substantial redraft between 2005 and 2007. This paper discussed the development of the ERP with particular reference to assessing the top potential emergency scenarios for the facility; development of response plans for the identified scenarios; a flow chart to guide personnel through the required actions; response checklist; detailed inspection checklists and any required forms, photos or specific information. It was concluded that the new ERP has been well received and has improved facility awareness and emergency preparedness. 1 ref., 2 figs.

  10. Contraceptive availability during an emergency response in the United States.

    Science.gov (United States)

    Ellington, Sascha R; Kourtis, Athena P; Curtis, Kathryn M; Tepper, Naomi; Gorman, Susan; Jamieson, Denise J; Zotti, Marianne; Barfield, Wanda

    2013-03-01

    This article provides the evidence for contraceptive need to prevent unintended pregnancy during an emergency response, discusses the most appropriate types of contraceptives for disaster situations, and details the current provisions in place to provide contraceptives during an emergency response.

  11. Emergency response planning in Saskatchewan

    International Nuclear Information System (INIS)

    Irwin, R.W.

    1998-01-01

    Release reporting and spill clean-up requirements by Saskatchewan Energy and Mines were reviewed. Wascana's experience in response planning was discussed. It was suggested that the key to prevention was up-front due diligence, including facility and oil well analysis. Details of Wascana's emergency plan, and details of Saskatchewan Energy and Mines release reporting procedures were also provided

  12. 40 CFR 1.47 - Office of Solid Waste and Emergency Response.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Office of Solid Waste and Emergency... ORGANIZATION AND GENERAL INFORMATION Headquarters § 1.47 Office of Solid Waste and Emergency Response. The Office of Solid Waste and Emergency Response (OSWER), under the supervision of the Assistant...

  13. Delaware Estuary situation reports. Emergency response: How do emergency management officials address disasters in the Delaware Estuary

    International Nuclear Information System (INIS)

    Sylves, R.T.

    1991-01-01

    From hurricanes and other natural threats to oil spills and other manmade emergencies, the Delaware Estuary has experienced a variety of disasters over the years. The toll that these events take on the estuary and those who live on its shores depends largely upon the degree of emergency preparedness, speed of response, and effectiveness of recovery operations. In Emergency Response: How Do Emergency Management Officials Address Disasters in the Delaware Estuary, the latest addition to its Delaware Estuary Situation Report series, the University of Delaware Sea Grant College Program defines emergency management; examines the roles that the Coast Guard, Army Corps of Engineers, and Environmental Protection Agency play in an emergency; and reviews how each of these federal agencies operated during an actual disaster--the 1985 Grand Eagle oil spill. The report was written by Dr. Richard T. Sylves, a professor of political science at the University of Delaware. Sylves has been studying emergency management for the past 15 years, with special emphasis on oil spill preparedness and response in the Mid-Atlantic Region. The Delaware Estuary Situation Report is 12 pages long and contains maps and photographs, as well as a detailed account of response and recovery operations undertaken during the Grand Eagle oil spill. A comparison of the 1985 Grand Eagle spill and the 1989 Presidente Rivera spill also is included

  14. Assessment of emergency response planning and implementation in the aftermath of major natural disasters and technological accidents

    International Nuclear Information System (INIS)

    Milligan, Patricia A.; Jones, Joseph; Walton, F.; Smith, J.D.

    2008-01-01

    Emergency planning around nuclear power plants represents some of the most mature and well developed emergency planning in the United States. Since the implementation of NUREG-0654 / FEMA-REP-1, Rev. 1, A Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants (NRC, 1980a) the licensees, local, and State agencies have developed detailed Radiological Emergency Response Programs. An important component of these plans is the evacuation of the population in the event of a general emergency condition at the plant. In January 2005, the U.S. Nuclear Regulatory Commission (NRC) published the landmark report, 'Identification and Analysis of Factors Affecting Emergency Evacuations' (NUREG/CR 6864/), which represented the most comprehensive investigation of public evacuations in the United States in more than 15 years. Since the completion of this research, several high profile evacuations have occurred, including Hurricane Katrina in New Orleans, Hurricane Rita in Houston, as well as major wildfires across the western U.S. The NRC commissioned an update to its 2005 evacuation case study publication to evaluate the evacuation experience of the selected communities (e.g., timeliness, related injuries, hazard avoidance); the level of preplanning that was in place for the affected areas and extent that the pre planned requirements were implemented during the emergency response; the critical factors contributing to the efficiency of or impediments to the evacuations (e.g., training, drills, preparedness, experience, resources, facilities, and organizational structure); and additional factors that may have contributed to less than satisfactory public response (i.e., availability of personal transportation, use of public transportation, lack of availability of shelters, etc.). The comprehensive report will be published in fall of 2008 as NUREG/CR-6981, Assessment of Emergency Response Planning and

  15. Joint radiation emergency management plan of the international organizations. Emergency preparedness and response. Date effective: 1 December 2002

    International Nuclear Information System (INIS)

    2002-11-01

    The Convention on Early Notification of a Nuclear Accident (the 'Early Notification Convention') and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the 'Assistance Convention') are the prime legal instruments that establish an international framework to facilitate the exchange of information and the prompt provision of assistance in the event of a nuclear accident or radiological emergency, with the aim of minimizing the consequences. The International Atomic Energy Agency (IAEA) has specific functions allocated to it under these Conventions, to which, in addition to a number of States, the World Health Organization (WHO), the World Meteorological Organization (WMO) and the Food and Agriculture Organization of the United Nations (FAO) are full Parties. Since 1989, the arrangements between these organizations for facilitating the practical implementation of those articles of the two Conventions that are operational in nature have been documented by the IAEA in the Emergency Notification and Assistance Technical Operations Manual (ENATOM). The manual is intended for use primarily by Contact Points as identified in the Conventions. Pursuant to the obligations placed on it by the Conventions, the IAEA regularly convenes the Inter-Agency Committee on Response to Nuclear Accidents (lACRNA), whose purpose is to co-ordinate the arrangements of the relevant international intergovernmental organizations ('international organizations') for preparing for and responding to nuclear or radiological emergencies. Although the Conventions assign specific response functions and responsibilities to the IAEA and the Parties, various international organizations have - by virtue of their statutory functions or of related legal instruments - general functions and responsibilities that encompass aspects of preparedness and response. Moreover, some regional organizations (e.g. the European Union) are party to legally binding treaties and have

  16. First response to transportation emergencies involving radioactive materials

    International Nuclear Information System (INIS)

    1994-01-01

    This FEMA/DOE/DOT videocourse describes the basis for procedures to be used by emergency first responders for transportation accidents which involve radioactive materials. Various commercial and government sector radioactive materials shipment programs will be described and will include information about hazards and the elements of safety, proper first response actions, notification procedures, and state or federal assistance during emergencies. Primary audience: fire service and emergency management personnel

  17. The appropriateness of emergency medical service responses in the ...

    African Journals Online (AJOL)

    The appropriateness of emergency medical service responses in the eThekwini district of KwaZulu-Natal, South Africa. PR Newton, R Naidoo, P Brysiewicz. Abstract. Introduction. Emergency medical services (EMS) are sometimes required to respond to cases that are later found not to be emergencies, resulting in high ...

  18. Preparation, conduct and evaluation of exercises to test preparedness for a nuclear or radiological emergency. Emergency preparedness and response

    International Nuclear Information System (INIS)

    2005-04-01

    The aim of this publication is to serve as a practical tool for the preparation, conduct and evaluation of exercises to test preparedness for response to a nuclear or radiological emergency. It fulfils in part the functions assigned to the IAEA under Article 5.a(ii) of the Convention on Assistance in Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), namely, to collect and disseminate to States Parties and Member States information concerning the methodologies, techniques and available results of research on such emergencies. To ensure effective response to radiation emergencies when needed, provisions should be made for regular training of emergency response personnel. As stated in Preparedness and Response for a Nuclear or Radiological Emergency (Safety Requirements, Safety Standard Series No. GS-R-2), 'The operator and the response organizations shall make arrangements for the selection of personnel and training to ensure that the personnel have the requisite knowledge, skills, abilities, equipment, procedures and other arrangements to perform their assigned response functions'. A further requirement is that 'Exercise programmes shall be conducted to ensure that all specified functions required to be performed for emergency response and all organizational interfaces for facilities in threat category I, II or III and the national level programmes for threat category IV or V are tested at suitable intervals'. In 2004 the IAEA General Conference, in resolution GC(48)/RES/10 encouraged Member States to 'implement the Safety Requirements for Preparedness and Response to a Nuclear or Radiological Emergency'. This document is published as part of the IAEA Emergency Preparedness and Response Series to assist in meeting these requirements and to fulfil Article 5 of the Assistance Convention. It was developed based on a number of assumptions about national and local capabilities. Therefore, the exercise structure, terms and scenarios must be

  19. Incidence of emergency contacts (red responses to Norwegian emergency primary healthcare services in 2007 – a prospective observational study

    Directory of Open Access Journals (Sweden)

    Hansen Elisabeth

    2009-07-01

    Full Text Available Abstract Background The municipalities are responsible for the emergency primary health care services in Norway. These services include casualty clinics, primary doctors on-call and local emergency medical communication centres (LEMC. The National centre for emergency primary health care has initiated an enterprise called "The Watchtowers", comprising emergency primary health care districts, to provide routine information (patients' way of contact, level of urgency and first action taken by the out-of-hours services over several years based on a minimal dataset. This will enable monitoring, evaluation and comparison of the respective activities in the emergency primary health care services. The aim of this study was to assess incidence of emergency contacts (potential life-threatening situations, red responses to the emergency primary health care service. Methods A representative sample of Norwegian emergency primary health care districts, "The Watchtowers" recorded all contacts and first action taken during the year of 2007. All the variables were continuously registered in a data program by the attending nurses and sent by email to the National Centre for Emergency Primary Health Care at a monthly basis. Results During 2007 the Watchtowers registered 85 288 contacts, of which 1 946 (2.3% were defined as emergency contacts (red responses, corresponding to a rate of 9 per 1 000 inhabitants per year. 65% of the instances were initiated by patient, next of kin or health personnel by calling local emergency medical communication centres or meeting directly at the casualty clinics. In 48% of the red responses, the first action taken was a call-out of doctor and ambulance. On a national basis we can estimate approximately 42 500 red responses per year in the EPH in Norway. Conclusion The emergency primary health care services constitute an important part of the emergency system in Norway. Patients call the LEMC or meet directly at casualty clinics

  20. METALert - an emergency response system for China for heavy metals in the environment

    Science.gov (United States)

    Joris, Ingeborg; Seuntjens, Piet; Dams, Jef; Desmet, Nele; Van Looy, Stijn; Raymaekers, Jens; Decorte, Lieve; Raben, Ingrid; Thijssen, Chris; Zhang, Hongzhen; Dong, Jingqi; Zhang, Qianwen

    2016-04-01

    The rapid industrialisation and economic growth of China has resulted in a mirrored increase of environmental issues and threats, which make the updating of the current environmental emergency response protocols very important. Heavy metal pollution accidents with high environmental risks are happening more frequently than ever in recent years. Despite efforts made by the authorites in respect to the formulation of sound policy, efficient technical methods and regulations for dealing with appropriate responses to emergency environmental incidents related to heavy metal pollution are still lacking. METALert is a generic Emergency Response System (ERS) for accidental pollution incidents caused by key heavy metal related industries in China and developed to support China in achieving its environmental targets. The METALert tool is based on environmental models for forecasting, simulation and visualisation of dispersion of heavy metal pollution in water, air and soil. The tool contains a generic database with scenarios for accidental release of metals in typical accidents related to the five key heavy metal industries in China. The tool can calculate the impact of an accident in water, air and soil and is evaluated and demonstrated for a river basin in the Chenzhou area, an important heavy metal mining area in China. The setup of the tool, the background models and the application in Chenzhou will be presented.

  1. Interprofessional communication supporting clinical handover in emergency departments: An observation study.

    Science.gov (United States)

    Redley, Bernice; Botti, Mari; Wood, Beverley; Bucknall, Tracey

    2017-08-01

    Poor interprofessional communication poses a risk to patient safety at change-of-shift in emergency departments (EDs). The purpose of this study was to identify and describe patterns and processes of interprofessional communication impacting quality of ED change-of-shift handovers. Observation of 66 change-of-shift handovers at two acute hospital EDs in Victoria, Australia. Focus groups with 34 nurse participants complemented the observations. Qualitative data analysis involved content and thematic methods. Four structural components of ED handover processes emerged represented by (ABCD): (1) Antecedents; (2) Behaviours and interactions; (3) Content; and (4) Delegation of ongoing care. Infrequent and ad hoc interprofessional communication and discipline-specific handover content and processes emerged as specific risks to patient safety at change-of-shift handovers. Three themes related to risky and effective practices to support interprofessional communications across the four stages of ED handovers emerged: 1) standard processes and practices, 2) teamwork and interactions and 3) communication activities and practices. Unreliable interprofessional communication can impact the quality of change-of-shift handovers in EDs and poses risk to patient safety. Structured reflective analysis of existing practices can identify opportunities for standardisation, enhanced team practices and effective communication across four stages of the handover process to support clinicians to enhance local handover practices. Future research should test and refine models to support analysis of practice, and identify and test strategies to enhance ED interprofessional communication to support clinical handovers. Copyright © 2017 College of Emergency Nursing Australasia. Published by Elsevier Ltd. All rights reserved.

  2. NERIS: European platform on preparedness for nuclear and radiological emergency response and recovery

    International Nuclear Information System (INIS)

    Duranova, T.; Bohunova, J.; Schneider, T.; Biduener, S.; Badelay, J.; Gallego, E.; Gering, F.; Hrdeman, F.; Dubreuil, G.; Murith, Ch.; Oughton, D.; Raskob, W.

    2014-01-01

    The NERIS platform was established in June 2010 to encourage European, national, regional and local authorities, technical support organisation, operators, professional organisations, research institutes, universities, and non-governmental organisations to cooperate and to facilitate access expertise and technology in maintaining competence in the field of nuclear emergency management and recovery for the benefit of European countries and citizens. 49 organisations are members of the NERIS Platform from 24 countries and 20 members are supporting organisations. The NERIS Association has been registered in August 2012 as a legal European Association under the French Law. It is operated by a management board of 10 members and the NERIS R and D Committee elaborates its strategic orientation. The NERIS Platform is linked to research projects, managed by KIT: - NERIS TP 'Towards a self sustaining European Technology Platform on Preparedness for Nuclear and Radiological Emergency Response and Recovery'. - PREPARE project on innovative integrative tools and platforms to be prepared for radiological emergencies and post-accident response in Europe. To set up a common reflection, cooperation have been established with European and international organisations: HERCA, ALLIANCE, CRPPH, ICRP and AIEA. To share issues on lessons learnt from the Fukushima accident, cooperation have been initiated with IGES (Institute for Global Environment Strategies) and with the Fukushima University. The NERIS Platform is also involved in the steering committee of the EC Project OPERRA, aiming at structuring the research in the field of radiation protection at the Horizon 2020. This paper will present the key components of the NERIS Platform and its objectives. (authors)

  3. The RODOS system: decision support for nuclear off-site emergency management in Europe

    International Nuclear Information System (INIS)

    Raskob, W.; Ehrhardt, J.

    2000-01-01

    The integrated and comprehensive real-time on-line decision support system, RODOS, for off-site emergency management of nuclear accidents has been developed with support of the European Commission and the German Ministry of Environment. About 40 West and East European institutes have been involved in the development of the existing version for (pre-) operational use. This paper gives an overview of the structure, the content, the main functions and the development status of the RODOS system. It describes how the system has been and is being installed in emergency centres of a number of European counties. Designed as a generic tool, the RODOS system is applicable from the very early stages of an accident up to many year after the release and from the vicinity of a site to far distant areas, unperturbed by national boundaries. Decision support is provided by the system at various levels, ranging from the largely descriptive with information on the present and future radiological situation, to an evaluation of the benefits and disadvantages of different countermeasures' options and their feasibility. This includes ranking them according to the decision-makers' expressed preferences and weights with due consideration of subjective arguments on socio-psychological and political influences. The capability of the RODOS software framework for integrating models, methods and database in a modular way and the flexibility of the user interface will be addressed in the paper. Their functionalities offer the possibility of adapting RODOS to local, regional and national conditions, in particular to the corresponding meteorological and radiological monitoring networks, the geographical and economic structures, different plant types and accident conditions. A hierarchy of user interfaces allows adaptation of the system to the needs and qualifications of users in real emergencies and in training and exercises. The potential role of RODOS for improving emergency response in Europe

  4. Information for nuclear emergency response: a case study based on ANGRA nuclear power plant emergency simulation exercises

    International Nuclear Information System (INIS)

    Carvalho, Paulo V.R. de

    2008-01-01

    Full text: Current nuclear emergency management procedures do not always satisfactorily address issues related to the information availability and to how people in emergency control centres use this information to respond to an nuclear accident. The lack of an adequate and prompt information may lead to a response that can be very different from what authorities recommend and thus create confusion, mistrust, and widespread uncertainty. This is a potentially serious problem for emergency planners. An adequate and prompt access to relevant information is a critical requirement that emergency teams face while they work towards reducing the undesired consequences of the emergency. There are three basic types of knowledge according to a conceptual framework developed to deal with emergency response: Previous Personal, Previous and, Current Contextual knowledge. Most decisions in emergency control centres require a dynamic combination of all types of knowledge, particularly the current contextual that comes from the emergency settings, including all information about the activities of other emergency teams. The aim of this paper is to describe the concepts and the structure of a system that aims at storing and disseminating the previous formal and contextual knowledge to help teams make the correct decisions during the evolution of an emergency. The elicitation of critical requirements are provided by a case study based on Cognitive Work Analysis and Naturalistic Decision Making methods, applied to a nuclear emergency response simulation. The framework and a prototype system were tested in a controlled experiment. The paper reports the results of this experiment. (author)

  5. Method for the development of emergency response preparedness for nuclear or radiological accidents

    International Nuclear Information System (INIS)

    2000-03-01

    This report supplements IAEA emergency preparedness guidance published in the 1980s, and is consistent with the new international guidance. It provides practical advice for the development of an emergency response capability based on the potential nature and magnitude of the risk. In order to apply this method, emergency planners should have a good understanding of the basic radiological emergency response principles. Therefore, other applicable international guidance should be reviewed before using this report. This report provides a practical step-by-step method for developing integrated user, local and national emergency response capabilities. It can also be used as the basis for conducting an audit of an existing emergency response capability

  6. Method for the development of emergency response preparedness for nuclear or radiological accidents

    International Nuclear Information System (INIS)

    1998-04-01

    This report supplements IAEA emergency preparedness guidance published in the 1980s, and is consistent with the new international guidance. It provides practical advice for the development of an emergency response capability based on the potential nature and magnitude of the risk. In order to apply this method, emergency planners should have a good understanding of the basic radiological emergency response principles. Therefore, other applicable international guidance should be reviewed before using this report. This report provides a practical step-by-step method for developing integrated user, local and national emergency response capabilities. It can also be used as the basis for conducting an audit of an existing emergency response capability

  7. Nigeria status on capabilities for response to nuclear or radiological emergency

    International Nuclear Information System (INIS)

    Sambo, I.; Elegba, S.B.; Ogharandukun, M.

    2007-01-01

    The use of nuclear technology has been widely employed and will continue to expand in use in Nigeria particularly in the health, industrial, mining, water resources, agriculture, manufacturing, education and research sectors. Incidents and emergencies cannot therefore be ruled out. Effective national response capabilities are essential to minimize the impacts from nuclear and radiological emergencies, and to build public trust in the safety and security of nuclear technology. The often discussed Nigeria's Nuclear Power Plant (NPP) project cannot occur without enhanced national capabilities to respond to an incidence or emergency. Moreover, increased concern over the use of nuclear or radioactive materials malevolent acts increases the need to broaden response capabilities. This paper examines Nigeria's status on capabilities for response to a nuclear and radiological emergency vis-a-vis international requirements for effective response capabilities

  8. Evaluating the effectiveness of burned area emergency response (BAER) efforts after the 2003 wildfires, southern California

    Science.gov (United States)

    Peter M. Wohlgemuth; Ken R. Hubbert; Jan L. Beyers; David R. Weise

    2007-01-01

    Wildfires burned approximately 300,000 hectares (750,000 acres) across southern California in the fall of 2003. Over 10 million dollars were spent on Burned Area Emergency Response (BAER) treatments following these fires. To support the BAER efforts, we designed a comprehensive strategy with standardized protocols to evaluate the effectiveness of various erosion...

  9. Designing a data-driven decision support tool for nurse scheduling in the emergency department: a case study of a southern New Jersey emergency department.

    Science.gov (United States)

    Otegbeye, Mojisola; Scriber, Roslyn; Ducoin, Donna; Glasofer, Amy

    2015-01-01

    A health system serving Burlington and Camden Counties, New Jersey, sought to improve labor productivity for its emergency departments, with emphasis on optimizing nursing staff schedules. Using historical emergency department visit data and operating constraints, a decision support tool was designed to recommend the number of emergency nurses needed in each hour for each day of the week. The pilot emergency department nurse managers used the decision support tool's recommendations to redeploy nurse hours from weekends into a float pool to support periods of demand spikes on weekdays. Productivity improved significantly, with no unfavorable impact on patient throughput, and patient and staff satisfaction. Today's emergency department manager can leverage the increasing ease of access to the emergency department information system's data repository to successfully design a simple but effective tool to support the alignment of its nursing schedule with demand patterns. Copyright © 2015 Emergency Nurses Association. Published by Elsevier Inc. All rights reserved.

  10. Assessing the integration of health center and community emergency preparedness and response planning.

    Science.gov (United States)

    Wineman, Nicole V; Braun, Barbara I; Barbera, Joseph A; Loeb, Jerod M

    2007-11-01

    To assess the state of health center integration into community preparedness, we undertook a national study of linkages between health centers and the emergency preparedness and response planning initiatives in their communities. The key objectives of this project were to gain a better understanding of existing linkages in a nationally representative sample of health centers, and identify health center demographic and experience factors that were associated with strong linkages. The objectives of the study were to gain a baseline understanding of existing health center linkages to community emergency preparedness and response systems and to identify factors that were associated with strong linkages. A 60-item questionnaire was mailed to the population of health centers supported by the Health Resources and Services Administration's Bureau of Primary Health Care in February 2005. Results were aggregated and a chi square analysis identified factors associated with stronger linkages. Overall performance on study-defined indicators of strong linkages was low: 34% had completed a hazard vulnerability analysis in collaboration with the community emergency management agency, 30% had their role documented in the community plan, and 24% participated in community-wide exercises. Stronger linkages were associated with experience responding to a disaster and a perception of high risk for experiencing a disaster. The potential for health centers to participate in an integrated response is not fully realized, and their absence from community-based planning leaves an already vulnerable population at greater risk. Community planners should be encouraged to include health centers in planning and response and centers should receive more targeted resources for community integration.

  11. Effectiveness of a brief educational workshop intervention among primary care providers at 6 months: uptake of dental emergency supporting resources.

    Science.gov (United States)

    Skapetis, Tony; Gerzina, Tania M; Hu, Wendy; Cameron, W Ian

    2013-01-01

    Dental emergencies often present to primary care providers in general practice and Emergency Departments (ED), who may be unable to manage them effectively due to limited knowledge, skills and available resources. This may impact negatively on patient outcomes. Provision of a short educational workshop intervention in the management of such emergencies, including education in supporting resources, may provide a practical strategy for assisting clinicians to provide this aspect of comprehensive primary care. This descriptive study used a validated questionnaire survey instrument to measure the effectiveness of a short multimodal educational intervention through the uptake and perceived usefulness of supporting resources at 6 months following the intervention. Between 2009 and 2010, 15 workshops, of which eight were for regional and rural hospital ED doctors, were conducted by the same presenter using the same educational materials and training techniques. A sample of 181 workshop participants, 63% of whom were in rural or remote practice and engaged in providing primary care medical services, returned responses at 6 months on the perceived usefulness of the dental emergencies resource. Thirty percent of clinicians had used the dental emergencies resource within the six-month follow-up period. Significance was demonstrated between professional category and use of the resource, with emergency registrars utilising this resource most and GPs the least. The Dental Handbook, specifically designed for ED use, and tooth-filling material contained within this resource, were deemed the most useful components. There were overall positive open-ended question responses regarding the usefulness of the resource, especially when it was made available to clinicians who had attended the education workshops. Utilisation and perceived usefulness of a supporting resource at 6 months are indicators of the effectiveness of a short workshop educational intervention in the management of

  12. Emergency Response Guideline Development

    International Nuclear Information System (INIS)

    Gary D Storrick

    2007-01-01

    Task 5 of the collaborative effort between ORNL, Brazil, and Westinghouse for the International Nuclear Energy Research Initiative entitled 'Development of Advanced Instrumentation and Control for an Integrated Primary System Reactor' focuses on operator control and protection system interaction, with particular emphasis on developing emergency response guidelines (ERGs). As in the earlier tasks, we will use the IRIS plant as a specific example of an integrated primary system reactor (IPSR) design. The present state of the IRIS plant design--specifically, the lack of a detailed secondary system design--precludes establishing detailed emergency procedures at this time. However, we can create a structure for their eventual development. This report summarizes our progress to date. Section 1.2 describes the scope of this effort. Section 2 compares IPSR ERG development to the recent AP1000 effort, and identifies three key plant differences that affect the ERGs and control room designs. The next three sections investigate these differences in more detail. Section 3 reviews the IRIS Safety-by-Design philosophy and its impact on the ERGs. Section 4 looks at differences between the IRIS and traditional loop PWR I and C Systems, and considers their implications for both control room design and ERG development. Section 5 examines the implications of having one operating staff control multiple reactor units. Section 6 provides sample IRIS emergency operating procedures (EOPs). Section 7 summarizes our conclusions

  13. Development of a virtual reality training system. An application to emergency response in radioactive materials transport

    International Nuclear Information System (INIS)

    Watabe, Naohito

    2003-01-01

    A virtual reality (VR) training system was developed for the purpose of confirming the applicability of virtual reality on training systems for emergency response of radioactive materials transport. This system has following features; 1) Accident scenarios were derived from an event tree analysis. 2) Instructors can edit the training scenario. 3) Three VR scenes were prepared: vehicle and equipment checks, vehicle travel on an expressway, and emergency response in a tunnel fire accident. 4) every action by users is recorded automatically. 5) Instructors and users hold briefing session after the training, and they can review and confirm the results with VR animation. 6) A support database is provided for the convenience of users. The applicability of the system was validated through some trial applications and demonstrations. (author)

  14. New Structure of Emergency Response Plan in Croatia

    International Nuclear Information System (INIS)

    Valcic, I.; Subasic, D.; Cavlina, N.

    1998-01-01

    The new structure of a national emergency response plan in the case of nuclear accident is based on general requirements of modernization according to international recommendations, with a new Technical Support Center as a so-called lead technical agency, with the plan adapted to the organization of the Civil Protection, with all necessary elements of preparedness for the event of a nuclear accident in Krsko NPP and Paks NPP and with such a plan of procedures that will, to greatest possible extent, be compatible with the existing plan in neighboring countries Slovenia and Hungary. The main requirement that direct s a new organization scheme for taking protective actions in the event of a nuclear accident, is the requirement of introducing a Technical Support Center. The basic role of TSC is collecting data and information on nuclear accident, analyzing and estimating development of an accident, and preparing proposals for taking protective actions and for informing the public. TSC is required to forward those proposals to the Civil Protection, which on the basis of evaluation of proposals makes decisions on implementation and surveillance of implementation of protective measures. (author)

  15. Development of an extended framework for emergency response criteria. Interim report for comments

    International Nuclear Information System (INIS)

    2005-01-01

    Experience from response to recent nuclear and radiological emergencies has clearly demonstrated the importance of an efficient response system that includes, among other components, emergency plans, procedures, and internally consistent operational criteria. An analysis of lessons identified from recent responses has shown that a lack of crucial components in the emergency response system could result in major radiological and nonradiological consequences at the national level. One of the reasons for the overwhelming psychological consequences of the Chernobyl and Goiania emergencies was public mistrust of decision-makers, who lost their credibility by frequently changing the criteria for taking action. Moreover, national response arrangements that are incompatible among countries can result in major mistrust by the public. It is considered important to have internationally agreed criteria and guidance for emergency response established in advance of an emergency. Currently there are several IAEA safety standards that contain recommendations for response to radiation emergencies, addressing principles and response criteria. Mindful of the lessons identified from recent emergencies, the IAEA convened in November 2001 a technical committee meeting (TCM) to develop aspects of the technical basis for emergency response to radiation emergencies. At this meeting, the lessons from response to the Chernobyl, Goiania and other emergencies over the past years were examined to identify where revisions were needed to the existing international guidance for response. In particular, the existing international criteria and guidance for taking protective and other actions were examined in the light of these lessons. The objectives of this document are: (1) to propose an extension of existing criteria for undertaking protective and other actions during or following a nuclear or radiological emergency that: addresses the lessons from past emergencies, addresses the recently

  16. Method for the development of emergency response preparedness for nuclear or radiological accidents

    International Nuclear Information System (INIS)

    1997-07-01

    This report supplements IAEA emergency preparedness guidance published in the 1980s, and is consistent with the new international guidance. It provides practical advice for the development of an emergency response capability based on the potential nature and magnitude of the risk. In order to apply this method, emergency planners should have a good understanding of the basic radiological emergency response principles. Therefore, other applicable international guidance should be reviewed before using this report. This report provides a practical step-by-step method for developing integrated user, local and national emergency response capabilities. It can also be used as the basis for conducting an audit of an existing emergency response capability. 14 refs, 4 figs, 4 tabs

  17. Lessons Learned from the Response to Radiation Emergencies (1945-2010)

    International Nuclear Information System (INIS)

    2012-01-01

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  18. Lessons Learned from the Response to Radiation Emergencies (1945-2010)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  19. Application of Robotic System for Emergency Response in NPP

    International Nuclear Information System (INIS)

    Jeong, Kyung Min; Seo, Yong Chil; Shin, Ho Chul; Lee, Sung Uk; Cho, Jae Wan; Choi, Young Soo; Kim, Chang Hoi; Kim, Seung Ho

    2010-01-01

    Increasing energy demand and concerns over climate change make increasing use of nuclear power plant in worldwide. Even though the probability of accident is greatly reduced, safety is the highest priority issue in the nuclear energy industry. Applying highly reliable and conservative 'defense in depth' concepts with the design and construction of NPP, there are very little possibilities with which accidents are occur and radioactive materials are released to environments in NPP. But NPP have prepared with the emergency response procedures and conduct exercises for post-accident circumstance according to the procedures. The application of robots for emergency response task for post-accident in nuclear facilities is not a new concept. Robots have been sent to recover the damaged reactor at Chernobyl where human workers could receive a lifetime dose of radiation in minutes. Based on NRC's TMI-2 Cleanup Program, several robots were built in the 1980s to help gather information and remove debris from a reactor at the Three Mile Island nuclear power plant that partially melted down in 1979. The first robot was lowered into the basement through a hatch and human operators monitoring in a control room drove it through mud, water and debris, capturing the initial post-accident images of the reactor's basement. It was used for several years equipped with various tools allowing it to scour surfaces, scoop samples and vacuum sludge. A second version carried a core sampler to determine the intensity and depth of the radiation that had permeated into the walls. To perform cleanup tasks, they built Workhorse that featured system redundancy and had a boom extendable to reach high places, but it was never used because it had too many complexities and to clean and fix. While remote robotics technology has proven to remove the human from the radioactive environment, it is also difficult to make it useful because it may requires skill about remote control and obtaining remote

  20. Application of Robotic System for Emergency Response in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyung Min; Seo, Yong Chil; Shin, Ho Chul; Lee, Sung Uk; Cho, Jae Wan; Choi, Young Soo; Kim, Chang Hoi; Kim, Seung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Increasing energy demand and concerns over climate change make increasing use of nuclear power plant in worldwide. Even though the probability of accident is greatly reduced, safety is the highest priority issue in the nuclear energy industry. Applying highly reliable and conservative 'defense in depth' concepts with the design and construction of NPP, there are very little possibilities with which accidents are occur and radioactive materials are released to environments in NPP. But NPP have prepared with the emergency response procedures and conduct exercises for post-accident circumstance according to the procedures. The application of robots for emergency response task for post-accident in nuclear facilities is not a new concept. Robots have been sent to recover the damaged reactor at Chernobyl where human workers could receive a lifetime dose of radiation in minutes. Based on NRC's TMI-2 Cleanup Program, several robots were built in the 1980s to help gather information and remove debris from a reactor at the Three Mile Island nuclear power plant that partially melted down in 1979. The first robot was lowered into the basement through a hatch and human operators monitoring in a control room drove it through mud, water and debris, capturing the initial post-accident images of the reactor's basement. It was used for several years equipped with various tools allowing it to scour surfaces, scoop samples and vacuum sludge. A second version carried a core sampler to determine the intensity and depth of the radiation that had permeated into the walls. To perform cleanup tasks, they built Workhorse that featured system redundancy and had a boom extendable to reach high places, but it was never used because it had too many complexities and to clean and fix. While remote robotics technology has proven to remove the human from the radioactive environment, it is also difficult to make it useful because it may requires skill about remote control and

  1. Clarification of TMI action plan requirements. Requirements for emergency response capability

    International Nuclear Information System (INIS)

    1983-01-01

    This document, Supplement 1 to NUREG-0737, is a letter from D. G. Eisenhut, Director of the Division of Licensing, NRR, to licensees of operating power reactors, applicants for operating licenses, and holders of construction permits forwarding post-TMI requirements for emergency response capability which have been approved for implementation. On October 30, 1980, the NRC staff issued NUREG-0737, which incorporated into one document all TMI-related items approved for implementation by the Commission at that time. In this NRC report, additional clarification is provided regarding Safety Parameter Display Systems, Detailed Control Room Design Reviews, Regulatory Guide 1.97 (Revision 2) - Application to Emergency Response Facilities, Upgrade of Emergency Operating Procedures, Emergency Response Facilities, and Meteorological Data

  2. Case Study for Effectiveness Analysis on Nuclear Regulatory Infrastructure Support for Emerging Nuclear Energy Countries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. E.; Byeon, M. J.; Yoo, J. W.; Lee, J. M.; Lim, J. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    The donor countries need to make decisions on various steps such as whether to fully accept newcomers’ requests, the depth of support, and how the supportive action will be carried out. Such is not an easy task due to limited time, resources, manpower, etc. Thus, creating an infrastructure to support emerging nuclear energy countries is needed. This paper suggests the resource portfolio concept used in business management and aims to analyze the validity of supporting the new entrants’ development of regulatory infrastructure as a case study. This study tries to develop a very simple Excel-based tool for assessing the supporting strategy quantitatively and screening the activities that is projected to be less effective and attractive. There are many countries, so called newcomers, which have expressed interests in developing their own nuclear power program. It has been recognized by the international community that every country considering embarking upon their own nuclear power program should establish their nuclear safety infrastructure to sustain a high level of nuclear safety. The newcomers have requested for considerable assistance from the IAEA and they already have bilateral cooperation programs with the advanced countries with matured nuclear regulatory programs. Currently, the regulatory bodies that provide support are confronted with two responsibilities as follows; the primary objective of the regulatory bodies is to ensure that the operator fulfills the responsibility to protect human health.

  3. Case Study for Effectiveness Analysis on Nuclear Regulatory Infrastructure Support for Emerging Nuclear Energy Countries

    International Nuclear Information System (INIS)

    Lee, Y. E.; Byeon, M. J.; Yoo, J. W.; Lee, J. M.; Lim, J. H.

    2016-01-01

    The donor countries need to make decisions on various steps such as whether to fully accept newcomers’ requests, the depth of support, and how the supportive action will be carried out. Such is not an easy task due to limited time, resources, manpower, etc. Thus, creating an infrastructure to support emerging nuclear energy countries is needed. This paper suggests the resource portfolio concept used in business management and aims to analyze the validity of supporting the new entrants’ development of regulatory infrastructure as a case study. This study tries to develop a very simple Excel-based tool for assessing the supporting strategy quantitatively and screening the activities that is projected to be less effective and attractive. There are many countries, so called newcomers, which have expressed interests in developing their own nuclear power program. It has been recognized by the international community that every country considering embarking upon their own nuclear power program should establish their nuclear safety infrastructure to sustain a high level of nuclear safety. The newcomers have requested for considerable assistance from the IAEA and they already have bilateral cooperation programs with the advanced countries with matured nuclear regulatory programs. Currently, the regulatory bodies that provide support are confronted with two responsibilities as follows; the primary objective of the regulatory bodies is to ensure that the operator fulfills the responsibility to protect human health

  4. Collaborative situational mapping during emergency response

    NARCIS (Netherlands)

    Gunawan, L.T.; Oomes, A.H.J.; Neerincx, M.; Brinkman, W.-P.; Alers, H.

    2009-01-01

    During emergency response, individuals observe only part of the picture, sharing of information is needed to get the required complete picture. The aim of our study is to get insight in the collaborative mapping process in order to derive requirements for a map-sharing tool. First, we analyzed the

  5. MAppERS: a peer-produced community for emergency support

    Science.gov (United States)

    Frigerio, Simone; Schenato, Luca; Bianchizza, Chiara; Del Bianco, Daniele

    2014-05-01

    A general trend in European governance tends to shift responsibilities in territorial management from national central authorities to local/regional levels and to the citizens as first actors of Civil Protection. Prevention is a long term goal that rests not only on the capacities of professional operators and volunteers, but that has to necessarily imply the involvement and awareness of the citizens over the territory they inhabit. In fact people often do not have chance to interact in the surveillance of the territory and only face risks when they have to bear impacts on their lives. Involvement of population creates more cost-effective and context-specific strategies of territorial surveillance and management. A collaborative user environment is useful for emergency response and support in the wake of disasters, feeding updated information on the ground directly to on-site responders. MAppERS (Mobile Application for Emergency Response and Support) is a EU project (funded under programme 2013-2015 Humanitarian Aid and Civil Protection, ECHO A5) which empowers citizens as "crowd-sourced mappers" through the development of a smart phone application able to collect GPS-localised and detailed parameters, that can then be sent from citizens to civil protection operators in a contest of geospatial response. The process of app design includes feedback from citizens, involving them in training courses on the monitoring of the territory as long term objective of raising public awareness and participation from the citizens, as actors in a networked disaster response community. The project proceeds from the design and testing of the smart phone applications (module MAppERS-V for volunteers, module MAppERS-C for citizens) according to software engineering environment (Android and Iphone SDK). Information exchange and data transfer need clearness and efficiency; thus a previous research is conducted on the cost-effectiveness of already existing practices for territorial

  6. Emergency Preparedness and Response at Nuclear Power Plants in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Khan, L. A.; Qamar, M. A.; Liaquat, M.R., E-mail: samasl@yahoo.com [Pakistan Atomic Energy Commission, Islamabad (Pakistan)

    2014-10-15

    Emergency preparedness and response arrangements at Nuclear Power Plants (NPPs) in Pakistan have been reevaluated in the light of Fukushima Daiichi accident. Appropriate measures have been taken to strengthen and effectively implement the on-site and off-site emergency plans. Verification of these plans is conducted through regulatory review and by witnessing periodic emergency drills and exercises conducted by the NPPs in the fulfilment of the regulatory requirements. Emergency Planning Zones (EPZs) have been revised at NPPs. A multi discipline reserve force has been formed for assistance during severe accidents. Nuclear Emergency Management System (NEMS) has been established at the national level in order to make necessary arrangements for responding to nuclear and radiological emergencies. Training programs for first responders and medical professionals have been launched. Emergencies coordination centres have been established at national and corporate levels. Public awareness program has been initiated to ensure that the surrounding population is provided with appropriate information on emergency planning and response. To share national and international operational experience, Pakistan has arranged various workshops and developed a strong link with International Atomic Energy Agency (IAEA). (author)

  7. Rethinking the Response to Emerging Microbes: Vaccines and Therapeutics in the Ebola Era--a Conference at Harvard Medical School.

    Science.gov (United States)

    Knipe, David M; Whelan, Sean P

    2015-08-01

    Harvard Medical School convened a meeting of biomedical and clinical experts on 5 March 2015 on the topic of "Rethinking the Response to Emerging Microbes: Vaccines and Therapeutics in the Ebola Era," with the goals of discussing the lessons from the recent Ebola outbreak and using those lessons as a case study to aid preparations for future emerging infections. The speakers and audience discussed the special challenges in combatting an infectious agent that causes sporadic outbreaks in resource-poor countries. The meeting led to a call for improved basic medical care for all and continued support of basic discovery research to provide the foundation for preparedness for future outbreaks in addition to the targeted emergency response to outbreaks and targeted research programs against Ebola virus and other specific emerging pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Emergency Response Data System (ERDS) implementation

    International Nuclear Information System (INIS)

    Jolicoeur, J.

    1991-06-01

    The US Nuclear Regulatory Commission has begun implementation of the Emergency Response Data System (ERDS) to upgrade its ability to acquire data from nuclear power plants in the event of an emergency at the plant. ERDS provides a direct real-time transfer of data from licensee plant computers to the NRC Operations Center. The system has been designed to be activated by the licensee during an emergency which has been classified at an ALERT or higher level. The NRC portion of ERDS will receive the data stream, sort and file the data. The users will include the NRC Operations Center, the NRC Regional Office of the affected plant, and if requested the States which are within the ten mile EPZ of the site. The currently installed Emergency Notification System will be used to supplement ERDS data. This report provides the minimum guidance for implementation of ERDS at licensee sites. It is intended to be used for planning implementation under the current voluntary program as well as for providing the minimum standards for implementing the proposed ERDS rule. 4 refs., 3 figs

  9. Emergency Response Data System (ERDS) implementation

    International Nuclear Information System (INIS)

    Jolicoeur, J.

    1990-04-01

    The US Nuclear Regulatory Commission has begun implementation of the Emergency Response Data System (ERDS) to upgrade its ability to acquire data from nuclear power plants in the event of an emergency at the plant. ERDS provides a direct real-time transfer of data from licensee plant computers to the NRC Operations Center. The system has been designed to be activated by the licensee during an emergency which has been classified at an ALERT or higher level. The NRC portion of ERDS will receive the data stream, sort and file the data. The users will include the NRC Operations Center, the NRC Regional Office of the affected plant, and if requested the States which are within the ten mile EPZ of the site. The currently installed Emergency Notification System will be used to supplement ERDS data. This report provides the minimum guidance for implementation of ERDS at licensee sites. It is intended to be used for planning implementation under the current voluntary program as well as for providing the minimum standards for implementing the proposed ERDS rule

  10. Radiological and nuclear emergency preparedness and response. How well are we prepared?

    International Nuclear Information System (INIS)

    Geick, Gunther H.G.; Herrmann, Andre R.; Koch, Doris; Meisenberg, Oliver; Rauber, Dominique; Stuerm, Rolf P.; Weiss, Wolfgang; Miska, Horst; Schoenhacker, Stefan

    2011-01-01

    The contributions to this topic are dealing, in a broad overview, with important aspects of Nuclear Emergency Preparedness and Response, like the influence of the new ICRP recommendations number 103 and number 109 on emergency preparedness and on planning for response, possible problems in installing and operating emergency care centres, experience from exercises as well as the training of response personnel in Austria and Germany. Finally, measures in emergency preparedness with regard to a dirty bomb attack are reported by means of an INEX-4-exercise in Switzerland. (orig.)

  11. An Assessment of the Emerging Networks of Support for Street ...

    African Journals Online (AJOL)

    Nigeria, being asignatory to the Convention on the Rights of the Child (UNCRC, 1989) promulgated the Child Rights Act 2003, which aimed at ameliorating the condition of street children in Nigeria. In line with this, there are emerging networks of support for street children. The extent to which these support networks are ...

  12. Employer Requirements to Work during Emergency Responses: Key Ethics Considerations.

    Science.gov (United States)

    Rutkow, Lainie; Taylor, Holly A; Powell, Tia

    2017-03-01

    Local health departments and their employees are at the forefront of emergency preparedness and response. Yet, recent studies have found that some local public health workers are unwilling to report to work in a variety of disaster scenarios. This can greatly compromise a response, as many local health departments need "all hands on deck" to effectively meet increased demands. To address these concerns, local health departments have employed varied policy strategies to ensure that employees do report to work. After describing different approaches taken by local health departments throughout the United States, we briefly identify and explore key ethics considerations that arise for local health departments when employees are required to report to work for emergency responses. We then discuss how these ethics considerations may inform local health department practices intended to promote a robust emergency response.

  13. Elements of a national emergency response system for nuclear accidents

    International Nuclear Information System (INIS)

    Dickerson, M.H.

    1987-01-01

    The purpose of this paper is to suggest elements for a general emergency response system, employed at a national level, to detect, evaluate and assess the consequences of a radiological atmospheric release occurring within or outside of national boundaries. These elements are focused on the total aspect of emergency response ranging from providing an initial alarm to a total assessment of the environmental and health effects. Elements of the emergency response system are described in such a way that existing resources can be directly applied if appropriate; if not, newly developed or an expansion of existing resources can be employed. The major thrust of this paper is toward a philosophical discussion and general description of resources that would be required to implementation. If the major features of this proposal system are judged desirable for implementation, then the next level of detail can be added. The philosophy underlying this paper is preparedness - preparedness through planning, awareness and the application of technology. More specifically, it is establishment of reasonable guidelines including the definition of reference and protective action levels for public exposure to accidents involving nuclear material; education of the public, government officials and the news media; and the application of models and measurements coupled to computer systems to address a series of questions related to emergency planning, response and assessment. It is the role of a proven national emergency response system to provide reliable, quality-controlled information to decision makers for the management of environmental crises

  14. State-level emergency preparedness and response capabilities.

    Science.gov (United States)

    Watkins, Sharon M; Perrotta, Dennis M; Stanbury, Martha; Heumann, Michael; Anderson, Henry; Simms, Erin; Huang, Monica

    2011-03-01

    Prior assessments of public health readiness had identified gaps in radiation preparedness. In recent years, preparedness planning has involved an "all-hazards" approach. Current assessment of the national status related to radiation public health emergency preparedness capabilities at the state and local health department levels was needed. A survey of state health departments related to radiation readiness was undertaken in 2010 by the Council of State and Territorial Epidemiologists (CSTE). States with nuclear power plants were instructed to consider their responses exclusive of capabilities and resources related to the plants given that the emergency response plans for nuclear power plants are specific and unique. Thirty-eight (76%) state health departments responded to the survey, including 26 of the 31 states with nuclear power plants. Specific strengths noted at the state level included that the majority of states had a written radiation response plan and most plans include a detailed section for communications issues during a radiation emergency. In addition, more than half of the states indicated that their relationship with federal partners is sufficient to provide resources for radiation emergencies, indicating the importance states placed on federal resources and expertise. Specific weaknesses are discussed and include that most states had completed little to no planning for public health surveillance to assess potential human health impacts of a radiation event; less than half had written plans to address exposure assessment, environmental sampling, human specimen collection and analysis, and human health assessment. Few reported having sufficient resources to do public health surveillance, radiation exposure assessment, laboratory functions and other capabilities. Levels of planning, resources and partnerships varied among states, those with nuclear power plants were better prepared. Gaps were evident in all states; however and additional training and

  15. Development of a Real-Time Radiological Area Monitoring Network for Emergency Response at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Bertoldo, N; Hunter, S; Fertig, R; Laguna, G; MacQueen, D

    2004-01-01

    A real-time radiological sensor network for emergency response was developed and deployed at the Lawrence Livermore National Laboratory (LLNL). The Real-Time Radiological Area Monitoring (RTRAM) network is comprised of 16 Geiger-Mueller (GM) sensors positioned on the LLNL Livermore site perimeter to continuously monitor for a radiological condition resulting from a terrorist threat to site security and the health and safety of LLNL personnel. The RTRAM network sensor locations coincide with wind sector directions to provide thorough coverage of the one square mile site. These loW--power sensors are supported by a central command center (CCC) and transmit measurement data back to the CCC computer through the LLNL telecommunications infrastructure. Alarm conditions are identified by comparing current data to predetermined threshold parameters and are validated by comparison with plausible dispersion modeling scenarios and prevailing meteorological conditions. Emergency response personnel are notified of alarm conditions by automatic radio and computer based notifications. A secure intranet provides emergency response personnel with current condition assessment data that enable them to direct field response efforts remotely. The RTRAM network has proven to be a reliable system since initial deployment in August 2001 and maintains stability during inclement weather conditions

  16. Emergency Preparedness and Response: A Safety Net

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, H., E-mail: hannele.aaltonen@stuk.fi [Radiation and Nuclear Safety Authority (STUK), Helsinki (Finland)

    2014-10-15

    Full text: The objective of nuclear regulatory work is to prevent accidents. Nevertheless, possibility of a severe accident cannot be totally excluded, which makes a safety net, efficient emergency preparedness and response, necessary. Should the possibility of accidents be rejected, the result would be in the worst case inadequate protection of population, functions of society, and environment from harmful effects of radiation. Adequate resources for maintenance and development of emergency arrangement are crucial. However, they need to be balanced taking into account risks assessments, justified expectations of society, and international requirements. To successfully respond to an emergency, effective emergency preparedness, such as up-to-date plans and procedures, robust arrangements and knowledgeable and regularly trained staff are required. These, however, are not enough without willingness and proactive attitude to • communicate in a timely manner; • co-operate and coordinate actions; • provide and receive assistance; and • evaluate and improve emergency arrangements. In the establishment and development of emergency arrangements, redundant and diverse means or tools used are needed in, for example, communication and assessment of hazard. Any severe nuclear emergency would affect all countries either directly or indirectly. Thus, national emergency arrangements have to be compatible to the extent practicable with international emergency arrangements. It is important to all countries that the safety nets of emergency arrangements are reliable - and operate efficiently in a coordinated manner when needed - on national, regional and international level. (author)

  17. Decision support systems in nuclear emergencies: harmonizing domestic and reference tools

    International Nuclear Information System (INIS)

    Vamanu, D.; Mateescu, Gh.; Berinde, A.; Slavnicu, D.; Acasandrei, V.; Slavnicu, E.

    2001-01-01

    The paper addresses the issue of securing the compatibility and inter-operability of computer packages designed to perform as decision support tools in the management of radiological emergencies, over the transition times towards the implementation and uniform acceptance and uniform acceptance of internationally-shared reference tools such as the European Union's RODOS (Real Time On-Line Decision Support System for Off-Site Nuclear Emergencies in Europe). One submits that a harmonization between the currently operational, domestic, and the reference tool can be contemplated, based on extensive code comparison and benchmarking. A case in point is presented, paralleling selected RODOS applications on simulated abnormal nuclear events, and the concurrent application of a resident software package, NOTEPAD, developed to emulate RODOS-wise function at IFIH-HH Bucharest. The reproducible similarity may make domestic decision support system (DSS) facilities useful as both practical tools and factors promoting the emergency preparedness awareness, during the interim time laps till the full development and deployment of RODOS as a reference DSS in Europe. (authors)

  18. An application of A.I. techniques for the support of emergency operation

    International Nuclear Information System (INIS)

    Jeong, Kwang-Sub; Yang, Joon-On; Park, C.K.

    1991-01-01

    For the support of emergency operation, COSMOS is being developed at KAERI using A.I. techniques. COSMOC consists of two parts; one is to identify CSF's status and to determine the overall response strategy and the other to generate a set of success paths which restore the challenged CSF's and to rank them. The status of CSF is identified by the rule-based reasoning. The overall response strategy is inferred according to the identified CSF's status. The success paths are generated by the given structure descriptions of systems and the general generation algorithm. Backtracking, an inherent feature of the Prolog language, is used for the search of next success path. Generated success paths are ranked according to either its respective reliability or the number of manual operator's actions required to complete each success path. For efficient man-machine interface, a color graphic display is utilized. COSMOS is being built on a workstation. (author)

  19. Response spectrum analysis for multi-supported subsystems

    International Nuclear Information System (INIS)

    Reed, J.W.

    1983-01-01

    A methodology was developed to analyze multi-supported subsystems (e.g., piping systems) for seismic or other dynamic forces using response spectrum input. Currently, subsystems which are supported at more than one location in a nuclear power plant building are analyzed either by the time-history method or by response spectrum procedures, where spectra which envelop all support locations are used. The former procedure is exceedingly expensive, while the latter procedure is inexpensive but very conservative. Improved analysis procedures are currently being developed which are either coupled- or uncoupled-system approaches. For the coupled-system approach, response feedback between the subsystem and building system is included. For the uncoupled-system approach, feedback is neglected; however, either time history or response spectrum methods can be used. The methodology developed for analyzing multi-supported subsystems is based on the assumption that the building response and the subsystem response are uncoupled. This is the same assumption implicitly made by analysts who design singly-supported subsystems using floor response spectrum input. This approach implies that there is no response feedback between the primary building system and the subsystem, which is generally found to be conservative. The methodology developed for multi-supported subsystems makes this same assumption and thus should produce results with the same ease and degree of accuracy as results obtained for singly-supported subsystems. (orig./HP)

  20. Emergency Response Capability Baseline Needs Assessment - Requirements Document

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, J A

    2016-10-04

    This document was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by LLNL Emergency Management Department Head James Colson. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only addresses emergency response.

  1. NERIS: The European platform on preparedness for nuclear and radiological emergency response and recovery

    International Nuclear Information System (INIS)

    Duranova, T.; Bohunova, J.; Schneider, T.; Biduener, S.; Badelay, J.; Gallego, E.; Gering, F.; Hrdeman, F.; Dubreuil, G.; Murith, Ch.; Oughton, D.; Raskob, W.

    2014-01-01

    The NERIS platform was established in June 2010 to encourage European, national, regional and local authorities, technical support organisation, operators, professional organisations, research institutes, universities, and non-governmental organisations to cooperate and to facilitate access expertise and technology in maintaining competence in the field of nuclear emergency management and recovery for the benefit of European countries and citizens. 49 organisations are members of the NERIS Platform from 24 countries and 20 members are supporting organisations. The NERIS Association has been registered in August 2012 as a legal European Association under the French Law. It is operated by a management board of 10 members and the NERIS R and D Committee elaborates its strategic orientation. The NERIS Platform is linked to research projects, managed by KIT: - NERIS TP 'Towards a self sustaining European Technology Platform on Preparedness for Nuclear and Radiological Emergency Response and Recovery'. - PREPARE project on innovative integrative tools and platforms to be prepared for radiological emergencies and post-accident response in Europe. To set up a common reflection, cooperations have been established with European and international organisations: HERCA, ALLIANCE, CRPPH, ICRP and AIEA. To share issues on lessons learnt from the Fukushima accident, cooperation have been initiated with IGES (Institute for Global Environment Strategies) and with the Fukushima University. The NERIS Platform is also involved in the steering committee of the EC Project OPERRA, aiming at structuring the research in the field of radiation protection at the Horizon 2020. This paper will present the key components of the NERIS Platform and its objectives. (authors)

  2. Dangerous goods emergency response

    International Nuclear Information System (INIS)

    Price, K.

    1991-01-01

    This paper reports on a general overview of the State of Western Australia including: the legal framework of the Dangerous Goods and Emergency response management scenarios (which consist mainly of fuel products such as LP gas); particular problems unique to the Western Australian environment; what has been done to overcome those problems. Western Australia has an area of about two and a half million square kilometers. The demography of the State is such that the population is concentrated in the south-west corner of the State with isolated pockets, mainly associated with mineral development but also associated with agriculture, scattered throughout the State

  3. Generic Procedures for Response to a Nuclear or Radiological Emergency at Research Reactors

    International Nuclear Information System (INIS)

    2011-01-01

    Under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. The IAEA publishes the Emergency Preparedness and Response Series to fulfil that function. This publication is part of that series. IAEA Safety Standards Series No. GS-R-2 Preparedness and Response for a Nuclear or Radiological Emergency, contains the following requirement: 'To ensure that arrangements are in place for a timely, managed, controlled, coordinated and effective response at the scene...'. The IAEA General Conference, in resolution GC(53)/RES/10, continues to encourage Member States '...to enhance, where necessary, their own preparedness and response capabilities for nuclear and radiological incidents and emergencies, by improving capabilities to prevent accidents, to respond to emergencies and to mitigate any harmful consequences...'. This publication is intended to assist Member States meet the requirements of GS-R-2 and enhance their preparedness by providing guidance on the response by facility personnel to emergencies at research reactor facilities.

  4. The development and revision of the Federal Radiological Emergency Response Plan

    International Nuclear Information System (INIS)

    Gant, K.S.; Adler, M.V.; Wolff, W.F.

    1989-01-01

    Since 1985, federal agencies have been using the Federal Radiological Emergency Response Plan (FRERP) in exercises and real events. This experience and the development of other emergency response guidance (e.g., National System for Emergency Coordination) are fueling current efforts to review and revise the FRERP to reflect what the agencies have learned since the FRERP was published. Revision efforts are concentrating on clarifying the plan and addressing deficiencies. No major changes are expected in the general structure of the federal response nor should states need to revise their plans because of these modifications. 5 refs

  5. Human Response to Emergency Warning

    Science.gov (United States)

    Sorensen, J.

    2009-12-01

    Almost every day people evacuate from their homes, businesses or other sites, even ships, in response to actual or predicted threats or hazards. Evacuation is the primary protective action utilized in large-scale emergencies such as hurricanes, floods, tornados, tsunamis, volcanic eruptions, or wildfires. Although often precautionary, protecting human lives by temporally relocating populations before or during times of threat remains a major emergency management strategy. One of the most formidable challenges facing emergency officials is evacuating residents for a fast-moving and largely unpredictable event such as a wildfire or a local tsunami. How to issue effective warnings to those at risk in time for residents to take appropriate action is an on-going problem. To do so, some communities have instituted advanced communications systems that include reverse telephone call-down systems or other alerting systems to notify at-risk residents of imminent threats. This presentation examines the effectiveness of using reverse telephone call-down systems for warning San Diego residents of wildfires in the October of 2007. This is the first systematic study conducted on this topic and is based on interviews with 1200 households in the evacuation areas.

  6. Emergence of Yalom's therapeutic factors in a peer-led, asynchronous, online support group for family caregivers.

    Science.gov (United States)

    Diefenbeck, Cynthia A; Klemm, Paula R; Hayes, Evelyn R

    2014-01-01

    Support groups fill a critical void in the health care system, harnessing the power of shared experiences to provide support to group members. Likewise, family caregivers fill a void in the health care system, providing billions in unpaid care to the chronically ill. Caregiver support groups offer an opportunity for alleviating the psychological burden of caregiving. The power of any group, including a support group, to foster psychological well-being lies in its ability to cultivate Yalom's therapeutic factors. Gaps in the literature remain regarding the ability of non-prototypical groups to promote therapeutic mechanisms of change. The purpose of this study was to determine if and when Yalom's therapeutic group factors emerged in a peer-led support group delivered in an asynchronous, online format. Qualitative content analysis utilizing deductive category application was employed. Participants' responses were coded and frequency counts were conducted. Results revealed that 9 of 11 therapeutic factors emerged over the course of the group, with Group Cohesiveness, Catharsis, Imparting of Information, and Universality occurring most often. Several factors, including Interpersonal Learning, Corrective Recapitulation of the Primary Family Group, Imitative Behavior, and Development of Socializing Techniques were absent or virtually absent, likely due to the peer-led format of the group. Progression of therapeutic factors over the course of the group is presented. Findings demonstrate the presence of a variety of Yalom's therapeutic factors in an asynchronous, peer-led online support group.

  7. Community response grids: using information technology to help communities respond to bioterror emergencies.

    Science.gov (United States)

    Jaeger, Paul T; Fleischmann, Kenneth R; Preece, Jennifer; Shneiderman, Ben; Wu, Philip Fei; Qu, Yan

    2007-12-01

    Access to accurate and trusted information is vital in preparing for, responding to, and recovering from an emergency. To facilitate response in large-scale emergency situations, Community Response Grids (CRGs) integrate Internet and mobile technologies to enable residents to report information, professional emergency responders to disseminate instructions, and residents to assist one another. CRGs use technology to help residents and professional emergency responders to work together in community response to emergencies, including bioterrorism events. In a time of increased danger from bioterrorist threats, the application of advanced information and communication technologies to community response is vital in confronting such threats. This article describes CRGs, their underlying concepts, development efforts, their relevance to biosecurity and bioterrorism, and future research issues in the use of technology to facilitate community response.

  8. The atmospheric release advisory capability (ARAC): A federal emergency response capability

    International Nuclear Information System (INIS)

    Dickerson, M.H.; Sullivan, T.J.

    1988-03-01

    The Atmospheric Release Capability (ARAC) is a Department of Energy (DOE)-sponsored emergency-response service set up to provide real-time prediction of the dose levels and the extent of surface contamination resulting from a broad range of possible occurrences (accidents, spills, extortion threats involving nuclear material, reentry of nuclear-powered satellites, and atmospheric nuclear tests) that could involve the release of airborne radioactive material. During the past decade, ARAC has responded to more than 150 real-time situations, including exercises. The most notable responses include the Three Mile Island accident in Pennsylvania, the Titan II missile accident in Arkansas, the reentry of the USSR's COSMOS-954 into the atmosphere over Canada, the accidental release of uranium hexafluoride from the Sequoyah Facility accident in Oklahoma, and, most recently, the Chernobyl reactor accident in the Soviet Union. ARAC currently supports the emergency-preparedness plans at 50 Department of Defense (DOD) and DOE sites within the US and also responds to accidents that happen elsewhere. Our ARAC center serves as the focal point for data acquisition, data analysis and assessments during a response, using a computer-based communication network to acquire real-time weather data from the accident site and the surrounding region, as well as pertinent accident information. Its three-dimensional computer models for atmospheric dispersion, MATHEW and ADPIC, digest all this information and produce the predictions used in accident assessment. 9 refs., 6 figs., 1 tab

  9. Simulation of emergency response operations for a static chemical spill within a building using an opportunistic resource utilization network

    NARCIS (Netherlands)

    Lilien, L.T.; Elbes, M.W.; Ben Othmane, L.; Salih, R.M.

    2013-01-01

    We investigate supporting emergency response operations with opportunistic resource utilization networks ("oppnets"), based on a network paradigm for inviting and integrating diverse devices and systems available in the environment. We simulate chemical spill on a single floor of a building and

  10. Development of Pediatric Neurologic Emergency Life Support Course: A Preliminary Report.

    Science.gov (United States)

    Haque, Anwarul; Arif, Fehmina; Abass, Qalab; Ahmed, Khalid

    2017-11-01

    Acute neurological emergencies (ANEs) in children are common life-threatening illnesses and are associated with high mortality and severe neurological disability in survivors, if not recognized early and treated appropriately. We describe our experience of teaching a short, novel course "Pediatric Neurologic Emergency Life Support" to pediatricians and trainees in a resource-limited country. This course was conducted at 5 academic hospitals from November 2013 to December 2014. It is a hybrid of pediatric advance life support and emergency neurologic life support. This course is designed to increase knowledge and impart practical training on early recognition and timely appropriate treatment in the first hour of children with ANEs. Neuroresuscitation and neuroprotective strategies are key components of this course to prevent and treat secondary injuries. Four cases of ANEs (status epilepticus, nontraumatic coma, raised intracranial pressure, and severe traumatic brain injury) were taught as a case simulation in a stepped-care, protocolized approach based on best clinical practices with emphasis on key points of managements in the first hour. Eleven courses were conducted during the study period. One hundred ninety-six physicians including 19 consultants and 171 residents participated in these courses. The mean (SD) score was 65.15 (13.87%). Seventy percent (132) of participants were passed (passing score > 60%). The overall satisfaction rate was 85%. Pediatric Neurologic Emergency Life Support was the first-time delivered educational tool to improve outcome of children with ANEs with good achievement and high satisfaction rate of participants. Large number courses are required for future validation.

  11. Moments of disaster response in the emergency department (ED).

    Science.gov (United States)

    Hammad, Karen S; Arbon, Paul; Gebbie, Kristine; Hutton, Alison

    2017-11-01

    We experience our lives as a series of memorable moments, some good and some bad. Undoubtedly, the experience of participating in disaster response, is likely to stand out as a memorable moment in a nurses' career. This presentation will describe five distinct moments of nursing in the emergency department (ED) during a disaster response. A Hermeneutic Phenomenological approach informed by van Manen underpins the research process. Thirteen nurses from different countries around the world participated in interviews about their experience of working in the ED during a disaster. Thematic analysis resulted in five moments of disaster response which are common to the collective participant experience. The 5 themes emerge as Notification (as a nurse finds out that the ED will be receiving casualties), Waiting (waiting for the patients to arrive to the ED), Patient Arrival (the arrival of the first patients to the ED), Caring for patients (caring for people affected by the disaster) and Reflection (the moment the disaster response comes to an end). This paper provides an in-depth insight into the experience of nursing in the ED during a disaster response which can help generate awareness and inform future disaster preparedness of emergency nurses. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Emergency Response Damage Assessment using Satellite Remote Sensing Data

    Science.gov (United States)

    Clandillon, Stephen; Yésou, Hervé; Schneiderhan, Tobias; de Boissezon, Hélène; de Fraipont, Paul

    2013-04-01

    During disasters rescue and relief organisations need quick access to reliable and accurate information to be better equipped to do their job. It is increasingly felt that satellites offer a unique near real time (NRT) tool to aid disaster management. A short introduction to the International Charter 'Space and Major Disasters', in operation since 2000 promoting worldwide cooperation among member space agencies, will be given as it is the foundation on which satellite-based, emergency response, damage assessment has been built. Other complementary mechanisms will also be discussed. The user access, triggering mechanism, an essential component for this user-driven service, will be highlighted with its 24/7 single access point. Then, a clear distinction will be made between data provision and geo-information delivery mechanisms to underline the user need for geo-information that is easily integrated into their working environments. Briefly, the path to assured emergency response product quality will be presented beginning with user requirements, expressed early-on, for emergency response value-adding services. Initiatives were then established, supported by national and European institutions, to develop the sector, with SERTIT and DLR being key players, providing support to decision makers in headquarters and relief teams in the field. To consistently meet the high quality levels demanded by users, rapid mapping has been transformed via workflow and quality control standardisation to improve both speed and quality. As such, SERTIT located in Alsace, France, and DLR/ZKI from Bavaria, Germany, join their knowledge in this presentation to report about recent standards as both have ISO certified their rapid mapping services based on experienced, well-trained, 24/7 on-call teams and established systems providing the first crisis analysis product in 6 hours after satellite data reception. The three main product types provided are then outlined: up-to-date pre

  13. Example of emergency response model evaluation of studies using the Mathew/Adpic models

    International Nuclear Information System (INIS)

    Dickerson, M.H.; Lange, R.

    1986-04-01

    This report summarizes model evaluation studies conducted for the MATHEW/ADPIC transport and diffusion models during the past ten years. These models support the US Department of Energy Atmospheric Release Advisory Capability, an emergency response service for atmospheric releases of nuclear material. Field studies involving tracer releases used in these studies cover a broad range of meteorology, terrain and tracer release heights, the three most important aspects of estimating air concentration values resulting from airborne releases of toxic material. Results of these studies show that these models can estimate air concentration values within a factor of 2 20% to 50% of the time and a factor of 5 40% to 80% of the time. As the meterology and terrain become more complex and the release height of the tracer is increased, the accuracy of the model calculations degrades. This band of uncertainty appears to correctly represent the capability of these models at this time. A method for estimating angular uncertainty in the model calculations is described and used to suggest alternative methods for evaluating emergency response models

  14. Hazardous materials transportation and emergency response programs

    International Nuclear Information System (INIS)

    Joy, D.S.; Fore, C.S.

    1983-01-01

    This presentation consists of the following visual aids; (1) detailed routing capabilities of truck, rail, barge; (2) legislative data base for hazardous materials; and (3) emergency response of accident site Eddyville, Kentucky (airports in vicinity of Eddyville, KY)

  15. Understanding the Value of a Computer Emergency Response Capability for Nuclear Security

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, Peter Donald [Idaho National Laboratory; Rodriguez, Julio Gallardo [Idaho National Laboratory

    2015-06-01

    The international nuclear community has a great understanding of the physical security needs relating to the prevention, detection, and response of malicious acts associated with nuclear facilities and radioactive material. International Atomic Energy Agency (IAEA) Nuclear Security Recommendations (INFCIRC_225_Rev 5) outlines specific guidelines and recommendations for implementing and maintaining an organization’s nuclear security posture. An important element for inclusion into supporting revision 5 is the establishment of a “Cyber Emergency Response Team (CERT)” focused on the international communities cybersecurity needs to maintain a comprehensive nuclear security posture. Cybersecurity and the importance of nuclear cybersecurity require that there be a specific focus on developing an International Nuclear CERT (NS-CERT). States establishing contingency plans should have an understanding of the cyber threat landscape and the potential impacts to systems in place to protect and mitigate malicious activities. This paper will outline the necessary components, discuss the relationships needed within the international community, and outline a process by which the NS-CERT identifies, collects, processes, and reports critical information in order to establish situational awareness (SA) and support decision-making

  16. Using decision analysis to support proactive management of emerging infectious wildlife diseases

    Science.gov (United States)

    Grant, Evan H. Campbell; Muths, Erin L.; Katz, Rachel A.; Canessa, Stefano; Adams, Michael J.; Ballard, Jennifer R.; Berger, Lee; Briggs, Cheryl J.; Coleman, Jeremy; Gray, Matthew J.; Harris, M. Camille; Harris, Reid N.; Hossack, Blake R.; Huyvaert, Kathryn P.; Kolby, Jonathan E.; Lips, Karen R.; Lovich, Robert E.; McCallum, Hamish I.; Mendelson, Joseph R.; Nanjappa, Priya; Olson, Deanna H.; Powers, Jenny G.; Richgels, Katherine L. D.; Russell, Robin E.; Schmidt, Benedikt R.; Spitzen-van der Sluijs, Annemarieke; Watry, Mary Kay; Woodhams, Douglas C.; White, C. LeAnn

    2017-01-01

    Despite calls for improved responses to emerging infectious diseases in wildlife, management is seldom considered until a disease has been detected in affected populations. Reactive approaches may limit the potential for control and increase total response costs. An alternative, proactive management framework can identify immediate actions that reduce future impacts even before a disease is detected, and plan subsequent actions that are conditional on disease emergence. We identify four main obstacles to developing proactive management strategies for the newly discovered salamander pathogen Batrachochytrium salamandrivorans (Bsal). Given that uncertainty is a hallmark of wildlife disease management and that associated decisions are often complicated by multiple competing objectives, we advocate using decision analysis to create and evaluate trade-offs between proactive (pre-emergence) and reactive (post-emergence) management options. Policy makers and natural resource agency personnel can apply principles from decision analysis to improve strategies for countering emerging infectious diseases.

  17. Nuclear emergency preparedness and response in Germany

    International Nuclear Information System (INIS)

    Miska, H.

    2009-01-01

    Off-site nuclear emergency response in Germany is divided into disaster response under the responsibility of the Laender and measures for precautionary radiation protection pursuant to the Precautionary Radiation Protection Act under the lead of federal authorities. Early countermeasures at the regional level require a different management than long-term and comprehensive actions of precautionary radiation protection. As situations may arise in which measures of both approaches overlap with regard to place and time, it is essential to make thorough preparations in order to avoid problems with implementation. (orig.)

  18. A task-based support architecture for developing point-of-care clinical decision support systems for the emergency department.

    Science.gov (United States)

    Wilk, S; Michalowski, W; O'Sullivan, D; Farion, K; Sayyad-Shirabad, J; Kuziemsky, C; Kukawka, B

    2013-01-01

    The purpose of this study was to create a task-based support architecture for developing clinical decision support systems (CDSSs) that assist physicians in making decisions at the point-of-care in the emergency department (ED). The backbone of the proposed architecture was established by a task-based emergency workflow model for a patient-physician encounter. The architecture was designed according to an agent-oriented paradigm. Specifically, we used the O-MaSE (Organization-based Multi-agent System Engineering) method that allows for iterative translation of functional requirements into architectural components (e.g., agents). The agent-oriented paradigm was extended with ontology-driven design to implement ontological models representing knowledge required by specific agents to operate. The task-based architecture allows for the creation of a CDSS that is aligned with the task-based emergency workflow model. It facilitates decoupling of executable components (agents) from embedded domain knowledge (ontological models), thus supporting their interoperability, sharing, and reuse. The generic architecture was implemented as a pilot system, MET3-AE--a CDSS to help with the management of pediatric asthma exacerbation in the ED. The system was evaluated in a hospital ED. The architecture allows for the creation of a CDSS that integrates support for all tasks from the task-based emergency workflow model, and interacts with hospital information systems. Proposed architecture also allows for reusing and sharing system components and knowledge across disease-specific CDSSs.

  19. Effects of support masses on seismic response of piping and supports

    International Nuclear Information System (INIS)

    Iotti, R.C.; Dinkevich, S.

    1985-01-01

    A special methodology is presented for quantitatively predicting when the effect of piping restraint masses is significant and should be explicitly considered in piping seismic analyses which use the response spectrum method. It is concluded that the effect of support mass in the unrestrained direction is to increase piping and support responses by a percentage no larger than twice the ratio of the support to the pipe-supported span mass. In the restrained direction the mass of the support significantly reduces its dynamic stiffness so that for low support stiffnesses and relatively large mass the support can act as an amplifier of vibration. The dynamic effect, however, is negligible for very stiff supports. (orig.)

  20. Oil supply security -- Emergency response of IEA countries 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-29

    When Hurricane Katrina hit the Gulf of Mexico in 2005, the region's oil production and refining infrastructure was devastated and world energy markets were disrupted. The International Energy Agency decided in a matter of days to bring 60 million barrels of additional oil to the market. The emergency response system worked - the collective action helped to stabilise global markets. Since its founding in 1974, oil supply security has been a core mission of the IEA and the Agency has improved its mechanisms to respond to short-term oil supply disruptions. Nevertheless, numerous factors will continue to test the delicate balance of supply and demand. Oil demand growth will continue to accelerate in Asia; oil will be increasingly produced by a shrinking number of countries; and capacities in the supply chain will need to expand. These are just a few of the challenges facing an already tight market. What are the emergency response systems of IEA countries? How are their emergency structures organised? How prepared is the IEA to deal with an oil supply disruption? This publication addresses these questions. It presents another cycle of rigorous reviews of the emergency response mechanisms of IEA member countries. The goal of these reviews is to ensure that the IEA stays ready to respond effectively to oil supply disruptions. This publication also includes overviews of how China, India and countries of Southeast Asia are progressing with domestic policies to improve oil supply security, based on emergency stocks.

  1. Oil supply security -- Emergency response of IEA countries 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-29

    When Hurricane Katrina hit the Gulf of Mexico in 2005, the region's oil production and refining infrastructure was devastated and world energy markets were disrupted. The International Energy Agency decided in a matter of days to bring 60 million barrels of additional oil to the market. The emergency response system worked - the collective action helped to stabilise global markets. Since its founding in 1974, oil supply security has been a core mission of the IEA and the Agency has improved its mechanisms to respond to short-term oil supply disruptions. Nevertheless, numerous factors will continue to test the delicate balance of supply and demand. Oil demand growth will continue to accelerate in Asia; oil will be increasingly produced by a shrinking number of countries; and capacities in the supply chain will need to expand. These are just a few of the challenges facing an already tight market. What are the emergency response systems of IEA countries? How are their emergency structures organised? How prepared is the IEA to deal with an oil supply disruption? This publication addresses these questions. It presents another cycle of rigorous reviews of the emergency response mechanisms of IEA member countries. The goal of these reviews is to ensure that the IEA stays ready to respond effectively to oil supply disruptions. This publication also includes overviews of how China, India and countries of Southeast Asia are progressing with domestic policies to improve oil supply security, based on emergency stocks.

  2. Short radiological emergency response training program

    International Nuclear Information System (INIS)

    Williams, R.D.; Greenhouse, N.A.

    1977-01-01

    This paper presents an outline of a radiological emergency response training program conducted at Brookhaven National Laboratory by the health physics and safety training staff. This course is given to groups from local, county, state, and federal agencies and industrial organizations. It is normally three days in length, although the structure is flexible to accommodate individual needs and prior training. An important feature of the course is an emergency exercise utilizing a short lived radionuclide to better simulate real accident conditions. Groups are encouraged to use their own instruments to gain better familiarity with their operating characteristics under field conditions. Immediately following the exercise, a critical review of the students' performance is conducted

  3. Identifying and training non-technical skills of nuclear emergency response teams

    International Nuclear Information System (INIS)

    Crichton, M.T.; Flin, R.

    2004-01-01

    Training of the non-technical (social and cognitive) skills that are crucial to safe and effective management by teams in emergency situations is an issue that is receiving increasing emphasis in many organisations, particularly in the nuclear power industry. As teams play a major role in emergency response organisations (ERO), effective functioning and interactions within, between and across teams is crucial, particularly as the management of an emergency situation often requires that teams are extended by members from various other sections and strategic groups throughout the company, as well as members of external agencies. A series of interviews was recently conducted with members of a UK nuclear emergency response organisation to identify the non-technical skills required by team members that would be required for managing an emergency. Critical skills have been identified as decision making and situation assessment, as well as communication, teamwork, and stress management. A number of training strategies are discussed which can be tailored to the roles and responsibilities of the team members and the team leader, based on the roles within the team being defined as either Decision Maker, Evaluator, or Implementor, according to Nuclear Energy Institute (NEI) classifications. It is anticipated that enhanced learning of the necessary non-technical skills, through experience and directed practice, will improve the skills of members of emergency response teams

  4. Identifying and training non-technical skills of nuclear emergency response teams

    Energy Technology Data Exchange (ETDEWEB)

    Crichton, M.T. E-mail: m.crichton@abdn.ac.uk; Flin, R

    2004-08-01

    Training of the non-technical (social and cognitive) skills that are crucial to safe and effective management by teams in emergency situations is an issue that is receiving increasing emphasis in many organisations, particularly in the nuclear power industry. As teams play a major role in emergency response organisations (ERO), effective functioning and interactions within, between and across teams is crucial, particularly as the management of an emergency situation often requires that teams are extended by members from various other sections and strategic groups throughout the company, as well as members of external agencies. A series of interviews was recently conducted with members of a UK nuclear emergency response organisation to identify the non-technical skills required by team members that would be required for managing an emergency. Critical skills have been identified as decision making and situation assessment, as well as communication, teamwork, and stress management. A number of training strategies are discussed which can be tailored to the roles and responsibilities of the team members and the team leader, based on the roles within the team being defined as either Decision Maker, Evaluator, or Implementor, according to Nuclear Energy Institute (NEI) classifications. It is anticipated that enhanced learning of the necessary non-technical skills, through experience and directed practice, will improve the skills of members of emergency response teams.

  5. Training programs for emergency response personnel at Hanford

    International Nuclear Information System (INIS)

    Oscarson, E.E.

    1979-01-01

    The Three Mile Island reactor accident has focused attention on emergency planning and preparedness including selection and training of personnel. At Hanford, Pacific Northwest Laboratory (PNL) is in the unique position of providing emergency response personnel, planning, training and equipment not only for its own organization and facilities but also for the Hanford Site in general, as well as the Interagency Radiological Assistance Plan (IRAP) Region 8 Team. Team members are chosen for one or more of the emergency teams based upon professional education and/or experience as well as interest, aptitude and specialized knowledge. Consequently, the initial training orientation of each new team member is not directed toward general professional ability, but rather toward specialized knowledge required to carry out their assigned emergency tasks. Continual training and practice is necessary to maintain the interest and skills for effectively coping with major emergencies. The types of training which are conducted include: tests of emergency systems and/or procedures; drills involving plant employees and/or emergency team members (e.g., activation of emergency notification systems); short training sessions on special topics; and realistic emergency exercises involving the simulation of major accidents wherein the emergency team must solve specific problems on a real time basis

  6. Radiological transportation emergency response training course funding and timing in the southern states

    International Nuclear Information System (INIS)

    1991-10-01

    The following is a review of the enabling statutes of 16 southern states regarding training for personnel preparing for or responding to a transportation-related emergency involving highway route-controlled quantities of spent fuel and high-level radioactive waste. This report outlines the funding sources and procedures for administering funds for programs attended by state and local officials. Additionally, the report outlines the views of emergency response officials in the southem states concerning the timing and administration of future federal assistance to be provided under section 180(c) of the Nuclear Waste Policy Amendments Act. Under section 180(c) of the Nuclear Waste Policy Amendments Act of 1987, the US Department of Energy (DOE) is required to provide technical assistance and funds to states for training public safety officials of appropriate units of local government and Indian tribes when spent nuclear fuel or high-level radioactive waste is transported through their jurisdictions. The Comprehensive Cooperative Agreement (CCA) is the primary funding mechanism for federal assistance to states for the development of their overall emergency management capabilities. FEMA supports 12 separate emergency management programs including the Emergency Management Training program (EMT). This program provides funds for emergency management training and technical assistance to states for unique state training needs. Funds may be used for instructors, students and other related costs

  7. Using Geo-Data Corporately on the Response Phase of Emergency Management

    Science.gov (United States)

    Demir Ozbek, E.; Ates, S.; Aydinoglu, A. C.

    2015-08-01

    Response phase of emergency management is the most complex phase in the entire cycle because it requires cooperation between various actors relating to emergency sectors. A variety of geo-data is needed at the emergency response such as; existing data provided by different institutions and dynamic data collected by different sectors at the time of the disaster. Disaster event is managed according to elaborately defined activity-actor-task-geodata cycle. In this concept, every activity of emergency response is determined with Standard Operation Procedure that enables users to understand their tasks and required data in any activity. In this study, a general conceptual approach for disaster and emergency management system is developed based on the regulations to serve applications in Istanbul Governorship Provincial Disaster and Emergency Directorate. The approach is implemented to industrial facility explosion example. In preparation phase, optimum ambulance locations are determined according to general response time of the ambulance to all injury cases in addition to areas that have industrial fire risk. Management of the industrial fire case is organized according to defined actors, activities, and working cycle that describe required geo-data. A response scenario was prepared and performed for an industrial facility explosion event to exercise effective working cycle of actors. This scenario provides using geo-data corporately between different actors while required data for each task is defined to manage the industrial facility explosion event. Following developing web technologies, this scenario based approach can be effective to use geo-data on the web corporately.

  8. Application of a geographic information system for radiologic emergency response

    International Nuclear Information System (INIS)

    Best, R.G.; Doyle, J.F.

    1995-01-01

    A geographic information system (GIS) is a multifunctional analytical tool that can be used to compile available data and derive information. A GIS is a computerized database management system for the capture, storage, retrieval, analysis, and display of spatial data. Maps are the most common type of spatial data, but any type of data that can be referenced by an x-y location or geographic coordinate can be used in a GIS. In a radiological emergency, it is critical that data of all types be rapidly compiled into a common format in order to make accurate observations and informed decisions. Developing a baseline GIS for nuclear facilities would offer a significant incentive for all organizations to contribute to and utilize this powerful data management tool. The system being developed could integrate all elements of emergency planning, from the initial protective actions based on models through the emergency monitoring phase, and finally ending with the complex reentry and recovery phase. Within the Federal Radiological Monitoring and Assessment Center (FRMAC), there is a continuing effort to improve the data management and communication process. To demonstrate the potential of GIS for emergency response, the system has been utilized in interagency FRMAC exercises. An interactive GIS system has been deployed and used to analyze the available spatial data to help determine the impact of a hypothetical radiological release and to develop mitigation plans. For this application, both hardcopy and real-time spatial displays were generated with the GIS. Composite maps with different sizes, scales, and themes were produced to support the exercises

  9. Planning and Preparing for Emergency Response to Transport Accidents Involving Radioactive Material. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide provides guidance on various aspects of emergency planning and preparedness for dealing effectively and safely with transport accidents involving radioactive material, including the assignment of responsibilities. It reflects the requirements specified in Safety Standards Series No. TS-R-1, Regulations for the Safe Transport of Radioactive Material, and those of Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Framework for planning and preparing for response to accidents in the transport of radioactive material; 3. Responsibilities for planning and preparing for response to accidents in the transport of radioactive material; 4. Planning for response to accidents in the transport of radioactive material; 5. Preparing for response to accidents in the transport of radioactive material; Appendix I: Features of the transport regulations influencing emergency response to transport accidents; Appendix II: Preliminary emergency response reference matrix; Appendix III: Guide to suitable instrumentation; Appendix IV: Overview of emergency management for a transport accident involving radioactive material; Appendix V: Examples of response to transport accidents; Appendix VI: Example equipment kit for a radiation protection team; Annex I: Example of guidance on emergency response to carriers; Annex II: Emergency response guide.

  10. Support-vector-based emergent self-organising approach for emotional understanding

    Science.gov (United States)

    Nguwi, Yok-Yen; Cho, Siu-Yeung

    2010-12-01

    This study discusses the computational analysis of general emotion understanding from questionnaires methodology. The questionnaires method approaches the subject by investigating the real experience that accompanied the emotions, whereas the other laboratory approaches are generally associated with exaggerated elements. We adopted a connectionist model called support-vector-based emergent self-organising map (SVESOM) to analyse the emotion profiling from the questionnaires method. The SVESOM first identifies the important variables by giving discriminative features with high ranking. The classifier then performs the classification based on the selected features. Experimental results show that the top rank features are in line with the work of Scherer and Wallbott [(1994), 'Evidence for Universality and Cultural Variation of Differential Emotion Response Patterning', Journal of Personality and Social Psychology, 66, 310-328], which approached the emotions physiologically. While the performance measures show that using the full features for classifications can degrade the performance, the selected features provide superior results in terms of accuracy and generalisation.

  11. [Establishment of response system to emergency parasitic disease affairs in China].

    Science.gov (United States)

    Chun-Li, C; Le-Ping, S; Qing-Biao, H; Bian-Li, X U; Bo, Z; Jian-Bing, L; Dan-Dan, L; Shi-Zhu, L I; Oning, X; Xiao-Nong, Z

    2017-08-14

    China's prevention and control of parasitic diseases has made remarkable achievements. However, the prevalence and transmission of parasitic diseases is impacted by the complicated natural and social factors of environment, natural disasters, population movements, and so on. Therefore, there are still the risks of the outbreak of emergency parasitic diseases affairs, which may affect the control effectiveness of parasitic diseases and endanger the social stability seriously. In this article, we aim at the analysis of typical cases of emergency parasitic disease affairs and their impacts on public health security in China in recently years, and we also elaborate the disposal characteristics of emergency parasitic disease affairs, and propose the establishment of response system to emergency parasitic disease affairs in China, including the organizational structure and response flow path, and in addition, point out that, in the future, we should strengthen the system construction and measures of the response system to emergency parasitic disease affairs, so as to control the risk and harm of parasitic disease spread as much as possible and to realize the early intervention and proper disposal of emergency parasitic disease affairs.

  12. The Fukushima Daiichi Accident. Technical Volume 3/5. Emergency Preparedness and Response

    International Nuclear Information System (INIS)

    2015-08-01

    This volume describes the key events and response actions from the onset of the accident at the Fukushima Daiichi nuclear power plant (NPP), operated by the Tokyo Electric Power Company (TEPCO), on 11 March 2011. It also describes the national emergency preparedness and response (EPR) system in place in Japan and the international EPR framework prior to the accident. It is divided into five sections. Section 3.1 describes the initial actions taken by Japan in response to the accident, involving: identification of the accident, notification of off-site authorities and activation of the response; mitigatory actions taken on-site; and initial off-site response. Section 3.2 describes the protective measures taken for personnel in response to the natural disaster, protection of emergency workers, medical management of emergency workers and the voluntary involvement of members of the public in the emergency response. Section 3.3 describes the protective actions and other response actions taken by Japan to protect the public. It addresses urgent and early protective actions; the use of a dose projection model, the System for Prediction of Environmental Emergency Dose Information (SPEEDI), as a basis for decisions on protective actions during the accident; environmental monitoring; provision of information to the public and international community; and issues related to international trade and waste management. Section 3.4 describes the transition from the emergency phase to the recovery phase. It also addresses the national analysis of the accident and the emergency response. Section 3.5 describes the response by the IAEA, other international organizations within the Inter- Agency Committee on Radiological and Nuclear Emergencies (IACRNE), the actions of IAEA Member States with regard to protective actions recommended to their nationals in Japan and the provision of international assistance. A summary, observations and lessons conclude each section. There are three

  13. Conceptual design report, Hazardous Materials Management and Emergency Response (HAMMER) Training Center

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-11-09

    For the next 30 years, the main activities at the US Department of Energy (DOE) Hanford Site will involve the management, handling, and cleanup of toxic substances. If the DOE is to meet its high standards of safety, the thousands of workers involved in these activities will need systematic training appropriate to their tasks and the risks associated with these tasks. Furthermore, emergency response for DOE shipments is the primary responsibility of state, tribal, and local governments. A collaborative training initiative with the DOE will strengthen emergency response at the Hanford Site and within the regional communities. Local and international labor has joined the Hazardous Materials Management and Emergency Response (HAMMER) partnership, and will share in the HAMMER Training Center core programs and facilities using their own specialized trainers and training programs. The HAMMER Training Center will provide a centralized regional site dedicated to the training of hazardous material, emergency response, and fire fighting personnel.

  14. Conceptual design report, Hazardous Materials Management and Emergency Response (HAMMER) Training Center

    International Nuclear Information System (INIS)

    Kelly, K.E.

    1994-01-01

    For the next 30 years, the main activities at the US Department of Energy (DOE) Hanford Site will involve the management, handling, and cleanup of toxic substances. If the DOE is to meet its high standards of safety, the thousands of workers involved in these activities will need systematic training appropriate to their tasks and the risks associated with these tasks. Furthermore, emergency response for DOE shipments is the primary responsibility of state, tribal, and local governments. A collaborative training initiative with the DOE will strengthen emergency response at the Hanford Site and within the regional communities. Local and international labor has joined the Hazardous Materials Management and Emergency Response (HAMMER) partnership, and will share in the HAMMER Training Center core programs and facilities using their own specialized trainers and training programs. The HAMMER Training Center will provide a centralized regional site dedicated to the training of hazardous material, emergency response, and fire fighting personnel

  15. Mobile emergency, an emergency support system for hospitals in mobile devices: pilot study.

    Science.gov (United States)

    Bellini, Pierfrancesco; Boncinelli, Sergio; Grossi, Francesco; Mangini, Marco; Nesi, Paolo; Sequi, Leonardo

    2013-05-23

    Hospitals are vulnerable to natural disasters, man-made disasters, and mass causalities events. Within a short time, hospitals must provide care to large numbers of casualties in any damaged infrastructure, despite great personnel risk, inadequate communications, and limited resources. Communications are one of the most common challenges and drawbacks during in-hospital emergencies. Emergency difficulties in communicating with personnel and other agencies are mentioned in literature. At the moment of emergency inception and in the earliest emergency phases, the data regarding the true nature of the incidents are often inaccurate. The real needs and conditions are not yet clear, hospital personnel are neither efficiently coordinated nor informed on the real available resources. Information and communication technology solutions in health care turned out to have a great positive impact both on daily working practice and situations. The objective of this paper was to find a solution that addresses the aspects of communicating among medical personnel, formalizing the modalities and protocols and the information to guide the medical personnel during emergency conditions with a support of a Central Station (command center) to cope with emergency management and best practice network to produce and distribute intelligent content made available in the mobile devices of the medical personnel. The aim was to reduce the time needed to react and to cope with emergency organization, while facilitating communications. The solution has been realized by formalizing the scenarios, extracting, and identifying the requirements by using formal methods based on unified modeling language (UML). The system and was developed using mobile programming under iOS Apple and PHP: Hypertext Preprocessor My Structured Query Language (PHP MySQL). Formal questionnaires and time sheets were used for testing and validation, and a control group was used in order to estimate the reduction of time needed

  16. Factors influencing readiness to deploy in disaster response: findings from a cross-sectional survey of the Department of Veterans Affairs Disaster Emergency Medical Personnel System.

    Science.gov (United States)

    Zagelbaum, Nicole K; Heslin, Kevin C; Stein, Judith A; Ruzek, Josef; Smith, Robert E; Nyugen, Tam; Dobalian, Aram

    2014-07-19

    The Disaster Emergency Medical Personnel System (DEMPS) program provides a system of volunteers whereby active or retired Department of Veterans Affairs (VA) personnel can register to be deployed to support other VA facilities or the nation during national emergencies or disasters. Both early and ongoing volunteer training is required to participate. This study aims to identify factors that impact willingness to deploy in the event of an emergency. This analysis was based on responses from 2,385 survey respondents (response rate, 29%). Latent variable path models were developed and tested using the EQS structural equations modeling program. Background demographic variables of education, age, minority ethnicity, and female gender were used as predictors of intervening latent variables of DEMPS Volunteer Experience, Positive Attitude about Training, and Stress. The model had acceptable fit statistics, and all three intermediate latent variables significantly predicted the outcome latent variable Readiness to Deploy. DEMPS Volunteer Experience and a Positive Attitude about Training were associated with Readiness to Deploy. Stress was associated with decreased Readiness to Deploy. Female gender was negatively correlated with Readiness to Deploy; however, there was an indirect relationship between female gender and Readiness to Deploy through Positive Attitude about Training. These findings suggest that volunteer emergency management response programs such as DEMPS should consider how best to address the factors that may make women less ready to deploy than men in order to ensure adequate gender representation among emergency responders. The findings underscore the importance of training opportunities to ensure that gender-sensitive support is a strong component of emergency response, and may apply to other emergency response programs such as the Medical Reserve Corps and the American Red Cross.

  17. Exercising the federal radiological emergency response plan

    International Nuclear Information System (INIS)

    Gant, K.S.; Adler, M.V.; Wolff, W.F.

    1986-01-01

    Multiagency exercises were an important part of the development of the Federal Radiological Emergency Response Plan. This paper concentrates on two of these exercises, the Federal Field Exercise in March 1984 and the Relocation Tabletop Exercise in December 1985. The Federal Field Exercise demonstrated the viability and usefulness of the draft plan; lessons learned from the exercise were incorporated into the published plan. The Relocation Tabletop Exercise examined the federal response in the postemergency phase. This exercise highlighted the change over time in the roles of some agencies and suggested response procedures that should be developed or revised. 8 refs

  18. L-007: Objectives preparation and Emergency response

    International Nuclear Information System (INIS)

    2011-01-01

    This lecture explains the preparation and response in a nuclear and radiological emergency. Must be taken into consideration a program of preparedness, the public health and environment protection, propagation of contamination limit, first aid and treatment radiation damage, the stochastic, psychological and physical effects reduction

  19. Emergency preparedness and response to 'Not-in-a-Facility' radiological accidents

    International Nuclear Information System (INIS)

    Grlicarev, Igor

    2008-01-01

    The paper provides an overview of lessons learned from the past radiological accidents, which have not occurred in an operating facility, i.e. 'not-in-a-facility' radiological emergencies. A method to analyze status of prevention of accidents is proposed taking into account the experiences and findings from the past events. The main emergency planning items are discussed, which would render effective response in case of such emergencies. Although the IAEA has published many documents about establishing an adequate emergency response capability, it is not an easy task to bring these recommendations into life. This paper gives some hints how to overcome the most obvious difficulties while users of these documents trying to adapt the guidance to their own needs. The special cases of alpha emitters and radiological dispersal devices were considered separately. The balanced approach to emergency response is promoted throughout the text, which means that a level of preparedness should be commensurate to the threat and the existing resources should be used to the extent possible. (author)

  20. Joint radiation emergency management plan of the international organizations. Emergency preparedness and response. Date effective: 1 January 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The Convention on Early Notification of a Nuclear Accident (the 'Early Notification Convention') and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the 'Assistance Convention') are the prime legal instruments that establish an international framework to facilitate the exchange of information and the prompt provision of assistance in the event of a nuclear accident or radiological emergency, with the aim of minimizing the consequences. The International Atomic Energy Agency (IAEA) has specific functions assigned to it under these Conventions, to which, in addition to a number of States, the European Union (EURATOM), the World Health Organization (WHO), the World Meteorological Organization (WMO) and the Food and Agriculture Organization of the United Nations (FAO) are full Parties. Since 1989, the arrangements between these organizations for facilitating the practical implementation of those articles of the two Conventions that are operational in nature have been documented by the IAEA in the Emergency Notification and Assistance Technical Operations Manual (ENATOM)1. The manual is intended for use primarily by contact points as identified in the Conventions. Pursuant to the obligations placed on it by the Conventions, the IAEA regularly convenes the Inter-Agency Committee on Response to Nuclear Accidents (IACRNA)2, whose purpose is to co-ordinate the arrangements of the relevant international intergovernmental organizations ('international organizations') for preparing for and responding to nuclear or radiological emergencies. Although the Conventions assign specific response functions and responsibilities to the IAEA and the Parties, various international organizations have - by virtue of their statutory functions or of related legal instruments - general functions and responsibilities that encompass aspects of preparedness and response. Moreover, some regional organizations (e.g. the European Union) are party to legally

  1. Answering the request for emergency assistance worldwide. The Incident and Emergency Centre (IEC)

    International Nuclear Information System (INIS)

    2007-01-01

    In 2005, the IAEA announced the establishment of a fully integrated Incident and Emergency Centre (IEC). The functions of the IEC include coordinating prompt assistance to requesting States in the case of a nuclear security incident. As the global focal point for international preparedness, communication and response to nuclear and radiological incidents or emergencies irrespective of their cause, the IEC stands at the centre of coordinating effective and efficient activities worldwide. The IEC's work includes the evaluation of emergency plans and assistance in their development. The Centre also develops accident classifications based on plant conditions and supports effective communication between neighbouring countries. In addition, it develops various response procedures and facilitates national exercises on response to reactor emergencies. This includes training a broad range of IAEA staff to respond to emergencies as well as training of external experts. Response to incidents and emergencies can involve the exchange of information, provision of advice and/or the coordination of field response. In order to coordinate a global response, the IEC hosts a Response Assistance Network (RANET) under which Member States, Parties to the Emergency Conventions and relevant international organizations are able to register their response capabilities. This network aims to facilitate assistance in case of a nuclear or radiological incident or emergency in a timely and effective manner. An important component of the global emergency response system is the notification and reporting arrangements and systems operated by the IEC. The IEC operates systems that are reliable and secure. Member States, Non-Member States and international organizations have historically reported events and requests for assistance to the IAEA through the ENATOM arrangements using the ENAC web site, phone or fax. Under these arrangements, States have nominated Competent Authorities and National Warning

  2. Development of a Online Nuclear Emergency Response System (ONERS) for Kalpakkam site - the design aspects

    Energy Technology Data Exchange (ETDEWEB)

    Raja Shekhar, S. S.; Bhatawadekar, Shantanu; Krishna Murthy, Y. V.N., [Regional Remote Sensing Service Centre, Department of Space, Nagpur (India); Srinivas, C. V.; Venkatesan, [Radiological Safety Division, Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalapakkam (India)

    2012-07-01

    An Online Nuclear Emergency Response System (ONERS) is developed for the nuclear power plant site at Kalpakkam as part of the Department of Atomic Energy (DAE) initiative. ONERS is a GIS based spatial analysis system designed indigenously to provide decision support in the event of a radioactive leak or accident from any of the nuclear facilities by assessing the dispersion and deposition patterns of the atmospheric releases, integrate with spatial geographical database for impact assessment and guidance for mitigation. The system is designed with open software tools (UMN Map server, MYSQL, PHP, Java scripts) and its main features include assessment of dose, short and long term forecast, counter measure support, impact assessment to minimize potential threat to man and environment during radiological emergencies. The system is implemented in live mode with integration of numerical models and spatial data base for the site region and is presently operational for the Kalpakkam site. (author)

  3. Development of a Online Nuclear Emergency Response System (ONERS) for Kalpakkam site - the design aspects

    International Nuclear Information System (INIS)

    Raja Shekhar, S.S.; Bhatawadekar, Shantanu; Krishna Murthy, Y.V.N.; Srinivas, C.V.; Venkatesan

    2012-01-01

    An Online Nuclear Emergency Response System (ONERS) is developed for the nuclear power plant site at Kalpakkam as part of the Department of Atomic Energy (DAE) initiative. ONERS is a GIS based spatial analysis system designed indigenously to provide decision support in the event of a radioactive leak or accident from any of the nuclear facilities by assessing the dispersion and deposition patterns of the atmospheric releases, integrate with spatial geographical database for impact assessment and guidance for mitigation. The system is designed with open software tools (UMN Map server, MYSQL, PHP, Java scripts) and its main features include assessment of dose, short and long term forecast, counter measure support, impact assessment to minimize potential threat to man and environment during radiological emergencies. The system is implemented in live mode with integration of numerical models and spatial data base for the site region and is presently operational for the Kalpakkam site. (author)

  4. Indian Point Nuclear Power Station: verification analysis of County Radiological Emergency-Response Plans

    International Nuclear Information System (INIS)

    Nagle, J.; Whitfield, R.

    1983-05-01

    This report was developed as a management tool for use by the Federal Emergency Management Agency (FEMA) Region II staff. The analysis summarized in this report was undertaken to verify the extent to which procedures, training programs, and resources set forth in the County Radiological Emergency Response Plans (CRERPs) for Orange, Putnam, and Westchester counties in New York had been realized prior to the March 9, 1983, exercise of the Indian Point Nuclear Power Station near Buchanan, New York. To this end, a telephone survey of county emergency response organizations was conducted between January 19 and February 22, 1983. This report presents the results of responses obtained from this survey of county emergency response organizations

  5. Application of geographic information system for radiologic emergency response

    International Nuclear Information System (INIS)

    Best, R.G.; Doyle, J.F.; Mueller, P.G.

    1998-01-01

    Comprehensive and timely radiological, cultural, and environmental data are required in order to make informed decisions during a radiological emergency. Within the Federal Radiological Monitoring and Assessment Center (FRMAC), there is a continuing effort to improve the data management and communication process. The most recent addition to this essential function has been the development of the Field Analysis System for Emergency Response (FASER). It is an integrated system with compatible digital image processing and Geographic Information System (GIS) capabilities. FASER is configured with commercially available off-the-shelf hardware and software components. To demonstrate the potential of the FASER system for radiological emergency response, the system has been utilized in interagency FRMAC exercises to analyze the available spatial data to help determine the impact of a hypothetical radiological release and to develop mitigation plans. (R.P.)

  6. Roles that numerical models can play in emergency response

    International Nuclear Information System (INIS)

    Dickerson, M.H.

    1982-03-01

    Four points are presented with regard to a perspective on modeling for emergency preparedness. First, and probably foremost, modeling should be considered a tool, along with measurements and experience when used for emergency preparedness. The second point is that the potential for large errors associated with knowing the source term during an accident should not be used as a guide for determining the level of the model development and application. There are many other uses for models than estimating consequences, given the source term. These uses range from estimating the source term to bracketing the problem at hand. The third point is that several levels of model complexity should be considered when addressing emergency response. These levels can vary from the simple Gaussian calculation to the more complex three-dimensional transport and diffusion calculations where terrain and vertical and horizontal shears in the wind fields can be modeled. Lastly, proper interaction and feedback between model results and measurements enhances the capabilities of each if they were applied independently for emergency response purposes

  7. Survey of state and tribal emergency response capabilities for radiological transportation incidents

    Energy Technology Data Exchange (ETDEWEB)

    Vilardo, F J; Mitter, E L; Palmer, J A; Briggs, H C; Fesenmaier, J [Indiana Univ., Bloomington, IN (USA). School of Public and Environmental Affairs

    1990-05-01

    This publication is the final report of a project to survey the fifty states, the District of Columbia, Puerto Rico, and selected Indian Tribal jurisdictions to ascertain their emergency-preparedness planning and capabilities for responding to transportation incidents involving radioactive materials. The survey was conducted to provide the Nuclear Regulatory Commission and other federal agencies with information concerning the current level of emergency-response preparedness of the states and selected tribes and an assessment of the changes that have occurred since 1980. There have been no major changes in the states' emergency-response planning strategies and field tactics. The changes noted included an increased availability of dedicated emergency-response vehicles, wider availability of specialized radiation-detection instruments, and higher proportions of police and fire personnel with training in the handling of suspected radiation threats. Most Indian tribes have no capability to evaluate suspected radiation threats and have no formal relations with emergency-response personnel in adjacent states. For the nation as a whole, the incidence of suspected radiation threats declined substantially from 1980 to 1988. 58 tabs.

  8. Improving Role of Construction Industry for More Effective Post-Disaster Emergency Response To Road Infrastructure in Indonesia

    Directory of Open Access Journals (Sweden)

    Pribadi Krishna S.

    2018-01-01

    Full Text Available Geo- and hydro-meteorological disasters typically caused disruptive impact to road networks due to damaged road infrastructure, which in turn disconnect access to and isolate the disaster affected areas. Road clearing work and emergency road recovery operation are considered a priority to reconnect the access during post-disaster emergency response. However, the operation is not always smooth and in many cases delayed due to various problems. An investigation is conducted to understand the current practice of post-disaster emergency road recovery operation in Indonesia and to study possible participation of construction industry in order to improve its effectiveness. In-depth interviews with Local Disaster Management Agencies (BPBDs and local road agencies in West Java Province were conducted to understand current practices in emergency road recovery operation and to view perspectives on local contractor participation. The surveys showed supports from the local governments for contractor involvement as long as it is still under guidance of related agencies (Ministry of Public Works and Housing despite some possible obstacles from the current regulation that may hamper contractors’ participation, which indicate that there is a potential role of construction industry for more effective post-disaster emergency response, provided that contractor associations are involved and existing procurement regulation is improved.

  9. Emergency response planning for transport accidents involving radioactive materials

    International Nuclear Information System (INIS)

    1982-03-01

    The document presents a basic discussion of the various aspects and philosophies of emergency planning and preparedness along with a consideration of the problems which might be encountered in a transportation accident involving a release of radioactive materials. Readers who are responsible for preparing emergency plans and procedures will have to decide on how best to apply this guidance to their own organizational structures and will also have to decide on an emergency planning and preparedness philosophy suitable to their own situations

  10. Automated emergency meteorological response system

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1980-01-01

    A sophisticated emergency response system was developed to aid in the evaluation of accidental releases of hazardous materials from the Savannah River Plant to the environment. A minicomputer system collects and archives data from both onsite meteorological towers and the National Weather Service. In the event of an accidental release, the computer rapidly calculates the trajectory and dispersion of pollutants in the atmosphere. Computer codes have been developed which provide a graphic display of predicted concentration profiles downwind from the source, as functions of time and distance

  11. Capacidad de respuesta a emergencias epidémicas: recomendaciones para la autoevaluación nacional Response capacity for epidemic emergencies: recommendations for country self-evaluation

    Directory of Open Access Journals (Sweden)

    Angela Gala

    2005-08-01

    Full Text Available Communicable diseases that have appeared or reappeared in recent years have demonstrated their great potential for spreading and their capacity to overwhelm a country's resources, causing major emergencies. The recent SARS epidemic showed that only health systems that have been strengthened and that have the response capacity for events of this kind will be able to handle future contingencies. Governments have recognized the need to support initiatives to strengthen their countries' capacities in surveillance, prevention, and the control of emergencies caused by epidemics. This piece identifies essential components that will make it possible to guide the efforts of governments, with the support of the Pan American Health Organization and other international organizations, toward achieving a common goal: establishing for countries warning and epidemic-emergency response systems that are appropriate and effective.

  12. Emergency Response Capability Baseline Needs Assessment Compliance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-16

    This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2013 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2009 BNA, the 2012 BNA document, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures.

  13. Hybrid Decision-making Method for Emergency Response System of Unattended Train Operation Metro

    Directory of Open Access Journals (Sweden)

    Bobo Zhao

    2016-04-01

    Full Text Available Suitable selection of the emergency alternatives is a critical issue in emergency response system of Unattended Train Operation (UTO metro system of China. However, there is no available method for dispatcher group in Operating Control Center (OCC to evaluate the decision under emergency situation. It was found that the emergency decision making in UTO metro system is relative with the preferences and the importance of multi-dispatcher in emergency. Regarding these factors, this paper presents a hybrid method to determinate the priority weights of emergency alternatives, which aggregates the preference matrix by constructing the emergency response task model based on the Weighted Ordered Weighted Averaging (WOWA operator. This calculation approach derives the importance weights depending on the dispatcher emergency tasks and integrates it into the Ordered Weighted Averaging (OWA operator weights based on a fuzzy membership relation. A case from train fire is given to demonstrate the feasibility and practicability of the proposed methods for Group Multi-Criteria Decision Making (GMCDM in emergency management of UTO metro system. The innovation of this research is paving the way for a systematic emergency decision-making solution which connects the automatic metro emergency response system with the GMCDM theory.

  14. Nuclear criticality safety aspects of emergency response at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Baker, J.S.

    2003-01-01

    Emergency response at Los Alamos National Laboratory (LANL) is handled through a graded approach depending on the specific emergency situation . LANL maintains a comprehensive capability to respond to events ranging from minor facility events (alerts) through major community events (general emergencies), including criticality accidents . Criticality safety and emergency response apply to all activities involving significant quantities of fissile material at LANL, primarily at Technical Area 18 (TA-18, the Los Alamos Critical Experiments Facility) and Technical Area 55 (TA-55, the Plutonium Facility). This discussion focuses on response to a criticality accident at TA-55; the approach at TA-18 is comparable .

  15. Emergency Preparedness and Response. Working to Protect People, Society and the Environment

    International Nuclear Information System (INIS)

    2013-01-01

    The IEC develops safety standards and guidelines relating to preparedness for, and response to, nuclear or radiological incidents and emergencies, independently of the cause, and technical documents and training materials for the application of those standards. The IEC also provides training and services to assist Member States in strengthening and maintaining their regional, national, local and on-site response capabilities. An extra resource to the IAEA's response system is foreseen through the Response and Assistance Network (RANET), which represents a network of registered national capabilities in different EPR areas. Its objectives are the provision of requested international assistance, the harmonization of emergency assistance capabilities and the relevant exchange of information and feedback of experience. Important components of the global emergency response system are the notification and reporting arrangements and secure and reliable communication systems operated around the clock by the IEC. States and international organizations report events and submit requests for assistance to the IAEA through the Unified System for Information Exchange on Incidents and Emergencies (USIE) web site, by phone or by fax. Member States (and a few non-Member States) have nominated competent authorities and National Warning Points who are able to receive, convey and quickly provide authoritative information on incidents and emergencies

  16. A simulator-based nuclear reactor emergency response training exercise.

    Science.gov (United States)

    Waller, Edward; Bereznai, George; Shaw, John; Chaput, Joseph; Lafortune, Jean-Francois

    Training offsite emergency response personnel basic awareness of onsite control room operations during nuclear power plant emergency conditions was the primary objective of a week-long workshop conducted on a CANDU® virtual nuclear reactor simulator available at the University of Ontario Institute of Technology, Oshawa, Canada. The workshop was designed to examine both normal and abnormal reactor operating conditions, and to observe the conditions in the control room that may have impact on the subsequent offsite emergency response. The workshop was attended by participants from a number of countries encompassing diverse job functions related to nuclear emergency response. Objectives of the workshop were to provide opportunities for participants to act in the roles of control room personnel under different reactor operating scenarios, providing a unique experience for participants to interact with the simulator in real-time, and providing increased awareness of control room operations during accident conditions. The ability to "pause" the simulator during exercises allowed the instructors to evaluate and critique the performance of participants, and to provide context with respect to potential offsite emergency actions. Feedback from the participants highlighted (i) advantages of observing and participating "hands-on" with operational exercises, (ii) their general unfamiliarity with control room operational procedures and arrangements prior to the workshop, (iii) awareness of the vast quantity of detailed control room procedures for both normal and transient conditions, and (iv) appreciation of the increased workload for the operators in the control room during a transient from normal operations. Based upon participant feedback, it was determined that the objectives of the training had been met, and that future workshops should be conducted.

  17. Rainfall intensity-duration thresholds for postfire debris-flow emergency-response planning

    Science.gov (United States)

    Cannon, S.H.; Boldt, E.M.; Laber, J.L.; Kean, J.W.; Staley, D.M.

    2011-01-01

    Following wildfires, emergency-response and public-safety agencies can be faced with evacuation and resource-deployment decisions well in advance of coming winter storms and during storms themselves. Information critical to these decisions is provided for recently burned areas in the San Gabriel Mountains of southern California. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands is used to develop a system for classifying magnitudes of hydrologic response. The four-class system describes combinations of reported volumes of individual debris flows, consequences of debris flows and floods in an urban setting, and spatial extents of the hydrologic response. The range of rainfall conditions associated with different magnitude classes is defined by integrating local rainfall data with the response magnitude information. Magnitude I events can be expected when within-storm rainfall accumulations (A) of given durations (D) fall above the threshold A = 0.4D0.5 and below A = 0.5D0.6 for durations greater than 1 h. Magnitude II events will be generated in response to rainfall accumulations and durations between A = 0.4D0.5 and A = 0.9D0.5 for durations less than 1 h, and between A = 0.5D0.6 and A = 0.9D0.5 or durations greater than 1 h. Magnitude III events can be expected in response to rainfall conditions above the threshold A = 0.9D0.5. Rainfall threshold-magnitude relations are linked with potential emergency-response actions as an emergency-response decision chart, which leads a user through steps to determine potential event magnitudes and identify possible evacuation and resource-deployment levels. Use of this information in planning and response decision-making process could result in increased safety for both the public and emergency responders. ?? 2011 US Government.

  18. Report of the emergency preparedness and response task force

    International Nuclear Information System (INIS)

    Dynes, R.R.; Purcell, A.H.; Wenger, D.E.; Stern, P.S.; Stallings, R.A.; Johnson, Q.T.

    1979-10-01

    The accident at Three Mile Island (TMI) marked the first time in the US when traditional planning for emergencies was applied to a possible radiological emergency. This report examines the planning that existed in the counties surrounding the plant and at the state and federal levels. It also examines the responses of the various governmental units following the initial accident

  19. Report of the Emergency Preparedness and Response Task Force

    International Nuclear Information System (INIS)

    Dynes, R.R.; Purcell, A.H.; Wenger, D.E.; Stern, P.S.; Stallings, R.A.; Johnson, Q.T.

    1979-10-01

    The accident at Three Mile Island (TMI) marked the first time in the US when traditional planning for emergencies was applied to a possible radiological emergency. This report examines the planning that existed in the counties surrounding the plant and at the state and federal levels. It also examines the responses of the various governmental units following the initial accident

  20. SRNL EMERGENCY RESPONSE CAPABILITY FOR ATMOSPHERIC CONTAMINANT RELEASES

    International Nuclear Information System (INIS)

    Koffman, L; Chuck Hunter, C; Robert Buckley, R; Robert Addis, R

    2006-01-01

    Emergency response to an atmospheric release of chemical or radiological contamination is enhanced when plume predictions, field measurements, and real-time weather information are integrated into a geospatial framework. The Weather Information and Display (WIND) System at Savannah River National Laboratory (SRNL) utilizes such an integrated framework. The rapid availability of predictions from a suite of atmospheric transport models within this geospatial framework has proven to be of great value to decision makers during an emergency involving an atmospheric contaminant release

  1. Emergency management response to a warning-level Alaska-source tsunami impacting California: Chapter J in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Science.gov (United States)

    Miller, Kevin M.; Long, Kate

    2013-01-01

    This chapter is directed towards two audiences: Firstly, it targets nonemergency management readers, providing them with insight on the process and challenges facing emergency managers in responding to tsunami Warning, particularly given this “short fuse” scenario. It is called “short fuse” because there is only a 5.5-hour window following the earthquake before arrival of the tsunami within which to evaluate the threat, disseminate alert and warning messages, and respond. This action initiates a period when crisis communication is of paramount importance. An additional dynamic that is important to note is that within 15 minutes of the earthquake, the National Oceanic and Atmospheric Administration (NOAA) and the National Weather Service (NWS) will issue alert bulletins for the entire Pacific Coast. This is one-half the time actually presented by recent tsunamis from Japan, Chile, and Samoa. Second, the chapter provides emergency managers at all levels with insights into key considerations they may need to address in order to augment their existing plans and effectively respond to tsunami events. We look at emergency management response to the tsunami threat from three perspectives:“Top Down” (Threat analysis and Alert/Warning information from the Federal agency charged with Alert and Warning) “Bottom Up” (Emergency management’s Incident Command approach to responding to emergencies and disasters based on the needs of impacted local jurisdictions) “Across Time” (From the initiating earthquake event through emergency response) We focus on these questions: What are the government roles, relationships, and products that support Tsunami Alert and Warning dissemination? (Emergency Planning and Preparedness.) What roles, relationships, and products support emergency management response to Tsunami Warning and impact? (Engendering prudent public safety response.) What are the key emergency management activities, considerations, and challenges brought

  2. Analysis of emergency response procedures and air traffic accidents ...

    African Journals Online (AJOL)

    Incessant air transport accidents have been a source of concern to stakeholders and aviation experts in Nigeria, yet the response and process has not been adequately appraised. This study attempts an evaluation of the emergency response procedures in the aviation industry with particular focus on Murtala Muhammed ...

  3. Chemical toxicity approach for emergency response

    International Nuclear Information System (INIS)

    Bauer, T.

    2009-01-01

    In the event of an airborne release of chemical agent or toxic industrial chemical by accidental or intentional means, emergency responders must have a reasonable estimate of the location and size of the resulting hazard area. Emergency responders are responsible for warning persons downwind of the hazard to evacuate or shelter-in-place and must know where to look for casualties after the hazard has passed or dissipated. Given the same source characterization, modern hazard assessment models provide comparable concentration versus location and time estimates. Even urban hazard assessment models often provide similar predictions. There is a major shortcoming, though, in applying model output to estimating human toxicity effects. There exist a variety of toxicity values for non-lethal effects ranging from short-term to occupational to lifetime exposures. For health and safety purposes, these estimates are all safe-sided in converting animal data to human effects and in addressing the most sensitive subset of the population. In addition, these values are usually based on an assumed 1 hour exposure duration at constant concentration and do not reflect either a passing clouds concentration profile or duration. Emergency responders need expected value toxicity parameters rather than the existing safe-sided ones. This presentation will specify the types of toxicity values needed to provide appropriate chemical hazard estimates to emergency responders and will demonstrate how dramatically their use changes the hazard area.(author)

  4. Nuclear emergency planning and response in the Netherlands after Chernobyl

    International Nuclear Information System (INIS)

    Bergman, L.J.W.M.; Kerkhoven, I.P.

    1989-01-01

    After Chernobyl an extensive project on nuclear emergency planning and response was started in the Netherlands. The objective of this project was to develop a (governmental) structure to cope with accidents with radioactive materials, that can threaten the Dutch community and neighbouring countries. The project has resulted in a new organizational structure for nuclear emergency response, that differs on major points from the existing plans and procedures. In this paper an outline of the new structure is given. Emphasis is placed on accidents with nuclear power plants

  5. Emergency management in the early phase

    International Nuclear Information System (INIS)

    Crick, M.

    2003-01-01

    Full text: An overview of emergency management is provided from a systems approach with the aim of providing a common understanding for the diverse symposium participants of the elements of the management system required for preparedness and response for the early phase of an emergency at a nuclear installation. The systems approach starts with the recognition of response goals, and using detailed analyses of threats, past experience, international law and principles, a response strategy is developed. This step is illustrated with the case of severe accidents at PWRs and identifies the need for and nature of: emergency classification based an plant conditions; notification; radiological monitoring and assessment strategies; operational criteria for implementing protective action decisions; management of public information. From the strategy, detailed functional requirements can be defined addressing: establishing emergency management and operations; identifying, notifying and activating; taking mitigatory action; taking urgent protective action; providing information and issuing instructions and warnings to the public; protecting emergency workers; assessing the initial phase; managing the medical response; keeping the public informed; taking countermeasures against ingestion; mitigating the non-radiological consequences of the emergency and the response. Meeting these requirements necessitates decisions from competent authorities, the means to implement them, and mechanisms for response co-ordination, which need to be prepared in advance. These are supported by infrastructure, including: clear authorities; organization; coordinated plans and procedures; logistical support, facilities and tools; training and exercises; and a quality assurance programme. Some reflections an the key differences between response to emergencies arising from accidents and these arising from deliberate acts will be provided. An impression will be given of the level of preparedness and

  6. Emergency response capabilities developed in the United States to deal with nuclear materials transportation accidents

    International Nuclear Information System (INIS)

    Vandevender, S.G.; Reese, R.T.; Schilling, A.H.

    1980-01-01

    The non-existence of emergency response programs is frequently stated as a reason for restricting the movement of radioactive materials through states or local jurisdictions. Yet, studies discussed here indicate that emergency response capability, while not in the best condition, is getting more money, interest and attention, and in most states response networks exist which could be effective in responding to radiological emergencies. Awareness of such capabilities by the public is an important feature in increasing the public's confidence in the ability of federal, state and local officials in controlling hazards. One aspect of this awareness program could be in broader availability of radioactive emergency techniques for possible first responders to emergencies. This training, public awareness and more emphasis on workable emergency plans will help to assure reliable and workable emergency response plans

  7. 47 CFR 0.192 - Emergency Response Interoperability Center.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Emergency Response Interoperability Center. 0.192 Section 0.192 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION..., industry representatives, and service providers. [75 FR 28207, May 20, 2010] ...

  8. Ebola Virus Disease: Ethics and Emergency Medical Response Policy.

    Science.gov (United States)

    Jecker, Nancy S; Dudzinski, Denise M; Diekema, Douglas S; Tonelli, Mark

    2015-09-01

    Caring for patients affected with Ebola virus disease (EVD) while simultaneously preventing EVD transmission represents a central ethical challenge of the EVD epidemic. To address this challenge, we propose a model policy for resuscitation and emergent procedure policy of patients with EVD and set forth ethical principles that lend support to this policy. The policy and principles we propose bear relevance beyond the EVD epidemic, offering guidance for the care of patients with other highly contagious, virulent, and lethal diseases. The policy establishes (1) a limited code status for patients with confirmed or suspected EVD. Limited code status means that a code blue will not be called for patients with confirmed or suspected EVD at any stage of the disease; however, properly protected providers (those already in full protective equipment) may initiate resuscitative efforts if, in their clinical assessment, these efforts are likely to benefit the patient. The policy also requires that (2) resuscitation not be attempted for patients with advanced EVD, as resuscitation would be medically futile; (3) providers caring for or having contact with patients with confirmed or suspected EVD be properly protected and trained; (4) the treating team identify and treat in advance likely causes of cardiac and respiratory arrest to minimize the need for emergency response; (5) patients with EVD and their proxies be involved in care discussions; and (6) care team and provider discretion guide the care of patients with EVD. We discuss ethical issues involving medical futility and the duty to avoid harm and propose a utilitarian-based principle of triage to address resource scarcity in the emergency setting.

  9. Method for Developing a Communication Strategy and Plan for a Nuclear or Radiological Emergency. Emergency Preparedness and Response. Publication Date: July 2015

    International Nuclear Information System (INIS)

    2015-08-01

    The aim of this publication is to provide a practical resource for emergency planning in the area of public communication in the development of a radiation emergency communication plan (RECP). The term 'public communication' is defined as any activity that communicates information to the public and the media during a nuclear or radiological emergency. To avoid confusion, the term public communication has been used in this publication rather than public information, which may be used in other IAEA publications and documents to ensure consistency with the terminology used in describing the command and control system. This publication also aims to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(11) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research with regard to the response to nuclear or radiological emergencies. This publication is intended to provide guidance to national and local authorities on developing an RECP which incorporates the specific functions, arrangements and capabilities that will be required for public communication during a nuclear or radiological emergency. The two main features of this publication are the template provided to develop an RECP and detailed guidance on developing a communication strategy for emergency preparedness and response to nuclear or radiological emergencies. The template is consistent with the outline of the national radiation emergency plan proposed in Method for Developing Arrangements for Response to a Nuclear or Radiological Emergency (EPR-Method 2003). This publication is part of the IAEA

  10. General RMP Guidance - Chapter 8: Emergency Response Program

    Science.gov (United States)

    If you have a Program 2 or 3 process at your facility, 40 CFR Part 68 (risk management program) requires an emergency response program in place if employees respond to some releases involving regulated toxic or flammable substances.

  11. Emergency response facilities including primary and secondary prevention strategies across 79 professional football clubs in England.

    Science.gov (United States)

    Malhotra, Aneil; Dhutia, Harshil; Gati, Sabiha; Yeo, Tee-Joo; Finocchiaro, Gherardo; Keteepe-Arachi, Tracey; Richards, Thomas; Walker, Mike; Birt, Robin; Stuckey, David; Robinson, Laurence; Tome, Maite; Beasley, Ian; Papadakis, Michael; Sharma, Sanjay

    2017-06-14

    To assess the emergency response planning and prevention strategies for sudden cardiac arrest (SCA) across a wide range of professional football clubs in England. A written survey was sent to all professional clubs in the English football league, namely the Premiership, Championship, League 1 and League 2. Outcomes included: (1) number of clubs performing cardiac screening and frequency of screening; (2) emergency planning and documentation; (3) automated external defibrillator (AED) training and availability; and (4) provision of emergency services at sporting venues. 79 clubs (86%) responded to the survey. 100% clubs participated in cardiac screening. All clubs had AEDs available on match days and during training sessions. 100% Premiership clubs provided AED training to designated staff. In contrast, 30% of lower division clubs with AEDs available did not provide formal training. Most clubs (n=66; 83%) reported the existence of an emergency action plan for SCA but formal documentation was variable. All clubs in the Premiership and League 1 provided an ambulance equipped for medical emergencies on match days compared with 75% of clubs in the Championship and 66% in League 2. The majority of football clubs in England have satisfactory prevention strategies and emergency response planning in line with European recommendations. Additional improvements such as increasing awareness of European guidelines for emergency planning, AED training and mentorship with financial support to lower division clubs are necessary to further enhance cardiovascular safety of athletes and spectators and close the gap between the highest and lower divisions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Emergency Response Capability Baseline Needs Assessment - Compliance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-01

    This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by LLNL Emergency Management Department Head, James Colson. This document is the second of a two-part analysis on Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2016 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2016 BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. The 2013 BNA was approved by NNSA’s Livermore Field Office on January 22, 2014.

  13. System of medical response to radiation emergency after a terror attack in China

    International Nuclear Information System (INIS)

    Liu, Y.; Wang, Z.

    2005-01-01

    Full text: Nuclear or radiological accident is an unintended or unexpected event occurring with a radiation source or during a practice involving ionizing radiation, which may result in significant human exposure and/or material damage. Recent events involving terrorist activities have focused attention on the radiological threats. The full spectrum of radiological threats from terrorist spans the deliberate dispersal of radioactive material to the detonation of a nuclear weapon. While the most likely threat is the dispersal of radioactive materials, the use of a crude nuclear weapon against a major city cannot be dismissed. Radiological incident response requires functions similar to non-radiological incident response. Radiation emergency system in China has been established for radiological emergency preparedness and response. National coordination committee of radiation emergency has been setup in 1994, which consist of 17 ministries. The ministry is responsible for the medical assistance for radiation emergency. Chinese Center for Medical Response to Radiation Emergency (CCMRRE) was established in 1992, based on the National Institute for Radiological Protection, China CDC (NIRP, China CDC). The CCMRRE has been as one liaison institutes of WHO/REMPAN and functions as a national and professional institute for medical assistance in radiation accidents and terrorist events involving radioactive material. Under Provincial Committee of Radiation Emergency, there are local organizations of medical assistance in radiation emergency. The organizations carry out the first aid, regional clinic treatment, radiation protection and radiation monitory in nuclear accidents and radiological accidents. (author)

  14. A collaborative large spatio-temporal data visual analytics architecture for emergence response

    International Nuclear Information System (INIS)

    Guo, D; Li, J; Zhou, Y; Cao, H

    2014-01-01

    The unconventional emergency, usually outbreaks more suddenly, and is diffused more quickly, but causes more secondary damage and derives more disaster than what it is usually expected. The data volume and urgency of emergency exceeds the capacity of current emergency management systems. In this paper, we propose a three-tier collaborative spatio-temporal visual analysis architecture to support emergency management. The prototype system, based on cloud computation environment, supports aggregation of massive unstructured and semi-structured data, integration of various computing model sand algorithms; collaborative visualization and visual analytics among users with a diversity of backgrounds. The distributed data in 100TB scale is integrated in a unified platform and shared with thousands of experts and government agencies by nearly 100 models. The users explore, visualize and analyse the big data and make a collaborative countermeasures to emergencies

  15. Responsibility modelling for civil emergency planning

    OpenAIRE

    Sommerville, Ian; Storer, Timothy; Lock, Russell

    2009-01-01

    This paper presents a new approach to analysing and understanding civil emergency planning based on the notion of responsibility modelling combined with HAZOPS-style analysis of information requirements. Our goal is to represent complex contingency plans so that they can be more readily understood, so that inconsistencies can be highlighted and vulnerabilities discovered. In this paper, we outline the framework for contingency planning in the United Kingdom and introduce the notion of respons...

  16. Uncertainty of fast biological radiation dose assessment for emergency response scenarios.

    Science.gov (United States)

    Ainsbury, Elizabeth A; Higueras, Manuel; Puig, Pedro; Einbeck, Jochen; Samaga, Daniel; Barquinero, Joan Francesc; Barrios, Lleonard; Brzozowska, Beata; Fattibene, Paola; Gregoire, Eric; Jaworska, Alicja; Lloyd, David; Oestreicher, Ursula; Romm, Horst; Rothkamm, Kai; Roy, Laurence; Sommer, Sylwester; Terzoudi, Georgia; Thierens, Hubert; Trompier, Francois; Vral, Anne; Woda, Clemens

    2017-01-01

    Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response. Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises. The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed. Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization.

  17. A model national emergency plan for radiological accidents

    International Nuclear Information System (INIS)

    2000-07-01

    The IAEA has supported several projects for the development of a national response plan for radiological emergencies. As a result, the IAEA has developed a model National Emergency Response Plan for Radiological Accidents (RAD PLAN), particularly for countries that have no nuclear power plants. This plan can be adapted for use by countries interested in developing their own national radiological emergency response plan, and the IAEA will supply the latest version of the RAD PLAN on computer diskette upon request

  18. Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event

    Science.gov (United States)

    Huo, Liang'an; Jiang, Jiehui; Gong, Sixing; He, Bing

    2016-05-01

    Rumor transmission has become an important issue in emergency event. In this paper, a rumor transmission model with Holling-type II functional response was proposed, which provides excellent explanations of the scientific knowledge effect with rumor spreading. By a global analysis of the model and studying the stability of the rumor-free equilibrium and the rumor-endemic equilibrium, we found that the number of infective individuals equal to zero or positive integer as time went on. A numerical simulation is carried out to illustrate the feasibility of our main results. The results will provide the theoretical support to rumor control in emergency event and also provide decision makers references for the public opinions management.

  19. Review of supplemental oxygen and respiratory support for paediatric emergency care in sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Andreas Hansmann

    Full Text Available Introduction: In African countries, respiratory infections and severe sepsis are common causes of respiratory failure and mortality in children under five years of age. Mortality and morbidity in these children could be reduced with adequate respiratory support in the emergency care setting. The purpose of this review is to describe management priorities in the emergency care of critically ill children presenting with respiratory problems. Basic and advanced respiratory support measures are described for implementation according to available resources, work load and skill-levels. Methods: We did a focused search of respiratory support for critically ill children in resource-limited settings over the past ten years, using the search tools PubMed and Google Scholar, the latest WHO guidelines, international ‘Advanced Paediatric Life Support’ guidelines and paediatric critical care textbooks. Results: The implementation of triage and rapid recognition of respiratory distress and hypoxia with pulse oximetry is important to correctly identify critically ill children with increased risk of mortality in all health facilities in resource constrained settings. Basic, effective airway management and respiratory support are essential elements of emergency care. Correct provision of supplemental oxygen is safe and its application alone can significantly improve the outcome of critically ill children. Non-invasive ventilatory support is cost-effective and feasible, with the potential to improve emergency care packages for children with respiratory failure and other organ dysfunctions. Non-invasive ventilation is particularly important in severely under-resourced regions unable to provide intubation and invasive mechanical ventilation support. Malnutrition and HIV-infection are important co-morbid conditions, associated with increased mortality in children with respiratory dysfunction. Discussion: A multi-disciplinary approach is required to optimise

  20. Training for the medical response in radiological emergency experiences and results

    International Nuclear Information System (INIS)

    Cardenas Herrera, J.; Lopez Forteza, Y.

    2003-01-01

    The use of the nuclear techniques int he social practice confers a special imporatnce to the relative aspects to the safety of the practices and radiationsources, for what the implementation of efficient programs of radiation protection constitutes a priority. However in spite of the will before expressed, regrettably radiological situations happen accidental assocaited to multiple causes taht suggest the creation of response capacities to intervention before these fortuitous facts. The experiences accumulated in the last decades related with accidental exposures have evidenced the convenience of having properly qualified human resources for the Medical Response in Radiological Emergencies. The training in the medical aspects of the radiological emergencies acquires a singular character. In such a sense when valuing the national situation put onof manifest deficiences as for the training in medical aspects of the radiological emergencies that advised the development of training programs in such aspects for the different response groups linked to the topic. After identified the training necessities and the scope of the same ones, the contents of the training program were elaborated. The program has as general purpose the invigoration of the capacity of the medical response in front of accidental radiological situations, by means of actions that they bear to prepare groups of medical response in the handling of people accident victims and to the identification of potentials,accidental scenarios, as well as of the necessary resources to confront them. The program content approaches theoretical and paractical aspects to the medical aspect to radiological emergencies. The program include the different topics about fundamental of physical biological to radiation protection, radiation protection during exposure of radiological accidents, medical care for overexposed or contaminated persons, drill, exercises and concludes with designation of a strategy as preparation and

  1. Joint research and development on toxic-material emergency response between ENEA and LLNL. 1982 progress report

    International Nuclear Information System (INIS)

    Gudiksen, P.; Lange, R.; Dickerson, M.; Sullivan, T.; Rosen, L.; Walker, H.; Boeri, G.B.; Caracciolo, R.; Fiorenza, R.

    1982-11-01

    A summary is presented of current and future cooperative studies between ENEA and LLNL researchers designed to develop improved real-time emergency response capabilities for assessing the environmental consequences resulting from an accidental release of toxic materials into the atmosphere. These studies include development and evaluation of atmospheric transport and dispersion models, interfacing of data processing and communications systems, supporting meteorological field experiments, and integration of radiological measurements and model results into real-time assessments

  2. Lessons Learned from the Response to Radiation Emergencies (1945-2010) (French Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  3. Lessons Learned from the Response to Radiation Emergencies (1945-2010) (Spanish Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the … application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  4. Lessons Learned from the Response to Radiation Emergencies (1945-2010) (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  5. Lessons Learned from the Response to Radiation Emergencies (1945-2010) (Russian Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  6. Designing Science Learning Environments That Support Emerging Bilingual Students to Problematize Electrical Phenomena

    Science.gov (United States)

    Suarez, Enrique A.

    This dissertation investigates how emerging bilingual students make sense of natural phenomena through engaging in certain epistemic practices of science, and the elements of the learning environment that created those opportunities. Specifically, the dissertation focuses on how emerging bilingual students problematized electrical phenomena, like electric flow and electrical resistance, and how the design features of the environment (e.g., sequencing of activities, linguistic practices) may have supported students as they made sense of phenomena. The first study describes how for students presented and evaluated mechanistic models of electric flow, focusing specifically on how students identified and negotiated a disagreement between their explanatory models. The results from this study highlight the complexity of students' disagreements, not only because of the epistemological aspects related to presenting and evaluating knowledge, but also due to interpersonal dynamics and the discomfort associated with disagreeing with another person. The second study focuses on the design features of the learning environment that supported emerging bilingual students' investigations of electrical phenomena. The findings from this study highlight how a carefully designed set of activities, with the appropriate material resources (e.g., experimental tools), could support students to problematize electrical resistance. The third study describes how emerging bilingual students engaged in translanguaging practices and the contextual features of the learning environment that created and hindered opportunities for translanguaging. The findings from this study identify and articulate how emerging bilingual students engaged in translanguaging practices when problematizing electrical resistance, and strengthen the perspective that, in order to be equitable for emerging bilingual students, science learning environments need to act as translanguaging spaces. This dissertation makes three

  7. Methodology for Estimating Ingestion Dose for Emergency Response at SRS

    CERN Document Server

    Simpkins, A A

    2002-01-01

    At the Savannah River Site (SRS), emergency response models estimate dose for inhalation and ground shine pathways. A methodology has been developed to incorporate ingestion doses into the emergency response models. The methodology follows a two-phase approach. The first phase estimates site-specific derived response levels (DRLs) which can be compared with predicted ground-level concentrations to determine if intervention is needed to protect the public. This phase uses accepted methods with little deviation from recommended guidance. The second phase uses site-specific data to estimate a 'best estimate' dose to offsite individuals from ingestion of foodstuffs. While this method deviates from recommended guidance, it is technically defensibly and more realistic. As guidance is updated, these methods also will need to be updated.

  8. Proposal of new framework in nuclear emergency response based on problem in East Japan Great Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In the nuclear emergency response activity in a East Japan great earthquake, the weakness the frame and the activity procedure (scheme) of the emergency response activity of our country that had been constructed after the accident of JCO became clear. Especially, it is necessary to recognize the importance of the enhancement of a prior plan after not only provision to response but also the damage to the environment occurs in the emergency for measures for restoration. Moreover, it is necessary to examine a concrete strategy about the management system strengthening of the radiation exposure at the accident. In this study, the experience and the finding in a East Japan great earthquake are arranged. The accident scenario that should be targeted is rearranged, and it proposes a new frame in the nuclear emergency response field through the requirement examinations such as the points of procedure, equipment, and the capital machine parts that lie a regulations frame of the nuclear emergency response, the activity frame of the nuclear emergency response, and materialized of the nuclear emergency response activity. (author)

  9. Proposal of new framework in nuclear emergency response based on problem in East Japan Great Earthquake

    International Nuclear Information System (INIS)

    2013-01-01

    In the nuclear emergency response activity in a East Japan great earthquake, the weakness the frame and the activity procedure (scheme) of the emergency response activity of our country that had been constructed after the accident of JCO became clear. Especially, it is necessary to recognize the importance of the enhancement of a prior plan after not only provision to response but also the damage to the environment occurs in the emergency for measures for restoration. Moreover, it is necessary to examine a concrete strategy about the management system strengthening of the radiation exposure at the accident. In this study, the experience and the finding in a East Japan great earthquake are arranged. The accident scenario that should be targeted is rearranged, and it proposes a new frame in the nuclear emergency response field through the requirement examinations such as the points of procedure, equipment, and the capital machine parts that lie a regulations frame of the nuclear emergency response, the activity frame of the nuclear emergency response, and materialized of the nuclear emergency response activity. (author)

  10. Proposal of new framework in nuclear emergency response based on problem in East Japan Great Earthquake

    International Nuclear Information System (INIS)

    2012-01-01

    In the nuclear emergency response activity in a East Japan great earthquake, the weakness the frame and the activity procedure (scheme) of the emergency response activity of our country that had been constructed after the accident of JCO became clear. Especially, it is necessary to recognize the importance of the enhancement of a prior plan after not only provision to response but also the damage to the environment occurs in the emergency for measures for restoration. Moreover, it is necessary to examine a concrete strategy about the management system strengthening of the radiation exposure at the accident. In this study, the experience and the finding in a East Japan great earthquake are arranged. The accident scenario that should be targeted is rearranged, and it proposes a new frame in the nuclear emergency response field through the requirement examinations such as the points of procedure, equipment, and the capital machine parts that lie a regulations frame of the nuclear emergency response, the activity frame of the nuclear emergency response, and materialized of the nuclear emergency response activity. (author)

  11. Medical and radiological aspects of emergency preparedness and response at SevRAO facilities.

    Science.gov (United States)

    Savkin, M N; Sneve, M K; Grachev, M I; Frolov, G P; Shinkarev, S M; Jaworska, A

    2008-12-01

    Regulatory cooperation between the Norwegian Radiation Protection Authority and the Federal Medical Biological Agency (FMBA) of the Russian Federation has the overall goal of promoting improvements in radiation protection in Northwest Russia. One of the projects in this programme has the objectives to review and improve the existing medical emergency preparedness capabilities at the sites for temporary storage of spent nuclear fuel and radioactive waste. These are operated by SevRAO at Andreeva Bay and in Gremikha village on the Kola Peninsula. The work is also intended to provide a better basis for regulation of emergency response and medical emergency preparedness at similar facilities elsewhere in Russia. The purpose of this paper is to present the main results of that project, implemented by the Burnasyan Federal Medical Biophysical Centre. The first task was an analysis of the regulatory requirements and the current state of preparedness for medical emergency response at the SevRAO facilities. Although Russian regulatory documents are mostly consistent with international recommendations, some distinctions lead to numerical differences in operational intervention criteria under otherwise similar conditions. Radiological threats relating to possible accidents, and related gaps in the regulation of SevRAO facilities, were also identified. As part of the project, a special exercise on emergency medical response on-site at Andreeva Bay was prepared and carried out, and recommendations were proposed after the exercise. Following fruitful dialogue among regulators, designers and operators, special regulatory guidance has been issued by FMBA to account for the specific and unusual features of the SevRAO facilities. Detailed sections relate to the prevention of accidents, and emergency preparedness and response, supplementing the basic Russian regulatory requirements. Overall it is concluded that (a) the provision of medical and sanitary components of emergency

  12. Commercial Airline In-Flight Emergency: Medical Student Response and Review of Medicolegal Issues.

    Science.gov (United States)

    Bukowski, Josh H; Richards, John R

    2016-01-01

    As the prevalence of air travel increases, in-flight medical emergencies occur more frequently. A significant percentage of these emergencies occur when there is no certified physician, nurse, or paramedic onboard. During these situations, flight crews might enlist the help of noncertified passengers, such as medical students, dentists, or emergency medical technicians in training. Although Good Samaritan laws exist, many health care providers are unfamiliar with the limited legal protections and resources provided to them after responding to an in-flight emergency. A 78-year-old woman lost consciousness and became pulseless onboard a commercial aircraft. No physician was available. A medical student responded and coordinated care with the flight crew, ground support physician, and other passengers. After receiving a packet (4 g) of sublingual sucrose and 1 L i.v. crystalloid, the patient regained pulses and consciousness. The medical student made the decision not to divert the aircraft based on the patient's initial response to therapy and, 45 min later, the patient had normal vital signs. Upon landing, she was met and taken by paramedics to the nearest emergency department for evaluation of her collapse. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians are the most qualified to assist in-flight emergencies, but they might not be aware of the medicolegal risks involved with in-flight care, the resources available, and the role of the flight crew in liability and decision making. This case, which involved a medical student who was not given explicit protection under Good Samaritan laws, illustrates the authority of the flight crew during these events and highlights areas of uncertainty in the legislation for volunteer medical professionals. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Internal emergency organization in the Beznau nuclear power plant

    International Nuclear Information System (INIS)

    Wenger, H.

    1989-01-01

    The successful mastering of every emergency situation is based on the strict adherence to frequently reviewed emergency instruction and practice on simulators. This is the primary duty of all plant employees. In addition, executive bodies are necessary. The highest authority in the emergency organization is the emergency staff. Under the leadership of the plant manager, this staff consists of all department heads and several specialists. Outside normal working hours, it can be expected of the emergency staff that it is fully functional within, at most, one hour. Until the emergency staff can take over, the on-duty engineer leads emergency procedures. Several other different teams are responsible to the emergency staff. There are five emergency teams: off-duty plant employees; fire fighters; radiation defence; first-aid; plant guards. Then there is the technical support center (TSC). The responsibilities of the TSC are: giving technical advise to the emergency staff; working out different options for fighting the emergency; checking up on special methods; communication with the reactor manufacturer for additional support. 1 fig

  14. Dangerous quantities of radioactive material (D-values). Emergency preparedness and response. Publication date: August 2006

    International Nuclear Information System (INIS)

    2006-08-01

    Radioactive material is widely used in industry, medicine, education and agriculture. In addition, it occurs naturally. The health risk posed by these materials vary widely depending on many factors, the most important of which are the amount of the material involved and its physical and chemical form. Therefore, there is a need to identify the quantity and type of radioactive material for which emergency preparedness and other arrangements (e.g. security) are warrant due to the health risk they pose. The aim of this publication is to provide practical guidance for Member States on that quantity of radioactive material that may be considered dangerous. A dangerous quantity is that, which if uncontrolled, could be involved in a reasonable scenario resulting in the death of an exposed individual or a permanent injury, which decreases that person's quality of life. This publication is published as part of the IAEA Emergency Preparedness and Response Series. It supports several publications including: the IAEA Safety Requirements 'Preparedness and Response for a Nuclear or Radiological Emergency', IAEA Safety Standards Series No. GS-R-2. IAEA, Vienna (2002); IAEA Safety Guide 'Categorization of Radioactive Sources', IAEA Safety Standards Series No RS-G-1.9, IAEA, Vienna (2005) and IAEA Safety Guide 'Arrangements for Preparedness for a Nuclear or Radiological Emergency' IAEA Safety Standards Series No. GS-G-2.1, IAEA, Vienna (2006). The procedures and data in this publication have been prepared with due attention to accuracy. However, as part of the review process, they undergo ongoing quality assurance checks. Comments are welcome and, following a period that will allow for a more extensive review, the IAEA may revise this publication as part of the process of continuous improvement. The publication uses a number of exposure scenarios, risk models and dosimetric data, which could be used during the response to nuclear or radiological emergency or other purposes

  15. Medical response guide for the initial phase of a radiological emergency

    International Nuclear Information System (INIS)

    Vazquez, Marina A.; Perez, Maria del R.

    2007-01-01

    In case of a sanitary emergency, the local community and its health care system are the first aid providers. Therefore, preparedness through education and training programs would allow emergency systems to provide an appropriate first medical response. The main objective of this guide is to give basic guidelines for the medical response management after situations involving radioactive materials, in an easy and simple way. The information contained in this guide is addressed to health care personnel of any local assistance center. (author) [es

  16. Joint radiation emergency management plan of the international organizations. Emergency preparedness and response. Date effective: 1 December 2004

    International Nuclear Information System (INIS)

    2004-11-01

    The Convention on Early Notification of a Nuclear Accident (the 'Early Notification Convention') and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the 'Assistance Convention') are the prime legal instruments that establish an international framework to facilitate the exchange of information and the prompt provision of assistance in the event of a nuclear accident or radiological emergency, with the aim of minimizing the consequences. The International Atomic Energy Agency (IAEA) has specific functions assigned to it under these Conventions, to which, in addition to a number of States, the World Health Organization (WHO), the World Meteorological Organization (WMO) and the Food and Agriculture Organization of the United Nations (FAO) are full Parties. Since 1989, the arrangements between these organizations for facilitating the practical implementation of those articles of the two Conventions that are operational in nature have been documented by the IAEA in the Emergency Notification and Assistance Technical Operations Manual (ENATOM). The manual is intended for use primarily by contact points as identified in the Conventions. Pursuant to the obligations placed on it by the Conventions, the IAEA regularly convenes the Inter-Agency Committee on Response to Nuclear Accidents (IACRNA)2, whose purpose is to co-ordinate the arrangements of the relevant international intergovernmental organizations ('international organizations') for preparing for and responding to nuclear or radiological emergencies. Although the Conventions assign specific response functions and responsibilities to the IAEA and the Parties, various international organizations have - by virtue of their statutory functions or of related legal instruments - general functions and responsibilities that encompass aspects of preparedness and response. Moreover, some regional organizations (e.g. the European Union) are party to legally binding treaties and have

  17. The Virtual Learning Commons: Supporting Science Education with Emerging Technologies

    Science.gov (United States)

    Pennington, D. D.; Gandara, A.; Gris, I.

    2012-12-01

    The Virtual Learning Commons (VLC), funded by the National Science Foundation Office of Cyberinfrastructure CI-Team Program, is a combination of Semantic Web, mash up, and social networking tools that supports knowledge sharing and innovation across scientific disciplines in research and education communities and networks. The explosion of scientific resources (data, models, algorithms, tools, and cyberinfrastructure) challenges the ability of educators to be aware of resources that might be relevant to their classes. Even when aware, it can be difficult to understand enough about those resources to develop classroom materials. Often emerging data and technologies have little documentation, especially about their application. The VLC tackles this challenge by providing mechanisms for individuals and groups of educators to organize Web resources into virtual collections, and engage each other around those collections in order to a) learn about potentially relevant resources that are available; b) design classes that leverage those resources; and c) develop course syllabi. The VLC integrates Semantic Web functionality for structuring distributed information, mash up functionality for retrieving and displaying information, and social media for discussing/rating information. We are working to provide three views of information that support educators in different ways: 1. Innovation Marketplace: supports users as they find others teaching similar courses, where they are located, and who they collaborate with; 2. Conceptual Mapper: supports educators as they organize their thinking about the content of their class and related classes taught by others; 3. Curriculum Designer: supports educators as they generate a syllabus and find Web resources that are relevant. This presentation will discuss the innovation and learning theories that have informed design of the VLC, hypotheses about the use of emerging technologies to support innovation in classrooms, and will include a

  18. Development of urban planning guidelines for improving emergency response capacities in seismic areas of Iran.

    Science.gov (United States)

    Hosseini, Kambod Amini; Jafari, Mohammad Kazem; Hosseini, Maziar; Mansouri, Babak; Hosseinioon, Solmaz

    2009-10-01

    This paper presents the results of research carried out to improve emergency response activities in earthquake-prone areas of Iran. The research concentrated on emergency response operations, emergency medical care, emergency transportation, and evacuation-the most important issues after an earthquake with regard to saving the lives of victims. For each topic, some guidelines and criteria are presented for enhancing emergency response activities, based on evaluations of experience of strong earthquakes that have occurred over the past two decades in Iran, notably Manjil (1990), Bam (2003), Firouz Abad-Kojour (2004), Zarand (2005) and Broujerd (2006). These guidelines and criteria are applicable to other national contexts, especially countries with similar seismic and social conditions as Iran. The results of this study should be incorporated into comprehensive plans to ensure sustainable development or reconstruction of cities as well as to augment the efficiency of emergency response after an earthquake.

  19. Emergency planning, response and assessment: a concept for a center of excellence

    International Nuclear Information System (INIS)

    Dickerson, M.H.

    1986-01-01

    This paper discusses a general concept for a center of excellence devoted to emergency planning, response and assessment. A plan is presented to implement the concept, based on experience gained from emergency response as it relates to the nuclear and toxic chemical industries. The role of the World Laboratory in this endeavor would complement and enhance other organizations than are involved in related activities

  20. Workload differences across command levels and emergency response organizations during a major joint training exercise.

    Science.gov (United States)

    Prytz, Erik G; Rybing, Jonas; Jonson, Carl-Oscar

    2016-01-01

    This study reports on an initial test using a validated workload measurement method, the NASA Task Load Index (TLX), as an indicator of joint emergency exercise effectiveness. Prior research on emergency exercises indicates that exercises must be challenging, ie, result in high workload, to be effective. However, this is often problematic with some participants being underloaded and some overloaded. The NASA TLX was used to test for differences in workload between commanders and subordinates and among three different emergency response organizations during a joint emergency exercise. Questionnaire-based evaluation with professional emergency responders. The study was performed in conjunction with a large-scale interorganizational joint emergency exercise in Sweden. A total of 20 participants from the rescue services, 12 from the emergency medical services, and 12 from the police participated in the study (N=44). Ten participants had a command-level role during the exercise and the remaining 34 were subordinates. The main outcome measures were the workload subscales of the NASA TLX: mental demands, physical demands, temporal demands, performance, effort, and frustration. The results showed that the organizations experienced different levels of workload, that the commanders experienced a higher workload than the subordinates, and that two out of three organizations fell below the twenty-fifth percentile of average workload scores compiled from 237 prior studies. The results support the notion that the NASA TLX could be a useful complementary tool to evaluate exercise designs and outcomes. This should be further explored and verified in additional studies.

  1. Correlates of emergency response interval and mortality from ...

    African Journals Online (AJOL)

    A retrospective study to determine the influence of blood transfusion emergency response interval on Mortality from childhood severe anemia was carried out. An admission record of all children with severe anemia over a 5-year period was reviewed. Those who either died before transfusion or got discharged against ...

  2. Decision support for water quality management of contaminants of emerging concern.

    Science.gov (United States)

    Fischer, Astrid; Ter Laak, Thomas; Bronders, Jan; Desmet, Nele; Christoffels, Ekkehard; van Wezel, Annemarie; van der Hoek, Jan Peter

    2017-05-15

    Water authorities and drinking water companies are challenged with the question if, where and how to abate contaminants of emerging concern in the urban water cycle. The most effective strategy under given conditions is often unclear to these stakeholders as it requires insight into several aspects of the contaminants such as sources, properties, and mitigation options. Furthermore the various parties in the urban water cycle are not always aware of each other's requirements and priorities. Processes to set priorities and come to agreements are lacking, hampering the articulation and implementation of possible solutions. To support decision makers with this task, a decision support system was developed to serve as a point of departure for getting the relevant stakeholders together and finding common ground. The decision support system was iteratively developed in stages. Stakeholders were interviewed and a decision support system prototype developed. Subsequently, this prototype was evaluated by the stakeholders and adjusted accordingly. The iterative process lead to a final system focused on the management of contaminants of emerging concern within the urban water cycle, from wastewater, surface water and groundwater to drinking water, that suggests mitigation methods beyond technical solutions. Possible wastewater and drinking water treatment techniques in combination with decentralised and non-technical methods were taken into account in an integrated way. The system contains background information on contaminants of emerging concern such as physical/chemical characteristics, toxicity and legislative frameworks, water cycle entrance pathways and a database with associated possible mitigation methods. Monitoring data can be uploaded to assess environmental and human health risks in a specific water system. The developed system was received with great interest by potential users, and implemented in an international water cycle network. Copyright © 2017 Elsevier

  3. Emergency response guide for Point Lepreau area residents

    International Nuclear Information System (INIS)

    1982-01-01

    The design, construction and operating procedures of CANDU nuclear generating stations ensure that an accident causing a significant risk to people living near these stations is extremely unlikely. However, despite the excellent safety record of nuclear stations, it is common practice to prepare an emergency plan for such facilities. In this regard, The New Brunswick Emergency Measures Organization is responsible for developing and implementing the Off-Site Emergency Plan for the Point Lepreau Generating Station. Work for the Off-Site Emergency Plan began in 1976 and, under the leadership of N.B.E.M.O., a number of government agencies co-operated in this project. The completed plan thus represents agreement among a number of Province of New Brunswick departments, various community groups, NB Power, and representatives of the Government of Canada. Also, information gathered in the annual door-to-door survey of the Lepreau area enabled government planners to make specialized arrangements such as an extensive warden service, a siren system, and evacuation assistance for the disabled

  4. Modernisation of Radiation Monitoring Room as a Part of Slovenian Emergency Response Centre

    International Nuclear Information System (INIS)

    Sarvari, A.; Mitic, D.

    2003-01-01

    In the year 2002 the Slovenian Nuclear Safety Administration (SNSA) moved to the new premises therefore it had to rearrange some of its rooms for the emergency situation. SNSA does not operate with a dedicated Emergency Response Centre (ERC), instead of it the SNSA has to rearrange the existing rooms in case of an emergency. Modernisation of the equipment, with the help of government of the United Kingdom of Great Britain and Northern Ireland, for the emergency situation was carried out, especially in the monitoring room. The radiation monitoring system, which is placed in the monitoring room, continuously collects, processes and archives the incoming data of exposure to radiation and meteorological parameters on the Slovenian territory (A model national emergency response plan for radiological accidents, IAEA, Vienna, 1993. IAEA-TECDOC-718). In the emergency situation the monitoring room transforms into the room for the Dose Assessment Group (DAG), which is part of ERC (IAEA emergency response network, IAEA, Vienna, 2000, EPR-ERNET (2000)). The modernisation of monitoring room and within the DAG room with new equipment and its purpose is described in this article. Modernisation of the monitoring room and the room for DAG showed to be inevitably needed. Modernisation of the monitoring room has brought the SNSA a sophisticated and reliable system of controlling the external exposure to radiation on the Slovenian territory. The equipment, especially the equipment for the use in the emergency situation, brought novelties for the Dose Assessment Group. The group has now better and easier control of radiation situation in case of an accident. In overall this modernisation has put the Slovenian Nuclear Safety Administration a step forward in having a dedicated Emergency Response Centre, since it does not need to rearrange the room for the Dose Assessment Group. (author)

  5. The advanced control board summary and adaptation of the emergency operation support system

    International Nuclear Information System (INIS)

    Yamada, Yusuke; Mashio, Kenji

    2009-01-01

    In an attempt to further improve both reliability and operability of Pressurized Water Reactors (PWRs), the advanced main control board and the Emergency Operation Support System (EOSS), which assists operators to monitor and make judgments during an emergency situation, have been developed. In this paper, the advanced control board summary and functions of the EOSS are described. (author)

  6. Tactical emergency medical support programs: a comprehensive statewide survey.

    Science.gov (United States)

    Bozeman, William P; Morel, Benjamin M; Black, Timothy D; Winslow, James E

    2012-01-01

    Specially trained tactical emergency medical support (TEMS) personnel provide support to law enforcement special weapons and tactics (SWAT) teams. These programs benefit law enforcement agencies, officers, suspects, and citizens. TEMS programs are increasingly popular, but there are wide variations in their organization and operation and no recent data on their prevalence. We sought to measure the current prevalence and specific characteristics of TEMS programs in a comprehensive fashion in a single southeastern state. North Carolina emergency medical services (EMS) systems have county-based central EMS oversight; each system was surveyed by phone and e-mail. The presence and selected characteristics of TEMS programs were recorded. U.S. Census data were used to measure the population impact of the programs. All of the 101 EMS systems statewide were successfully contacted. Thirty-three counties (33%) have TEMS programs providing medical support to 56 local law enforcement agencies as well as state and federal agencies. TEMS programs tend to be located in more populated urban and suburban areas, serving a population base of 5.9 million people, or 64% of the state's population. Tactical medics in the majority of these programs (29/33; 88%) are not sworn law enforcement officers. Approximately one-third of county-based EMS systems in North Carolina have TEMS programs. These programs serve almost two-thirds of the state's population base, using primarily nonsworn tactical medics. Comparison with other regions of the country will be useful to demonstrate differences in prevalence and program characteristics. Serial surveillance will help track trends and measure the growth and impact of this growing subspecialty field.

  7. Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication, jointly sponsored by the FAO, IAEA, ICAO, ILO, IMO, INTERPOL, OECD/NEA, PAHO, CTBTO, UNEP, OCHA, WHO and WMO, is the new edition establishing the requirements for preparedness and response for a nuclear or radiological emergency which takes into account the latest experience and developments in the area. It supersedes the previous edition of the Safety Requirements for emergency preparedness and response, Safety Standards Series No. GS-R-2, which was published in 2002. This publication establishes the requirements for ensuring an adequate level of preparedness and response for a nuclear or radiological emergency, irrespective of its cause. These Safety Requirements are intended to be used by governments, emergency response organizations, other authorities at the local, regional and national levels, operating organizations and the regulatory body as well as by relevant international organizations at the international level.

  8. Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication, jointly sponsored by the FAO, IAEA, ICAO, ILO, IMO, INTERPOL, OECD/NEA, PAHO, CTBTO, UNEP, OCHA, WHO and WMO, is the new edition establishing the requirements for preparedness and response for a nuclear or radiological emergency which takes into account the latest experience and developments in the area. It supersedes the previous edition of the Safety Requirements for emergency preparedness and response, Safety Standards Series No. GS-R-2, which was published in 2002. This publication establishes the requirements for ensuring an adequate level of preparedness and response for a nuclear or radiological emergency, irrespective of its cause. These Safety Requirements are intended to be used by governments, emergency response organizations, other authorities at the local, regional and national levels, operating organizations and the regulatory body as well as by relevant international organizations at the international level.

  9. Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication, jointly sponsored by the FAO, IAEA, ICAO, ILO, IMO, INTERPOL, OECD/NEA, PAHO, CTBTO, UNEP, OCHA, WHO and WMO, is the new edition establishing the requirements for preparedness and response for a nuclear or radiological emergency which takes into account the latest experience and developments in the area. It supersedes the previous edition of the Safety Requirements for emergency preparedness and response, Safety Standards Series No. GS-R-2, which was published in 2002. This publication establishes the requirements for ensuring an adequate level of preparedness and response for a nuclear or radiological emergency, irrespective of its cause. These Safety Requirements are intended to be used by governments, emergency response organizations, other authorities at the local, regional and national levels, operating organizations and the regulatory body as well as by relevant international organizations at the international level.

  10. Development of emergency operator support system for next Japanese PWR plants

    International Nuclear Information System (INIS)

    Ito, K.; Hanada, S.; Yoshida, Y.; Sugino, K.

    2006-01-01

    The purpose of main control room improvement is to reduce operator workload and potential human errors by offering a better working environment where operators can maximize their abilities. Japanese PWR utilities and Mitsubishi have developed an operator support system entitled Emergency Operator Support System (EOSS). The system supports operators in incidental/accidental situations which may be worsened by human errors. In order to confirm the validity of the system, a proto type was built, and was evaluated by operator crews. The consequence showed good result of effectiveness in avoiding potential human errors and decreasing workload of operators. (authors)

  11. InteractInteraction mechanism of emergency response in geological hazard perception and risk management: a case study in Zhouqu county

    Science.gov (United States)

    Qi, Yuan; Zhao, Hongtao

    2017-04-01

    China is one of few several natural disaster prone countries, which has complex geological and geographical environment and abnormal climate. On August 8, 2010, a large debris flow disaster happened in Zhouqu Country, Gansu province, resulting in more than 1700 casualties and more than 200 buildings damaged. In order to percept landslide and debris flow, an early warning system was established in the county. Spatial information technologies, such as remote sensing, GIS, and GPS, play core role in the early warning system, due to their functions in observing, analyzing, and locating geological disasters. However, all of these spatial information technologies could play an important role only guided by the emergency response mechanism. This article takes the establishment of Zhouqu Country's Disaster Emergency Response Interaction Mechanism (DERIM) as an example to discuss the risk management of country-level administrative units. The country-level risk management aims to information sharing, resources integration, integrated prevention and unified command. Then, nine subsystems support DERIM, which included disaster prevention and emergency data collection and sharing system, joint duty system, disaster verification and evaluation system, disaster consultation system, emergency warning and information release system, emergency response system, disaster reporting system, plan management system, mass prediction and prevention management system. At last, an emergency command platform in Zhouqu Country built up to realize DERIM. The core mission of the platform consists of daily management of disaster, monitoring and warning, comprehensive analysis, information release, consultation and decision-making, emergency response, etc. Five functional modules, including module of disaster information management, comprehensive monitoring module (geological monitoring, meteorological monitoring, water conservancy and hydrological monitoring), alarm management module, emergency

  12. FEMA's Earthquake Incident Journal: A Web-Based Data Integration and Decision Support Tool for Emergency Management

    Science.gov (United States)

    Jones, M.; Pitts, R.

    2017-12-01

    For emergency managers, government officials, and others who must respond to rapidly changing natural disasters, timely access to detailed information related to affected terrain, population and infrastructure is critical for planning, response and recovery operations. Accessing, analyzing and disseminating such disparate information in near real-time are critical decision support components. However, finding a way to handle a variety of informative yet complex datasets poses a challenge when preparing for and responding to disasters. Here, we discuss the implementation of a web-based data integration and decision support tool for earthquakes developed by the Federal Emergency Management Agency (FEMA) as a solution to some of these challenges. While earthquakes are among the most well- monitored and measured of natural hazards, the spatially broad impacts of shaking, ground deformation, landslides, liquefaction, and even tsunamis, are extremely difficult to quantify without accelerated access to data, modeling, and analytics. This web-based application, deemed the "Earthquake Incident Journal", provides real-time access to authoritative and event-specific data from external (e.g. US Geological Survey, NASA, state and local governments, etc.) and internal (FEMA) data sources. The journal includes a GIS-based model for exposure analytics, allowing FEMA to assess the severity of an event, estimate impacts to structures and population in near real-time, and then apply planning factors to exposure estimates to answer questions such as: What geographic areas are impacted? Will federal support be needed? What resources are needed to support survivors? And which infrastructure elements or essential facilities are threatened? This presentation reviews the development of the Earthquake Incident Journal, detailing the data integration solutions, the methodology behind the GIS-based automated exposure model, and the planning factors as well as other analytical advances that

  13. Lessons from the Ebola Outbreak: Action Items for Emerging Infectious Disease Preparedness and Response.

    Science.gov (United States)

    Jacobsen, Kathryn H; Aguirre, A Alonso; Bailey, Charles L; Baranova, Ancha V; Crooks, Andrew T; Croitoru, Arie; Delamater, Paul L; Gupta, Jhumka; Kehn-Hall, Kylene; Narayanan, Aarthi; Pierobon, Mariaelena; Rowan, Katherine E; Schwebach, J Reid; Seshaiyer, Padmanabhan; Sklarew, Dann M; Stefanidis, Anthony; Agouris, Peggy

    2016-03-01

    As the Ebola outbreak in West Africa wanes, it is time for the international scientific community to reflect on how to improve the detection of and coordinated response to future epidemics. Our interdisciplinary team identified key lessons learned from the Ebola outbreak that can be clustered into three areas: environmental conditions related to early warning systems, host characteristics related to public health, and agent issues that can be addressed through the laboratory sciences. In particular, we need to increase zoonotic surveillance activities, implement more effective ecological health interventions, expand prediction modeling, support medical and public health systems in order to improve local and international responses to epidemics, improve risk communication, better understand the role of social media in outbreak awareness and response, produce better diagnostic tools, create better therapeutic medications, and design better vaccines. This list highlights research priorities and policy actions the global community can take now to be better prepared for future emerging infectious disease outbreaks that threaten global public health and security.

  14. Development and verification of symptom based emergency procedure support system

    International Nuclear Information System (INIS)

    Saijou, Nobuyuki; Sakuma, Akira; Takizawa, Yoji; Tamagawa, Naoko; Kubota, Ryuji; Satou, Hiroyuki; Ikeda, Koji; Taminami, Tatsuya

    1998-01-01

    A Computerized Emergency Procedure Guideline (EPG) Support System has been developed for BWR and evaluated using training simulator. It aims to enhance the effective utilization of EPG. The system identifies suitable symptom-based operating procedures for present plant status automatically. It has two functions : one is plant status identification function, and the other is man-machine interface function. For the realization of the former function, a method which identifies and prioritize suitable symptom-based operational procedures against present plant status has been developed. As man-machine interface, operation flow chart display has been developed. It express the flow of the identified operating procedures graphically. For easy understanding of the display, important information such as plant status change, priority of operating procedures and completion/uncompletion of the operation is displayed on the operation flow display by different colors. As evaluation test, the response of the system to the design based accidents was evaluated by actual plant operators, using training simulator at BWR Training Center. Through the analysis of interviews and questionnaires to operators, it was shown that the system is effective and can be utilized for a real plant. (author)

  15. Ecological user interface for emergency management decision support systems

    DEFF Research Database (Denmark)

    Andersen, V.

    2003-01-01

    The user interface for decision support systems is normally structured for presenting relevant data for the skilled user in order to allow fast assessment and action of the hazardous situation, or for more complex situations to present the relevant rules and procedures to be followed in order to ...... of this paper is to discuss the possibility of using the same principles for emergency management with the aim of improved performance in complex and unanticipated situations....

  16. Optimization of in-vivo monitoring program for radiation emergency response

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Wi Ho; Kim, Jong Kyung [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-12-15

    In case of radiation emergencies, internal exposure monitoring for the members of public will be required to confirm internal contamination of each individual. In-vivo monitoring technique using portable gamma spectrometer can be easily applied for internal exposure monitoring in the vicinity of the on-site area. In this study, minimum detectable doses (MDDs) for '1'3'4Cs, {sup 137}Cs, and {sup 131}I were calculated adjusting minimum detectable activities (MDAs) from 50 to 1,000 Bq to find out the optimal in-vivo counting condition. DCAL software was used to derive retention fraction of Cs and I isotopes in the whole body and thyroid, respectively. A minimum detectable level was determined to set committed effective dose of 0.1 mSv for emergency response. We found that MDDs at each MDA increased along with the elapsed time. 1,000 Bq for {sup 134}Cs and {sup 137}Cs, and 100 Bq for {sup 131}I were suggested as optimal MDAs to provide in-vivo monitoring service in case of radiation emergencies. In-vivo monitoring program for emergency response should be designed to achieve the optimal MDA suggested from the present work. We expect that a reduction of counting time compared with routine monitoring program can achieve the high throughput system in case of radiation emergencies.

  17. Study of developing nuclear fabrication facility's integrated emergency response manual

    International Nuclear Information System (INIS)

    Kim, Taeh Yeong; Cho, Nam Chan; Han, Seung Hoon; Moon, Jong Han; Lee, Jin Hang; Min, Guem Young; Han, Ji Ah

    2016-01-01

    Public begin to pay attention to emergency management. Thus, public's consensus on having high level of emergency management system up to advanced country's is reached. In this social atmosphere, manual is considered as key factor to prevent accident or secure business continuity. Therefore, we first define possible crisis at KEPCO Nuclear Fuel (hereinafter KNF) and also make a 'Reaction List' for each crisis situation at the view of information-design. To achieve it, we analyze several country's crisis response manual and then derive component, indicate duties and roles at the information-design point of view. From this, we suggested guideline to make 'Integrated emergency response manual(IERM)'. The manual we used before have following few problems; difficult to applicate at the site, difficult to deliver information. To complement these problems, we searched manual elements from the view of information-design. As a result, we develop administrative manual. Although, this manual could be thought as fragmentary manual because it confined specific several agency/organization and disaster type

  18. 77 FR 35962 - Utilizing Rapidly Deployable Aerial Communications Architecture in Response to an Emergency

    Science.gov (United States)

    2012-06-15

    ... Aerial Communications Architecture in Response to an Emergency AGENCY: Federal Communications Commission... deployable aerial communications architecture (DACA) in facilitating emergency response by rapidly restoring... copying during normal business hours in the FCC Reference Information Center, Portals II, 445 12th Street...

  19. A decision support framework for characterizing and managing dermal exposures to chemicals during Emergency Management and Operations.

    Science.gov (United States)

    Dotson, G Scott; Hudson, Naomi L; Maier, Andrew

    2015-01-01

    Emergency Management and Operations (EMO) personnel are in need of resources and tools to assist in understanding the health risks associated with dermal exposures during chemical incidents. This article reviews available resources and presents a conceptual framework for a decision support system (DSS) that assists in characterizing and managing risk during chemical emergencies involving dermal exposures. The framework merges principles of three decision-making techniques: 1) scenario planning, 2) risk analysis, and 3) multicriteria decision analysis (MCDA). This DSS facilitates dynamic decision making during each of the distinct life cycle phases of an emergency incident (ie, preparedness, response, or recovery) and identifies EMO needs. A checklist tool provides key questions intended to guide users through the complexities of conducting a dermal risk assessment. The questions define the scope of the framework for resource identification and application to support decision-making needs. The framework consists of three primary modules: 1) resource compilation, 2) prioritization, and 3) decision. The modules systematically identify, organize, and rank relevant information resources relating to the hazards of dermal exposures to chemicals and risk management strategies. Each module is subdivided into critical elements designed to further delineate the resources based on relevant incident phase and type of information. The DSS framework provides a much needed structure based on contemporary decision analysis principles for 1) documenting key questions for EMO problem formulation and 2) a method for systematically organizing, screening, and prioritizing information resources on dermal hazards, exposures, risk characterization, and management.

  20. Report on the observation of IAEA international emergency response exercise ConvEx-3(2008)

    International Nuclear Information System (INIS)

    Yamamoto, Kazuya; Sumiya, Akihiro

    2009-02-01

    The International Atomic Energy Agency IAEA carried out a large-scale international emergency response exercise under the designated name of ConvEx-3(2008), accompanying the national exercise of Mexico in July 2008. This review report summarizes two simultaneous observations of the exercises in Mexico and the IAEA headquarter during ConvEx-3(2008). Mexico has established a very steady nuclear emergency response system based on that of US, while only two BWR nuclear power units have been operated yet. The Mexican nuclear emergency response system and the emergency response activities of the Incident and Emergency Centre of the IAEA headquarter impressed important knowledge on observers that is helpful for enhancement of Japanese nuclear emergency response system in the future, e.g. establishment of Emergency Action Level and of implementation of long time exercise and enhancement of prompt protective actions. Japan had established the Act on Special Measures Concerning Nuclear Emergency Preparedness and has developed the nuclear disaster prevention system since the JCO Criticality Accident in Tokai-mura. Now is the new stage to enhance the system on the view point of prevention of a nuclear disaster affecting the neighboring countries' or prevention of a nuclear disaster which arise from the neighboring countries'. The ConvEx-3(2008) suggested key issues about nuclear disaster prevention related to the neighboring countries, e.g. establishment of much wider environmental monitoring and of international assistance system against a foreign nuclear disaster. The observations of the IAEA ConvEx-3(2008) exercise described in this review report were funded by the MEXT (Ministry of Education, Culture, Sports, Science and Technology). (author)

  1. Analysis of emergency response to fukushima nuclear accident in Japan and suggestions for China's nuclear emergency management

    International Nuclear Information System (INIS)

    Li Wei; Ding Qihua; Wu Haosong

    2014-01-01

    On March 11, 2011, the Fukushima Dai-ichi Nuclear Power Station of the Tokyo Electric Power Company ('TEPCO') was hit and damaged by a magnitude 9 earthquake and accompanying tsunami. The accident is determined to be of the highest rating on the International Nuclear Event Scale. The Government of Japan and TEPCO have taken emergency response actions on-site and off-site at the accident. It became clear through the investigation that the accident had been initiated on the occasion of a natural disaster of an earthquake and tsunami, but there have been various complex problems behind this very serious and large scale accident. For an example, the then-available accident preventive measures and disaster preparedness of TEPCO were insufficient against tsunami and severe accidents; inadequate TEPCO emergency responses to the accident at the site were also identified. The accident rang the alarm for the nuclear safety of nuclear power plants. It also taught us a great of lessons in nuclear emergency management. (authors)

  2. Cambio: a file format translation and analysis application for the nuclear response emergency community

    International Nuclear Information System (INIS)

    Lasche, George P.

    2009-01-01

    Cambio is an application intended to automatically read and display any spectrum file of any format in the world that the nuclear emergency response community might encounter. Cambio also provides an analysis capability suitable for HPGe spectra when detector response and scattering environment are not well known. Why is Cambio needed: (1) Cambio solves the following problem - With over 50 types of formats from instruments used in the field and new format variations appearing frequently, it is impractical for every responder to have current versions of the manufacturer's software from every instrument used in the field; (2) Cambio converts field spectra to any one of several common formats that are used for analysis, saving valuable time in an emergency situation; (3) Cambio provides basic tools for comparing spectra, calibrating spectra, and isotope identification with analysis suited especially for HPGe spectra; and (4) Cambio has a batch processing capability to automatically translate a large number of archival spectral files of any format to one of several common formats, such as the IAEA SPE or the DHS N42. Currently over 540 analysts and members of the nuclear emergency response community worldwide are on the distribution list for updates to Cambio. Cambio users come from all levels of government, university, and commercial partners around the world that support efforts to counter terrorist nuclear activities. Cambio is Unclassified Unlimited Release (UUR) and distributed by internet downloads with email notifications whenever a new build of Cambio provides for new formats, bug fixes, or new or improved capabilities. Cambio is also provided as a DLL to the Karlsruhe Institute for Transuranium Elements so that Cambio's automatic file-reading capability can be included at the Nucleonica web site.

  3. A telemedicine support for improving medical emergency management

    Directory of Open Access Journals (Sweden)

    Massimo Canonico

    2017-12-01

    Full Text Available In this paper, we introduce a telemedicine architecture for supporting emergency patient stabilization and patient transportation to a fully equipped health care center. In particular, we focus on the description of a set of mobile apps, designed for supporting data recording and transmission during patient transportation by ambulance. Some of the apps are interfaced to the monitoring devices in the ambulance, and automatically send all the recorded data to a server at the destination center. One additional app enables the travelling personnel to input and transmit further significant patient data, or comments. At the destination center, the specialist physician is allowed to inspect the data as soon as they are received, possibly providing immediate advice. The exploitation of the apps also allows to maintain the transportation data over time, for medico-legal purposes, or to perform a-posteriori analyses. Some first evaluation results are discussed in the paper.

  4. Crisis Reliability Indicators Supporting Emergency Services (CRISES): A Framework for Developing Performance Measures for Behavioral Health Crisis and Psychiatric Emergency Programs.

    Science.gov (United States)

    Balfour, Margaret E; Tanner, Kathleen; Jurica, Paul J; Rhoads, Richard; Carson, Chris A

    2016-01-01

    Crisis and emergency psychiatric services are an integral part of the healthcare system, yet there are no standardized measures for programs providing these services. We developed the Crisis Reliability Indicators Supporting Emergency Services (CRISES) framework to create measures that inform internal performance improvement initiatives and allow comparison across programs. The framework consists of two components-the CRISES domains (timely, safe, accessible, least-restrictive, effective, consumer/family centered, and partnership) and the measures supporting each domain. The CRISES framework provides a foundation for development of standardized measures for the crisis field. This will become increasingly important as pay-for-performance initiatives expand with healthcare reform.

  5. Geographic Information System Technology Leveraged for Crisis Planning, Emergency, Response, and Disaster Management

    Science.gov (United States)

    Ross, A.; Little, M. M.

    2013-12-01

    NASA's Atmospheric Science Data Center (ASDC) is piloting the use of Geographic Information System (GIS) technology that can be leveraged for crisis planning, emergency response, and disaster management/awareness. Many different organizations currently use GIS tools and geospatial data during a disaster event. ASDC datasets have not been fully utilized by this community in the past due to incompatible data formats that ASDC holdings are archived in. Through the successful implementation of this pilot effort and continued collaboration with the larger Homeland Defense and Department of Defense emergency management community through the Homeland Infrastructure Foundation-Level Data Working Group (HIFLD WG), our data will be easily accessible to those using GIS and increase the ability to plan, respond, manage, and provide awareness during disasters. The HIFLD WG Partnership has expanded to include more than 5,900 mission partners representing the 14 executive departments, 98 agencies, 50 states (and 3 territories), and more than 700 private sector organizations to directly enhance the federal, state, and local government's ability to support domestic infrastructure data gathering, sharing and protection, visualization, and spatial knowledge management.The HIFLD WG Executive Membership is lead by representatives from the Department of Defense (DoD) Office of the Assistant Secretary of Defense for Homeland Defense and Americas' Security Affairs - OASD (HD&ASA); the Department of Homeland Security (DHS), National Protection and Programs Directorate's Office of Infrastructure Protection (NPPD IP); the National Geospatial-Intelligence Agency (NGA) Integrated Working Group - Readiness, Response and Recovery (IWG-R3); the Department of Interior (DOI) United States Geological Survey (USGS) National Geospatial Program (NGP), and DHS Federal Emergency Management Agency (FEMA).

  6. Policy support on Radiation Protection

    International Nuclear Information System (INIS)

    Hardeman, F.

    1998-01-01

    The objective of SCK-CEN's R and D programme on decision strategy research are: (1) to support and advise the Belgian authorities on specific problems concerning existing and potential hazards from exposure to ionising radiation, both in normal and emergency situations; (2) to improve and support nuclear emergency response decisions in industrial areas from an economic point of view. Main achievements in this area in 1997 are described

  7. Emergency management in nuclear power plants: a regulatory view

    International Nuclear Information System (INIS)

    Shukla, Vikas; Chander, Vipin; Vijayan, P.; Nair, P.S.; Krishnamurthy, P.R.

    2011-01-01

    The nuclear power plants in India adopts a high level of defence in depth concept in design and operates at highest degree of safety, however the possibility of nuclear accidents cannot be ruled out. The safety and regulatory review of Nuclear Power Plants (NPPs) in India are carried out by Atomic Energy Regulatory Board (AERB). Section 33 of Atomic Energy (Radiation Protection) Rules-2004 provides the basic requirements of emergency preparedness aspects for a nuclear facility. Prior to the issuance of a license for the operation of NPPs, AERB ensures that the site specific emergency response manuals are in place and tested. The emergency response plan includes the emergency response organization, their responsibilities, the detailed scheme of emergency preparedness, response, facilities, equipments, coordination and support of various organizations and other technical aspects. These emergency preparedness plans are tested at periodic interval to check the overall effectiveness. The plant and site emergency exercise is handled by the plant authorities as per the site emergency plan. The events with off-site consequences are handled by the district authorities according to the off-site emergency plan. In off-site emergency exercises, observers from AERB and other associated organizations participate. Observations of the participants are discussed in the feedback session of the exercise for their disposition. This paper reviews the current level of emergency planning and preparedness, statistics of emergency exercises conducted and their salient findings. The paper highlights improvement in the emergency management programme over the years including development of advance technical support systems. The major challenges in off-site emergency management programme such as industrial growth and increase in population within the sterilized zone, frequent transfer of district officials and the floating population around the NPPs are outlined. The areas for improvement in

  8. U.S. Strategy for Bioterrorism Emergency Medical Preparedness and Response

    National Research Council Canada - National Science Library

    Lugo, Angel

    2003-01-01

    ... diseases and mass casualty dangers. The 2002 National Strategy for Homeland Security includes numerous emergency preparedness and response initiatives as part of the overall homeland security strategy...

  9. Utility and assessment of non-technical skills for rapid response systems and medical emergency teams.

    Science.gov (United States)

    Chalwin, R P; Flabouris, A

    2013-09-01

    Efforts are ongoing to improve outcomes from cardiac arrest and medical emergencies. A promising quality improvement modality is use of non-technical skills (NTS) that aim to address human factors through improvements in performance of leadership, communication, situational awareness and decision-making. Originating in the airline industry, NTS training has been successfully introduced into anaesthesia, surgery, emergency medicine and other acute medical specialities. Some aspects of NTS have already achieved acceptance for cardiac arrest teams. Leadership skills are emphasised in advanced life support training and have shown favourable results when employed in simulated and clinical resuscitation scenarios. The application of NTS in medical emergency teams as part of a rapid response system attending medical emergencies is less certain; however, observations of simulations have also shown promise. This review highlights the potential benefits of NTS competency for cardiac arrest teams and, more importantly, medical emergency teams because of the diversity of clinical scenarios encountered. Discussion covers methods to assess and refine NTS and NTS training to optimise performance in the clinical environment. Increasing attention should be applied to yielding meaningful patient and organisational outcomes from use of NTS. Similarly, implementation of any training course should receive appropriate scrutiny to refine team and institutional performance. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.

  10. Radiological emergency assessment of local decision support system

    International Nuclear Information System (INIS)

    Breznik, B.; Kusar, A.; Boznar, M.Z.; Mlakar, P.

    2003-01-01

    Local decision support system has been developed based on the needs of Krsko Nuclear Power Plant for quick dose projection and it is one of important features required for proposal of intervention before actual release may occur. Radiological emergency assessment in the case of nuclear accident is based on plant status analysis, radiation monitoring data and on prediction of release of radioactive sources to the environment. There are possibilities to use automatic features to predict release source term and manual options for selection of release parameters. Advanced environmental modelling is used for assessment of atmospheric dispersion of radioactive contamination in the environment. (author)

  11. Preparedness and response for a nuclear or radiological emergency. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Requirements publication establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. Their implementation is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. The fulfilment of these requirements will also contribute to the harmonization of arrangements in the event of a transnational emergency. These requirements are intended to be applied by authorities at the national level by means of adopting legislation, establishing regulations and assigning responsibilities. The requirements apply to all those practices and sources that have the potential for causing radiation exposure or environmental radioactive contamination warranting an emergency intervention and that are: (a) Used in a State that chooses to adopt the requirements or that requests any of the sponsoring organizations to provide for the application of the requirements. (B) Used by States with the assistance of the FAO, IAEA, ILO, PAHO, OCHA or WHO in compliance with applicable national rules and regulations. (C) Used by the IAEA or which involve the use of materials, services, equipment, facilities and non-published information made available by the IAEA or at its request or under its control or supervision. Or (d) Used under any bilateral or multilateral arrangement whereby the parties request the IAEA to provide for the application of the requirements. The requirements also apply to the off-site jurisdictions that may need to make an emergency intervention in a State that adopts the requirements. The types of practices and sources covered by these requirements include: fixed and mobile nuclear reactors. Facilities for the mining and processing of radioactive ores. Facilities for fuel reprocessing and other fuel cycle facilities. Facilities for the management of radioactive waste. The transport of radioactive material. Sources of radiation used in

  12. Criteria for preparation and evaluation of radiological emergency response plans and preparedness in support of nuclear power plants: Criteria for utility offsite planning and preparedness: Final report

    International Nuclear Information System (INIS)

    Podolak, E.M. Jr.; Sanders, M.E.; Wingert, V.L.; Donovan, R.W.

    1988-09-01

    The Nuclear Regulatory Commission (NRC) and the Federal Emergency Management Agency (FEMA) have added a supplement to NUREG-0654/FEMA-REP-1, Rev. 1 that provides guidance for the development, review, and evaluation of utility offsite radiological emergency response planning and preparedness for those situations in which state and/or local governments decline to participate in emergency planning. While this guidance primarily applies to plants that do not have full-power operating licenses, it does have relevance to operating nuclear power plants

  13. Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, J A

    2009-12-30

    This revision of the LLNL Fire Protection Baseline Needs Assessment (BNA) was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by Martin Gresho, Sandia/CA Fire Marshal. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only address emergency response. The original LLNL BNA was created on April 23, 1997 as a means of collecting all requirements concerning emergency response capabilities at LLNL (including response to emergencies at Sandia/CA) into one BNA document. The original BNA documented the basis for emergency response, emergency personnel staffing, and emergency response equipment over the years. The BNA has been updated and reissued five times since in 1998, 1999, 2000, 2002, and 2004. A significant format change was performed in the 2004 update of the BNA in that it was 'zero based.' Starting with the requirement documents, the 2004 BNA evaluated the requirements, and determined minimum needs without regard to previous evaluations. This 2010 update maintains the same basic format and requirements as the 2004 BNA. In this 2010 BNA, as in the previous BNA, the document has been intentionally divided into two separate documents - the needs assessment (1) and the compliance assessment (2). The needs assessment will be referred to as the BNA and the compliance assessment will be referred to as the BNA Compliance Assessment. The primary driver for separation is that the needs assessment identifies the detailed applicable regulations (primarily NFPA Standards) for emergency response capabilities based on the hazards present at LLNL and Sandia/CA and the geographical location of the facilities. The needs assessment also identifies areas where the modification of the requirements in the applicable NFPA standards is appropriate, due to the improved fire protection

  14. Emergency Response Program Designing Based On Case Study ERP Regulations In Ilam Gas Refinery

    Directory of Open Access Journals (Sweden)

    Mehdi Tahmasbi

    2015-08-01

    Full Text Available The study of Emergency response plan designing is one of the most important prevention approaches in crisis management. This study aims to design emergency response plan based on case study ERP regulations in Ilam gas refinery. On the basis of risk assessment and identification techniques such as HAZOP and FMEA in Ilam gas refinery the risks have been prioritized and then according to this prioritization the design of possible scenarios which have the highest rate of occurrence and the highest level of damage has been separated. Possible scenarios were simulated with PHAST software. Then emergency response program has been designed for the special mode or similar cases. According to the internal emergency response plan for Ilam gas refinery and predictable conditions of the process special instructions should be considered at the time of the incident to suffer the least damage on people and environment in the shortest time possible.

  15. The role of ICT in supporting disruptive innovation: a multi-site qualitative study of nurse practitioners in emergency departments

    Directory of Open Access Journals (Sweden)

    Li Julie

    2012-04-01

    Full Text Available Abstract Background The disruptive potential of the Nurse Practitioner (NP is evident in their ability to offer services traditionally provided by primary care practitioners and their provision of a health promotion model of care in response to changing health trends. No study has qualitatively investigated the role of the Emergency NP in Australia, nor the impact of Information and Communication Technology (ICT on this disruptive workforce innovation. This study aimed to investigate ways in which Nurse Practitioners (NP have incorporated the use of ICT as a mechanism to support their new clinical role within Emergency Departments. Methods A cross-sectional qualitative study was undertaken in the Emergency Departments (EDs of two large Australian metropolitan public teaching hospitals. Semi-structured, in-depth interviews were conducted with five nurse practitioners, four senior physicians and five senior nurses. Transcribed interviews were analysed using a grounded theory approach to develop themes in relation to the conceptualisation of the ED nurse practitioner role and the influences of ICT upon the role. Member checking of results was achieved by revisiting the sites to clarify findings with participants and further explore emergent themes. Results The role of the ENP was distinguished from those of Emergency nurses and physicians by two elements: advanced practice and holistic care, respectively. ICT supported the advanced practice dimension of the NP role in two ways: availability and completeness of electronic patient information enhanced timeliness and quality of diagnostic and therapeutic decision-making, expediting patient access to appropriate care. The ubiquity of patient data sourced from a central database supported and improved quality of communication between health professionals within and across sites, with wider diffusion of the Electronic Medical Record holding the potential to further facilitate team-based, holistic care

  16. The role of ICT in supporting disruptive innovation: a multi-site qualitative study of nurse practitioners in emergency departments.

    Science.gov (United States)

    Li, Julie; Westbrook, Johanna; Callen, Joanne; Georgiou, Andrew

    2012-04-02

    The disruptive potential of the Nurse Practitioner (NP) is evident in their ability to offer services traditionally provided by primary care practitioners and their provision of a health promotion model of care in response to changing health trends. No study has qualitatively investigated the role of the Emergency NP in Australia, nor the impact of Information and Communication Technology (ICT) on this disruptive workforce innovation. This study aimed to investigate ways in which Nurse Practitioners (NP) have incorporated the use of ICT as a mechanism to support their new clinical role within Emergency Departments. A cross-sectional qualitative study was undertaken in the Emergency Departments (EDs) of two large Australian metropolitan public teaching hospitals. Semi-structured, in-depth interviews were conducted with five nurse practitioners, four senior physicians and five senior nurses. Transcribed interviews were analysed using a grounded theory approach to develop themes in relation to the conceptualisation of the ED nurse practitioner role and the influences of ICT upon the role. Member checking of results was achieved by revisiting the sites to clarify findings with participants and further explore emergent themes. The role of the ENP was distinguished from those of Emergency nurses and physicians by two elements: advanced practice and holistic care, respectively. ICT supported the advanced practice dimension of the NP role in two ways: availability and completeness of electronic patient information enhanced timeliness and quality of diagnostic and therapeutic decision-making, expediting patient access to appropriate care. The ubiquity of patient data sourced from a central database supported and improved quality of communication between health professionals within and across sites, with wider diffusion of the Electronic Medical Record holding the potential to further facilitate team-based, holistic care. ICT is a facilitator through which the disruptive

  17. RMP Guidance for Warehouses - Chapter 8: Emergency Response Program

    Science.gov (United States)

    Implementing an emergency response program along with your risk management plan may be required if you have at least one Program 2 or 3 process in place, and if your employees will respond to some releases involving regulated toxic or flammable substances.

  18. Response of human populations to large-scale emergencies

    Science.gov (United States)

    Bagrow, James; Wang, Dashun; Barabási, Albert-László

    2010-03-01

    Until recently, little quantitative data regarding collective human behavior during dangerous events such as bombings and riots have been available, despite its importance for emergency management, safety and urban planning. Understanding how populations react to danger is critical for prediction, detection and intervention strategies. Using a large telecommunications dataset, we study for the first time the spatiotemporal, social and demographic response properties of people during several disasters, including a bombing, a city-wide power outage, and an earthquake. Call activity rapidly increases after an event and we find that, when faced with a truly life-threatening emergency, information rapidly propagates through a population's social network. Other events, such as sports games, do not exhibit this propagation.

  19. 'Nuclear emergency preparedness' for local residents. Support of on-site training of many kinds of places and people

    International Nuclear Information System (INIS)

    Kameda, Kazuhisa

    2005-01-01

    In order to support and ensure the nuclear emergency preparedness system and safety of residents in cities, towns and villages, NPO Nuclear Emergency Preparedness Support Center was established in May, 2003. 130 on-site training and education classes were held and above 2,000 participants attended to them for two years. Objects of the countermeasure of nuclear emergency preparedness in local area and residents, what is nuclear emergency for inhabitants, what is use of Table of International Nuclear Event Scale (INES)?, a use of INES, relation between INES level and the nuclear emergency preparedness system are discussed. (S.Y.)

  20. Comparison study of time history and response spectrum responses for multiply supported piping systems

    International Nuclear Information System (INIS)

    Wang, Y.K.; Subudhi, M.; Bezler, P.

    1983-01-01

    In the past decade, several investigators have studied the problem of independent support excitation of a multiply supported piping system to identify the real need for such an analysis. This approach offers an increase in accuracy at a small increase in computational costs. To assess the method, studies based on the response spectrum approach using independent support motions for each group of commonly connected supports were performed. The results obtained from this approach were compared with the conventional envelope spectrum and time history solutions. The present study includes a mathematical formulation of the independent support motion analysis method suitable for implementation into an existing all purpose piping code PSAFE2 and a comparison of the solutions for some typical piping system using both Time History and Response Spectrum Methods. The results obtained from the Response Spectrum Methods represent the upper bound solution at most points in the piping system. Similarly, the Seismic Anchor Movement analysis based on the SRP method over predicts the responses near the support points and under predicts at points away from the supports

  1. New insights into flood warning reception and emergency response by affected parties

    Science.gov (United States)

    Kreibich, Heidi; Müller, Meike; Schröter, Kai; Thieken, Annegret H.

    2017-11-01

    Flood damage can be mitigated if the parties at risk are reached by flood warnings and if they know how to react appropriately. To gain more knowledge about warning reception and emergency response of private households and companies, surveys were undertaken after the August 2002 and the June 2013 floods in Germany. Despite pronounced regional differences, the results show a clear overall picture: in 2002, early warnings did not work well; e.g. many households (27 %) and companies (45 %) stated that they had not received any flood warnings. Additionally, the preparedness of private households and companies was low in 2002, mainly due to a lack of flood experience. After the 2002 flood, many initiatives were launched and investments undertaken to improve flood risk management, including early warnings and an emergency response in Germany. In 2013, only a small share of the affected households (5 %) and companies (3 %) were not reached by any warnings. Additionally, private households and companies were better prepared. For instance, the share of companies which have an emergency plan in place has increased from 10 % in 2002 to 34 % in 2013. However, there is still room for improvement, which needs to be triggered mainly by effective risk and emergency communication. The challenge is to continuously maintain and advance an integrated early warning and emergency response system even without the occurrence of extreme floods.

  2. Advanced medical life support procedures in vitally compromised children by a helicopter emergency medical service.

    NARCIS (Netherlands)

    Gerritse, B.M.; Schalkwijk, A.; Pelzer, B.J.; Scheffer, G.J.; Draaisma, J.M.T.

    2010-01-01

    BACKGROUND: To determine the advanced life support procedures provided by an Emergency Medical Service (EMS) and a Helicopter Emergency Medical Service (HEMS) for vitally compromised children. Incidence and success rate of several procedures were studied, with a distinction made between procedures

  3. Ontario Hydro's transportation of radioactive material and emergency response plan

    International Nuclear Information System (INIS)

    Karmali, N.

    1993-01-01

    Ontario Hydro has been transporting radioactive material for almost 30 years without any exposure to the public or release to the environment. However, there have been three accidents involving Hydro's shipments of radioactive material. In addition to the quality packaging and shipping program, Ontario Hydro has an Emergency Response Plan and capability to deal with an accident involving a shipment of radioactive material. The Corporation's ability to respond, to effectively control and contain the situation, site remediation, and to provide emergency public information in the event of a road accident minimizes the risk to the public and the environment. This emphasizes their commitment to worker safety, public safety and impact to the environment. Response capability is mandated under various legislation and regulations in Canada

  4. E-DECIDER Decision Support Gateway For Earthquake Disaster Response

    Science.gov (United States)

    Glasscoe, M. T.; Stough, T. M.; Parker, J. W.; Burl, M. C.; Donnellan, A.; Blom, R. G.; Pierce, M. E.; Wang, J.; Ma, Y.; Rundle, J. B.; Yoder, M. R.

    2013-12-01

    Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) is a NASA-funded project developing capabilities for decision-making utilizing remote sensing data and modeling software in order to provide decision support for earthquake disaster management and response. E-DECIDER incorporates earthquake forecasting methodology and geophysical modeling tools developed through NASA's QuakeSim project in order to produce standards-compliant map data products to aid in decision-making following an earthquake. Remote sensing and geodetic data, in conjunction with modeling and forecasting tools, help provide both long-term planning information for disaster management decision makers as well as short-term information following earthquake events (i.e. identifying areas where the greatest deformation and damage has occurred and emergency services may need to be focused). E-DECIDER utilizes a service-based GIS model for its cyber-infrastructure in order to produce standards-compliant products for different user types with multiple service protocols (such as KML, WMS, WFS, and WCS). The goal is to make complex GIS processing and domain-specific analysis tools more accessible to general users through software services as well as provide system sustainability through infrastructure services. The system comprises several components, which include: a GeoServer for thematic mapping and data distribution, a geospatial database for storage and spatial analysis, web service APIs, including simple-to-use REST APIs for complex GIS functionalities, and geoprocessing tools including python scripts to produce standards-compliant data products. These are then served to the E-DECIDER decision support gateway (http://e-decider.org), the E-DECIDER mobile interface, and to the Department of Homeland Security decision support middleware UICDS (Unified Incident Command and Decision Support). The E-DECIDER decision support gateway features a web interface that

  5. Emergency medical support for a manned stratospheric balloon test program.

    Science.gov (United States)

    Blue, Rebecca S; Norton, Sean C; Law, Jennifer; Pattarini, James M; Antonsen, Erik L; Garbino, Alejandro; Clark, Jonathan B; Turney, Matthew W

    2014-10-01

    Red Bull Stratos was a commercial program that brought a test parachutist, protected by a full-pressure suit, in a stratospheric balloon with pressurized capsule to over 127,582 ft (38,969 m), from which he free fell and subsequently parachuted to the ground. Given that the major risks to the parachutist included ebullism, negative Gz (toe-to-head) acceleration exposure from an uncontrolled flat spin, and trauma, a comprehensive plan was developed to recover the parachutist under nominal conditions and to respond to any medical contingencies that might have arisen. In this report, the project medical team describes the experience of providing emergency medical support and crew recovery for the manned balloon flights of the program. The phases of flight, associated risks, and available resources were systematically evaluated. Six distinct phases of flight from an Emergency Medical Services (EMS) standpoint were identified. A Medical Support Plan was developed to address the risks associated with each phase, encompassing personnel, equipment, procedures, and communications. Despite geographical, communications, and resource limitations, the medical team was able to implement the Medical Support Plan, enabling multiple successful manned balloon flights to 71,615 ft (21,828 m), 97,221 ft (29,610 m), and 127,582 ft (38,969 m). The experience allowed refinement of the EMS and crew recovery procedures for each successive flight and could be applied to other high altitude or commercial space ventures.

  6. CLASSIFICATION OF THE MGR EMERGENCY RESPONSE SYSTEM

    International Nuclear Information System (INIS)

    Zeigler, J.A.

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) emergency response system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P7 ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  7. ANSI/ANS-8.23-1997: nuclear criticality accident emergency planning and response

    International Nuclear Information System (INIS)

    Baker, J.S.

    2004-01-01

    American National Standard ANSUANS-8.23 was developed to expand upon the basic emergency response guidance given in American National Standard, 'Administrative Practices for Nuclear Criticality Safety' ANSI/ANS-8.19-1996 (Ref. 1). This standard provides guidance for minimizing risks to personnel during emergency response to a nuclear criticality accident outside reactors. This standard is intended to apply to those facilities for which a criticality accident alarm system, as specified in American National Standard, 'Criticality Accident Alarm System', ANSI/ANS-8.3-1997 (Ref. 2) is in use. The Working Group was established in 1990, with Norman L. Pruvost as chairman. The Working Group had up to twenty-three members representing a broad range of the nuclear industry, and has included members from Canada, Japan and the United Kingdom. The initial edition of ANSI/ANS-8.23 was approved by the American National Standards Institute on December 30, 1997. It provides guidance for the following topics: (1) Management and technical staff responsibilities; (2) Evaluation of a potential criticality accident; (3) Emergency plan provisions; (4) Evacuation; (5) Re-entry, rescue and stabilization; and (6) Classroom training, exercises and evacuation drills. This guidance is not for generic emergency planning issues, but is specific to nuclear criticality accidents. For example, it assumes that an Emergency Plan is already established at facilities that implement the standard. During the development of the initial edition of ANSI/ANS-8.23, each Working Group member evaluated potential use of the standard at a facility with which the member was familiar. This revealed areas where a facility could have difficulty complying with the standard. These reviews helped identify and eliminate many potential problems and ambiguities with the guidance. The Working Group has received very limited feedback from the user community since the first edition of the standard was published. Suggestions

  8. Cooperative approach to training for radiological emergency preparedness and response in Southeast Asia

    International Nuclear Information System (INIS)

    Bus, John; Popp, Andrew; Holland, Brian; Murray, Allan

    2011-01-01

    The paper describes the collaborative and systematic approach to training for nuclear and radiological emergency preparedness and response and the outcomes of this work with ANSTO's Southeast Asian counterparts, particularly in the Philippines. The standards and criteria being applied are discussed, along with the methods, design and conduct of workshops, table-top and field exercises. The following elements of this training will be presented: (a) identifying the priority areas for training through needs analysis;(b) strengthening individual profesional expertise through a structured approach to training; and (c) enhancing individual Agency and National nuclear and radiological emergency preparedness and response arrangements and capabilities. Whilst the work is motivated by nuclear security concerns, the implications for effective and sustainable emergency response to any nuclear or radiological incidents are noted. (author)

  9. CMSMAP : oil, chemical, search and rescue, and marine emergency response crisis management system

    International Nuclear Information System (INIS)

    Anderson, E.L.; Howlett, E.; Galagan, C.; Giguere, T.; Wee, F.; Chong, J.

    2002-01-01

    This paper describes a newly developed Crisis Management System (CMS) which makes it possible to view oil and chemical spills on the seafloor. The CMS is designed to run in a network environment, so that multiple stations can be used cooperatively to respond to a spill incident. It was developed by the Maritime and Port Authority in Singapore and represents a singular integration of a ship's bridge simulator hardware and software. It incorporates numerical models and emergency response software. The CMS is installed in a specifically designed building at the Singapore Polytechnic University, and is integrated with two shipping bridge simulators. One user interface has access to models dealing with oil spills, chemical spills, search and rescues, marine emergencies, and nuclear disasters. The interface is linked to a response management system. The entire system is used to train response personnel to marine emergencies. The histories and costs of planned response activities are described and logged for reference purposes. Estimates of damages associated with spills can be obtained. Alternative response plans can also be determined. Further research in 2002 will focus on developing real time response. 3 refs., 6 figs

  10. Introduction of an Emergency Response Plan for flood loading of Sultan Abu Bakar Dam in Malaysia

    Science.gov (United States)

    Said, N. F. Md; Sidek, L. M.; Basri, H.; Muda, R. S.; Razad, A. Z. Abdul

    2016-03-01

    Sultan Abu Bakar Dam Emergency Response Plan (ERP) is designed to assist employees for identifying, monitoring, responding and mitigation dam safety emergencies. This paper is outlined to identification of an organization chart, responsibility for emergency management team and triggering level in Sultan Abu Bakar Dam ERP. ERP is a plan that guides responsibilities for proper operation of Sultan Abu Bakar Dam in respond to emergency incidents affecting the dam. Based on this study four major responsibilities are needed for Abu Bakar Dam owing to protect any probable risk for downstream which they can be Incident Commander, Deputy Incident Commander, On-Scene Commander, Civil Engineer. In conclusion, having organization charts based on ERP studies can be helpful for decreasing the probable risks in any projects such as Abu Bakar Dam and it is a way to identify and suspected and actual dam safety emergencies.

  11. 1:6000 Scale (6K) Quadrangles developed by USEPA to Support Reconnaissance, and Tactical and Strategic Planning for Emergency Responses and Homeland Security Events (Downloadable Data)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Reference quads for emergency response reconnaissance developed for use by the US Environmental Protection Agency. Grid cells are based on densification of the USGS...

  12. Planning and preparing for emergency response to transport accidents involving radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of this Safety Guide is to provide guidance to the public authorities and others (including consignors, carriers and emergency response authorities) who are responsible for developing and establishing emergency arrangements for dealing effectively and safely with transport accidents involving radioactive material. It may assist those concerned with establishing the capability to respond to such transport emergencies. It provides guidance for those Member States whose involvement with radioactive material is just beginning. It also provides guidance for those Member States that have already developed their radioactive material industries and the attendant emergency plans but that may need to review and improve these plans

  13. The Emergency Action Plan of the Spanish Nuclear Safety Council (CSN)

    International Nuclear Information System (INIS)

    Calvin Cuarteto, M.; Camarma, J. R.; Martin Calvarro, J. M

    2007-01-01

    The Spanish Nuclear safety Council (CSN) has assigned by law among others the function to coordinate the measures of support and answer to nuclear emergency situations for all the aspects related with nuclear safety and radiological protection. Integrating and coordinating the different organisations public and private companies whose aid is necessary for the fulfilment of the functions attributed to the Regulatory Body. In order to suitable perform this function, CSN has equipped itself with an Emergency Action Plan that structures the response organization, establishes responsibility levels, incorporates basic performance procedures and includes capabilities to face the nuclear and radiological emergencies considering the external supports, resulting from the collaboration agreements with public institutions and private companies. To accomplish the above mentioned Emergency Action Plan, CSN has established and implanted a formation and training and re-training program for the organization response for emergencies and has update an operative centre (Emergency Room called Salem), equipped with infrastructures, tools and communication and operative systems that incorporate the more advanced technologies available to date. (Author)

  14. Meteorological monitoring for environmental/dose assessment and emergency response modeling: How much is enough?

    International Nuclear Information System (INIS)

    Glantz, C.S.

    1989-01-01

    In evaluation the effectiveness and appropriateness of meteorological monitoring programs, managers responsible for planning and operating emergency response or environmental/dose assessment systems must routinely question whether enough meteorological data are being obtained to adequately support system applications. There is no simple answer or cookbook procedure that can be followed in generating an appropriate answer to this question. The answer must be developed through detailed consideration of the intended applications for the data, the capabilities of the models that would use the data, pollutant release characteristics, terrain in the modeling region, the size of the modeling domain, and the distribution of human population in the modeling domain. It is recommended that manager consult meteorologists when assessing these factors; the meteorologist's detailed knowledge of, and experience in, studying atmospheric transport and diffusion should assist the manager in determining the appropriate level of meteorological monitoring. 1 ref

  15. Heavy precipitation and the responses within emergency management - a new approach for emergency planning and disaster prevention by utilizing fire brigade operation data

    Science.gov (United States)

    Kutschker, Thomas; Glade, Thomas

    2015-04-01

    industrial and traffic infrastructure. This new concept might support a sophisticated emergency planning and also better disaster prevention efforts for the authorities. Especially municipal civil protection authorities are liable to prepare new strategies and emergency plans for their particular field of responsibility, regarding their neighbor communities and to cope the "German national adaption strategy to the climate change" as a future goal. Keywords: municipal emergency planning, critical infrastructure, heavy-precipitation

  16. Physical and Digital Design of the BlueBio Biomonitoring System Prototype, to be used in Emergency Medical Response

    DEFF Research Database (Denmark)

    Kramp, Gunnar; Kristensen, Margit; Pedersen, Jacob Frølund

    2007-01-01

    This paper presents the physical and digital design of a wireless biomonitoring system meant to be used especially in the prehospital medical emergency response. The handling of many patients with a minimum of ressources at major incidents is an immense challenge for the emergency personnel at work...... on an accident site. New technology such as the BlueBio biomonitoring system, can help emergency personnel monitor the patients and support them in making priorities of treatment and transport of patients. However, if new technology is to be introduced in such a complex and stressed situation it must relate...... to the palpable aspects of pervasive computing. It must be able to comply with the scale of the situation and still be understandable. It must also be able to comply with change of location and users and yet still be stable, and it must comply with the shifting requirements from the users regarding automation...

  17. Initial operations in local nuclear emergency response headquarter

    International Nuclear Information System (INIS)

    2012-06-01

    As a result of the Fukushima nuclear accident due to the Great East Japan Earthquake and the tsunami that occurred thereafter, local nuclear emergency response headquarters (local headquarters) was set up at off-site center (OFC). However, several obstacles such as the collapse of means of communication resulting from severed communication lines, food and fuel shortage resulting from stagnant physical distribution, and increasing radiation dose around the center significantly restricted originally intended operation of local headquarters. In such severe situation, the personnel gathered at the OFC from the government, local public bodies and electric companies from March 11 to 15 acted without sufficient food, sleep or rest and did all they could against successively occurring unexpected challenges by using limited means of communication. However, issues requiring further consideration were activities of each functional group, location of OFC and the functions of equipment, machines and materials and reflecting the consideration results into future protective measures and revision of the manual for nuclear emergency response were greatly important. This report described investigated results on initial operations in local headquarters such as situation of activities conducted by local headquarters and operations at functional groups. (T. Tanaka)

  18. New insights into flood warning reception and emergency response by affected parties

    Directory of Open Access Journals (Sweden)

    H. Kreibich

    2017-11-01

    Full Text Available Flood damage can be mitigated if the parties at risk are reached by flood warnings and if they know how to react appropriately. To gain more knowledge about warning reception and emergency response of private households and companies, surveys were undertaken after the August 2002 and the June 2013 floods in Germany. Despite pronounced regional differences, the results show a clear overall picture: in 2002, early warnings did not work well; e.g. many households (27 % and companies (45 % stated that they had not received any flood warnings. Additionally, the preparedness of private households and companies was low in 2002, mainly due to a lack of flood experience. After the 2002 flood, many initiatives were launched and investments undertaken to improve flood risk management, including early warnings and an emergency response in Germany. In 2013, only a small share of the affected households (5 % and companies (3 % were not reached by any warnings. Additionally, private households and companies were better prepared. For instance, the share of companies which have an emergency plan in place has increased from 10 % in 2002 to 34 % in 2013. However, there is still room for improvement, which needs to be triggered mainly by effective risk and emergency communication. The challenge is to continuously maintain and advance an integrated early warning and emergency response system even without the occurrence of extreme floods.

  19. EXAMINATION OF THE EMERGENCY MEDICAL RESPONSE SYSTEM IN KOREA AND SUGGESTIONS FOR IMPROVEMENTS RELATING TO TRANSPORT

    Directory of Open Access Journals (Sweden)

    Sei-Chang OH, Ph.D.

    2004-01-01

    This research focuses on the examination of current emergency medical response system related to the transport of emergency vehicles and suggests some transport-related ideas to improve the system in Korea. The study aimed to investigate the present emergency medical response system and identify problems, questionnaire survey and literature review were carried. The ideas include the improvement of emergency information flow and the development of preferential treatment methods for emergency vehicles. To improve the emergency information flow, this research studied the bridge between emergency medical information center and traffic information center and proposed the efficient utilization of traffic information for the better treatment of an emergency. When it comes to the movement of emergency vehicles, various preferential treatment methods were suggested.

  20. Personal Protective Equipment Supply Chain: Lessons Learned from Recent Public Health Emergency Responses.

    Science.gov (United States)

    Patel, Anita; D'Alessandro, Maryann M; Ireland, Karen J; Burel, W Greg; Wencil, Elaine B; Rasmussen, Sonja A

    Personal protective equipment (PPE) that protects healthcare workers from infection is a critical component of infection control strategies in healthcare settings. During a public health emergency response, protecting healthcare workers from infectious disease is essential, given that they provide clinical care to those who fall ill, have a high risk of exposure, and need to be assured of occupational safety. Like most goods in the United States, the PPE market supply is based on demand. The US PPE supply chain has minimal ability to rapidly surge production, resulting in challenges to meeting large unexpected increases in demand that might occur during a public health emergency. Additionally, a significant proportion of the supply chain is produced off-shore and might not be available to the US market during an emergency because of export restrictions or nationalization of manufacturing facilities. Efforts to increase supplies during previous public health emergencies have been challenging. During the 2009 H1N1 influenza pandemic and the 2014 Ebola virus epidemic, the commercial supply chain of pharmaceutical and healthcare products quickly became critical response components. This article reviews lessons learned from these responses from a PPE supply chain and systems perspective and examines ways to improve PPE readiness for future responses.

  1. Experience Report: Constraint-Based Modelling and Simulation of Railway Emergency Response Plans

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Sandberg, Lene

    2016-01-01

    ways to proceed, including ways not necessarily anticipated in the paper-based emergency response plans. The case study was undertaken as part of a short research, ProSec, project funded by the Danish Defence Agency, with the aim of applying and developing methods for collaborative mapping of emergency...

  2. Severe deterministic effects of external exposure and intake of radioactive material: basis for emergency response criteria

    International Nuclear Information System (INIS)

    Kutkov, V; Buglova, E; McKenna, T

    2011-01-01

    Lessons learned from responses to past events have shown that more guidance is needed for the response to radiation emergencies (in this context, a 'radiation emergency' means the same as a 'nuclear or radiological emergency') which could lead to severe deterministic effects. The International Atomic Energy Agency (IAEA) requirements for preparedness and response for a radiation emergency, inter alia, require that arrangements shall be made to prevent, to a practicable extent, severe deterministic effects and to provide the appropriate specialised treatment for these effects. These requirements apply to all exposure pathways, both internal and external, and all reasonable scenarios, to include those resulting from malicious acts (e.g. dirty bombs). This paper briefly describes the approach used to develop the basis for emergency response criteria for protective actions to prevent severe deterministic effects in the case of external exposure and intake of radioactive material.

  3. Volcanic risk and tourism in southern Iceland: Implications for hazard, risk and emergency response education and training

    Science.gov (United States)

    Bird, Deanne K.; Gisladottir, Gudrun; Dominey-Howes, Dale

    2010-01-01

    This paper examines the relationship between volcanic risk and the tourism sector in southern Iceland and the complex challenge emergency management officials face in developing effective volcanic risk mitigation strategies. An early warning system and emergency response procedures were developed for communities surrounding Katla, the volcano underlying the Mýrdalsjökull ice cap. However, prior to and during the 2007 tourist season these mitigation efforts were not effectively communicated to stakeholders located in the tourist destination of Þórsmörk despite its location within the hazard zone of Katla. The hazard zone represents the potential extent of a catastrophic jökulhlaup (glacial outburst flood). Furthermore, volcanic risk mitigation efforts in Þórsmörk were based solely on information derived from physical investigations of volcanic hazards. They did not consider the human dimension of risk. In order to address this gap and provide support to current risk mitigation efforts, questionnaire surveys were used to investigate tourists' and tourism employees' hazard knowledge, risk perception, adoption of personal preparedness measures, predicted behaviour if faced with a Katla eruption and views on education. Results indicate that tourists lack hazard knowledge and they do not adopt preparedness measures to deal with the consequences of an eruption. Despite a high level of risk perception, tourism employees lack knowledge about the early warning system and emergency response procedures. Results show that tourists are positive about receiving information concerning Katla and its hazards and therefore, the reticence of tourism employees with respect to disseminating hazard information is unjustified. In order to improve the tourism sector's collective capacity to positively respond during a future eruption, recommendations are made to ensure adequate dissemination of hazard, risk and emergency response information. Most importantly education campaigns

  4. Center for emergency response at the ENUSA fuel fabrication plant in Juzbado; El centro de gestion de las emergencias de la fabrica de combustible nuclear de ENUSA en Juzbado

    Energy Technology Data Exchange (ETDEWEB)

    Alvaro Perez, C.; Romano, A.

    2016-08-01

    Effective emergency preparedness and management is critical for a safe exploitation of nuclear installations like the Enusa fuel fabrication plant. In 2012, an important project was carried out at the plant which enlarged and remodeled the Emergency Room used until then to give response to the Internal Emergency Plan postulated scenarios. This project was motivated after carefully analyzing the results of audits, inspections and operation experience as well as after studying the conclusions of the Fukushima accident emergency management weaknesses. The new Center for Emergency Response, which hosts the plant control room, devoted to monitoring the plant safety systems on a constant basis, greatly improves both technical means available and operative procedures as well as human interactions during an emergency. This paper describes the most relevant technical features of this Center, the safety systems which support its operation and the emergency management process that takes place in it. (Author)

  5. National Characteristics of Emergency Medical Services Responses for Older Adults in the United States.

    Science.gov (United States)

    Duong, Hieu V; Herrera, Lauren Nicholas; Moore, Justin Xavier; Donnelly, John; Jacobson, Karen E; Carlson, Jestin N; Mann, N Clay; Wang, Henry E

    2018-01-01

    Older adults, those aged 65 and older, frequently require emergency care. However, only limited national data describe the Emergency Medical Services (EMS) care provided to older adults. We sought to determine the characteristics of EMS care provided to older adults in the United States. We used data from the 2014 National Emergency Medical Services Information System (NEMSIS), encompassing EMS response data from 46 States and territories. We excluded EMS responses for children older adults as age ≥65 years. We compared patient demographics (age, sex, race, primary payer), response characteristics (dispatch time, location type, time intervals), and clinical course (clinical impression, injury, procedures, medications) between older and younger adult EMS emergency 9-1-1 responses. During the study period there were 20,212,245 EMS emergency responses. Among the 16,116,219 adult EMS responses, there were 6,569,064 (40.76%) older and 9,547,155 (59.24%) younger adults. Older EMS patients were more likely to be white and the EMS incident to be located in healthcare facilities (clinic, hospital, nursing home). Compared with younger patients, older EMS patients were more likely to present with syncope (5.68% vs. 3.40%; OR 1.71; CI: 1.71-1.72), cardiac arrest/rhythm disturbance (3.27% vs. 1.69%; OR 1.97; CI: 1.96-1.98), stroke (2.18% vs. 0.74%; OR 2.99; CI: 2.96-3.02) and shock (0.77% vs. 0.38%; OR 2.02; CI: 2.00-2.04). Common EMS interventions performed on older persons included intravenous access (32.02%), 12-lead ECG (14.37%), CPR (0.87%), and intubation (2.00%). The most common EMS drugs administered to older persons included epinephrine, atropine, furosemide, amiodarone, and albuterol or ipratropium. One of every three U.S. EMS emergency responses involves older adults. EMS personnel must be prepared to care for the older patient.

  6. Seismic structural response analysis for multiple support excitation

    International Nuclear Information System (INIS)

    Shaw, D.E.

    1975-01-01

    In the seismic analysis of nuclear power plant equipment such as piping systems situations often arise in which piping systems span between adjacent structures or between different elevations in the same structure. Owing to the differences in the seismic time history response of different structures or different elevations of the same structure, the input support motion will differ for different supports. The concept of a frequency dependent participation factor and rotational response spectra accounting for phase differences between support excitations is developed by using classical equations of motion to formulate the seismic response of a structure subjected to multiple support excitation. The essence of the method lies in describing the seismic excitation of a multiply excited structure in terms of translational and rotational spectra used at every support and a frequency dependent spatial distribution function derived from the phase relationships of the different support time histories. In this manner it is shown that frequency dependent participation factors can be derived from the frequency dependent distribution functions. Examples are shown and discussed relative to closed form solutions and the state-of-the-art techniques presently being used for the solution of problems of multiply excited structures

  7. Leadership Qualities Emerging in an Online Social Support Group Intervention.

    Science.gov (United States)

    Kodatt, Stephanie A; Shenk, Jared E; Williams, Mark L; Horvath, Keith J

    2014-11-01

    Technology-delivered interventions addressing a broad range of problems for which clients present for therapy are proliferating. However, little is known of leadership dynamics that emerge in online group interventions. The purpose of this study was to assess the types of leadership qualities that would emerge in an online social support group intervention to improve medication adherence for men with HIV, and to characterize the demographic and psychosocial profiles of leaders. Written posts ( n =616) from 66 men were coded using an adapted version of the Full Range Model of Leadership. Results showed that 10% ( n =64) of posts reflected one of five leadership types, the most common of which was mentoring/providing feedback (40% of leadership posts). The next most common leadership style were instances in which encouragement was offered (30% of leadership posts). Leaders appeared to have lived with HIV longer and have higher Internet knowledge scores than non-leaders. Results indicate that online group interventions potentially may be useful to supplement traditional face-to-face treatment by providing an additional venue for group members to mentor and provide emotional support to each other. However, additional research is needed to more fully understand leadership qualities and group dynamics in other online group intervention settings.

  8. Severe accident management at nuclear power plants - emergency preparedness and response actions

    International Nuclear Information System (INIS)

    Pawar, S.K.; Krishnamurthy, P.R.

    2015-01-01

    This paper describes the current level of emergency planning and preparedness and also improvement in the emergency management programme over the years including lessons learned from Fukushima accident, hazard analysis and categorization of nuclear facilities into hazard category for establishing the emergency preparedness class, classification of emergencies based on the Emergency Action Levels (EAL), development of EAL’s for PHWR, Generic Criteria in terms of projected dose for initiating protective actions (precautionary urgent protective actions, urgent protective actions, early protective actions), operational intervention levels (OIL), Emergency planning zones and distances, protection strategy and reference levels, use of residual dose for establishing reference levels for optimization of protection strategy, criteria for termination of emergency, transition of emergency exposure situation to existing exposure situation or planned exposure situation, criteria for medical managements of exposed persons and guidance for controlling the dose of emergency workers. This paper also highlights the EALs for typical PHWR type reactors for all types of emergencies (plant, site and offsite), transition from emergency operating procedures (EOP) to accident management guidelines (AMG) to emergency response actions and proposed implementation of guidelines

  9. Introducing PCTRAN as an evaluation tool for nuclear power plant emergency responses

    International Nuclear Information System (INIS)

    Cheng, Yi-Hsiang; Shih, Chunkuan; Chiang, Show-Chyuan; Weng, Tung-Li

    2012-01-01

    Highlights: ► PCTRAN is integrated with an atmospheric dispersion algorithm. ► The improved PCTRAN acts as an accident/incident simulator and a data exchange system. ► The software helps the responsible organizations decide the rescue and protective actions. ► The evaluation results show the nuclear power plant accident and its off-site dose consequences. ► The software can be used for nuclear power plant emergency responses. - Abstract: Protecting the public from radiation exposure is important if a nuclear power plant (NPP) accident occurs. Deciding appropriate protective actions in a timely and effective manner can be fulfilled by using an effective accident evaluation tool. In our earlier work, we have integrated PCTRAN (Personal Computer Transient Analyzer) with the off-site dose calculation model. In this study, we introduce PCTRAN as an evaluation tool for nuclear power plant emergency responses. If abnormal conditions in the plant are monitored or observed, the plant staffs can distinguish accident/incident initiation events. Thus, the responsible personnel can immediately operate PCTRAN and set up those accident/incident initiation events to simulate the nuclear power plant transient or accident in conjunction with off-site dose distributions. The evaluation results consequently help the responsible organizations decide the rescue and protective actions. In this study, we explain and demonstrate the capabilities of PCTRAN for nuclear emergency responses, through applying it to simulate the postulated nuclear power plant accident scenarios.

  10. A Structural Knowledge Representation Approach in Emergency Knowledge Reorganization

    OpenAIRE

    Wang, Qingquan; Rong, Lili

    2007-01-01

    Facing complicate problems in emergency responses, decision makers should acquire sufficient background knowledge for efficient decision-making. Emergency knowledge acquired can be a kind of special product that is transferred among emergency decision makers and functional departments. The processing of knowledge product motivates the emergency knowledge decomposition and event-oriented knowledge integration, i.e. knowledge reorganization. Supported by the semantic power of category theory, t...

  11. A multi-method approach to curriculum development for in-service training in China's newly established health emergency response offices.

    Directory of Open Access Journals (Sweden)

    Yadong Wang

    Full Text Available To describe an innovative approach for developing and implementing an in-service curriculum in China for staff of the newly established health emergency response offices (HEROs, and that is generalisable to other settings.The multi-method training needs assessment included reviews of the competency domains needed to implement the International Health Regulations (2005 as well as China's policies and emergency regulations. The review, iterative interviews and workshops with experts in government, academia, the military, and with HERO staff were reviewed critically by an expert technical advisory panel.Over 1600 participants contributed to curriculum development. Of the 18 competency domains identified as essential for HERO staff, nine were developed into priority in-service training modules to be conducted over 2.5 weeks. Experts from academia and experienced practitioners prepared and delivered each module through lectures followed by interactive problem-solving exercises and desktop simulations to help trainees apply, experiment with, and consolidate newly acquired knowledge and skills.This study adds to the emerging literature on China's enduring efforts to strengthen its emergency response capabilities since the outbreak of SARS in 2003. The multi-method approach to curriculum development in partnership with senior policy-makers, researchers, and experienced practitioners can be applied in other settings to ensure training is responsive and customized to local needs, resources and priorities. Ongoing curriculum development should reflect international standards and be coupled with the development of appropriate performance support systems at the workplace for motivating staff to apply their newly acquired knowledge and skills effectively and creatively.

  12. A multi-method approach to curriculum development for in-service training in China's newly established health emergency response offices.

    Science.gov (United States)

    Wang, Yadong; Li, Xiangrui; Yuan, Yiwen; Patel, Mahomed S

    2014-01-01

    To describe an innovative approach for developing and implementing an in-service curriculum in China for staff of the newly established health emergency response offices (HEROs), and that is generalisable to other settings. The multi-method training needs assessment included reviews of the competency domains needed to implement the International Health Regulations (2005) as well as China's policies and emergency regulations. The review, iterative interviews and workshops with experts in government, academia, the military, and with HERO staff were reviewed critically by an expert technical advisory panel. Over 1600 participants contributed to curriculum development. Of the 18 competency domains identified as essential for HERO staff, nine were developed into priority in-service training modules to be conducted over 2.5 weeks. Experts from academia and experienced practitioners prepared and delivered each module through lectures followed by interactive problem-solving exercises and desktop simulations to help trainees apply, experiment with, and consolidate newly acquired knowledge and skills. This study adds to the emerging literature on China's enduring efforts to strengthen its emergency response capabilities since the outbreak of SARS in 2003. The multi-method approach to curriculum development in partnership with senior policy-makers, researchers, and experienced practitioners can be applied in other settings to ensure training is responsive and customized to local needs, resources and priorities. Ongoing curriculum development should reflect international standards and be coupled with the development of appropriate performance support systems at the workplace for motivating staff to apply their newly acquired knowledge and skills effectively and creatively.

  13. Hanford Site emergency response needs, Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Good, D.E.

    1996-04-16

    This report presents the results of a comprehensive third party needs assessment of the Hanford Fire Department (HFD), conducted by Hughes Associates Inc. The assessment was commissioned with the intent of obtaining an unbiased report which could be used as a basis for identifying needed changes/modifications to the fire department and its services. This report serves several functions: (1) it documents current and future site operations and associated hazards and risks identified as a result of document review, site and facility surveys, and interviews with knowledgeable personnel; (2) describes the HFD in terms of organization, existing resources and response capabilities; (3) identifies regulatory and other requirements that are applicable to the HFD and includes a discussion of associated legal liabilities; and (4) provides recommendations based on applicable requirements and existing conditions. Each recommendation is followed by a supporting statement to clarify the intent or justification of the recommendation. This report will be followed by a Master Plan document which will present an implementation method for the recommendations (with associated costs) considered to be essential to maintaining adequate, cost effective emergency services at the Hanford site in the next five to seven years.

  14. Hanford Site emergency response needs, Volumes 1 and 2

    International Nuclear Information System (INIS)

    Good, D.E.

    1996-01-01

    This report presents the results of a comprehensive third party needs assessment of the Hanford Fire Department (HFD), conducted by Hughes Associates Inc. The assessment was commissioned with the intent of obtaining an unbiased report which could be used as a basis for identifying needed changes/modifications to the fire department and its services. This report serves several functions: (1) it documents current and future site operations and associated hazards and risks identified as a result of document review, site and facility surveys, and interviews with knowledgeable personnel; (2) describes the HFD in terms of organization, existing resources and response capabilities; (3) identifies regulatory and other requirements that are applicable to the HFD and includes a discussion of associated legal liabilities; and (4) provides recommendations based on applicable requirements and existing conditions. Each recommendation is followed by a supporting statement to clarify the intent or justification of the recommendation. This report will be followed by a Master Plan document which will present an implementation method for the recommendations (with associated costs) considered to be essential to maintaining adequate, cost effective emergency services at the Hanford site in the next five to seven years

  15. Emergency notification and assistance technical operations manual. Emergency preparedness and response. Date effective: 1 December 2002

    International Nuclear Information System (INIS)

    2002-11-01

    The Convention on Early Notification of a Nuclear Accident (the 'Early Notification Convention') and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the 'Assistance Convention') are the prime legal instruments that establish an international framework to facilitate the exchange of information and the prompt provision of assistance in the event of a nuclear accident or radiological emergency, with the aim of minimizing their consequences. The International Atomic Energy Agency (IAEA) has specific functions assigned to it under these Conventions, to which, in addition to a large number of States (Section 1.7), the World Health Organization (WHO), the World Meteorological Organization (WMO) and the Food and Agriculture Organization of the United Nations (FAO) are full parties. The arrangements between the IAEA, States that are IAEA Member States and/or Parties to one or both Conventions, all other relevant international intergovernmental organizations, and other States for facilitating the implementation of these Conventions specifically concerning those articles that are operational in nature - are documented in the Emergency Notification and Assistance Technical Operations Manual (ENATOM). In 2000, a complete revision of ENATOM, with all relevant sections updated, withdrawn or replaced with new material, was reissued as EPR-ENATOM (2000) to reflect new technological developments, operational concepts, views on standards in the area of emergency preparedness and response, and Member States' expectations. A separate publication, EPR-JPLAN (2000), the Joint Radiation Emergency Management Plan of the International Organizations (Joint Plan'), described a common understanding of how each of six co-sponsoring international organizations will act during a response and in making preparedness arrangements. It is intended that the ENATOM is reviewed and reissued biennially in line with the review cycle of the Joint Plan. Since the

  16. A study on HCI design strategy using emergent features and response time

    International Nuclear Information System (INIS)

    Lee, Sung Jin; Chang, Soon Heung; Park, Jin Gyun

    2001-01-01

    Existing design process of user interface has some weak point that there is no feedback information and no quantitative information between each sub process. If they're such information in design process, the design time cycle will be decreased and the contentment of HCI in the aspect of user will be more easily archived. In this study, new design process with feedback information and quantitative information was proposed using emergent features and user response time. The proposed methodology was put together with three main parts. First part is to calculate distinctiveness of a user interface or expanded user interface with consideration of emergent features. Second part is to expand a prototype user interface with design option for purpose of design requirement using directed structure graph (or nodal graph) theory. Last part is to convert non-realized value, distinctiveness, into realized value, response time, by response time database or response time correlation in the form of Hick-Hyman law equation. From the present validations, the usefulness of the proposed methodology was obtained by simple validation testing. It was found that emergent features should be improved for high reflection of real user interface. For the reliability of response time database, lots of end-user experiment is necessary. Expansion algorithm and representation technique of qualitative information should be somewhat improved for more efficient design process

  17. SOFTWARE QUALITY ASSURANCE FOR EMERGENCY RESPONSE CONSEQUENCE ASSESSMENT MODELS AT DOE'S SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Hunter, C

    2007-01-01

    The Savannah River National Laboratory's (SRNL) Atmospheric Technologies Group develops, maintains, and operates computer-based software applications for use in emergency response consequence assessment at DOE's Savannah River Site. These applications range from straightforward, stand-alone Gaussian dispersion models run with simple meteorological input to complex computational software systems with supporting scripts that simulate highly dynamic atmospheric processes. A software quality assurance program has been developed to ensure appropriate lifecycle management of these software applications. This program was designed to meet fully the overall structure and intent of SRNL's institutional software QA programs, yet remain sufficiently practical to achieve the necessary level of control in a cost-effective manner. A general overview of this program is described

  18. Medical emergencies in dental practice.

    LENUS (Irish Health Repository)

    Wilson, M H

    2009-06-01

    Serious medical emergencies are fortunately a rare occurrence in the dental practice environment; however, if an emergency situation is encountered a delay in treatment may result in potentially avoidable consequences. The risk of mortality or serious morbidity can be reduced by ensuring that basic emergency equipment and medications are in place, and that the dental team is appropriately trained in basic life support measures. This article aims to provide an overview of the basic emergency medications and equipment that should be present in dental practices, and to discuss specific responses to some of the more common adverse medical events that can present while providing dental treatment.

  19. A special purpose vehicle for radiological emergency response

    International Nuclear Information System (INIS)

    Braeck, K.

    1995-01-01

    The scope of this paper encompasses the design and application of a Contamination Control Station (CCS) Response Vehicle. The vehicle is part of emergency response assets at the Department of Energy Pantex Plant, the nation's final assembly and disassembly point for nuclear weapons. The CCS Response Vehicle was designed to satisfy the need for a rapid deployment of equipment for the setup of a Contamination Control Station. This deployment may be either on the Pantex Plant site, or, if directed by the DOE Albuquerque Operations Office, to any location in the US or worldwide to a site having radioactive contamination and needing response assets of this type. Based on the specialized nature of the vehicle and its mission, certain design criteria must be considered. The vehicle must be air transportable. This criteria alone poses size, weight, and material restrictions due to the transporting aircraft and temperature/pressure variations. This paper first focuses on the overall mission of the vehicle, then highlights some of the design considerations

  20. R and D strategy on remote response technology for emergency situations of nuclear facilities in KAERI

    International Nuclear Information System (INIS)

    Jeong, Kyung Min; Cho, Jae Wan; Choi, Young Soo; Eom, Heung Seup; Seo, Yong Chil; Shin, Hoch Ul; Lee, Sung Uk; Kim, Chang Hoi; Jeong, Seung Ho; Kim, Seung Ho

    2012-01-01

    Generally speaking, robotic technologies are anticipated to be very useful for hazardous works in nuclear facilities because robotic systems are relatively immune to radiation exposure. But the application of robotic systems for such environments has not been increasing during past 20 years. Applying highly reliable and conservative 'defense in depth' concepts in the design and construction of NPPs, there is very little probability of accidents occurring or radioactive materials being released into the environments. As a precaution, however NPPs are prepared with emergency response procedures and routinely conduct exercises for post accident circumstances based on these procedures. The last year's accident at the Fukushima Daiichi nuclear power plant promotes the needs for remote response technologies based on mobile robotic system to recognize the internal status and mitigate the unanticipated events of nuclear power plants in emergency situations. For initial observation of reactor buildings two robots named 'PackBot' were used because the internal conditions were unknown so as to allow human workers for entrance into the reactor building. But there were severe limitations for the robots to perform the given tasks from various obstacles and poor visibility inside though they provided crucial information such as views of internal structures, dose level and temperature that supported the decision for human worker's entrance. The application of robots for emergency response tasks for post accidents in nuclear facilities is not a new concept. Robots were sent to recover the damaged reactor at Chernobyl where human workers could have received a lifetime dose of radiation in minutes. Based on NRC's TMI 2 Cleanup Program, several robots were built in the 1980s to help gather information and remove debris from a reactor at the Three Mile Island nuclear power plant that partially melted down in 1979. A robot was used for several years equipped with various tools allowing

  1. R and D strategy on remote response technology for emergency situations of nuclear facilities in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyung Min; Cho, Jae Wan; Choi, Young Soo; Eom, Heung Seup; Seo, Yong Chil; Shin, Hoch Ul; Lee, Sung Uk; Kim, Chang Hoi; Jeong, Seung Ho; Kim, Seung Ho [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Generally speaking, robotic technologies are anticipated to be very useful for hazardous works in nuclear facilities because robotic systems are relatively immune to radiation exposure. But the application of robotic systems for such environments has not been increasing during past 20 years. Applying highly reliable and conservative 'defense in depth' concepts in the design and construction of NPPs, there is very little probability of accidents occurring or radioactive materials being released into the environments. As a precaution, however NPPs are prepared with emergency response procedures and routinely conduct exercises for post accident circumstances based on these procedures. The last year's accident at the Fukushima Daiichi nuclear power plant promotes the needs for remote response technologies based on mobile robotic system to recognize the internal status and mitigate the unanticipated events of nuclear power plants in emergency situations. For initial observation of reactor buildings two robots named 'PackBot' were used because the internal conditions were unknown so as to allow human workers for entrance into the reactor building. But there were severe limitations for the robots to perform the given tasks from various obstacles and poor visibility inside though they provided crucial information such as views of internal structures, dose level and temperature that supported the decision for human worker's entrance. The application of robots for emergency response tasks for post accidents in nuclear facilities is not a new concept. Robots were sent to recover the damaged reactor at Chernobyl where human workers could have received a lifetime dose of radiation in minutes. Based on NRC's TMI 2 Cleanup Program, several robots were built in the 1980s to help gather information and remove debris from a reactor at the Three Mile Island nuclear power plant that partially melted down in 1979. A robot was used for several years

  2. The performance implications of outsourcing customer support to service providers in emerging versus established economies

    NARCIS (Netherlands)

    Raassens, N.; Wuyts, S.H.K.; Geyskens, I.

    Recent discussions in the business press query the contribution of customer-support outsourcing to firm performance. Despite the controversy surrounding its performance implications, customer-support outsourcing is still on the rise, especially to emerging markets. Against this backdrop, we study

  3. The performance implications of outsourcing customer support to service providers in emerging versus established economies

    NARCIS (Netherlands)

    Raassens, N.; Wuyts, S.; Geyskens, I.

    2014-01-01

    Recent discussions in the business press query the contribution of customer-support outsourcing to firm performance. Despite the controversy surrounding its performance implications, customer-support outsourcing is still on the rise, especially to emerging markets. Against this backdrop, we study

  4. Considerations in Emergency Preparedness and Response for a State Embarking on a Nuclear Power Programme (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The aim of this publication is to provide a practical tool for emergency planning for States embarking on a nuclear power programme and to fulfil, in part, functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency ('Assistance Convention'). Under Article 5.a (ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to State Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. As established in the publication Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), the practical goal of emergency response is 'to ensure that arrangements are in place for a timely, managed, controlled, coordinated and effective response at the scene, and at the local, regional, national and international level, to any nuclear or radiological emergency'. In 2011 the IAEA General Conference, in resolution GC(55)/RES/9, encouraged States 'embarking on new nuclear power programmes to take timely and proactive steps, based upon gradual and systematic application of IAEA safety standards, to establish and sustain a strong safety culture'. It also 'emphasizes the importance for all Member States to implement emergency preparedness and response mechanisms and develop mitigation measures at a national level, consistent with the IAEA's Safety Standards, for improving emergency preparedness and response, facilitating communication in an emergency and contributing to harmonization of national criteria for protective and other actions'. This publication, issued in the IAEA Emergency Preparedness and Response Series, is intended to assist on steps to be taken by States embarking on a nuclear power programme to establish effective national capabilities and arrangements of preparedness for and response to a nuclear or radiological emergency (hereinafter referred to as

  5. Considerations in Emergency Preparedness and Response for a State Embarking on a Nuclear Power Programme (Russian Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of this publication is to provide a practical tool for emergency planning for States embarking on a nuclear power programme and to fulfil, in part, functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency ('Assistance Convention'). Under Article 5.a (ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to State Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. As established in the publication Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), the practical goal of emergency response is 'to ensure that arrangements are in place for a timely, managed, controlled, coordinated and effective response at the scene, and at the local, regional, national and international level, to any nuclear or radiological emergency'. In 2011 the IAEA General Conference, in resolution GC(55)/RES/9, encouraged States 'embarking on new nuclear power programmes to take timely and proactive steps, based upon gradual and systematic application of IAEA safety standards, to establish and sustain a strong safety culture'. It also 'emphasizes the importance for all Member States to implement emergency preparedness and response mechanisms and develop mitigation measures at a national level, consistent with the IAEA's Safety Standards, for improving emergency preparedness and response, facilitating communication in an emergency and contributing to harmonization of national criteria for protective and other actions'. This publication, issued in the IAEA Emergency Preparedness and Response Series, is intended to assist on steps to be taken by States embarking on a nuclear power programme to establish effective national capabilities and arrangements of preparedness for and response to a nuclear or radiological emergency (hereinafter referred to as

  6. Considerations in Emergency Preparedness and Response for a State Embarking on a Nuclear Power Programme (Spanish Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The aim of this publication is to provide a practical tool for emergency planning for States embarking on a nuclear power programme and to fulfil, in part, functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency ('Assistance Convention'). Under Article 5.a (ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to State Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. As established in the publication Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), the practical goal of emergency response is 'to ensure that arrangements are in place for a timely, managed, controlled, coordinated and effective response at the scene, and at the local, regional, national and international level, to any nuclear or radiological emergency'. In 2011 the IAEA General Conference, in resolution GC(55)/RES/9, encouraged States 'embarking on new nuclear power programmes to take timely and proactive steps, based upon gradual and systematic application of IAEA safety standards, to establish and sustain a strong safety culture'. It also 'emphasizes the importance for all Member States to implement emergency preparedness and response mechanisms and develop mitigation measures at a national level, consistent with the IAEA's Safety Standards, for improving emergency preparedness and response, facilitating communication in an emergency and contributing to harmonization of national criteria for protective and other actions'. This publication, issued in the IAEA Emergency Preparedness and Response Series, is intended to assist on steps to be taken by States embarking on a nuclear power programme to establish effective national capabilities and arrangements of preparedness for and response to a nuclear or radiological emergency (hereinafter referred to as

  7. Coping strategies, social support and responsibility in chemical intolerance.

    Science.gov (United States)

    Nordin, Maria; Andersson, Linus; Nordin, Steven

    2010-08-01

    To study coping strategies, social support and responsibility for improvement in chemical intolerance (CI). Limited knowledge of CI among health professionals and lay persons places demands on the chemically intolerant individual's coping strategies and perception of social support and ability to take responsibility for improvement. However, there is sparse literature on these issues in CI. A cross-sectional, questionnaire-based, quasi-experimental study. Fifty-nine persons with mild, 92 with moderate and 31 with severe CI participated by rating (i) usage and effectiveness of six problem- and six emotion-focused coping strategies, (ii) emotional, instrumental and informative support provided by various sources and (iii) society's and the inflicted individual's responsibility for improvement. The participants reported that the most commonly used and effective coping strategies were avoiding odorous/pungent environments and asking persons to limit their use of odorous/pungent substances (problem-focused strategies) as well as accepting the situation and reprioritising (emotion-focused strategies). High intolerance severity was associated with problem-focused coping strategies and relatively low intolerance with emotion-focused strategies. More emotional than instrumental and informative support was perceived, predominantly from the partner and other family members. Responsibility attributed to society was also found to increase from mild to moderate/severe intolerance. Certain coping strategies are more commonly used and perceived as more effective than others in CI. However, intolerance severity plays a role regarding both coping strategies and responsibility. Emotional support appears to be the most available type of support. For improved care, certain coping strategies may be suggested by nurses, the healthcare system needs to provide better social support to these patients and the issue of responsibility for improvement may be discussed with the patient.

  8. Resilience and Brittleness in a Nuclear Emergency Response Simulation: Focusing on Team Coordination Activity

    International Nuclear Information System (INIS)

    Costa, Wagner Schenkel; Buarque, Lia; Voshell, Martin; Branlat, Matthieu; Woods, David D.; Gomes, Jose Orlando

    2008-01-01

    The current work presents results from a cognitive task analysis (CTA) of a nuclear disaster simulation. Audio-visual records were collected from an emergency room team composed of individuals from 26 different agencies as they responded to multiple scenarios in a simulated nuclear disaster. This simulation was part of a national emergency response training activity for a nuclear power plant located in a developing country. The objectives of this paper are to describe sources of resilience and brittleness in these activities, identify cues of potential improvements for future emergency simulations, and leveraging the resilience of the emergency response System in case of a real disaster. Multiple CTA techniques were used to gain a better understanding of the cognitive dimensions of the activity and to identify team coordination and crisis management patterns that emerged from the simulation training. (authors)

  9. Is there a need for hydrological modelling in decision support systems for nuclear emergencies

    International Nuclear Information System (INIS)

    Raskob, W.; Heling, R.; Zheleznyak, M.

    2004-01-01

    This paper discusses the role of hydrological modelling in decision support systems for nuclear emergencies. In particular, most recent developments such as, the radionuclide transport models integrated in to the decision support system RODOS will be explored. Recent progress in the implementation of physically-based distributed hydrological models for operational forecasting in national and supranational centres, may support a closer cooperation between national hydrological services and therefore, strengthen the use of hydrological and radiological models implemented in decision support systems. (authors)

  10. Emergency Preparedness and Response in the School Setting--The Role of the School Nurse. Position Statement

    Science.gov (United States)

    Tuck, Christine M.; Haynie, Kathey; Davis, Catherine

    2014-01-01

    It is the position of the National Association of School Nurses (NASN) that the registered professional school nurse (hereinafter referred to as school nurse) provides leadership in all phases of emergency preparedness and response. School nurses are a vital part of the school team responsible for developing emergency response procedures for the…

  11. Emerging Technologies as Cognitive Tools for Authentic Learning

    Science.gov (United States)

    Herrington, Jan; Parker, Jenni

    2013-01-01

    Employing emerging technologies in learning is becoming increasingly important as a means to support the development of digital media literacy. Using a theoretical framework of authentic learning and technology as cognitive tools, this paper examined student responses to the infusion of emerging technologies in a large first year teacher education…

  12. Community emergency response to nuclear power plant accidents: A selected and partially annotated bibliography

    International Nuclear Information System (INIS)

    Youngen, G.

    1988-10-01

    The role of responding to emergencies at nuclear power plants is often considered the responsibility of the personnel onsite. This is true for most, if not all, of the incidents that may happen during the course of the plant's operating lifetime. There is however, the possibility of a major accident occurring at anytime. Major nuclear accidents at Chernobyl and Three Mile Island have taught their respective countries and communities a significant lesson in local emergency preparedness and response. Through these accidents, the rest of the world can also learn a great deal about planning, preparing and responding to the emergencies unique to nuclear power. This bibliography contains books, journal articles, conference papers and government reports on emergency response to nuclear power plant accidents. It does not contain citations for ''onsite'' response or planning, nor does it cover the areas of radiation releases from transportation accidents. The compiler has attempted to bring together a sampling of the world's collective written experience on dealing with nuclear reactor accidents on the sate, local and community levels. Since the accidents at Three Mile Island and Chernobyl, that written experience has grown enormously

  13. Community emergency response to nuclear power plant accidents: A selected and partially annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Youngen, G.

    1988-10-01

    The role of responding to emergencies at nuclear power plants is often considered the responsibility of the personnel onsite. This is true for most, if not all, of the incidents that may happen during the course of the plant`s operating lifetime. There is however, the possibility of a major accident occurring at anytime. Major nuclear accidents at Chernobyl and Three Mile Island have taught their respective countries and communities a significant lesson in local emergency preparedness and response. Through these accidents, the rest of the world can also learn a great deal about planning, preparing and responding to the emergencies unique to nuclear power. This bibliography contains books, journal articles, conference papers and government reports on emergency response to nuclear power plant accidents. It does not contain citations for ``onsite`` response or planning, nor does it cover the areas of radiation releases from transportation accidents. The compiler has attempted to bring together a sampling of the world`s collective written experience on dealing with nuclear reactor accidents on the sate, local and community levels. Since the accidents at Three Mile Island and Chernobyl, that written experience has grown enormously.

  14. Documents for designing the emergency system for the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Machek, J.; Fiser, V.

    1993-12-01

    The organizational structure of the emergency system at the Temelin nuclear power plant is described and the responsibilities, principal assignments and number of personnel and their qualification are outlined; these include the Emergency Staff, emergency organization of the operator shift, Technical Support Center, External Emergency Support Center, and Operating Support Center. The emergency information system to secure personnel activities in emergency situations is also described. This consists of a critical safety function display system, a post-accident monitoring system, and a post-accident sampling system. The performance of the emergency support centers, their equipment with communications and computer hardware, and the number and qualification of personnel are also dealt with. The emergency classification is as follows: anomaly, incident, accident, major accident. The information and warning system is briefly described. A decision flow-chart for the assessment of emergency situations and their classification, including the complete algorithm for classifying accidents in the accident classification system, is given in the annex. (J.B.)

  15. Social Mobilization and Community Engagement Central to the Ebola Response in West Africa: Lessons for Future Public Health Emergencies.

    Science.gov (United States)

    Gillespie, Amaya M; Obregon, Rafael; El Asawi, Rania; Richey, Catherine; Manoncourt, Erma; Joshi, Kshiitij; Naqvi, Savita; Pouye, Ade; Safi, Naqibullah; Chitnis, Ketan; Quereshi, Sabeeha

    2016-12-23

    of the epidemic change over time; (5) partnerships: invest in strategic partnerships with community, religious leaders, journalists, radio stations, and partner organizations; (6) capacity building: support a network of local and international professionals with capacity for C4D who can be deployed rapidly; (7) data and performance monitoring: establish clear C4D process and impact indicators and strive for real-time data analysis and rapid feedback to communities and authorities to inform decision making. Ultimately, communication, community engagement, and social mobilization need to be formally placed within the global humanitarian response architecture with proper funding to effectively support future public health emergencies, which are as much a social as a health phenomenon. © Gillespie et al.

  16. Emergency control center of the nuclear Regulatory Authority: a national, regional and international tool to coordinate the response to radiological and nuclear emergencies

    International Nuclear Information System (INIS)

    Jordan, Osvaldo; Hernandez, Daniel; Telleria, Diego; Bruno, Hector; Boutet, Luis; Kunst, Juan; Sadaniowski, Ivana; Rey, Hugo

    2008-01-01

    Full text: In the year 1998, with the regulation of the Nuclear Law, the Nuclear Regulatory Authority (ARN) is constituted as the national coordinator of the response in case of nuclear or radiological emergencies. The ARN builds his first operative center installed in his Head quarter in Buenos Aires. Likewise, from the obligations that come with the Convention of Early Notification of a Nuclear Accident and Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency, the ARN is the National Warning Point and the National Competent Authority. Therefore, the operative capacity of the center needs to be expanded to cover not only the national territory but also its link with the region and the IAEA, as an access point to the International community, as the conventions demand. For the purpose of giving ARN capacities which reflect the state of art at the international level on Nuclear Emergency Centers and warrant that its equipment and technology will be compatible with those abroad (mainly with IAEA), the ARN made an arrangements with Department of Energy of United States, in the framework of an existing bilateral Argentine Foreign Office/US Government agreement (Joint Standing Committee on Nuclear Cooperation). This agreement allows a deep experience exchange, high level specialists support and last generation equipment access. As a result, the center of ARN can be considerate as the most advanced civil nuclear emergency center in the region. This work describes the implementation process of the emergency center and the technical features, like the physical distribution, hardware and software resources, communication equipment, Geographic Information Systems, etc. (author)

  17. Optimization of emergency response to major nuclear accidents

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Christou, M.D.

    1991-01-01

    A methodology for the optimization of the short-term emergency response in the event of a nuclear accident has been developed. The method aims at an optimum combination of protective actions in the presence of a multitude of conflicting objectives and under uncertainty. Conflicting objectives arise when the minimization of the potential adverse effects of an accident and the simultaneous minimization of the associated socioeconomic impacts is attempted. Additional conflicting objectives appear whenever an emergency plan tends to decrease a particular health effect (e.g. acute deaths) while at the same time it increases another (e.g. latent deaths). The uncertainty is due to the multitude of the possible accident scenarios and their respective probability of occurrence, the stochastic variability in the weather conditions and in the variability and/or lack of knowledge in the parameters of the risk assessment models. A multiobjective optimization approach is adopted in a dynamic programming scheme. An emergency protective plan consists of defining a protective action (e.g. evacuation, sheltering) at each spatial cell around the plant. Three criteria (evaluators) are used as the objective functions of the problem, namely, acute fatalities, latent effects and socioeconomic cost. The optimization procedure defines the efficient frontier, i.e. all emergency plans that are not dominated by another in all three criteria. No value trade-offs are necessary up to this point

  18. Development of software to provide practical guidance in the managing of a radiological emergency

    International Nuclear Information System (INIS)

    Ferreira Filho, Alfredo L.; Lima, Fernando R.A.; Loureiro, Eduardo C.M.

    2008-01-01

    One of the most important aspects of managing a radiological emergency is the ability to promptly and adequately determine and take actions to protect members of public and emergency workers. This work brings up to date a computer software program in Delphi, with the tools, generic procedures and the data necessary to support the Incident Commander, the Radiological Assessor and other members of a generic response organization in case of radiological accident. The aim is also to provide practical guidance for the first responders who will respond during the first few hours to a radiological emergency and for the national officials who would support this early response. Software is now based on the Manual for First Responders to a Radiological Emergency (EPR-First Responders), published in 2006 as part of the IAEA Emergency Preparedness and Response Series, as well as in the IAEA technical document, Generic Procedures for Assessment and Response during a Radiological Emergency, the IAEA-TECDOC-1162, taking account of the lessons learned from using this last document in the area of early response and first responders' actions. The proposed procedures provide action criteria that are clear, concise and predetermined, based on the present knowledge and the accumulated experiences, allowing the immediate decision-making. The objective is to provide, through a portable computer, practical guidance, in the form of action guides, instructions, and supporting data for emergency response that, if implemented, will provide a basic assessment and the response capability needed to protect public and workers in case of different types of radiological emergencies. In addition to appropriate protective action recommendations, it will also provide, when it is necessary, general guidance on the recovery of radioactive sources and initial cleanup operations. The philosophy is to keep the process simple and fast, yet effective. Software is available in Spanish, English and Portuguese

  19. Inspection of Emergency Arrangements

    International Nuclear Information System (INIS)

    2013-01-01

    NPPs. - Where RBs have an influence over land use around NPPs, they use the knowledge of their local or resident inspectors to inform decisions. - Inspectors check that appropriate action levels or criteria to identify an actual or radiological emergency are clearly defined and readily available to decision makers. - When observing emergency exercises inspectors check that: an appropriate and timely declaration is made, plant operators respond in accordance with the emergency plan and emergency instructions, and an appropriate level of response is initiated on and off-site. - RBs conduct follow-up inspections after real events, to ensure that the correct emergency response has been followed. - Inspectors verify that reliable data will be used to support the evaluation of environmental impact from a nuclear or radiological emergency, to the extent that this is within the jurisdiction of the RB. - Routine inspections and emergency exercise observations include a check that lines of communication are sufficiently resilient. - When observing emergency exercises inspectors, where practicable, check that timely, accurate and consistent information is provided to the public, in accordance with the off-site emergency plan. - RBs inspect the ability of the operator to give accurate medical and radiological information about casualties, to enable the correct treatment to be given. - Additional emergency equipment that is held in reserve off-site, provided to enhance resilience (post Fukushima), is included in the RB planned inspection and/or emergency exercise programme. - Inspectors check that licensee staff are adequately trained to connect and use additional equipment provided to enhance resilience. - Inspectors utilise the NPP operator's approved on-site emergency plan when inspecting on-site emergency arrangements. - RBs include human factors staff in emergency exercise evaluation teams to consider safety culture and human performance. - RBs consider the need for exercise

  20. Relations among social support, burnout, and experiences of anger: an investigation among emergency nurses.

    Science.gov (United States)

    Ersoy-Kart, Müge

    2009-01-01

    The aim of the present study was to determine whether social support, burnout, and anger expression are related with each other among emergency nurses working in private- or public-sector hospitals. The sample consisted of 100 emergency nurses working in the private or public sector in Ankara, Turkey. The Maslach Burnout Inventory, The Multidimensional Scale of Perceived Social Support, and The Trait-Anger and Anger Expression Scale were used. The results demonstrated that social support did not differentiate among the nurses working in the private sector or in the public sector according to the burnout subscales' scores. However, nurses in the private sector find it more difficult to express their anger. The state-trait anger levels of the nurses differ according to the burnout levels and also according to the sector that they are working in. The congruence between this study's findings and the literature is discussed.