WorldWideScience

Sample records for eliminating mercury removal

  1. Elimination of mercury in health care facilities.

    Science.gov (United States)

    2000-03-01

    Mercury is a persistent, bioaccumulative toxin that has been linked to numerous health effects in humans and wildlife. It is a potent neurotoxin that may also harm the brain, kidneys, and lungs. Unborn children and young infants are at particular risk for brain damage from mercury exposure. Hospitals' use of mercury in chemical solutions, thermometers, blood pressure gauges, batteries, and fluorescent lamps makes these facilities large contributors to the overall emission of mercury into the environment. Most hospitals recognize the dangers of mercury. In a recent survey, four out of five hospitals stated that they have policies in place to eliminate the use of mercury-containing products. Sixty-two percent of them require vendors to disclose the presence of mercury in chemicals that the hospitals purchase. Only 12 percent distribute mercury-containing thermometers to new parents. Ninety-two percent teach their employees about the health and environmental effects of mercury, and 46 percent teach all employees how to clean up mercury spills. However, the same study showed that many hospitals have not implemented their policies. Forty-two percent were not aware whether they still purchased items containing mercury. In addition, 49 percent still purchase mercury thermometers, 44 percent purchase mercury gastrointestinal diagnostic equipment, and 64 percent still purchase mercury lab thermometers.

  2. Mercury removal sorbents

    Science.gov (United States)

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  3. Elimination of mercury from amalgam in rats

    Energy Technology Data Exchange (ETDEWEB)

    Galic, N. [Dept. of Dental Pathology, School of Dentistry, Zagreb (Croatia); Prpic-Mehicic, G.; Prester, Lj.; Blanusa, M. [Inst. for Medical Research and Occupational Health, Zagreb (Croatia); Krnic, Z.; Erceg, D. [Pliva Pharmaceutical Co., Biomedicine Research Inst. ' ' Pliva' ' , Zagreb (Croatia)

    2001-07-01

    The aim of this study was to measure the urinary mercury excretion in rats exposed to amalgam over a two months period. Animals were either exposed to mercury from 4 dental amalgams or fed the diet containing powdered amalgams. The results showed significantly higher mercury amount in urine of both exposed groups than in control. Even two months after the amalgam had been placed in rats teeth, the amount of mercury in the urine remained 4-5 times higher than in control, and 4 times higher than in rats exposed to diet containing powdered amalgam. The elevated urinary Hg amount was accompanied by an increased level of total protein in urine. In the same exposure period the excretion of total protein in urine of rats with amalgam fillings was 2 times higher than in control and 1.5 times higher than in rats exposed to amalgam through diet. Concentrations of mercury in the sera of all groups were below the detection limit of the method. The results show that amount of mercury and protein in the urine of rats were related to the mercury release from dental amalgam. (orig.)

  4. Sorbents for mercury removal from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  5. Mercury removal from SRP radioactive waste streams using ion exchange

    International Nuclear Information System (INIS)

    Bibler, J.P.; Wallace, R.M.; Ebra, M.A.

    1986-01-01

    Mercury is present in varying concentrations in some Savannah River Plant (SRP) waste streams as a result of its use as a catalyst in the dissolution of fuel elements composed of uranium-aluminum alloys. It may be desirable to remove mercury from these streams before treatment of the waste for incorporation in glass for long-term storage. The glass forming process will also create waste from which mercury will have to be removed. The goal of mercury would be to eliminate ultimate emission of the toxic substance into the environment. This paper describes tests that demonstrate the feasibility of using a specific cation exchange resin, Duolite GT-73 for the removal of mercury from five waste streams generated at the SRP. Two of these streams are dilute; one is the condensate from a waste evaporator while the other is the effluent from an effluent treatment plant now under development. The three other streams are related to the Defense Waste Processing Facility (DWPF) that is being built at SRP. One of these streams is a concentrated salt solution (principally sodium nitrate and sodium hydroxide) that constitutes the soluble fraction of SRP waste and contains 20% mercury in the waste. The second stream is a slurry of the insoluble components in SRP waste and contains 80% of the mercury. The third stream is the offgas condensate from the glass melter system in the DWPF

  6. Mercury bioaccumulation and elimination by Xenomelanires brasiliensis - radioactive tracers technique

    International Nuclear Information System (INIS)

    Malagrino, Waldir; Mesquita, Carlos Henrique de; Sousa, Eduinetty Ceci P.M. de

    2002-01-01

    The present work has as main objective to emphasized the importance of using radioactive tracers as well as to establish a methodology for the utilization of 203 Hg in the bioaccumulation study of mercury by X enomelanires brasiliensis. The exposure time was 168 hours. The bioaccumulation of mercury from the water as well as the elimination of the metal previously absorbed were determined by measuring the activity of 203 Hg, which was added to the water in the beginning of the experiments. The technique chosen is suitable to study the behavior of the stable mercury since the radioisotope used is an isotope of the same element and therefore presents the same chemical properties. The results obtained show that the absorption and elimination of mercury by Xenomelanires brasiliensis is slow, 168 hours being necessary for the elimination of 38 % of the previously absorbed mercury. The results are of main concern if it is considered that the literature about bioaccumulation of mercury by the Brazilian ichthyofauna is scarce. Furthermore the species Xenomelanires brasiliensis is part of the food chain and the results can be used in the evaluation of the potential risk of the mercury bioaccumulation by fishes of higher trophic levels and by men who are the final link of the food chain. (author)

  7. Toxicokinetics of mercury elimination by succimer in twin toddlers.

    Science.gov (United States)

    Fayez, Ibrahim; Paiva, Michelle; Thompson, Margaret; Verjee, Zulfukarali; Koren, Gideon

    2005-01-01

    We describe the toxicokinetics of mercury in two twin toddlers poisoned by an East Indian remedy for teething. Succimer (dimercaprosuccinic acid, DMSA) decreased the plasma elimination half-life of mercury by 3-fold in the patient with high exposure; a more modest effect was observed in the other twin. Succimer is a chelation agent used in the treatment of heavy metal intoxication. A water-soluble agent, it increases the urinary excretion of lead and mercury. The drug is rapidly but variably absorbed through the gastrointestinal tract, with peak levels occurring at 1-2 hours. After its absorption, peak mercury excretion through the urine occurs within 2-4 hours. In the poisoned twin sisters, succimer administration led to a mercury plasma elimination half-life of 6 weeks. Although succimer has been used in mercury poisoning in adults and children, the toxicokinetics of mercury have not previously been characterized in either age group. We believe this is the first such description. More studies on the toxicokinetics and dynamics of mercury chelation with succimer in young children are needed to ensure the optimal use of the drug in this population.

  8. Process for removing mercury from aqueous solutions

    Science.gov (United States)

    Googin, John M.; Napier, John M.; Makarewicz, Mark A.; Meredith, Paul F.

    1986-01-01

    A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

  9. Removal of mercury by adsorption: a review.

    Science.gov (United States)

    Yu, Jin-Gang; Yue, Bao-Yu; Wu, Xiong-Wei; Liu, Qi; Jiao, Fei-Peng; Jiang, Xin-Yu; Chen, Xiao-Qing

    2016-03-01

    Due to natural and production activities, mercury contamination has become one of the major environmental problems over the world. Mercury contamination is a serious threat to human health. Among the existing technologies available for mercury pollution control, the adsorption process can get excellent separation effects and has been further studied. This review is attempted to cover a wide range of adsorbents that were developed for the removal of mercury from the year 2011. Various adsorbents, including the latest adsorbents, are presented along with highlighting and discussing the key advancements on their preparation, modification technologies, and strategies. By comparing their adsorption capacities, it is evident from the literature survey that some adsorbents have shown excellent potential for the removal of mercury. However, there is still a need to develop novel, efficient adsorbents with low cost, high stability, and easy production and manufacture for practical utility.

  10. Method for the removal and recovery of mercury

    Science.gov (United States)

    Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  11. Method for removal and stabilization of mercury in mercury-containing gas streams

    Science.gov (United States)

    Broderick, Thomas E.

    2005-09-13

    The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.

  12. Removal of mercury from water using pottery

    International Nuclear Information System (INIS)

    Helal, A.A.A.

    2006-01-01

    In a previous study, the sorption of radiocobalt by powdered pottery materials was investigated. The use of these materials as immobilization matrix for liquid radioactive waste requires the employment of pottery vessels. Therefore, the present study aims to give detailed investigations of the decontamination of radionuclides and toxic elements using pottery containers. These investigations are equally useful to elucidate how far these vessels can be utilized for water purification through decontamination of toxic and heavy metals. The radionuclide or heavy metal removal capability using pottery pots, as low cost sorbents, has been investigated for both radioactive ( 203 Hg) and stable mercury. The results indicated that Hg 2+ is better removed by pottery from neutral to alkaline solutions. The capacity of the used pottery container (100 ml in volume) for complete removal of mercury was found to reach 3 x 10 -4 mol/l, and the time needed was 8 hours. The sorption process was suggested to occur via adsorption and ion exchange. The effect of presence of humic or fulvic acid, as ligands abundant in water, is also investigated. The results imply that, in absence of humic or fulvic acid the sorption follows the expected behaviour, i.e. sorption sites with similar affinity for mercury. In presence of humic or fulvic acid, additional sorption sites are available by the organic molecule when it is associated to the pottery. (orig.)

  13. [Dental amalgams and urine elimination of mercury in workers exposed to low concentrations of inorganic mercury].

    Science.gov (United States)

    Soleo, L; Pesola, G; Vimercati, L; Elia, G; Michelazzi, M; Gagliardi, T; Drago, I; Lasorsa, G

    1998-01-01

    The aim of the research was to assess the contribution of dental amalgams and other non-occupational factors of exposure to inorganic mercury (diet, etc.) to the quantity of mercury excreted with urine in workers exposed to low level concentrations of inorganic mercury. Two groups of workers (Groups I and II) were studied who were exposed to low and different environmental concentrations of inorganic mercury. These two groups were compared with a group of subjects not occupationally exposed to mercury in the same geographical area (Group III). All subjects were administered a questionnaire concerning personal data, lifestyle, recent removal and/or insertion of dental amalgam fillings, presence of nasal obstruction or bruxism and consumption of fish. The number of amalgam-filled teeth was established for each subject. Mean environmental exposure to inorganic mercury was 0.0087 mg/m3 for Group I and 0.0030 mg/m3 for Group II. Urinary excretion in the 3 groups was 4.2 +/- 2.8 micrograms/l for Group I, 3.0 +/- 2.1 micrograms/l for Group II and 1.6 +/- 1.2 micrograms/l for Group III. The results showed that of the factors of exposure to inorganic mercury, only occupational exposure (T = 9.18; p = 0.000) and the number of amalgam-filled teeth (T = 2.03; p = 0.043) were able to influence significantly urinary excretion of mercury; the sources of non-occupational exposure did not appear to play any role. The contribution of each amalgam filling to urinary mercury excretion was calculated to be 0.08 microgram/l. Occupational exposure therefore, even at low level doses, is still the main cause of urinary mercury excretion in workers exposed to inorganic mercury; of the non-occupational exposure factors, a significant role is played by amalgam dental fillings, whose contribution needs to be taken into consideration in order to make a correct interpretation of the results of biological monitoring of exposed workers.

  14. Accumulation, elimination and chemical speciation of mercury in the bivalves Mytilus edulis and Macoma balthica

    DEFF Research Database (Denmark)

    Riisgård, H. U.; Kiørboe, Thomas; Møhlenberg, F.

    1985-01-01

    Mussels (Mytilus edulis) transferred in net bags from clean to chronically mercury polluted water readily accumulated mercury during an exposure period of three months. Growth of the transplanted mussels had a “diluting” effect on the mercury concentration, but the absolute weight of mercury uptake...... for M. edulis from the chronically polluted area in contrast to only 53 d for mussels from a temporary massive mercury polluted area near a chemical deposit. In both cases about 75% of the total mercury in the mussels was inorganic, and it is suggested that both inorganic and organic mercury species...... were immobilized in mussels from the long-term mercury polluted area, whereas the immobilization capacity was exceeded in the short-term mercury exposed mussels near the chemical deposit. Very slow elimination of mercury was observed in the deposit-feeding bivalve Macoma balthica from the chronically...

  15. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  16. Removal of mercury from coal via a microbial pretreatment process

    Science.gov (United States)

    Borole, Abhijeet P [Knoxville, TN; Hamilton, Choo Y [Knoxville, TN

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  17. Method selection for mercury removal from hard coal

    Directory of Open Access Journals (Sweden)

    Dziok Tadeusz

    2017-01-01

    Full Text Available Mercury is commonly found in coal and the coal utilization processes constitute one of the main sources of mercury emission to the environment. This issue is particularly important for Poland, because the Polish energy production sector is based on brown and hard coal. The forecasts show that this trend in energy production will continue in the coming years. At the time of the emission limits introduction, methods of reducing the mercury emission will have to be implemented in Poland. Mercury emission can be reduced as a result of using coal with a relatively low mercury content. In the case of the absence of such coals, the methods of mercury removal from coal can be implemented. The currently used and developing methods include the coal cleaning process (both the coal washing and the dry deshaling as well as the thermal pretreatment of coal (mild pyrolysis. The effectiveness of these methods various for different coals, which is caused by the diversity of coal origin, various characteristics of coal and, especially, by the various modes of mercury occurrence in coal. It should be mentioned that the coal cleaning process allows for the removal of mercury occurring in mineral matter, mainly in pyrite. The thermal pretreatment of coal allows for the removal of mercury occurring in organic matter as well as in the inorganic constituents characterized by a low temperature of mercury release. In this paper, the guidelines for the selection of mercury removal method from hard coal were presented. The guidelines were developed taking into consideration: the effectiveness of mercury removal from coal in the process of coal cleaning and thermal pretreatment, the synergy effect resulting from the combination of these processes, the direction of coal utilization as well as the influence of these processes on coal properties.

  18. Thiacrown polymers for removal of mercury from waste streams

    Science.gov (United States)

    Baumann, Theodore F.; Reynolds, John G.; Fox, Glenn A.

    2004-02-24

    Thiacrown polymers immobilized to a polystyrene-divinylbenzene matrix react with Hg.sup.2+ under a variety of conditions to efficiently and selectively remove Hg.sup.2+ ions from acidic aqueous solutions, even in the presence of a variety of other metal ions. The mercury can be recovered and the polymer regenerated. This mercury removal method has utility in the treatment of industrial wastewater, where a selective and cost-effective removal process is required.

  19. Mercury removal in utility wet scrubber using a chelating agent

    Science.gov (United States)

    Amrhein, Gerald T.

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  20. Method for removal of mercury from various gas streams

    Science.gov (United States)

    Granite, E.J.; Pennline, H.W.

    2003-06-10

    The invention provides for a method for removing elemental mercury from a fluid, the method comprising irradiating the mercury with light having a wavelength of approximately 254 nm. The method is implemented in situ at various fuel combustion locations such as power plants and municipal incinerators.

  1. Trace-level mercury removal from surface water

    International Nuclear Information System (INIS)

    Klasson, K.T.; Bostick, D.T.

    1998-01-01

    Many sorbents have been developed for the removal of mercury and heavy metals from waters; however, most of the data published thus far do not address the removal of mercury to the target levels represented in this project. The application to which these sorbents are targeted for use is the removal of mercury from microgram-per-liter levels to low nanogram-per-liter levels. Sorbents with thiouronium, thiol, amine, sulfur, and proprietary functional groups were selected for these studies. Mercury was successfully removed from surface water via adsorption onto Ionac SR-4 and Mersorb resins to levels below the target goal of 12 ng/L in batch studies. A thiol-based resin performed the best, indicating that over 200,000 volumes of water could be treated with one volume of resin. The cost of the resin is approximately $0.24 per 1,000 gal of water

  2. Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution

    Science.gov (United States)

    Li, Baiyan; Zhang, Yiming; Ma, Dingxuan; Shi, Zhan; Ma, Shengqian

    2014-11-01

    Highly effective and highly efficient decontamination of mercury from aqueous media remains a serious task for public health and ecosystem protection. Here we report that this task can be addressed by creating a mercury ‘nano-trap’ as illustrated by functionalizing a high surface area and robust porous organic polymer with a high density of strong mercury chelating groups. The resultant porous organic polymer-based mercury ‘nano-trap’ exhibits a record-high saturation mercury uptake capacity of over 1,000 mg g-1, and can effectively reduce the mercury(II) concentration from 10 p.p.m. to the extremely low level of smaller than 0.4 p.p.b. well below the acceptable limits in drinking water standards (2 p.p.b.), and can also efficiently remove >99.9% mercury(II) within a few minutes. Our work therefore presents a new benchmark for mercury adsorbent materials and provides a new perspective for removing mercury(II) and also other heavy metal ions from contaminated water for environmental remediation.

  3. Mercury vapour exposure during dental student training in amalgam removal.

    Science.gov (United States)

    Warwick, Robin; O'Connor, Andrea; Lamey, Brianne

    2013-10-03

    Amalgam that is used for dental fillings contains approximately 50% elemental mercury. During dental student training, amalgam is often removed by drilling without the use of water spray and suction, which are protective measures in preventing mercury aerosol. In this study we measured mercury vapor levels in ambient air during amalgam removal as is typically performed in dental training. Mercury vapor levels in ambient air were measured in a dental school laboratory during removal of amalgam fillings from artificial teeth set into a dental jaw simulator. Mercury vapor was measured under three conditions (25 measurements each): with the simultaneous use of water spray and suction, with the use of suction only, and with the use of neither suction nor water spray. These three conditions are all used during dental student training. Results were compared to Alberta occupational exposure limits for mercury vapor in order to assess potential occupational risk to students. Analysis of variance testing was used to compare data obtained under the three conditions. When water spray and suction were used, mercury vapor levels ranged from 4.0 to 19.0 μg/m3 (arithmetic mean = 8.0 μg/m3); when suction only was used, mercury vapor levels ranged from 14.0 to 999.0 (999.0 μg/m3 represents the high limit detection of the Jerome analyzer) (arithmetic mean = 141.0 μg/m3); when neither suction nor water was used, the vapor levels ranged from 34.0 to 796.0 μg/m3 (arithmetic mean = 214.0 μg/m3). The Alberta Occupational Health and Safety threshold limit value for mercury vapor over an eight-hour time-weighted period is 25.0 μg/m3. The absolute ceiling for mercury vapor, not to be exceeded at any time, is 125.0 μg/m3. When both water spray and suction were used, mercury vapor levels were consistently below this threshold. When suction without water spray was used, mercury vapor levels exceeded the safety threshold 8% of the time. When neither water spray nor

  4. Mercury removal from natural gas and associated condensates

    Energy Technology Data Exchange (ETDEWEB)

    Hennico, A.; Barthel, Y.; Courty, P. (Institut Francais du Petrole, 31 - Rueil-Malmaison (France). Direction Industrielle)

    1990-01-01

    IFP mercury trapping systems are based on CMG 273, the recently developed Procatalyse product which is the heart of IFP's gas phase and liquid phase mercury removal technology. This material, made of highly macroporous alumina supporting a metal sulfide, presents a very high reactivity towards mecury within a broad range of operating conditions, including those operating in the liquid phase. Characteristics of CMG 273 are presented. (orig.).

  5. Thief process for the removal of mercury from flue gas

    Science.gov (United States)

    Pennline, Henry W.; Granite, Evan J.; Freeman, Mark C.; Hargis, Richard A.; O'Dowd, William J.

    2003-02-18

    A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

  6. Apparatus and method for removing mercury vapor from a gas stream

    Science.gov (United States)

    Ganesan, Kumar [Butte, MT

    2008-01-01

    A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

  7. Mercury and tritium removal from DOE waste oils

    International Nuclear Information System (INIS)

    Klasson, E.T.

    1997-01-01

    This work covers the investigation of vacuum extraction as a means to remove tritiated contamination as well as the removal via sorption of dissolved mercury from contaminated oils. The radiation damage in oils from tritium causes production of hydrogen, methane, and low-molecular-weight hydrocarbons. When tritium gas is present in the oil, the tritium atom is incorporated into the formed hydrocarbons. The transformer industry measures gas content/composition of transformer oils as a diagnostic tool for the transformers' condition. The analytical approach (ASTM D3612-90) used for these measurements is vacuum extraction of all gases (H 2 , N 2 , O 2 , CO, CO 2 , etc.) followed by analysis of the evolved gas mixture. This extraction method will be adapted to remove dissolved gases (including tritium) from the SRS vacuum pump oil. It may be necessary to heat (60 degrees C to 70 degrees C) the oil during vacuum extraction to remove tritiated water. A method described in the procedures is a stripper column extraction, in which a carrier gas (argon) is used to remove dissolved gases from oil that is dispersed on high surface area beads. This method appears promising for scale-up as a treatment process, and a modified process is also being used as a dewatering technique by SD Myers, Inc. (a transformer consulting company) for transformers in the field by a mobile unit. Although some mercury may be removed during the vacuum extraction, the most common technique for removing mercury from oil is by using sulfur-impregnated activated carbon (SIAC). SIAC is currently being used by the petroleum industry to remove mercury from hydrocarbon mixtures, but the sorbent has not been previously tested on DOE vacuum oil waste. It is anticipated that a final process will be similar to technologies used by the petroleum industry and is comparable to ion exchange operations in large column-type reactors

  8. Mercury Removal from Natural Gas in Egypt

    International Nuclear Information System (INIS)

    Korkor, H.; AI-Alf, A.; EI-Behairy, S.

    2004-01-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems

  9. Eliminating mercury use in hospital laboratories: a step toward zero discharge.

    Science.gov (United States)

    Harvie, J

    1999-01-01

    In 1996, the Western Lake Superior Sanitary District initiated a Zero Discharge Project to work toward the goal of zero discharge of persistent toxic substances from its wastewater treatment plant. This multifaceted project focuses on mercury, lead, dioxin, polychlorinated biphenyls, and hexachlorbenzene. Here, the author describes a collaboration with local hospitals to eliminate the use of mercury-containing fixatives by histopathology laboratories. Three primary roadblocks to change were identified: (a) technicians' belief that pathologists would be resistant to change; (b) lack of time to research alternatives; (c) lack of awareness of the hospital's role in polluting the environment. PMID:10501136

  10. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    Science.gov (United States)

    Mendelsohn, Marshall H [Downers Grove, IL; Livengood, C David [Lockport, IL

    2006-10-10

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  11. Method for the removal of elemental mercury from a gas stream

    Science.gov (United States)

    Mendelsohn, Marshall H.; Huang, Hann-Sheng

    1999-01-01

    A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents.

  12. Mercury removal from liquid and solid mixed waste

    International Nuclear Information System (INIS)

    Gates, D.D.; Klasson, K.T.; Corder, S.L.; Cameron, P.A.; Perona, J.J.

    1995-01-01

    Based on bench-scale laboratory experiments, the following conclusions were reached: Sulfur-impregnated, activated, carbon pellets (Mersorb) can be used to remove mercury (Hg 2+ ) to below EPA's toxic characteristic level (0.2 mg/L). Mersorb works under acid conditions (pH 2) but its capacity is reduced by approximately 50% compared with neutral conditions. Competing ions present in the target waste stream reduced the Mersorb capacity by 50%. Mersorb appears to be economical compared with leading ion exchange resin. KI/I 2 leaching solution can be used to remove up to 99% of Hg in contaminated soil and glass. KI/I 2 leaching solution worked well with several mercury species, including Hg 0 , HgO, HgS, and HgCl 2 . KI/I 2 leaching solution worked well with a wide variety of initial mercury concentrations. Radionuclide surrogate studies suggested that uranium will not partition into KI/I 2 leaching solutions. Cesium may partition into the KI/I 2 leaching solution because of the high solubility of cesium salts

  13. Self-Assembled Mercaptan on Mesoporous Silica (SAMMS) technology of mercury removal and stabilization

    International Nuclear Information System (INIS)

    Feng, Xiangdong; Liu, Jun; Fryxell, G.E.

    1997-09-01

    This paper explains the technology developed to produce Self-Assembled Mercaptan on Mesoporous Silica (SAMMS) for mercury removal from aqueous wastewater and from organic wastes. The characteristics of SAMMS materials, including physical characteristics and mercury loading, and its application for mercury removal and stabilization are discussed. Binding kinetics and binding speciations are reported. Preliminary cost estimates are provided for producing SAMMS materials and for mercury removal from wastewater. The characteristics of SAMMS in mercury separation were studied at PNNL using simulated aqueous tank wastes and actual tritiated pump oil wastes from Savannah River Site; preliminary results are outlined. 47 refs., 16 figs., 16 tabs

  14. Self-Assembled Mercaptan on Mesoporous Silica (SAMMS) technology of mercury removal and stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiangdong; Liu, Jun; Fryxell, G.E. [and others

    1997-09-01

    This paper explains the technology developed to produce Self-Assembled Mercaptan on Mesoporous Silica (SAMMS) for mercury removal from aqueous wastewater and from organic wastes. The characteristics of SAMMS materials, including physical characteristics and mercury loading, and its application for mercury removal and stabilization are discussed. Binding kinetics and binding speciations are reported. Preliminary cost estimates are provided for producing SAMMS materials and for mercury removal from wastewater. The characteristics of SAMMS in mercury separation were studied at PNNL using simulated aqueous tank wastes and actual tritiated pump oil wastes from Savannah River Site; preliminary results are outlined. 47 refs., 16 figs., 16 tabs.

  15. Removal of mercury from sludge using ion exchange

    International Nuclear Information System (INIS)

    Bibler, J.P.; Wallace, R.M.

    1984-01-01

    Laboratory scale batch tests and fluidized bed column tests show that ES-465 cation exchange resin removes >90% of the mercury from formated simulated sludge and formated high-level radioactive sludge. Similar experiments using formated simulated sludge which has been steam stripped indicated that the resin is capable of removing about 75% of the mercury from that system in the same time 90% could be removed from sludge which has not been steam stripped. The percent removed can be improved by operating at higher temperatures. Early batch experiments showed that abrasion from vigorous stirring of the sludge/ES-465 mixture caused the resin to degrade into particles too small to separate from the slurry after reaction. To protect the resin from abrasion, a resin-in-sludge mode of operation was designed wherein the sludge slurry contacts the resin by flowing through a bed retained between two screens in a column. The process has been demonstrated using both a 0.5 in. internal 0.5 in. diameter upflow column containing two milliliters of resin and a 6.4 in. internal diameter stirred bed downflow column containing one liter of resin

  16. The experiment of the elemental mercury was removed from natural gas by 4A molecular sieve

    Science.gov (United States)

    Jiang, Cong; Chen, Yanhao

    2018-04-01

    Most of the world's natural gas fields contain elemental mercury and mercury compounds, and the amount of mercury in natural gas is generally 1μg/m3 200μg/m3. This paper analyzes the mercury removal principle of chemical adsorption process, the characteristics and application of mercury removal gent and the factors that affect the efficiency of mercury removal. The mercury in the natural gas is adsorbed by the mercury-silver reaction of the 4 molecular sieve after the manned treatment. The limits for mercury content for natural gas for different uses and different treatment processes are also different. From the environmental protection, safety and other factors, it is recommended that the mercury content of natural gas in the pipeline is less than 28μg / m3, and the mercury content of the raw material gas in the equipment such as natural gas liquefaction and natural gas condensate recovery is less than 0.01μg/m3. This paper mainly analyzes the existence of mercury in natural gas, and the experimental research process of using 4A molecular sieve to absorb mercury in natural gas.

  17. Feasibility of mercury removal from simulated flue gas by activated chars made from poultry manures

    Science.gov (United States)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plants has resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents for mercury removal. At the same time, the quantity of poultry manure generated eac...

  18. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.

    Science.gov (United States)

    He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei

    2016-01-01

    The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.

  19. Mercury removal in wastewater by iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Vélez, E; Campillo, G E; Morales, G; Hincapié, C; Osorio, J; Arnache, O; Uribe, J I; Jaramillo, F

    2016-01-01

    Mercury is one of the persistent pollutants in wastewater; it is becoming a severe environmental and public health problem, this is why nowadays its removal is an obligation. Iron oxide nanoparticles are receiving much attention due to their properties, such as: great biocompatibility, ease of separation, high relation of surface-area to volume, surface modifiability, reusability, excellent magnetic properties and relative low cost. In this experiment, Fe 3 O 4 and γ-Fe 2 O 3 nanoparticles were synthesized using iron salts and NaOH as precipitation agents, and Aloe Vera as stabilizing agent; then these nanoparticles were characterized by three different measurements: first, using a Zetasizer Nano ZS for their size estimation, secondly UV-visible spectroscopy which showed the existence of resonance of plasmon at λ max ∼360 nm, and lastly by Scanning Electron Microscopy (SEM) to determine nanoparticles form. The results of this characterization showed that the obtained Iron oxides nanoparticles have a narrow size distribution (∼100nm). Mercury removal of 70% approximately was confirmed by atomic absorption spectroscopy measurements. (paper)

  20. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish

    Science.gov (United States)

    Ackerman, Joshua T.; Kraus, Tamara E.C.; Fleck, Jacob A.; Krabbenhoft, David P.; Horwarth, William R.; Bachand, Sandra M.; Herzog, Mark; Hartman, Christopher; Bachand, Philip A.M.

    2015-01-01

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California’s Sacramento–San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  1. Thorough removal of inorganic and organic mercury from aqueous solutions by adsorption on Lemna minor powder

    International Nuclear Information System (INIS)

    Li Shunxing; Zheng Fengying; Huang Yang; Ni Jiancong

    2011-01-01

    The adsorption ability of duckweed (Lemna minor) powders for removing inorganic and organic mercury (methyl and ethyl mercury) has been studied using cold vapour atomic absorption spectrometry. The optimal adsorption conditions were: (a) the pH value of the solution 7.0 for inorganic and ethyl mercury, 9.0 for methyl mercury, and (b) equilibrium adsorption time 10, 20, and 40 min for inorganic mercury, methyl mercury, and ethyl mercury, respectively. After adsorption by L. minor powder for 40 min, when the initial concentrations of inorganic and organic mercury were under 12.0 μg L -1 and 50.0 μg L -1 , respectively, the residual concentrations of mercury could meet the criterion of drinking water (1.0 μg L -1 ) and the permitted discharge limit of wastewater (10.0 μg L -1 ) set by China and USEPA, respectively. Thorough removal of both inorganic and organic mercury from aqueous solutions was reported for the first time. The significant adsorption sites were C-O-P and phosphate groups by the surface electrostatic interactions with aqueous inorganic and organic mercury cations, and then the selective adsorption was resulted from the strong chelating interaction between amine groups and mercury on the surface of L. minor cells.

  2. Investigation of Performance of hybrid nanoparticles Tio2/Sio2 in removing of Mercury from industrial waste water

    Directory of Open Access Journals (Sweden)

    M Malakootian

    2014-09-01

    Conclusion: Due to high percentage of mercury removal at optimal conditions by hybrid nanoparticles, this method can be regarded as one of the effective ways to remove mercury compared with other methods.

  3. Mercury reduction and removal during high-level radioactive waste processing and vitrification

    International Nuclear Information System (INIS)

    Eibling, R.E.; Fowler, J.R.

    1981-01-01

    A reference process for immobilizing the high-level radioactive waste in borosilicate glass has been developed at the Savannah River Plant. This waste contains a substantial amount of mercury from separations processing. Because mercury will not remain in borosilicate glass at the processing temperature, mercury must be removed before vitrification or must be handled in the off-gas system. A process has been developed to remove mercury by reduction with formic acid prior to vitrification. Additional benefits of formic acid treatment include improved sludge handling and glass melter redox control

  4. Treatability study for removal of leachable mercury in crushed fluorescent lamps

    International Nuclear Information System (INIS)

    Bostick, W.D.; Beck, D.E.; Bowser, K.T.

    1996-02-01

    Nonserviceable fluorescent lamps removed from radiological control areas at the Oak Ridge Department of Energy facilities have been crushed and are currently managed as mixed waste (hazardous and radiologically contaminated). We present proposed treatment flowsheets and supporting treatability study data for conditioning this solid waste residue so that it can qualify for disposal in a sanitary landfill. Mercury in spent fluorescent lamps occurs primarily as condensate on high-surface-area phosphor material. It can be solubilized with excess oxidants (e.g., hypochlorite solution) and stabilized by complexation with halide ions. Soluble mercury in dechlorinated saline solution is effectively removed by cementation with zero-valent iron in the form of steel wool. In packed column dynamic flow testing, soluble mercury was reduced to mercury metal and insoluble calomel, loading > 1.2 g of mercury per grain of steel wool before an appreciable breakthrough of soluble mercury in the effluent

  5. [Removal Characteristics of Elemental Mercury by Mn-Ce/molecular Sieve].

    Science.gov (United States)

    Tan, Zeng-qiang; Niu, Guo-ping; Chen, Xiao-wen; An, Zhen

    2015-06-01

    The impregnation method was used to support molecular sieve with active manganese and cerium components to obtain a composite molecular sieve catalyst. The mercury removal performance of the catalyst was studied with a bench-scale setup. XPS analysis was used to characterize the sample before and after the modification in order to study the changes in the active components of the catalyst prepared. The results showed that the catalyst carrying manganese and cerium components had higher oxidation ability of elemental mercury in the temperature range of 300 degrees C - 450 degrees C, especially at 450 degrees C, the oxidation efficiency of elemental mercury was kept above 80%. The catalyst had more functional groups that were conducive to the oxidation of elemental mercury, and the mercury removal mainly depended on the chemical adsorption. The SO2 and NO in flue gas could inhibit the oxidation of elemental mercury to certain extent.

  6. Treatability study for removal of leachable mercury in crushed fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Beck, D.E.; Bowser, K.T. [and others

    1996-02-01

    Nonserviceable fluorescent lamps removed from radiological control areas at the Oak Ridge Department of Energy facilities have been crushed and are currently managed as mixed waste (hazardous and radiologically contaminated). We present proposed treatment flowsheets and supporting treatability study data for conditioning this solid waste residue so that it can qualify for disposal in a sanitary landfill. Mercury in spent fluorescent lamps occurs primarily as condensate on high-surface-area phosphor material. It can be solubilized with excess oxidants (e.g., hypochlorite solution) and stabilized by complexation with halide ions. Soluble mercury in dechlorinated saline solution is effectively removed by cementation with zero-valent iron in the form of steel wool. In packed column dynamic flow testing, soluble mercury was reduced to mercury metal and insoluble calomel, loading > 1.2 g of mercury per grain of steel wool before an appreciable breakthrough of soluble mercury in the effluent.

  7. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    Energy Technology Data Exchange (ETDEWEB)

    Charles Mones

    2006-12-01

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the

  8. Mercury

    International Nuclear Information System (INIS)

    Vilas, F.; Chapman, C.R.; Matthews, M.S.

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury

  9. Mercury removal from coal combustion flue gas by modified fly ash.

    Science.gov (United States)

    Xu, Wenqing; Wang, Hairui; Zhu, Tingyu; Kuang, Junyan; Jing, Pengfei

    2013-02-01

    Fly ash is a potential alternative to activated carbon for mercury adsorption. The effects of physicochemical properties on the mercury adsorption performance of three fly ash samples were investigated. X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, and other methods were used to characterize the samples. Results indicate that mercury adsorption on fly ash is primarily physisorption and chemisorption. High specific surface areas and small pore diameters are beneficial to efficient mercury removal. Incompletely burned carbon is also an important factor for the improvement of mercury removal efficiency, in particular. The C-M bond, which is formed by the reaction of C and Ti, Si and other elements, may improve mercury oxidation. The samples modified with CuBr2, CuCl2 and FeCl3 showed excellent performance for Hg removal, because the chlorine in metal chlorides acts as an oxidant that promotes the conversion of elemental mercury (Hg0) into its oxidized form (Hg2+). Cu2+ and Fe3+ can also promote Hg0 oxidation as catalysts. HCl and O2 promote the adsorption of Hg by modified fly ash, whereas SO2 inhibits the Hg adsorption because of competitive adsorption for active sites. Fly ash samples modified with CuBr2, CuCl2 and FeCl3 are therefore promising materials for controlling mercury emissions.

  10. Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.

    2013-07-10

    This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

  11. Rapid Mercury(II Removal by Electrospun Sulfur Copolymers

    Directory of Open Access Journals (Sweden)

    Michael W. Thielke

    2016-07-01

    Full Text Available Electrospinning was performed with a blend of commercially available poly(methyl methacrylate (PMMA and a sulfur-rich copolymer based on poly(sulfur-statistical-diisopropenylbenzene, which was synthesized via inverse vulcanization. The polysulfide backbone of sulfur-containing polymers is known to bind mercury from aqueous solutions and can be utilized for recycling water. Increasing the surface area by electrospinning can maximize the effect of binding mercury regarding the rate and maximum uptake. These fibers showed a mercury decrease of more than 98% after a few seconds and a maximum uptake of 440 mg of mercury per gram of electrospun fibers. These polymeric fibers represent a new class of efficient water filtering systems that show one of the highest and fastest mercury uptakes for electrospun fibers reported.

  12. Influence of low pressure on mercury removal from coals via mild pyrolysis

    International Nuclear Information System (INIS)

    Xu, Ping; Luo, Guangqian; Zhang, Bi; Zeng, Xiaobo; Xu, Yang; Zou, Renjie; Gan, Rongli; Yao, Hong

    2017-01-01

    Highlights: • Reducing pressure would speed up Hg removal during the mild pyrolysis of coal. • The role of pyrolysis pressure in Hg removal was limited by coal type. • Hg removal depended on the temperature when the residence time was long enough. - Abstract: Anthropogenic Hg emission control has drawn worldwide attention along with enactments of strict legislation. In response to the need for mercury emission control from flue gases in coal combustion, studies have focused on mild pyrolysis as a promising technology for mercury removal before combustion. However, reaction pressure has not yet been studied, which might affect mercury removal in mild pyrolysis. In this paper, three types of powdery bituminous coal, Coals A-C, from the western plateau area of China, were studied. The core aim was to explore the effect of low reaction pressure on the efficiency of Hg removal. Data of the three coals under different pyrolysis pressures showed that reducing the pressure would improve the mercury removal rate and removal efficiency and that the effect was distinguished by coal type. The role of pyrolysis pressure in Hg removal was limited. When the residence time was long enough, the eventual Hg removal was dependent on the thermal decomposition temperature. These findings might be of some guidance for designing pyrolysis reactors. Furthermore, this article aims to provide some explanation about the mechanism and offer guidance for optimizing the technological parameters of Hg removal by mild pyrolysis.

  13. Use of adsorption process to remove organic mercury thimerosal from industrial process wastewater.

    Science.gov (United States)

    Velicu, Magdalena; Fu, Hongxiang; Suri, Rominder P S; Woods, Kevin

    2007-09-30

    Carbon adsorption process is tested for removal of high concentration of organic mercury (thimerosal) from industrial process wastewater, in batch and continuously flow through column systems. The organic mercury concentration in the process wastewater is about 1123 mg/L due to the thimerosal compound. Four commercially available adsorbents are tested for mercury removal and they are: Calgon F-400 granular activated carbon (GAC), CB II GAC, Mersorb GAC and an ion-exchange resin Amberlite GT73. The adsorption capacity of each adsorbent is described by the Freundlich isotherm model at pH 3.0, 9.5 and 11.0 in batch isotherm experiments. Acidic pH was favorable for thimerosal adsorption onto the GACs. Columns-in-series experiments are conducted with 30-180 min empty bed contact times (EBCTs). Mercury breakthrough of 30 mg/L occurred after about 47 h (96 Bed Volume Fed (BVF)) of operation, and 97 h (197 BVF) with 120 min EBCT and 180 min EBCT, respectively. Most of the mercury removal is attributed to the 1st adsorbent column. Increase in contact time by additional adsorbent columns did not lower the effluent mercury concentration below 30 mg/L. However, at a lower influent wastewater pH 3, the mercury effluent concentration decreased to less than 7 mg/L for up to 90 h of column operation (183 BVF).

  14. Biochar from malt spent rootlets for the removal of mercury from aqueous solutions

    Science.gov (United States)

    Boutsika, Lamprini; Manariotis, Ioannis; Karapanagioti, Hrissi K.

    2013-04-01

    Biochar is receiving increased attention as a promising material in environmental applications. It is obtained from the incomplete combustion of carbon-rich biomass under oxygen-limited conditions. One of the many proposed applications of biochars is the removal of metals (e.g., lead, mercury, etc.) from aqueous solutions. Mercury is one of the heavy metals of particular concern due to its toxicity even at relatively low concentration and thus, its removal from aqueous systems is desirable. Malt spent rootlets is a by-product formed during beer production, it is inexpensive and it is produced in high quantities. The objective of the present study was to evaluate the potential use of biochar, produced from malt spent rootlets, to remove mercury from aqueous solutions. Batch experiments were conducted at room temperature (25oC) to obtain the optimum sorption conditions under different pH values, biomass dose, contact time, and solution ionic strength. Sorption kinetics and equilibrium capacity constants were determined at the optimum pH value. Furthermore, the effect of different leaching solutions on mercury desorption from the biochar was examined. All studies with mercury and biochar were conducted at pH 5 that was determined to be the optimum pH for sorption. The proportion of mercury removal increased with the increased dose of the biochar, i.e. from 71% removal for biochar dose of 0.3 g/L, it reached almost 100% removal for biochar dose ˜1 g/L. Based on the isotherm data, the maximum biochar sorption capacity (qmax) for mercury was 99 mg/g. Based on the sorption kinetic data, (qmax) was achieved after 2 h; it should be mentioned that 30% of the (qmax) was observed within the first 5 min. Five leaching solutions were tested for mercury desorption (H2O, HCl, EDTA, NaCl and HNO3). HCl resulted in the highest extraction percentage of the sorbed mercury. The desorbing mercury percentages at 24 h for HCl concentrations 0.1, 0.2, 0.4, 0.8, and 2 M were 62, 59, 62, 69

  15. Subtask 1.23 - Mercury Removal from Barite the Oil Industry

    Energy Technology Data Exchange (ETDEWEB)

    Michael Holmes; Carolyn Nyberg; Katie Brandt; Kurt Eylands; Nathan Fiala; Grant Dunham

    2008-09-01

    Drilling muds are used by the oil and gas industry to provide a seal and to float rock chips to the surface during the drilling process. Barite (naturally occurring barium sulfate ore) is commonly used as a weighting agent additive in drilling muds because it is chemically nonreactive and has a high specific gravity (between 4.2 and 4.25 at 20 C). Because of environmental concerns, barite used by the oil and gas industry in the Gulf of Mexico must be certified to contain less than 1 mg/kg of mercury. Faced with these regulations, the U.S. Gulf Coast oil industry has looked to foreign sources of low-mercury barite, primarily India and China. These sources tend to have high-grade barite deposits and relatively inexpensive domestic transportation costs; as of late, however, U.S. purchasers have been forced to pay increasing costs for shipping to U.S. grinding plants. The objective of this project was to demonstrate two mercury removal techniques for high-mercury barite sources. Two barite samples of unique origins underwent processing to reduce mercury to required levels. The chemical treatment with dilute acid removed a portion of the mercury in both barite samples. The desired concentration of 1 mg/kg was achieved in both barite samples. An economic analysis indicates that thermal removal of mercury would not significantly add to the cost of barite processing, making higher-mercury barite a viable alternative to more expensive barite sources that contain lower concentrations of mercury.

  16. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas.

    Science.gov (United States)

    Yang, Jianping; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2014-12-16

    To remove Hg(0) in coal combustion flue gas and eliminate secondary mercury pollution of the spent catalyst, a new regenerable magnetic catalyst based on cobalt oxide loaded magnetospheres from fly ash (Co-MF) was developed. The catalyst, with an optimal loading of 5.8% cobalt species, attained approximately 95% Hg(0) removal efficiency at 150 °C under simulated flue gas atmosphere. O2 could enhance the Hg(0) removal activity of magnetospheres catalyst via the Mars-Maessen mechanism. SO2 displayed an inhibitive effect on Hg(0) removal capacity. NO with lower concentration could promote the Hg(0) removal efficiency. However, when increasing the NO concentration to 300 ppm, a slightly inhibitive effect of NO was observed. In the presence of 10 ppm of HCl, greater than 95.5% Hg(0) removal efficiency was attained, which was attributed to the formation of active chlorine species on the surface. H2O presented a seriously inhibitive effect on Hg(0) removal efficiency. Repeated oxidation-regeneration cycles demonstrated that the spent Co-MF catalyst could be regenerated effectively via thermally treated at 400 °C for 2 h.

  17. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    Science.gov (United States)

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more

  18. Multi-weight isotherm results for mercury removal in upper East Fork Popular Creek water

    International Nuclear Information System (INIS)

    Bostick, D.A.; Klasson, K.T.

    1998-02-01

    Many sorbents have been developed for the removal of mercury and heavy metals from waters; however, the majority of data published to date do not address the removal of mercury to the target levels represented in this project. The application to which these sorbents are targeted for use is the removal of mercury from microgram-per-liter levels to low nanogram-per-liter levels. Sorbents with thiouronium, thiol, amine, sulfur, and proprietary functional groups were selected for these studies. The initial mercury content in the majority of the batch samples was significantly augmented so that the equilibrium concentration was similar to that found in the original stream sample for at least one sample. Mercury was successfully removed from actual water via adsorption onto Ionac SR-4 (by Sybron Chemicals, Inc.), Keyle:X (by SolmeteX), and Mersorb (by Nucon International, Inc.) resins to levels below the target goal of 12 ng/L. A thiol-based resin (Ionac SR-4) performed the best, indicating that over 200,000 volumes of water could be treated with one volume of resin. The cost of the resin is approximately $0.24 per 1000 gal of water

  19. Effect of diet on the capacity to remove mercury from the body of a penguin (Spheniscus demersus living in the ZOO

    Directory of Open Access Journals (Sweden)

    Falkowska L.

    2013-04-01

    Full Text Available Birds due to its position in the trophic chain are good monitors of the marine environment in terms of mercury contamination. For the proper interpretation of results it is necessary to know both the processes of accumulation of this metal in their bodies and processes of elimination. Research involving the Penguin (Spheniscus demersus living in a ZOO has identified the relationship between diet and the amount of mercury removed from the penguin body in guano, feathers, and in the case of females with eggs. The research was conducted in years 2009-2011. Total mercury was determined in elements responsible for detoxification and in the diet of penguins. Mercury concentration was determined by atomic absorption spectrophotometry with AMA-254 automatic mercury analyzer. The highest average mercury concentrations were determined in feathers: 1781.12 ngHg•g−1d.w., lower in eggs: 950.88 ngHg•g−1 dry weight (d.w.. and in a guano: 139.18 ngHg•g−1. In food, herrings caught in the southern Baltic, Hg concentrations were relatively low with averaged value 31.81 ngHg•g−1d.w.

  20. Investigation of the mechanism of mercury removal from a silver dental amalgam alloy

    Directory of Open Access Journals (Sweden)

    M. DJURDJEVIC

    2004-12-01

    Full Text Available An investigation of silver dental amalgam decomposition and the mercury removal mechanism was performed. The decomposition process was analysed during thermal treatment in the temperature interval from 400 °C to 850 °C and for times from 0.5 to 7.5 h. The chemical compositions of the silver dental amalgam alloy and the treated alloy were tested and microstructure analysis using optical and scanning electron microscopy was carried out. The phases were identified using energy disperse electron probe microanalysis. A mechanism for the mercury removal process from silver dental amalgam alloy is suggested.

  1. Mercury bioaccumulation and elimination by Xenomelanires brasiliensis - radioactive tracers technique; Bioacumulacao e eliminacao de mercurio por peixe-rei (Xenomelanires brasiliensis) - tecnica dos radiotracadores

    Energy Technology Data Exchange (ETDEWEB)

    Malagrino, Waldir; Mesquita, Carlos Henrique de [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes]. E-mail: chmesqui@usp.br; Sousa, Eduinetty Ceci P.M. de [Sao Paulo Univ., SP (Brazil). Inst. Oceanografico. Lab. de Ecotoxicologia

    2002-07-01

    The present work has as main objective to emphasized the importance of using radioactive tracers as well as to establish a methodology for the utilization of {sup 203} Hg in the bioaccumulation study of mercury by X enomelanires brasiliensis. The exposure time was 168 hours. The bioaccumulation of mercury from the water as well as the elimination of the metal previously absorbed were determined by measuring the activity of {sup 203} Hg, which was added to the water in the beginning of the experiments. The technique chosen is suitable to study the behavior of the stable mercury since the radioisotope used is an isotope of the same element and therefore presents the same chemical properties. The results obtained show that the absorption and elimination of mercury by Xenomelanires brasiliensis is slow, 168 hours being necessary for the elimination of 38 % of the previously absorbed mercury. The results are of main concern if it is considered that the literature about bioaccumulation of mercury by the Brazilian ichthyofauna is scarce. Furthermore the species Xenomelanires brasiliensis is part of the food chain and the results can be used in the evaluation of the potential risk of the mercury bioaccumulation by fishes of higher trophic levels and by men who are the final link of the food chain. (author)

  2. Mercury removal from water streams through the ion exchange membrane bioreactor concept.

    Science.gov (United States)

    Oehmen, Adrian; Vergel, Dario; Fradinho, Joana; Reis, Maria A M; Crespo, João G; Velizarov, Svetlozar

    2014-01-15

    Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg(0) in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Mercury Removal from MSW Incineration Flue Gas by Mineral-based Sorbents.

    Czech Academy of Sciences Publication Activity Database

    Rumayor, Marta; Svoboda, Karel; Švehla, Jaroslav; Pohořelý, Michael; Šyc, Michal

    Roč. 73, DEC 13 ( 2018 ), s. 265-270 ISSN 0956-053X R&D Projects: GA TA ČR TE02000236 Institutional support: RVO:67985858 Keywords : mercury * removal * mineral sorbents Subject RIV: DI - Air Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.030, year: 2016

  4. Effect of Nitrogen Oxides on Elemental Mercury Removal by Nanosized Mineral Sulfide.

    Science.gov (United States)

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Lee, Po-Heng; Feng, Yong; Shih, Kaimin

    2017-08-01

    Because of its large surface area, nanosized zinc sulfide (Nano-ZnS) has been demonstrated in a previous study to be efficient for removal of elemental mercury (Hg 0 ) from coal combustion flue gas. The excellent mercury adsorption performance of Nano-ZnS was found to be insusceptible to water vapor, sulfur dioxide, and hydrogen chloride. However, nitrogen oxides (NO X ) apparently inhibited mercury removal by Nano-ZnS; this finding was unlike those of many studies on the promotional effect of NO X on Hg 0 removal by other sorbents. The negative effect of NO X on Hg 0 adsorption over Nano-ZnS was systematically investigated in this study. Two mechanisms were identified as primarily responsible for the inhibitive effect of NO X on Hg 0 adsorption over Nano-ZnS: (1) active sulfur sites on Nano-ZnS were oxidized to inactive sulfate by NO X ; and (2) the chemisorbed mercury, i.e., HgS, was reduced to Hg 0 by NO X . This new insight into the role of NO X in Hg 0 adsorption over Nano-ZnS can help to optimize operating conditions, maximize Hg 0 adsorption, and facilitate the application of Nano-ZnS as a superior alternative to activated carbon for Hg 0 removal using existing particulate matter control devices in power plants.

  5. Fate of soluble uranium in the I2/KI leaching process for mercury removal

    International Nuclear Information System (INIS)

    Bostick, W.D.; Davis, W.H.; Jarabek, R.J.

    1997-09-01

    General Electric Corporation has developed an extraction and recovery system for mercury, based upon the use of iodine (oxidant) and iodide ion (complexing agent). This system has been proposed for application to select mercury-contaminated mixed waste (i.e., waste containing radionuclides as well as other hazardous constituents), which have been generated by historic activities in support of US Department of Energy (DOE) missions. This system is compared to a system utilizing hypochlorite and chloride ions for removal of mercury and uranium from a sample of authentic mixed waste sludge. Relative to the hypochlorite (bleach) system, the iodine system mobilized more mercury and less uranium from the sludge. An engineering flowsheet has been developed to treat spent iodine-containing extraction medium, allowing the system to be recycled. The fate of soluble uranium in this series of treatment unit operations was monitored by tracing isotopically-enriched uranyl ion into simulated spent extraction medium. Treatment with use of elemental iron is shown to remove > 85% of the traced uranium while concurrently reducing excess iodine to the iodide ion. The next unit operation, adjustment of the solution pH to a value near 12 by the addition of lime slurry to form a metal-laden sludge phase (an operation referred to as lime-softening), removed an additional 57% of soluble uranium activity, for an over-all removal efficiency of ∼ 96%. However, the precipitated solids did not settle well, and some iodide reagent is held up in the wet filtercake

  6. Possibilities of Mercury Removal in the Dry Flue Gas Cleaning Lines of Solid Waste Incineration Units

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-01

    Roč. 166, JAN 15 (2016), s. 499-511 ISSN 0301-4797 R&D Projects: GA TA ČR TE02000236 Institutional support: RVO:67985858 Keywords : waste incineration * mercury removal * flue gas Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.010, year: 2016

  7. Mercury Removal from MSW Incineration Flue Gas by Mineral-based Sorbents.

    Czech Academy of Sciences Publication Activity Database

    Rumayor, Marta; Svoboda, Karel; Švehla, Jaroslav; Pohořelý, Michael; Šyc, Michal

    2018-01-01

    Roč. 73, DEC 13 (2018), s. 265-270 ISSN 0956-053X R&D Projects: GA TA ČR TE02000236 Institutional support: RVO:67985858 Keywords : mercury * removal * mineral sorbents Subject RIV: DI - Air Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.030, year: 2016

  8. REMOVAL OF MERCURY FROM CONTAMINATED SOILS AT THE PAVLODAR CHEMICAL PLANT.

    Energy Technology Data Exchange (ETDEWEB)

    KHRAPUNOV, V. YE.; ISAKOVA, R.A.; LEVINTOV, B.L.; KALB, P.D.; KAMBEROV, I.M.; TREBUKHOV, A.

    2004-09-25

    Soils beneath and adjacent to the Pavlodar Chemical Plant in Kazakhstan have been contaminated with elemental mercury as a result of chlor alkali processing using mercury cathode cell technology. The work described in this paper was conducted in preparation for a demonstration of a technology to remove the mercury from the contaminated soils using a vacuum assisted thermal distillation process. The process can operate at temperatures from 250-500 C and pressures of 0.13kPa-1.33kPa. Following vaporization, the mercury vapor is cooled, condensed and concentrated back to liquid elemental mercury. It will then be treated using the Sulfur Polymer Stabilization/Solidification process developed at Brookhaven National Laboratory as described in a companion paper at this conference. The overall project objectives include chemical and physical characterization of the contaminated soils, study of the influence of the soil's physical-chemical and hydro dynamical characteristics on process parameters, and laboratory testing to optimize the mercury sublimation rate when heating in vacuum. Based on these laboratory and pilot-scale data, a full-scale production process will be designed for testing. This paper describes the soil characterization. This work is being sponsored by the International Science and Technology Center.

  9. Mercury removal at Idaho National Engineering and Environmental Laboratory's New Waste Calciner Facility

    International Nuclear Information System (INIS)

    Ashworth, S.C.

    2000-01-01

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended

  10. Mercury Removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, Samuel Clay; Wood, R. A.; Taylor, D. D.; Sieme, D. D.

    2000-03-01

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

  11. Mercury removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Ashworth

    2000-02-27

    Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

  12. Mercury

    NARCIS (Netherlands)

    de Vries, Irma

    2017-01-01

    Mercury is a naturally occurring metal that exists in several physical and chemical forms. Inorganic mercury refers to compounds formed after the combining of mercury with elements such as chlorine, sulfur, or oxygen. After combining with carbon by covalent linkage, the compounds formed are called

  13. Gaussian Elimination-Based Novel Canonical Correlation Analysis Method for EEG Motion Artifact Removal.

    Science.gov (United States)

    Roy, Vandana; Shukla, Shailja; Shukla, Piyush Kumar; Rawat, Paresh

    2017-01-01

    The motion generated at the capturing time of electro-encephalography (EEG) signal leads to the artifacts, which may reduce the quality of obtained information. Existing artifact removal methods use canonical correlation analysis (CCA) for removing artifacts along with ensemble empirical mode decomposition (EEMD) and wavelet transform (WT). A new approach is proposed to further analyse and improve the filtering performance and reduce the filter computation time under highly noisy environment. This new approach of CCA is based on Gaussian elimination method which is used for calculating the correlation coefficients using backslash operation and is designed for EEG signal motion artifact removal. Gaussian elimination is used for solving linear equation to calculate Eigen values which reduces the computation cost of the CCA method. This novel proposed method is tested against currently available artifact removal techniques using EEMD-CCA and wavelet transform. The performance is tested on synthetic and real EEG signal data. The proposed artifact removal technique is evaluated using efficiency matrices such as del signal to noise ratio (DSNR), lambda ( λ ), root mean square error (RMSE), elapsed time, and ROC parameters. The results indicate suitablity of the proposed algorithm for use as a supplement to algorithms currently in use.

  14. Gaussian Elimination-Based Novel Canonical Correlation Analysis Method for EEG Motion Artifact Removal

    Directory of Open Access Journals (Sweden)

    Vandana Roy

    2017-01-01

    Full Text Available The motion generated at the capturing time of electro-encephalography (EEG signal leads to the artifacts, which may reduce the quality of obtained information. Existing artifact removal methods use canonical correlation analysis (CCA for removing artifacts along with ensemble empirical mode decomposition (EEMD and wavelet transform (WT. A new approach is proposed to further analyse and improve the filtering performance and reduce the filter computation time under highly noisy environment. This new approach of CCA is based on Gaussian elimination method which is used for calculating the correlation coefficients using backslash operation and is designed for EEG signal motion artifact removal. Gaussian elimination is used for solving linear equation to calculate Eigen values which reduces the computation cost of the CCA method. This novel proposed method is tested against currently available artifact removal techniques using EEMD-CCA and wavelet transform. The performance is tested on synthetic and real EEG signal data. The proposed artifact removal technique is evaluated using efficiency matrices such as del signal to noise ratio (DSNR, lambda (λ, root mean square error (RMSE, elapsed time, and ROC parameters. The results indicate suitablity of the proposed algorithm for use as a supplement to algorithms currently in use.

  15. Longitudinal analysis of the association between removal of dental amalgam, urine mercury and 14 self-reported health symptoms.

    Science.gov (United States)

    Zwicker, Jennifer D; Dutton, Daniel J; Emery, John Charles Herbert

    2014-11-18

    Mercury vapor poses a known health risk with no clearly established safe level of exposure. Consequently there is debate over whether the level of prolonged exposure to mercury vapor from dental amalgam fillings, combining approximately 50% mercury with other metals, is sufficiently high to represent a risk to health. The objective of our study is to determine if mercury exposure from amalgam fillings is associated with risk of adverse health effects. In a large longitudinal non-blind sample of participants from a preventative health program in Calgary, Canada we compared number of amalgam fillings, urine mercury measures and changes in 14 self-reported health symptoms, proposed to be mercury dependent sub-clinical measures of mental and physical health. The likelihood of change over one year in a sample of persons who had their fillings removed was compared to a sample of persons who had not had their fillings removed. We use non-parametric statistical tests to determine if differences in urine mercury were statistically significant between sample groups. Logistic regression models were used to estimate the likelihood of observing symptom improvement or worsening in the sample groups. At baseline, individuals with dental amalgam fillings have double the measured urine mercury compared to a control group of persons who have never had amalgam fillings. Removal of amalgam fillings decreases measured urine mercury to levels in persons without amalgam fillings. Although urine mercury levels in our sample are considered by Health Canada to be too low to pose health risks, removal of amalgam fillings reduced the likelihood of self-reported symptom deterioration and increased the likelihood of symptom improvement in comparison to people who retained their amalgam fillings. Our findings suggest that mercury exposure from amalgam fillings adversely impact health and therefore are a health risk. The use of safer alternative materials for dental fillings should be encouraged

  16. NOVEL PROCESS FOR REMOVAL AND RECOVERY OF VAPOR-PHASE MERCURY

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-20

    The purpose of this project is to investigate the application of a sorbent-based process for removing and recovering mercury in the flue gas of coal-fired power plants. The process is based on the sorption of mercury by noble metals and the regeneration of the sorbent by thermal means, recovering the desorbed mercury for recycling. ADA Technologies holds a patent on this process (US 5,409,522) and has tested it under conditions typical of municipal waste incinerators. In this process, the noble metal sorbent is regenerated thermally, and the mercury is recovered for commercial recycle. Consequently, ADA has adopted the name ''Mercu-RE'' to describe its process. ADA has been testing its process under conditions typical of coal-fired power plants where the mercury concentration is low (below 10 {micro}g/m{sup 3}) and little pressure drop can be tolerated. Methods of accommodating the Mercu-RE process to the circumstances and conditions of coal-fired power plants comprise the core of the program.

  17. Theoretical prediction the removal of mercury from flue gas by MOFs

    KAUST Repository

    Liu, Yang

    2016-07-19

    Removal of mercury from flue gas has been considered as one of the hot topics in both the scientific and industrial world. Adsorption of elemental mercury (Hg) and oxidized mercury species (HgCl, HgO, and HgS) on a novel metal organic framework (MOF) material, named Mg/DOBDC, with unsaturated metal centers was investigated using density functional theory (DFT) calculations. The results show that Hg stably physi-sorbed on the unsaturated metal center (magnesium ion) of Mg/DOBDC with a binding energy (BE) of −27.5 kJ/mol. A direct interaction between Hg and magnesium ion was revealed by the partial density of state (PDOS) analysis. HgCl multi-interacts with two neighboring magnesium ions simultaneously by its Cl endings and thus resulted in strong adsorption strength (−89.0 kJ/mol). The adsorption energies of HgO and HgS on the Mg/DOBDC were as high as −117.0 kJ/mol and −169.7 kJ/mol, respectively, indicating a strong chemisorption. Theoretical calculations in this study reveal that Mg/DOBDC has the potential to serve as an efficient material for removal of mercury from flue gas.

  18. Organ-specific accumulation, transportation, and elimination of methylmercury and inorganic mercury in a low Hg accumulating fish.

    Science.gov (United States)

    Peng, Xiaoyan; Liu, Fengjie; Wang, Wen-Xiong

    2016-08-01

    Low mercury (Hg) concentrations down to several nanograms Hg per gram of wet tissue are documented in certain fish species such as herbivorous fish, and the underlying mechanisms remain speculative. In the present study, bioaccumulation and depuration patterns of inorganic Hg(II) and methylmercury (MeHg) in a herbivorous rabbitfish Siganus canaliculatus were investigated at organ and subcellular levels following waterborne or dietary exposures. The results showed that the efflux rate constants of Hg(II) and MeHg were 0.104 d(-1) and 0.024 d(-1) , respectively, and are probably the highest rate constants recorded in fish thus far. The dietary MeHg assimilation efficiency (68%) was much lower than those in other fish species (∼90%). The predominant distribution of MeHg in fish muscle was attributable to negligible elimination of MeHg from muscle (Hg(II) was much more slowly distributed into muscle but was efficiently eliminated by the intestine (0.13 d(-1) ). Subcellular distribution indicated that some specific membrane proteins in muscle were the primary binding pools for MeHg, and both metallothionein-like proteins and Hg-rich granules were the important components in eliminating both MeHg and Hg(II). Overall, the present study's results suggest that the low tissue Hg concentration in the rabbitfish was partly explained by its unique biokinetics. Environ Toxicol Chem 2016;35:2074-2083. © 2016 SETAC. © 2016 SETAC.

  19. Removal of heavy metals from water by zeolite mineral chemically modified. Mercury as a particular case

    International Nuclear Information System (INIS)

    Gebremedhin H, T.

    2002-01-01

    Research works on the removal of mercury from water by zeolite minerals show that a small quantity of this element is sorbed. In this work the mercury sorption from aqueous solutions in the presence and absence of Cu(l l), Ni(l l) and/or Zn(l l) by a Mexican zeolite mineral, natural and modified by cisteaminium chloride or cistaminium dichloride, was investigated in acidic p H. The zeolite minerals were characterized by X- Ray diffraction Ftir, scanning electron microscopy and semiquantitative elemental analysis (EDS), surface area analysis (BET) and thermogravimetric analysis (TGA). Mercury from aqueous solutions was quantified by Atomic absorption spectroscopy. The amount of sulphur on the zeolite samples treated with Na CI and modified with cisteaminium chloride (0.375 mmol/g) or cistaminium dichloride(0.475 mmol/g) was found to be higher than that of the zeolite minerals modified with cisteaminium chloride and cistaminium dichloride without treating them with Na CI. The amount of sulphur on the zeolite minerals modified with thiourea was the lowest. The diffusion coefficients and sorption isotherms for mercury were determined in the natural, treated with Na CI and, treated with Na CI and then modified with the cisteaminium chloride or cistaminium dichloride zeolite samples. The retention of mercury was the highest for the zeolite minerals treated Na CI and then modified with cisteaminium chloride or cistaminium dichloride, with adsorption capacity of 0.0511 and 0.0525 mmol Hg/g, respectively. In this research work, it was found that the retention of mercury by the modified minerals was not affected by the presence of Cu (Il), Zn(l l) y Ni (I l) under the experimental conditions. (Author)

  20. Mercury

    Science.gov (United States)

    ... build up in fish, shellfish, and animals that eat fish. The nervous system is sensitive to all forms of mercury. Exposure to high levels can damage the brain and kidneys. Pregnant women can pass the mercury in their bodies to their babies. It is important to protect your family from ...

  1. Mercury

    Science.gov (United States)

    ... has set a limit of 2 parts of mercury per billion parts of drinking water (2 ppb). The Food and Drug Administration (FDA) has set a maximum permissible level of 1 part of methylmercury in a million ... of 0.1 milligram of organic mercury per cubic meter of workplace air (0.1 ...

  2. Effective removal of hexavalent mercury from aqueous solution by modified polymeric nanoadsorbent

    Directory of Open Access Journals (Sweden)

    Lida Rahmanzadeh

    2016-07-01

    Full Text Available Mercury is one of the most toxic metals present in the environment. Adsorption has been proposed among the technologies for mercury adsorbent. The kinetics of adsorption depends on the adsorbent concentration, and the physical and chemical characteristics of adsorbent. In this study we were used a novel adsorbent, magnetite-polyrhodanine core- shell nanoparticles, for removing Hg(II from aqueous solution. The effect of pH, initial Hg(II concentration, initial adsorbent concentration and contact time on the efficiency of Hg(II removal were investigated systematically by batch experiments. The maximum adsorption capacity was obtained 29.14 mg g-1 at PH=6.5 and 25°C with 10 g L-1 nano adsorbent. The kinetic data of adsorption of Hg(II ion on the synthesized adsorbent were best described by a pseudo- second- order equation, indicating their chemical adsorption. The Freundlich, Langmuir and Temkin isotherms were used to modeling of mercury adsorption on Hg(II in aqueous medium which modeled best by the Freundlich isotherm is whole concentration rage.

  3. Simultaneous Removal of NOx and Mercury in Low Temperature Selective Catalytic and Adsorptive Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neville G. Pinto; Panagiotis G. Smirniotis

    2006-03-31

    The results of a 18-month investigation to advance the development of a novel Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR), for the simultaneous removal of NO{sub x} and mercury (elemental and oxidized) from flue gases in a single unit operation located downstream of the particulate collectors, are reported. In the proposed LTSCAR, NO{sub x} removal is in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The concomitant capture of mercury in the unit is achieved through the incorporation of a novel chelating adsorbent. As conceptualized, the LTSCAR will be located downstream of the particulate collectors (flue gas temperature 140-160 C) and will be similar in structure to a conventional SCR. That is, it will have 3-4 beds that are loaded with catalyst and adsorbent allowing staged replacement of catalyst and adsorbent as required. Various Mn/TiO{sub 2} SCR catalysts were synthesized and evaluated for their ability to reduce NO at low temperature using CO as the reductant. It has been shown that with a suitably tailored catalyst more than 65% NO conversion with 100% N{sub 2} selectivity can be achieved, even at a high space velocity (SV) of 50,000 h-1 and in the presence of 2 v% H{sub 2}O. Three adsorbents for oxidized mercury were developed in this project with thermal stability in the required range. Based on detailed evaluations of their characteristics, the mercaptopropyltrimethoxysilane (MPTS) adsorbent was found to be most promising for the capture of oxidized mercury. This adsorbent has been shown to be thermally stable to 200 C. Fixed-bed evaluations in the targeted temperature range demonstrated effective removal of oxidized mercury from simulated flue gas at very high capacity ({approx}>58 mg Hg/g adsorbent). Extension of the capability of the adsorbent to elemental mercury capture was pursued with two independent approaches: incorporation of a novel nano-layer on the surface of the

  4. Simultaneous removal of mercury, PCDD/F, and fine particles from flue gas.

    Science.gov (United States)

    Korell, Jens; Paur, Hanns-R; Seifert, Helmut; Andersson, Sven

    2009-11-01

    A multifunctional scrubber (MFS) has been developed to reduce the complexity of flue gas cleaning plants. The MFS integrates an oxidizing scrubber equipped with a dioxin-absorbing tower packing material and a space charge electrostatic precipitator. All these processes have been previously developed at Forschungszentrum Karlsruhe. In the described multifunctional scrubber, mercury, sulfur dioxide, hydrogen chloride, polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF), and submicrometer particles are removed simultaneously. A MFS pilot plant with a flue gas volume flow of 250 m(3)/h has been installed in a slipstream of a waste incineration pilot plant. Pilot scale testing was performed to measure mercury, particles, and PCDD/F in the raw and clean gas. After optimization of the process these three flue gas components were separated from the flue gas in the range 87-97%.

  5. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions

    International Nuclear Information System (INIS)

    Li, Guoliang; Shen, Boxiong; Li, Yongwang; Zhao, Bin; Wang, Fumei; He, Chuan; Wang, Yinyin; Zhang, Min

    2015-01-01

    Highlights: • Both physisorption and chemisorption of Hg 0 occurred on the surface of M6WN5. • Chemisorption process was an absolute predominant route for Hg 0 removal by M6WN5. • The effect of NO, H 2 O, SO 2 and O 2 on Hg 0 removal by M6WN5 was investigated. • M6WN5 demonstrated to be a promising Hg 0 sorbent in flue gas. - Abstract: Pyrolyzed biochars from an industrial medicinal residue waste were modified by microwave activation and NH 4 Cl impregnation. Mercury adsorption of different modified biochars was investigated in a quartz fixed-bed reactor. The results indicated that both physisorption and chemisorption of Hg 0 occurred on the surface of M6WN5 which was modified both microwave and 5 wt.% NH 4 Cl loading, and exothermic chemisorption process was a dominant route for Hg 0 removal. Microwave activation improved pore properties and NH 4 Cl impregnation introduced good active sites for biochars. The presence of NO and O 2 increased Hg 0 adsorption whereas H 2 O inhibited Hg 0 adsorption greatly. A converse effect of SO 2 was observed on Hg 0 removal, namely, low concentration of SO 2 promoted Hg 0 removal obviously whereas high concentration of SO 2 suppressed Hg 0 removal. The Hg 0 removal by M6WN5 was mainly due to the reaction of the C−Cl with Hg 0 to form HgCl 2 , and the active state of C−Cl * groups might be an intermediate group in this process. Thermodynamic analysis showed that mercury adsorption by the biochars was exothermic process and apparent adsorption energy was 43.3 kJ/mol in the range of chemisorption. In spite of low specific surface area, M6WN5 proved to be a promising Hg 0 sorbent in flue gas when compared with other sorbents

  6. A novel pre-oxidation method for elemental mercury removal utilizing a complex vaporized absorbent

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yi, E-mail: zhaoyi9515@163.com; Hao, Runlong; Guo, Qing

    2014-09-15

    Graphical abstract: - Highlights: • An innovative liquid-phase complex absorbent (LCA) for Hg{sup 0} removal was prepared. • A novel integrative process for Hg{sup 0} removal was proposed. • The simultaneous removal efficiencies of SO{sub 2}, NO and Hg{sup 0} were 100%, 79.5% and 80.4%, respectively. • The reaction mechanism of simultaneous removal of SO{sub 2}, NO and Hg{sup 0} was proposed. - Abstract: A novel semi-dry integrative method for elemental mercury (Hg{sup 0}) removal has been proposed in this paper, in which Hg{sup 0} was initially pre-oxidized by a vaporized liquid-phase complex absorbent (LCA) composed of a Fenton reagent, peracetic acid (CH{sub 3}COOOH) and sodium chloride (NaCl), after which Hg{sup 2+} was absorbed by the resultant Ca(OH){sub 2}. The experimental results indicated that CH{sub 3}COOOH and NaCl were the best additives for Hg{sup 0} oxidation. Among the influencing factors, the pH of the LCA and the adding rate of the LCA significantly affected the Hg{sup 0} removal. The coexisting gases, SO{sub 2} and NO, were characterized as either increasing or inhibiting in the removal process, depending on their concentrations. Under optimal reaction conditions, the efficiency for the single removal of Hg{sup 0} was 91%. Under identical conditions, the efficiencies of the simultaneous removal of SO{sub 2}, NO and Hg{sup 0} were 100%, 79.5% and 80.4%, respectively. Finally, the reaction mechanism for the simultaneous removal of SO{sub 2}, NO and Hg{sup 0} was proposed based on the characteristics of the removal products as determined by X-ray diffraction (XRD), atomic fluorescence spectrometry (AFS), the analysis of the electrode potentials, and through data from related research references.

  7. Optimized Production of Coal Fly Ash Derived Synthetic Zeolites for Mercury Removal from Wastewater

    Science.gov (United States)

    Tauanov, Z.; Shah, D.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) derived synthetic zeolites have become popular with recent advances and its ever-expanding range of applications, particularly as an adsorbent for water and gas purification and as a binder or additive in the construction industry and agriculture. Among these applications, perpetual interest has been in utilization of CFA derived synthetic zeolites for removal of heavy metals from wastewater. We herein focus on utilization of locally available CFA for efficient adsorption of mercury from wastewater. To this end, experimental conditions were investigated so that to produce synthetic zeolites from Kazakhstani CFAs with conversion into zeolite up to 78%, which has remarkably high magnetite content. In particular, the effect of synthesis reaction temperature, reaction time, and loading of adsorbent were systematically investigated and optimized. All produced synthetic zeolites and the respective CFAs were characterized using XRD, XRF, PSA and porosimetric instruments to obtain microstructural and mineralogical data. Furthermore, the synthesized zeolites were studied for the removal of mercury from aqueous solutions. A comparison of removal eficiency and its relationship to the physical and chemical properties of the synthetic zeolites were analyzed and interpreted.

  8. Comparison of Granular Activated Carbon, Natural Clinoptilolite Zeolite, and Anthracite Packed Columns in Removing Mercury from Drinking Water

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Samadi

    2010-01-01

    Full Text Available Development of effective methods for the removal of such pollutants as heavy metals (e.g., mercury from surface and ground water resources introduced by municipal and industrial wastewaters seems to be inevitable, especially in the face of the importance of water reuse in combating water shortages, limited availability of water resources, and imminent risks of a water crisis in Iran. A number of methods are already available for the removal of mercury from water resources. However, these techniques must be investigated for their practicability and economy, in addition to their not only effectiveness. In this research, granular activated carbon, natural zeolite, and anthracite packed-columns were investigated as cheap and effective adsorbents for the removal of mercury. Moreover, the effects of changes in pH (6-8, influent mercury concentrations (0.25, 0.5, 0.75, and 1 ppm, contact time (0.5, 1, 2, 3 hr were investigated. Mercury concentration in the samples was determined using a ditizon indicator and spectrophotometry at 492 nm. Results showed that decreasing influent mercury concentration from 1 ppm to 0.25 ppm (under constant conditions increased the removal efficiencies of anthracite, granular activated carbon, and zeolite columns from22%, 63%, and 55% to 28%, 72%, and 64%, respectively. Increasing contact time from 0.5 hr to 3 hr caused the removal efficiencies of these columns to increase from 22%, 56%, and 54% to 42%, 86%, and 82%, respectively. Also, increasing pH level led to increased removal efficiencies of the studied columns. It was found that contact time played a more effective role in enhancing mercury removal efficiency in the granular activated carbon column than in the other two columns. The ranges of mercury removal efficiency obtained for the granular activated carbon, natural zeolite, and anthracite columns under various conditions were (51%-92%, (42%-88%, and (16%-52%, respectively. Based on these results, granular

  9. Removal of bone in CT angiography of the cervical arteries by piecewise matched mask bone elimination

    International Nuclear Information System (INIS)

    Straten, Marcel van; Venema, Henk W.; Streekstra, Geert J.; Majoie, Charles B.L.M.; Heeten, Gerard J. den; Grimbergen, Cornelis A.

    2004-01-01

    In maximum intensity projection (MIP) images of CT angiography (CTA) scans, the arteries are often obscured by bone. A bone removal method is presented that uses an additional, nonenhanced scan to create a mask of the bone by thresholding and dilation. After registration of the CTA scan and the additional scan, the bone in the CTA scan is masked. As the cervical area contains bones that can move with respect to each other, these bones are separated first using a watershed algorithm, and then registered individually. A phantom study was performed to evaluate and quantify the tradeoff between the removal of the bone and the preservation of the arteries contiguous to the bone. The influence of algorithm parameters and scan parameters was studied. The method was clinically evaluated with data sets of 35 patients. Best results were obtained with a threshold of 150 HU and a dilation of 8 in-plane voxels and two out-of-plane voxels. The mean width of the soft tissue layer, which is also masked, was approximately 1 mm. The mAs value of the nonenhanced scan could be reduced from 250 mAs to 65 mAs without a loss of quality. In 32 cases the bones were registered correctly and removed completely. In three cases the bone separation was not completely successful, and consequently the bone was not completely removed. The piecewise matched mask bone elimination method proved to be able to obtain MIP images of the cervical arteries free from overprojecting bone in a fully automatic way and with only a slight increase of radiation dose

  10. Use of sulfide-containing liquors for removing mercury from flue gases

    Science.gov (United States)

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  11. Removal of mercury in fixed-bed continuous upflow reactors by mercury-resistant bacteria and effect of sodium chloride on their performance

    Digital Repository Service at National Institute of Oceanography (India)

    De; Leonhauser, J.; Vardanyan, L

    : De J, Leonha¨user J, Vardanyan L. Removal of mercury in fixed-bed continuous upflow reactors by mercury-resistant bacteria and effect of sodium chloride on their performance, QScience Connect 2014:17 http://dx.doi.org/10.5339/connect.2014.17 http... for medium; 2, channel for wastewater inflow; 3, channel for wastewater outflow; 4, medium; 5, pump for medium; 6, pump for wastewater; 7, bubble trap. Page 4 of 9 De, Leonha¨user, Vardanyan. QScience Connect 2014:17 supplemented with 4 g/l glucose) were...

  12. Fine root mercury heterogeneity: metabolism of lower-order roots as an effective route for mercury removal.

    Science.gov (United States)

    Wang, Jun-Jian; Guo, Ying-Ying; Guo, Da-Li; Yin, Sen-Lu; Kong, De-Liang; Liu, Yang-Sheng; Zeng, Hui

    2012-01-17

    Fine roots are critical components for plant mercury (Hg) uptake and removal, but the patterns of Hg distribution and turnover within the heterogeneous fine root components and their potential limiting factors are poorly understood. Based on root branching structure, we studied the total Hg (THg) and its cellular partitioning in fine roots in 6 Chinese subtropical trees species and the impacts of root morphological and stoichiometric traits on Hg partitioning. The THg concentration generally decreased with increasing root order, and was higher in cortex than in stele. This concentration significantly correlated with root length, diameter, specific root length, specific root area, and nitrogen concentration, whereas its cytosolic fraction (accounting for root carbon and sulfur concentrations. The estimated Hg return flux from dead fine roots outweighed that from leaf litter, and ephemeral first-order roots that constituted 7.2-22.3% of total fine root biomass may have contributed most to this flux (39-71%, depending on tree species and environmental substrate). Our results highlight the high capacity of Hg stabilization and Hg return by lower-order roots and demonstrate that turnover of lower-order roots may be an effective strategy of detoxification in perennial tree species.

  13. Mercury

    CERN Document Server

    Balogh, André; Steiger, Rudolf

    2008-01-01

    Mercury, the planet closest to the Sun, is different in several respects from the other three terrestrial planets. In appearance, it resembles the heavily cratered surface of the Moon, but its density is high, it has a magnetic field and magnetosphere, but no atmosphere or ionosphere. This book reviews the progress made in Mercury studies since the flybys by Mariner 10 in 1974-75, based on the continued research using the Mariner 10 archive, on observations from Earth, and on increasingly realistic models of its interior evolution.

  14. Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Cherlys Infante J.

    2014-06-01

    Full Text Available Objective. In this study the biomass of the yeast Saccharomyces cerevisiae was used to remove lead, mercury and nickel in the form of ions dissolved in water. Materials and methods. Synthetic solutions were prepared containing the three heavy metals, which were put in contact with viable microorganisms at different conditions of pH, temperature, aeration and agitation. Results. Both individual variables and the interaction effects influenced the biosorption process. Throughout the experimental framework it was observed that the biomass of Saccharomyces cerevisiae removed a higher percentage of lead (86.4% as compared to mercury and nickel (69.7 and 47.8% respectively. When the pH was set at a value of 5 the effect was positive for all three metals. Conclusions. pH was the variable that had a greater influence on the biosorption of lead on the biomass of Saccharomyces cerevisiae. The affinity of the heavy metals for the biomass followed the order Pb>Hg>Ni.

  15. TECHNOLOGY EVALUATION FOR WATERBORNE MERCURY REMOVAL AT THE Y12 NATIONAL SECURITY COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    He, Feng [ORNL; Liang, Liyuan [ORNL; Miller, Carrie L [ORNL

    2011-01-01

    The Hg-contaminated processing water produced at Y-12 facility is discharged through the storm drain system, merged at Outfall 200, and then discharged to EFPC. Most of the baseflow mercury at Outfall 200 arises from a small number of short sections of storm drain. This report discusses the waterborne mercury treatment technologies to decrease mercury loading to the surface water of EFPC at Y-12 NSC. We reviewed current available waterborne Hg treatment technologies based on the specific conditions of Y-12 and identified two possible options: SnCl2 reduction coupled with air stripping (SnCl2/air stripping) and sorption. The ORNL 2008 and 2009 field studies suggested that SnCl2/air stripping has the capability to remove waterborne mercury with efficiency higher than 90% at Outfall 200. To achieve this goal, dechlorination (i.e., removing residual chlorine from water) using dechlorinating agents such as thiosulfate has to be performed before the reduction. It is unclear whether or not SnCl2/air stripping can reduce the mercury concentration from ~1000 ng/L to 51 ng/L at a full-scale operation. Therefore, a pilot test is a logical step before a full-scale design to answer questions such as Hg removal efficiency, selection of dechlorinating agents, and so on. The major advantages of the SnCl2/air stripping system are: (1) expected low cost at high flow (e.g., the flow at Outfall 200); and (2) production of minimum secondary waste. However, there are many environmental uncertainties associated with this technology by introducing tin to EFPC ecosystem, for example tin methylation causing abiotic Hg methylation, which should be addressed before a full-scale implementation. Mercury adsorption by granular activated carbon (GAC) is a proven technology for treating Hg at Y-12. The ONRL 2010 lab sorption studies suggest that thiol-based resins hold the promise to combine with GAC to form a more cost-effective treatment system. To achieve a treatment goal of 51 ng/L at Outfall

  16. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guoliang [School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401 (China); College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Shen, Boxiong, E-mail: shenbx@nankai.edu.cn [School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401 (China); College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Li, Yongwang [College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Zhao, Bin [School of Chemical Engineering, Hebei University of Technology, Tianjin 300401 (China); Wang, Fumei; He, Chuan; Wang, Yinyin; Zhang, Min [College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China)

    2015-11-15

    Highlights: • Both physisorption and chemisorption of Hg{sup 0} occurred on the surface of M6WN5. • Chemisorption process was an absolute predominant route for Hg{sup 0} removal by M6WN5. • The effect of NO, H{sub 2}O, SO{sub 2} and O{sub 2} on Hg{sup 0} removal by M6WN5 was investigated. • M6WN5 demonstrated to be a promising Hg{sup 0} sorbent in flue gas. - Abstract: Pyrolyzed biochars from an industrial medicinal residue waste were modified by microwave activation and NH{sub 4}Cl impregnation. Mercury adsorption of different modified biochars was investigated in a quartz fixed-bed reactor. The results indicated that both physisorption and chemisorption of Hg{sup 0} occurred on the surface of M6WN5 which was modified both microwave and 5 wt.% NH{sub 4}Cl loading, and exothermic chemisorption process was a dominant route for Hg{sup 0} removal. Microwave activation improved pore properties and NH{sub 4}Cl impregnation introduced good active sites for biochars. The presence of NO and O{sub 2} increased Hg{sup 0} adsorption whereas H{sub 2}O inhibited Hg{sup 0} adsorption greatly. A converse effect of SO{sub 2} was observed on Hg{sup 0} removal, namely, low concentration of SO{sub 2} promoted Hg{sup 0} removal obviously whereas high concentration of SO{sub 2} suppressed Hg{sup 0} removal. The Hg{sup 0} removal by M6WN5 was mainly due to the reaction of the C−Cl with Hg{sup 0} to form HgCl{sub 2}, and the active state of C−Cl{sup *} groups might be an intermediate group in this process. Thermodynamic analysis showed that mercury adsorption by the biochars was exothermic process and apparent adsorption energy was 43.3 kJ/mol in the range of chemisorption. In spite of low specific surface area, M6WN5 proved to be a promising Hg{sup 0} sorbent in flue gas when compared with other sorbents.

  17. Removal of inorganic mercury from aqueous solutions by biomass of the marine macroalga Cystoseira baccata.

    Science.gov (United States)

    Herrero, Roberto; Lodeiro, Pablo; Rey-Castro, Carlos; Vilariño, Teresa; Sastre de Vicente, Manuel E

    2005-09-01

    The ability of Cystoseira baccata algal biomass to remove Hg(II) from aqueous solutions is investigated. The mercury biosorption process is studied through batch experiments at 25 degrees C with regard to the influence of contact time, initial mercury concentration, solution pH, salinity and presence of several divalent cations. The acid-base properties of the alga are also studied, since they are related to the affinity for heavy metals. The studies of the pH effect on the metal uptake evidence a sharp increasing sorption up to a pH value around 7.0, which can be ascribed to changes both in the inorganic Hg(II) speciation and in the dissociation state of the acid algal sites. The sorption isotherms at constant pH show uptake values as high as 178 mg g(-1) (at pH 4.5) and 329 mg g(-1) (at pH 6.0). The studies of the salinity influence on the Hg(II) sorption capacity of the alga exhibit two opposite effects depending on the electrolyte added; an increase in concentration of nitrate salts (NaNO3, KNO3) slightly enhances the metal uptake, on the contrary, the addition of NaCl salt leads to a drop in the sorption. The addition of different divalent cations to the mercury solution, namely Ca2+, Mg2+, Zn2+, Cd2+, Pb2+ and Cu2+, reveals that their effect on the uptake process is negligible. Finally, the equilibrium sorption results are compared with predictions obtained from the application of a simple competitive chemical model, which involves a discrete proton binding constant and three additional constants for the binding of the main neutral inorganic Hg(II) complexes, Hg(Cl)2, HgOHCl and Hg(OH)2, to the algal surface sites.

  18. Mercury removal from MSW incineration flue gas by mineral-based sorbents.

    Science.gov (United States)

    Rumayor, M; Svoboda, K; Švehla, J; Pohořelý, M; Šyc, M

    2018-03-01

    Three samples of commercially available mineral-based sorbents (zeolite, bentonite and diatomaceous earth) were selected and evaluated for Hg capture under conditions of simulated dry flue gas atmosphere typical in Municipal Solid Waste Incineration (MSWI). The experiments were carried out in a lab-scale fixed-bed device at temperatures between 120 and 200 °C. Two samples of activated carbons (AC) (raw-AC and sulphur impregnated AC) were tested under the same conditions. The mineral-based sorbents were chemically promoted by sulphur, FeCl 3 and CaBr 2 , achieving an improvement in the overall reduction percentage of Hg 0 out (g) up to 85%, which was comparable to that obtained using a commercial activated carbon for Hg capture (sulphur impregnated AC). The study demonstrates that sorbents with a matrix relatively richer in TiO 2 , Fe 2 O 3 and Al 2 O 3 , as bentonite, favour Hg heterogeneous oxidation. The best Hg capture capacity was achieved with a zeolite sorbent sample characterized by high specific surface (132 m 2 /g) and impregnated with elemental sulphur. The final form of mercury retained in this sorbent was HgS with proved long-term stability in disposal and landfilling. The higher the temperature, the lower the efficiency of Hg capture being the optimum temperature for Hg-capture in the range of 120-150 °C. This study provides a basis for the development of new efficient non-carbon sorbents for mercury removal in the air pollution control lines of MSWI facilities considering the non-hazardous final form of mercury and its long-term landfilling/sequestration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Industrial Mercury in Combination with Natural Pb 210 as Time-dependent Tracers of Sedimentation and Mercury Removal from Haifa Bay, Israel

    Science.gov (United States)

    Krom, M. D.; Kaufman, A.; Hornung, H.

    1994-06-01

    The input rate of a particle reactive pollutant, mercury, from a chloralkali plant, which was known in detail, was used in combination with Pb 210 to determine the sedimentation and mixing rates in several locations in the area of a factory outfall. Sediment profiles were modelled using a numerical solution to the diagenetic equation. The calculated sedimentation rate of ˜0·5 cm year -1 was close to values based on estimates of regional sand transport. Surface mixing rates of 7-8 cm 2 year -1 with an exponential decrease with depth are similar to rates estimated in other near-shore areas. An atmospheric flux of excess Pb 210 to the area of 0·41 dpm cm -2 year -1 was estimated from the inventory in the sediment from two nearby fishponds. The model predicted that despite the input of 0·5 cm year -1 of clean sand into the area, the level of mercury in surface sediments would remain ˜0·3 ppm above background (precontamination) levels for more than 50 years after input controls were introduced due to particle mixing. Unlike most previous studies on the discharge of mercury into the near-shore environment, this receiving area is one of relatively coarse sandy sediment and particle poor oceanic water. The majority of the mercury in the sediment was not attached to fine-grained particles. Only 10% of the mercury supplied in the effluent, was found in the sediments within a 150 km 2area adjacent to the outfall. It was hypothesized that there were insufficient fine-grained particles to remove dissolved mercury from the water column. Thus the principal pathway of even particle reactive pollutants to the biosphere in this coastal area may be via the planktonic food-chain, with the benthic food-web being important only locally.

  20. Removal of trace mercury (II) from aqueous solution by in situ MnO(x) combined with poly-aluminum chloride.

    Science.gov (United States)

    Lu, Xixin; Huangfu, Xiaoliu; Zhang, Xiang; Wang, Yaan; Ma, Jun

    2015-06-01

    Removal of trace mercury from aqueous solution by Mn (hydr)oxides formed in situ during coagulation with poly-aluminum chloride (PAC) (in situ MnO(x) combined with PAC) was investigated. The efficiency of trace mercury removal was evaluated under the experimental conditions of reaction time, Mn dosage, pH, and temperature. In addition, the ionic strength and the initial mercury concentration were examined to evaluate trace mercury removal for different water qualities. The results clearly demonstrated that in situ MnO(x) combined with PAC was effective for trace mercury removal from aqueous solution. A mercury removal ratio of 9.7 μg Hg/mg Mn was obtained at pH 3. Furthermore, at an initial mercury concentration of 30 μg/L and pH levels of both 3 and 5, a Mn dosage of 4 mg/L was able to lower the mercury concentration to meet the standards for drinking water quality at less than 1 μg/L. Analysis by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy suggests that the hydroxyls on the surface of Mn (hydr)oxides are the active sites for adsorption of trace mercury from aqueous solution.

  1. Sulfur rich microporous polymer enables rapid and efficient removal of mercury(II) from water.

    Science.gov (United States)

    Xu, Dan; Wu, Winston Duo; Qi, Hao-Jun; Yang, Rui-Xia; Deng, Wei-Qiao

    2018-04-01

    Design and synthesis of adsorbents for efficient decontamination of hazardous contaminants Hg 2+ from wastewater, based on a facile and economical strategy, is an attractive target. Here, a novel sulfur rich microporous polymer (sulfur content of 31.4 wt %) with high surface area as well as densely populated sulfur atom with fast accessibility was reported to remove mercury (II) from water. The as prepared polymer (SMP) exhibited high binding affinity, high adsorption capacities, rapid adsorption kinetics, and good recyclability for Hg 2+ . The adsorption capacity of SMP was 595.2 mg g -1 . Furthermore, SMP could reduce trace concentrations of Hg 2+ from 200 p. p. b. to a level below drinking water standards (2 p. p. b.) within 3 min. This work allows large-scale production of sulfur rich porous materials for the practical application in water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Competitive effects on mercury removal by an agricultural waste: application to synthetic and natural spiked waters.

    Science.gov (United States)

    Rocha, Luciana S; Lopes, Cláudia B; Henriques, Bruno; Tavares, Daniela S; Borges, J A; Duarte, Armando C; Pereira, Eduarda

    2014-01-01

    In this work, the efficiency of a local and highly, available agricultural waste, the raw rice husk, was used to remove mercury (Hg) from synthetic and natural waters, spiked with concentrations that reflect the contamination problems found in the environment. Different operating conditions were tested, including initial pH, ionic strength, the presence of co-ions (cadmium) and organic matter. The sorption efficiency of rice husk was slightly affected by the presence H+ ions (pH range between 3 and 9), but in the presence of NaNO3 and NaCl electrolytes and in binary solutions containing Cd2+ and H2+, the sorption efficiency was dependent on the nature and levels of the interfering ion and on the initial concentration of Hg+ used. Nevertheless, in a situation of equilibrium the effect of those ions was negligible and the removal efficiency ranged between 82% and 94% and between 90% and 96% for an initial Hg2+ concentration of 0.05 mg L(-1) and 0.50 mg L(-1), respectively. In more complex matrices, i.e. in the presence ofhumic substances and in natural river waters, the speciation and dynamics of Hg was changed and a fraction of the metal becomes unavailable in solution. Even then, the values obtained for Hg removal were satisfactory, i.e. between 59% and 76% and 81% and 85% for an initial concentration of Hg2+ of 0.05 and 0.50 mg L(-1), respectively.

  3. Mercury contamination extraction

    Science.gov (United States)

    Fuhrmann, Mark [Silver Spring, MD; Heiser, John [Bayport, NY; Kalb, Paul [Wading River, NY

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  4. Regenerative process for removal of mercury and other heavy metals from gases containing H.sub.2 and/or CO

    Science.gov (United States)

    Jadhav, Raja A [Naperville, IL

    2009-07-07

    A method for removal of mercury from a gaseous stream containing the mercury, hydrogen and/or CO, and hydrogen sulfide and/or carbonyl sulfide in which a dispersed Cu-containing sorbent is contacted with the gaseous stream at a temperature in the range of about 25.degree. C. to about 300.degree. C. until the sorbent is spent. The spent sorbent is contacted with a desorbing gaseous stream at a temperature equal to or higher than the temperature at which the mercury adsorption is carried out, producing a regenerated sorbent and an exhaust gas comprising released mercury. The released mercury in the exhaust gas is captured using a high-capacity sorbent, such as sulfur-impregnated activated carbon, at a temperature less than about 100.degree. C. The regenerated sorbent may then be used to capture additional mercury from the mercury-containing gaseous stream.

  5. Mercury Removal From Aqueous Solutions With Chitosan-Coated Magnetite Nanoparticles Optimized Using the Box-Behnken Design

    Science.gov (United States)

    Rahbar, Nadereh; Jahangiri, Alireza; Boumi, Shahin; Khodayar, Mohammad Javad

    2014-01-01

    Background: Nowadays, removal of heavy metals from the environment is an important problem due to their toxicity. Objectives: In this study, a modified method was used to synthesize chitosan-coated magnetite nanoparticles (CCMN) to be used as a low cost and nontoxic adsorbent. CCMN was then employed to remove Hg2+ from water solutions. Materials and Methods: To remove the highest percentage of mercury ions, the Box-Behnken model of response surface methodology (RSM) was applied to simultaneously optimize all parameters affecting the adsorption process. Studied parameters of the process were pH (5-8), initial metal concentration (2-8 mg/L), and the amount of damped adsorbent (0.25-0.75 g). A second-order mathematical model was developed using regression analysis of experimental data obtained from 15 batch runs. Results: The optimal conditions predicted by the model were pH = 5, initial concentration of mercury ions = 6.2 mg/L, and the amount of damped adsorbent = 0.67 g. Confirmatory testing was performed and the maximum percentage of Hg2+ removed was found to be 99.91%. Kinetic studies of the adsorption process specified the efficiency of the pseudo second-order kinetic model. The adsorption isotherm was well-fitted to both the Langmuir and Freundlich models. Conclusions: CCMN as an excellent adsorbent could remove the mercury ions from water solutions at low and moderate concentrations, which is the usual amount found in environment. PMID:24872943

  6. Removal of mercury(II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies

    International Nuclear Information System (INIS)

    Ghodbane, Ilhem; Hamdaoui, Oualid

    2008-01-01

    In this study, eucalyptus camaldulensis bark, a forest solid waste, is proposed as a novel material for the removal of mercury(II) from aqueous phase. The operating variables studied were sorbent dosage, ionic strength, stirring speed, temperature, solution pH, contact time, and initial metal concentration. Sorption experiments indicated that the sorption capacity was dependent on operating variables and the process was strongly pH-dependent. Kinetic measurements showed that the process was uniform and rapid. In order to investigate the mechanism of sorption, kinetic data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations, and intraparticle diffusion model. Among the kinetic models studied, the pseudo-second-order equation was the best applicable model to describe the sorption process. Equilibrium isotherm data were analyzed using the Langmuir and the Freundlich isotherms. The Langmuir model yields a much better fit than the Freundlich model. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy, and entropy of sorption. The maximum sorption capacity was 33.11 mg g -1 at 20 deg. C and the negative value of free energy change indicated the spontaneous nature of sorption. These results demonstrate that eucalyptus bark is very effective in the removal of Hg(II) from aqueous solutions

  7. MERCURY REMOVAL IN A NON-THERMAL, PLASMA-BASED MULTI-POLLUTANT CONTROL TECHNOLOGY FOR UTILITY BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Matthew B. Loomis

    2004-05-01

    This technical report describes the results from Task 1 of the Cooperative Agreement. Powerspan has installed, tested, and validated Hg SCEMS systems for measuring oxidized and elemental mercury at the pilot facility at R.E. Burger Generating Station in Shadyside, Ohio. When operating properly, these systems are capable of providing near real-time monitoring of inlet and outlet gas flow streams and are capable of extracting samples from different locations to characterize mercury removal at these different ECO process stages. This report discusses the final configuration of the Hg CEM systems and the operating protocols that increase the reliability of the HG SCEM measurements. Documentation on the testing done to verify the operating protocols is also provided. In addition the report provides details on the protocols developed and used for measurement of mercury in process liquid streams and in captured ash.

  8. Efficiency of white lupin in the removal of mercury from contaminated soils: soil and hydroponic experiments.

    Science.gov (United States)

    Zornoza, Pilar; Millán, Rocío; Sierra, M José; Seco, Almudena; Esteban, Elvira

    2010-01-01

    This study examined the ability of the white lupin to remove mercury (Hg) from a hydroponic system (Hg concentrations 0, 1.25, 2.5, 5 and 10 micromol/L) and from soil in pots and lysimeters (total Hg concentration (19.2 +/- 1.9) mg/kg availability 0.07%, and (28.9 +/- 0.4) mg/kg availability 0.09%, respectively), and investigated the accumulation and distribution of Hg in different parts of the plant. White lupin roots efficiently took up Hg, but its translocation to the harvestable parts of the plant was low. The Hg concentration in the seeds posed no risk to human health according to the recommendations of the World Health Organization, but the shoots should not be used as fodder for livestock, at least when unmixed with other fodder crops. The accumulation of Hg in the hydroponically-grown plants was linear over the concentration range tested. The amount of Hg retained in the roots, relative to the shoots, was almost constant irrespective of Hg dose (90%). In the soil experiments, Hg accumulation increased with exposure time and was the greater in the lysimeter than in the pot experiments. Although Hg removal was the greater in the hydroponic system, revealing the potential of the white lupin to extract Hg, bioaccumulation was the greatest in the lysimeter-grown plants; the latter system more likely reflects the true behaviour of white lupin in the field when Hg availability is a factor that limits Hg removal. The present results suggest that the white lupin could be used in long-term soil reclamation strategies that include the goal of profitable land use in Hg-polluted areas.

  9. A law of removing radon by ventilation and air requirement calculation for eliminating radon daughters in uranium mines

    International Nuclear Information System (INIS)

    Wu Gang

    1988-06-01

    In accordance with testing data of removing radon and its daughters by ventilation from shrinkage and filling stopes of uranium mines, a law of removing radon by ventilation from the stopes is analyzed and summed. According to the decay law of radon and its daughters, an accumulation equation of potential alpha energy from radon daughters is presented with hyperbolic regression equation. the calculating formulae of ventilation flow are derived from the accumulation equation for eliminating radon daughters in inlet flow with or without contamination. It has been proved that the amount of ventilation air calcuated could meet the requirements of radiation safety rationally and economically

  10. Review of technologies for mercury removal from flue gas from cement production processes

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker Degn; Windelin, Christian

    2012-01-01

    Mercury is a pollutant of concern and mercury emissions from cement plants are under environmental regulation. After coal-fired power plants, mercury emissions from cement and mineral production are the second largest anthropogenic sources. Compared to fuels, cement raw materials are the major...... sources of mercury in the cement kiln flue gas. Cement plants are quite different from power plants and waste incinerators regarding the flue gas composition, temperature, residence time, and material circulation. Cement kiln systems have some inherent ability to retain mercury in the solid materials due...... kilns.Among the mercury control technologies, sorbent injection upstream of a particulate control device has shown the most promise. Due to material recirculation, and high moisture level in the cement kiln flue gas the application of sorbent injection to cement plants will be more challenging...

  11. A multidisciplinary approach to evaluate the efficiency of a clean-up technology to remove mercury from water.

    Science.gov (United States)

    Lopes, Cláudia B; Lopes, Isabel; Rocha, Luciana S; Duarte, Armando C; Soares, Amadeu M V M; Rocha, João; Pereira, Eduarda

    2014-08-01

    A microporous material denoted ETS-4 was used as the decontaminant agent to treat water with a low level of Hg contamination. The effectiveness of the treatment was evaluated by assessment of the efficiency of Hg removal and ecotoxicological responses. The results showed that under highly competitive conditions the removal of Hg ranged between 58 % and 73 % depending upon the initial Hg concentration, and that Hg removal was reflected in decreased toxicity to some organisms. The ecotoxicological data indicated that the bacterium Vibrio fischeri was the least sensitive organism tested, as no toxicity was observed in either pre- or post-treatment waters. Daphnia magna was highly sensitive to Hg. Mercury removal by ETS-4 was not sufficient to completely remove the toxicity of Hg to D. magna. However, it was effective in the complete reduction of toxicity for the green alga, Pseudokirchneriella subcapitata.

  12. Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands.

    Science.gov (United States)

    Marrugo-Negrete, José; Enamorado-Montes, Germán; Durango-Hernández, José; Pinedo-Hernández, José; Díez, Sergi

    2017-01-01

    Phytoremediation has received increased attention over the recent decades, as an emerging and eco-friendly approach that utilizes the natural properties of plants to remediate contaminated water, soils or sediments. The current study provides information about a pilot-scale experiment designed to evaluate the potential of the anchored aquatic plant Limnocharis flava for phytoremediation of water contaminated with mercury (Hg), in a constructed wetland (CW) with horizontal subsurface flow (HSSF). Mine effluent used in this experiment was collected from a gold mining area located at the Alacran mine in Colombia (Hg: 0.11 ± 0.03 μg mL -1 ) and spiked with HgNO 3 (1.50 ± 0.09 μg mL -1 ). Over a 30 day test period, the efficiency of the reduction in the heavy metal concentration in the wetlands, and the relative metal sorption by the L. flava, varied according to the exposure time. The continued rate of removal of Hg from the constructed wetland was 9 times higher than the control, demonstrating a better performance and nearly 90% reduction in Hg concentrations in the contaminated water in the presence of L. flava. The results in this present study show the great potential of the aquatic macrophyte L. flava for phytoremediation of Hg from gold mining effluents in constructed wetlands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Removal of Toxic Mercury from Petroleum Oil by Newly Synthesized Molecularly-Imprinted Polymer

    Science.gov (United States)

    Khairi, Nor Ain Shahera; Yusof, Nor Azah; Abdullah, Abdul Halim; Mohammad, Faruq

    2015-01-01

    In recent years, molecularly-imprinted polymers (MIPs) have attracted the attention of several researchers due to their capability for molecular recognition, easiness of preparation, stability and cost-effective production. By taking advantage of these facts, Hg(II) imprinted and non-imprinted copolymers were prepared by polymerizing mercury nitrate stock solution (or without it) with methacrylic acid (MAA), 2-hydroxyl ethyl methacrylate (HEMA), methanol and ethylene glycol dimethacrylate (EGDMA) as the monomer, co-monomer solvent (porogen) and cross-linker, respectively. Thus, the formed Hg(II) imprinted polymer was characterized by using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Brunauer, Emmett and Teller (BET) and thermal gravimetric analysis (TGA). The separation and preconcentration characteristics of Hg(II) imprinted polymer were investigated by solid phase extraction (SPE) procedures, and an optimal pH of 7 was investigated as ideal. The specific surface area of the Hg(II) imprinted polymer was found to be 19.45 m2/g with a size range from 100 to 140 µm in diameter. The maximum adsorption capacity was observed to be 1.11 mg/g of Hg(II) imprinted beads with 87.54% removal of Hg(II) ions within the first 5 min. The results of the study therefore confirm that the Hg(II) imprinted polymer can be used multiple times without significantly losing its adsorption capacity. PMID:26006226

  14. Efficiency of biochar produced from malt spent rootlets to remove mercury and dyes

    Science.gov (United States)

    Kamenidou, Charoula; Manariotis, Ioannis; Karapanagioti, Hrissi

    2017-04-01

    Considerable research effort has been focused on the production of biochar from carbon-rich biomass under oxygen-limited conditions as a mitigation measure for global warming once it is used as a soil amendment. Furthermore, the use of biochar as an added value product, such as sorbent or catalyst, is desirable and could be more profitable. Biochar is obtained from the incomplete combustion of carbon-rich biomass under oxygen-limited conditions. Various organic-rich wastes including wood chips, animal manure, and crop residues have been used for biochar production. The present study presents the findings of an experimental work, which investigated the use of biochar produced from malt spent rootlets (MSR), which is a beer production by-product, to remove Hg(II) and methylene blue (MB) from aqueous solutions. MSR was pyrolyzed at temperatures of 300, 400, 500, 600, 750, 850, and 900oC, under limited oxygen conditions. The increase of temperature resulted in significantly increased BET surface areas. The mercury sorption capacity was affected by pyrolysis temperature, and was increased by increasing the pyrolysis temperature. The maximum sorption capacity was 100-110 mg Hg(II)/g biochar at a temperature range of 750-850oC. The MB sorption capacity of biochar was also affected by pyrolysis temperature.

  15. Removal of Toxic Mercury from Petroleum Oil by Newly Synthesized Molecularly-Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Nor Ain Shahera Khairi

    2015-05-01

    Full Text Available In recent years, molecularly-imprinted polymers (MIPs have attracted the attention of several researchers due to their capability for molecular recognition, easiness of preparation, stability and cost-effective production. By taking advantage of these facts, Hg(II imprinted and non-imprinted copolymers were prepared by polymerizing mercury nitrate stock solution (or without it with methacrylic acid (MAA, 2-hydroxyl ethyl methacrylate (HEMA, methanol and ethylene glycol dimethacrylate (EGDMA as the monomer, co-monomer solvent (porogen and cross-linker, respectively. Thus, the formed Hg(II imprinted polymer was characterized by using Fourier transform infrared spectroscopy (FTIR, field emission scanning electron microscopy (FESEM, Brunauer, Emmett and Teller (BET and thermal gravimetric analysis (TGA. The separation and preconcentration characteristics of Hg(II imprinted polymer were investigated by solid phase extraction (SPE procedures, and an optimal pH of 7 was investigated as ideal. The specific surface area of the Hg(II imprinted polymer was found to be 19.45 m2/g with a size range from 100 to 140 µm in diameter. The maximum adsorption capacity was observed to be 1.11 mg/g of Hg(II imprinted beads with 87.54% removal of Hg(II ions within the first 5 min. The results of the study therefore confirm that the Hg(II imprinted polymer can be used multiple times without significantly losing its adsorption capacity.

  16. Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles

    Energy Technology Data Exchange (ETDEWEB)

    Ghauch, Antoine, E-mail: antoine.ghauch@aub.edu.l [American University of Beirut, Faculty of Arts and Sciences, Department of Chemistry, P.O. Box 11-0236, Riad El Solh, 1107-2020 Beirut (Lebanon); Tuqan, Almuthanna; Assi, Hala Abou [American University of Beirut, Faculty of Arts and Sciences, Department of Chemistry, P.O. Box 11-0236, Riad El Solh, 1107-2020 Beirut (Lebanon)

    2009-05-15

    Zerovalent iron powder (ZVI or Fe{sup 0}) and nanoparticulate ZVI (nZVI or nFe{sup 0}) are proposed as cost-effective materials for the removal of aqueous antibiotics. Results showed complete removal of Amoxicillin (AMX) and Ampicillin (AMP) upon contact with Fe{sup 0} and nFe{sup 0}. Antibiotics removal was attributed to three different mechanisms: (i) a rapid rupture of the beta-lactam ring (reduction), (ii) an adsorption of AMX and AMP onto iron corrosion products and (iii) sequestration of AMX and AMP in the matrix of precipitating iron hydroxides (co-precipitation with iron corrosion products). Kinetic studies demonstrated that AMP and AMX (20 mg L{sup -1}) undergo first-order decay with half-lives of about 60.3 +- 3.1 and 43.5 +- 2.1 min respectively after contact with ZVI under oxic conditions. In contrast, reactions under anoxic conditions demonstrated better degradation with t{sub 1/2} of about 11.5 +- 0.6 and 11.2 +- 0.6 min for AMP and AMX respectively. NaCl additions accelerated Fe{sup 0} consumption, shortening the service life of Fe{sup 0} treatment systems. - Fe{sup 0} is efficient for the aqueous removal of the beta-lactam antibiotics and chlorides enhanced the removal rate by sustaining the process of iron corrosion.

  17. Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles

    International Nuclear Information System (INIS)

    Ghauch, Antoine; Tuqan, Almuthanna; Assi, Hala Abou

    2009-01-01

    Zerovalent iron powder (ZVI or Fe 0 ) and nanoparticulate ZVI (nZVI or nFe 0 ) are proposed as cost-effective materials for the removal of aqueous antibiotics. Results showed complete removal of Amoxicillin (AMX) and Ampicillin (AMP) upon contact with Fe 0 and nFe 0 . Antibiotics removal was attributed to three different mechanisms: (i) a rapid rupture of the β-lactam ring (reduction), (ii) an adsorption of AMX and AMP onto iron corrosion products and (iii) sequestration of AMX and AMP in the matrix of precipitating iron hydroxides (co-precipitation with iron corrosion products). Kinetic studies demonstrated that AMP and AMX (20 mg L -1 ) undergo first-order decay with half-lives of about 60.3 ± 3.1 and 43.5 ± 2.1 min respectively after contact with ZVI under oxic conditions. In contrast, reactions under anoxic conditions demonstrated better degradation with t 1/2 of about 11.5 ± 0.6 and 11.2 ± 0.6 min for AMP and AMX respectively. NaCl additions accelerated Fe 0 consumption, shortening the service life of Fe 0 treatment systems. - Fe 0 is efficient for the aqueous removal of the β-lactam antibiotics and chlorides enhanced the removal rate by sustaining the process of iron corrosion.

  18. Elimination of fungicides in biopurification systems: Effect of fungal bioaugmentation on removal performance and microbial community structure.

    Science.gov (United States)

    Murillo-Zamora, Sergio; Castro-Gutiérrez, Víctor; Masís-Mora, Mario; Lizano-Fallas, Verónica; Rodríguez-Rodríguez, Carlos E

    2017-11-01

    Bioaugmentation with ligninolytic fungi represents a potential way to improve the performance of biomixtures used in biopurification systems for the treatment of pesticide-containing agricultural wastewater. The fungus Trametes versicolor was employed in the bioaugmentation of a biomixture to be used in the simultaneous removal of seven fungicides. Liquid cultures of the fungus were able to remove tebuconazole, while no evidence of carbendazim, metalaxyl and triadimenol depletion was found. When applied in the biomixture, the bioaugmented matrix failed to remove all the triazole fungicides (including tebuconazole) under the assayed conditions, but was efficient to eliminate carbendazim, edifenphos and metalaxyl (the latter only after a second pesticide application). The re-addition of pesticides markedly increased the elimination of carbendazim and metalaxyl; nonetheless, no clear enhancement of the biomixture performance could be ascribed to fungal bioaugmentation, not even after the re-inoculation of fungal biomass. Detoxification efficiently took place in the biomixture (9 d after pesticide applications) according to acute tests on Daphnia magna. DGGE-analysis revealed only moderate time-divergence in bacterial and fungal communities, and a weak establishment of T. versicolor in the matrix. Data suggest that the non-bioaugmented biomixture is useful for the treatment of fungicides other than triazoles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mercury Removal with Activated Carbon in Coal-Fired Power Plants

    Science.gov (United States)

    Rapperport, J.; Sasmaz, E.; Wilcox, J.

    2010-12-01

    Coal is both the most abundant and the dirtiest combustible energy source on earth. In the United States, about half of the country’s electricity comes from coal combustion and the industry is rapidly expanding all over the world. Among many of coal’s flaws, its combustion annually produces roughly 50 tones in the U.S. and 5000 tons worldwide of mercury, a carcinogen and highly toxic pollutant. Certain sorbents and processes are used to try to limit the amount of mercury that reaches the atmosphere, a key aspect of reducing the energy source’s harmful environmental impact. This experiment’s goal is to discover what process occurs on a sorbent surface during mercury’s capture while also determining sorbent effectiveness. Bench-scale experiments are difficult to carry out since the focus of the experiment is to simulate mercury capture in a power plant flue gas stream, where mercury is in its elemental form. The process involves injecting air, elemental mercury and other components to simulate a coal exhaust environment, and then running the stream through a packed-bed reactor with an in-tact sorbent. While carrying out the reactor tests, the gas-phase is monitored for changes in mercury oxidation and following these gas-phase studies, the mercury-laden sorbent is analyzed using x-ray photoelectron spectroscopy. Conclusions that can be drawn thus far are that brominated activated carbon shows very high mercury capture and that mercury is found in its oxidized form on the surface of the sorbent. The speciation, or conclusions drawn on the process and bonding sites on the surface, cannot be determined at this point simply using the current spectroscopic analysis.

  20. Synthesis and characterization of LTA nanozeolite using barley husk silica: Mercury removal from standard and real solutions

    Energy Technology Data Exchange (ETDEWEB)

    Azizi, Seyed Naser, E-mail: azizi@umz.ac.ir [Analytical Division, Faculty of Chemistry, University of Mazandaran, P.O. Box: 47416-95447, Babolsar (Iran, Islamic Republic of); Dehnavi, Ahmad Roozbehani, E-mail: Roozbehanisulfur@yahoo.com [Research Institute of Petroleum Industry (RIPI), Tehran (Iran, Islamic Republic of); Joorabdoozha, Amir [Analytical Division, Faculty of Chemistry, University of Mazandaran, P.O. Box: 47416-95447, Babolsar (Iran, Islamic Republic of)

    2013-05-15

    Highlights: ► Silica extraction from barley husk with high purity for the synthesis of A nanozeolite. ► Free template A nanozeolite synthesized via new source of silica at low temperature. ► Optimization of SiO{sub 2}/Al{sub 2}O{sub 3}, Na{sub 2}O/SiO{sub 2} ratios, temperature and time of the synthesis. ► Utilizing of synthesized A nanozeolite for mercury removal from aqueous solutions. ► Mercury removal at optimized pH, contact time and adsorbent dose from real solution. - Abstract: In this study, synthesized Lined Type A (LTA) nanozeolite from barley husk silica (BHS) was used for mercury removal from standard and real aqueous solutions. The BHS in amorphous phase with 80% purity was extracted from barley husk ash (BHA), and used effectively as a new source of silica for the synthesis of NaA nanozeolite. The NaA nanocrystal in pure phase has been synthesized at low temperature, without adding any organic additives. The effects of heating time, reaction temperature, SiO{sub 2}/Al{sub 2}O{sub 3}, and Na{sub 2}O/SiO{sub 2} mole ratios on the crystallization of NaA nanozeolite were studied. The adsorption capacity of mercury (II) was studied as a function of pH, contact time, and amount of adsorbent. The crystallization of NaA nanozeolite from BHS was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Brunauer–Emmett–Teller (BET), and FTIR techniques. Moreover, concentration of Hg{sup 2+} ions in the aqueous solutions was analyzed by hydride generation atomic absorption spectroscopy method (HG-AAS). The standard and real samples analysis showed that NaA nanozeolite is capable of Hg{sup 2+} ions removal from the aqueous solutions. Efficiency of mercury (II) adsorption from real solutions onto the nano-sized NaA zeolite was 98%.

  1. Development of Nano-Sulfide Sorbent for Efficient Removal of Elemental Mercury from Coal Combustion Fuel Gas.

    Science.gov (United States)

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Shih, Kaimin

    2016-09-06

    The surface area of zinc sulfide (ZnS) was successfully enlarged using nanostructure particles synthesized by a liquid-phase precipitation method. The ZnS with the highest surface area (named Nano-ZnS) of 196.1 m(2)·g(-1) was then used to remove gas-phase elemental mercury (Hg(0)) from simulated coal combustion fuel gas at relatively high temperatures (140 to 260 °C). The Nano-ZnS exhibited far greater Hg(0) adsorption capacity than the conventional bulk ZnS sorbent due to the abundance of surface sulfur sites, which have a high binding affinity for Hg(0). Hg(0) was first physically adsorbed on the sorbent surface and then reacted with the adjacent surface sulfur to form the most stable mercury compound, HgS, which was confirmed by X-ray photoelectron spectroscopy analysis and a temperature-programmed desorption test. At the optimal temperature of 180 °C, the equilibrium Hg(0) adsorption capacity of the Nano-ZnS (inlet Hg(0) concentration of 65.0 μg·m(-3)) was greater than 497.84 μg·g(-1). Compared with several commercial activated carbons used exclusively for gas-phase mercury removal, the Nano-ZnS was superior in both Hg(0) adsorption capacity and adsorption rate. With this excellent Hg(0) removal performance, noncarbon Nano-ZnS may prove to be an advantageous alternative to activated carbon for Hg(0) removal in power plants equipped with particulate matter control devices, while also offering a means of reusing fly ash as a valuable resource, for example as a concrete additive.

  2. Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor.

    Science.gov (United States)

    Liu, Yangxian; Wang, Qian

    2014-10-21

    In this article, a novel technique on removal of elemental mercury (Hg(0)) from flue gas by thermally activated ammonium persulfate ((NH4)(2)S(2)O(8)) has been developed for the first time. Some experiments were carried out in a bubble column reactor to evaluate the effects of process parameters on Hg(0) removal. The mechanism and kinetics of Hg(0) removal are also studied. The results show that the parameters, (NH4)(2)S(2)O(8) concentration, activation temperature and solution pH, have significant impacts on Hg(0) removal. The parameters, Hg(0), SO2 and NO concentration, only have small effects on Hg(0) removal. Hg(0) is removed by oxidations of (NH4)(2)S(2)O(8), sulfate and hydroxyl free radicals. When (NH4)(2)S(2)O(8) concentration is more than 0.1 mol/L and solution pH is lower than 9.71, Hg(0) removal by thermally activated (NH4)(2)S(2)O(8) meets a pseudo-first-order fast reaction with respect to Hg(0). However, when (NH4)(2)S(2)O(8) concentration is less than 0.1 mol/L or solution pH is higher than 9.71, the removal process meets a moderate speed reaction with respect to Hg(0). The above results indicate that this technique is a feasible method for emission control of Hg(0) from flue gas.

  3. Bonding in Mercury Molecules Described by the Normalized Elimination of the Small Component and Coupled Cluster Theory

    NARCIS (Netherlands)

    Cremer, Dieter; Kraka, Elfi; Filatov, Michael

    2008-01-01

    Bond dissociation energies (BDEs) of neutral HgX and cationic HgX(+) molecules range from less than a kcal mol(-1) to as much as 60 kcal mol(-1). Using NESCICCCSD(T) [normalized elimination of the small component and coupled-cluster theory with all single and double excitations and a perturbative

  4. Influence of EDTA on the electrochemical removal of mercury (II) in soil from San Joaquin, Queretaro, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Robles, I.; Serrano, T.; Perez, J. J.; Bustos, E. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, 76703 Queretaro (Mexico); Hernandez, G.; Solis, S. [UNAM, Campus Juriquilla, Centro de Geociencias, Boulevard Juriquilla 3001, 76230 Queretaro (Mexico); Garcia, R. [UNAM, Centro de Ciencias de la Atmosfera, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Pi, T., E-mail: ebustos@cideteq.mx [UNAM, Instituto de Geologia, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2014-07-01

    The removal of mercury from soil and Ca-bentonite was performed using electrochemical treatment adding ethylendiamine-tetra acetic acid (EDTA) as a complexing agent to improve the electrochemical removal of Hg (II) in soil from San Joaquin, Queretaro, Mexico. During the electrokinetic treatment in the presence of 0.1 M EDTA, most of Hg (II) migrates toward the anode obtaining the highest removal efficiencies close to 70% in bentonite after 9 h. Using 0.1 M HCl only 65% efficiency was attained after 13 h in the cathodic side. EDTA formed a negatively charged stable complex that migrates to the cathode by the application of the electrokinetic treatment across Hg - EDTA synthesized complex. Finally, the predominant crystallographic structures of the samples were examined using X-ray diffraction. (Author)

  5. Influence of EDTA on the electrochemical removal of mercury (II) in soil from San Joaquin, Queretaro, Mexico

    International Nuclear Information System (INIS)

    Robles, I.; Serrano, T.; Perez, J. J.; Bustos, E.; Hernandez, G.; Solis, S.; Garcia, R.; Pi, T.

    2014-01-01

    The removal of mercury from soil and Ca-bentonite was performed using electrochemical treatment adding ethylendiamine-tetra acetic acid (EDTA) as a complexing agent to improve the electrochemical removal of Hg (II) in soil from San Joaquin, Queretaro, Mexico. During the electrokinetic treatment in the presence of 0.1 M EDTA, most of Hg (II) migrates toward the anode obtaining the highest removal efficiencies close to 70% in bentonite after 9 h. Using 0.1 M HCl only 65% efficiency was attained after 13 h in the cathodic side. EDTA formed a negatively charged stable complex that migrates to the cathode by the application of the electrokinetic treatment across Hg - EDTA synthesized complex. Finally, the predominant crystallographic structures of the samples were examined using X-ray diffraction. (Author)

  6. Rubber matting on an obstacle course causes anterior cruciate ligament ruptures and its removal eliminates them.

    Science.gov (United States)

    Pope, Rodney P

    2002-04-01

    In June 1998, six unexpected anterior cruciate ligament (ACL) ruptures within 12 months were detected by routine injury surveillance in a cohort of Australian Army recruits. Local investigation, reported separately as a Case Report in this issue, suggested the cause to be an excessive coefficient of friction between rubber boot soles and newly laid rubber matting on one obstacle course, creating excessive knee torques. The matting was removed progressively, but not before two more ruptures occurred on one remaining section. In this retrospective study, chi 2 analyses were used to compare the incidence of ACL rupture in prehazard, hazard-exposed, and postintervention cohorts, and the average costs to the institution of each ACL rupture were determined. Zero, eight, and zero ACL ruptures occurred in the prehazard, hazard-exposed, and postintervention cohorts, respectively (chi 2 > 4.75 for 1 df, p < 0.03 for each change in incidence). The temporal relationships between hazard introduction or removal and changes in the incidence of ACL rupture were strong. The average institutional cost of each ACL rupture was AU$54,627 or US$34,322. Rubber matting on obstacle courses increases the risk of ACL rupture in the presence of speed and rubber-soled footwear. Routine injury surveillance and simple preventive processes save money and personnel.

  7. Enhancing mercury removal across air pollution control devices for coal-fired power plants by desulfurization wastewater evaporation.

    Science.gov (United States)

    Bin, Hu; Yang, Yi; Cai, Liang; Yang, Linjun; Roszak, Szczepan

    2017-10-09

    Desulfurization wastewater evaporation technology is used to enhance the removal of gaseous mercury (Hg) in conventional air pollution control devices (APCDs) for coal-fired power plants. Studies have affirmed that gaseous Hg is oxidized and removed by selective catalytic reduction (SCR), an electrostatic precipitator (ESP) and wet flue gas desulfurization (WFGD) in a coal-fired thermal experiment platform with WFGD wastewater evaporation. Effects of desulfurization wastewater evaporation position, evaporation temperature and chlorine ion concentration on Hg oxidation were studied as well. The Hg 0 oxidation efficiency was increased ranging from 30% to 60%, and the gaseous Hg removal efficiency was 62.16% in APCDs when wastewater evaporated before SCR. However, the Hg 0 oxidation efficiency was 18.99% and the gaseous Hg removal efficiency was 40.19% in APCDs when wastewater evaporated before ESP. The results show that WFGD wastewater evaporation before SCR is beneficial to improve the efficiency of Hg oxidized and removed in APCDs. Because Hg 2+ can be easily removed in ACPDs and WFGD wastewater in power plants is enriched with chlorine ions, this method realizes WFGD wastewater zero discharge and simultaneously enhances Hg removal in APCDs.

  8. Removing Obstacles To Eliminate Racial And Ethnic Disparities In Behavioral Health Care

    Science.gov (United States)

    Alegría, Margarita; Alvarez, Kiara; Ishikawa, Rachel Zack; DiMarzio, Karissa; McPeck, Samantha

    2016-01-01

    Despite decades of research, racial and ethnic disparities in behavioral health care persist. The Affordable Care Act expanded access to behavioral health care, but many reform initiatives fail to consider research about racial/ethnic minorities. Mistaken assumptions that underlie the expansion of behavioral health care risk replicating existing service disparities. Based on a review of relevant literature and numerous observational and field studies with minority populations, we identified the following three mistaken assumptions: improvement in health care access alone will reduce disparities, current service planning addresses minority patients’ preferences, and evidence-based interventions are readily available for diverse populations. We propose tailoring the provision of care to remove obstacles that minority patients face in accessing treatment, promoting innovative services that respond to patient needs and preferences, and allowing flexibility in evidence-based practice and the expansion of the behavioral health workforce. These proposals should help meet the health care needs of a growing racial/ethnic minority population. PMID:27269014

  9. Mercury (II) removal by resistant bacterial isolates and mercuric (II) reductase activity in a new strain of Pseudomonas sp. B50A.

    Science.gov (United States)

    Giovanella, Patricia; Cabral, Lucélia; Bento, Fátima Menezes; Gianello, Clesio; Camargo, Flávio Anastácio Oliveira

    2016-01-25

    This study aimed to isolate mercury resistant bacteria, determine the minimum inhibitory concentration for Hg, estimate mercury removal by selected isolates, explore the mer genes, and detect and characterize the activity of the enzyme mercuric (II) reductase produced by a new strain of Pseudomonas sp. B50A. The Hg removal capacity of the isolates was determined by incubating the isolates in Luria Bertani broth and the remaining mercury quantified by atomic absorption spectrophotometry. A PCR reaction was carried out to detect the merA gene and the mercury (II) reductase activity was determined in a spectrophotometer at 340 nm. Eight Gram-negative bacterial isolates were resistant to high mercury concentrations and capable of removing mercury, and of these, five were positive for the gene merA. The isolate Pseudomonas sp. B50A removed 86% of the mercury present in the culture medium and was chosen for further analysis of its enzyme activity. Mercuric (II) reductase activity was detected in the crude extract of this strain. This enzyme showed optimal activity at pH 8 and at temperatures between 37 °C and 45 °C. The ions NH4(+), Ba(2+), Sn(2+), Ni(2+) and Cd(2+) neither inhibited nor stimulated the enzyme activity but it decreased in the presence of the ions Ca(2+), Cu(+) and K(+). The isolate and the enzyme detected were effective in reducing Hg(II) to Hg(0), showing the potential to develop bioremediation technologies and processes to clean-up the environment and waste contaminated with mercury. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2.

    Science.gov (United States)

    Zhang, Shibo; Zhao, Yongchun; Wang, Zonghua; Zhang, Junying; Wang, Lulu; Zheng, Chuguang

    2017-03-01

    A catalyst composed of manganese oxides supported on titania (MnO x /TiO 2 ) synthesized by a sol-gel method was selected to remove nitric oxide and mercury jointly at a relatively low temperature in simulated flue gas from coal-fired power plants. The physico-chemical characteristics of catalysts were investigated by X-ray fluorescence (XRF), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses, etc. The effects of Mn loading, reaction temperature and individual flue gas components on denitration and Hg 0 removal were examined. The results indicated that the optimal Mn/Ti molar ratio was 0.8 and the best working temperature was 240°C for NO conversion. O 2 and a proper ratio of [NH 3 ]/[NO] are essential for the denitration reaction. Both NO conversion and Hg 0 removal efficiency could reach more than 80% when NO and Hg 0 were removed simultaneously using Mn0.8Ti at 240°C. Hg 0 removal efficiency slightly declined as the Mn content increased in the catalysts. The reaction temperature had no significant effect on Hg 0 removal efficiency. O 2 and HCl had a promotional effect on Hg 0 removal. SO 2 and NH 3 were observed to weaken Hg 0 removal because of competitive adsorption. NO first facilitated Hg 0 removal and then had an inhibiting effect as NO concentration increased without O 2 , and it exhibited weak inhibition of Hg 0 removal efficiency in the presence of O 2 . The oxidation of Hg 0 on MnO x /TiO 2 follows the Mars-Maessen and Langmuir-Hinshelwood mechanisms. Copyright © 2016. Published by Elsevier B.V.

  11. Got Mercury?

    Science.gov (United States)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  12. Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

    2010-08-31

    Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

  13. Experimental study on ZnO-TiO{sub 2} sorbents for the removal of elemental mercury

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Kunzan; Zhou, Jinsong; Qi, Pan; Zhou, Qixin; Gao, Xiang; Luo, Zhongyang [Zhejiang University, Hangzhou (China)

    2017-09-15

    ZnO-TiO{sub 2} sorbents synthesized by an impregnation method were characterized through XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy) and EDS (Energy dispersive spectrometer) analyses. An experiment concerning the adsorption of Hg0 by ZnO-TiO{sub 2} under a simulated fuel gas atmosphere was then conducted in a benchscale fixed-bed reactor. The effects of ZnO loading amounts and reaction temperatures on Hg{sup 0} removal performance were analyzed. The results showed that ZnO-TiO{sub 2} sorbents exhibited excellent Hg removal capacity in the presence of H2S at 150 .deg. C and 200 .deg. C; 95.2% and 91.2% of Hg0 was removed, respectively, under the experimental conditions. There are two possible causes for the H{sub 2}S reacting on the surface of ZnO-TiO{sub 2}: (1) H{sub 2}S directly reacted with ZnO to form ZnS, (2) H{sub 2}S was oxidized to elemental sulfur (S{sub ad}) by means of active oxygen on the sorbent surface, and then Sad provided active absorption sites for Hg0 to form HgS. This study identifies three reasons why higher temperatures limit mercury removal. First, the reaction between Hg{sup 0} and H{sub 2}S is inhibited at high temperatures. Second, HgS, as the resulting product in the reaction of mercury removal, becomes unstable at high temperatures. Third, the desulfurization reaction strengthens at higher temperatures, and it is likely that H{sub 2}S directly reacts with ZnO, thus decreasing the Sad on the sorbent surfaces.

  14. MERCURY REMOVAL IN A NON-THERMAL, PLASMA-BASED MULTI-POLLUTANT CONTROL TECHNOLOGY FOR UTILITY BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Christopher R. McLaron

    2004-12-01

    Powerspan has conducted pilot scale testing of a multi-pollutant control technology at FirstEnergy's Burger Power Plant under a cooperative agreement with the U.S. Department of Energy. The technology, Electro-Catalytic Oxidation (ECO), simultaneously removes sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), fine particulate matter (PM{sub 2.5}) and mercury (Hg) from the flue gas of coal-fired power plants. Powerspan's ECO{reg_sign} pilot test program focused on optimization of Hg removal in a 1-MWe slipstream pilot while maintaining greater than 90% removal of NO{sub x} and 98% removal of SO{sub 2}. This Final Technical Report discusses pilot operations, installation and maintenance of the Hg SCEMS instrumentation, and performance results including component and overall removal efficiencies of SO{sub 2}, NO{sub x}, PM and Hg from the flue gas and removal of captured Hg from the co-product fertilizer stream.

  15. Environmental mercury problem

    Energy Technology Data Exchange (ETDEWEB)

    D' Itri, F.M.

    1972-01-01

    The urgent need to eliminate or greatly reduce the discharge of mercury into the environment is paramount to the health and well being of man. That all forms of mercury are hazardous is widely recognized, but what is more devastating to our society is that all forms of mercury appear to have the potential to be converted in to highly toxic monomethylmercury, or dimethylmercury. This paper examined the historical uses of mercury, the background concentrations of mercury, the analytical methods for the determination of mercury, the contamination of the food chain by mercury, the biological methylation of mercury, the decontamination and restoration of mercury polluted areas, the epidemiology and toxicology of mercury, and the chronology of the world's mercury poisoning problem.

  16. Removal of mercury (Hg) from contaminated water at traditional gold mining area in Central Kalimantan

    OpenAIRE

    Wilopo, Wahyu; Rahman, Denizar; Eka Putra, Doni Prakasa; Warmada, I Wayan

    2015-01-01

    There are many traditional gold mining and processing in Murung Raya Regency, Central Kalimantan. The processing of gold mostly uses mercury (Hg) and produces a lot of waste water. It just throws to the river without any treatment. Therefore the concentration of mercury (Hg) in the river water is over than the standard of drinking water and reach up to 0.346 mg dm-3. This situation is very dangerous because almost of the people in the downstream area depend on the river water for their daily ...

  17. Process for low mercury coal

    Science.gov (United States)

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  18. Methods and sorbents for utilizing a hot-side electrostatic precipitator for removal of mercury from combustion gases

    Science.gov (United States)

    Nelson, Sidney [Hudson, OH

    2011-02-15

    Methods are provided for reducing emission of mercury from a gas stream by treating the gas with carbonaceous mercury sorbent particles to reduce the mercury content of the gas; collecting the carbonaceous mercury sorbent particles on collection plates of a hot-side ESP; periodically rapping the collection plates to release a substantial portion of the collected carbonaceous mercury sorbent particles into hoppers; and periodically emptying the hoppers, wherein such rapping and emptying are done at rates such that less than 70% of mercury adsorbed onto the mercury sorbent desorbs from the collected mercury sorbent into the gas stream.

  19. In Situ Anodization of WO3-Decorated TiO2 Nanotube Arrays for Efficient Mercury Removal

    Directory of Open Access Journals (Sweden)

    Wai Hong Lee

    2015-08-01

    Full Text Available WO3-decorated TiO2 nanotube arrays were successfully synthesized using an in situ anodization method in ethylene glycol electrolyte with dissolved H2O2 and ammonium fluoride in amounts ranging from 0 to 0.5 wt %. Anodization was carried out at a voltage of 40 V for a duration of 60 min. By using the less stable tungsten as the cathode material instead of the conventionally used platinum electrode, tungsten will form dissolved ions (W6+ in the electrolyte which will then move toward the titanium foil and form a coherent deposit on the titanium foil. The fluoride ion content was controlled to determine the optimum chemical dissolution rate of TiO2 during anodization to produce a uniform nanotubular structure of TiO2 film. Nanotube arrays were then characterized using FESEM, EDAX, XRD, as well as Raman spectroscopy. Based on the FESEM images obtained, nanotube arrays with an average pore diameter of up to 65 nm and a length of 1.8 µm were produced. The tungsten element in the samples was confirmed by EDAX results which showed varying tungsten content from 0.22 to 2.30 at%. XRD and Raman results showed the anatase phase of TiO2 after calcination at 400 °C for 4 h in air atmosphere. The mercury removal efficiency of the nanotube arrays was investigated by photoirradiating samples dipped in mercury chloride solution with TUV (Tube ultraviolet 96W UV-B Germicidal light. The nanotubes with the highest aspect ratio (15.9 and geometric surface area factor (92.0 exhibited the best mercury removal performance due to a larger active surface area, which enables more Hg2+ to adsorb onto the catalyst surface to undergo reduction to Hg0. The incorporation of WO3 species onto TiO2 nanotubes also improved the mercury removal performance due to improved charge separation and decreased charge carrier recombination because of the charge transfer from the conduction band of TiO2 to the conduction band of WO3.

  20. Method for removal of phosgene from boron trichloride. [DOE patent application; mercury arc lamp

    Science.gov (United States)

    Freund, S.M.

    1981-09-03

    Selective ultraviolet photolysis using an unfiltered mercury arc lamp has been used to substantially reduce the phosgene impurity in a mixture of boron trichloride and phosgene. Infrared spectrophotometric analysis of the sample before and after irradiation shows that it is possible to highly purify commercially available boron trichloride with this method.

  1. The elimination of the dengue vector, Aedes aegypti, from Brisbane, Australia: The role of surveillance, larval habitat removal and policy.

    Directory of Open Access Journals (Sweden)

    Brendan J Trewin

    2017-08-01

    Full Text Available Aedes aegypti (L. (Diptera: Culicidae is a highly invasive mosquito whose global distribution has fluctuated dramatically over the last 100 years. In Australia the distribution of Ae. aegypti once spanned the eastern seaboard, for 3,000 km north to south. However, during the 1900s this distribution markedly reduced and the mosquito disappeared from its southern range. Numerous hypotheses have been proffered for this retraction, however quantitative evidence of the mechanisms driving the disappearance are lacking. We examine historical records during the period when Ae. aegypti disappeared from Brisbane, the largest population centre in Queensland, Australia. In particular, we focus on the targeted management of Ae. aegypti by government authorities, that led to local elimination, something rarely observed in large cities. Numerous factors are likely to be responsible including the removal of larval habitat, especially domestic rainwater tanks, in combination with increased mosquito surveillance and regulatory enforcement. This account of historical events as they pertain to the elimination of Ae. aegypti from Brisbane, will inform assessments of the risks posed by recent human responses to climate change and the reintroduction of 300,000 rainwater tanks into the State over the past decade.

  2. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    Energy Technology Data Exchange (ETDEWEB)

    Dong Jie [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 2G6 (Canada); Xu Zhenghe [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 2G6 (Canada); School of Chemistry and Environmental Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: Zhenghe.Xu@ualberta.ca; Wang Feng [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, T6G 2M9 (Canada)

    2008-03-30

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m{sup 2}/g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective.

  3. Long-Term Carbon Injection Field Test for 90% Mercury Removal for a PRB Unit a Spray Dryer and Fabric Filter

    Energy Technology Data Exchange (ETDEWEB)

    Sjostrom, Sharon; Amrhein, Jerry

    2009-04-30

    The power industry in the U.S. is faced with meeting regulations to reduce the emissions of mercury compounds from coal-fired plants. Injecting a sorbent such as powdered activated carbon (PAC) into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The purpose of this test program was to evaluate the long-term mercury removal capability, long-term mercury emissions variability, and operating and maintenance (O&M) costs associated with sorbent injection on a configuration being considered for many new plants. Testing was conducted by ADA Environmental Solutions (ADA) at Rocky Mountain Power’s (RMP) Hardin Station through funding provided by DOE/NETL, RMP, and other industry partners. The Hardin Station is a new plant rated at 121 MW gross that was first brought online in April of 2006. Hardin fires a Powder River Basin (PRB) coal and is configured with selective catalytic reduction (SCR) for NOx control, a spray dryer absorber (SDA) for SO2 control, and a fabric filter (FF) for particulate control. Based upon previous testing at PRB sites with SCRs, very little additional mercury oxidation from the SCR was expected at Hardin. In addition, based upon results from DOE/NETL Phase II Round I testing at Holcomb Station and results from similarly configured sites, low native mercury removal was expected across the SDA and FF. The main goal of this project was met—sorbent injection was used to economically and effectively achieve 90% mercury control as measured from the air heater (AH) outlet to the stack for a period of ten months. This goal was achieved with DARCO® Hg-LH, Calgon FLUEPAC®-MC PLUS and ADA Power PAC PREMIUM brominated activated carbons at nominal loadings of 1.5–2.5 lb/MMacf. An economic analysis determined the twenty-year levelized cost to be 0.87 mills/kW-hr, or $15,000/lb Hg removed. No detrimental effects on other equipment or plant operations were observed. The

  4. Phragmites karka as a Biosorbent for the Removal of Mercury Metal Ions from Aqueous Solution: Effect of Modification

    Directory of Open Access Journals (Sweden)

    Muhammad Hamid Raza

    2015-01-01

    Full Text Available Batch scale studies for the adsorption potential of novel biosorbent Phragmites karka (Trin, in its natural and treated forms, were performed for removal of mercury ions from aqueous solution. The study was carried out at different parameters to obtain optimum conditions of pH, biosorbent dose, agitation speed, time of contact, temperature, and initial metal ion concentration. To analyze the suitability of the process and maximum amount of metal uptake, Dubinin-Radushkevich (D-R model, Freundlich isotherm, and Langmuir isotherm were applied. The values of qmax for natural and treated biosorbents were found at 1.79 and 2.27 mg/g, respectively. The optimum values of contact time and agitation speed were found at 50 min and 150 rpm for natural biosorbent whereas 40 min and 100 rpm for treated biosorbent, respectively. The optimum biosorption capacities were observed at pH 4 and temperature 313 K for both natural P. karka and treated P. karka. RL values indicate that comparatively treated P. karka was more feasible for mercury adsorption compared to natural P. karka. Both pseudo-first-order and pseudo-second-order kinetic models were applied and it was found that data fit best to the pseudo-second-order kinetic model. Thermodynamic studies indicate that adsorption process was spontaneous, feasible, and endothermic.

  5. Full scale calcium bromide injection with subsequent mercury oxidation and removal within wet flue gas desulphurization system: Experience at a 700 MW coal-fired power facility

    Science.gov (United States)

    Berry, Mark Simpson

    The Environmental Protection Agency promulgated the Mercury and Air Toxics Standards rule, which requires that existing power plants reduce mercury emissions to meet an emission rate of 1.2 lb/TBtu on a 30-day rolling average and that new plants meet a 0.0002 lb/GWHr emission rate. This translates to mercury removals greater than 90% for existing units and greater than 99% for new units. Current state-of-the-art technology for the control of mercury emissions uses activated carbon injected upstream of a fabric filter, a costly proposition. For example, a fabric filter, if not already available, would require a 200M capital investment for a 700 MW size unit. A lower-cost option involves the injection of activated carbon into an existing cold-side electrostatic precipitator. Both options would incur the cost of activated carbon, upwards of 3M per year. The combination of selective catalytic reduction (SCR) reactors and wet flue gas desulphurization (wet FGD) systems have demonstrated the ability to substantially reduce mercury emissions, especially at units that burn coals containing sufficient halogens. Halogens are necessary for transforming elemental mercury to oxidized mercury, which is water-soluble. Plants burning halogen-deficient coals such as Power River Basin (PRB) coals currently have no alternative but to install activated carbon-based approaches to control mercury emissions. This research consisted of investigating calcium bromide addition onto PRB coal as a method of increasing flue gas halogen concentration. The treated coal was combusted in a 700 MW boiler and the subsequent treated flue gas was introduced into a wet FGD. Short-term parametric and an 83-day longer-term tests were completed to determine the ability of calcium bromine to oxidize mercury and to study the removal of the mercury in a wet FGD. The research goal was to show that calcium bromine addition to PRB coal was a viable approach for meeting the Mercury and Air Toxics Standards rule

  6. Municipal actions to reduce mercury

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-15

    This paper presented proper management practices for products containing mercury. The measures can help reduce mercury releases, occupational exposure and mercury spills, thereby preventing impacts on human health and the environment. Despite mercury's toxic nature, many common products that contain mercury are commercially available. These include thermostats, thermometers, fluorescent lamps, pressure measuring devices, electrical switches and relays, and dental amalgam. Mercury emissions are also associated with base metal smelting, waste incineration and coal-fired power generation. Mercury in the environment is a global issue, because it can travel in the atmosphere on wind currents. The actions taken by municipalities to address the issue include reducing or eliminating mercury releases from internal municipal operations and sources within the community. This document provided guidance on how to develop a Municipal Mercury Elimination Policy and Plan that will help reduce mercury releases. It presented information and case studies that will help municipalities manage mercury-containing products found in municipal buildings and street lighting. Information on sources of mercury from within the community was presented along with case studies that can help municipalities determine where community action is needed to reduce mercury releases. The 5 modules of this document were intended to help municipalities identify priorities, timelines and budget requirements for mercury initiatives. It was emphasized that municipalities that adopt a Municipal Mercury Elimination Policy and Plan formally commit to reducing and eliminating mercury from the environment. tabs., figs.

  7. Biosorptive removal of mercury(II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: Kinetic and equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa; Sari, Ahmet; Mendil, Durali [Department of Chemistry, Gaziosmanpasa University, 60250, Tokat (Turkey); Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr [Department of Chemistry, Erciyes University, 38039, Kayseri (Turkey)

    2009-09-30

    The potential use of the lichen biomass (Xanthoparmelia conspersa) to remove mercury(II) ions from aqueous solution by biosorption was evaluated using the batch method. Effects of pH, contact time, biomass concentration and temperature on the removal of Hg(II) ions were studied. The Langmuir isotherm models defined the equilibrium data precisely compared to Freundlich model and the maximum biosorption capacity obtained was 82.8 mg g{sup -1}. From the D-R isotherm model, the mean free energy was calculated as 9.5 kJ mol{sup -1}. It shows that the biosorption of Hg(II) ions onto X. conspersa biomass was taken place by chemical ion-exchange. Experimental data were also performed to the pseudo-first-order and pseudo-second-order kinetic models. The results indicated that the biosorption of Hg(II) on the lichen biomass followed well the second-order kinetics. Thermodynamic parameters, {Delta}G{sup o}, {Delta}H{sup o} and {Delta}S{sup o} indicated the Hg(II) sorption to be exothermic and spontaneous with decreased randomness at the solid-solution interface. Furthermore, the lichen biomass could be regenerated using 1 M HCl, with up to 85% recovery, which allowed the reuse of the biomass in ten biosorption-desorption cycles without any considerable loss of biosorptive removal capacity.

  8. A facile method to prepare dual-functional membrane for efficient oil removal and in situ reversible mercury ions adsorption from wastewater

    Science.gov (United States)

    Zhang, Qingdong; Liu, Na; Cao, Yingze; Zhang, Weifeng; Wei, Yen; Feng, Lin; Jiang, Lei

    2018-03-01

    In this work, a novel thiol covered polyamide (nylon 66) microfiltration membrane was fabricated by combining mussel-inspired chemistry and coupling reaction, which owns excellent dual-function that can simultaneously remove oil from water efficiently and adsorb the mercury ions contained in the wastewater reversibly. Such membrane exhibited high oil/water separation efficiency, outstanding mercury adsorption ability, and good stability. Moreover, it can be regenerated in nitric acid solution, and maintain its good adsorption performance. The as-prepared membrane showed great potentials for water purification to reduce the heavy metal ion pollution and complicated industrial oily wastewater and living wastewater.

  9. Bone char surface modification by nano-gold coating for elemental mercury vapor removal

    Energy Technology Data Exchange (ETDEWEB)

    Assari, Mohamad javad [Department of Environmental & Occupational Health, Faculty of Medical Sciences, Tarbiat Modares university, Tehran (Iran, Islamic Republic of); Rezaee, Abbas, E-mail: rezaee@modares.ac.ir [Department of Environmental & Occupational Health, Faculty of Medical Sciences, Tarbiat Modares university, Tehran (Iran, Islamic Republic of); Rangkooy, Hossinali [Occupational Health Department, Faculty of Health, Jondishapor Medical Sciences University, Ahvaz (Iran, Islamic Republic of)

    2015-07-01

    Highlights: • A novel nanocomposite including bone char and gold nanoparticle was developed for capture of Hg{sup 0} vapor. • EDS and XRD results confirm the presence of nano-gold on the surface of the bone char support. • The majority of the pores were found to be in the mesoporous range. • The dynamic capacity of 586 μg/g was obtained for Hg{sup 0} vapor. - Abstract: The present work was done to develop a novel nanocomposite using bone char coated with nano-gold for capture of elemental mercury (Hg{sup 0}) from air. The morphologies, structures, and chemical constitute of the prepared nanocomposite were evaluated by UV–VIS–NIR, dynamic light-scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). The capture performance of nanocomposite was evaluated in a needle trap for mercury vapor. An on-line setup based on cold vapor atomic absorption spectrometry (CVAAS) was designed for Hg{sup 0} determination. Dynamic capacity of nanocomposite for Hg{sup 0} was shown high efficient operating capacity of 586.7 μg/g. As temperature increases, the dynamic adsorption capacity of the nanocomposite was decreased, which are characteristics of physicosorption processes. It was found that the surface modification of bone char with nano-gold has various advantages such as high operating dynamic adsorption capacity and low cost preparation. It was also demonstrated that the developed nanocomposite is suitable for on-line monitoring of Hg{sup 0}. It could be applied for the laboratory and field studies.

  10. Stable Covalent Organic Frameworks for Exceptional Mercury Removal from Aqueous Solutions.

    Science.gov (United States)

    Huang, Ning; Zhai, Lipeng; Xu, Hong; Jiang, Donglin

    2017-02-15

    The pre-designable porous structures found in covalent organic frameworks (COFs) render them attractive as a molecular platform for addressing environmental issues such as removal of toxic heavy metal ions from water. However, a rational structural design of COFs in this aspect has not been explored. Here we report the rational design of stable COFs for Hg(II) removal through elaborate structural design and control over skeleton, pore size, and pore walls. The resulting framework is stable under strong acid and base conditions, possesses high surface area, has large mesopores, and contains dense sulfide functional termini on the pore walls. These structural features work together in removing Hg(II) from water and achieve a benchmark system that combines capacity, efficiency, effectivity, applicability, selectivity, and reusability. These results suggest that COFs offer a powerful platform for tailor-made structural design to cope with various types of pollution.

  11. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng [Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1 (Canada); Ptacek, Carol J., E-mail: ptacek@uwaterloo.ca [Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1 (Canada); Blowes, David W. [Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1 (Canada); Landis, Richard C. [E I. du Pont de Nemours and Company, 974 Centre Road, Wilmington, DE 19805 (United States)

    2016-05-05

    Highlights: • Dissolved Hg decreases by >90% with high-T biochars (600 and 700 °C). • Elevated SO{sub 4}{sup 2−} (up to 1000 mg L{sup −1}) is released from manure-derived biochar. • XRF results indicate Hg is distributed heterogeneously throughout biochar particles. • S XANES indicates presence of reduced and oxidized S species in biochar. • Hg EXAFS indicate Hg is bound to S atoms in biochar particle when S content is high. - Abstract: Thirty-six biochars produced from distinct feedstocks at different temperatures were evaluated for their potential to remove mercury (Hg) from aqueous solution at environmentally relevant concentrations. Concentrations of total Hg (THg) decreased by >90% in batch systems containing biochars produced at 600 and 700 °C and by 40–90% for biochars produced at 300 °C. Elevated concentrations of SO{sub 4}{sup 2−} (up to 1000 mg L{sup −1}) were observed in solutions mixed with manure-based biochars. Sulfur X-ray absorption near edge structure (XANES) analyses indicate the presence of both reduced and oxidized S species in both unwashed and washed biochars. Sulfur XANES spectra obtained from biochars with adsorbed Hg were similar to those of washed biochars. Micro-X-ray fluorescence mapping results indicate that Hg was heterogeneously distributed across biochar particles. Extended X-ray absorption fine structure modeling indicates Hg was bound to S in biochars with high S content and to O and Cl in biochars with low S content. The predominant mechanisms of Hg removal are likely the formation of chemical bonds between Hg and various functional groups on the biochar. This investigation provides information on the effectiveness and mechanisms of Hg removal that is critical for evaluating biochar applications for stabilization of Hg in surface water, groundwater, soils, and sediments.

  12. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Liu, Peng; Ptacek, Carol J.; Blowes, David W.; Landis, Richard C.

    2016-01-01

    Highlights: • Dissolved Hg decreases by >90% with high-T biochars (600 and 700 °C). • Elevated SO 4 2− (up to 1000 mg L −1 ) is released from manure-derived biochar. • XRF results indicate Hg is distributed heterogeneously throughout biochar particles. • S XANES indicates presence of reduced and oxidized S species in biochar. • Hg EXAFS indicate Hg is bound to S atoms in biochar particle when S content is high. - Abstract: Thirty-six biochars produced from distinct feedstocks at different temperatures were evaluated for their potential to remove mercury (Hg) from aqueous solution at environmentally relevant concentrations. Concentrations of total Hg (THg) decreased by >90% in batch systems containing biochars produced at 600 and 700 °C and by 40–90% for biochars produced at 300 °C. Elevated concentrations of SO 4 2− (up to 1000 mg L −1 ) were observed in solutions mixed with manure-based biochars. Sulfur X-ray absorption near edge structure (XANES) analyses indicate the presence of both reduced and oxidized S species in both unwashed and washed biochars. Sulfur XANES spectra obtained from biochars with adsorbed Hg were similar to those of washed biochars. Micro-X-ray fluorescence mapping results indicate that Hg was heterogeneously distributed across biochar particles. Extended X-ray absorption fine structure modeling indicates Hg was bound to S in biochars with high S content and to O and Cl in biochars with low S content. The predominant mechanisms of Hg removal are likely the formation of chemical bonds between Hg and various functional groups on the biochar. This investigation provides information on the effectiveness and mechanisms of Hg removal that is critical for evaluating biochar applications for stabilization of Hg in surface water, groundwater, soils, and sediments.

  13. Getting Mercury out of Schools.

    Science.gov (United States)

    1999

    This guide was prepared while working with many Massachusetts schools to remove items that contain mercury and to find suitable alternatives. It contains fact sheets on: mercury in science laboratories and classrooms, mercury in school buildings and maintenance areas, mercury in the medical office and in medical technology classrooms in vocational…

  14. Design of MnO2/CeO2-MnO2hierarchical binary oxides for elemental mercury removal from coal-fired flue gas.

    Science.gov (United States)

    Ma, Yongpeng; Mu, Bailong; Yuan, Dongli; Zhang, Hongzhong; Xu, Haomiao

    2017-07-05

    MnO 2 /CeO 2 -MnO 2 hierarchical binary oxide was synthesized for elemental mercury (Hg 0 ) removal from coal-fired flue gas. CeO 2 in-situ grow on the surface of carbon spheres, and that CeO 2 @CSs acted as precursor for porous MnO 2 /CeO 2 -MnO 2 . XRD, Raman, XPS, FT-IR, and H 2 -TPR were selected for the physical structural and chemical surface analysis. The results indicated that the composite has sufficient surface oxygen and hierarchical porous structure. The Hg 0 removal experiments results indicated that MnO 2 /CeO 2 -MnO 2 exhibited excellent Hg 0 removal performance, with an 89% removal efficiency of total 300min at 150°C under 4% O 2 . MnO 2 was the primary active site for Hg 0 catalytic oxidation. The porous structure was beneficial for gaseous mercury physically adsorption. In addition, CeO 2 enhanced the oxygen capture performance of the composite and the oxidation performance for MnO 2 . Moreover, the effects of O 2 , SO 2 and H 2 O were also tested in this study. O 2 promoted the Hg 0 removal reaction. While SO 2 and H 2 O can poison the MnO 2 active site, resulted in a low Hg 0 removal efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Does Ultrasound-Guided Directional Vacuum-Assisted Removal Help Eliminate Abnormal Nipple Discharge in Patients with Benign Intraductal Single Mass?

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jung Min; Cho, Na Ri Ya; Moon, Woo Kyung [Seoul National University Hospital, Seoul (Korea, Republic of); Park, Jeong Seon [Hanyang University Hospital, Seoul (Korea, Republic of); Chung, Se Yeong [Seoul National University Boramae Hospital, Seoul (Korea, Republic of); Jang, Mi Jung [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2009-12-15

    To evaluate whether the removal of an intraductal mass using an ultrasound (US)-guided directional vacuum-assisted device can eliminate symptoms in patients presenting with abnormal nipple discharge. Between March 2004 and October 2006, 36 patients who presented with abnormal nipple discharge, underwent US-guided, 11-gauge vacuum-assisted biopsy for a benign intraductal single mass on US. The ability of the procedure to eliminate nipple discharge was evaluated by physical examination during follow-up US. Lesion characteristics, biopsy variables, and histologic features were analyzed to identify factors affecting symptom resolution. Of the 36 lesions, 25 (69%) were intraductal papillomas, 10 (28%) were fibrocystic changes, and one (3%) was a fibroadenoma. The nipple discharge disappeared in 69% (25 of 36) of the women at a mean follow-up time of 25 months (range 12-42 month). There was no difference in the lesion characteristics, biopsy variables, and the histologic features between groups that eliminated the symptom compared those with persistent nipple discharge. US-guided directional vacuum-assisted removal of an intraductal mass appears to eliminate nipple discharge in only 69% of patients and thus, it should not be considered as an alternative to surgical excision.

  16. [Mercury in vaccines].

    Science.gov (United States)

    Hessel, Luc

    2003-01-01

    Thiomersal, also called thimerosal, is an ethyl mercury derivative used as a preservative to prevent bacterial contamination of multidose vaccine vials after they have been opened. Exposure to low doses of thiomersal has essentially been associated with hypersensitivity reactions. Nevertheless there is no evidence that allergy to thiomersal could be induced by thiomersal-containing vaccines. Allergy to thiomersal is usually of delayed-hypersensitivity type, but its detection through cutaneous tests is not very reliable. Hypersensitivity to thiomersal is not considered as a contraindication to the use of thiomersal-containing vaccines. In 1999 in the USA, thiomersal was present in approximately 30 different childhood vaccines, whereas there were only 2 in France. Although there were no evidence of neurological toxicity in infants related to the use of thiomersal-containing vaccines, the FDA considered that the cumulative dose of mercury received by young infants following vaccination was high enough (although lower than the FDA threshold for methyl mercury) to request vaccine manufacturers to remove thiomersal from vaccine formulations. Since 2002, all childhood vaccines used in Europe and the USA are thiomersal-free or contain only minute amounts of thiomersal. Recently published studies have shown that the mercury levels in the blood, faeces and urine of children who had received thiomersal-containing vaccines were much lower than those accepted by the American Environmental Protection Agency. It has also been demonstrated that the elimination of mercury in children was much faster than what was expected on the basis of studies conducted with methyl mercury originating from food. Recently, the hypothesis that mercury contained in vaccines could be the cause of autism and other neurological developmental disorders created a new debate in the medical community and the general public. To date, none of the epidemiological studies conducted in Europe and elsewhere

  17. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    C. Jean Bustard; Charles Lindsey; Paul Brignac

    2006-05-01

    This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and

  18. Incorporating uncertainty into mercury-offset decisions with a probabilistic network for National Pollutant Discharge Elimination System permit holders: an interim report

    Science.gov (United States)

    Wood, Alexander

    2004-01-01

    This interim report describes an alternative approach for evaluating the efficacy of using mercury (Hg) offsets to improve water quality. Hg-offset programs may allow dischargers facing higher-pollution control costs to meet their regulatory obligations by making more cost effective pollutant-reduction decisions. Efficient Hg management requires methods to translate that science and economics into a regulatory decision framework. This report documents the work in progress by the U.S. Geological Surveys Western Geographic Science Center in collaboration with Stanford University toward developing this decision framework to help managers, regulators, and other stakeholders decide whether offsets can cost effectively meet the Hg total maximum daily load (TMDL) requirements in the Sacramento River watershed. Two key approaches being considered are: (1) a probabilistic approach that explicitly incorporates scientific uncertainty, cost information, and value judgments; and (2) a quantitative approach that captures uncertainty in testing the feasibility of Hg offsets. Current fate and transport-process models commonly attempt to predict chemical transformations and transport pathways deterministically. However, the physical, chemical, and biologic processes controlling the fate and transport of Hg in aquatic environments are complex and poorly understood. Deterministic models of Hg environmental behavior contain large uncertainties, reflecting this lack of understanding. The uncertainty in these underlying physical processes may produce similarly large uncertainties in the decisionmaking process. However, decisions about control strategies are still being made despite the large uncertainties in current Hg loadings, the relations between total Hg (HgT) loading and methylmercury (MeHg) formation, and the relations between control efforts and Hg content in fish. The research presented here focuses on an alternative analytical approach to the current use of safety factors and

  19. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    Science.gov (United States)

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

  20. Bench- and pilot-scale demonstration of thermal desorption for removal of mercury from the Lower East Fork Poplar Creek floodplain soils

    International Nuclear Information System (INIS)

    Morris, M.I.; Sams, R.J.; Gillis, G.; Helsel, R.W.; Alperin, E.S.; Geisler, T.J.; Groen, A.; Root, D.

    1995-01-01

    Thermal desorption is an innovative technology that has seen significant growth in applications to organically contaminated soils and sludges for the remediation of hazardous, radioactive and mixed waste sites. This paper will present the results of a bench and pilot-scale demonstration of this technology for the removal of mercury from the Lower East Fork Poplar Creek floodplain soil. Results demonstrate that the mercury in this soil can be successfully removed to the target treatment levels of 10 milligrams per kilogram (mg/kg) and that all process residuals could be rendered RCRA-nonhazardous as defined by the Resource Conservation and Recovery Act. Sampling and analyses of the desorber off-gas before and after the air pollution control system demonstrated effective collection of mercury and organic constituents. Pilot-scale testing was also conducted to verify requirements for material handling of soil into and out of the process. This paper will also present a conceptual design and preliminary costs of a full-scale system, including feed preparation, thermal treatment, and residuals handling for the soil

  1. The Use of Haz-Flote to Efficiently Remove Mercury from Contaminated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown

    2009-03-03

    There are thousands of known contaminated sites in the United Stated, including Superfund sites (1500 to 2100 sites), RCRA corrective action sites (1500 to 3500 sites), underground storage tanks (295,000 sites), U.S. Department of Defense sites (7300 sites), U.S. Department of Energy sites (4,000 sites), mining refuse piles, and numerous other hazardous metals and organic contamination sites. Only a small percentage of these sites has been cleaned up. The development of innovative technologies to handle the various clean-up problems on a national and international scale is commonplace. Many innovative technologies have been developed that can be used to effectively remediate contaminated materials. Unfortunately, many of these technologies are only effective for materials coarser than approximately 200 mesh. In addition, these technologies usually require considerable investment in equipment, and the clean-up costs of soil material are relatively high - in excess of $100 to $500 per yd{sup 3}. These costs result from the elaborate nature of the processes, the costs for power, and the chemical cost. The fine materials are disposed of or treated at considerable costs. As a result, the costs often associated with amelioration of contaminated sites are high. Western Research institute is in the process of developing an innovative soil washing technology that addresses the removal of contaminants from the fine size-fraction materials located at many of the contaminated sites. This technology has numerous advantages over the other ex-situ soil washing techniques. It requires a low capital investment, low operating costs and results in high levels of re-emplacement of the cleaned material on site. The process has the capability to clean the fine fraction (<200 mesh) of the soil resulting in a replacement of 95+% of the material back on-side, reducing the costs of disposal. The Haz-Flote{trademark} technology would expand the application of soil washing technology to heavy

  2. Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase - Degradation of compounds does not always eliminate toxicity.

    Science.gov (United States)

    Becker, Dennis; Varela Della Giustina, Saulo; Rodriguez-Mozaz, Sara; Schoevaart, Rob; Barceló, Damià; de Cazes, Matthias; Belleville, Marie-Pierre; Sanchez-Marcano, José; de Gunzburg, Jean; Couillerot, Olivier; Völker, Johannes; Oehlmann, Jörg; Wagner, Martin

    2016-11-01

    In this study, the performance of immobilised laccase (Trametes versicolor) was investigated in combination with the mediator syringaldehyde (SYR) in removing a mixture of 38 antibiotics in an enzymatic membrane reactor (EMR). Antibiotics were spiked in osmosed water at concentrations of 10μg·L(-1) each. Laccase without mediator did not reduce the load of antibiotics significantly. The addition of SYR enhanced the removal: out of the 38 antibiotics, 32 were degraded by >50% after 24h. In addition to chemical analysis, the samples' toxicity was evaluated in two bioassays (a growth inhibition assay and the Microtox assay). Here, the addition of SYR resulted in a time-dependent increase of toxicity in both bioassays. In cooperation with SYR, laccase effectively removes a broad range of antibiotics. However, this enhanced degradation induces unspecific toxicity. If this issue is resolved, enzymatic treatment may be a valuable addition to existing water treatment technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Sn-Mn binary metal oxides as non-carbon sorbent for mercury removal in a wide-temperature window.

    Science.gov (United States)

    Xie, Jiangkun; Xu, Haomiao; Qu, Zan; Huang, Wenjun; Chen, Wanmiao; Ma, Yongpeng; Zhao, Songjian; Liu, Ping; Yan, Naiqiang

    2014-08-15

    A series of Sn-Mn binary metal oxides were prepared through co-precipitation method. The sorbents were characterized by powder X-ray diffraction (powder XRD), transmission electronic microscopy (TEM), H2-temperature-programmed reduction (H2-TPR) and NH3-temperature-programmed desorption (NH3-TPD) methods. The capability of the prepared sorbents for mercury adsorption from simulated flue gas was investigated by fixed-bed experiments. Results showed that mercury adsorption on pure SnO2 particles was negligible in the test temperature range, comparatively, mercury capacity on MnOx at low temperature was relative high, but the capacity would decrease significantly when the temperature was elevated. Interestingly, for Sn-Mn binary metal oxide, mercury capacity increased not only at low temperature but also at high temperature. Furthermore, the impact of SO2 on mercury adsorption capability of Sn-Mn binary metal oxides was also investigated and it was noted that the effect at low temperature was different comparing with that of high temperature. The mechanism was investigated by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs). Moreover, a mathematic model was built to calculate mercury desorption activation energy from Sn to Mn binary metal oxides. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Outfall 51 air stripping feasibility study for the Reduction of Mercury in Plant Effluent (RMPE) Project. Revision 1

    International Nuclear Information System (INIS)

    1997-01-01

    Within the US Department of Energy's Oak Ridge Y-12 Plant there are a number of industrial wastewater discharge points or outfalls that empty into East Fork Poplar Creek (EFPC). EFPC originates within and runs continuously throughout the plant site and subsequently flows out the east end of the Y-12 Plant into the City of Oak Ridge. Mercury is present in outfall discharges due to contact of water with the soils surrounding past mercury-use buildings. As a result, the Reduction of Mercury in Plant Effluent (RMPE) Project was developed to achieve and maintain environmental compliance with regards to mercury, and, in particular with the National Pollutant Discharge Elimination System permit for the Y-12 Plant. To achieve a reduction in mercury loading to EFPC, a number of options have already been studied and implemented as part of the RMPE project. With the successful implementation of these options, Outfall 51 remains as a significant contributor to mercury load to EFPC. The primary purpose of this project is to determine the feasibility of removing mercury from contaminated spring water using air stripping. In order to accomplish this goal, a number of different areas were addressed. A pilot-scale unit was tested in the field using actual mercury-contaminated source water. Properties which impact the mercury removal via air stripping were reviewed to determine their effect. Also, enhanced testing was performed to improve removal efficiencies. Finally, the variable outfall flow was studied to size appropriate processing equipment for full-scale treatment

  5. The synthetic evaluation of CuO-MnOx-modified pinecone biochar for simultaneous removal formaldehyde and elemental mercury from simulated flue gas.

    Science.gov (United States)

    Yi, Yaoyao; Li, Caiting; Zhao, Lingkui; Du, Xueyu; Gao, Lei; Chen, Jiaqiang; Zhai, Yunbo; Zeng, Guangming

    2018-02-01

    A series of low-cost Cu-Mn-mixed oxides supported on biochar (CuMn/HBC) synthesized by an impregnation method were applied to study the simultaneous removal of formaldehyde (HCHO) and elemental mercury (Hg 0 ) at 100-300° C from simulated flue gas. The metal loading value, Cu/Mn molar ratio, flue gas components, reaction mechanism, and interrelationship between HCHO removal and Hg 0 removal were also investigated. Results suggested that 12%CuMn/HBC showed the highest removal efficiency of HCHO and Hg 0 at 175° C corresponding to 89%and 83%, respectively. The addition of NO and SO 2 exhibited inhibitive influence on HCHO removal. For the removal of Hg 0 , NO showed slightly positive influence and SO 2 had an inhibitive effect. Meanwhile, O 2 had positive impact on the removal of HCHO and Hg 0 . The samples were characterized by SEM, XRD, BET, XPS, ICP-AES, FTIR, and H 2 -TPR. The sample characterization illustrated that CuMn/HBC possessed the high pore volume and specific surface area. The chemisorbed oxygen (O β ) and the lattice oxygen (O α ) which took part in the removal reaction largely existed in CuMn/HBC. What is more, MnO 2 and CuO (or Cu 2 O) were highly dispersed on the CuMn/HBC surface. The strong synergistic effect between Cu-Mn mixed oxides was critical to the removal reaction of HCHO and Hg 0 via the redox equilibrium of Mn 4+ + Cu + ↔ Mn 3+ + Cu 2+ .

  6. Fluorescent switch for fast and selective detection of mercury (II) ions in vitro and in living cells and a simple device for its removal.

    Science.gov (United States)

    Yuan, Yue; Jiang, Shenlong; Miao, Qingqing; Zhang, Jia; Wang, Mengjing; An, Linna; Cao, Qinjingwen; Guan, Yafeng; Zhang, Qun; Liang, Gaolin

    2014-07-01

    A water-soluble, biocompatible, and fluorescent chemosensor (1) for label-free, simple, and fast detection of mercury ions (Hg(2+)) in aqueous solutions and in HepG2 cells with high selectivity is reported herein. Chelation of 1 with Hg(2+) results in the disappearance of its fluorescence emission at 350 nm and the appearance of a new emission at 405 nm. Selectivity and interference studies indicated that 1 could be selectively chelated by Hg(2+) without interference from other metal ions. Insight into the mechanisms responsible for its fluorescence effect was gained from ultrafast transient absorption spectroscopy. With these properties, 1 was successfully applied for imaging Hg(2+) in living cells and for removing Hg(2+) from river water. Moreover, we also constructed a simple device for fast and effective removal of Hg(2+) from contaminated liquid samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Low-cost Adsorbents for the Removal of Mercury (11) from Aqueous Solution-A Comparative Study

    OpenAIRE

    Ajay Kumar Meena; G.K. Mishra; Satish Kumar; Chitra Rajagopal; P.N. Nagar

    2004-01-01

    The establishments of the Ministry of Defence, specifically ordnance factories and public sector undertakings (like Bharat Electronics Ltd), carry out operations like electroplating, metal1surface finishing, solid-state wafer processing, and initiatory manufacturing (lead azide, mercury fulminate), which generate waste water contaminated with hazardous heavy metals. Mercuryand its compounds are known to be highly toxic, both for the living organisms and theenvironment. To protect public healt...

  8. Optimizing Low-Concentration Mercury Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Fe₃O₄ Composites with the Aid of an Artificial Neural Network and Genetic Algorithm.

    Science.gov (United States)

    Cao, Rensheng; Fan, Mingyi; Hu, Jiwei; Ruan, Wenqian; Xiong, Kangning; Wei, Xionghui

    2017-11-07

    Reduced graphene oxide-supported Fe₃O₄ (Fe₃O₄/rGO) composites were applied in this study to remove low-concentration mercury from aqueous solutions with the aid of an artificial neural network (ANN) modeling and genetic algorithm (GA) optimization. The Fe₃O₄/rGO composites were prepared by the solvothermal method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), N₂-sorption, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and superconduction quantum interference device (SQUID). Response surface methodology (RSM) and ANN were employed to model the effects of different operating conditions (temperature, initial pH, initial Hg ion concentration and contact time) on the removal of the low-concentration mercury from aqueous solutions by the Fe₃O₄/rGO composites. The ANN-GA model results (with a prediction error below 5%) show better agreement with the experimental data than the RSM model results (with a prediction error below 10%). The removal process of the low-concentration mercury obeyed the Freudlich isotherm and the pseudo-second-order kinetic model. In addition, a regeneration experiment of the Fe₃O₄/rGO composites demonstrated that these composites can be reused for the removal of low-concentration mercury from aqueous solutions.

  9. Optimizing Low-Concentration Mercury Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Fe3O4 Composites with the Aid of an Artificial Neural Network and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Rensheng Cao

    2017-11-01

    Full Text Available Reduced graphene oxide-supported Fe3O4 (Fe3O4/rGO composites were applied in this study to remove low-concentration mercury from aqueous solutions with the aid of an artificial neural network (ANN modeling and genetic algorithm (GA optimization. The Fe3O4/rGO composites were prepared by the solvothermal method and characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, atomic force microscopy (AFM, N2-sorption, X-ray photoelectron spectroscopy (XPS, Fourier transform infrared spectroscopy (FTIR and superconduction quantum interference device (SQUID. Response surface methodology (RSM and ANN were employed to model the effects of different operating conditions (temperature, initial pH, initial Hg ion concentration and contact time on the removal of the low-concentration mercury from aqueous solutions by the Fe3O4/rGO composites. The ANN-GA model results (with a prediction error below 5% show better agreement with the experimental data than the RSM model results (with a prediction error below 10%. The removal process of the low-concentration mercury obeyed the Freudlich isotherm and the pseudo-second-order kinetic model. In addition, a regeneration experiment of the Fe3O4/rGO composites demonstrated that these composites can be reused for the removal of low-concentration mercury from aqueous solutions.

  10. Fabrication of mercury target vessel

    International Nuclear Information System (INIS)

    Wakui, Takashi; Kogawa, Hiroyuki; Haga, Katsuhiro; Futakawa, Masatoshi; Hayashi, Ryoichi; Uchiyama, Naoyoshi; Okamoto, Yoshinao; Nakamura, Koji

    2010-03-01

    The construction of materials and life science experimental facility in J-PARC (Japan Proton Accelerator Complex) project had been completed and accepted pulsed proton beams with low power. Since 2003, the detailed design, fabrication and examination for the mercury target vessel as a pulsed neutron source were carried out by the vender. The mercury target vessel consists of triple-walled structure in order to prevent the leak of mercury to outside at the failure of the mercury vessel and to remove the heat of the safety hull, which covers the mercury vessel, due to the injection of the pulsed proton beams. The high fabrication accuracy is required for the mercury target vessel assembled by the welding, because there are the relationships between the mercury target vessel and other components (target trolley, target storage container, flange of helium vessel, reflector and water-cooled shield). At each fabrication step, the examinations for the mercury target vessel with multi-walled structure were required. In this report, the required specification and basic structure of parts in the mercury target vessel are described and the fabrication procedure of the mercury target vessel by the vender is reported. In the fabrication of the mercury target vessel, there were many troubles such as large deformation due to the welding and then the vender repaired and brought the mercury target vessel to completion. Furthermore, improvements for the design and fabrication of the mercury target are reported. (author)

  11. Eliminating armaments

    International Nuclear Information System (INIS)

    Adams, R.

    1998-01-01

    The end of Cold War induced optimistic projections concerning disarmament, elimination of nuclear weapons, elimination of massive inequities - poverty, hatred, racism. All these goals should be achieved simultaneously, but little has been achieved so far

  12. Studies on thio-substituted polyurethane foam (T-PUF) as a new efficient separation medium for the removal of inorganic/organic mercury from industrial effluents and solid wastes.

    Science.gov (United States)

    Anjaneyulu, Y; Marayya, R; Rao, T H

    1993-01-01

    Novel thio-substituted flexible polyurethane foam (T-PUF) was synthesised by addition polymerisation of mercaptan with the precursors of an open-cell polyurethane foam, which can be used as a highly selective sorbent for inorganic and organic mercury from complex matrices. The percentage extraction of inorganic mercury was studied at different flow-rates, over a wide pH range at different concentrations ranging from 1 ppm, to 100 ppm. The break-through capacity and total capacity of unmodified and thio-foams were determined for inorganic and organic mercurials. The absorption efficiency of thio-foam was far superior to other sorbent media, such as activated carbon, polymeric ion-exchange resins and reagent-loaded polyurethane foams. It was observed that even at the 1000 ppm level, divalent ions like Cu, Mg, Ca, Zn do not appreciably influence the per cent extraction of inorganic mercury at the 10 ppm level. These matrix levels are the most concentrated ones which are likely to occur, both in local sewage and effluent waters. Further, the efficiency of this foam was sufficiently high at 10-100 ppm levels of Hg, even from 5-10 litres of effluent volumes using 50 g of thio-foam packed into different columns in series. Thio-foams were found to possess excellent abilities to remove and recover mercury even at low levels from industrial effluents and brine mud of chlor-alkali industry after pre-acid extraction. This makes it a highly efficient sorbent for possible application in effluent treatment. Model schemes for the removal and recovery of mercury from industrial effluents and municipal sewage (100-1000 litre) by a dynamic method are proposed and the costs incurred in a full-scale application method are indicated to show that the use of thio-foam could be commercially attractive.

  13. Study of the removal of mercury(II) and chromium(VI) from aqueous solutions by Moroccan stevensite

    Energy Technology Data Exchange (ETDEWEB)

    Benhammou, A. [Ecole Superieure de Technologie, Route Dar Si Aissa, BP: 89 Safi (Morocco)]. E-mail: benhammou_ab@yahoo.fr; Yaacoubi, A. [Faculte des Sciences Semlalia, Avenue My Abdellah, BP: 2390 Marrakech (Morocco); Nibou, L. [Ecole Superieure de Technologie, Route Dar Si Aissa, BP: 89 Safi (Morocco); Tanouti, B. [Faculte des Sciences Semlalia, Avenue My Abdellah, BP: 2390 Marrakech (Morocco)

    2005-01-31

    The objective of the present study was to investigate the adsorption of the heavy metals mercury(II) and chromium(VI), from aqueous solutions, onto Moroccan stevensite. A mineralogical and physicochemical characterization of natural stevensite was carried out. In order to improve the adsorption capacity of stevensite for Cr(VI), a preparation of stevensite was carried out. It consists in saturating the stevensite by ferrous iron Fe(II) and reducing the total Fe by Na{sub 2}S{sub 2}O{sub 4}. Then, the adsorption experiments were studied in batch reactors at 25 {+-} 3 deg. C. The influence of the pH solution on the Cr(VI) and Hg(II) adsorption was studied in the pH range of 1.5-7.0. The optimum pH for the Cr(VI) adsorption is in the pH range of 2.0-5.0 while that of Hg(II) is at the pH values above 4.0. The adsorption kinetics were tested by a pseudo-second-order model. The adsorption rate of Hg(II) is 54.35 mmol kg{sup -1} min{sup -1} and that of Cr(VI) is 7.21 mmol kg{sup -1} min{sup -1}. The adsorption equilibrium time for Hg(II) and Cr(VI) was reached within 2 and 12 h, respectively. The adsorption isotherms were described by the Dubinin-Radushkevich model. The maximal adsorption capacity for Cr(VI) increases from 13.7 (raw stevensite) to 48.86 mmol kg{sup -1} (modified stevensite) while that of Hg(II) decreases from 205.8 to 166.9 mmol kg{sup -1}. The mechanism of Hg(II) and Cr(VI) adsorption was discussed.

  14. Study of the removal of mercury(II) and chromium(VI) from aqueous solutions by Moroccan stevensite.

    Science.gov (United States)

    Benhammou, A; Yaacoubi, A; Nibou, L; Tanouti, B

    2005-01-31

    The objective of the present study was to investigate the adsorption of the heavy metals mercury(II) and chromium(VI), from aqueous solutions, onto Moroccan stevensite. A mineralogical and physicochemical characterization of natural stevensite was carried out. In order to improve the adsorption capacity of stevensite for Cr(VI), a preparation of stevensite was carried out. It consists in saturating the stevensite by ferrous iron Fe(II) and reducing the total Fe by Na(2)S(2)O(4). Then, the adsorption experiments were studied in batch reactors at 25+/-3 degrees C. The influence of the pH solution on the Cr(VI) and Hg(II) adsorption was studied in the pH range of 1.5-7.0. The optimum pH for the Cr(VI) adsorption is in the pH range of 2.0-5.0 while that of Hg(II) is at the pH values above 4.0. The adsorption kinetics were tested by a pseudo-second-order model. The adsorption rate of Hg(II) is 54.35 mmol kg(-1)min(-1) and that of Cr(VI) is 7.21 mmol kg(-1)min(-1). The adsorption equilibrium time for Hg(II) and Cr(VI) was reached within 2 and 12 h, respectively. The adsorption isotherms were described by the Dubinin-Radushkevich model. The maximal adsorption capacity for Cr(VI) increases from 13.7 (raw stevensite) to 48.86 mmol kg(-1) (modified stevensite) while that of Hg(II) decreases from 205.8 to 166.9 mmol kg(-1). The mechanism of Hg(II) and Cr(VI) adsorption was discussed.

  15. Study of the removal of mercury(II) and chromium(VI) from aqueous solutions by Moroccan stevensite

    International Nuclear Information System (INIS)

    Benhammou, A.; Yaacoubi, A.; Nibou, L.; Tanouti, B.

    2005-01-01

    The objective of the present study was to investigate the adsorption of the heavy metals mercury(II) and chromium(VI), from aqueous solutions, onto Moroccan stevensite. A mineralogical and physicochemical characterization of natural stevensite was carried out. In order to improve the adsorption capacity of stevensite for Cr(VI), a preparation of stevensite was carried out. It consists in saturating the stevensite by ferrous iron Fe(II) and reducing the total Fe by Na 2 S 2 O 4 . Then, the adsorption experiments were studied in batch reactors at 25 ± 3 deg. C. The influence of the pH solution on the Cr(VI) and Hg(II) adsorption was studied in the pH range of 1.5-7.0. The optimum pH for the Cr(VI) adsorption is in the pH range of 2.0-5.0 while that of Hg(II) is at the pH values above 4.0. The adsorption kinetics were tested by a pseudo-second-order model. The adsorption rate of Hg(II) is 54.35 mmol kg -1 min -1 and that of Cr(VI) is 7.21 mmol kg -1 min -1 . The adsorption equilibrium time for Hg(II) and Cr(VI) was reached within 2 and 12 h, respectively. The adsorption isotherms were described by the Dubinin-Radushkevich model. The maximal adsorption capacity for Cr(VI) increases from 13.7 (raw stevensite) to 48.86 mmol kg -1 (modified stevensite) while that of Hg(II) decreases from 205.8 to 166.9 mmol kg -1 . The mechanism of Hg(II) and Cr(VI) adsorption was discussed

  16. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  17. Inorganic: the other mercury.

    Science.gov (United States)

    Risher, John F; De Rosa, Christopher T

    2007-11-01

    There is a broad array of mercury species to which humans may be exposed. While exposure to methylmercury through fish consumption is widely recognized, the public is less aware of the sources and potential toxicity of inorganic forms of mercury. Some oral and laboratory thermometers, barometers, small batteries, thermostats, gas pressure regulators, light switches, dental amalgam fillings, cosmetic products, medications, cultural/religious practices, and gold mining all represent potential sources of exposure to inorganic forms of mercury. The route of exposure, the extent of absorption, the pharmacokinetics, and the effects all vary with the specific form of mercury and the magnitude and duration of exposure. If exposure is suspected, a number of tissue analyses can be conducted to confirm exposure or to determine whether an exposure might reasonably be expected to be biologically significant. By contrast with determination of exposure to methylmercury, for which hair and blood are credible indicators, urine is the preferred biological medium for the determination of exposure to inorganic mercury, including elemental mercury, with blood normally being of value only if exposure is ongoing. Although treatments are available to help rid the body of mercury in cases of extreme exposure, prevention of exposure will make such treatments unnecessary. Knowing the sources of mercury and avoiding unnecessary exposure are the prudent ways of preventing mercury intoxication. When exposure occurs, it should be kept in mind that not all unwanted exposures will result in adverse health consequences. In all cases, elimination of the source of exposure should be the first priority of public health officials.

  18. Removal of heavy metals from water by zeolite mineral chemically modified. Mercury as a particular case; Remocion de metales pesados del agua por mineral zeolitico quimicamente modificado. Mercurio como un caso particular

    Energy Technology Data Exchange (ETDEWEB)

    Gebremedhin H, T

    2002-07-01

    Research works on the removal of mercury from water by zeolite minerals show that a small quantity of this element is sorbed. In this work the mercury sorption from aqueous solutions in the presence and absence of Cu(l l), Ni(l l) and/or Zn(l l) by a Mexican zeolite mineral, natural and modified by cisteaminium chloride or cistaminium dichloride, was investigated in acidic p H. The zeolite minerals were characterized by X- Ray diffraction Ftir, scanning electron microscopy and semiquantitative elemental analysis (EDS), surface area analysis (BET) and thermogravimetric analysis (TGA). Mercury from aqueous solutions was quantified by Atomic absorption spectroscopy. The amount of sulphur on the zeolite samples treated with Na CI and modified with cisteaminium chloride (0.375 mmol/g) or cistaminium dichloride(0.475 mmol/g) was found to be higher than that of the zeolite minerals modified with cisteaminium chloride and cistaminium dichloride without treating them with Na CI. The amount of sulphur on the zeolite minerals modified with thiourea was the lowest. The diffusion coefficients and sorption isotherms for mercury were determined in the natural, treated with Na CI and, treated with Na CI and then modified with the cisteaminium chloride or cistaminium dichloride zeolite samples. The retention of mercury was the highest for the zeolite minerals treated Na CI and then modified with cisteaminium chloride or cistaminium dichloride, with adsorption capacity of 0.0511 and 0.0525 mmol Hg/g, respectively. In this research work, it was found that the retention of mercury by the modified minerals was not affected by the presence of Cu (Il), Zn(l l) y Ni (I l) under the experimental conditions. (Author)

  19. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower

  20. Mercury and Your Health

    Science.gov (United States)

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  1. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V. [Savannah River Remediation, LLC., Aiken, SC (United States); Shah, H. [Savannah River Remediation, LLC., Aiken, SC (United States). Sludge and Salt Planning; Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-25

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  2. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    International Nuclear Information System (INIS)

    Jain, V.; Shah, H.; Wilmarth, W. R.

    2016-01-01

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  3. Advanced mercury removal from gold leachate solutions prior to gold and silver extraction: a field study from an active gold mine in Peru.

    Science.gov (United States)

    Matlock, Matthew M; Howerton, Brock S; Van Aelstyn, Mike A; Nordstrom, Fredrik L; Atwood, David A

    2002-04-01

    Mercury contamination in the Gold-Cyanide Process (GCP) is a serious health and environmental problem. Following the heap leaching of gold and silver ores with NaCN solutions, portions of the mercury-cyano complexes often adhere to the activated carbon (AC) used to extract the gold. During the electrowinning and retorting steps, mercury can be (and often is) emitted to the air as a vapor. This poses a severe health hazard to plant workers and the local environment. Additional concerns relate to the safety of workers when handling the mercury-laden AC. Currently, mercury treatment from the heap leach solution is nonexistent. This is due to the fact that chelating ligands which can effectively work under the adverse pH conditions (as present in the heap leachate solutions) do not exist. In an effort to economically and effectively treat the leachate solution prior to passing over the AC, a dipotassium salt of 1,3-benzenediamidoethanethiol (BDET2-) has been developed to irreversibly bind and precipitate the mercury. The ligand has proven to be highly effective by selectively reducing mercury levels from average initial concentrations of 34.5 ppm (parts per million) to 0.014 ppm within 10 min and to 0.008 ppm within 15 min. X-ray powder diffraction (XRD), proton nuclear magnetic resonance (1H NMR), Raman, and infrared (IR) spectroscopy demonstrate the formation of a mercury-ligand compound, which remains insoluble over pH ranges of 0.0-14.0. Leachate samples from an active gold mine in Peru have been analyzed using cold vapor atomic fluorescence (CVAF) and inductively coupled plasma optical emission spectroscopy (ICP-OES) for metal concentrations before and after treatment with the BDET2- ligand.

  4. Mercury Phase II Study - Mercury Behavior across the High-Level Waste Evaporator System

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jackson, D. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shah, H. B. [Savannah River Remediation, LLC., Aiken, SC (United States); Jain, V. [Savannah River Remediation, LLC., Aiken, SC (United States); Occhipinti, J. E. [Savannah River Remediation, LLC., Aiken, SC (United States); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-17

    The Mercury Program team’s effort continues to develop more fundamental information concerning mercury behavior across the liquid waste facilities and unit operations. Previously, the team examined the mercury chemistry across salt processing, including the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU), and the Defense Waste Processing Facility (DWPF) flowsheets. This report documents the data and understanding of mercury across the high level waste 2H and 3H evaporator systems.

  5. Sulfur polymer stabilization/solidification (SPSS) treatment of mixed waste mercury recovered from environmental restoration activities at BNL

    International Nuclear Information System (INIS)

    Kalb, P.; Adams, J.; Milian, L.

    2001-01-01

    Over 1,140 yd 3 of radioactively contaminated soil containing toxic mercury (Hg) and several liters of mixed-waste elemental mercury were generated during a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) removal action at Brookhaven National Laboratory (BNL). The US Department of Energy's (DOE) Office of Science and Technology Mixed Waste Focus Area (DOE MWFA) is sponsoring a comparison of several technologies that may be used to treat these wastes and similar wastes at BNL and other sites across the DOE complex. This report describes work conducted at BNL on the application and pilot-scale demonstration of the newly developed Sulfur Polymer Stabilization/Solidification (SPSS) process for treatment of contaminated mixed-waste soils containing high concentrations (approximately 5,000 mg/L) of mercury and liquid elemental mercury. BNL's SPSS (patent pending) process chemically stabilizes the mercury to reduce vapor pressure and leachability and physically encapsulates the waste in a solid matrix to eliminate dispersion and provide long-term durability. Two 55-gallon drums of mixed-waste soil containing high concentrations of mercury and about 62 kg of radioactive contaminated elemental mercury were successfully treated. Waste loadings of 60 wt% soil were achieved without resulting in any increase in waste volume, while elemental mercury was solidified at a waste loading of 33 wt% mercury. Toxicity Characteristic Leaching Procedure (TCLP) analyses indicate the final waste form products pass current Environmental Protection Agency (EPA) allowable TCLP concentrations as well as the more stringent proposed Universal Treatment Standards. Mass balance measurements show that 99.7% of the mercury treated was successfully retained within the waste form, while only 0.3% was captured in the off gas system

  6. Sulfur polymer stabilization/solidification (SPSS) treatment of mixed waste mercury recovered from environmental restoration activities at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, P.; Adams, J.; Milian, L.

    2001-01-29

    Over 1,140 yd{sup 3} of radioactively contaminated soil containing toxic mercury (Hg) and several liters of mixed-waste elemental mercury were generated during a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) removal action at Brookhaven National Laboratory (BNL). The US Department of Energy's (DOE) Office of Science and Technology Mixed Waste Focus Area (DOE MWFA) is sponsoring a comparison of several technologies that may be used to treat these wastes and similar wastes at BNL and other sites across the DOE complex. This report describes work conducted at BNL on the application and pilot-scale demonstration of the newly developed Sulfur Polymer Stabilization/Solidification (SPSS) process for treatment of contaminated mixed-waste soils containing high concentrations ({approximately} 5,000 mg/L) of mercury and liquid elemental mercury. BNL's SPSS (patent pending) process chemically stabilizes the mercury to reduce vapor pressure and leachability and physically encapsulates the waste in a solid matrix to eliminate dispersion and provide long-term durability. Two 55-gallon drums of mixed-waste soil containing high concentrations of mercury and about 62 kg of radioactive contaminated elemental mercury were successfully treated. Waste loadings of 60 wt% soil were achieved without resulting in any increase in waste volume, while elemental mercury was solidified at a waste loading of 33 wt% mercury. Toxicity Characteristic Leaching Procedure (TCLP) analyses indicate the final waste form products pass current Environmental Protection Agency (EPA) allowable TCLP concentrations as well as the more stringent proposed Universal Treatment Standards. Mass balance measurements show that 99.7% of the mercury treated was successfully retained within the waste form, while only 0.3% was captured in the off gas system.

  7. Basic Information about Mercury

    Science.gov (United States)

    ... Your Environment Contact Us Share Basic Information about Mercury On this page: What is mercury? Emissions of ... Consumer products that traditionally contain mercury What is Mercury? Mercury is a naturally-occurring chemical element found ...

  8. Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity.

    Science.gov (United States)

    Serna-Galvis, Efraim A; Giraldo-Aguirre, Ana L; Silva-Agredo, Javier; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2017-03-01

    This study evaluates the treatment of the antibiotic cloxacillin (CLX) in water by means of electrochemical oxidation, TiO 2 photocatalysis, and the photo-Fenton system. The three treatments completely removed cloxacillin and eliminated the residual antimicrobial activity from synthetic pharmaceutical wastewater containing the antibiotic, commercial excipients, and inorganic ions. However, significant differences in the degradation routes were found. In the photo-Fenton process, the hydroxyl radical was involved in the antibiotic removal, while in the TiO 2 photocatalysis process, the action of both the holes and the adsorbed hydroxyl radicals degraded the pollutant. In the electrochemical treatment (using a Ti/IrO 2 anode in sodium chloride as supporting electrolyte), oxidation via HClO played the main role in the removal of CLX. The analysis of initial by-products showed five different mechanistic pathways: oxidation of the thioether group, opening of the central β-lactam ring, breakdown of the secondary amide, hydroxylation of the aromatic ring, and decarboxylation. All the oxidation processes exhibited the three first pathways. Moreover, the aromatic ring hydroxylation was found in both photochemical treatments, while the decarboxylation of the pollutant was only observed in the TiO 2 photocatalysis process. As a consequence of the degradation routes and mechanistic pathways, the elimination of organic carbon was different. After 480 and 240 min, the TiO 2 photocatalysis and photo-Fenton processes achieved ∼45 and ∼15 % of mineralization, respectively. During the electrochemical treatment, 100 % of the organic carbon remained even after the antibiotic was treated four times the time needed to degrade it. In contrast, in all processes, a natural matrix (mineral water) did not considerably inhibit pollutant elimination. However, the presence of glucose in the water significantly affected the degradation of CLX by means of TiO 2 photocatalysis.

  9. RECOVERY OF MERCURY FROM CONTAMINATED LIQUID WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Robin M. Stewart

    1999-09-29

    Mercury was widely used in U.S. Department of Energy (DOE) weapons facilities, resulting in a broad range of mercury-contaminated wastes and wastewaters. Some of the mercury contamination has escaped to the local environment, particularly at the Y-12 Plant in Oak Ridge, Tennessee, where approximately 330 metric tons of mercury were discharged to the environment between 1953 and 1963 (TN & Associates, 1998). Effective removal of mercury contamination from water is a complex and difficult problem. In particular, mercury treatment of natural waters is difficult because of the low regulatory standards. For example, the Environmental Protection Agency has established a national ambient water quality standard of 12 parts-per-trillion (ppt), whereas the standard is 1.8 ppt in the Great Lakes Region. In addition, mercury in the environment is typically present in several different forms, but sorption processes are rarely effective with more than one or two of these forms. To meet the low regulatory discharge limits, an effective sorption process must be able to address all forms of mercury present in the water. One approach is to apply different sorbents in series depending on the mercury speciation and the regulatory discharge limits. ADA Technologies, Inc. has developed four new sorbents to address the variety of mercury species present in industrial discharges and natural waters. Three of these sorbents have been field tested on contaminated creek water at the Y-12 Plant. Two of these sorbents have been successfully demonstrated very high removal efficiencies for soluble mercury species, reducing mercury concentrations at the outlet of a pilot-scale system to less than 12 ppt for as long as six months. The other sorbent tested at the Y-12 Plant targeted colloidal mercury not removed by standard sorption or filtration processes. At the Y-12 Plant, colloidal mercury appears to be associated with iron, so a sorbent that removes mercury-iron complexes in the presence of a

  10. Ocular disorders among workers exposed to mercury.

    Science.gov (United States)

    Gabal, M S; Raslan, O A

    1995-01-01

    Mercury vapor exposed workers may show ocular changes, as well as other systems affection. A sample of 84 workers in preparing mercury fulminate were examined for conjunctival corneal and lenticular manifestation of long duration exposure, together with mercury urinary output. Lens changes were found in 50% of the involved workers while keratopathy as recorded in 34.5% of them. No statistically significant association was found between the occurrence of eye lesions and levels of urinary elimination of mercury. These results suggest local absorption of this element is most probably the underlying cause of ocular affection.

  11. Accumulation of mercury in selected plant species grown in soils contaminated with different mercury compounds

    International Nuclear Information System (INIS)

    Su, Yi; Han, Fengxiang; Shiyab, Safwan; Chen, Jian; Monts, David L.

    2007-01-01

    The objective of our research is to screen and search for suitable plant species for phyto-remediation of mercury-contaminated soil. Currently our effort is specifically focused on mercury removal from the U.S. Department of Energy (DOE) sites, where mercury contamination is a major concern. In order to cost effectively implement mercury remediation efforts, it is necessary now to obtain an improved understanding of biological means of removing mercury and mercury compounds.. Phyto-remediation is a technology that uses various plants to degrade, extract, contain, or immobilize contaminants from soil and water. In particular, phyto-extraction is the uptake of contaminants by plant roots and translocation within the plants to shoots or leaves. Contaminants are generally removed by harvesting the plants. We have investigated phyto-extraction of mercury from contaminated soil by using some of the known metal-accumulating plants since no natural plant species with mercury hyper-accumulating properties has yet been identified. Different natural plant species have been studied for mercury uptake, accumulation, toxicity and overall mercury removal efficiency. Various mercury compounds, such as HgS, HgCl 2 , and Hg(NO 3 ) 2 , were used as contaminant sources. Different types of soil were examined and chosen for phyto-remediation experiments. We have applied microscopy and diffuse reflectance spectrometry as well as conventional analytical chemistry to monitor the phyto-remediation processes of mercury uptake, translocation and accumulation, and the physiological impact of mercury contaminants on selected plant species. Our results indicate that certain plant species, such as beard grass (Polypogon monospeliensis), accumulated a very limited amount of mercury in the shoots ( 2 powder, respectively; no visual stress symptoms were observed. We also studied mercury phyto-remediation using aged soils that contained HgS, HgCl 2 , or Hg(NO 3 ) 2 . We have found that up to hundreds

  12. Blood Mercury Levels of Zebra Finches Are Heritable: Implications for the Evolution of Mercury Resistance.

    Directory of Open Access Journals (Sweden)

    Kenton A Buck

    Full Text Available Mercury is a ubiquitous metal contaminant that negatively impacts reproduction of wildlife and has many other sub-lethal effects. Songbirds are sensitive bioindicators of mercury toxicity and may suffer population declines as a result of mercury pollution. Current predictions of mercury accumulation and biomagnification often overlook possible genetic variation in mercury uptake and elimination within species and the potential for evolution in affected populations. We conducted a study of dietary mercury exposure in a model songbird species, maintaining a breeding population of zebra finches (Taeniopygia guttata on standardized diets ranging from 0.0-2.4 μg/g methylmercury. We applied a quantitative genetics approach to examine patterns of variation and heritability of mercury accumulation within dietary treatments using a method of mixed effects modeling known as the 'animal model'. Significant variation in blood mercury accumulation existed within each treatment for birds exposed at the same dietary level; moreover, this variation was highly repeatable for individuals. We observed substantial genetic variation in blood mercury accumulation for birds exposed at intermediate dietary concentrations. Taken together, this is evidence that genetic variation for factors affecting blood mercury accumulation could be acted on by selection. If similar heritability for mercury accumulation exists in wild populations, selection could result in genetic differentiation for populations in contaminated locations, with possible consequences for mercury biomagnification in food webs.

  13. Effect of KNO3 to remove silver interferences in the determination of mercury(II: Application in milk and breast milk samples

    Directory of Open Access Journals (Sweden)

    A. Farahi

    2015-06-01

    Full Text Available Mercury determination was performed at rotating silver electrode (RSE using square wave voltammetry (SWV in electrolytic mixture of HCl (0.1 mol L−1 and KNO3 (0.2 mol L−1. The reproducibility, sensitivity and accuracy are good, provided the proper instrumental parameters and supporting electrolyte are used. The relationship between the peak current of mercury(II and its concentration is linear with regression equation: I(μA = 0.784 [Hg(II] + 49.5 (r2 = 0.9878 in the dynamic range from 1.0 × 10−7 to 8.0 × 10−4 mol L−1. The detection limit (DL,3σ and quantification limit (QL,10σ were 4.61 × 10−8 mol L−1 and 15.3 × 10−8 mol L−1, respectively. The relative standard deviation (RSD for seven replicate analysis of a solution containing 5.0 × 10−5 mol L−1 was 2.19%. Possible effects of Cu, Co, Fe, MnO4, Zn, were investigated but did not cause any significant interferences. Immobilization of mercury(II on the surface of rotating silver electrode obeyed to the Langmuir adsorption isotherm. The calculated ΔG°ads value showed that the interaction between mercury and silver electrodes is mainly controlled by a chemisorption process. This methodology was potentially applied for mercury determination in milk and breast milk samples.

  14. HPLC-MS/MS analysis of peramivir in rat plasma: Elimination of matrix effect using the phospholipid-removal solid-phase extraction method.

    Science.gov (United States)

    Lei, Mingdao; Gan, Wei; Sun, Yongbing

    2018-03-01

    A simple HPLC-MS/MS method has been developed for the determination of peramivir in rat plasma in the present study. The analytes were separated on a C 18 column (50 × 2.1 mm, 1.7 μm) and a triple-quadrupole mass spectrometer equipped with an electrospray ionization source was applied for the detection. A phospholipid-free cartridge solid-phase extraction was used to pretreat the plasma and eliminate the endogenous phospholipid. The in-source collision-induced dissociation approach showed that this pretreatment could result in negligible ion suppression from the extracted sample and could produce cleaner samples when compared with the protein precipitation. The method was linear over the concentration range of 0.12-1200.0 ng/mL for peramivir. The method was validated and successfully applied to a pharmacokinetic study after peramivir was orally and intravenously administered to Sprague-Dawley rats. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Method for mercury refinement

    Science.gov (United States)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-04-09

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  16. Apparatus for mercury refinement

    Science.gov (United States)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-07-16

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  17. Apparatus for mercury refinement

    International Nuclear Information System (INIS)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the 196 Hg isotope is often contaminated with particulate mercurous chloride, Hg 2 Cl 2 . The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg 2 Cl 2 contaminant. The present invention is particularly directed to such filtering. 5 figures

  18. Method for scavenging mercury

    Science.gov (United States)

    Chang, Shih-ger [El Cerrito, CA; Liu, Shou-heng [Kaohsiung, TW; Liu, Zhao-rong [Beijing, CN; Yan, Naiqiang [Berkeley, CA

    2009-01-20

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  19. Method for high temperature mercury capture from gas streams

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  20. Interaction of ethanol and mercury body burden in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.D.

    1978-01-01

    The interaction of ethanol with mercury in the body resulting in increased exhalation of the metal was studied in the mouse. A persistent elimination of the metal in the breath was demonstrated after single, sublethal (<1 mgHg/Kg body weight) exposures to mercury vapor (Hg/sup 0/) or mercury II chloride (HgCl/sub 2/). The amount of mercury exhaled per unit time was enhanced by oral or parenteral administration of ethanol solutions. These modifications were investigated in dose-response studies in which the drug was administered in doses ranging from 0.2g to 5.5g/Kg to mice pretreated with mercury. The EC/sub 50/ for blood ethanol with respect to mercury exhalation was determined to be approximately 200 mg/dl corresponding to an output rate of approximately 0.1% of the simultaneous body burden in 30 min several days after mercury. A hypothesis that mercury expired by these animals was proportional to the body burden after mercury administration was addressed in experiments whereby mice given one of several doses of mercuric chloride (0.16 to 500 ..mu..g/Kg) were monitored for pulmonary mercury elimination for a fifteen day period. The high correlation obtained between the amount of mercury exhaled in a standard time period and the body burden by group indicated that breath sampling could be applied as an indicator of the mercury body burden which may not be limited to the mouse.

  1. Recovery of Mercury From Contaminated Liquid Wastes

    International Nuclear Information System (INIS)

    1998-01-01

    The Base Contract program emphasized the manufacture and testing of superior sorbents for mercury removal, testing of the sorption process at a DOE site, and determination of the regeneration conditions in the laboratory. During this project, ADA Technologies, Inc. demonstrated the following key elements of a successful regenerable mercury sorption process: (1) sorbents that have a high capacity for dissolved, ionic mercury; (2) removal of ionic mercury at greater than 99% efficiency; and (3) thermal regeneration of the spent sorbent. ADA's process is based on the highly efficient and selective sorption of mercury by noble metals. Contaminated liquid flows through two packed columns that contain microporous sorbent particles on which a noble metal has been finely dispersed. A third column is held in reserve. When the sorbent is loaded with mercury to the point of breakthrough at the outlet of the second column, the first column is taken off-line and the flow of contaminated liquid is switched to the second and third columns. The spent column is regenerated by heating. A small flow of purge gas carries the desorbed mercury to a capture unit where the liquid mercury is recovered. Laboratory-scale tests with mercuric chloride solutions demonstrated the sorbents' ability to remove mercury from contaminated wastewater. Isotherms on surrogate wastes from DOE's Y-12 Plant in Oak Ridge, Tennessee showed greater than 99.9% mercury removal. Laboratory- and pilot-scale tests on actual Y-12 Plant wastes were also successful. Mercury concentrations were reduced to less than 1 ppt from a starting concentration of 1,000 ppt. The treatment objective was 50 ppt. The sorption unit showed 10 ppt discharge after six months. Laboratory-scale tests demonstrated the feasibility of sorbent regeneration. Results show that sorption behavior is not affected after four cycles

  2. Mercury and Pregnancy

    Science.gov (United States)

    ... Home > Pregnancy > Is it safe? > Mercury and pregnancy Mercury and pregnancy E-mail to a friend Please ... vision problems. How can you be exposed to mercury? Mercury has several forms: It can be a ...

  3. Identification of elemental mercury in the subsurface

    Science.gov (United States)

    Jackson, Dennis G

    2015-01-06

    An apparatus and process is provided for detecting elemental mercury in soil. A sacrificial electrode of aluminum is inserted below ground to a desired location using direct-push/cone-penetrometer based equipment. The insertion process removes any oxides or previously found mercury from the electrode surface. Any mercury present adjacent the electrode can be detected using a voltmeter which indicates the presence or absence of mercury. Upon repositioning the electrode within the soil, a fresh surface of the aluminum electrode is created allowing additional new measurements.

  4. Mercury sorbent delivery system for flue gas

    Science.gov (United States)

    Klunder,; Edgar, B [Bethel Park, PA

    2009-02-24

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  5. Mercury in the environment : a review

    International Nuclear Information System (INIS)

    Goodarzi, F.

    2000-01-01

    Both geogenic and anthropogenic sources are responsible for the input of mercury into the environment. However, mercury comes mostly from geogenic sources and is found naturally in air, water and soil. Crustal degassing results in emission of mercury into the atmosphere. Mercury in water and soil is due mostly to input from sedimentary rocks. Mercury in lake sediments is related mainly to input by country rock and anthropogenic activities such as agriculture. The mercury content of coal is similar to or less than the amount found in the earths crust. Natural charcoal is also able to capture mercury at low temperature combustion. The amount of mercury emitted from the stack of coal-fired power plants is related to the nature of the milled coal and its mineralogical and elemental content. Mercury emissions originating from the combustion of coal from electric utility power plants are considered to be among the greatest contributors to global mercury air emissions. In order to quantify the impact the electric power industry has on the environment, information regarding mercury concentrations in coal and their speciation is needed. For this reason the author examined the behaviour of mercury in three coal samples ashed at increasing temperatures. Mercury removal from coal-fired power plants ranges from 10 to 50 per cent by fabric filters and 20 to 95 per cent by FGD systems. This data will help in regulating emissions of hazardous air pollutants from electric utility steam generating units and will potentially provide insight into the industry's contribution to the global mercury burden. 50 refs

  6. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    outputs of mercury generators are compared to one another using a nesting procedure which allows direct comparison of one generator with another and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define generator performance as affected by variables such as pressure, temperature, line voltage, and shipping. WRI is focusing efforts to determine actual generator performance related to the variables defined in the qualification portion of the interim protocol. The protocol will then be further revised by EPA based on what can actually be achieved with the generators. Another focus of the study is to evaluate approaches for field verification of generator performance. Upcoming work includes evaluation of oxidized mercury calibration generators, for which a separate protocol will be prepared by EPA. In addition, the variability of the spectrometers/analyzers under various environmental conditions needs to be defined and understood better. A main objective of the current work is to provide data on the performance and capabilities of elemental mercury generator/calibration systems for the development of realistic NIST traceability protocols for mercury vapor standards for continuous emission CEM calibration. This work is providing a direct contribution to the enablement of continuous emissions monitoring at coal-fired power plants in conformance with the CAMR. EPA Specification 12 states that mercury CEMs must be calibrated with NIST-traceable standards (Federal Register 2005). The initial draft of an elemental mercury generator traceability protocol was circulated by EPA in May 2007 for comment, and an interim protocol was issued in August 2007 (EPA 2007). Initially it was assumed that the calibration and implementation of mercury CEMs would be relatively simple, and implementation would follow the implementation of the Clean Air Interstate Rule (CAIR) SO{sub 2} and NO{sub x} monitoring, and

  7. Isolation, screening and identification of mercury resistant bacteria from mercury contaminated soil

    OpenAIRE

    Kowalczyk Anna; Wilińska Magdalena; Chyc Marek; Bojko Monika; Latowski Dariusz

    2016-01-01

    New bacterial strains resistant to high concentration of mercury were obtained and character iz ed focusing on their potential application in bioremediation. The biological material was isolated from soil contaminated with mercury. The ability to removal of Hg from the liquid medium and the effect of the various pH and mercury concentrations in the environment on bacterial strains growth kinetics were tested. The selected strains were identified by analysis of the 16S ribosome subunit coding ...

  8. Mercury content in electrum from artisanal mining site of Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Murao, Satoshi [Geological Survey of Japan, AIST, Higashi 1-1-1, No. 7, Tsukuba 305-8567 (Japan)]. E-mail: s.murao@aist.go.jp; Naito, Kazuki [Geological Survey of Japan, AIST, Higashi 1-1-1, No. 7, Tsukuba 305-8567 (Japan); Dejidmaa, Gunchin [Geological Information Center, Mineral and Petroleum Resources Authority of Mongolia, State Building No. 5, Ulaanbaatar (Mongolia); Sie, Soey H. [CSIRO, P.O. Box 136, North Ryde, NSW 1670 (Australia)

    2006-08-15

    In Mongolia, artisanal gold mining, modern gold rush, in which people use mercury to extract gold, is being proliferated rapidly and the mercury contamination of mining site is becoming a serious social issue. For the risk assessment of mercury, it is necessary to understand how much mercury is introduced to the environment from what kind of materials during mining activity. It is already known that major contribution of the contamination comes from mercury that was bought at shops and brought to mining sites by miners. However, no information is available on how much mercury is removed from electrum (natural gold grain) to the environment. Since gold deposit is always accompanied by mercury anomaly, it is anticipated that electrum grains contain some amount of mercury of natural origin, and this mercury (primary mercury) contributes to some extent to the contamination. In order to clarify how much mercury is incorporated in electrum grains, micro-PIXE at CSIRO was used for grain-by-grain analysis. The result showed that electrum from study area contains mercury up to 8260 ppm. It is concluded that for the risk management of mercury contamination, release of natural mercury from electrum grains during smelting must not be ignored.

  9. Mercury content in electrum from artisanal mining site of Mongolia

    Science.gov (United States)

    Murao, Satoshi; Naito, Kazuki; Dejidmaa, Gunchin; Sie, Soey H.

    2006-08-01

    In Mongolia, artisanal gold mining, modern gold rush, in which people use mercury to extract gold, is being proliferated rapidly and the mercury contamination of mining site is becoming a serious social issue. For the risk assessment of mercury, it is necessary to understand how much mercury is introduced to the environment from what kind of materials during mining activity. It is already known that major contribution of the contamination comes from mercury that was bought at shops and brought to mining sites by miners. However, no information is available on how much mercury is removed from electrum (natural gold grain) to the environment. Since gold deposit is always accompanied by mercury anomaly, it is anticipated that electrum grains contain some amount of mercury of natural origin, and this mercury (primary mercury) contributes to some extent to the contamination. In order to clarify how much mercury is incorporated in electrum grains, micro-PIXE at CSIRO was used for grain-by-grain analysis. The result showed that electrum from study area contains mercury up to 8260 ppm. It is concluded that for the risk management of mercury contamination, release of natural mercury from electrum grains during smelting must not be ignored.

  10. Mercury content in electrum from artisanal mining site of Mongolia

    International Nuclear Information System (INIS)

    Murao, Satoshi; Naito, Kazuki; Dejidmaa, Gunchin; Sie, Soey H.

    2006-01-01

    In Mongolia, artisanal gold mining, modern gold rush, in which people use mercury to extract gold, is being proliferated rapidly and the mercury contamination of mining site is becoming a serious social issue. For the risk assessment of mercury, it is necessary to understand how much mercury is introduced to the environment from what kind of materials during mining activity. It is already known that major contribution of the contamination comes from mercury that was bought at shops and brought to mining sites by miners. However, no information is available on how much mercury is removed from electrum (natural gold grain) to the environment. Since gold deposit is always accompanied by mercury anomaly, it is anticipated that electrum grains contain some amount of mercury of natural origin, and this mercury (primary mercury) contributes to some extent to the contamination. In order to clarify how much mercury is incorporated in electrum grains, micro-PIXE at CSIRO was used for grain-by-grain analysis. The result showed that electrum from study area contains mercury up to 8260 ppm. It is concluded that for the risk management of mercury contamination, release of natural mercury from electrum grains during smelting must not be ignored

  11. Mercury emissions from municipal solid waste combustors

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  12. determination of mercury content in milk powder

    International Nuclear Information System (INIS)

    Jovchev, M.; Grigorov, T.; Apostolov, D.

    1985-01-01

    Four samples of humanized full cream cow milk powder of Bulgarian origin for new-born, sucklings, small children and soured milk powder were activated for 18-24 h in a neutron flux of 5.10 12 , resp. 2.10 13 n/cm 2 .sec in quartz ampules. The samples were activated without preliminary lyophilization, thus avoiding possible mistakes from mercury losses. Ag-110m, being eliminated in the amalgam, was not an obstacle to the mercury determination. The results obtained for the mercury content are in the same order as in other investigations and many times lower than the admissible norm for foodstuffs - 50 ppb

  13. Mercury uptake and accumulation by four species of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Kathleen [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)]. E-mail: skinnk@sage.edu; Wright, Nicole [NEIWPCC-NYSDEC, 625 Broadway, 4th Floor, Albany, NY 12233-3502 (United States)]. E-mail: ndwright@gw.dec.state.ny.us; Porter-Goff, Emily [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)

    2007-01-15

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water.

  14. Mercury Sorption onto Malt Spent Rootlets

    Science.gov (United States)

    Manariotis, I. D.; Anagnostopoulos, V.; Karapanagioti, H. K.; Chrysikopoulos, C.

    2011-12-01

    Mercury is a metal of particular concern due to its toxicity even at relatively low concentrations. The maximum permissible level for mercury in drinking water set by the European Union is 0.001 mg/L. Mercury is released into the environment via four principal pathways: (1) natural processes; i.e. a volcanic eruption, (2) incidental to some other activity; i.e. coal burning power plants, (3) accidentally during the manufacture, breakage or disposal of products that have mercury put into them deliberately, and (4) direct use in industrial settings. The present study focuses on the removal of mercury (II) from aqueous solutions via sorption onto Malt Spent Rootlets (MSR). Batch experiments were conducted employing MSR with size ranging from 0.18 to 1 mm. The effects of pH, mercury concentration, contact time, and solid to liquid ratio on mercury sorption onto MSR were investigated. The highest mercury removal from the aqueous phase, of 41%, was observed at pH of 5.

  15. Mercury's Messenger

    Science.gov (United States)

    Chapman, Clark R.

    2004-01-01

    Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…

  16. Increased Mercury Bioaccumulation Follows Water Quality Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Bogle, M.A.; Peterson, M.J.; Smith, J.G.; Southworth, G.R.

    1999-09-15

    Changes in physical and chemical characteristics of aquatic habitats made to reduce or eliminate ecological risks can sometimes have unforeseen consequences. Environmental management activities on the U.S. Dept. of Energy reservation in Oak Ridge, Tennessee,have succeeded in improving water quality in streams impacted by discharges fi-om industrial facilities and waste disposal sites. The diversity and abundance of pollution-sensitive components of the benthic macroinvertebrate communities of three streams improved after new waste treatment systems or remedial actions reduced inputs of various toxic chemicals. Two of the streams were known to be mercury-contaminated from historical spills and waste disposal practices. Waterborne mercury concentrations in the third were typical of uncontaminated systems. In each case, concentrations of mercury in fish, or the apparent biological availability of mercury increased over the period during which ecological metrics indicated improved water quality. In the system where waterborne mercury concentrations were at background levels, increased mercury bioaccumulation was probably a result of reduced aqueous selenium concentrations; however, the mechanisms for increased mercury accumulation in the other two streams remain under investigation. In each of the three systems, reduced inputs of metals and inorganic anions was followed by improvements in the health of aquatic invertebrate communities. However, this reduction in risk to aquatic invertebrates was accompanied by increased risk to humans and piscivorous wildlife related to increased mercury concentrations in fish.

  17. Increased Mercury Bioaccumulation Follows Water Quality Improvement

    International Nuclear Information System (INIS)

    Bogle, M.A.; Peterson, M.J.; Smith, J.G.; Southworth, G.R.

    1999-01-01

    Changes in physical and chemical characteristics of aquatic habitats made to reduce or eliminate ecological risks can sometimes have unforeseen consequences. Environmental management activities on the U.S. Dept. of Energy reservation in Oak Ridge, Tennessee,have succeeded in improving water quality in streams impacted by discharges fi-om industrial facilities and waste disposal sites. The diversity and abundance of pollution-sensitive components of the benthic macroinvertebrate communities of three streams improved after new waste treatment systems or remedial actions reduced inputs of various toxic chemicals. Two of the streams were known to be mercury-contaminated from historical spills and waste disposal practices. Waterborne mercury concentrations in the third were typical of uncontaminated systems. In each case, concentrations of mercury in fish, or the apparent biological availability of mercury increased over the period during which ecological metrics indicated improved water quality. In the system where waterborne mercury concentrations were at background levels, increased mercury bioaccumulation was probably a result of reduced aqueous selenium concentrations; however, the mechanisms for increased mercury accumulation in the other two streams remain under investigation. In each of the three systems, reduced inputs of metals and inorganic anions was followed by improvements in the health of aquatic invertebrate communities. However, this reduction in risk to aquatic invertebrates was accompanied by increased risk to humans and piscivorous wildlife related to increased mercury concentrations in fish

  18. Study and analysis of two semi-humid flue acid gas industrial treatment processes and study of an adsorption process of gaseous mercury on active carbon; Etude et analyse de deux dispositifs industriels de traitement d'effluents gazeux acide par voie semi-humide et etude d'un procede d'elimination du mercure gazeux par adsorption sur charbon actif

    Energy Technology Data Exchange (ETDEWEB)

    Anki, F.

    1998-07-01

    During the process of waste incineration, gaseous pollutants contained in fumes such as hydrochloric acid or mercury have to be removed before being discharged in air. A study has then been conducted on incineration plant fumes (municipal and industrial wastes). Four alkaline reagents have been tested in two semi-humid fume treatment processes for neutralizing hydrochloric acid. The reagents are: hydrated lime, sodium hydroxide, sodium bicarbonate and sodium carbonate. The alkaline solutions, pulverized in thin droplets, absorb and neutralize thus HCl and lead to the formation of a solid residue. On the other hand, a study of the adsorption of gaseous mercury on a coconut-based activated carbon has been conducted with a pilot fixed bed reactor. The taken incineration fume (flow rate: 2000 L/H) is introduced in the reactor at temperatures between 150 and 200 degrees Celsius. Different exposure times are tested to determine the saturation of the activated carbon by mercury. An evaporation model and an absorption model are applied; they represent the experimental evolution of the HCl absorption rates in terms of the liquid flow or of the stoichiometric factor. A model of mercury adsorption by the activated carbon is applied for determining the total transfer coefficient and the adsorption equilibrium constant. (O.M.)

  19. Mercury Report-Children's exposure to elemental mercury

    Science.gov (United States)

    ... gov . Mercury Background Mercury Report Additional Resources Mercury Report - Children's Exposure to Elemental Mercury Recommend on Facebook ... I limit exposure to mercury? Why was the report written? Children attending a daycare in New Jersey ...

  20. Estimating mercury emissions from a zinc smelter in relation to China's mercury control policies

    International Nuclear Information System (INIS)

    Wang, S.X.; Song, J.X.; Li, G.H.; Wu, Y.; Zhang, L.; Wan, Q.; Streets, D.G.; Chin, Conrad K.; Hao, J.M.

    2010-01-01

    Mercury concentrations of flue gas at inlet/outlet of the flue gas cleaning, electrostatic demister, reclaiming tower, acid plant, and mercury contents in zinc concentrate and by-products were measured in a hydrometallurgical zinc smelter. The removal efficiency of flue gas cleaning, electrostatic demister, mercury reclaiming and acid plant was about 17.4%, 30.3%, 87.9% and 97.4% respectively. Flue gas cleaning and electrostatic demister captured 11.7% and 25.3% of the mercury in the zinc concentrate, respectively. The mercury reclaiming tower captured 58.3% of the mercury in the zinc concentrate. About 4.2% of the mercury in the zinc concentrate was captured by the acid plant. Consequently, only 0.8% of the mercury in the zinc concentrate was emitted to the atmosphere. The atmospheric mercury emission factor was 0.5 g t -1 of zinc produced for the tested smelter, indicating that this process offers the potential to effectively reduce mercury emissions from zinc smelting. - Modern scale production equipped with acid plant and Hg reclaiming tower will significantly reduce Hg emissions from zinc smelters in China.

  1. RECOVERY OF MERCURY FROM CONTAMINATED PRIMARY AND SECONDARY WASTES

    International Nuclear Information System (INIS)

    A. Faucette; J. Bognar; T. Broderick; T. Battaglia

    2000-01-01

    Effective removal of mercury contamination from water is a complex and difficult problem. In particular, mercury treatment of natural waters is difficult because of the low regulatory standards. For example, the Environmental Protection Agency has established a national ambient water quality standard of 12 parts-per-trillion (ppt), whereas the standard is 1.8 ppt in the Great Lakes Region. In addition, mercury is typically present in several different forms, but sorption processes are rarely effective with more than one or two of these forms. To meet the low regulatory discharge limits, a sorption process must be able to address all forms of mercury present in the water. One approach is to apply different sorbents in series depending on the mercury speciation and the regulatory discharge limits. Four new sorbents have been developed to address the variety of mercury species present in industrial discharges and natural waters. Three of these sorbents have been field tested on contaminated creek water at the Y-12 Plant. Two of these sorbents have demonstrated very high removal efficiencies for soluble mercury species, with mercury concentrations at the outlet of a pilot-scale system less than 12 ppt for as long as six months. The other sorbent tested at the Y-12 Plant is targeted at colloidal mercury that is not removed by standard sorption or filtration processes. At the Y-12 Plant, colloidal mercury appears to be associated with iron, so a sorbent that removes mercury-iron complexes in the presence of a magnetic field was evaluated. Field results indicate good removal of this mercury fraction from the Y-12 waters. In addition, this sorbent is easily regenerated by simply removing the magnetic field and flushing the columns with water. The fourth sorbent is still undergoing laboratory development, but results to date indicate exceptionally high mercury sorption capacity. The sorbent is capable of removing all forms of mercury typically present in natural and

  2. Optimal condition to remove mercury in yellowfin tuna protein isolates and ACE-inhibitory property of peptide prepared using commercial proteases

    Directory of Open Access Journals (Sweden)

    Hathaigan Kokkaew

    2016-08-01

    Full Text Available Response surface methodology (RSM was performed to maximize the mercury (Hg reduction from yellowfin tuna (Thunnus albacare by products protein isolates (YBPI. The optimal condition of Hg reduction (89.3% was 10.5 mM CaCl 2 and a Water:YB of 12.9:1, while other variables were fixed at 5 mM citric acid, 60 min incubation, pH 11 and 8,000 x g for 15 min of centrifugation. At these conditions, the significant protein recovery (80.1% was obtained. Hydrolysates sequentially hydrolyzed with G6 followed by GN exhibited the highest angiotensin I-converting enzyme (ACE inhibitory activity than other enzyme preparations. Fractionated yellowfin tuna by products protein hydrolysate (YBPH increased in ACE-inhibitory activity when peptide size decreased. In-vitro gastrointestinal (GI digestion significantly increased bioactive property. ACEinhibitory activity of YBPH with and without simulated GI digestion significantly increased after incubating against ACE, demonstrating pro-drug type peptides.

  3. High activity carbon sorbents for mercury capture

    Directory of Open Access Journals (Sweden)

    Stavropoulos George G.

    2006-01-01

    Full Text Available High efficiency activated carbons have been prepared for removing mercury from gas streams. Starting materials used were petroleum coke, lignite, charcoal and olive seed waste, and were chemically activated with KOH. Produced adsorbents were primarily characterized for their porosity by N2 adsorption at 77 K. Their mercury retention capacity was characterized based on the breakthrough curves. Compared with typical commercial carbons, they have exhibited considerably enhanced mercury adsorption capacity. An attempt has been made to correlate mercury entrapment and pore structure. It has been shown that physical surface area is increased during activation in contrast to the mercury adsorption capacity that initially increases and tends to decrease at latter stages. Desorption of active sites may be responsible for this behavior.

  4. Influence of intensive fishing on the partitioning of mercury and methylmercury in three lakes of Northern Quebec

    International Nuclear Information System (INIS)

    Surette, Celine; Lucotte, Marc; Tremblay, A.

    2006-01-01

    It has been demonstrated that intensive fishing, i.e., removing more than 25% of the fish biomass, can reduce mercury levels in predator fish in a lake. We test here the hypothesis that, by removing an important part of the fish biomass from a lake, a significant amount of methylmercury can be eliminated, therefore reducing the mercury available to the remaining biota, at least in the short term. A mass burden approach is used to evaluate the partitioning of total mercury and methylmercury in natural lake ecosystems. Three small natural lakes from the James Bay territory, in northern Quebec, Canada, were selected for intensive fishing. Mercury (Hg) and methylmercury (MeHg) concentrations were evaluated for sediments, water column (dissolved fraction and suspended particulate matter), plankton, aquatic invertebrates, and fish. Biomasses were determined for fish, plankton, and aquatic invertebrates. Two case scenarios are presented using different mercury contributions from the sediment component (1 cm depth, and no sediment). Our results for the scenario including the sediment contribution show that lake sediments represent over 98% of the total mercury while the biotic components represent less than 0.1% of the same burden. For methylmercury, fish account for up to 5% of the burden, while sediments make up 84.6% to 93.1%. If we put aside the sediment contribution, the methylmercury in fish partitioning can represent up to 48%. As for invertebrates, they can account for up to 48% of the total MeHg burden. We do not observe any change in the partitionings or the quantities of Hg and MeHg before and after fishing in either of the two case scenarios even when we do not take into account dynamics of the ecosystems. This will be all the more the case when the dynamics of the system are included in the analyses. Therefore, biological parameters such as growth rates or fish diet must be considered

  5. Mercury Continuous Emmission Monitor Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    /mass spectrometry (ID/ICP/MS) performed by NIST in Gaithersburg, MD. The outputs of mercury calibrators are compared to one another using a nesting procedure which allows direct comparison of one calibrator with another at specific concentrations and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define calibrator performance as affected by variables such as pressure, temperature, line voltage, and shipping. In 2007 WRI developed and conducted a series of simplified qualification experiments to determine actual calibrator performance related to the variables defined in the qualification portion of the interim protocol.

  6. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  7. Mercury uptake and accumulation by four species of aquatic plants.

    Science.gov (United States)

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively.

  8. Facile Synthesis, Characterization of Poly-2-mercapto-1,3,4-thiadiazole Nanoparticles for Rapid Removal of Mercury and Silver Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Shaojun Huang

    2018-02-01

    Full Text Available Industrial pollution by heavy metal ions such as Hg2+ and Ag+ is a universal problem owing to the toxicity of heavy metals. In this study, a novel nano-adsorbent, i.e., poly-2-mercapto-1,3,4-thiadiazole (PTT, was synthesized and used to selectively adsorb mercury and silver ions from aqueous solutions. PTT nanoparticles were synthesized via chemical oxidative dehydrogenation polymerization under mild conditions. Oxidant species, medium, monomer concentration, oxidant/monomer molar ratio, and polymerization temperature were optimized to obtain optimum yields. The molecular structure and morphology of the nanoparticles were analyzed by ultraviolet-visible (UV-Vis, Fourier transform infrared (FT-IR, matrix-assisted laser desorption/ionization/time-of-flight (MALDI/TOF mass and X-ray photoelectron (XPS spectroscopies, wide-angle X-ray diffraction (WAXD, theoretical calculations and transmission electron microscopy (TEM, respectively. It was found that the polymerization of 2-mercapto-1,3,4-thiodiazole occurs through head-to-tail coupling between the S(2 and C(5 positions. The PTT nanoparticles having a peculiar synergic combination of four kinds of active groups, S–, –SH, N–N, and =N– with a small particle size of 30–200 nm exhibit ultrarapid initial adsorption rates of 1500 mg(Hg·g−1·h−1 and 5364 mg(Ag·g−1·h−1 and high adsorption capacities of up to 186.9 mg(Hg·g−1 and 193.1 mg(Ag·g−1, becoming ultrafast chelate nanosorbents with high adsorption capacities. Kinetic study indicates that the adsorption of Hg2+ and Ag+ follows the pseudo-second-order model, suggesting a chemical adsorption as the rate-limiting step during the adsorption process. The Hg2+ and Ag+-loaded PTT nanoparticles could be effectively regenerated with 0.1 mol·L−1 EDTA or 1 mol·L−1 HNO3 without significantly losing their adsorption capacities even after five adsorption–desorption cycles. With these impressive properties, PTT nanoparticles are

  9. Efficient Removal of Heavy Metals from Polluted Water with High Selectivity for Mercury(II) by 2-Imino-4-thiobiuret-Partially Reduced Graphene Oxide (IT-PRGO).

    Science.gov (United States)

    Awad, Fathi S; AbouZeid, Khaled M; El-Maaty, Weam M Abou; El-Wakil, Ahmad M; El-Shall, M Samy

    2017-10-04

    A novel chelating adsorbent, based on the chemical modification of graphene oxide by functionalization amidinothiourea to form 2-imino-4-thiobiuret-partially reduced graphene oxide (IT-PRGO), is used for the effective extraction of the toxic metal ions Hg(II), Cu(II), Pb(II), Cr(VI), and As(V) from wastewater. FTIR and Raman spectroscopy, XRD, and XPS confirm the successful incorporation of the amidinothiourea groups within the partially reduced GO nanosheets through nucleophilic substitution reactions with the acyl chloride groups in the chemically modified GO. The IT-PRGO adsorbent shows exceptional selectivity for the extraction of Hg(II) with a capacity of 624 mg/g, placing it among the top of carbon-based materials known for the high capacity of Hg(II) removal from aqueous solutions. The maximum sorption capacities for As(V), Cu(II), Cr(VI), and Pb(II) are 19.0, 37.0, 63.0, and 101.5 mg/g, respectively. The IT-PRGO displays a 100% removal of Hg(II) at concentrations up to 100 ppm with 90%, 95%, and 100% removal within 15, 30, and 90 min, respectively, at 50 ppm concentration. In a mixture of six heavy metal ions containing 10 ppm of each ion, the IT-PRGO shows a removal of 3% Zn(II), 4% Ni(II), 9% Cd(II), 21% Cu(II), 63% Pb(II), and 100% Hg(II). A monolayer adsorption behavior is suggested based on the excellent agreement of the experimental sorption isotherms with the Langmuir model. The sorption kinetics can be fitted well to a pseudo-second-order kinetic model which suggests a chemisorption mechanism via the amidinothiourea groups grafted on the reduced graphene oxide nanosheets. Desorption studies demonstrate that the IT-PRGO is easily regenerated with the desorption of the metal ions Hg(II), Cu(II), Pb(II), Cr(VI), and As(V) reaching 96%, 100%, 100%, 96%, and 100%, respectively, from their maximum sorption capacities using different eluents. The IT-PRGO is proposed as a top performing remediation adsorbent for the extraction of heavy metals from waste and

  10. Thief carbon catalyst for oxidation of mercury in effluent stream

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  11. A Safe Protocol for Amalgam Removal

    Science.gov (United States)

    Colson, Dana G.

    2012-01-01

    Today's environment has different impacts on our body than previous generations. Heavy metals are a growing concern in medicine. Doctors and individuals request the removal of their amalgam (silver mercury) restorations due to the high mercury content. A safe protocol to replace the silver mercury filling will ensure that there is minimal if any absorption of materials while being removed. Strong alternative white composite and lab-processed materials are available today to create a healthy and functioning mouth. Preparation of the patient prior to the procedure and after treatment is vital to establish the excretion of the mercury from the body. PMID:22315627

  12. A Safe Protocol for Amalgam Removal

    Directory of Open Access Journals (Sweden)

    Dana G. Colson

    2012-01-01

    Full Text Available Today's environment has different impacts on our body than previous generations. Heavy metals are a growing concern in medicine. Doctors and individuals request the removal of their amalgam (silver mercury restorations due to the high mercury content. A safe protocol to replace the silver mercury filling will ensure that there is minimal if any absorption of materials while being removed. Strong alternative white composite and lab-processed materials are available today to create a healthy and functioning mouth. Preparation of the patient prior to the procedure and after treatment is vital to establish the excretion of the mercury from the body.

  13. Synthesis of polyacrylonitrile-grafted cross-linked N-chlorosulfonamidated polystyrene via surface-initiated ARGET ATRP, and use of the resin in mercury removal after modification.

    Science.gov (United States)

    Zong, Guangxi; Chen, Hou; Qu, Rongjun; Wang, Chunhua; Ji, Naiyi

    2011-02-15

    A novel method of surface modification was developed via iron (III)-mediated atom transfer radical polymerization, with activators regenerated by electron transfer (ARGET ATRP) on the surfaces of polystyrene resin-supported N-chlorosulfonamide groups. The well-defined polyacrylonitrile (PAN) was grafted onto the surfaces of the polystyrene (PS). The graft reaction exhibited first-order kinetics with respect to the polymerization time in the low-monomer-conversion stage. The cyano group of PAN-g-PS was modified by NH(2)OH·HCl to yield amidoxime (AO) groups. The AO groups had been demonstrated to be an efficient Hg-specific sorbent, which can remove Hg(2+) from solutions. No interference arose from common metal ions, such as Pd(2+), Ag(+), and Cu(2+). Three adsorption-desorption cycles demonstrated that this resin is suitable for reuse without any considerable change in adsorption capacity. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity.

    Science.gov (United States)

    Spiller, Henry A

    2018-05-01

    , including selenoprotein P, K, and T. Impairment of the thioredoxin and glutaredoxin systems allows for proliferation intracellular reactive oxygen species which leads to glutamate excitosis, calcium dyshomeostasis, mitochondrial injury/loss, lipid peroxidation, impairment of protein repair, and apoptosis. Methylmercury is a more potent inhibitor of the thioredoxin system, partially explaining its increased neurotoxicity. A second important mechanism is due to the high affinity of mercury for selenium and the subsequent depletion of selenium stores needed for insertion into de novo generation of replacement selenoproteins. This mercury-induced selenium deficiency state inhibits regeneration of the selenoproteins to restore the cellular redox environment. The effects of selenium on mercury and the role this plays in biological response to mercury: Early research suggested selenium may provide a protective role in mercury poisoning, and with limitations this is true. The roles selenium plays in this reduction of mercury toxicity partially depends on the form of mercury and may be multifaceted including: 1) facilitating demethylation of organic mercury to inorganic mercury; 2) redistribution of mercury to less sensitive target organs; 3) binding to inorganic mercury and forming an insoluble, stable and inert Hg:Se complex; 4) reduction of mercury absorption from the GI tract; 5) repletion of selenium stores (reverse selenium deficiency); and 6) restoration of target selenoprotein activity and restoring the intracellular redox environment. There is conflicting evidence as to whether selenium increases or hinders mercury elimination, but increased mercury elimination does not appear to be a major role of selenium. Selenium supplementation has been shown to restore selenoprotein function and reduce the toxicity of mercury, with several significant limitations including: the form of mercury (methylmercury toxicity is less responsive to amelioration) and mercury dose. The

  15. Mercury, arsenic and cadmium in the unfried and fried fish

    International Nuclear Information System (INIS)

    Anand, S.J.S.

    1978-01-01

    Determination of mercury, arsenic and cadmium in unfried and fried fish samples has been carried out by neutron activation followed by chemical separation to remove the interfering activies of copper, zinc etc. This paper presents results of finding on losses of mercury, arsenic and cadmium in the unfried and fried fish. (author)

  16. ELEMENTAL MERCURY ADSORPTION BY ACTIVATED CARBON TREATED WITH SULFURIC ACID

    Science.gov (United States)

    The paper gives results of a study of the adsorption of elemental mercury at 125 C by a sulfuric-acid (H2S04, 50% w/w/ solution)-treated carbon for the removal of mercury from flue gas. The pore structure of the sample was characterized by nitrogen (N2) at -196 C and the t-plot m...

  17. Mercury Quick Facts: Health Effects of Mercury Exposure

    Science.gov (United States)

    Mercury Quick Facts Health Effects of Mercury Exposure What is Elemental Mercury? Elemental (metallic) mercury is the shiny, silver-gray metal found in thermometers, barometers, and thermostats and other ...

  18. Were mercury emission factors for Chinese non-ferrous metal smelters overestimated? Evidence from onsite measurements in six smelters

    International Nuclear Information System (INIS)

    Zhang Lei; Wang Shuxiao; Wu Qingru; Meng Yang; Yang Hai; Wang Fengyang; Hao Jiming

    2012-01-01

    Non-ferrous metal smelting takes up a large proportion of the anthropogenic mercury emission inventory in China. Zinc, lead and copper smelting are three leading sources. Onsite measurements of mercury emissions were conducted for six smelters. The mercury emission factors were 0.09–2.98 g Hg/t metal produced. Acid plants with the double-conversion double-absorption process had mercury removal efficiency of over 99%. In the flue gas after acid plants, 45–88% was oxidized mercury which can be easily scavenged in the flue gas scrubber. 70–97% of the mercury was removed from the flue gas to the waste water and 1–17% to the sulfuric acid product. Totally 0.3–13.5% of the mercury in the metal concentrate was emitted to the atmosphere. Therefore, acid plants in non-ferrous metal smelters have significant co-benefit on mercury removal, and the mercury emission factors from Chinese non-ferrous metal smelters were probably overestimated in previous studies. - Highlights: ► Acid plants in smelters provide significant co-benefits for mercury removal (over 99%). ► Most of the mercury in metal concentrates for smelting ended up in waste water. ► Previously published emission factors for Chinese metal smelters were probably overestimated. - Acid plants in smelters have high mercury removal efficiency, and thus mercury emission factors for Chinese non-ferrous metal smelters were probably overestimated.

  19. Mercury speciation during in situ thermal desorption in soil

    International Nuclear Information System (INIS)

    Park, Chang Min; Katz, Lynn E.; Liljestrand, Howard M.

    2015-01-01

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg 0 gas until the temperature reached 358.15 K. • Phase change of HgCl 2(s) completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg 0 ) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  20. Mixed Waste Focus Area Mercury Working Group: An integrated approach to mercury waste treatment and disposal

    International Nuclear Information System (INIS)

    Conley, T.B.; Morris, M.I.; Osborne-Lee, I.W.

    1998-03-01

    In May 1996, the US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Working Group (HgWG). The HgWG was established to address and resolve the issues associated with mercury contaminated mixed wastes. During the MWFA's initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation removal technologies for the treatment of mercury and mercury contaminated mixed waste. The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. The focus of the HgWG is to better establish the mercury related treatment technologies at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate both the amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded that will address DOE's needs for separation removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the HgWG to date through these various activities

  1. Sorbents for the oxidation and removal of mercur

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    2017-09-12

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  2. USCIS Backlog Elimination

    Data.gov (United States)

    Department of Homeland Security — USCIS is streamlining the way immigration benefits are delivered. By working smarter and eliminating redundancies, USCIS is bringing a business model to government....

  3. Minamata Convention on Mercury

    Science.gov (United States)

    On November 6, 2013 the United States signed the Minamata Convention on Mercury, a new multilateral environmental agreement that addresses specific human activities which are contributing to widespread mercury pollution

  4. The Plasma Environment at Mercury

    Science.gov (United States)

    Raines, James M.; Gershman, Daniel J.; Zurbuchen, Thomas H.; Gloeckler, George; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Krimigis, Stamatios M.; Killen, Rosemary M.; Sarantos, Menalos; hide

    2011-01-01

    Mercury is the least explored terrestrial planet, and the one subjected to the highest flux of solar radiation in the heliosphere. Its highly dynamic, miniature magnetosphere contains ions from the exosphere and solar wind, and at times may allow solar wind ions to directly impact the planet's surface. Together these features create a plasma environment that shares many features with, but is nonetheless very different from, that of Earth. The first in situ measurements of plasma ions in the Mercury space environment were made only recently, by the Fast Imaging Plasma Spectrometer (FIPS) during the MESSENGER spacecraft's three flybys of the planet in 2008-2009 as the probe was en route to insertion into orbit about Mercury earlier this year. Here. we present analysis of flyby and early orbital mission data with novel techniques that address the particular challenges inherent in these measurements. First. spacecraft structures and sensor orientation limit the FIPS field of view and allow only partial sampling of velocity distribution functions. We use a software model of FIPS sampling in velocity space to explore these effects and recover bulk parameters under certain assumptions. Second, the low densities found in the Mercury magnetosphere result in a relatively low signal-to-noise ratio for many ions. To address this issue, we apply a kernel density spread function to guide removal of background counts according to a background-signature probability map. We then assign individual counts to particular ion species with a time-of-flight forward model, taking into account energy losses in the carbon foil and other physical behavior of ions within the instrument. Using these methods, we have derived bulk plasma properties and heavy ion composition and evaluated them in the context of the Mercury magnetosphere.

  5. Mercury in Your Environment

    Science.gov (United States)

    Basic information about mercury, how it gets in the air, how people are exposed to it and health effects associated with exposure; what EPA and other organizations are doing to limit exposures; what citizens should know to minimize exposures and to reduce mercury in the environment; and information about products that contain mercury.

  6. Intentional intravenous mercury injection

    African Journals Online (AJOL)

    Three forms of mercury exist: elemental, inorganic and organic, all of which may be toxic with clinical consequences, depending on the type of exposure. Elemental mercury poisoning usually occurs via vapour inhalation, as mercury is well absorbed through the lungs. The central nervous system is then the major site of ...

  7. Amended Silicated for Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where

  8. Geochemical, Genetic, and Community Controls on Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D.

    2014-11-10

    The sulfate-reducing bacteria (SRB) are soil bacteria that share two common characteristics, strict anaerobiosis and the ability to respire sulfate. The metabolic activities of these bacteria play significant roles in the global sulfur cycle, anaerobic degradation of biomass, biological metal corrosion in the environment and, recently, degradation of toxic compounds. The accumulation of evidence suggests these bacteria are also key to the production of the neurotoxin methylmercury in environmental settings. We propose to use our experience with the development of genetics in sulfate-reducing bacteria of the genus Desulfovibrio to create mutations that will eliminate the methylation of mercury, thereby identifying the genes essential for this process. This information may allow the environmental monitoring of the mercury methylation potential to learn the location and quantity of the production this toxin. From these data, more accurate predictive models of mercury cycling can be generated.

  9. Interim Results from a Study of the Impacts of Tin (II) Based Mercury Treatment in a Small Stream Ecosystem: Tims Branch, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Looney, Brian [Savannah River National Laboratory (SRNL); BryanJr., Larry [Savannah River Ecology Laboratory; Mathews, Teresa J [ORNL; Peterson, Mark J [ORNL; Roy, W Kelly [ORNL; Jett, Robert T [ORNL; Smith, John G [ORNL

    2012-03-01

    A research team is assessing the impacts of an innovative mercury treatment system in Tims Branch, a small southeastern stream. The treatment system, installed in 2007, reduces and removes inorganic mercury from water using tin(II) (stannous) chloride addition followed by air stripping. The system results in discharge of inorganic tin to the ecosystem. This screening study is based on historical information combined with measurements of contaminant concentrations in water, fish, sediment, biofilms and invertebrates. Initial mercury data indicate that first few years of mercury treatment resulted in a significant decrease in mercury concentration in an upper trophic level fish, redfin pickerel, at all sampling locations in the impacted reach. For example, the whole body mercury concentration in redfin pickerel collected from the most impacted pond decreased approximately 72% between 2006 (pre-treatment) and 2010 (post-treatment). Over this same period, mercury concentrations in the fillet of redfin pickerel in this pond were estimated to have decreased from approximately 1.45 {micro}g/g (wet weight basis) to 0.45 {micro}g/g - a decrease from 4.8x to 1.5x the current EPA guideline concentration for mercury in fillet (0.3 {micro}g/g). Thermodynamic modeling, scanning electron microscopy, and other sampling data for tin suggest that particulate tin (IV) oxides are a significant geochemical species entering the ecosystem with elevated levels of tin measured in surficial sediments and biofilms. Detectable increases in tin in sediments and biofilms extended approximately 3km from the discharge location. Tin oxides are recalcitrant solids that are relatively non-toxic and resistant to dissolution. Work continues to develop and validate methods to analyze total tin in the collected biota samples. In general, the interim results of this screening study suggest that the treatment process has performed as predicted and that the concentration of mercury in upper trophic level

  10. Elemental, mercuric and organic mercury: biological interactions and dilemmas

    Energy Technology Data Exchange (ETDEWEB)

    Aposhian, H.V. [Arizona Univ., Tucson, AZ (United States). Dept. of Molecular and Cellular Biology

    2002-09-01

    The greatest exposure of the general population to mercury appears to be from the elemental mercury emitted by dental amalgams. The next greatest exposure is from methylmercury in seafood. One of the major sources of this methylmercury is from mercury emitted by power plants burning fossil fuel. After the mercury enters the atmosphere, some of it will be deposited in lakes, rivers, bays, seas and oceans. In an aquatic environment, inorganic mercury is converted to methylmercury by bacteria. Once in the methylmercury form, it is bioaccumulated up the food chain. The bacteria are consumed by other unicellular organisms that are eaten by small fish; small fish are eaten by bigger fish; then bigger fish are eaten by other animals and humans. Methylmercury and elemental mercury are efficiently absorbed by humans and are transported rapidly to and deposited in the brain. In the brain, methylmercury is converted very slow to mercuric mercury while the elemental mercury is converted very quickly. Methylmercury and elemental mercury are extremely toxic to the developing central nervous system. Those at greatest risk are fetuses, very young children, women of childbearing age and pregnant women. There are no safe or reliable methods to remove these two forms of mercury and their biotransformant mercuric mercury from the human brain. The chelating agents DMPS (sodium dimercaptopropanesulfonate) and DMSA (dimercaptosuccinic acid) decrease the body's burden of mercury but not the brain's. Because of the toxicity of methylmercury, the major source of mercury emissions, namely, emissions from power plants, needs to be curtailed. (orig.)

  11. Enhanced Control of Mercury and other HAPs by Innovative Modifications to Wet FGD Processes

    International Nuclear Information System (INIS)

    Hargrove, O.W.; Carey, T.R.; Richardson, C.F.; Skarupa, R.C.; Meserole, F.B.; Rhudy, R.G.; Brown, Thomas D.

    1997-01-01

    The overall objective of this project was to learn more about controlling emissions of hazardous air pollutants (HAPs) from coal-fired power plants that are equipped with wet flue gas desulfurization (FGD) systems. The project was included by FETC as a Phase I project in its Mega-PRDA program. Phase I of this project focused on three research areas. These areas in order of priority were: (1) Catalytic oxidation of vapor-phase elemental mercury; (2) Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and (3) Enhanced mercury removal by addition of additives to FGD process liquor. Mercury can exist in two forms in utility flue gas--as elemental mercury and as oxidized mercury (predominant form believed to be HgCl 2 ). Previous test results have shown that wet scrubbers effectively remove the oxidized mercury from the gas but are ineffective in removing elemental mercury. Recent improvements in mercury speciation techniques confirm this finding. Catalytic oxidation of vapor-phase elemental mercury is of interest in cases where a wet scrubber exists or is planned for SO 2 control. If a loW--cost process could be developed to oxidize all of the elemental mercury in the flue gas, then the maximum achievable mercury removal across the existing or planned wet scrubber would increase. Other approaches for improving control of HAPs included a method for improving particulate removal across the FGD process and the use of additives to increase mercury solubility. This paper discusses results related only to catalytic oxidation of elemental mercury

  12. REMOVAL OF Cd2+, Cu2+AND Pb2+ WITH A BURKINA FASO CLAY ELIMINATION DU Cd2+, DU Cu2+ ET DU Pb2+ PAR UNE ARGILE LOCALE DU BURKINA FASO

    Directory of Open Access Journals (Sweden)

    BRAHIMA SORGHO

    2016-12-01

    Full Text Available Contamination of water by heavy metals is often linked to human, industrial and agricultural activities, and cause health and ecological problems. The objective of this study is to remove water pollutants like Cd2+, Cu2+ and Pb2+ in synthetic solutions by adsorption on clay from Burkina Faso. Electrochemical characterizations revealed that 90 % of heavy metals can be removed. Structural studies evidenced that almost all clay mineral species participate to the removal of heavy metals through different physico-chemical mechanisms namely ion exchange, complexation and precipitation.

  13. The mixed waste focus area mercury working group: an integrated approach for mercury treatment and disposal

    International Nuclear Information System (INIS)

    Conley, T.B.; Morris, M.I.; Holmes-Burns, H.; Petersell, J.; Schwendiman, L.

    1997-01-01

    In May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG), which was established to address and resolve the issues associated with mercury- contaminated mixed wastes. Three of the first four technology deficiencies identified during the MWFA technical baseline development process were related to mercury amalgamation, stabilization, and separation/removal. The HgWG will assist the MWFA in soliciting, identifying, initiating, and managing all the efforts required to address these deficiencies. The focus of the HgWG is to better establish the mercury-related treatment needs at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. The team will initially focus on the sites with the most mercury-contaminated mixed wastes, whose representatives comprise the HgWG. However, the group will also work with the sites with less inventory to maximize the effectiveness of these efforts in addressing the mercury- related needs throughout the entire complex

  14. The mixed waste focus area mercury working group: an integrated approach for mercury treatment and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Conley, T.B.; Morris, M.I. [Oak Ridge National Lab., TN (United States); Holmes-Burns, H. [Westinghouse Savannah River Co., Aiken, SC (United States); Petersell, J. [AIMS, Inc., Golden, CO (United States); Schwendiman, L. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1997-02-01

    In May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG), which was established to address and resolve the issues associated with mercury- contaminated mixed wastes. Three of the first four technology deficiencies identified during the MWFA technical baseline development process were related to mercury amalgamation, stabilization, and separation/removal. The HgWG will assist the MWFA in soliciting, identifying, initiating, and managing all the efforts required to address these deficiencies. The focus of the HgWG is to better establish the mercury-related treatment needs at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. The team will initially focus on the sites with the most mercury-contaminated mixed wastes, whose representatives comprise the HgWG. However, the group will also work with the sites with less inventory to maximize the effectiveness of these efforts in addressing the mercury- related needs throughout the entire complex.

  15. Emissions of airborne toxics from coal-fired boilers: Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.S.; Livengood, C.D.; Zaromb, S.

    1991-09-01

    Concerns over emissions of hazardous air Pollutants (air toxics) have emerged as a major environmental issue, and the authority of the US Environmental Protection Agency to regulate such pollutants was greatly expanded through the Clean Air Act Amendments of 1990. Mercury has been singled out for particular attention because of concerns over possible effects of emissions on human health. This report evaluates available published information on the mercury content of coals mined in the United States, on mercury emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Anthracite and bituminous coals have the highest mean-mercury concentrations, with subbituminous coals having the lowest. However, all coal types show very significant variations in mercury concentrations. Mercury emissions from coal combustion are not well-characterized, particularly with regard to determination of specific mercury compounds. Variations in emission rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of mercury by environmental control technologies are available primarily for systems with electrostatic precipitators, where removals of approximately 20% to over 50% have been reported. Reported removals for wet flue-gas-desulfurization systems range between 35 and 95%, while spray-dryer/fabric-filter systems have given removals of 75 to 99% on municipal incinerators. In all cases, better data are needed before any definitive judgments can be made. This report briefly reviews several areas of research that may lead to improvements in mercury control for existing flue-gas-clean-up technologies and summarizes the status of techniques for measuring mercury emissions from combustion sources.

  16. Mercury in waders from the Wash

    Energy Technology Data Exchange (ETDEWEB)

    Parslow, J.L.F.

    1973-01-01

    Concentrations of total mercury were determined in the livers of seventy-three waders (Limicolae) collected during August-March on the Wash, eastern England, in order to obtain baseline data on levels of this element in birds living in a non-industrial and presumably lightly polluted estuarine area. In the knot (Calidris canutus), mercury levels were relatively low, about 1 ppm dry weight, in early autumn but increased through the winter until, by February-March, they were about 10-20 times higher. On more limited or scattered data, the dunlin (C. alpina) and redshank (Tringa totanus) also showed much higher mercury levels in late winter compared with autumn. The results imply that mercury accumulation in the liver during the winter months (when the birds are exclusively estuarine, mainly in temperate latitudes) is eliminated in summer (on mainly inland arctic and subarctic breeding grounds). The results are discussed in relation to the moult, movements and food of the main species. The biological significance of the concentrations found in the Wash waders is uncertain, but it is suggested that in industrial estuaries mercury levels in the same species may be very much higher and, by analogy with other species, could be having detrimental physiological effects. 26 references, 1 figure, 4 tables.

  17. Formation of mercury sulfide from Hg(II)−thiolate complexes in natural organic matter

    Science.gov (United States)

    Alain Manceau,; Cyprien Lemouchi,; Mironel Enescu,; Anne-Claire Gaillot,; Martine Lanson,; Valerie Magnin,; Pieter Glatzel,; Poulin, Brett; Ryan, Joseph N.; Aiken, George R.; Isabelle Gautier-Lunea,; Kathryn L. Nagy,

    2015-01-01

    Methylmercury is the environmental form of neurotoxic mercury that is biomagnified in the food chain. Methylation rates are reduced when the metal is sequestered in crystalline mercury sulfides or bound to thiol groups in macromolecular natural organic matter. Mercury sulfide minerals are known to nucleate in anoxic zones, by reaction of the thiol-bound mercury with biogenic sulfide, but not in oxic environments. We present experimental evidence that mercury sulfide forms from thiol-bound mercury alone in aqueous dark systems in contact with air. The maximum amount of nanoparticulate mercury sulfide relative to thiol-bound mercury obtained by reacting dissolved mercury and soil organic matter matches that detected in the organic horizon of a contaminated soil situated downstream from Oak Ridge, TN, in the United States. The nearly identical ratios of the two forms of mercury in field and experimental systems suggest a common reaction mechanism for nucleating the mineral. We identified a chemical reaction mechanism that is thermodynamically favorable in which thiol-bound mercury polymerizes to mercury–sulfur clusters. The clusters form by elimination of sulfur from the thiol complexes via breaking of mercury–sulfur bonds as in an alkylation reaction. Addition of sulfide is not required. This nucleation mechanism provides one explanation for how mercury may be immobilized, and eventually sequestered, in oxygenated surface environments.

  18. Marine biogeochemistry of mercury

    International Nuclear Information System (INIS)

    Gill, G.A.

    1986-01-01

    Noncontaminating sample collection and handling procedures and accurate and sensitive analysis methods were developed to measure sub-picomolar Hg concentrations in seawater. Reliable and diagnostic oceanographic Hg distributions were obtained, permitting major processes governing the marine biogeochemistry of Hg to be identified. Mercury concentrations in the northwest Atlantic, central Pacific, southeast Pacific, and Tasman Sea ranged from 0.5 to 12 pM. Vertical Hg distributions often exhibited a maximum within or near the main thermocline. At similar depths, Hg concentrations in the northwest Atlantic Ocean were elevated compared to the N. Pacific Ocean. This pattern appears to result from a combination of enhanced supply of Hg to the northwest Atlantic by rainfall and scavenging removal along deep water circulation pathways. These observations are supported by geochemical steady-state box modelling which predicts a relatively short mean residence time for Hg in the oceans; demonstrating the reactive nature of Hg in seawater and precluding significant involvement in nutrient-type recyclic. Evidence for the rapid removal of Hg from seawater was obtained at two locations. Surface seawater Hg measurements along 160 0 W (20 0 N to 20 0 S) showed a depression in the equatorial upwelling area which correlated well with the transect region exhibiting low 234 Th/ 238 U activity ratios. This relationship implies that Hg will be scavenged and removed from surface seawater in biologically productive oceanic zones. Further, a broad minimum in the vertical distribution of Hg was observed to coincide with the intense oxygen minimum zone in the water column in coastal waters off Peru

  19. Analysis of mercury species present during coal combustion by thermal desorption

    OpenAIRE

    López Antón, María Antonia; Yuan, Yang; Perry, Ron; Maroto Valer, Mercedes

    2010-01-01

    [EN] Mercury in coal and its emissions from coal-fired boilers is a topic of primary environmental concern in the United States and Europe. The predominant forms of mercury in coal-fired flue gas are elemental (Hg0) and oxidized (Hg2+, primarily as HgCl2). Because Hg2+ is more condensable and far more water soluble than Hg0, the wide variability in mercury speciation in coal-fired flue gases undermines the total mercury removal efficiency of most mercury emission control technologies. It is i...

  20. Mercury vapor inhalation and poisoning of a family.

    Science.gov (United States)

    Oz, Serife Gul; Tozlu, Mukaddes; Yalcin, Songul Siddika; Sozen, Tumay; Guven, Gulay Sain

    2012-08-01

    Acute mercury vapor poisoning is a rare but fatal toxicological emergency. People are exposed to mercury in daily life by the way of foods, vaccines, antiseptics, ointments, amalgam or occupation. We present here, the clinical picture and management of four members of the same family who were exposed to elemental mercury. Three of the family members were seen in another hospital with malaise, fever, eritematous rash and pulmonary problems. Their questioning revealed the mercury exposure. Having a suspicion of heavy metal intoxication, blood and urine mercury levels were measured and mercury intoxication was diagnosed. On admission to our hospital, two patients already had chelation therapy. In three of them we found three distinct abnormalities: encephalopathy, nephrotic syndrome and polyneuropathy. The fourth family member had minor symptoms. This family is an example for the inhalation exposure resulting from inappropriate handling of liquid mercury. During the first days, flu like illness ensues. Then, severe pulmonary, neurological, renal, hepatic, hematological and dermatological dysfunctions develop. Blood and urine mercury levels should be tested on suspicion, but it must be kept in mind that blood level is unreliable in predicting the severity of mercury toxicity. The priority in the treatment should be removing the patient from the source of exposure. Then British anti-Lewisite, edetate calcium disodium, penicillamine, Sodium 2,3-dimercaptopropane-1-sulfhonate and 2,3-dimercaptosuccinic acid can be used for binding the mercury. We conclude that since mercury-containing devices are present in daily life, physicians must be able to recognize the clinical manifestations and treatment of mercury poisoning.

  1. [Mercury Distribution Characteristics and Atmospheric Mercury Emission Factors of Typical Waste Incineration Plants in Chongqing].

    Science.gov (United States)

    Duan, Zhen-ya; Su, Hai-tao; Wang, Feng-yang; Zhang, Lei; Wang, Shu-xiao; Yu, Bin

    2016-02-15

    Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.

  2. Mercury evaporation from amalgams with varied mercury contents.

    Science.gov (United States)

    Ohmoto, K; Nakajima, H; Ferracane, J L; Shintani, H; Okabe, T

    2000-09-01

    This study examined the relationship between mercury content and mercury evaporation from amalgams during setting. Two different types of commercial high-copper amalgams (single composition and admixed types) were used. Cylindrical specimens of each amalgam were prepared with five different mercury contents according to ADA Specification No.1. Specimens were also prepared by hand condensation. Mercury evaporation from amalgam specimens maintained at 37 degrees C was measured using a gold film mercury analyzer from 10 min after the end of trituration until the mercury concentration in air reached an undetectable level. The mercury content more clearly influenced the mercury evaporation from the admixed type amalgam specimens when the mercury content decreased below the manufacturers' recommended trituration conditions. Triturating with less mercury than the manufacturers' recommended amount cannot lower the evaporation of mercury from freshly made amalgam. Proper condensing procedures can minimize the mercury evaporation from the amalgam surface.

  3. Mercury balance analysis

    International Nuclear Information System (INIS)

    Maag, J.; Lassen, C.; Hansen, E.

    1996-01-01

    A detailed assessment of the consumption of mercury, divided into use areas, was carried out. Disposal and emissions to the environment were also qualified. The assessment is mainly based on data from 1992 - 1993. The most important source of emission of mercury to air is solid waste incineration which is assessed in particular to be due to the supply of mercury in batteries (most likely mercury oxide batteries from photo equipment) and to dental fillings. The second most important source of mercury emission to air is coal-fired power plants which are estimated to account for 200-500 kg of mercury emission p.a. Other mercury emissions are mainly related to waste treatment and disposal. The consumption of mercury is generally decreasing. During the period from 1982/83 - 1992-93, the total consumption of mercury in Denmark was about halved. This development is related to the fact that consumption with regard to several important use areas (batteries, dental fillings, thermometers etc.) has been significantly reduced, while for other purposes the use of mercury has completely, or almost disappeared, i.e. (fungicides for seed, tubes etc.). (EG)

  4. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Choi, A.

    2010-08-18

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that comes in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter offgas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of

  5. Modeling The Impact Of Elevated Mercury In Defense Waste Processing Facility Melter Feed On The Melter Off-Gas System - Preliminary Report

    International Nuclear Information System (INIS)

    Zamecnik, J.; Choi, A.

    2009-01-01

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl 2 , and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg 2 Cl 2 ) to HgCl 2 with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of

  6. Molecular Mechanisms of Bacterial Mercury Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Anne O. [Univ. of Georgia, Athens, GA (United States). Dept. of Microbiology; Smith, Jeremy C. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Biochemistry and Cellular and Molecular Biology

    2016-04-25

    Hg is of special interest to DOE due to past intensive use in manufacture of nuclear weapons at the Oak Ridge Reservation (ORR). Because of its facile oxidation/reduction [Hg(II)/Hg(0)] chemistry, ability to bond to carbon [as in highly toxic methylmercury: MeHg(I)] and its unique physical properties [e.g., volatility of Hg(0)], Hg has a complex environmental cycle involving soils, sediments, waterways and the atmosphere and including biotic and abiotic chemical and physical transport and transformations. Understanding such processes well enough to design stewardship plans that minimize negative impacts in diverse ecological settings requires rich knowledge of the contributing abiotic and biotic processes. Prokaryotes are major players in the global Hg cycle. Facultative and anaerobic bacteria can form MeHg(I) with consequent intoxication of wildlife and humans. Sustainable stewardship of Hg-contaminated sites requires eliminating not only MeHg(I) but also the Hg(II) substrate for methylation. Fortunately, a variety of mercury resistant (HgR) aerobic and facultative bacteria and archaea can do both things. Prokaryotes harboring narrow or broad Hg resistance (mer) loci detoxify Hg(II) or RHg(I), respectively, to relatively inert, less toxic, volatile Hg(0). HgR microbes are enriched in highly contaminated sites and extensive field data show they depress levels of MeHg >500-fold in such zones. So, enhancing the natural capacity of indigenous HgR microbes to remove Hg(II) and RHg(I) from soils, sediments and waterways is a logical component of a comprehensive plan for clean up and stewardship of contaminated sites.

  7. Mercury is Moon's brother

    International Nuclear Information System (INIS)

    Ksanfomalifi, L.V.

    1976-01-01

    The latest information on Mercury planet is presented obtained by studying the planet with the aid of radar and space vehicles. Rotation of Mercury about its axis has been discovered; within 2/3 of its year it executes a complete revolution about its axis. In images obtained by the ''Mariner-10'' Mercurys surface differs little from that of the Moon. The ''Mariner-10'' has also discovered the Mercurys atmosphere, which consists of extremely rarefied helium. The helium is continuously supplied to the planet by the solar wind. The Mercury's magnetic field has been discovered, whose strength is 35 x 10 -4 at the Equator and 70 x 10 -4 E at the poles. The inclination of the dipole axis to the Mercury's rotation axis is 7 deg

  8. The method of determination of mercury adsorption from flue gases

    Directory of Open Access Journals (Sweden)

    Budzyń Stanisław

    2017-01-01

    Full Text Available For several recent years Faculty of Energy and Fuels of the AGH University of Science and Technology in Krakow conduct intensive studies on the occurrence of mercury contained in thermal and coking coals, as well as on the possible reduction of fossil-fuel mercury emissions. This research focuses, among others, on application of sorbents for removal of mercury from flue gases. In this paper we present the methodology for testing mercury adsorption using various types of sorbents, in laboratory conditions. Our model assumes burning a coal sample, with a specific mercury content, in a strictly determined time period and temperature conditions, oxygen or air flow rates, and the flow of flue gases through sorbent in a specific temperature. It was developed for particular projects concerning the possibilities of applying different sorbents to remove mercury from flue gases. Test stand itself is composed of a vertical pipe furnace inside which a quartz tube was mounted for sample burning purposes. At the furnace outlet, there is a heated glass vessel with a sorbent sample through which flue gases are passing. Furnace allows burning at a defined temperature. The exhaust gas flow path is heated to prevent condensation of the mercury vapor prior to contact with a sorbent. The sorbent container is positioned in the heating element, with controlled and stabilized temperature, which allows for testing mercury sorption in various temperatures. Determination of mercury content is determined before (coal and sorbent, as well as after the process (sorbent and ash. The mercury balance is calculated based on the Hg content determination results. This testing method allows to study sorbent efficiency, depending on sorption temperature, sorbent grain size, and flue-gas rates.

  9. Conference: the wet catalytic oxidation, a technology for the removal of organic pollutants in industrial waters; Conference: l'oxydation voie humide catalytique, une technologie pour l'elimination des polluants organiques dans les eaux industrielles

    Energy Technology Data Exchange (ETDEWEB)

    Besson, M. [Institut de recherches sur la catalyse - CNRS, 2 avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2004-07-01

    In this conference, it is taken stock on the use of catalysts in the wet oxidation process. Supported (TiO{sub 2}, ZrO{sub 2}....) heterogeneous metallic catalysts (Pt, Ru...) are particularly studied. It is shown that this type of catalysts can answer to the required characteristics: activity for the removal of organic matter, lack of active metal leaching in aqueous acid medium, no deactivation...Examples are given. (O.M.)

  10. Peru Mercury Inventory 2006

    Science.gov (United States)

    Brooks, William E.; Sandoval, Esteban; Yepez, Miguel A.; Howard, Howell

    2007-01-01

    In 2004, a specific need for data on mercury use in South America was indicated by the United Nations Environmental Programme-Chemicals (UNEP-Chemicals) at a workshop on regional mercury pollution that took place in Buenos Aires, Argentina. Mercury has long been mined and used in South America for artisanal gold mining and imported for chlor-alkali production, dental amalgam, and other uses. The U.S. Geological Survey (USGS) provides information on domestic and international mercury production, trade, prices, sources, and recycling in its annual Minerals Yearbook mercury chapter. Therefore, in response to UNEP-Chemicals, the USGS, in collaboration with the Economic Section of the U.S. Embassy, Lima, has herein compiled data on Peru's exports, imports, and byproduct production of mercury. Peru was selected for this inventory because it has a 2000-year history of mercury production and use, and continues today as an important source of mercury for the global market, as a byproduct from its gold mines. Peru is a regional distributor of imported mercury and user of mercury for artisanal gold mining and chlor-alkali production. Peruvian customs data showed that 22 metric tons (t) of byproduct mercury was exported to the United States in 2006. Transshipped mercury was exported to Brazil (1 t), Colombia (1 t), and Guyana (1 t). Mercury was imported from the United States (54 t), Spain (19 t), and Kyrgyzstan (8 t) in 2006 and was used for artisanal gold mining, chlor-alkali production, dental amalgam, or transshipment to other countries in the region. Site visits and interviews provided information on the use and disposition of mercury for artisanal gold mining and other uses. Peru also imports mercury-containing batteries, electronics and computers, fluorescent lamps, and thermometers. In 2006, Peru imported approximately 1,900 t of a wide variety of fluorescent lamps; however, the mercury contained in these lamps, a minimum of approximately 76 kilograms (kg), and in

  11. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils.

    Science.gov (United States)

    Worthington, Max J H; Kucera, Renata L; Albuquerque, Inês S; Gibson, Christopher T; Sibley, Alexander; Slattery, Ashley D; Campbell, Jonathan A; Alboaiji, Salah F K; Muller, Katherine A; Young, Jason; Adamson, Nick; Gascooke, Jason R; Jampaiah, Deshetti; Sabri, Ylias M; Bhargava, Suresh K; Ippolito, Samuel J; Lewis, David A; Quinton, Jamie S; Ellis, Amanda V; Johs, Alexander; Bernardes, Gonçalo J L; Chalker, Justin M

    2017-11-16

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury-rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Mercury Binding Sites in Thiol-Functionalized Mesostructured Silica

    International Nuclear Information System (INIS)

    Billinge, Simon J.L.; McKimmey, Emily J.; Shatnawi, Mouath; Kim, HyunJeong; Petkov, Valeri; Wermeille, Didier; Pinnavaia, Thomas J.

    2005-01-01

    Thiol-functionalized mesostructured silica with anhydrous compositions of (SiO 2 ) 1-x (LSiO 1.5 ) x , where L is a mercaptopropyl group and x is the fraction of functionalized framework silicon centers, are effective trapping agents for the removal of mercuric(II) ions from water. In the present work, we investigate the mercury-binding mechanism for representative thiol-functionalized mesostructures by atomic pair distribution function (PDF) analysis of synchrotron X-ray powder diffraction data and by Raman spectroscopy. The mesostructures with wormhole framework structures and compositions corresponding to x = 0.30 and 0.50 were prepared by direct assembly methods in the presence of a structure-directing amine porogen. PDF analyses of five mercury-loaded compositions with Hg/S ratios of 0.50-1.30 provided evidence for the bridging of thiolate sulfur atoms to two metal ion centers and the formation of chain structures on the pore surfaces. We find no evidence for Hg-O bonds and can rule out oxygen coordination of the mercury at greater than the 10% level. The relative intensities of the PDF peaks corresponding to Hg-S and Hg-Hg atomic pairs indicate that the mercury centers cluster on the functionalized surfaces by virtue of thiolate bridging, regardless of the overall mercury loading. However, the Raman results indicate that the complexation of mercury centers by thiolate depends on the mercury loading. At low mercury loadings (Hg/S (le) 0.5), the dominant species is an electrically neutral complex in which mercury most likely is tetrahedrally coordinated to bridging thiolate ligands, as in Hg(SBu t ) 2 . At higher loadings (Hg/S 1.0-1.3), mercury complex cations predominate, as evidenced by the presence of charge-balancing anions (nitrate) on the surface. This cationic form of bound mercury is assigned a linear coordination to two bridging thiolate ligands.

  13. Minding Rachlin's Eliminative Materialism

    Science.gov (United States)

    McDowell, J. J.

    2012-01-01

    Rachlin's teleological behaviorism eliminates the first-person ontology of conscious experience by identifying mental states with extended patterns of behavior, and thereby maintains the materialist ontology of science. An alternate view, informed by brain-based and externalist philosophies of mind, is shown also to maintain the materialist…

  14. Isolation, screening and identification of mercury resistant bacteria from mercury contaminated soil

    Directory of Open Access Journals (Sweden)

    Kowalczyk Anna

    2016-01-01

    Full Text Available New bacterial strains resistant to high concentration of mercury were obtained and character iz ed focusing on their potential application in bioremediation. The biological material was isolated from soil contaminated with mercury. The ability to removal of Hg from the liquid medium and the effect of the various pH and mercury concentrations in the environment on bacterial strains growth kinetics were tested. The selected strains were identified by analysis of the 16S ribosome subunit coding sequenc es as Pseudomonas syringae. The analysis of Hg concentration in liquid medium as effect of microbial metabolism demonstrated that P. syringae is able to remove almost entire metal from medium after 120 hours of incubation. Obtained results revealed new ability of the isolated strain P. syringae. Analyzed properties of this soil bacteria species able to reduce concentration of Hg ors immobi lize this metal are promising for industrial wastewater treatment and bioremediation of the soils polluted especially by mercury lamps scrapping, measuring instruments, dry batteries, detonators or burning fuels made from crude oil, which may also contain mercury. Selected bacteria strains provide efficient and relatively low-cost bioremediation of the areas and waters contaminated with Hg.

  15. Advanced Utility Mercury-Sorbent Field-Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  16. MERCURY ADSORPTION BY ARTHOBACTER GLOBIFORMIS AND SPIRULINA PLATENSIS

    Directory of Open Access Journals (Sweden)

    T. L. Kalabegishvili

    2011-06-01

    Full Text Available The increasing contamination of soil, sediment, and water with heavy metals by natural and industrial processes is a worldwide problem. Many bacteria and microalgae have demonstrated ability to absorb toxic elements. To study mercury biosorption by bacteria Arthrobacter globiformis and microalga Spirulina platensis neutron activation analysis (NAA was applied. The process of mercury biosorption by these media was described by Freundlich and Langmuir-Freundlich Model. Both microorganisms showed a great potential to be used as biosorbing agents for mercury removal from the environment.

  17. Determination of mercury in food by neutron activation

    International Nuclear Information System (INIS)

    Anand, S.J.S.

    1976-01-01

    Determination of mercury in food samples has been carried out by neutron activation followed by chemical separation to remove the interfering activities of copper, zinc etc. Chemical separation was carried out using anion exchange resin (DOWEX 1x8). Mercury was determined by counting 77 keV γ-rays of 197 Hg on a NaI(Tl) crystal in conjunction with a 400-channel pulse-height analyser. Levels of mercury in the following foods are tabulated: rice, wheat, pulses, millets, leafy vegetables, flower, carrot, potato, tomato, onion, chilli powder, sugar, tea leaves, milk. (T.I.)

  18. Evidence for cyanide and mercury inactivation of endogenous plastocyanin

    Energy Technology Data Exchange (ETDEWEB)

    Selman, B.R.; Johnson, G.L.; Giaquinta, R.T.; Dilley, R.A.

    1975-01-01

    Cyanide and mercury treatment of chloroplast membranes inactivates plastocyanin as shown by the inability of the extracted plastocyanin to restore electron transport in a bioassay on chloroplasts depleted of their endogenous plastocyanin by digitonin treatment. The extraction procedure did remove the enzyme from cyanide and mercury treated chloroplasts as shown by sodium dodecyl sulfate polyacrylamine electrophoresis of the extracts. This procedure normally shows a plastocyanin band at 11,000 dalton molecular weight and the band was present in extracts from control and cyanide or mercury treated membranes. 22 references, 4 figures.

  19. Electrolytic recovery of mercury enriched in isotopic abundance

    Science.gov (United States)

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to a method of electrolytically extracting liquid mercury from HgO or Hg.sub.2 Cl.sub.2. Additionally there are disclosed two related techniques associated with the present invention, namely (1) a technique for selectively removing product from different regions of a long photochemical reactor (photoreactor) and (2) a method of accurately measuring the total quantity of mercury formed as either HgO or Hg.sub.2 Cl.sub.2.

  20. Modeling Mercury in Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeremy C [ORNL; Parks, Jerry M [ORNL

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  1. Mixed Waste Focus Area mercury contamination product line: An integrated approach to mercury waste treatment and disposal

    International Nuclear Information System (INIS)

    Hulet, G.A.; Conley, T.B.; Morris, M.I.

    1998-01-01

    The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) is tasked with ensuring that solutions are available for the mixed waste treatment problems of the DOE complex. During the MWFA's initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury and mercury-contaminated mixed waste. The focus area grouped mercury-waste-treatment activities into the mercury contamination product line under which development, demonstration, and deployment efforts are coordinated to provide tested technologies to meet the site needs. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded under the product line that will address DOE's needs for separation/removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the MWFA to date through these various activities

  2. Glutathione as an antioxidant in inorganic mercury induced nephrotoxicity

    Directory of Open Access Journals (Sweden)

    A T Jan

    2011-01-01

    Full Text Available Heavy metal toxicity represents an uncommon but clinically significant medical condition, which if unrecognized or inappropriately treated results in significant morbidity and mortality. Among heavy metals, mercury is recognized as a potent and widely distributed toxicant having the ability to accumulate at various levels of food chain besides possessing ability to cross placental and blood-brain barrier. Symptom picture of mercury (Hg 2+ toxicity is characterized mainly by a series of renal disorders. Mechanism of inorganic mercury toxicity includes production of reactive oxygen species (ROS capable of damaging lipids in membrane, proteins or enzymes in tissues, and DNA to induce oxidative stress as balance between generation, and elimination of ROS is essential for maintaining the functional integrity of a cell. Mitigation of endogenous mercury depends as a part on the presence of antioxidants such as glutathione - most abundant intracellular non-protein thiol that plays a central role in the maintenance of cellular redox status by quenching free radicals generated during oxidative stress. Ability of a cell to survive the threat posed by endogenous mercury represents a biological adaptation fundamental to survival. This review describes the current understanding and the mechanisms involved by different forms of mercury in eliciting their toxicity in kidney along with the knowledge of major intracellular reductant that plays important role in the mitigation of mercury toxicity for the maintenance of homeostasis within the body of living organisms.

  3. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2016-02-01

    Full Text Available Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, waste incinerators, biomass burning and so on. Mercury in coal, ores, and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of Hg0 to gaseous divalent mercury (Hg2+, with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp. Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g., TiO2, Fe2O3, etc. on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs, affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR system promotes mercury oxidation by 34–85 %, electrostatic precipitator (ESP and fabric filter (FF remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD captures 60–95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs. For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher Hg0 fraction (66–82 % of total mercury in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29–90 % from non-ferrous metal

  4. Binary mixtures of mercury/ selenium, and lead/selenium

    African Journals Online (AJOL)

    Physiologically-based biokinetic models have been developed for predicting simultaneously the Absorption, Distribution, Metabolism and Elimination (ADME) properties of lead (Pb) and selenium (Se), and mercury (Hg) and selenium in a number of target tissues of humans. This was done for three population groups, ...

  5. Intentional intravenous mercury injection

    African Journals Online (AJOL)

    In this case report, intravenous complications, treatment strategies and possible ... Mercury toxicity is commonly associated with vapour inhalation or oral ingestion, for which there exist definite treatment options. Intravenous mercury ... personality, anxiousness, irritability, insomnia, depression and drowsi- ness.[1] However ...

  6. International mercury conference

    CSIR Research Space (South Africa)

    Leaner, J

    2006-10-01

    Full Text Available Mercury (Hg) affects human health and the environment, it calls for immediate action. Action is needed at local, regional and international level to reduce the risk associated with mercury, which is a global international problem, as it is a...

  7. Mercury's shifting, rolling past

    OpenAIRE

    Trulove, Susan

    2008-01-01

    Patterns of scalloped-edged cliffs or lobate scarps on Mercury's surface are thrust faults that are consistent with the planet shrinking and cooling with time. However, compression occurred in the planet's early history and Mariner 10 images revealed decades ago that lobate scarps are among the youngest features on Mercury. Why don't we find more evidence of older compressive features?

  8. MESSENGER: Exploring Mercury's Magnetosphere

    Science.gov (United States)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  9. Global Mercury Assessment 2013

    International Development Research Centre (IDRC) Digital Library (Canada)

    mercury pollution. This summary report and the accompanying. Technical Background Report for the Global. Mercury Assessment 2013 are developed in response to Decision 25/5, paragraph ... The use of different pollution control technologies in different ...... vegetation, snow, freshwater, and seawater. One of the largest ...

  10. Eliminating Perinatal HIV Transmission

    Centers for Disease Control (CDC) Podcasts

    2012-11-26

    In this podcast, CDC’s Dr. Steve Nesheim discusses perinatal HIV transmission, including the importance of preventing HIV among women, preconception care, and timely HIV testing of the mother. Dr. Nesheim also introduces the revised curriculum Eliminating Perinatal HIV Transmission intended for faculty of OB/GYN and pediatric residents and nurse midwifery students.  Created: 11/26/2012 by Division of HIV/AIDS Prevention.   Date Released: 11/26/2012.

  11. New science challenges old notion that mercury dental amalgam is safe.

    Science.gov (United States)

    Homme, Kristin G; Kern, Janet K; Haley, Boyd E; Geier, David A; King, Paul G; Sykes, Lisa K; Geier, Mark R

    2014-02-01

    Mercury dental amalgam has a long history of ostensibly safe use despite its continuous release of mercury vapor. Two key studies known as the Children's Amalgam Trials are widely cited as evidence of safety. However, four recent reanalyses of one of these trials now suggest harm, particularly to boys with common genetic variants. These and other studies suggest that susceptibility to mercury toxicity differs among individuals based on multiple genes, not all of which have been identified. These studies further suggest that the levels of exposure to mercury vapor from dental amalgams may be unsafe for certain subpopulations. Moreover, a simple comparison of typical exposures versus regulatory safety standards suggests that many people receive unsafe exposures. Chronic mercury toxicity is especially insidious because symptoms are variable and nonspecific, diagnostic tests are often misunderstood, and treatments are speculative at best. Throughout the world, efforts are underway to phase down or eliminate the use of mercury dental amalgam.

  12. The use of new dithiocarbamates in eliminating metals from water; Eliminacion de metales en aguas mediante nuevos ditiocarbamatos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Jimenez, E. J.; Cabrera Vique, C.; Moreno Abril, O.; Crovetto Montoya, G.; Espigares Garcia, M. [Universidad de Granada (Spain)

    2000-07-01

    Dithiocarbamates (DTCs) ions are chemicals with great chelating capacity, and their synthesis is relatively simple. In general they have low toxicity, with the exception of certain DTC that are used as pesticides. Although the newly synthesised DTCs have numerous sanitary and industrial applications, they have been used little in water purification processes. This preliminary study performed with a sodium salt of (+)-{psi}-ephedrine-DTC evaluates the usefulness of these substances in removing different heavy metals from water through the formation of the non-water-soluble chelate complex [(+)-{psi}-ephedrine DTC-heavy metal]. The five metals tested were iron, mercury, nickel, copper and cadmium. The treatment was nearly 100% effective for iron, mercury, nickel and copper yet only 78% effective for cadmium. Calcium and magnesium were shown not to interfere with the treatment HPLC was used to confirm that no detectable concentrations of (+)-{psi}-ephedrine nor the DTC derivative remained after treatment. These results allows us to conclude that the least toxic DTCs have potential applications in water purification processes by eliminating heavy metals from water designated be used for human consumption. (Author) 53 refs.

  13. Evaluation of Sorbent Injection for Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    Sharon Sjostrom

    2006-04-30

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline

  14. Mercury from combustion sources: a review of the chemical species emitted and their transport in the atmosphere

    International Nuclear Information System (INIS)

    Carpi, A.

    1997-01-01

    Different species of mercury have different physical/chemical properties and thus behave quite differentially in air pollution control equipment and in the atmosphere. In general, emission of mercury from coal combustion sources are approximately 20-50% elemental mercury (Hg 0 ) and 50-80% divalent mercury (Hg(II)), which may be predominantly HgCl 2 . Emissions of mercury from waste incinerators are approximately 10-20% Hg 0 and 75-85% Hg(II). The partitioning of mercury in flue gas between the elemental and divalent forms may be dependent on the concentration of particulate carbon, HCl and other pollutants in the stack emissions. The emission of mercury from combustion facilities depends on the species in the exhaust stream and the type of air pollution control equipment used at the source. Air pollution control equipment for mercury removal at combustion facilities includes activated carbon injection, sodium sulfide injection and wet lime/limestone flue gas desulfurization. White Hg(II) is water-soluble and may be removed form the atmosphere by wet and dry deposition close to the combustion sources, the combination of a high vapor pressure and low water-solubility facilitate the long-range transport of Hg 0 in the atmosphere. Background mercury in the atmosphere is predominantly Hg 0 . Elemental mercury is eventually removed from the atmosphere by dry deposition onto surfaces and by wet deposition after oxidation to water-soluble, divalent mercury. 62 refs., 2 figs., 1 tab

  15. Selective extraction of trace mercury and cadmium from drinking water sources.

    Science.gov (United States)

    Zhao, Xuan; Zhao, Gang; Wang, Jianlong; Yun, Guichun

    2005-01-01

    In this paper, a new alternative method, i.e., selective extraction by weakly basic anion exchange resin, has been developed for the removal of trace cadmium and mercury ions from drinking water sources. The mechanism of heavy metal removal is based on selective extraction as the results of LEWIS-base-acid interactions. Transfer of trace mercury species from liquid to resin phase coincides well with the performance of film diffusion. The results demonstrated that the presence of chlorine has a negligible influence on the removal of mercury. However, humic acids can strongly bind mercury by the formation of complex compounds and therefore become the obstacle in the diffusion progress. At neutral or base pH, the resin material exhibits the favorable uptake of heavy metals. In filter experiments, the studied resin material offers favorable properties in the selective extraction of trace mercury and cadmium.

  16. Ultralow Level Mercury Treatment Using Chemical Reduction and Air Stripping: Scoping Report

    International Nuclear Information System (INIS)

    Looney, B.B.

    2000-01-01

    Data collected during the first stage of a Savannah River Technology Center (SRTC) Strategic Research and Development Project confirmed the efficacy of chemical reduction and air stripping/sparging as an ultralow level mercury treatment concept for waters containing Hg(II). The process consists of dosing the water with low levels of stannous chloride to convert the mercury to Hg. This form of mercury can easily be removed from the water by air stripping or sparging. Samples of Savannah River Site (SRS) groundwater containing approximately 130 ng/L of total mercury (as Hg(II)) were used for the study. In undosed samples, sparging removed 0 percent of the initial mercury. In the dosed samples, all of the removals were greater than 94 percent, except in one water type at one dose. This sample, which was saturated with dissolved oxygen, showed a 63 percent reduction in mercury following treatment at the lowest dose. Following dosing at minimally effective levels and sparging, treated water contained less than 10 ng/L total mercury. In general, the data indicate that the reduction of mercury is highly favored and that stannous chloride reagent efficiently targets the Hg(II) contaminant in the presence of competing reactions. Based on the results, the authors estimated that the costs of implementing and operating an ultralow level mercury treatment process based on chemical reduction and stripping/sparging are 10 percent to 20 percent of traditional treatment technologies

  17. Evaluation of a sequential extraction process used for determining mercury binding mechanisms to coal combustion byproducts.

    Science.gov (United States)

    Noel, James D; Biswas, Pratim; Giammar, Daniel E

    2007-07-01

    Leaching of mercury from coal combustion byproducts is a concern because of the toxicity of mercury. Leachability of mercury can be assessed by using sequential extraction procedures. Sequential extraction procedures are commonly used to determine the speciation and mobility of trace metals in solid samples and are designed to differentiate among metals bound by different mechanisms and to different solid phases. This study evaluated the selectivity and effectiveness of a sequential extraction process used to determine mercury binding mechanisms to various materials. A six-step sequential extraction process was applied to laboratory-synthesized materials with known mercury concentrations and binding mechanisms. These materials were calcite, hematite, goethite, and titanium dioxide. Fly ash from a full-scale power plant was also investigated. The concentrations of mercury were measured using inductively coupled plasma (ICP) mass spectrometry, whereas the major elements were measured by ICP atomic emission spectrometry. The materials were characterized by X-ray powder diffraction and scanning electron microscopy with energy dispersive spectroscopy. The sequential extraction procedure provided information about the solid phases with which mercury was associated in the solid sample. The procedure effectively extracted mercury from the target phases. The procedure was generally selective in extracting mercury. However, some steps in the procedure extracted mercury from nontarget phases, and others resulted in mercury redistribution. Iron from hematite and goethite was only leached in the reducible and residual extraction steps. Some mercury associated with goethite was extracted in the ion exchangeable step, whereas mercury associated with hematite was extracted almost entirely in the residual step. Calcium in calcite and mercury associated with calcite were primarily removed in the acid-soluble extraction step. Titanium in titanium dioxide and mercury adsorbed onto

  18. The materials flow of mercury in the economies of the United States and the world

    Science.gov (United States)

    Sznopek, John L.; Goonan, Thomas G.

    2000-01-01

    Although natural sources of mercury exist in the environment, measured data and modeling results indicate that the amount of mercury released into the biosphere has increased since the beginning of the industrial age. Mercury is naturally distributed in the air, water, and soil in minute amounts, and can be mobile within and between these media. Because of these properties and the subsequent impacts on human health, mercury was selected for an initial materials flow study, focusing on the United States in 1990. This study was initiated to provide a current domestic and international analysis. As part of an increased emphasis on materials flow, this report researched changes and identified the associated trends in mercury flows; it also updates statistics through 1996. In addition to domestic flows, the report includes an international section, because all primary mercury-producing mines are currently foreign, 86 percent of the mercury cell sector of the worldwide chlor-alkali industry is outside the United States, there is a large international mercury trade (1,395 t 1 in 1996), and environmental regulations are not uniform or similarly enforced from country to country. Environmental concerns have brought about numerous regulations that have dramatically decreased both the use and the production of mercury since the late 1980?s. Our study indicates that this trend is likely to continue into the future, as the world eliminates the large mercury inventories that have been stockpiled to support prior industrial processes and products.

  19. Mercury levels in eggs, embryos, and neonates of Trachemys callirostris (Testudines, Emydidae)

    International Nuclear Information System (INIS)

    Rendon Valencia, Beatriz; Zapata, Lina M; Bock, Brian C; Paez, Vivian P; Palacio, Jaime A.

    2014-01-01

    We quantified total mercury concentrations in eggshells, egg yolks, and embryos from 16 nests of the Colombian slider (Trachemys callirostris). Nests were collected in different stages of development, but estimated time of incubation in natural substrates was not correlated with mercury levels in the eggs, suggesting that mercury was not absorbed from the substrate, but more likely passed on to the embryos during folliculogenesis by the reproductive females who had bioaccumulated the mercury from environmental sources. Mean mercury concentrations were higher in embryos than in eggshells or egg yolks, indicating that embryos also bioaccumulate mercury present in other egg tissues. Intra-clutch variation in egg yolk mercury concentrations was relatively high. Egg yolk mercury concentrations were not associated with any of the fitness proxies we quantified for the nests (hatching success rates, initial neonate sizes and first-month juvenile growth rates). After five months of captive rearing in a mercury-free laboratory environment, 86 % of the juveniles had eliminated the mercury from their tissues.

  20. Mercury's Dynamic Magnetic Tail

    Science.gov (United States)

    Slavin, James A.

    2010-01-01

    The Mariner 10 and MESSENGER flybys of Mercury have revealed a magnetosphere that is likely the most responsive to upstream interplanetary conditions of any in the solar system. The source of the great dynamic variability observed during these brief passages is due to Mercury's proximity to the Sun and the inverse proportionality between reconnection rate and solar wind Alfven Mach number. However, this planet's lack of an ionosphere and its small physical dimensions also contribute to Mercury's very brief Dungey cycle, approx. 2 min, which governs the time scale for internal plasma circulation. Current observations and understanding of the structure and dynamics of Mercury's magnetotail are summarized and discussed. Special emphasis will be placed upon such questions as: 1) How much access does the solar wind have to this small magnetosphere as a function of upstream conditions? 2) What roles do heavy planetary ions play? 3) Do Earth-like substorms take place at Mercury? 4) How does Mercury's tail respond to extreme solar wind events such coronal mass ejections? Prospects for progress due to advances in the global magnetohydrodynamic and hybrid simulation modeling and the measurements to be taken by MESSENGER after it enters Mercury orbit on March 18, 2011 will be discussed.

  1. Atrazine removal in Danish anaerobic aquifers

    DEFF Research Database (Denmark)

    Pedersen, Philip Grinder; Arildskov, N.P.; Albrechtsen, Hans-Jørgen

    2002-01-01

    process was abiotic since atrazine was also removed from microbially inhibited autoclaved and chloroform amended controls, although in controls amended with mercury, atrazine removal was slowed down. (ring-U-C-14)- atrazine amended samples showed no mineralization to (CO2)-C-14 or transformation...

  2. Final report for the Central Mercury Treatment System in Building 9623 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-02-01

    This document discusses the construction of the Central Mercury Treatment System (CMTS) in Building 9623 at the Y-12 Plant, the remediation activities involved, waste generated from the project, and the monitoring schedule of the CMTS. As part of the Reduction of Mercury in Plant Effluent Program, the project treats groundwater contaminated with mercury from Buildings 9201-4, 9201-5, and 9204-4 at the Y-12 Plant to meet National Pollutant Discharge Elimination System (NPDES) Permit limits for discharge to East Fork Poplar Creek. The CMTS, located in Building 9623, will treat water from the sumps of buildings in which mercury was used in operations and which have been shown to be significant contributors to the overall levels of mercury in plant effluents. This project was anticipated when the NPDES Permit was issued, and the contamination limits and frequency of monitoring for the system discharge are detailed in the permit as Outfall 551. This project was performed as an Incentive Task Order and included the advance procurement of the carbon columns, removal of existing equipment in Building 9623, and system installation and checkout. Construction activities for installing the system started in January 1996 after the area in Building 9623 had been cleared of existing, obsolete equipment. The CMTS became operational on November 26, 1996, well ahead of the permit start date of January 1, 1998. The early completion date allows Hg concentrations in EFPC to be evaluated to determine whether further actions are required to meet NPDES permit limits for reduced Hg loading to the creek

  3. Mercury Emission Control Technologies for PPL Montana-Colstrip Testing

    Energy Technology Data Exchange (ETDEWEB)

    John P. Kay; Michael L. Jones; Steven A. Benson

    2007-04-01

    The Energy & Environmental Research Center (EERC) was asked by PPL Montana LLC (PPL) to provide assistance and develop an approach to identify cost-effective options for mercury control at its coal-fired power plants. The work conducted focused on baseline mercury level and speciation measurement, short-term parametric testing, and week long testing of mercury control technology at Colstrip Unit 3. Three techniques and various combinations of these techniques were identified as viable options for mercury control. The options included oxidizing agents or sorbent enhancement additives (SEAs) such as chlorine-based SEA1 and an EERC proprietary SEA2 with and without activated carbon injection. Baseline mercury emissions from Colstrip Unit 3 are comparatively low relative to other Powder River Basin (PRB) coal-fired systems and were found to range from 5 to 6.5 g/Nm3 (2.9 to 3.8 lb/TBtu), with a rough value of approximately 80% being elemental upstream of the scrubber and higher than 95% being elemental at the outlet. Levels in the stack were also greater than 95% elemental. Baseline mercury removal across the scrubber is fairly variable but generally tends to be about 5% to 10%. Parametric results of carbon injection alone yielded minimal reduction in Hg emissions. SEA1 injection resulted in 20% additional reduction over baseline with the maximum rate of 400 ppm (3 gal/min). Week long testing was conducted with the combination of SEA2 and carbon, with injection rates of 75 ppm (10.3 lb/hr) and 1.5 lb/MMacf (40 lb/hr), respectively. Reduction was found to be an additional 30% and, overall during the testing period, was measured to be 38% across the scrubber. The novel additive injection method, known as novel SEA2, is several orders of magnitude safer and less expensive than current SEA2 injection methods. However, used in conjunction with this plant configuration, the technology did not demonstrate a significant level of mercury reduction. Near-future use of this

  4. Hepatic, renal, and total body galactose elimination in the pig

    DEFF Research Database (Denmark)

    Winkler, K; Henriksen, Jens Henrik Sahl; Tygstrup, N

    1993-01-01

    Galactose elimination capacity is used as a quantitative measure of liver function on the assumption that galactose elimination outside the liver is negligible or easily corrected for. The relationship between hepatic and extrahepatic removal of galactose was studied in anesthetized pigs during...... quasi-steady-state conditions by continuous infusion of galactose. The hepatic removal approximated a constant [maximal velocity = 585 +/- 41 mumol/min, Michaelis constant (Km) = 0.24 +/- 0.07 mmol/l, mean +/- SE, n = 20]. The renal removal was less than the amount filtered, showing maximal tubular...... reabsorption (Tm 178 +/- 3.0 mumol/min, Km 3.8 +/- 0.9 mmol/l, n = 20). Metabolic conversion of galactose in the kidney was not demonstrable. At all concentrations studied (0.4-5.8 mmol/l), total galactose elimination from the body exceeded the sum of hepatic and renal elimination by approximately 100 mumol...

  5. Risks: diagnosing and eliminating

    Directory of Open Access Journals (Sweden)

    Yuriy A. Tikhomirov

    2016-01-01

    Full Text Available Objective to develop conceptual theoretical and legal provisions and scientific recommendations on the identification analysis and elimination of risk. Methods universal dialectic method of cognition as well as scientific and private research methods based on it. Results the system was researched of risks diagnostics in the legal sphere and mechanism of influencing the quotrisk situationsquot and their consequences damage to the environment and harm to society. The concept of risk in the legal sphere was formulated the author39s classification of risks in the legal sphere is presented. The rules of analysis evaluation and prevention of risks and the model risk management framework are elaborated. Scientific novelty the mechanism for the identification analysis and elimination of risk has been developed and introduced into scientific circulation the author has proposed the classification and types of risks the reasons and the conditions promoting the risk occurrence. Practical significance the provisions and conclusions of the article can be used in the scientific lawmaking and lawenforcement activity as well as in the educational process of higher educational establishments. nbsp

  6. Biochemical Removal of HAP Precursors from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Gregory J

    1997-05-12

    Column biooxidation tests with Kentucky coal confirmed results of earlier shake flask tests showing significant removal from the coal of arsenic, selenium, cobalt, manganese, nickel and cadmium. Rates of pyrite biooxidation in Kentucky coal were only slightly more than half the rates found previously for Indiana and Pittsburgh coals. Removal of pyrite from Pittsburgh coal by ferric ion oxidation slows markedly as ferrous ions accumulate in solution, requiring maintenance of high redox potentials in processes designed for removal of pyrite and hazardous air pollutant (HAP) precursors by circulation of ferric solutions through coal. The pyrite oxidation rates obtained in these tests were used by Unifield Engineering to support the conceptual designs for alternative pyrite and HAP precursor bioleaching processes for the phase 2 pilot plant. Thermophilic microorganisms were tested to determine if mercury could be mobilized from coal under elevated growth temperatures. There was no evidence for mercury removal from coal under these conditions. However, the activity of the organisms may have liberated mercury physically. It is also possible that the organisms dissolved mercury and it readsorbed to the clay preferentially. Both of these possibilities are undergoing further testing. The Idaho National Engineering and Environmental Laboratory's (INEEL) slurry column reactor was operated and several batches of feed coal, product coal, waste solids and leach solutions were submitted to LBL for HAP precursor analysis. Results to date indicate significant removal of mercury, arsenic and other HAP precursors in the combined physical-biological process.

  7. Recovery of mercury from mercury compounds via electrolytic methods

    Science.gov (United States)

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  8. The tectonics of Mercury

    International Nuclear Information System (INIS)

    Melosh, H.J.; Mckinnon, W.B.

    1988-01-01

    The probable tectonic history of Mercury and the relative sequence of events are discussed on the basis of data collected by the Mariner-10 spacecraft. Results indicate that Mercury's tectonic activity was confined to its early history; its endogenic activity was principally due to a small change in the shape of its lithosphere, caused by tidal despinning, and a small change in area caused by shrinkage due to cooling. Exogenic processes, in particular the impact activity, have produced more abundant tectonic features. Many features associated with the Caloris basin are due to loading of Mercury's thick lithosphere by extrusive lavas or subsidence due to magma withdrawal. It is emphasized that tectonic features observed on Mercury yield insight into the earliest tectonic events on planets like Mars and, perhaps, the earth, where subsequent events obscured or erased the most ancient tectonic records

  9. Separation of Mercury Resistant Bacteria from Wastewater of Milk, Detergent and Ceramic Industry

    Directory of Open Access Journals (Sweden)

    M. Moghbeli , F. Shakeri and H. Hashemi-Moghaddam

    2011-09-01

    Full Text Available Use of microorganisms for removing mercury is an effective technology for the treatment of industrial wastewaters and can become an effective tool for the remediation of man-impacted coastal ecosystems with this metal. In this study, seven types of mercury resistant bacteria were separated from industrial waste and minimum inhibitory concentration (MIC, were determined for these bacteria. Results showed that two strains of bacteria, which isolated from waste water detergent plants, are more resistant to mercury and able to grow at the presence of 52 ppm of mercuric chloride. These bacteria could be used for biological treatment of mercury in contaminated wastewater.

  10. Potassium permanganate for mercury vapor environmental control

    Science.gov (United States)

    Kuivinen, D. E.

    1972-01-01

    Potassium permanganate (KMnO4) was evaluated for application in removing mercury vapor from exhaust air systems. The KMnO4 may be used in water solution with a liquid spray scrubber system or as a solid adsorber bed material when impregnated onto a zeolite. Air samples contaminated with as much as 112 mg/cu m of mercury were scrubbed to 0.06mg/cum with the KMnO4-impregnated zeolite (molecular sieve material). The water spray solution of permanganate was also found to be as effective as the impregnated zeolite. The KMnO4-impregnated zeolite was applied as a solid adsorber material to (1) a hardware decontamination system, (2) a model incinerator, and (3) a high vacuum chamber for ion engine testing with mercury as the propellant. A liquid scrubber system was also applied in an incinerator system. Based on the results of these experiments, it is concluded that the use of KMnO4 can be an effective method for controlling noxious mercury vapor.

  11. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  12. Mercury in human hair

    International Nuclear Information System (INIS)

    Kapauan, P.A.; Cruz, C.C.; Verceluz, F.P.

    1980-10-01

    The analysis of mercury (Hg) in scalp hair obtained from individuals residing in five different localities in the Philippines - Metro Manila, Naga City in Bicol, Bataan, Oriental Mindoro, and Palawan is presented. An overall mean of 1.46 ug/g of hair was obtained for all samples excluding those from Palawan and represents a baseline value.'' In terms of the mercury levels found in hair, the Honda Bay area in Palawan is, relatively, a ''contaminated area.'' (author)

  13. Mercury exposure in the freshwater tilapia Oreochromis niloticus

    Energy Technology Data Exchange (ETDEWEB)

    Wang Rui [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wong Minghung [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.h [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2010-08-15

    Mercury (Hg) can be strongly accumulated and biomagnified along aquatic food chain, but the exposure pathway remains little studied. In this study, we quantified the uptake and elimination of both inorganic mercury [as Hg(II)] and methylmercury (as MeHg) in an important farmed freshwater fish, the tilapia Oreochromis niloticus, using {sup 203}Hg radiotracer technique. The dissolved uptake rates of both mercury species increased linearly with Hg concentration (tested at ng/L levels), and the uptake rate constant of MeHg was 4 times higher than that of Hg(II). Dissolved uptake of mercury was highly dependent on the water pH and dissolved organic carbon concentration. The dietborne assimilation efficiency of MeHg was 3.7-7.2 times higher than that of Hg(II), while the efflux rate constant of MeHg was 7.1 times lower. The biokinetic modeling results showed that MeHg was the greater contributor to the overall mercury bioaccumulation and dietary exposure was the predominant pathway. - Trophic transfer was the predominant pathway for mercury accumulation in tilapia, and methylmercury was more important in contributing to Hg accumulation than Hg(II).

  14. Mercury exposure in the freshwater tilapia Oreochromis niloticus

    International Nuclear Information System (INIS)

    Wang Rui; Wong Minghung; Wang Wenxiong

    2010-01-01

    Mercury (Hg) can be strongly accumulated and biomagnified along aquatic food chain, but the exposure pathway remains little studied. In this study, we quantified the uptake and elimination of both inorganic mercury [as Hg(II)] and methylmercury (as MeHg) in an important farmed freshwater fish, the tilapia Oreochromis niloticus, using 203 Hg radiotracer technique. The dissolved uptake rates of both mercury species increased linearly with Hg concentration (tested at ng/L levels), and the uptake rate constant of MeHg was 4 times higher than that of Hg(II). Dissolved uptake of mercury was highly dependent on the water pH and dissolved organic carbon concentration. The dietborne assimilation efficiency of MeHg was 3.7-7.2 times higher than that of Hg(II), while the efflux rate constant of MeHg was 7.1 times lower. The biokinetic modeling results showed that MeHg was the greater contributor to the overall mercury bioaccumulation and dietary exposure was the predominant pathway. - Trophic transfer was the predominant pathway for mercury accumulation in tilapia, and methylmercury was more important in contributing to Hg accumulation than Hg(II).

  15. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg.sup.196 enrichment

    Science.gov (United States)

    Grossman, Mark W.

    1993-01-01

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg.sup.196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  16. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg[sup 196] enrichment

    Science.gov (United States)

    Grossman, M.W.

    1993-02-16

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg[sup 196] isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  17. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg196 enrichment

    International Nuclear Information System (INIS)

    Grossman, M.W.

    1993-01-01

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg 196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment

  18. Method and apparatus for monitoring mercury emissions

    Science.gov (United States)

    Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  19. Low-Cost Options for Moderate Levels of Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    Sharon Sjostrom

    2006-03-31

    On March 15, 2005, EPA issued the Clean Air Mercury Rule, requiring phased-in reductions of mercury emissions from electric power generators. ADA-ES, Inc., with support from DOE/NETL and industry partners, is conducting evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. DOE/NETL targets for total mercury removal are {ge}55% (lignite), {ge}65% (subbituminous), and {ge}80% (bituminous). Based on work done to date at various scales, meeting the removal targets appears feasible. However, work needs to progress to more thoroughly document and test these promising technologies at full scale. This is the final site report for tests conducted at MidAmerican's Louisa Station, one of three sites evaluated in this DOE/NETL program. The other two sites in the program are MidAmerican's Council Bluff Station and Entergy's Independence Station. MidAmerican's Louisa Station burns Powder River Basin (PRB) coal and employs hot-side electrostatic precipitators with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal.

  20. Chemical state of mercury and selenium in sewage sludge ash based P-fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Christian, E-mail: cv.vogel@yahoo.de [Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Krüger, Oliver; Herzel, Hannes [Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Amidani, Lucia [ESRF—The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble (France); Adam, Christian [Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany)

    2016-08-05

    Highlights: • Mercury bonded to carbon/organic material was detected in some sewage sludge ashes. • After thermochemcial treatment some mercury remains stabilized in the SSA matrix. • Analysis of the chemical state of mercury and selenium in highly diluted samples. - Abstract: Phosphorus-fertilizers from secondary resources such as sewage sludge ash (SSA) will become more important in the future as they could substitute conventional fertilizers based on the nonrenewable resource phosphate rock. Thermochemical approaches were developed which remove heavy metals from SSA prior to its fertilizer application on farmlands. We analyzed the chemical state of mercury and selenium in SSA before and after thermochemical treatment under different conditions for P-fertilizer production by X-ray absorption near edge structure (XANES) spectroscopy. In some incineration plants the mercury loaded carbon adsorber from off-gas cleaning was collected together with the SSA for waste disposal. SSAs from those plants contained mercury mainly bound to carbon/organic material. The other SSAs contained inorganic mercury compounds which are most probably stabilized in the SSA matrix and were thus not evaporated during incineration. During thermochemical treatment, carbon-bound mercury was removed quantitatively. In contrast, a certain immobile fraction of inorganic mercury compounds remained in thermochemically treated SSA, which were not clearly identified. HgSe might be one of the inorganic compounds, which is supported by results of Se K-edge XANES spectroscopy. Furthermore, the chemical state of selenium in the SSAs was very sensitive to the conditions of the thermochemical treatment.

  1. FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Searcy, K; Bltyhe, G M; Steen, W A

    2012-02-28

    Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agents to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.

  2. Nanofiber Filters Eliminate Contaminants

    Science.gov (United States)

    2009-01-01

    With support from Phase I and II SBIR funding from Johnson Space Center, Argonide Corporation of Sanford, Florida tested and developed its proprietary nanofiber water filter media. Capable of removing more than 99.99 percent of dangerous particles like bacteria, viruses, and parasites, the media was incorporated into the company's commercial NanoCeram water filter, an inductee into the Space Foundation's Space Technology Hall of Fame. In addition to its drinking water filters, Argonide now produces large-scale nanofiber filters used as part of the reverse osmosis process for industrial water purification.

  3. Mercury pollution in Malaysia.

    Science.gov (United States)

    Hajeb, Parvaneh; Jinap, S; Ismail, Ahmad; Mahyudin, Nor Ainy

    2012-01-01

    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to

  4. Analysis of gas-phase mercury sorption with coke and lignite dust

    Directory of Open Access Journals (Sweden)

    Marczak Marta

    2017-01-01

    Full Text Available In recent years the problem of mercury emission became a widely discussed topic. Its high impact is caused by its toxicity and ability to accumulate in living organisms, properties that justified the United States Environmental Protection Agency (US EPA to classify mercury as hazardous pollutant. The problem of mercury emission is crucial for countries like Poland, where the most of the emission is caused by coaldepended energy sector. Current technology of mercury removal utilizes adsorption of mercury on the surface of activated carbon. Due to high price of activated carbon, this technological approach seems to be uneconomical and calls for cheaper alternative. One possible solution can be usage of other sorptive materials obtained from thermal processes like coke production. Example of such material is coke dust obtained from dry quenching of coke. The aim of this work was to analyse the sorption potential of lignite and coke dust and determine parameters influencing mercury behaviour during combustion.

  5. Demonstration Results on the Effects of Mercury Speciation on the Stabilization of Wastes

    International Nuclear Information System (INIS)

    Conley, T.B.; Hulet, G.A.; Morris, M.I.; Osborne-Lee, I.W.

    1999-01-01

    Mercury-contaminated wastes are currently being stored at approximately 19 Department of Energy sites, the volume of which is estimated to be about 16m(sup)3. These wastes exist in various forms including soil, sludges, and debris, which present a particular challenge regarding possible mercury stabilization methods. This reports provides the test results of three vendors, Allied Technology Group, IT Corporation, and Nuclear Fuel Services, Inc., that demonstrate the effects of mercury speciation on the stabilization of the mercury wastes. Mercury present in concentrations that exceed 260 parts per million must be removed by extraction methods and requires stabilization to ensure that the final wasteforms leach less than 0.2mg/L of mercury by the Toxicity Characteristic Leaching Procedure or 0.025 mg/L using the Universal Treatment Standard

  6. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    Science.gov (United States)

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.; Gibson, Christopher T.; Sibley, Alexander; Slattery, Ashley D.; Campbell, Jonathan A.; Alboaiji, Salah F. K.; Muller, Katherine A.; Young, Jason; Adamson, Nick; Gascooke, Jason R.; Jampaiah, Deshetti; Sabri, Ylias M.; Bhargava, Suresh K.; Ippolito, Samuel J.; Lewis, David A.; Quinton, Jamie S.; Ellis, Amanda V.; Johs, Alexander; Bernardes, Gonçalo J. L.

    2017-01-01

    Abstract Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury‐rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low‐cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by‐product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury‐capturing polymers can be synthesised entirely from waste and supplied on multi‐kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry. PMID:28763123

  7. Selective partitioning of mercury from co-extracted actinides in a simulated acidic ICPP waste stream

    International Nuclear Information System (INIS)

    Brewer, K.N.; Herbst, R.S.; Tranter, T.J.

    1995-01-01

    The TRUEX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) as a means to partition the actinides from acidic sodium-bearing waste (SBW). The mercury content of this waste averages 1 g/l. Because the chemistry of mercury has not been extensively evaluated in the TRUEX process, mercury was singled out as an element of interest. Radioactive mercury, 203 Hg, was spiked into a simulated solution of SBW containing 1 g/l mercury. Successive extraction batch contacts with the mercury spiked waste simulant and successive scrubbing and stripping batch contacts of the mercury loaded TRUEX solvent (0.2 M CMPO-1.4 M TBP in dodecane) show that mercury will extract into and strip from the solvent. The extraction distribution coefficient for mercury, as HgCl 2 from SBW having a nitric acid concentration of 1.4 M and a chloride concentration of 0.035 M was found to be 3. The stripping distribution coefficient was found to be 0.5 with 5 M HNO 3 and 0.077 with 0.25 M Na 2 CO 3 . An experimental flowsheet was designed from the batch contact tests and tested counter-currently using 5.5 cm centrifugal contactors. Results from the counter-current test show that mercury can be removed from the acidic mixed SBW simulant and recovered separately from the actinides

  8. Oxidation Catalysts for Elemental Mercury in Flue Gases—A Review

    Directory of Open Access Journals (Sweden)

    Liliana Lazar

    2012-02-01

    Full Text Available The removal of mercury from flue gases in scrubbers is greatly facilitated if the mercury is present as water-soluble oxidized species. Therefore, increased mercury oxidation upstream of scrubber devices will improve overall mercury removal. For this purpose heterogeneous catalysts have recently attracted a great deal of interest. Selective catalytic reduction (SCR, noble metal and transition metal oxide based catalysts have been investigated at both the laboratory and plant scale with this objective. A review article published in 2006 covers the progress in the elemental mercury (Hgel catalytic oxidation area. This paper brings the review in this area up to date. To this end, 110 papers including several reports and patents are reviewed. For each type of catalyst the possible mechanisms as well as the effect of flue gas components on activity and stability are examined. Advantages and main problems are analyzed. The possible future directions of catalyst development in this environmental research area are outlined.

  9. Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world's highest per capita mercury pollution.

    Science.gov (United States)

    Cordy, Paul; Veiga, Marcello M; Salih, Ibrahim; Al-Saadi, Sari; Console, Stephanie; Garcia, Oseas; Mesa, Luis Alberto; Velásquez-López, Patricio C; Roeser, Monika

    2011-12-01

    The artisanal gold mining sector in Colombia has 200,000 miners officially producing 30tonnes Au/a. In the Northeast of the Department of Antioquia, there are 17 mining towns and between 15,000 and 30,000 artisanal gold miners. Guerrillas and paramilitary activities in the rural areas of Antioquia pushed miners to bring their gold ores to the towns to be processed in Processing Centers or entables. These Centers operate in the urban areas amalgamating the whole ore, i.e. without previous concentration, and later burn gold amalgam without any filtering/condensing system. Based on mercury mass balance in 15 entables, 50% of the mercury added to small ball mills (cocos) is lost: 46% with tailings and 4% when amalgam is burned. In just 5 cities of Antioquia, with a total of 150,000 inhabitants: Segovia, Remedios, Zaragoza, El Bagre, and Nechí, there are 323 entables producing 10-20tonnes Au/a. Considering the average levels of mercury consumption estimated by mass balance and interviews of entables owners, the mercury consumed (and lost) in these 5 municipalities must be around 93tonnes/a. Urban air mercury levels range from 300ng Hg/m(3) (background) to 1million ng Hg/m(3) (inside gold shops) with 10,000ng Hg/m(3) being common in residential areas. The WHO limit for public exposure is 1000ng/m(3). The total mercury release/emissions to the Colombian environment can be as high as 150tonnes/a giving this country the shameful first position as the world's largest mercury polluter per capita from artisanal gold mining. One necessary government intervention is to cut the supply of mercury to the entables. In 2009, eleven companies in Colombia legally imported 130tonnes of metallic mercury, much of it flowing to artisanal gold mines. Entables must be removed from urban centers and technical assistance is badly needed to improve their technology and reduce emissions. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Catalysts for oxidation of mercury in flue gas

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  11. Mercury Emissions: The Global Context

    Science.gov (United States)

    Mercury emissions are a global problem that knows no national or continental boundaries. Mercury that is emitted to the air can travel thousands of miles in the atmosphere before it is eventually deposited back to the earth.

  12. Elimination of aluminum adjuvants.

    Science.gov (United States)

    Hem, Stanley L

    2002-05-31

    In vitro dissolution experiments although perhaps not at typical body concentrations and temperatures demonstrated that the alpha-hydroxycarboxylic acids present in interstitial fluid (citric acid, lactic acid, and malic acid) are capable of dissolving aluminum-containing adjuvants. Amorphous aluminum phosphate adjuvant dissolved more rapidly than crystalline aluminum hydroxide adjuvant. Intramuscular administration in New Zealand White rabbits of aluminum phosphate and aluminum hydroxide adjuvants, which were labelled with 26Al, revealed that 26Al was present in the first blood sample (1 h) for both adjuvants. The area under the blood level curve for 28 days indicated that three times more aluminum was absorbed from aluminum phosphate adjuvant than aluminum hydroxide adjuvant. In vivo studies using 26Al-labelled adjuvants are relatively safe because accelerator mass spectrometry (AMS) can quantify quantities of 26Al as small as 10(-17) g. A similar study in humans would require a whole-body exposure of 0.7 microSv per year compared to the natural background exposure of 3000 microSv per year. The in vitro dissolution and in vivo absorption studies indicate that aluminum-containing adjuvants which are administered intramuscularly are dissolved by alpha-hydroxycarboxylic acids in interstitial fluid, absorbed into the blood, distributed to tissues, and eliminated in the urine.

  13. Dietary Therapy for Eosinophilic Esophagitis: Elimination and Reintroduction.

    Science.gov (United States)

    Kliewer, Kara L; Cassin, Alison M; Venter, Carina

    2017-12-14

    Eosinophilic esophagitis (EoE) is a food antigen-mediated disorder of the esophagus characterized by eosinophil predominant inflammation and symptoms of esophageal dysfunction. Dietary antigen elimination induces clinical and histological remission in patients with EoE. The most restrictive of elimination diets (the elemental diet) removes all possible food antigens while empiric elimination diets remove all (or a subset) of food antigens most commonly reported to cause esophageal eosinophilia and food allergies (milk, egg, wheat, soy, peanuts, tree nuts, fish, or legumes). Elimination diets are effective treatments for EoE but pose psychosocial and financial challenges to patients and consequently may impair quality of life. Foods that are commonly eliminated, especially milk, are also nutrient-dense and therefore their elimination may result in inadequate nutrient intake or deficiencies without careful diet planning to include nutritionally comparable and safe food substitutes. After remission is achieved with elimination diets, foods can be reintroduced sequentially to identify specific food triggers, but this reintroduction is not standardized. Food elimination and food reintroductions should consider the patient's lifestyle, nutrition needs, and skills and ideally be managed by a team with knowledge of eosinophilic gastrointestinal disorders and nutrition.

  14. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.

    Science.gov (United States)

    Zhao, Shilin; Duan, Yufeng; Chen, Lei; Li, Yaning; Yao, Ting; Liu, Shuai; Liu, Meng; Lu, Jianhong

    2017-10-01

    Hazardous trace elements (HTEs), especially mercury, emitted from coal-fired power plants had caused widespread concern worldwide. Field test on mercury emissions at three different loads (100%, 85%, 68% output) using different types of coal was conducted in a 350 MW pulverized coal combustion power plant equipped with selective catalytic reduction (SCR), electrostatic precipitator and fabric filter (ESP + FF), and wet flue gas desulfurization (WFGD). The Ontario Hydro Method was used for simultaneous flue gas mercury sampling for mercury at the inlet and outlet of each of the air pollutant control device (APCD). Results showed that mercury mass balance rates of the system or each APCD were in the range of 70%-130%. Mercury was mainly distributed in the flue gas, followed by ESP + FF ash, WFGD wastewater, and slag. Oxidized mercury (Hg 2+ ) was the main form of mercury form in the flue gas emitted to the atmosphere, which accounted for 57.64%-61.87% of total mercury. SCR was favorable for elemental mercury (Hg 0 ) removal, with oxidation efficiency of 50.13%-67.68%. ESP + FF had high particle-bound mercury (Hg p ) capture efficiency, at 99.95%-99.97%. Overall removal efficiency of mercury by the existing APCDs was 58.78%-73.32%. Addition of halogens or oxidants for Hg 0 conversion, and inhibitors for Hg 0 re-emission, plus the installation of a wet electrostatic precipitator (WESP) was a good way to improve the overall removal efficiency of mercury in the power plants. Mercury emission factor determined in this study was from 0.92 to 1.17 g/10 12 J. Mercury concentration in the emitted flue gas was much less than the regulatory limit of 30 μg/m 3 . Contamination of mercury in desulfurization wastewater should be given enough focus. Copyright © 2017. Published by Elsevier Ltd.

  15. Mercury's magnetic field and interior

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Ness, N.F.

    1988-01-01

    The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain

  16. Reference Atmosphere for Mercury

    Science.gov (United States)

    Killen, Rosemary M.

    2002-01-01

    We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.

  17. Mercury content of edible mushrooms

    Energy Technology Data Exchange (ETDEWEB)

    Woidich, H.; Pfannhauser, W.

    1975-05-01

    The mercury content of edible fungi is different. Relatively high burdened are Boletus and Agaricus campestris. A minimum of mercury is found in Russula, Agaricus bisporus and Cantharellus cibarius. The possibilities of mercury uptake and the potential cumulation mechanism is discussed. 8 references, 3 tables.

  18. Mercury (Environmental Health Student Portal)

    Science.gov (United States)

    ... Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Mercury The Basics Mercury — sometimes called quicksilver — is a natural metal. It’s ... to breathe it in without knowing it. When mercury combines with other chemical elements, it creates compounds, ...

  19. FINAL REPORT ON THE AQUATIC MERCURY ASSESSMENT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, N

    2008-09-30

    In February 2000, the United States Environmental Protection Agency (EPA) Region 4 issued a proposed Total Maximum Daily Load (TMDL) for total mercury in the middle and lower Savannah River. The initial TMDL, which would have imposed a 1 ng/l mercury limit for discharges to the middle/lower Savannah River, was revised to 2.8 ng/l in the final TMDL released in February 2001. The TMDL was intended to protect people from the consumption of contaminated fish, which is the major route of mercury exposure to humans. The most bioaccumulative form of mercury is methylmercury, which is produced in aquatic environments by the action of microorganisms on inorganic mercury. Because of the environmental and economic significance of the mercury discharge limits that would have been imposed by the TMDL, the Savannah River Site (SRS) initiated several studies concerning: (1) mercury in SRS discharges, SRS streams and the Savannah River, (2) mercury bioaccumulation factors for Savannah River fish, (3) the use of clams to monitor the influence of mercury from tributary streams on biota in the Savannah River, and (4) mercury in rainwater falling on the SRS. The results of these studies are presented in detail in this report. The first study documented the occurrence, distribution and variation of total and methylmercury at SRS industrial outfalls, principal SRS streams and the Savannah River where it forms the border with the SRS. All of the analyses were performed using the EPA Method 1630/31 ultra low-level and contaminant-free techniques for measuring total and methylmercury. Total mercury at National Pollutant Discharge Elimination System (NPDES) outfalls ranged from 0.31-604 ng/l with a mean of 8.71 ng/l. Mercury-contaminated groundwater was the source for outfalls with significantly elevated mercury concentrations. Total mercury in SRS streams ranged from 0.95-15.7 ng/l. Mean total mercury levels in the streams varied from 2.39 ng/l in Pen Branch to 5.26 ng/l in Tims Branch

  20. Eliminating Rabies in Estonia

    Science.gov (United States)

    Cliquet, Florence; Robardet, Emmanuelle; Must, Kylli; Laine, Marjana; Peik, Katrin; Picard-Meyer, Evelyne; Guiot, Anne-Laure; Niin, Enel

    2012-01-01

    The compulsory vaccination of pets, the recommended vaccination of farm animals in grazing areas and the extermination of stray animals did not succeed in eliminating rabies in Estonia because the virus was maintained in two main wildlife reservoirs, foxes and raccoon dogs. These two species became a priority target therefore in order to control rabies. Supported by the European Community, successive oral vaccination (OV) campaigns were conducted twice a year using Rabigen® SAG2 baits, beginning in autumn 2005 in North Estonia. They were then extended to the whole territory from spring 2006. Following the vaccination campaigns, the incidence of rabies cases dramatically decreased, with 266 cases in 2005, 114 in 2006, four in 2007 and three in 2008. Since March 2008, no rabies cases have been detected in Estonia other than three cases reported in summer 2009 and one case in January 2011, all in areas close to the South-Eastern border with Russia. The bait uptake was satisfactory, with tetracycline positivity rates ranging from 85% to 93% in foxes and from 82% to 88% in raccoon dogs. Immunisation rates evaluated by ELISA ranged from 34% to 55% in foxes and from 38% to 55% in raccoon dogs. The rabies situation in Estonia was compared to that of the other two Baltic States, Latvia and Lithuania. Despite regular OV campaigns conducted throughout their territory since 2006, and an improvement in the epidemiological situation, rabies has still not been eradicated in these countries. An analysis of the number of baits distributed and the funding allocated by the European Commission showed that the strategy for rabies control is more cost-effective in Estonia than in Latvia and Lithuania. PMID:22393461

  1. Sensing Mercury for Biomedical and Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Julia Xiaojun Zhao

    2009-07-01

    Full Text Available Mercury is a very toxic element that is widely spread in the atmosphere, lithosphere, and surface water. Concentrated mercury poses serious problems to human health, as bioaccumulation of mercury within the brain and kidneys ultimately leads to neurological diseases. To control mercury pollution and reduce mercury damage to human health, sensitive determination of mercury is important. This article summarizes some current sensors for the determination of both abiotic and biotic mercury. A wide array of sensors for monitoring mercury is described, including biosensors and chemical sensors, while piezoelectric and microcantilever sensors are also described. Additionally, newly developed nanomaterials offer great potential for fabricating novel mercury sensors. Some of the functional fluorescent nanosensors for the determination of mercury are covered. Afterwards, the in vivo determination of mercury and the characterization of different forms of mercury are discussed. Finally, the future direction for mercury detection is outlined, suggesting that nanomaterials may provide revolutionary tools in biomedical and environmental monitoring of mercury.

  2. Biosorption of mercury on magnetically modified yeast cells

    Czech Academy of Sciences Publication Activity Database

    Yavuz, H.; Denizli, A.; Gungunes, H.; Šafaříková, Miroslava; Šafařík, Ivo

    2006-01-01

    Roč. 52, - (2006), s. 253-260 ISSN 1383-5866 R&D Projects: GA MŠk(CZ) OC 108 Institutional research plan: CEZ:AV0Z60870520 Keywords : mercury removal * magnetic biosorbents * yeast Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.497, year: 2006

  3. Remediation Technologies Eliminate Contaminants

    Science.gov (United States)

    2012-01-01

    groundwater tainted by chlorinated solvents once used to clean rocket engine components. The award-winning innovation (Spinoff 2010) is now NASA s most licensed technology to date. PCBs in paint presented a new challenge. Removing the launch stand for recycling proved a difficult operation; the toxic paint had to be fully stripped from the steel structure, a lengthy and costly process that required the stripped paint to be treated before disposal. Noting the lack of efficient, environmentally friendly options for dealing with PCBs, Quinn and her colleagues developed the Activated Metal Treatment System (AMTS). AMTS is a paste consisting of a solvent solution containing microscale particles of activated zero-valent metal. When applied to a painted surface, the paste extracts and degrades the PCBs into benign byproducts while leaving the paint on the structure. This provides a superior alternative to other methods for PCB remediation, such as stripping the paint or incinerating the structure, which prevents reuse and can release volatized PCBs into the air. Since its development, AMTS has proven to be a valuable solution for removing PCBs from paint, caulking, and various insulation and filler materials in older buildings, naval ships, and former munitions facilities where the presence of PCBs interferes with methods for removing trace explosive materials. Miles of potentially toxic caulking join sections of runways at airports. Any of these materials installed before 1979 potentially contain PCBs, Quinn says. "This is not just a NASA problem," she says. "It s a global problem."

  4. Extraction of gold and mercury from sea water with bismuth diethyldithiocarbamate prior to neutron activation-. gamma. -spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.C.; Lo, J.M.; Wai, C.M. (Idaho Univ. Moscow (USA). Dept. of Chemistry)

    1983-11-01

    Gold and mercury in sea water can be selectively extracted by bismuth diethyldithiocarbamate into chloroform at pH <= 1. The matrix species and many other trace elements in the system are effectively removed during extraction. When neutron activation-..gamma..-spectrometry is used, the detection limits for gold and mercury are 0.001 and 0.01 ..mu..g l/sup -1/, respectively. The relative precision is 9% for gold and 13% for mercury.

  5. Water displacement mercury pump

    Science.gov (United States)

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  6. Remediation of mercury-polluted soils using artificial wetlands.

    Science.gov (United States)

    García-Mercadoa, Héctor Daniel; Fernándezb, Georgina; Garzón-Zúñigac, Marco Antonio; Durán-Domínguez-de-Bazúaa, María Del Carmen

    2017-01-02

    Mexico's mercury mining industry is important for economic development, but has unfortunately contaminated soils due to open-air disposal. This case was seen at two sites in the municipality of Pinal de Amoles, State of Queretaro, Mexico. This paper presents an evaluation of mercury dynamics and biogeochemistry in two soils (mining waste soil) using ex-situ wetlands over 36 weeks. In soils sampled in two former mines of Pinal de Amoles, initial mercury concentrations were 424 ± 29 and 433 ± 12 mg kg -1 in La Lorena and San Jose, former mines, respectively. Typha latifolia and Phragmites australis were used and 20 reactors were constructed (with and without plants). The reactors were weekly amended with a nutrient solution (NPK), for each plant, at a pH of 5.0. For remediation using soils from San Jose 70-78% of mercury was removed in T. latifolia reactors and 76-82% in P. australis reactors, and for remediation of soils from La Lorena, mercury content was reduced by 55-71% using T. latifolia and 58-66% in P. australis reactors. Mercury emissions into the atmosphere were estimated to be 2-4 mg m -2 h -1 for both soils.

  7. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  8. Substance flow analysis for mercury emission in Poland

    Directory of Open Access Journals (Sweden)

    Panasiuk D.

    2013-04-01

    Full Text Available Substance Flow Analysis (SFA is an approach showing main sources of emission and flows of pollution to the environment, which allows to define possible environmental risk. Total identified mercury emission to air, soil and water in Poland for year 2010 from anthropogenic sources was estimated as 18.0 Mg. Annual Hg emission to air from by-product sources was equal 13.5 Mg, with the highest share of emission from brown coal-fired power plants. Mercury contained in combustion residues and removed from flue gases is transferred to waste waters, disposed to landfills and used to a concrete production with unknown amounts. Annual mercury emission to air from the use of mercury-containing products (0.5 Mg was estimated by authors based on model for distribution and emissions for batteries, light sources, other electrical and electronic equipment and also for measuring and control equipment. Emission to air from dental practice (0.3 Mg was estimated for combustion of wastes containing dental amalgam and from bodies cremation. SFA for the use of mercury-containing products and dental practice presents significant load of 10.4 Mg mercury contained in hazardous wastes produced annually. It covers wastes of used products, dental amalgam wastes directly from clinics as well as stream from incineration of infectious dental wastes. In the paper mercury discharges to water from large and medium industrial facilities (2.9 Mg and municipal waste-water treatment plants in large agglomerations (0.4 Mg are presented. Smaller loads are generates by leachate transfer from municipal landfills to WWTPs and further to agriculture and also by releases from dental amalgam in buried bodies. The paper indicates lack of information in SFA which should be regarded, mainly concerning mercury releases from municipal landfills to water and soil and emissions from municipal WWTPs to air.

  9. Mercury in Pelecanus occidentalis of the Cispata bay, Colombia

    Directory of Open Access Journals (Sweden)

    Saudith Burgos N.

    2014-06-01

    Full Text Available Objective. Assessment the total concentration of mercury in the liver and feathers of Pelecanus occidentalis of the Cispata bay, Colombia. Materials and methods. Mercury concentrations in liver and feather of Pelecanus occidentalis residents in the Cispata bay – Colombia were evaluated by digestion with an acidic mixture of H2SO4–HNO3 and KMnO4 to eliminate organic matter. The concentration of mercury was determined by the Atomic Absorption - Cold Vapor method (CVAAS. Results. Total mercury levels found in this study were higher in feathers (0.31-9.17 mgHg/kg than in the liver (0.63–6.29 mgHg/kg, being higher than those reported in other seabirds studies. Conclusions. The high levels of total mercury in feathers and liver can be explained by the feeding habits of the organisms under study, showing the utility of feathers as a potential non-invasive tool for the monitoring of the ecosystem and thereby preventing the sacrifice of specimens.

  10. In vitro evaluation of dietary compounds to reduce mercury bioavailability.

    Science.gov (United States)

    Jadán-Piedra, Carlos; Vélez, Dinoraz; Devesa, Vicenta

    2018-05-15

    Mercury in foods, in inorganic form [Hg(II)] or as methylmercury (CH 3 Hg), can have adverse effects. Its elimination from foods is not technologically viable. To reduce human exposure, possible alternatives might be based on reducing its intestinal absorption. This study evaluates the ability of 23 dietary components to reduce the amount of mercury that is absorbed and reaches the bloodstream (bioavailability). We determined their effect on uptake of mercury in Caco-2 cells, a model of intestinal epithelium, exposed to Hg(II) and CH 3 Hg standards and to swordfish bioaccessible fractions. Cysteine, homocysteine, glutathione, quercetin, albumin and tannic reduce bioavailability of both mercury species. Fe(II), lipoic acid, pectin, epigallocatechin and thiamine are also effective for Hg(II). Some of these strategies also reduce Hg bioavailability in swordfish (glutathione, cysteine, homocysteine). Moreover, extracts and supplements rich in these compounds are also effective. This knowledge may help to define dietary strategies to reduce in vivo mercury bioavailability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Method and apparatus for sampling atmospheric mercury

    Science.gov (United States)

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  12. Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation.

    Science.gov (United States)

    Clack, Herek L

    2009-03-01

    Efforts to reduce anthropogenic mercury emissions worldwide have recently focused on a variety of sources, including mercury emitted during coal combustion. Toward that end, much research has been ongoing seeking to develop new processes for reducing coal combustion mercury emissions. Among air pollution control processes that can be applied to coal-fired boilers, electrostatic precipitators (ESPs) are by far the most common, both on a global scale and among the principal countries of India, China, and the U.S. that burn coal for electric power generation. A previously reported theoretical model of in-flight mercury capture within ESPs is herein evaluated against data from a number of full-scale tests of activated carbon injection for mercury emissions control. By using the established particle size distribution of the activated carbon and actual or estimated values of its equilibrium mercury adsorption capacity, the incremental reduction in mercury concentration across each ESP can be predicted and compared to experimental results. Because the model does not incorporate kinetics associated with gas-phase mercury transformation or surface adsorption, the model predictions representthe mass-transfer-limited performance. Comparing field data to model results reveals many facilities performing at or near the predicted mass-transfer-limited maximum, particularly at low rates of sorbent injection. Where agreement is poor between field data and model predictions, additional chemical or physical phenomena may be responsible for reducing mercury removal efficiencies.

  13. Mercury analysis in hair

    DEFF Research Database (Denmark)

    Esteban, Marta; Schindler, Birgit Karin; Jiménez, José Antonio

    2015-01-01

    laboratories. Training sessions were organized for field workers and four external quality-assessment exercises (ICI/EQUAS), followed by the corresponding web conferences, were organized between March 2011 and February 2012. ICI/EQUAS used native hair samples at two mercury concentration ranges (0...

  14. Mercury exposure in Ireland

    DEFF Research Database (Denmark)

    Cullen, Elizabeth; Evans, David S; Davidson, Fred

    2014-01-01

    of a study to Coordinate and Perform Human Biomonitoring on a European Scale (DEMOCOPHES) pilot biomonitoring study. METHODS: Hair mercury concentrations were determined from a convenience sample of 120 mother/child pairs. Mothers also completed a questionnaire. Rigorous quality assurance within DEMOCOPHES...

  15. Metabolic models for methyl and inorganic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, S.R.; Purdue, P.

    1984-03-01

    Following the outbreak of mercury poisoning in Minimata, Japan (1953-60), much work has been done on the toxicology of mercury - in particular methyl mercury. In this paper, the authors derive two compartmental models for the metabolism of methyl mercury and inorganic mercury based upon the data which have been collected since 1960.

  16. Mercury Information Clearinghouse

    Energy Technology Data Exchange (ETDEWEB)

    Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

    2006-03-31

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through

  17. Gene Silencing and Sex Determination by Programmed DNA Elimination in Parasitic Nematodes

    Science.gov (United States)

    Streit, Adrian; Wang, Jianbin; Kang, Yuanyuan; Davis, Richard E.

    2016-01-01

    Maintenance of genome integrity is essential. However, programmed DNA elimination removes specific DNA sequences from the genome during early development. DNA elimination occurs in unicellular ciliates and diverse metazoa ranging from nematodes to vertebrates. Two distinct groups of nematodes use DNA elimination to silence germline-expressed genes in the soma (ascarids) or for sex determination (Strongyloides spp.). Data suggest that DNA elimination likely evolved independently in these nematodes. Recent studies indicate that differential CENP-A deposition within chromosomes determines which sequences are retained and lost during Ascaris DNA elimination. Additional studies are needed to determine the distribution, functions, and mechanisms of DNA elimination in nematodes. PMID:27315434

  18. Mercury contamination - Amalgamate (contract with NFS and ADA). Stabilize Elemental Mercury Wastes. Mixed Waste Focus Area. OST Reference Number 1675

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Through efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of bulk elemental mercury contaminated with radionuclides stored at various U. S. Department of Energy (DOE) sites is thought to be approximately 16 m3 (Conley et al. 1998). At least 19 different DOE sites have this type of mixed low-level waste in their storage facilities. The U. S. Environmental Protection Agency (EPA) specifies amalgamation as the treatment method for radioactively contaminated elemental mercury. Although the chemistry of amalgamation is well known, the practical engineering of a sizable amalgamation process has not been tested (Tyson 1993). To eliminate the existing DOE inventory in a reasonable timeframe, scaleable equipment is needed that can: produce waste forms that meet the EPA definition of amalgamation, produce waste forms that pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) limit of 0.20 mg/L, limit mercury vapor concentrations during processing to below the Occupational Safety and Health Administration’s (OSHA) 8-hour worker exposure limit (50 mg/m3) for mercury, and perform the above economically.

  19. Bioremediation techniques applied to aqueous media contaminated with mercury.

    Science.gov (United States)

    Velásquez-Riaño, Möritz; Benavides-Otaya, Holman D

    2016-12-01

    In recent years, the environmental and human health impacts of mercury contamination have driven the search for alternative, eco-efficient techniques different from the traditional physicochemical methods for treating this metal. One of these alternative processes is bioremediation. A comprehensive analysis of the different variables that can affect this process is presented. It focuses on determining the effectiveness of different techniques of bioremediation, with a specific consideration of three variables: the removal percentage, time needed for bioremediation and initial concentration of mercury to be treated in an aqueous medium.

  20. Small Mercury Relativity Orbiter

    Science.gov (United States)

    Bender, Peter L.; Vincent, Mark A.

    1989-01-01

    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.

  1. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    Science.gov (United States)

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  2. Mercury Exposure and Heart Diseases.

    Science.gov (United States)

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-12

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  3. Mercury Exposure and Heart Diseases

    Directory of Open Access Journals (Sweden)

    Giuseppe Genchi

    2017-01-01

    Full Text Available Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  4. Calcium in Mercury's Exosphere: Modeling MESSENGER Data

    Science.gov (United States)

    Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Merkel, Aimee; Vervack, Ronald J.; Sarantos, Menelaos; Sprague, Ann L.

    2011-01-01

    Mercury is surrounded by a surface-bounded exosphere comprised of atomic species including hydrogen, sodium, potassium, calcium, magnesium, and likely oxygen. Because it is collisionless. the exosphere's composition represents a balance of the active source and loss processes. The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface. Space ENvironment. GEochemistry. and Ranging (MESSENGER) spacecraft has made high spatial-resolution observations of sodium, calcium, and magnesium near Mercury's surface and in the extended, anti-sunward direction. The most striking feature of these data has been the substantial differences in the spatial distribution of each species, Our modeling demonstrates that these differences cannot be due to post-ejection dynamics such as differences in photo-ionization rate and radiation pressure. but instead point to differences in the source mechanisms and regions on the surface from which each is ejected. The observations of calcium have revealed a strong dawn/dusk asymmetry. with the abundance over the dawn hemisphere significantly greater than over the dusk. To understand this asymmetry, we use a Monte Carlo model of Mercury's exosphere that we developed to track the motions of exospheric neutrals under the influence of gravity and radiation pressure. Ca atoms can be ejected directly from the surface or produced in a molecular exosphere (e.g., one consisting of CaO). Particles are removed from the system if they stick to the surface or escape from the model region of interest (within 15 Mercury radii). Photoionization reduces the final weighting given to each particle when simulating the Ca radiance. Preliminary results suggest a high temperature ( I-2x 10(exp 4) K) source of atomic Ca concentrated over the dawn hemisphere. The high temperature is consistent with the dissociation of CaO in a near-surface exosphere with scale height <= 100 km, which imparts 2 eV to the freshly produced Ca atom. This

  5. Trophic transfer efficiency of methylmercury and inorganic mercury to lake trout Salvelinus namaycush from its prey

    Science.gov (United States)

    Madenijian, C.P.; David, S.R.; Krabbenhoft, D.P.

    2012-01-01

    Based on a laboratory experiment, we estimated the net trophic transfer efficiency of methylmercury to lake trout Salvelinus namaycush from its prey to be equal to 76.6 %. Under the assumption that gross trophic transfer efficiency of methylmercury to lake trout from its prey was equal to 80 %, we estimated that the rate at which lake trout eliminated methylmercury was 0.000244 day−1. Our laboratory estimate of methylmercury elimination rate was 5.5 times lower than the value predicted by a published regression equation developed from estimates of methylmercury elimination rates for fish available from the literature. Thus, our results, in conjunction with other recent findings, suggested that methylmercury elimination rates for fish have been overestimated in previous studies. In addition, based on our laboratory experiment, we estimated that the net trophic transfer efficiency of inorganic mercury to lake trout from its prey was 63.5 %. The lower net trophic transfer efficiency for inorganic mercury compared with that for methylmercury was partly attributable to the greater elimination rate for inorganic mercury. We also found that the efficiency with which lake trout retained either methylmercury or inorganic mercury from their food did not appear to be significantly affected by the degree of their swimming activity.

  6. Mercury's exosphere: observations during MESSENGER's First Mercury flyby.

    Science.gov (United States)

    McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C

    2008-07-04

    During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby.

  7. Species difference between rat and hamster in tissue accumulation of mercury after administration of methylmercury

    International Nuclear Information System (INIS)

    Omata, Saburo; Kasama, Hidetaka; Hasegawa, Hiroshi; Hasegawa, Kazuhiro; Sugano, Hiroshi; Ozaki, Kunio

    1986-01-01

    The accumulation of mercury in tissues of the rat and hamster was determined after the administration of a single dose of 203 Hg-methylmercury chloride (10 mg/kg body weight). (1) On day 2, the mercury contents of hamster tissues were higher than those of rat tissues, except for red blood cells, in which the mercury content was about 6-fold higher in the rat than in the hamster. (2) After that time, the mercury content of hamster tissues decreased rather steeply and on day 16 it had reached 14-25% in nervous tissues and 7-15% in other tissues, of the levels on day 2. (3) In the rat, on the other hand, the mercury content of nervous tissues on day 16 was higher than that on day 2 (106-220%), except for dorsal roots and dorsal root ganglia, which showed slight decreases (75-94% of the levels on day 2). In non-neural tissues, the decreases up to day 16 were also small (71-92% of the levels on day 2). (4) Thus, both the uptake and elimination of mercury seem to be more rapid in the tissues of hamster compared with those of the rat. Similar trends of mercury accumulation and elimination were observed when animals received multiple injections of methylmercury that induced acute methylmercury intoxication. (5) Significant biotransmormation of the injected methylmercury to inorganic mercury was detected in the liver, kidney and spleen of both animal species. Although the percentages of inorganic mercury in these tissues wer not so different between the two species on day 2, they became exceedingly high in the tissues of hamster at the later stage, except in the kidney cytosol, in which the values were close in both animal species between day 2 and day 16. (orig.)

  8. Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination.

    Science.gov (United States)

    Personius, Kirkwood E; Slusher, Barbara S; Udin, Susan B

    2016-08-24

    At birth, each mammalian skeletal muscle fiber is innervated by multiple motor neurons, but in a few weeks, all but one of those axons retracts (Redfern, 1970) and differential activity between inputs controls this phenomenon (Personius and Balice-Gordon, 2001; Sanes and Lichtman, 2001; Personius et al., 2007; Favero et al., 2012). Acetylcholine, the primary neuromuscular transmitter, has long been presumed to mediate this activity-dependent process (O'Brien et al., 1978), but glutamatergic transmission also occurs at the neuromuscular junction (Berger et al., 1995; Grozdanovic and Gossrau, 1998; Mays et al., 2009). To test the role of neuromuscular NMDA receptors, we assessed their contribution to muscle calcium fluxes in mice and tested whether they influence removal of excess innervation at the end plate. Developmental synapse pruning was slowed by reduction of NMDA receptor activation or expression and by reduction of glutamate production. Conversely, pruning is accelerated by application of exogenous NMDA. We also found that NMDA induced increased muscle calcium only during the first 2 postnatal weeks. Therefore, neuromuscular NMDA receptors play previously unsuspected roles in neuromuscular activity and synaptic pruning during development. In normal adult muscle, each muscle fiber is innervated by a single axon, but at birth, fibers are multiply innervated. Elimination of excess connections requires neural activity; because the neuromuscular junction (NMJ) is a cholinergic synapse, acetylcholine has been assumed to be the critical mediator of activity. However, glutamate receptors are also expressed at the NMJ. We found that axon removal in mice is slowed by pharmacological and molecular manipulations that decrease signaling through neuromuscular NMDA receptors, whereas application of exogenous NMDA at the NMJ accelerates synapse elimination and increases muscle calcium levels during the first 2 postnatal weeks. Therefore, neuromuscular NMDA receptors play

  9. Mixed Waste Focus Area Working Group: An Integrated Approach to Mercury Waste Treatment and Disposal. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

    1997-09-08

    May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG). The HgWG was established to address and resolve the issues associated with Mercury- contaminated mixed wastes (MWs). During the initial technical baseline development process of the MWFA, three of the top four technology deficiencies identified were related to (1) amalgamation, (2) stabilization, and (3) separation and removal for the treatment of mercury and mercury-contaminated mixed waste (MW). The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these needs.

  10. Mixed Waste Focus Area Working Group: An Integrated Approach to Mercury Waste Treatment and Disposal. Revision 1

    International Nuclear Information System (INIS)

    Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

    1997-01-01

    May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG). The HgWG was established to address and resolve the issues associated with Mercury- contaminated mixed wastes (MWs). During the initial technical baseline development process of the MWFA, three of the top four technology deficiencies identified were related to (1) amalgamation, (2) stabilization, and (3) separation and removal for the treatment of mercury and mercury-contaminated mixed waste (MW). The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these needs

  11. Mercury Specie and Multi-Pollutant Control

    Energy Technology Data Exchange (ETDEWEB)

    Rob James; Virgil Joffrion; John McDermott; Steve Piche

    2010-05-31

    This project was awarded to demonstrate the ability to affect and optimize mercury speciation and multi-pollutant control using non-intrusive advanced sensor and optimization technologies. The intent was to demonstrate plant-wide optimization systems on a large coal fired steam electric power plant in order to minimize emissions, including mercury (Hg), while maximizing efficiency and maintaining saleable byproducts. Advanced solutions utilizing state-of-the-art sensors and neural network-based optimization and control technologies were proposed to maximize the removal of mercury vapor from the boiler flue gas thereby resulting in lower uncontrolled releases of mercury into the atmosphere. Budget Period 1 (Phase I) - Included the installation of sensors, software system design and establishment of the as-found baseline operating metrics for pre-project and post-project data comparison. Budget Period 2 (Phase II) - Software was installed, data communications links from the sensors were verified, and modifications required to integrate the software system to the DCS were performed. Budget Period 3 (Phase III) - Included the validation and demonstration of all control systems and software, and the comparison of the optimized test results with the targets established for the project site. This report represents the final technical report for the project, covering the entire award period and representing the final results compared to project goals. NeuCo shouldered 61% of the total project cost; while DOE shouldered the remaining 39%. The DOE requires repayment of its investment. This repayment will result from commercial sales of the products developed under the project. NRG's Limestone power plant (formerly owned by Texas Genco) contributed the host site, human resources, and engineering support to ensure the project's success.

  12. Recovery of mercury from acid waste residues

    Science.gov (United States)

    Greenhalgh, Wilbur O.

    1989-12-05

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  13. Mercury Poisoning Linked to Skin Products

    Science.gov (United States)

    ... Products For Consumers Home For Consumers Consumer Updates Mercury Poisoning Linked to Skin Products Share Tweet Linkedin ... and, in some situations, criminal prosecution. Dangers of Mercury Exposure to mercury can have serious health consequences. ...

  14. Changing patterns in the use, recycling, and material substitution of mercury in the United States

    Science.gov (United States)

    Wilburn, David R.

    2013-01-01

    Environmental concerns have led to numerous regulations that have dramatically decreased the reported production and use of mercury in the United States since the 1980s. Government legislation and subsequent industry actions have led to increased collection of mercury-containing materials and the recovery of mercury through recycling. Mercury emissions have been reduced and effective alternatives to mercury products have been developed for many applications. This study updates and quantifies the changes in demand, supply, use, and material flow for mercury in various sectors in the United States that have taken place since 1996. Nearly all primary mercury produced in the United States is derived as a byproduct of processing of gold and silver ore in Nevada. Since 2001, annual production of mercury from gold and silver mining in Nevada has decreased by 22 percent overall because ore from greater depths containing low grade mercury is recovered, and mercury emissions from this source have decreased by 95 percent as a result of increased regulation and improved collection and suppression technology. The distribution of consumption of mercury in the United States has changed as a result of regulation (elimination of large-scale mercury use in the paint and battery sectors), reduction by consumers (decommissioning of mercury-cell chloralkali manufacturing capacity), and technological advances (improvements in dental, lighting, and wiring sectors). Mercury use in the chloralkali sector, the leading end-use sector in the United States in 1996, has declined by 98 percent from 136 metric tons (t) in 1996 to about 0.3 t in 2010 because of increased processing and recycling efficiencies and plant closures or conversion to other technologies. As plants were closed, mercury recovered from the infrastructure of decommissioned plants has been exported, making the United States a net exporter of mercury, even though no mercury has been produced as the primary product from mines in

  15. Aqueous mercury treatment technology review for NPDES Outfall 49 Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lanning, J.M.

    1993-04-01

    During 1950 to 1955, Building 9201-2 at the Oak Ridge Y-12 Plant was used to house development facilities for processes that employed elemental mercury to separate lithium isotopes as part of the thermonuclear weapons production operations. As a result of several spills, this building area and several other areas associated with the separation process were contaminated with mercury and became a source of continuing contamination of the Y-12 Plant discharge water to East Fork Poplar Creek (EFPC). Mercury concentrations in the outfalls south of Building 9201-2 have ranged up to 80 ppb, with the highest concentrations being experienced at Outfall 49. As a result, this outfall was chosen as a test site for future mercury treatment technology evaluation and development at the Oak Ridge Y-12 Plant. A literature review and vendor survey has identified several promising materials and technologies that may be applicable to mercury removal at the Outfall 49 site. This document summarizes those findings.

  16. Defining the Molecular-Cellular-Field Continuum of Mercury Detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Anne O. [Univ. of Georgia, Athens, GA (United States)

    2016-04-25

    Hg is of special interest to DOE due to past intensive use in manufacture of nuclear weapons at the Oak Ridge Reservation (ORR). Because of its facile oxidation/reduction [Hg(II)/Hg(0)] chemistry, ability to bond to carbon [as in highly toxic methylmercury: MeHg(I)] and its unique physical properties [e.g., volatility of Hg(0)], Hg has a complex environmental cycle involving soils, sediments, waterways and the atmosphere and including biotic and abiotic chemical and physical transport and transformations.1 Understanding such processes well enough to design stewardship plans that minimize negative impacts in diverse ecological settings requires rich knowledge of the contributing abiotic and biotic processes. Prokaryotes are major players in the global Hg cycle. Facultative and anaerobic bacteria can form MeHg(I) with consequent intoxication of wildlife and humans. Sustainable stewardship of Hg-contaminated sites requires eliminating not only MeHg(I) but also the Hg(II) substrate for methylation. Fortunately, a variety of mercury resistant (HgR) aerobic and facultative bacteria and archaea can do both things. Prokaryotes harboring narrow or broad Hg resistance (mer) loci detoxify Hg(II) or RHg(I), respectively, to relatively inert, less toxic, volatile Hg(0). HgR microbes are enriched in highly contaminated sites and extensive field data show they depress levels of MeHg >500-fold in such zones2. So, enhancing the natural capacity of indigenous HgR microbes to remove Hg(II) and RHg(I) from soils, sediments and waterways is a logical component of a comprehensive plan for clean up and stewardship of contaminated sites.

  17. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals

    International Nuclear Information System (INIS)

    Goodrich, Jaclyn M.; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri

    2011-01-01

    Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione s-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n = 515), and total mercury content was measured. Average urine (1.06 ± 1.24 ug/L) and hair mercury levels (0.49 ± 0.63 ug/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5′), or both (SEPP1 3′UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). -- Highlights: ► We explore the influence of 15 polymorphisms on urine and hair Hg levels. ► Urine and hair Hg levels in dental professionals were similar to the US population. ► GSTT1 and SEPP1 polymorphisms associated with urine Hg levels. ► Accumulation of Hg in hair following exposure from fish was modified by genotype. ► GSTP1, GSS

  18. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals

    Energy Technology Data Exchange (ETDEWEB)

    Goodrich, Jaclyn M.; Wang, Yi [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Gillespie, Brenda [Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Werner, Robert [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Department of Physical Medicine and Rehabilitation, University of Michigan, 325 E. Eisenhower Parkway Suite 100, Ann Arbor, MI 48108 (United States); Franzblau, Alfred [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Basu, Niladri, E-mail: niladri@umich.edu [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)

    2011-12-15

    Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione s-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n = 515), and total mercury content was measured. Average urine (1.06 {+-} 1.24 ug/L) and hair mercury levels (0.49 {+-} 0.63 ug/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5 Prime ), or both (SEPP1 3 Prime UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). -- Highlights: Black-Right-Pointing-Pointer We explore the influence of 15 polymorphisms on urine and hair Hg levels. Black-Right-Pointing-Pointer Urine and hair Hg levels in dental professionals were similar to the US population. Black-Right-Pointing-Pointer GSTT1 and SEPP1 polymorphisms associated with urine Hg levels. Black

  19. Defense Logistics Agency Revenue Eliminations

    National Research Council Canada - National Science Library

    1996-01-01

    The issue of revenue eliminations was identified during our work on the Defense Logistics Agency portion of the Audit of Revenue Accounts in the FY 1996 Financial Statements of the Defense Business Operations Fund...

  20. Proportional counter end effects eliminator

    International Nuclear Information System (INIS)

    Meekins, J.F.

    1976-01-01

    An improved gas-filled proportional counter which includes a resistor network connected between the anode and cathode at the ends of the counter in order to eliminate ''end effects'' is described. 3 Claims, 2 Drawing Figures

  1. Atmospheric Mercury Transport Across Southern Lake Michigan: Influence from the Chicago/Gary Urban Area

    Science.gov (United States)

    Gratz, L. E.; Keeler, G. J.; Dvonch, J. T.

    2008-12-01

    The local and regional impacts of mercury emissions from major urban and industrial areas are critical to quantify in order to further understand mercury cycling in the environment. The Chicago/Gary urban area is one such location in which mercury emissions from industrial sources are significant and regional mercury transport needs to be further examined. Speciated atmospheric mercury was measured in Chicago, IL and Holland, MI from July to November 2007 to better characterize the impact of Chicago/Gary on southwest Michigan. Previous work under the 1994-1995 Lake Michigan Mass Balance Study (LMMBS) indicated that the highest levels of mercury deposition in southwest Michigan occurred with transport from the Chicago/Gary area, particularly with rapid transport where less mercury was deposited close to sources(1). However, at that time it was not possible to measure reactive gas phase mercury (RGM), a highly-soluble form of mercury in industrial emissions that is readily removed from the atmosphere. Since the LMMBS, the development of speciated mercury systems has made it possible to continuously monitor gaseous elemental mercury (Hg0), particulate mercury (HgP), and RGM. These measurements are useful for understanding atmospheric mercury chemistry and differentiating between local and regional source impacts due to the different behaviors of reactive and elemental mercury. Results from 2007 show that, on average, Hg0 and HgP were 1.5 times higher and RGM was 2 times higher in Chicago than in Holland. Mean mercury wet deposition was nearly 3 times higher in Chicago than in Holland. Meteorological analysis indicates that transport across the lake from Chicago/Gary occurred frequently during the study. Additional measurements of O3, SO2, meteorological parameters, event mercury and trace element precipitation samples, and modeled back-trajectories are used to discern regional transport events from local deposition and characterize the impact of the Chicago/Gary urban

  2. Mercury, Vaccines, and Autism

    Science.gov (United States)

    Baker, Jeffrey P.

    2008-01-01

    The controversy regarding the once widely used mercury-containing preservative thimerosal in childhood vaccines has raised many historical questions that have not been adequately explored. Why was this preservative incorporated in the first place? Was there any real evidence that it caused harm? And how did thimerosal become linked in the public mind to the “autism epidemic”? I examine the origins of the thimerosal controversy and their legacy for the debate that has followed. More specifically, I explore the parallel histories of three factors that converged to create the crisis: vaccine preservatives, mercury poisoning, and autism. An understanding of this history provides important lessons for physicians and policymakers seeking to preserve the public’s trust in the nation’s vaccine system. PMID:18172138

  3. Mercury in Canadian crude oil

    International Nuclear Information System (INIS)

    Hollebone, B.P.

    2005-01-01

    Estimates for average mercury concentrations in crude oil range widely from 10 ng/g of oil to 3,500 ng/g of oil. With such a broad range of estimates, it is difficult to determine the contributions of the petroleum sector to the total budget of mercury emissions. In response to concerns that the combustion of petroleum products may be a major source of air-borne mercury pollution, Environment Canada and the Canadian Petroleum Products Institute has undertaken a survey of the average total mercury concentration in crude oil processed in Canadian refineries. In order to calculate the potential upper limit of total mercury in all refined products, samples of more than 30 different types of crude oil collected from refineries were measured for their concentration of mercury as it enters into a refinery before processing. High temperature combustion, cold vapour atomic absorption and cold vapour atomic fluorescence were the techniques used to quantify mercury in the samples. The results of the study provide information on the total mass of mercury present in crude oil processed in Canada each year. Results can be used to determine the impact of vehicle exhaust emissions to the overall Canadian mercury emission budget. 17 refs., 2 tabs., 2 figs

  4. REDUCTION OF INHERENT MERCURY EMISSIONS IN PC COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    John C. Kramlich; Rebecca N. Sliger

    2000-08-26

    Oxidized mercury has been shown to be more easily removed from power plant flue gas by existing air pollution control equipment (e.g., wet scrubbers) than elemental mercury. The factors that determine how mercury is converted to the oxidized form in practical systems are, however, unknown. The present research focuses on developing an elementary, homogeneous mechanism that describes the oxidation of mercury by chlorine species as it occurs in practical furnaces. The goal is to use this mechanism (1) as a component in an overall homogeneous/heterogeneous mechanism that describes mercury behavior, and (2) to suggest low cost/low impact means of promoting mercury oxidation in furnaces. The results suggest an important role for Hg+Cl {r_arrow} HgCl and HgCl + Cl {r_arrow} HgCl{sub 2}. Here, the Cl is derived by radical attack on HCl in the high-temperature environment. The results suggest that the oxidation occurs during the time that the gases cool to room temperature. The high Cl concentrations from the flame persist into the quench region and provide for the oxidation of Hg to HgCl{sub 2} under lower temperatures where the products are stable. Under this mechanism, no significant HgCl{sub 2} is actually present at the higher temperatures where oxidized mercury is often reported in the literature (e.g., 900 C). Instead, all oxidation occurs as these gases are quenched. The results suggest that means of promoting Cl concentrations in the furnace will increase oxidation.

  5. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.

    Science.gov (United States)

    Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming

    2015-07-01

    Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments. Copyright © 2015. Published by Elsevier B.V.

  6. Overview of mercury measurements in the Antarctic troposphere

    Directory of Open Access Journals (Sweden)

    A. Dommergue

    2010-04-01

    Full Text Available Polar ecosystems are considered to be the last pristine environments of the earth relatively uninfluenced by human activities. Antarctica in particular, compared to the Arctic is considered to be even less affected by any kind of anthropogenic influences. Once contaminants reach the Polar Regions, their lifetime in the troposphere depends on local removal processes. Atmospheric mercury, in particular, has unique characteristics that include long-range transport to Polar Regions and the transformation to more toxic and water-soluble compounds that may potentially become bioavailable. These chemical-physical properties have placed mercury on the priority list of an increasing number of International, European and National conventions, and agreements, aimed at the protection of the ecosystems including human health (i.e. GEO, UNEP, AMAP, UN-ECE, HELCOM, OSPAR. This interest, in turn, stimulates a significant amount of research including measurements of gaseous elemental mercury reaction rate constant with atmospheric oxidants, experimental and modelling studies in order to understand the cycling of mercury in Polar Regions, and its impact to these ecosystems. Special attention in terms of contamination of Polar Regions is paid to the consequences of the springtime phenomena, referred to as "Atmospheric Mercury Depletion Events" (AMDEs, during which elemental mercury through a series of photochemically-initiated reactions involving halogens, may be converted to a reactive form that may accumulate in polar coastal, or sea ice, ecosystems. The discovery of the AMDEs, first noted in the Arctic, has also been observed at both poles and was initially considered to result in an important net input of atmospheric mercury into the polar surfaces. However, recent studies point out that complex processes take place after deposition that may result in less significant net-inputs from the atmosphere since a fraction, sometimes significant, of deposited mercury

  7. Magnetic field of Mercury

    International Nuclear Information System (INIS)

    Jackson, D.J.; Beard, D.B.

    1977-01-01

    The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/ 3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 10 22 G cm 3 in the same direction as the earth's dipole), approx.-113 γR/sub M/ 4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ

  8. The planet Mercury (1971)

    Science.gov (United States)

    1972-01-01

    The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

  9. UNEP Demonstrations of Mercury Emission Reduction at Two Coal-fired Power Plants in Russia

    Directory of Open Access Journals (Sweden)

    Jozewicz W.

    2013-04-01

    Full Text Available The United Nations Environment Programme (UNEP partnership area “Mercury releases from coal combustion” (The UNEP Coal Partnership has initiated demonstrations of mercury air emission reduction at two coal-fired power plants in Russia. The first project has modified the wet particulate matter (PM scrubber installed in Toliatti thermal plant to allow for addition of chemical reagents (oxidants into the closedloop liquid spray system. The addition of oxidant resulted in significant improvement of mercury capture from 20% total mercury removal (without the additive up to 60% removal (with the additive. It demonstrates the effectiveness of sorbent injection technologies in conjunction with an electrostatic precipitator (ESP. ESPs are installed at 60%, while wet PM scrubbers are installed at 30% of total coal-fired capacity in Russia. Thus, the two UNEP Coal Partnership projects address the majority of PM emission control configurations occurring in Russia.

  10. Litter mercury deposition in the Amazonian rainforest

    International Nuclear Information System (INIS)

    Fostier, Anne Hélène; Melendez-Perez, José Javier; Richter, Larissa

    2015-01-01

    The objective of this work was to assess the flux of atmospheric mercury transferred to the soil of the Amazonian rainforest by litterfall. Calculations were based on a large survey of published and unpublished data on litterfall and Hg concentrations in litterfall samples from the Amazonian region. Litterfall based on 65 sites located in the Amazon rainforest averaged 8.15 ± 2.25 Mg ha −1  y −1 . Average Hg concentrations were calculated from nine datasets for fresh tree leaves and ten datasets for litter, and a median concentration of 60.5 ng Hg g −1 was considered for Hg deposition in litterfall, which averaged 49 ± 14 μg m −2  yr −1 . This value was used to estimate that in the Amazonian rainforest, litterfall would be responsible for the annual removing of 268 ± 77 Mg of Hg, approximately 8% of the total atmospheric Hg deposition to land. The impact of the Amazon deforestation on the Hg biogeochemical cycle is also discussed. - Highlights: • Based on published data we estimated the litterfall in the Amazonian rainforest. • All the published data on Hg concentration in leaves and litter from the region and some unpublished data are presented. • We calculated the litter mercury deposition. • We estimated the contribution of dry, wet and litter Hg deposition in the Amazonian rainforest. • We also discussed the impact of Amazon deforestation on the Hg biogeochemical cycle. - The Amazonian rainforest is responsible for removing at least 268 Mg Hg y −1 , 8% of the total atmospheric mercury deposition to land.

  11. Mercury separation from aqueous wastes

    International Nuclear Information System (INIS)

    Taylor, P.A.; Klasson, K.T.; Corder, S.L.

    1995-07-01

    This project is providing an assessment of new sorbents for removing mercury from wastes at US Department of Energy sites. Four aqueous wastes were chosen for lab-scale testing; a high-salt, acidic waste currently stored at Idaho National Engineering Laboratory (INEL); a high-salt, alkaline waste stored at the Savannah River Site (SRS); a dilute lithium hydroxide solution stored at the Oak Ridge Y-12 Plant; and a low-salt, neutral groundwater generated at the Y-12 Plant. Eight adsorbents have been identified for testing, covering a wide range of cost and capability. Screening tests have been completed, which identified the most promising adsorbents for each waste stream. Batch isotherm tests have been completed using the most promising adsorbents, and column tests are in progress. Because of the wide range of waste compositions tested, no one adsorbent is effective in all of these waste streams. Based on loading capacity and compatibility with the waste solutions. the most effective adsorbents identified to date are SuperLig 618 for the INEL tank waste stimulant; Mersorb followed by lonac SR-3 for the SRS tank waste stimulant; Durasil 70 and Ionac SR-3) for the LIOH solution; and lonac SR-3 followed by lonac SR-4 and Mersorb for the Y-12 groundwater

  12. Determination of total mercury in nuts at ultratrace level

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Maria José da, E-mail: maryquimica@yahoo.com.br [Departamento de Química – Universidade Federal Rural de Pernambuco, Rue Dom Manoel de Medeiros s/n. Dois irmãos, 52171-900 Recife, PE (Brazil); Paim, Ana Paula S. [Departamento de Química Fundamental – Universidade Federal de Pernambuco, Cidade Universitária, 50740-550 Recife, PE (Brazil); Pimentel, Maria Fernanda [Departamento de Engenharia Química – Universidade Federal de Pernambuco, Recife, PE (Brazil); Cervera, M. Luisa; Guardia, Miguel de la [Department of Analytical Chemistry, Research Building, University of Valencia, 50th Dr. Moliner Street, E-46100 Burjassot, Valencia (Spain)

    2014-08-01

    Highlights: • Direct analysis of Hg in nuts has been improved by a previous fat removal. • Comparison of cold vapour atomic fluorescence and direct analysis of Hg in nuts. • Mercury content in tree nuts was determined. - Abstract: Total mercury, at μg kg{sup −1} level, was determined in different types of nuts (cashew nut, Brazil nuts, almond, pistachio, peanut, walnut) using a direct mercury analyser after previous sample defatting and by cold vapour atomic fluorescence spectrometry. There is not enough sensitivity in the second approach to determine Hg in previously digested samples due to the strong matrix effect. Mercury levels in 25 edible nut samples from Brazil and Spain were found in the range from 0.6 to 2.7 μg kg{sup −1} by using the pyrolysis of sample after the extraction of the nut fat. The accuracy of the proposed method was confirmed by analysing certified reference materials of Coal Fly Ash-NIST SRM 1633b, Fucus-IAEA 140 and three unpolished Rice Flour NIES-10. The observed results were in good agreement with the certified values. The recoveries of different amounts of mercury added to nut samples ranged from 94 to 101%. RSD values corresponding to three measurements varied between 2.0 and 14% and the limit of detection and quantification of the method were 0.08 and 0.3 μg kg{sup −1}, respectively.

  13. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-01-01

    Highlights: ► New treatments for CFL are required considering the aim of Directive 202/96/CE. ► It is shown that most of the mercury introduced into a CFL is in the phosphor powder. ► Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. ► By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 ± 0.4 ppb of mercury in the vapor phase, 204.16 ± 8.9 ppb of mercury in the phosphor powder, and 18.74 ± 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  14. Prenatal Maternal Occupational Exposure and Postnatal Child Exposure to Elemental Mercury.

    Science.gov (United States)

    Xu, Jian; Yan, Chong-Huai; Hu, Howard; Wu, Mei-Qin; Shen, Xiao-Ming

    2016-03-01

    Young children are highly vulnerable to elemental mercury toxicity, and elementary mercury exposure in young children in China unfortunately occurs regularly because of the wide use of fluorescent lamps, glass thermometers, and other mercury-contained items. This study aimed to summarize such recent cases in a referral clinic and to make recommendations for postexposure treatment and prevention of future exposure. Patients were evaluated between January 2007 and December 2009 in environmental health facilities throughout China and were referred to our clinic. A total of 6 children younger than 4 years with significant elemental mercury exposure were included in this case series analysis. The total mercury content in blood and hair (fetal hair if necessary) and average 24-hour urine mercury concentrations were analyzed. Meso-2,3-dimercaptosuccinic acid or surgery was prescribed for the patient if necessary. Young children were found to be exposed in 3 ways as follows: prenatal exposure through maternal occupational contact in compact fluorescent-lamp factories (2 cases), broken thermometers (3 cases), and other causes of accidental inhalation of mercury vapor during the embryonic and lactation periods (1 case). For 3 cases caused by broken thermometers, x-ray images helped to identify the position of mercury residues. Local excision was used to remove mercury from the floor of the mouth in 1 case. One child was prescribed oral meso-2,3-dimercaptosuccinic acid, and a good response was received. Substitution of mercury-in-glass thermometers and vigilance to prevent women of childbearing age from occupational mercury exposure were suggested. Treatment selection should vary according to patient situations.

  15. Mercury's Magnetic Field

    Science.gov (United States)

    Johnson, C. L.

    2014-12-01

    Mercury is the only inner solar system body other than Earth to possess an active core dynamo-driven magnetic field and the only planet with a small, highly dynamic magnetosphere. Measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have provided a wealth of data on Mercury's magnetic field environment. Mercury's weak magnetic field was discovered 40 years ago by the Mariner 10 spacecraft, but its large-scale geometry, strength and origin could not be definitively established. MESSENGER data have shown that the field is dynamo-generated and can be described as an offset axisymmetric dipole field (hereafter OAD): the magnetic equator lies ~0.2 RM (RM = 2440 km) north of the geographic equator and the dipole moment is 2.8 x1019 Am2 (~0.03% that of Earth's). The weak internal field and the high, but variable, solar wind ram pressure drive vigorous magnetospheric dynamics and result in an average distance from the planet center to the sub-solar magnetopause of only 1.42 RM. Magnetospheric models developed with MESSENGER data have allowed re-analysis of the Mariner 10 observations, establishing that there has been no measureable secular variation in the internal field over 40 years. Together with spatial power spectra for the OAD, this provides critical constraints for viable dynamo models. Time-varying magnetopause fields induce secondary core fields, the magnitudes of which confirm the core radius estimated from MESSENGER gravity and Earth-based radar data. After accounting for large-scale magnetospheric fields, residual signatures are dominated by additional external fields that are organized in the local time frame and that vary with magnetospheric activity. Birkeland currents have been identified, which likely close in the planetary interior at depths below the base of the crust. Near-periapsis magnetic field measurements at altitudes greater than 200 km have tantalizing hints of crustal fields, but crustal

  16. Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion.

    Science.gov (United States)

    Fuente-Cuesta, A; Diaz-Somoano, M; Lopez-Anton, M A; Cieplik, M; Fierro, J L G; Martínez-Tarazona, M R

    2012-05-15

    The combustion of coal can result in trace elements, such as mercury, being released from power stations with potentially harmful effects for both human health and the environment. Research is ongoing to develop cost-effective and efficient control technologies for mercury removal from coal-fired power plants, the largest source of anthropogenic mercury emissions. A number of activated carbon sorbents have been demonstrated to be effective for mercury retention in coal combustion power plants. However, more economic alternatives need to be developed. Raw biomass gasification chars could serve as low-cost sorbents for capturing mercury since they are sub-products generated during a thermal conversion process. The aim of this study was to evaluate different biomass gasification chars as mercury sorbents in a simulated coal combustion flue gas. The results were compared with those obtained using a commercial activated carbon. Chars from a mixture of paper and plastic waste showed the highest retention capacity. It was found that not only a high carbon content and a well developed microporosity but also a high chlorine content and a high aluminium content improved the mercury retention capacity of biomass gasification chars. No relationship could be inferred between the surface oxygen functional groups and mercury retention in the char samples evaluated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Mercury in a thin layer in HgMn stars: A test of a diffusion model

    International Nuclear Information System (INIS)

    Megessier, C.; Michaud, G.; Weiler, E.J.

    1980-01-01

    Lines of the first three states of ionization of mercury have been observed in μ Leporis and chi Lupi using the Copernicus satellite. Lines of Hg II and Hg III have been observed in α Andromedae. There appears to be an absorption feature at every wavelength where there is expected to be a mercury line. The presence of all three states of ionization is likely in μ Lep and chi Lup. The relative equivalent widths of the lines of the various states of ionization do not depend on the effective temperature of the stars, in contradiction to what is expected if mercury were uniformly distributed in the atmosphere. It is, however, expected if mercury has been concentrated, by diffusion, in a thin layer, where the radiative forces just equal the gravitational forces on mercury. That mercury should be so concentrated is also required by the explanation of the mercury isotope anomaly proposed by Michaud, Reeves, and Charland. The diffusion model for Ap stars predicts in its simplest form the presence of very thin layers. However, any leftover turbulence may increase the depth of these layers without eliminating the element separation

  18. Mercury: Exploration of a Planet

    Science.gov (United States)

    1976-01-01

    The flight of the Mariner 10 spacecraft to Venus and Mercury is detailed in animation and photography. Views of Mercury are featured. Also included is animation on the origin of the solar system. Dr. Bruce C. Murray, director of the Jet Propulsion Laboratory, comments on the mission.

  19. Rotation of the planet mercury.

    Science.gov (United States)

    Jefferys, W H

    1966-04-08

    The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications.

  20. Concentrations and occurrences of mercury and arsenic in coals from the Qianxi fault depression area in southwestern Guizhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Junying Zhang; Yaqin Qiu; Deyi Ren; Jing Liu; Chuguang Zheng [Huazhong University Of Science and Technology, Wuhan (China). National Laboratory of Coal Combustion

    2003-07-01

    High-arsenic coal combustion has caused extremely harmful on inhabitants and environment in Southwestern Guizhou. Sixty-one coal samples were collected and determined by cold-vapor atomic absorption (CV-AAS) and atomic fluorescence spectrometry (AFS) for understanding the contents and distributions of mercury and arsenic in coals from Qianxi Fault Depression Area (QFDA) in southwestern Guizhou. And sequential chemical extraction procedures were carried out for understanding the modes of occurrences of mercury and arsenic in the coals. The results show that the concentrations of mercury in coals are between 0.034 to 10.5 mg/kg and the average value is 1.006 mg/kg. The content of arsenic in coal is between 0.2 to 238 mg/kg and the average value is 40.7 mg/kg. The concentrations of mercury and arsenic in Late Triassic coal are higher than in Late Permian coal, mercury is 1.421 mg/kg and 0.891 mg/kg and arsenic is 53.3 mg/kg and 30.7 mg/kg respectively. Compared with average value of World and Chinese coal, the concentrations of mercury and arsenic in QFDA coal are higher. And the concentrations of mercury and arsenic in QFDA coal are also higher than the average value of Guizhou coal. Mercury and arsenic in coal are predominately associated with minerals and the percents of mercury and arsenic with macerals are very low. There are some water extractable and readily exchangeable mercury and arsenic because of the leaching of mercury and arsenic contained rock. Mercury and arsenic are mainly contained in the minerals in coal and hence the physical coal cleaning techniques can remove minerals from coal and decrease the mercury and arsenic emissions. 16 refs., 8 tabs.

  1. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  2. Mercury concentration in bivalve molluscs

    Directory of Open Access Journals (Sweden)

    Szkoda Józef

    2015-09-01

    Full Text Available A total of 85 mussel samples of eight species were examined. Analysis of mercury in the freeze-dried samples was carried out by atomic absorption spectrometry method using direct mercury analyser AMA 254. The analytical procedure for determination of mercury was covered by the quality assurance programme of research and participation in national and international proficiency tests. Concentrations of total mercury in all investigated samples were found to be generally low, in the range of 0.033-0.577 mg/kg of dry weight and of 0.003-0.045 mg/kg of wet weight. The results indicate that obtained levels of mercury in bivalve molluscs are not likely to pose a risk to the health of consumers.

  3. Mercury: Beethoven Quadrangle, H-7

    Science.gov (United States)

    2000-01-01

    Mercury: Computer Photomosaic of the Beethoven Quadrangle, H-7 The Beethoven Quadrangle, named for the 19th century classical German composer, lies in Mercury's Equatorial Mercator located between longitude 740 to 1440. The Mariner 10 spacecraft imaged the region during its initial flyby of the planet. The Image Processing Lab at NASA's Jet Propulsion Laboratory produced this photomosaic using computer software and techniques developed for use in processing planetary data. The images used to construct the Beethoven Quadrangle were taken as Mariner 10 flew passed Mercury. The Mariner 10 spacecraft was launched in 1974. The spacecraft took images of Venus in February 1974 on the way to three encounters with Mercury in March and September 1974 and March 1975. The spacecraft took more than 7,000 images of Mercury, Venus, the Earth and the Moon during its mission. The Mariner 10 Mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science in Washington, D.C.

  4. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    OpenAIRE

    Park, Jung-Duck; Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability o...

  5. Methods for dispensing mercury into devices

    Science.gov (United States)

    Grossman, Mark W.; George, William A.

    1987-04-28

    A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

  6. 21 CFR 872.3700 - Dental mercury.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental mercury. 872.3700 Section 872.3700 Food and... DENTAL DEVICES Prosthetic Devices § 872.3700 Dental mercury. (a) Identification. Dental mercury is a device composed of mercury intended for use as a component of amalgam alloy in the restoration of a...

  7. Direct determination of mercury in cosmetic samples by isotope dilution inductively coupled plasma mass spectrometry after dissolution with formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ying; Shi, Zeming; Zong, Qinxia; Wu, Peng; Su, Jing [Sichuan Provincial Key Laboratory of Nuclear Technology in Geology, College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059 (China); Liu, Rui, E-mail: liur.ray@gmail.com [Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China)

    2014-02-17

    Graphical abstract: -- Highlights: •Simple, sensitive, and accurate method is established for mercury determination in cosmetics. •The sample preparation procedure is highly simplified. •Isotope dilution efficiently eliminates matrix effect. •First report of using formic acid based method in combination with PVG-ID-ICP MS for mercury quantitation in cosmetics. -- Abstract: A new method was proposed for the accurate determination of mercury in cosmetic samples based on isotopic dilution (ID)-photochemical vapor generation (PVG)-inductively coupled plasma mass spectrometry (ICP MS) measurement. Cosmetic samples were directly dissolved in formic acid solution and subsequently subjected to PVG for the reduction of mercury into vapor species following by ICP MS detection. Therefore, the risks of analyte contamination and loss were avoided. Highly enriched {sup 201}Hg isotopic spike is added to cosmetics and the isotope ratios of {sup 201}Hg/{sup 202}Hg were measured for the quantitation of mercury. With ID calibration, the influences originating from sample matrixes for the determination of mercury in cosmetic samples have been efficiently eliminated. The effects of several experimental parameters, such as the concentration of the formic acid, and the flow rates of carrier gas and sample were investigated. The method provided good reproducibility and the detection limits were found to be 0.6 pg mL{sup −1}. Finally, the developed method was successfully applied for the determination of mercury in six cosmetic samples and a spike test was performed to verify the accuracy of the method.

  8. Direct determination of mercury in cosmetic samples by isotope dilution inductively coupled plasma mass spectrometry after dissolution with formic acid

    International Nuclear Information System (INIS)

    Gao, Ying; Shi, Zeming; Zong, Qinxia; Wu, Peng; Su, Jing; Liu, Rui

    2014-01-01

    Graphical abstract: -- Highlights: •Simple, sensitive, and accurate method is established for mercury determination in cosmetics. •The sample preparation procedure is highly simplified. •Isotope dilution efficiently eliminates matrix effect. •First report of using formic acid based method in combination with PVG-ID-ICP MS for mercury quantitation in cosmetics. -- Abstract: A new method was proposed for the accurate determination of mercury in cosmetic samples based on isotopic dilution (ID)-photochemical vapor generation (PVG)-inductively coupled plasma mass spectrometry (ICP MS) measurement. Cosmetic samples were directly dissolved in formic acid solution and subsequently subjected to PVG for the reduction of mercury into vapor species following by ICP MS detection. Therefore, the risks of analyte contamination and loss were avoided. Highly enriched 201 Hg isotopic spike is added to cosmetics and the isotope ratios of 201 Hg/ 202 Hg were measured for the quantitation of mercury. With ID calibration, the influences originating from sample matrixes for the determination of mercury in cosmetic samples have been efficiently eliminated. The effects of several experimental parameters, such as the concentration of the formic acid, and the flow rates of carrier gas and sample were investigated. The method provided good reproducibility and the detection limits were found to be 0.6 pg mL −1 . Finally, the developed method was successfully applied for the determination of mercury in six cosmetic samples and a spike test was performed to verify the accuracy of the method

  9. Eliminating Heavy Metals from Water with NanoSheet Minerals as Adsorbents

    Directory of Open Access Journals (Sweden)

    Shaoxian Song

    2017-12-01

    Full Text Available Heavy metals usually referred to those with atomic weights ranging from 63.5 to 200.6. Because of natural-mineral dissolution and human activities such as mining, pesticides, fertilizer, metal planting and batteries manufacture, etc., these heavy metals, including zinc, copper, mercury, lead, cadmium and chromium have been excessively released into water courses, like underground water, lake and river, etc. The ingestion of the heavy metals-contaminated water would raise serious health problems to human beings even at a low concentration. For instance, lead can bring human beings about barrier to the normal function of kidney, liver and reproductive system, while zinc can cause stomach cramps, skin irritations, vomiting and anemia. Mercury is a horrible neurotoxin that may result in damages to the central nervous system, dysfunction of pulmonary and kidney, chest and dyspnea. Chromium (VI has been proved can cause many diseases ranging from general skin irritation to severe lung carcinoma. Accordingly, the World Health Organization announced the maximum contaminant levels (MCL for the heavy metals in drinking water. There are numerous processes for eliminating heavy metals from water in order to provide citizens safe drinking water, including precipitation, adsorption, ion exchange, membrane separation and biological treatment, etc. Adsorption is considered as a potential process for deeply removing heavy metals, in which the selection of adsorbents plays a predominant role. Nano-sheet minerals as the adsorbents are currently the hottest researches in the field. They are obtained from layered minerals, such as montmorillonite, graphite and molybdenite, through the processing of intercalation, electrochemical and mechanical exfoliation, etc. Nano-sheet minerals are featured by their large specific surface area, relatively low costs and active adsorbing sites, leading to be effective and potential adsorbents for heavy metals removal from water

  10. Fluorescent sensor for mercury

    Science.gov (United States)

    Wang, Zidong [Urbana, IL; Lee, Jung Heon [Evanston, IL; Lu, Yi [Champaign, IL

    2011-11-22

    The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

  11. Analytical theory of Mercury's rotation and reference planes

    Science.gov (United States)

    D'Hoedt, Sandrine; Noyelles, Benoit; Dufey, Julien; Lemaitre, Anne

    eliminate periods less than a few hundreds years; the resulting orbit is robust for the time of the mission. Concerning the Laplace plane, two building methods are possible according to the time interval on which we need the result : for very long durations, finding the ideal Laplace pole is an utopia; at most, we can numerically find a Laplace pole which minimizes the variations in inclination. For shorter periods, we can define an instantaneous Laplace pole, which is convenient for the chosen interval of time. The presentation will summarize these different calculations, showing their limits, their diffi- culties and the state of the art of the analytical models of rotation of Mercury.

  12. Measles elimination: progress and challenges.

    Science.gov (United States)

    Cutts, F T; Henao-Restrepo, A; Olivé, J M

    1999-10-29

    The accelerating progress in reducing measles incidence and mortality in many parts of the world has led to calls for its global eradication during the next 10-15 years. Three regions have established goals of elimination of indigenous transmission of measles. The strategy used in the Americas of a mass 'catchup' campaign of children 9 months to 15 years of age, high coverage through routine vaccination of infants, intensive surveillance and follow-up campaigns to prevent excessive build-up of susceptibles has had great success in reducing measles transmission close to zero. However, while these developments are impressive, much remains to be done to reduce measles-associated mortality in western and central Africa, where less than half of children are currently receiving measles vaccine and half a million children die from measles each year. The obstacles to global measles eradication are perceived to be predominantly political and financial. There are also technical questions, however. These include the refinement of measles elimination strategies in the light of recent outbreaks in the Americas; the implications of the HIV epidemic for measles elimination, issues around injection safety, and concerns about the possibility that secondary vaccine failures will contribute in sustaining transmission in highly vaccinated populations. The global priorities are to improve measles control in low income countries, increase awareness among industrialized countries of the importance of measles, and conduct studies to answer the technical questions about measles elimination strategies.

  13. JV Task 122 - Assessment of Mercury Control Options for the San Miguel Electric Cooperative Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas Lentz; Brandon Pavlish; John Kay; Michael Jones

    2009-02-01

    In the United States, testing has been under way at electric coal-fired power plants to find viable and economical mercury control strategies to meet pending regulations. San Miguel Electric Cooperative (SMEC) engaged the Energy & Environmental Research Center (EERC) through a request for proposal (RFP) to perform research tests to evaluate sorbent-based technologies at its coal-fired San Miguel Generating Station to identify possible technology options that could be used by SMEC to meet the mercury reduction requirements of future U.S. federal standards. The goal of the testing was to target a mercury removal of {ge}90%. The EERC has successfully field-tested several sorbent-based technologies in previous projects that offer promise and potential to achieve a target removal of {ge}90%. Based on these field test results, yet recognizing that fuel type and plant operating conditions affect mercury capture significantly, the EERC proposed research tests to evaluate potential sorbent-based technologies provided by Norit Americas and the EERC that could potentially meet SMEC's mercury control objectives. Over the period of May through mid-June 2008, the EERC tested injection of both treated and nontreated activated carbon (AC) provided by Norit Americas and sorbent enhancement additives (SEAs) provided by the EERC. Tests were performed at San Miguel Unit 1 (450 MW) and included injection at the inlet of the air heater (AH) (temperature of 720 F). The test coal was a Texas lignite fuel with an average moisture content of 31.19%, an ash content of 26.6%, a heating value of 5,094 Btu/lb, a sulfur content of 2.7%, and a mercury concentration of 0.182 ppm, all reported on an as-received basis. Pilot-scale testing results identified DARCO{reg_sign} Hg-LH, SEA2 + DARCO{reg_sign} Hg, and the ChemMod sorbents as technologies with the potential to achieve the target mercury removal of {ge}90% at the full-scale test. Mercury concentrations were tracked with continuous

  14. Removal of radium from drinking water

    International Nuclear Information System (INIS)

    Lauch, R.P.

    1992-08-01

    The report summarizes processes for removal of radium from drinking water. Ion exchange, including strong acid and weak acid resin, is discussed. Both processes remove better than 95 percent of the radium from the water. Weak acid ion exchange does not add sodium to the water. Calcium cation exchange removes radium and can be used when hardness removal is not necessary. Iron removal processes are discussed in relation to radium removal. Iron oxides remove much less than 20 percent of the radium from water under typical conditions. Manganese dioxide removes radium from water when competition for sorption sites and clogging of sites is reduced. Filter sand that is rinsed daily with dilute acid will remove radium from water. Manganese dioxide coated filter sorption removes radium but more capacity would be desirable. The radium selective complexer selectively removes radium with significant capacity if iron fouling is eliminated

  15. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

    2010-12-31

    This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed

  16. Increased mercury emissions from modern dental amalgams

    OpenAIRE

    Bengtsson, Ulf G.; Hylander, Lars D.

    2017-01-01

    All types of dental amalgams contain mercury, which partly is emitted as mercury vapor. All types of dental amalgams corrode after being placed in the oral cavity. Modern high copper amalgams exhibit two new traits of increased instability. Firstly, when subjected to wear/polishing, droplets rich in mercury are formed on the surface, showing that mercury is not being strongly bonded to the base or alloy metals. Secondly, high copper amalgams emit substantially larger amounts of mercury vapor ...

  17. Effects of lipopolysaccharide and chelator on mercury content in the cerebrum of thimerosal-administered mice.

    Science.gov (United States)

    Minami, Takeshi; Oda, Keisuke; Gima, Naoya; Yamazaki, Hideo

    2007-11-01

    Thimerosal is one of the best-known preservative agents for vaccines in the world but a relationship between its use and autism has long been suspected so that its effects on the brain need more detailed research. We here examined the influence of lipopolysaccharide injury to the blood-brain barrier on the penetration of mercury from thimerosal into mouse cerebrums, as well as the effect of chelator of heavy metals on cerebrum mercury content. Mercury can be expected to be detected in the cerebrum of normal mice, because the metal is present in standard mouse chow. When 60μg/kg of thimerosal was subcutaneously injected into the mouse, the mercury content in the cerebrum was significantly higher 48h after the thimerosal injection with a maximum peak after 72h. In addition, mercury content in the cerebrum was still higher on day 7 than in the control group. When lipopolysaccharide was pre-injected into mice to induce damage on blood-brain barrier, the mercury content in the cerebrum was significantly higher at 24 and 72h after the injection of 12μg/kg of thimerosal compared to the control group, this dose alone does not cause any increase. The mercury content in the cerebrums of mice was decreased to the control group level on day 7 when a chelator, dimercaprol, was administered once a day from days 3 to 6 after a 60μg/kg, s.c. injection. In addition, d-penicillamine as a chelator decreased the mercury contents in the cerebrum after the high dose administration. In conclusion, a physiological dose of thimerosal did not increase the content of mercury in the cerebrum, but levels were increased when damage to the blood-brain barrier occurred in mice injected with thimerosal. In addition, a chelator of heavy metals may be useful to remove mercury from the cerebrum. Copyright © 2007 Elsevier B.V. All rights reserved.

  18. Low mercury concentrations cause oxidative stress and endothelial dysfunction in conductance and resistance arteries.

    Science.gov (United States)

    Wiggers, G A; Peçanha, F M; Briones, A M; Pérez-Girón, J V; Miguel, M; Vassallo, D V; Cachofeiro, V; Alonso, M J; Salaices, M

    2008-09-01

    Increased cardiovascular risk after mercury exposure has been described, but the underlying mechanisms are not well explored. We analyzed the effects of chronic exposure to low mercury concentrations on endothelium-dependent responses in aorta and mesenteric resistance arteries (MRA). Wistar rats were treated with mercury chloride (1st dose 4.6 microg/kg, subsequent dose 0.07 microg.kg(-1).day(-1) im, 30 days) or vehicle. Blood levels at the end of treatment were 7.97 +/- 0.59 ng/ml. Mercury treatment: 1) did not affect systolic blood pressure; 2) increased phenylephrine-induced vasoconstriction; 3) reduced acetylcholine-induced vasodilatation; and 4) reduced in aorta and abolished in MRA the increased phenylephrine responses induced by either endothelium removal or the nitric oxide synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME, 100 microM). Superoxide dismutase (SOD, 150 U/ml) and the NADPH oxidase inhibitor apocynin (0.3 mM) decreased the phenylephrine-induced contraction in aorta more in mercury-treated rats than controls. In MRA, SOD did not affect phenylephrine responses; however, when coincubated with l-NAME, the l-NAME effect on phenylephrine response was restored in mercury-treated rats. Both apocynin and SOD restored the impaired acetylcholine-induced vasodilatation in vessels from treated rats. Endothelial NOS expression did not change in aorta but was increased in MRA from mercury-treated rats. Vascular O2(-) production, plasmatic malondialdehyde levels, and total antioxidant status increased with the mercury treatment. In conclusion, chronic exposure to low concentrations of mercury promotes endothelial dysfunction as a result of the decreased NO bioavailability induced by increases in oxidative stress. These findings offer further evidence that mercury, even at low concentrations, is an environmental risk factor for cardiovascular disease.

  19. Mercury toxicity and neurodegenerative effects.

    Science.gov (United States)

    Carocci, Alessia; Rovito, Nicola; Sinicropi, Maria Stefania; Genchi, Giuseppe

    2014-01-01

    Mercury is among the most toxic heavy metals and has no known physiological role in humans. Three forms of mercury exist: elemental, inorganic and organic. Mercury has been used by man since ancient times. Among the earliest were the Chinese and Romans, who employed cinnabar (mercury sulfide) as a red dye in ink (Clarkson et al. 2007). Mercury has also been used to purify gold and silver minerals by forming amalgams. This is a hazardous practice, but is still widespread in Brazil's Amazon basin, in Laos and in Venezuela, where tens of thousands of miners are engaged in local mining activities to find and purify gold or silver. Mercury compounds were long used to treat syphilis and the element is still used as an antiseptic,as a medicinal preservative and as a fungicide. Dental amalgams, which contain about 50% mercury, have been used to repair dental caries in the U.S. since 1856.Mercury still exists in many common household products around the world.Examples are: thermometers, barometers, batteries, and light bulbs (Swain et al.2007). In small amounts, some organo mercury-compounds (e.g., ethylmercury tiosalicylate(thimerosal) and phenylmercury nitrate) are used as preservatives in some medicines and vaccines (Ballet al. 2001).Each mercury form has its own toxicity profile. Exposure to Hg0 vapor and MeHg produce symptoms in CNS, whereas, the kidney is the target organ when exposures to the mono- and di-valent salts of mercury (Hg+ and Hg++, respectively)occur. Chronic exposure to inorganic mercury produces stomatitis, erethism and tremors. Chronic MeHg exposure induced symptoms similar to those observed in ALS, such as the early onset of hind limb weakness (Johnson and Atchison 2009).Among the organic mercury compounds, MeHg is the most biologically available and toxic (Scheuhammer et a!. 2007). MeHg is neurotoxic, reaching high levels of accumulation in the CNS; it can impair physiological function by disrupting endocrine glands (Tan et a!. 2009).The most

  20. Mercury kinetics in marine zooplankton

    International Nuclear Information System (INIS)

    Fowler, S.W.; Heyraud, M.; LaRosa, J.

    1976-01-01

    Mercury, like many other heavy metals, is potentially available to marine animals by uptake directly from water and/or through the organisms food. Furthermore, bioavailability, assimilation and subsequent retention in biota may be affected by the chemical species of the element in sea water. While mercury is known to exist in the inorganic form in sea water, recent work has indicated that, in certain coastal areas, a good portion of the total mercury appears to be organically bound; however, the exact chemical nature of the organic fraction has yet to be determined. Methyl mercury may be one constituent of the natural organically bound fraction since microbial mechanisms for in situ methylation of mercury have been demonstrated in the aquatic environment. Despite the fact that naturally produced methyl mercury probably comprises only a small fraction of an aquatic ecosystem, the well-documented toxic effects of this organo-mercurial, caused by man-made introductions into marine food chains, make it an important compound to study

  1. Atmospheric mercury footprints of nations.

    Science.gov (United States)

    Liang, Sai; Wang, Yafei; Cinnirella, Sergio; Pirrone, Nicola

    2015-03-17

    The Minamata Convention was established to protect humans and the natural environment from the adverse effects of mercury emissions. A cogent assessment of mercury emissions is required to help implement the Minamata Convention. Here, we use an environmentally extended multi-regional input-output model to calculate atmospheric mercury footprints of nations based on upstream production (meaning direct emissions from the production activities of a nation), downstream production (meaning both direct and indirect emissions caused by the production activities of a nation), and consumption (meaning both direct and indirect emissions caused by final consumption of goods and services in a nation). Results show that nations function differently within global supply chains. Developed nations usually have larger consumption-based emissions than up- and downstream production-based emissions. India, South Korea, and Taiwan have larger downstream production-based emissions than their upstream production- and consumption-based emissions. Developed nations (e.g., United States, Japan, and Germany) are in part responsible for mercury emissions of developing nations (e.g., China, India, and Indonesia). Our findings indicate that global mercury abatement should focus on multiple stages of global supply chains. We propose three initiatives for global mercury abatement, comprising the establishment of mercury control technologies of upstream producers, productivity improvement of downstream producers, and behavior optimization of final consumers.

  2. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    Energy Technology Data Exchange (ETDEWEB)

    Ernie F. Stine

    2002-08-14

    The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw

  3. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    International Nuclear Information System (INIS)

    Stine, Ernie F.

    2002-01-01

    The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw

  4. Mercury's Na Exosphere from MESSENGER Data

    Science.gov (United States)

    Killen, Rosemary M.; Burger, M. H.; Cassidy, T. A.; Sarantos, M.; Vervack, R. J.; McClintock, W. El; Merkel, A. W.; Sprague, A. L.; Solomon, S. C.

    2012-01-01

    MESSENGER entered orbit about Mercury on March 18, 2011. Since then, the Ultraviolet and Visible Spectrometer (UWS) channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) has been observing Mercury's exosphere nearly continuously. Daily measurements of Na brightness were fitted with non-uniform exospheric models. With Monte Carlo sampling we traced the trajectories of a representative number of test particles, generally one million per run per source process, until photoionization, escape from the gravitational well, or permanent sticking at the surface removed the atom from the simulation. Atoms were assumed to partially thermally accommodate on each encounter with the surface with accommodation coefficient 0.25. Runs for different assumed source processes are run separately, scaled and co-added. Once these model results were saved onto a 3D grid, we ran lines of sight from the MESSENGER spacecraft :0 infinity using the SPICE kernels and we computed brightness integrals. Note that only particles that contribute to the measurement can be constrained with our method. Atoms and molecules produced on the nightside must escape the shadow in order to scatter light if the excitation process is resonant-light scattering, as assumed here. The aggregate distribution of Na atoms fits a 1200 K gas, with a PSD distribution, along with a hotter component. Our models constrain the hot component, assumed to be impact vaporization, to be emitted with a 2500 K Maxwellian. Most orbits show a dawnside enhancement in the hot component broadly spread over the leading hemisphere. However, on some dates there is no dawn/dusk asymmetry. The portion of the hot/cold source appears to be highly variable.

  5. Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Steven Derenne; Robin Stewart

    2009-09-30

    This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON

  6. Structure and strength of low-mercury dental amalgams prepared with liquid Hg-47.4% In alloy.

    Science.gov (United States)

    Friedman, A; Kaufman, A

    1998-06-01

    Two low-mercury amalgams: (1) low-copper lathe-cut and (2) high-copper (Tytin) were prepared by amalgamation with liquid Hg-47.4% In alloy. The strength-structure relationship of these amalgams was investigated and compared with standard amalgams (i.e. amalgams prepared with the same powders and pure mercury). The matrix phase of the low-mercury amalgam was found to be depleted of mercury and may be thought of as In4Ag9 compound with some mercury dissolved, indicating that less mercury (compared with standard amalgam) combines with silver, thus producing a strong amalgam matrix. On the other hand, an increase was observed in the consumption of the initial gamma (Ag3Sn)-phase, leading to an increase of the tin released. As a result, the potential of [HgSn]-phase formation in low-mercury amalgams increases. The observed increase in the quantity of gamma2(Sn7-8Hg)-phase in low-copper amalgam, or its appearance in high-copper amalgam (where it is normally absent), contributes to a deterioration in the strength of the investigated amalgam. The conclusion drawn was that low-mercury amalgam may be prepared with liquid Hg-47.4%In alloy but, in order to eliminate gamma2-phase formation, novel and possibly tin-free amalgamable alloys should be developed. Copyright 1998 Chapman & Hall

  7. Exploring Mercury: The Iron Planet

    OpenAIRE

    Stevenson, David J.

    2004-01-01

    Planet Mercury is both difficult to observe and difficult to reach by spacecraft. Just one spacecraft, Mariner 10, flew by the planet 30 years ago. An upcoming NASA mission, MESSENGER, will be launched this year and will go into orbit around Mercury at the end of this decade. A European mission is planned for the following decade. It's worth going there because Mercury is a strange body and the history of planetary exploration has taught us that strangeness gives us insight into planetary ori...

  8. MESSENGER'S First Flyby of Mercury

    Science.gov (United States)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. An overview of the MESSENGER mission and its January 14th close flyby of Mercury will be provided. Primary science objectives and the science instrumentation will be described. Initial results from MESSENGER'S first flyby on January 14th, 2008 will be discussed with an emphasis on the magnetic field and charged particle measurements.

  9. Emission and speciation of mercury from waste incinerators with mass distribution investigations

    International Nuclear Information System (INIS)

    Seo, Yong-Chil; Kim, Jeong-Hun; Pudasainee, Deepak; Yoon, Young-Sik; Jung, Seung Jae; Bhatta, Dhruba

    2010-01-01

    In this paper mercury emission and removal characteristics in municipal wastes incinerators (MWIs), hazardous waste incinerators (HWIs) and hospital medical and infectious waste incinerators (HMIWIs) with mercury mass distribution within the system are presented. Mercury speciation in flue gas at inlet and outlet of each air pollution control devices (APCDs) were sampled and analyzed by Ontario Hydro Method. Solid and liquid samples were analyzed by U.S. EPA method 7470A and 7471A, respectively. Cold vapor atomic absorption spectroscopy was used for analysis. On an average, Hg emission concentrations in flue gas from MWIs ranged 173.9 to 15.3 μg Sm -3 at inlet and 10.5 to 3.8 μg Sm -3 at outlet of APCDs respectively. Mercury removal efficiency ranged 50 to 95% in MWIs, 7.2 to 59.9% in HWIs as co-beneficial results of APCDs for removing other air pollutants like particulate matter, dioxin and acidic gases. In general, mercury in incineration facilities was mainly distributed in fly ash followed by flue gas and bottom ash. In MWIs 94.4 to 74% of Hg were distributed in fly ash. In HWIs with dry type APCDs, Hg removal was less and 70.6% of mercury was distributed in flue gas. The variation of Hg concentration, speciation and finally the distribution in the tested facilities was related to the non-uniform distribution of Hg in waste combined with variation in waste composition (especially Cl, S content), operating parameters, flue gas components, fly ash properties, operating conditions, APCDs configuration. Long term data incorporating more number of tests are required to better understand mercury behavior in such sources and to apply effective control measures. (author)

  10. Distribution and retention of organic and inorganic mercury in methyl mercury-treated neonatal rats

    International Nuclear Information System (INIS)

    Thomas, D.J.; Fisher, H.L.; Sumler, M.R.; Hall, L.L.; Mushak, P.

    1988-01-01

    Seven-day-old Long Evans rats received one mumol of 203 Hg-labeled methyl mercury/kg sc and whole body retention and tissue distribution of organic and inorganic mercury were examined for 32 days postdosing. Neonates cleared mercury slowly until 10 days postdosing when the clearance rate abruptly increased. During the interval when whole body clearance of mercury was extremely slow, methyl mercury was metabolized to inorganic mercury. Peak concentration of mercury in kidney occurred at 2 days postdosing. At 32 days postdosing, 8% of mercury in kidney was in an organic from. Liver mercury concentration peaked at 2 days postdosing and organic mercury accounted for 38% at 32 days postdosing. Brain concentrations of mercury peaked at 2 days postdosing. At 10 days postdosing, organic mercury accounted for 86% of the brain mercury burden, and, at 32 days postdosing, for 60%. The percentage of mercury body burden in pelt rose from 30 to 70% between 1 and 10 days postdosing. At 32 days postdosing pelt contained 85% of the body burden of mercury. At all time points, about 95% of mercury in pelt was in an organic form. Compartmental analysis of these data permitted development of a model to describe the distribution and excretion of organic and inorganic mercury in methyl mercury-treated neonatal rats

  11. Cancer risks: Strategies for elimination

    International Nuclear Information System (INIS)

    Bannasch, P.

    1987-01-01

    This book deals with the possibilities for identifying and eliminating cancer risk factors. The current state of knowledge on the detection, assessment and elimination of chemical, physical (radiation), and biological (viruses) risk factors are comprehensively presented in 15 contributions. Chemical risk factors resulting from smoking and environmental contamination are given special attention. The coverage of cancer risks by radiation includes some of the consequences of the Chernobyl disaster. Finally, the discussion of the possible risks that certain viruses hold for cancer in man is intended to further the development of vaccinations against these viral infections. The information is directed not only at specialists, but also at a wider interested audience. Its primary aim is to convey established findings that are already being used for cancer prevention. Furthermore, the book aims to promote more intense research in the field of primary cancer prevention. Contents: General aspects; chemical carcinogens: Risk assessment; chemical carcinogens: Primary prevention; physical carcinogens - Oncogenic viruses and subject index

  12. Comparing and assessing different measurement techniques for mercury in coal systhesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, D.P.; Richardson, C.F. [Radian Corporation, Austin, TX (United States)

    1995-11-01

    Three mercury measurement techniques were performed on synthesis gas streams before and after an amine-based sulfur removal system. The syngas was sampled using (1) gas impingers containing a nitric acid-hydrogen peroxide solution, (2) coconut-based charcoal sorbent, and (3) an on-line atomic absorption spectrophotometer equipped with a gold amalgamation trap and cold vapor cell. Various impinger solutions were applied upstream of the gold amalgamation trap to remove hydrogen sulfide and isolate oxidized and elemental species of mercury. The results from these three techniques are compared to provide an assessment of these measurement techniques in reducing gas atmospheres.

  13. Blood Mercury Level and Its Determinants among Dental Practitioners in Hamadan, Iran

    Directory of Open Access Journals (Sweden)

    M. Vahedi

    2010-06-01

    Full Text Available Objective: Exposure to mercury can occur in occupational and environmental settings.During clinical work with dental amalgam, the dental personnel are exposed to both metallic mercury and mercury vapor. The aim of the present study was to investigate bloodmercury level (BML and its determinants among dentists practicing in Hamadan city,Iran.Materials and Methods: This cross sectional study was done on all dental practitioners of Hamadan (n=43. Dentists were asked to complete a questionnaire, and then 5 ml bloodsamples were obtained from them. After preparation, mercury concentration of each sample was measured by cold vapor atomic absorption device. Pearson correlation test and regression models served for statistical analysis.Results: The mean blood concentration of mercury was 6.3 μg/l (SD=1.31 range 4.15-8.93. BML was positively associated with age, years in practice, working hours per day,number of amalgam restorations per day, number of amalgam removal per week, sea foodconsumption, working years in present office, using amalgam powder, using diamond bur for amalgam removal, dry sterilization of amalgam contaminated instruments, and deficient air ventilation.Conclusion: BML of dentists in Hamadan was higher than standards. Working hours and number of amalgam restorations per day were significantly correlated with blood mercury.

  14. Thermally robust chelating adsorbents for the capture of gaseous mercury: Fixed-bed behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ji, L.; Abu-Daabes, M.; Pinto, N.G. [University of Cincinnati, Cincinnati, OH (USA). Dept. of Chemical and Material Engineering

    2009-02-15

    Thermally robust chelating adsorbents for the capture of vapor-phase mercuric chloride (HgCl2) have been developed, to address the issue of mercury removal from flue gases from coal-fired power plants. The adsorbents are mesoporous silica substrates functionalized with a chelating agent and coated with an ionizing surface nano-layer. This architecture enables selective, multi-dentate adsorption of mercury directly from the gas phase with high capacity. The capture efficiency of the adsorbents was evaluated in the fixed-bed mode for oxidized mercury at 160{sup o}C. Two chelating adsorbents, one functionalized with 3-mercaptopropyltrimethoxysilane (MPTS) and the other with 2-mercaptobenzothialzole (MBT), were studied. For both adsorbents a high mercury uptake capacity was observed, several times higher than that of commercial activated carbon. The mechanism for mercury uptake in the two adsorbents is different. The effect of pore size on uptake was also evaluated. It was found that pore size does not have a significant effect on the mercury adsorption, and mercury diffusion through the ionic coating is believed to be the rate-limiting step for capture.

  15. Evaluation of heavy metals level (arsenic, nickel, mercury and lead effecting on health in drinking water resource of Kohgiluyeh county using geographic information system (GIS

    Directory of Open Access Journals (Sweden)

    Abdolazim Alinejad

    2016-08-01

    Full Text Available This study was conducted to determine the amount of heavy metals (Arsenic, Nickel, Mercury, and Lead in drinking water resource of Kohgiluyeh County using Geographic Information System (GIS. This cross-sectional study was conducted on drinking water resource of Kohgiluyeh County (33 water supplies and 4 heavy metals in 2013. 264 samples were analyzed in this study. The experiments were performed at the laboratory of Water and Wastewater Company based on Standard Method. The Atomic Adsorption was used to evaluate the amount of heavy metals. The results were mapping by Geographic Information System software (GIS 9.3 after processing of parameters. Finally, the data were analyzed by SPSS 16 and Excel 2007. The maximum amount of each heavy metal and its resource were shown as follow: Nickel or Ni (Source of w12, 124ppb, Arsenic or As (w33, 42 ppb, Mercury or Hg (w22 and w30, 96ppb, Lead or Pb (w21, 1553ppb. Also, the GIS maps showed that Lead in the central region was very high, Mercury and Arsenic in the northern region were high and Nickel in the eastern and western regions was high. The Kriging method and Gauss model were introduced as best method for interpolation of these metals. Since the concentration of these heavy metals was higher than standard levels in most drinking water supplies in Kohgiluyeh County and these high levels of heavy metals can cause the adverse effects on human health; therefore, the environmental and geological studies are necessary to identify the pollution resource and elimination and removal of heavy metals

  16. Stabilization of mercury over Mn-based oxides: Speciation and reactivity by temperature programmed desorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Haomiao [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ma, Yongpeng [Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Huang, Wenjun; Mei, Jian; Zhao, Songjian; Qu, Zan [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Yan, Naiqiang, E-mail: nqyan@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2017-01-05

    Highlights: • Hg-TPD method was used for speciation of mercury species. • Different elements modified MnO{sub x} have different mercury binding state. • Understanding mercury existed state was beneficial for designing novel materials. - Abstract: Mercury temperature-programmed desorption (Hg-TPD) method was employed to clarify mercury species over Mn-based oxides. The elemental mercury (Hg{sup 0}) removal mechanism over MnO{sub x} was ascribed to chemical-adsorption. HgO was the primary mercury chemical compound adsorbed on the surface of MnO{sub x}. Rare earth element (Ce), main group element (Sn) and transition metal elements (Zr and Fe) were chosen for the modification of MnO{sub x}. Hg-TPD results indicated that the binding strength of mercury on these binary oxides followed the order of Sn-MnO{sub x} < Ce-MnO{sub x} ∼ MnO{sub x} < Fe-MnO{sub x} < Zr-MnO{sub x}. The activation energies for desorption were calculated and they were 64.34, 101.85, 46.32, 117.14, and 106.92 eV corresponding to MnO{sub x}, Ce-MnO{sub x}, Sn-MnO{sub x}, Zr-MnO{sub x} and Fe-MnO{sub x}, respectively. Sn-MnO{sub x} had a weak bond of mercury (Hg-O), while Zr-MnO{sub x} had a strong bond (Hg≡O). Ce-MnO{sub x} and Fe-MnO{sub x} had similar bonds compared with pure MnO{sub x}. Moreover, the effects of SO{sub 2} and NO were investigated based on Hg-TPD analysis. SO{sub 2} had a poison effect on Hg{sup 0} removal, and the weak bond of mercury can be easily destroyed by SO{sub 2}. NO was favorable for Hg{sup 0} removal, and the bond strength of mercury was enhanced.

  17. Mercury pollution: a transdisciplinary treatment

    National Research Council Canada - National Science Library

    Zuber, Sharon L; Newman, Michael C

    2012-01-01

    .... Also included are smaller case studies, such as the Minamata tragedy, fish consumption, and international treaties"-- "Mercury is the gravest chemical pollutant problem of our time, and this is...

  18. Origin and composition of Mercury

    International Nuclear Information System (INIS)

    Lewis, J.S.

    1988-01-01

    The predictions of the expected range of composition of Mercury at the time of its formation made on the basis of a suite of condensation-accretion models of Mercury spanning a range of condensation temperature and accretion sampling functions appropriate to Mercury are examined. It is concluded that these compositonal models can, if modified to take into account the nonselective loss of most of the silicate component of the planet during accretion, provide compositional predictions for the Weidenschilling (1978, 1980) mechanism for the accretion of a metal-rich Mercury. The silicate portion would, in this case, contain 3.6 to 4.5 percent alumina, roughly 1 percent of alkali oxides, and between 0.5 and 6 percent FeO

  19. Methods to reduce mercury pollution is small gold mining operations

    International Nuclear Information System (INIS)

    Pantoja-Timaran, F.; Alvarez-Rodriguez, R.; Rodriguez-Avello, A. S.

    2005-01-01

    The use of mercury for gold beneficiation is still a current practice in small mining operations, mainly in underdeveloped countries, due to the low investment required and necessity of easy to operate systems. But the lack of basic protections makes unavoidable the high pollution of water streams, soils, and in fact, human bodies. some improvements have been done at site like that related to the removal of the mercury from the amalgam, that usually was done in the open air, and now have been changed to the utilization of artisan iron retorts which considerable reduce the emissions of mercury vapors to the atmosphere, but there are still high losses of mercury into the waste solids or tailings coming from the amalgamation process (nearly most of the total weight of the ore treated). In order to reduce the mercury losses into the tailings from the process, this research work has been based in the use of cheap systems, available to the isolated miners, to proof that it is feasible to get an important reduction of the losses and the pollution. the procedure has been accomplished by means of washing the ores with alkaline or detergent agents, together with the use of activated mercury purified by electrowinning in a simple device, easily manufactured in site by the own workers. It is also proven herewith that controlling the time of amalgamation and the total amount of mercury used could reduce the total pollution, and in addition, the gold recovery would be improved. This investigation reports the possibility of a reduction of mercury losses down to 2.4 g per 100 of gold produced (case of rich ores like LaBruja), with gold recovery up to 94%; and 8,6 g per 100 g of gold produced (from ores with average grades like La Gruesa), and gold recoveries in the range of 92%. All that is about 20 to 100 times lower than data reported in current bibliography. The introduction of a previous step of the ore concentration in shaking tables, decreases the total amount of solids for

  20. Mercury Dispersion Modeling And Purge Ventilation Stack Height Determination For Tank 40H

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Giboyeaux, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-19

    The SRNL Atmospheric Technologies Group performed an analysis for mercury emissions from H-Tank Farm - Tank 40 ventilation system exhaust in order to assess whether the Short Term Exposure Limit (STEL), or Threshold Limit Value (TLV) levels for mercury will be exceeded during bulk sludge slurry mixing and sludge removal operations. The American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used as the main dispersion modelling tool for this analysis. The results indicated that a 45-foot stack is sufficient to raise the plume centerline from the Tank 40 release to prevent mercury exposure problems for any of the stack discharge scenarios provided. However, a 42-foot stack at Tank 40 is sufficient to prevent mercury exposure concerns in all emission scenarios except the 50 mg/m3 release. At a 42-foot stack height, values exceeding the exposure standards are only measured on receptors located above 34 feet.

  1. Oral lichenoid contact lesions to mercury and dental amalgam--a review.

    Science.gov (United States)

    McParland, Helen; Warnakulasuriya, Saman

    2012-01-01

    Human oral mucosa is subjected to many noxious stimuli. One of these substances, in those who have restorations, is dental amalgam which contains mercury. This paper focuses on the local toxic effects of amalgam and mercury from dental restorations. Components of amalgam may, in rare instances, cause local side effects or allergic reactions referred to as oral lichenoid lesions (OLLs). OLLs to amalgams are recognised as hypersensitivity reactions to low-level mercury exposure. The use of patch testing to identify those susceptible from OLL is explored, and recommendations for removing amalgam fillings, when indicated are outlined. We conclude that evidence does not show that exposure to mercury from amalgam restorations poses a serious health risk in humans, except for an exceedingly small number of hypersensitivity reactions that are discussed.

  2. Oral Lichenoid Contact Lesions to Mercury and Dental Amalgam—A Review

    Science.gov (United States)

    McParland, Helen; Warnakulasuriya, Saman

    2012-01-01

    Human oral mucosa is subjected to many noxious stimuli. One of these substances, in those who have restorations, is dental amalgam which contains mercury. This paper focuses on the local toxic effects of amalgam and mercury from dental restorations. Components of amalgam may, in rare instances, cause local side effects or allergic reactions referred to as oral lichenoid lesions (OLLs). OLLs to amalgams are recognised as hypersensitivity reactions to low-level mercury exposure. The use of patch testing to identify those susceptible from OLL is explored, and recommendations for removing amalgam fillings, when indicated are outlined. We conclude that evidence does not show that exposure to mercury from amalgam restorations poses a serious health risk in humans, except for an exceedingly small number of hypersensitivity reactions that are discussed. PMID:22888200

  3. Oral Lichenoid Contact Lesions to Mercury and Dental Amalgam—A Review

    Directory of Open Access Journals (Sweden)

    Helen McParland

    2012-01-01

    Full Text Available Human oral mucosa is subjected to many noxious stimuli. One of these substances, in those who have restorations, is dental amalgam which contains mercury. This paper focuses on the local toxic effects of amalgam and mercury from dental restorations. Components of amalgam may, in rare instances, cause local side effects or allergic reactions referred to as oral lichenoid lesions (OLLs. OLLs to amalgams are recognised as hypersensitivity reactions to low-level mercury exposure. The use of patch testing to identify those susceptible from OLL is explored, and recommendations for removing amalgam fillings, when indicated are outlined. We conclude that evidence does not show that exposure to mercury from amalgam restorations poses a serious health risk in humans, except for an exceedingly small number of hypersensitivity reactions that are discussed.

  4. Efficient Mercury Capture Using Functionalized Porous Organic Polymer.

    Science.gov (United States)

    Aguila, Briana; Sun, Qi; Perman, Jason A; Earl, Lyndsey D; Abney, Carter W; Elzein, Radwan; Schlaf, Rudy; Ma, Shengqian

    2017-08-01

    The primary challenge in materials design and synthesis is achieving the balance between performance and economy for real-world application. This issue is addressed by creating a thiol functionalized porous organic polymer (POP) using simple free radical polymerization techniques to prepare a cost-effective material with a high density of chelating sites designed for mercury capture and therefore environmental remediation. The resulting POP is able to remove aqueous and airborne mercury with uptake capacities of 1216 and 630 mg g -1 , respectively. The material demonstrates rapid kinetics, capable of dropping the mercury concentration from 5 ppm to 1 ppb, lower than the US Environmental Protection Agency's drinking water limit (2 ppb), within 10 min. Furthermore, the material has the added benefits of recyclability, stability in a broad pH range, and selectivity for toxic metals. These results are attributed to the material's physical properties, which include hierarchical porosity, a high density of chelating sites, and the material's robustness, which improve the thiol availability to bind with mercury as determined by X-ray photoelectron spectroscopy and X-ray absorption fine structure studies. The work provides promising results for POPs as an economical material for multiple environmental remediation applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Localized surface plasmon resonance mercury detection system and methods

    Science.gov (United States)

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  6. Mercury Toolset for Spatiotemporal Metadata

    Science.gov (United States)

    Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce; Rhyne, B. Timothy; Lindsley, Chris

    2010-06-01

    Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily)harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.

  7. Mercury Toolset for Spatiotemporal Metadata

    Science.gov (United States)

    Wilson, Bruce E.; Palanisamy, Giri; Devarakonda, Ranjeet; Rhyne, B. Timothy; Lindsley, Chris; Green, James

    2010-01-01

    Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily) harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.

  8. Nuclear dismantling and asbestos elimination: the same challenge?

    International Nuclear Information System (INIS)

    Dadoumont, J.; Deboodt, P.

    1998-01-01

    The ALARA principle constitutes a powerful tool for workers dosimetry management in the nuclear field. A consequence of the application of this principle could be an accentuation of the nuclear risk face to the industrial risk. Using works of asbestos elimination in nuclear medium, the present article examines how a generalization of the utilization of the ALARA principle is conceivable and how the existing obstacles could be removed. (N.C.)

  9. Assessing the difference of tolerance and phytoremediation potential in mercury contaminated soil of a non-food energy crop, Helianthus tuberosus L. (Jerusalem artichoke

    Directory of Open Access Journals (Sweden)

    Shiqi Lv

    2018-02-01

    Full Text Available This study was conducted to evaluate the effects of mercury stress on growth, photosynthesis and mercury accumulation in different cultivars of a non-food energy crop, Jerusalem artichoke, and to screen appropriate cultivars for their efficacy in the phytoremediation of mercury (Hg2+ contaminated soil. Cultivars LZJ033 (high above-ground biomass and nutrient content, and strongly sexual reproduction and LZJ119 (a long period of vegetative growth exhibited more tolerance to mercury stress than LZJ047 (the highest tuber yield and total sugar content. The lines LZJ119 and LZJ047 showed delays in emergence time of about four weeks, and LZJ047 exhibited the highest mortality rate, 85.19%, under treatment with 10 mg kg-1 mercury. The MDA (malondialdehyde content increased whereas and the Pn (net photosynthetic rate, Fv∕Fm (the maximum quantum yield of PSII photochemistry and chlorophyll content decreased in response to mercury stress. The stem diameter, stem biomass and photosynthetic rate of Jerusalem artichoke showed some modest increases in response to mercury stress and exhibited hormesis at least 1 mg kg-1 mercury treatment. Overall, LZJ119 produced more biomass under mercury stress, whereas LZJ033 exhibited a greater capacity for mercury bioaccumulation. Accordingly, LZJ119 may be a good candidate cultivar for use in cases of moderate—low mercury contamination, whereas LZJ033 may be a better candidate under conditions of high mercury contamination. When Jerusalem artichoke was cultivated in mercury contaminated soil, it not only removed the mercury from soil but also produced large amounts of tubers and shoots which could be used as feedstock for the production of bioethanol.

  10. Separation of mercury from HEWC solutions. Laboratory assay

    International Nuclear Information System (INIS)

    Hendricks, J.P.; Humblet, L.; Geel, J. van.

    1982-05-01

    Before conditioning of the HEWC (high enriched waste concentrate) solution containing as main elements aluminium nitrate nitric acid, mercuric ions, ion and fission products, the mercuric ions must be eliminated from the solution for safety reasons. A method was investigated on bench scale consisting in a reduction of mercuric ions by the formal dehyde. The report presents the laboratory results and considers the efficiency of the formaldehyde as reducing agent to precipitate the mercury. The four results were obtained concerning the recycling, the wasting solutions, the decontamination factors and the concentration of the solution. (AF)

  11. Assessment and Comparison of Electrokinetic and Electrokinetic-bioremediation Techniques for Mercury Contaminated Soil

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Zaidi, E.; Azim, M. A. M.; Farhana, S. M. S.

    2016-11-01

    Landfills are major sources of contamination due to the presence of harmful bacteria and heavy metals. Electrokinetic-Bioremediation (Ek-Bio) is one of the techniques that can be conducted to remediate contaminated soil. Therefore, the most prominent bacteria from landfill soil will be isolated to determine their optimal conditions for culture and growth. The degradation rate and the effectiveness of selected local bacteria were used to reduce soil contamination. Hence, this enhances microbiological activities to degrade contaminants in soil and reduce the content of heavy metals. The aim of this study is to investigate the ability of isolated bacteria (Lysinibacillus fusiformis) to remove mercury in landfill soil. 5 kg of landfill soil was mixed with deionized water to make it into slurry condition for the purpose of electrokinetic and bioremediation. This remediation technique was conducted for 7 days by using 50 V/m of electrical gradient and Lysinibacillus fusiformis bacteria was applied at the anode reservoir. The slurry landfill soil was located at the middle of the reservoir while distilled water was placed at the cathode of reservoir. After undergoing treatment for 7 days, the mercury analyzer showed that there was a significant reduction of approximately up to 78 % of mercury concentration for the landfill soil. From the results, it is proven that electrokinetic bioremediation technique is able to remove mercury within in a short period of time. Thus, a combination of Lysinibacillus fusiformis and electrokinetic technique has the potential to remove mercury from contaminated soil in Malaysia.

  12. Removal of dental amalgam decreases anti-TPO and anti-Tg autoantibodies in patients with autoimmune thyroiditis.

    Science.gov (United States)

    Sterzl, Ivan; Prochazkova, Jarmila; Hrda, Pavlina; Matucha, Petr; Bartova, Jirina; Stejskal, Vera

    2006-12-01

    The impact of dental amalgam removal on the levels of anti-thyroid peroxidase (anti-TPO) and anti-thyroglobulin (anti-Tg) antibodies was studied in patients with autoimmune thyroiditis (AT) with and without mercury allergy. Thirty-nine patients with AT were tested by an optimized lymphocyte proliferation test MELISA for allergy (hypersensitivity) to inorganic mercury. Patients were divided into two groups: Group I (n = 12) with no hypersensitivity to mercury and Group II (n = 27) with hypersensitivity to mercury. Amalgam fillings were removed from the oral cavities of 15 patients with hypersensitivity to mercury (Group IIA) and left in place in the remaining 12 patients (Group IIB). The laboratory markers of AT, anti-TPO and anti-Tg autoantibodies, were determined in all groups at the beginning of the study and six months later. Compared to levels at the beginning of the study, only patients with mercury hypersensitivity who underwent amalgam replacement (Group IIA) showed a significant decrease in the levels of both anti-Tg (p=0.001) and anti-TPO (p=0.0007) autoantibodies. The levels of autoantibodies in patients with or without mercury hypersensitivity (Group I and Group IIB) who did not replace amalgam did not change. Removal of mercury-containing dental amalgam in patients with mercury hypersensitivity may contribute to successful treatment of autoimmune thyroiditis.

  13. Demonstration of ATG Process for Stabilizing Mercury (<260 ppm) Contaminated Mixed Waste. Mixed Waste Focus Area. OST Reference # 2407

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Mercury contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with <260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m3). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels the U. S. Environmental Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20 mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. It must also be proven feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.

  14. Nuclear dismantling and asbestos elimination: the same challenge?; Demantelement nucleaire et elimination d'asbeste: un meme challenge?

    Energy Technology Data Exchange (ETDEWEB)

    Dadoumont, J.; Deboodt, P. [Centre d' Etude de l' Energie Nucleaire, Mol (Belgium)

    1998-07-01

    The ALARA principle constitutes a powerful tool for workers dosimetry management in the nuclear field. A consequence of the application of this principle could be an accentuation of the nuclear risk face to the industrial risk. Using works of asbestos elimination in nuclear medium, the present article examines how a generalization of the utilization of the ALARA principle is conceivable and how the existing obstacles could be removed. (N.C.)

  15. High fiber probiotic fermented mare's milk reduces the toxic effects of mercury in rats.

    Science.gov (United States)

    Abdel-Salam, Ahmed M; Al-Dekheil, Ali; Babkr, Ali; Farahna, Mohammed; Mousa, Hassan M

    2010-12-01

    Since the advent of the Industrial Revolution in the late 19th century, we have all been unfortunately exposed to an increasingly toxic and polluted world. Among the most dangerous of these pollutants is mercury, which is considered to be the most toxic non-radioactive heavy metal. Fermented foods may help cleanse the body of heavy metals. Fermentation breaks down the nutrients in foods by the action of beneficial microorganisms and creates natural chelators that are available to bind toxins and remove them from the body. The current study was designed to determine the impact of feeding a high fiber probiotic fermented mare's milk on the biological effects of mercury toxicity in rat model. The high fiber fermented mare's milk containing probiotics was prepared and its sensory properties, chemical composition, and antioxidant activity were determined. A rat model of mercury toxicity was used. The effect of feeding the high fiber probiotic fermented mare's milk to rats, along with mercury ingestion, was determined by the analysis of several biochemical markers in serum and histopathological examinations of brain and kidney. The high fiber fermented mare's milk containing probiotics was found to be acceptable by all test panels and volunteers. Mercury ingestion was found to cause biochemical and histopathological alterations in rat serum and tissues. The mercury-treated rats showed a decrease in body weight and an increase in kidney weight. Sera of the mercury treated rats showed alterations in biochemical parameters, and histopathological changes in brain and kidney. However, the rats fed high fiber fermented mare`s milk along with mercury ingestion showed improved histopathology of kidney and brain, and there was restoration of the biochemical parameters in serum to almost normal values. Feeding high fiber fermented mare`s milk may reduce the toxic effects of mercury.

  16. A Simple Survey Concerning the Approach of the Cleaning Companies to Mercury Spills

    Directory of Open Access Journals (Sweden)

    Derya Camur

    2010-12-01

    Full Text Available AIM: The aim of this study is to determine the knowledge of the cleaning companies in case of mercury spills at home. METHOD: Thirty-two cleaning companies were interviewed by a telephone survey. Two standard questions were asked to an authorized people of the company. “A manometer is broken on the carpet. The mercury in the manometer is all spilled on the wall to wall carpet in the living room. We want our carpet to be cleaned. Could you do it? How can be the carpet cleaned? Have you ever cleaned a carpet on which mercury was spilled?” It is stated that mercury spillage has happened just a very short time ago and nothing have been done after that. RESULTS: Fifty percent of the 32 companies work in Istanbul, 37.5% in Ankara and 22.5% in Izmir. Three companies from Ankara, five from Istanbul, one from Izmir stated that they have encountered with mercury spillage before. Three of the companies who have stated that the have not encountered with mercury spillage before, asked “What is mercury?” and one of them asked whether “Mercury is a communicable disease, isn’t it?”. Twenty-two of the interviewed cleaning companies stated that they could clean the carpet with stain remover and three of them offered vacuuming, one washing the carpet with carpet shampoo, one person cleaning the stain by wiping with alcohol/ethyl alcohol. Five of the companies stated that they could not clean the stain and one of them he has advised throwing the carpet away. CONCLUSION: In many developing countries there is no responsible association or institution for mercury spills. Such simple surveys may be very important in determining training and gaps concerning public health problems. [TAF Prev Med Bull 2010; 9(6.000: 557-562

  17. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  18. (EFB) for mercury [Hg(II)] removal from aqueous solution

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... 1Bio-Environmental Research Unit, Department of Biotechnology Engineering, International Islamic University Malaysia,. Jalan Gombak ... value was considered acceptable as it met the requirement of the Department of Environment, Malaysia. ... United Nations are coal-burning power plants and waste.

  19. (EFB) for mercury [Hg(II)] removal from aqueous solution

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... United Nations are coal-burning power plants and waste incinerators. They account for approximately .... of 100 rpm, the barrier between the solid-liquid phases was overcome. Agitation at this speed led ... tance at the boundary layer between solid-liquid phases. Effect of contact time on the uptake of Hg(II) ...

  20. Autometallographic tracing of mercury in frog liver

    International Nuclear Information System (INIS)

    Loumbourdis, N.S.; Danscher, G.

    2004-01-01

    The distribution of mercury in the liver of the frog Rana ridibunda with the autometallographic method was investigated. The mercury specific autometallographic (HgS/Se AMG ) technique is a sensitive histochemical approach for tracing mercury in tissues from mercury-exposed organisms. Mercury accumulates in vivo as mercury sulphur/mercury selenium nanocrystals that can be silver-enhanced. Thus, only a fraction of the Hg can be visualized. Six animals were exposed for one day and another group of six animals for 6 days in 1 ppm mercury (as HgCI 2 ) dissolved in fresh water. A third group of six animals, served as controls, were sacrificed the day of arrival at the laboratory. First, mercury appears in the blood plasma and erythrocytes. Next, mercury moves to hepatocytes and in the apical part of the cells, that facing bile canaliculi. In a next step, mercury appears in the endothelial and Kupffer cells. It seems likely that, the mercury of hepatocytes moves through bile canaliculi to the gut, most probably bound to glutathione and/or other similar ligands. Most probably, the endothelial and Kupffer cells comprise the first line of defense against metal toxicity. - Frogs can be good bioindicators of mercury

  1. Mercury: Aspects of its ecology and environmental toxicity. [physiological effects of mercury compound contamination of environment

    Science.gov (United States)

    Siegel, S. M.

    1973-01-01

    A study was conducted to determine the effects of mercury pollution on the environment. The possible sources of mercury contamination in sea water are identified. The effects of mercury on food sources, as represented by swordfish, are analyzed. The physiological effects of varying concentrations of mercury are reported. Emphasis is placed on the situation existing in the Hawaiian Islands.

  2. Groundwater Modeling Of Mercury Pollution At A Former Mercury Cell Chlor Alkali Facility In Pavoldar, Kazakhstan

    Science.gov (United States)

    In Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severly contaminated with mercury and mercury compounds as a result of the industrial activity of this chemical pla...

  3. Adsorption potential of mercury(II) from aqueous solutions onto Romanian peat moss.

    Science.gov (United States)

    Bulgariu, Laura; Ratoi, Mioara; Bulgariu, Dumitru; Macoveanu, Matei

    2009-06-01

    This study was undertaken to evaluate the adsorption potential of Romanian peat moss for the removal of mercury(II) from aqueous solutions. The batch system experiments carried out showed that this natural material was effective in removing mercury(II). The analysis of FT-IR spectra indicated that the mechanism involved in the adsorption can be mainly attributed to the binding of mercury(II) with the carboxylic groups of Romanian peat moss. Adsorption equilibrium approached within 60 min. The adsorption data fitted well the Langmuir isotherm model. The maximum adsorption capacity (qmax) was 98.94 mg g(-1). Pseudo-second-order kinetic model was applicable to the adsorption data. The thermodynamic parameters indicate that the adsorption process was spontaneous as the Gibbs free energy values were found to be negative (between -17.58 and -27.25 kJ mol(-1)) at the temperature range of 6-54 degrees C.

  4. Sorption of mercury on chemically synthesized polyaniline

    International Nuclear Information System (INIS)

    Remya Devi, P.S.; Verma, R.; Sudersanan, M.

    2006-01-01

    Sorption of inorganic mercury (Hg 2+ ) and methyl mercury, on chemically synthesized polyaniline, in 0.1-10N HCl solutions has been studied. Hg 2+ is strongly sorbed at low acidities and the extent of sorption decreases with increase in acidity. The sorption of methyl mercury is very low in the HCl concentration range studied. Sorption of Hg 2+ on polyaniline in 0.1-10N LiCl and H 2 SO 4 solutions has also been studied. The analysis of the data indicates that the sorption of Hg 2+ depends on the degree of protonation of polyaniline and the nature of mercury(II) chloride complexes in solution. X-ray photoelectron spectroscopy analysis (XPS) of polyaniline sorbed with mercury show that mercury is bound as Hg 2+ . Sorbed mercury is quantitatively eluted from polyaniline with 0.5N HNO 3 . Polyaniline can be used for separation and pre-concentration of inorganic mercury from aqueous samples. (author)

  5. EPA Leadership in the Global Mercury Partnership

    Science.gov (United States)

    The Global Mercury Partnership is a voluntary multi-stakeholder partnership initiated in 2005 to take immediate actions to protect human health and the environment from the releases of mercury and its compounds to the environment.

  6. Mercury-Containing Devices and Demolition

    Science.gov (United States)

    Some items inside residential buildings contain mercury, which poses a persistent and toxic human health and environmental threat. These materials should be carefully salvaged for proper recycling to prevent mercury contamination prior to demolition.

  7. Health Effects of Exposures to Mercury

    Science.gov (United States)

    ... Mercury in Your Environment Contact Us Share Health Effects of Exposures to Mercury Related Health Information for ... About PDF ; discussion starts on page 20) Methylmercury Effects Effects on People of All Ages Exposure to ...

  8. The effect of longterm exposure to mercury on the bacterial community in marine sediment

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Sørensen, Søren Johannes

    1998-01-01

    Mercury pollution, bacteria, diversity, mercury resistance, antibiotic resistance, plasmid abundance......Mercury pollution, bacteria, diversity, mercury resistance, antibiotic resistance, plasmid abundance...

  9. Evaluation of Energy Consumption in the Mercury Treatment of Phosphor Powder from Spent Fluorescent Lamps Using a Thermal Process

    Directory of Open Access Journals (Sweden)

    Yong Choi

    2017-11-01

    Full Text Available In a pilot-plant-scale thermal mercury treatment of phosphor powder from spent fluorescent lamps, energy consumption was estimated to control mercury content by the consideration of reaction kinetics. Mercury content was analyzed as a function of treatment temperature and time. The initial mercury content of the phosphor powder used in the thermal process was approximately 3500 mg/kg. The target mercury content in the phosphor powder thermal process of the phosphor powder was 5 mg/kg or less at 400 °C or higher because the target mercury content was recommended by Minamata Convention and Basel Convention. During thermal processing, the reaction rate was represented by a first order reaction with the Arrhenius equation. The reaction rate constant increased with temperature from 0.0112 min−1 at 350 °C to 0.0558 min−1 at 600 °C. The frequency factor was 2.51 min−1, and the activation energy was 6509.11 kcal/kg. Reaction rate constants were used to evaluate the treatment time required to reduce mercury content in phosphor powder to be less than 5 mg/kg. The total energy consumption in a pilot-plant-scale thermal process was evaluated to determine the optimal temperature for removing mercury in phosphor powder.

  10. Defining the Molecular-Cellular-Field Continuum of Mercury Detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Susan M. [UCSF

    2014-09-04

    Hg is of special interest to DOE due to past use at the Oak Ridge Reservation (ORR). Its facile redox [Hg2+/0] chemistry, bonding to carbon [e.g. MeHg+] and unique physical properties [e.g., Hg0 volatility] underlie a complex global Hg cycle involving biotic and abiotic chemical and physical transport and transformations in soils, sediments, waterways and the atmosphere. Facultative and anaerobic bacteria make MeHg+, which is neurotoxic to wildlife and humans. Sustainable stewardship requires eliminating both MeHg+ and even more toxic Hg2+, which is also the substrate for methylation. The proteins encoded by the mer locus in aerobic and facultative mercury resistant (HgR) bacteria convert soil or waterborne Hg2+ or MeHg+ to less toxic, gaseous Hg0. HgR microbes live in highly Hg-contaminated sites and depress MeHg+ formation >500-fold in such zones. So, enhancing the capacity of natural HgR microbes to remove Hg2+/MeHg+ from wetlands and waterways is a logical component of contaminated site stewardship. To apply enhancement in the field requires knowing how the HgR pathway works including the metabolic demands it makes on the cell, i.e., the entire cell is the relevant catalytic unit. HgR loci occur in metabolically diverse bacteria and unique mer-host co-evolution has been found. In this project we extended our previous studies of mer enzymes in γ-proteobacteria, which are abundant in high Hg areas of the ORR to include studies of mer enzymes from HgR α-proteobacteria and HgR actinobacteria, which also increase in the high Hg regions of the ORR. Specifically, we (1) examined interactions between structural compoenents of MerA and MerB enzymes from γ-proteobacteria, (2) investigated effects of mutations on kinetic efficiency of Hg2+ reduction by γ-proteobacterial MerA, (3) cloned and performed initital characterization of MerA and MerB enzymes from Streptomyces lividans, an actinobacterium, (4) cloned and performed initial characterization of a fused Mer

  11. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2004-12-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.

  12. Mercury toxicokinetics--dependency on strain and gender

    DEFF Research Database (Denmark)

    Ekstrand, Jimmy; Nielsen, Jesper B; Havarinasab, Said

    2010-01-01

    . Inbred, H-2-congenic A.SW and B10.S mice and their F1- and F2-hybrids were given HgCl2 with 2.0 mg Hg/L drinking water and traces of (203)Hg. Whole-body retention (WBR) was monitored until steady state after 5 weeks, when the organ Hg content was assessed. Despite similar Hg intake, A.SW males attained......Mercury (Hg) exposure from dental amalgam fillings and thimerosal in vaccines is not a major health hazard, but adverse health effects cannot be ruled out in a small and more susceptible part of the exposed population. Individual differences in toxicokinetics may explain susceptibility to mercury...... for the kidneys in explaining the slower Hg elimination in A.SW mice. The trait causing higher mercury accumulation was not dominantly inherited in the F1 hybrids. F2 mice showed a large inter-individual variation in Hg accumulation, showing that multiple genetic factors influence the Hg toxicokinetics...

  13. Elimination Problems in Infants and Children

    Science.gov (United States)

    ... Infants and Children Chest Pain, Acute Chest Pain, Chronic Cold and Flu Cough Diarrhea Ear Problems Elimination Problems Elimination Problems in Infants and Children Eye Problems Facial Swelling Feeding Problems in Infants ...

  14. Formal algorithmic elimination for PDEs

    CERN Document Server

    Robertz, Daniel

    2014-01-01

    Investigating the correspondence between systems of partial differential equations and their analytic solutions using a formal approach, this monograph presents algorithms to determine the set of analytic solutions of such a system and conversely to find differential equations whose set of solutions coincides with a given parametrized set of analytic functions. After giving a detailed introduction to Janet bases and Thomas decomposition, the problem of finding an implicit description of certain sets of analytic functions in terms of differential equations is addressed. Effective methods of varying generality are developed to solve the differential elimination problems that arise in this context. In particular, it is demonstrated how the symbolic solution of partial differential equations profits from the study of the implicitization problem. For instance, certain families of exact solutions of the Navier-Stokes equations can be computed.

  15. Mercury detection with thermal neutrons

    International Nuclear Information System (INIS)

    Bell, Z.W.

    1994-01-01

    This report describes the work performed to design a gauge to detect mercury concealed within walls, floors, pipes, and equipment inside a building. The project arose out of a desire to decontaminate and decommission (D ampersand D) a building in which mercury had been used as part of a chemical process. The building contains plumbing and equipment, some with residual mercury even after draining, sumps, and hollow walls. So that releases of mercury to the environment might be minimized during D ampersand D activities, it was considered advisable to locate pockets of mercury that may have collected in concealed spaces so that they might be drained in a controlled fashion prior to the application of the wrecking ball or sledge hammer. The detection of such pockets within a building presents some problems not ordinarily encountered in a laboratory environment. Often, only a single side of a wall or pipe is accessible. This condition disqualifies transmission gauges (such as conventional x radiography) in which a probe is sent through the volume under test (VUT) from one side and its passage or attenuation is detected on the opposite side. A robust, one-sided system was needed

  16. Mercury bioaccumulation in the Mediterranean

    Directory of Open Access Journals (Sweden)

    Cinnirella S.

    2013-04-01

    Full Text Available This study details mercury pollution within the food chain of the Mediterranean by analysing the most comprehensive mercury dataset available for biota and water measurements. In this study we computed a bioaccumulation factor (BAF for datasets in the existing mercury-related scientific literature, in on-going programs, and in past measurement campaigns. Preliminary results indicate a major lack of information, making the outcome of any assessment very uncertain. Importantly, not all marine eco-regions are (or have ever been covered by measurement campaigns. Most lacking is information associated with the South-Eastern part of the Mediterranean, and in several eco-regions it is still impossible to reconstruct a trophic net, as the required species were not accounted for when mercury measurements were taken. The datasets also have additional temporal sampling problems, as species were often not sampled systematically (but only sporadically during any given sampling period. Moreover, datasets composed of mercury concentrations in water also suffer from similar geographic limitations, as they are concentrated in the North-Western Mediterranean. Despite these concerns, we found a very clear bioaccumulation trend in 1999, the only year where comprehensive information on both methylmercury concentrations in water and biota was available.

  17. Method of eliminating radioactive substances in atmosphere

    International Nuclear Information System (INIS)

    Hashimoto, Tadayuki.

    1981-01-01

    Purpose: To eliminate natural radioactive substance (in particular, gases 222 Rn) in the atmosphere. Method: Air removed with dusts of greater than several μ in a filter is introduced into a mixer using a blower. In the blower, super-heated steams at 120 - 200 0 C and the airs are mixed together. Then, the air mixture is introduced into a cooler and cooled to room temperature -50 0 C to condensate water. Subsequently, the cooled air mixture is passed through an activated carbon adsorption device (6 - 12 mesh, air passing speed less than 4 cm/sec. and activated carbon layer thickness 50 - 100 cm) to adsorb 222 Rn. Finally, the air passed through the activated carbon adsorption device is introduced to an ultrafilter for collecting fine particles (asbesto filter, glass filter, etc.) to collect fine particles of activated carbon, lead, bismuth, etc. (decaying products of gaseous 222 Rn). Liquid issued from the mixer and the cooler are discharged by way of drain pipes. (Ikeda, J.)

  18. Mineral resource of the month: mercury

    Science.gov (United States)

    ,

    2012-01-01

    The article offers information on mercury, a mineral commodity used in industrial and small-scale gold mining applications. Mercury has been reported to be used for amalgamation with gold since the Roman times. Mercury from cinnabar from Almadén, Spain has been used by Romans and has been continued to be used through the Middle Ages and the Colonial era.

  19. 40 CFR 721.10068 - Elemental mercury.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Elemental mercury. 721.10068 Section... Substances § 721.10068 Elemental mercury. (a) Definitions. The definitions in § 721.3 apply to this section... elemental mercury (CAS. No. 7439-97-6) is subject to reporting under this section for the significant new...

  20. Test Bias and the Elimination of Racism

    Science.gov (United States)

    Sedlacek, William E.

    1977-01-01

    Three types of test bias are discussed: content bias, atmosphere bias, and use bias. Use bias is considered the most important. Tests reflect the bias in society, and eliminating test bias means eliminating racism and sexism in society. A six-stage model to eliminate racism and sexism is presented. (Author)

  1. Tattoo removal.

    Science.gov (United States)

    Adatto, Maurice A; Halachmi, Shlomit; Lapidoth, Moshe

    2011-01-01

    Over 50,000 new tattoos are placed each year in the United States. Studies estimate that 24% of American college students have tattoos and 10% of male American adults have a tattoo. The rising popularity of tattoos has spurred a corresponding increase in tattoo removal. Not all tattoos are placed intentionally or for aesthetic reasons though. Traumatic tattoos due to unintentional penetration of exogenous pigments can also occur, as well as the placement of medical tattoos to mark treatment boundaries, for example in radiation therapy. Protocols for tattoo removal have evolved over history. The first evidence of tattoo removal attempts was found in Egyptian mummies, dated to have lived 4,000 years BC. Ancient Greek writings describe tattoo removal with salt abrasion or with a paste containing cloves of white garlic mixed with Alexandrian cantharidin. With the advent of Q-switched lasers in the late 1960s, the outcomes of tattoo removal changed radically. In addition to their selective absorption by the pigment, the extremely short pulse duration of Q-switched lasers has made them the gold standard for tattoo removal. Copyright © 2011 S. Karger AG, Basel.

  2. Mercury-free dissolution of aluminum-clad fuel in nitric acid

    Science.gov (United States)

    Christian, Jerry D.; Anderson, Philip A.

    1994-01-01

    A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed.

  3. NOVEL ECONOMICAL HG(0) OXIDATION REAGENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED BOILERS

    Science.gov (United States)

    The authors have developed a novel economical additive for elemental mercury (Hg0) removal from coal-fired boilers. The oxidation reagent was rigorously tested in a lab-scale fixed-bed column with the Norit America's FGD activated carbon (DOE's benchmark sorbent) in a typical PRB...

  4. Combination of pseudomonas putida and EK method to reduce the amount of mercury on landfill soil

    Science.gov (United States)

    Nabila, A. T. A.; Azhar, A. T. S.; Nurshuhaila, M. S.; Azim, M. A. M.; Amirah, S. N.

    2017-11-01

    Landfills usually lack of environment measures especially on soil. There are no guarantee that the landfill soil is free from being contaminated. It may cause harm for humans, animals and plants at surrounding area. In order to solve this problem, advance remediation technique is essential such as the electrokinetic combined with microorganisms known as electrokinetic bioremediation technique. The aim of this study is to investigate the performance of P.putida with 15 volt electric current supply (Ek-bio) and without electric current (Bio) in removal of mercury in landfill soil. Both treatments were running throughout 14 days. The P.putida was placed at anode compartment meanwhile sterile distilled water poured at cathode compartment. According to the both results, Ek-bio was removed mercury up to 48 % but by using standard bioremediation treatment, the removal only 32 %. Besides that, the migration of P.putida react more aggressively during the present of electric current compared with bioremediation. As the results, it was proven that by using Ek-bio technique can increase the activity of bacteria beside and the removal of mercury. Therefore, Ek-bio method can be commercialized to the parties concerned to solve the contaminated soil by mercury.

  5. Assessment of Mercury in Soils, Crops, Earthworms, and Water when Soil is Treated with Gypsum

    Science.gov (United States)

    Flue gas desulfurization (FGD) gypsum from fossil fuel combustion has many potential uses in agriculture, but there is concern about the potential environmental effects of its elevated mercury (Hg) concentration. The wet limestone scrubbing process that removes sulfur from flue gas (and produces gyp...

  6. Mercury emissions from municipal solid waste combustors. An assessment of the current situation in the United States and forecast of future emissions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  7. Mercury and methyl mercury in fishes from Bacajá River (Brazilian Amazon): evidence for bioaccumulation and biomagnification.

    Science.gov (United States)

    Souza-Araujo, J; Giarrizzo, T; Lima, M O; Souza, M B G

    2016-07-01

    This study assessed total mercury (THg) and methyl mercury (MeHg) concentrations, bioaccumulation and biomagnification of THg through the food web in fishes consumed by indigenous communities of Bacajá River, the largest tributary of the right bank of Xingu River. In total, 496 fish (22 species) were sampled. Nine species had THg concentrations above the limit recommended by the World Health Organisation (0·5 µg g(-1) wet mass), and one exceeded the recommended level for Hg in predatory fishes by Brazilian law (1·0 µg g(-1) ). The average concentration of THg increased significantly with trophic guild (herbivorous to piscivorous) and trophic level, with higher accumulation in fishes with greater total length. Ninety-six per cent of all mercury was methylated. These results suggest that feeding habits determine THg concentrations in fishes and that Hg elimination rate is slow during growth, which allows greater accumulation. These findings show that fishes in the Bacajá River contain high concentrations of THg and MeHg. © 2016 The Fisheries Society of the British Isles.

  8. How Tiny Collisions Shape Mercury

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    If space rocks are unpleasant to encounter, space dust isnt much better. Mercurys cratered surface tells of billions of years of meteoroid impacts but its thin atmosphere is what reveals its collisional history with smaller impactors. Now new research is providing a better understanding of what were seeing.Micrometeoroids Ho!The inner solar system is bombarded by micrometeoroids, tiny particles of dust (on the scale of a tenth of a millimeter) emitted by asteroids and comets as they make their closest approach to the Sun. This dust doesnt penetrateEarths layers of atmosphere, but the innermost planet of our solar system, Mercury, doesnt have this convenient cushioning.Just as Mercury is affected by the impacts of large meteoroids, its also shaped by the many smaller-scale impacts it experiences. These tiny collisions are thought to vaporize atoms and molecules from the planets surface, which quickly dissociate. This process adds metals to Mercurys exosphere, the planets extremely tenuous atmosphere.Modeling PopulationsDistribution of the directions from which meteoroids originate before impacting Mercurys surface, as averaged over its entire orbit. Local time of 12 hr corresponds to the Sun-facing side. A significant asymmetry is seen between the dawn (6 hrs) and dusk (18 hrs) rates. [Pokorn et al. 2017]The metal distribution in the exosphere provides a way for us to measure the effect of micrometeoroid impacts on Mercury but this only works if we have accurate models of the process. A team of scientists led by Petr Pokorn (The Catholic University of America and NASA Goddard SFC) has now worked to improve our picture of micrometeoroid impact vaporization on Mercury.Pokorn and collaborators argue that two meteoroid populations Jupiter-family comets (short-period) and Halley-type comets (long-period) contribute the dust for the majority of micrometeoroid impacts on Mercury. The authors model the dynamics and evolution of these two populations, reproducing the

  9. Control of mercury emissions: policies, technologies, and future trends

    OpenAIRE

    Rhee, Seung-Whee

    2015-01-01

    Seung-Whee Rhee Department of Environmental Engineering, Kyonggi University, Suwon, Republic of Korea Abstract: Owing to the Minamata Convention on Mercury and the Global Mercury Partnership, policies and regulations on mercury management in advanced countries were intensified by a mercury phaseout program in the mercury control strategy. In developing countries, the legislative or regulatory frameworks on mercury emissions are not established specifically, but