WorldWideScience

Sample records for elements carbon nitrogen

  1. Volatile elements - water, carbon, nitrogen, noble gases - on Earth

    Science.gov (United States)

    Marty, B.

    2017-12-01

    Understanding the origin and evolution of life-bearing volatile elements (water, carbon, nitrogen) on Earth is a fruitful and debated area of research. In his pioneering work, W.W. Rubey inferred that the terrestrial atmosphere and the oceans formed from degassing of the mantle through geological periods of time. Early works on noble gas isotopes were consistent with this view and proposed a catastrophic event of mantle degassing early in Earth's history. We now have evidence, mainly from noble gas isotopes, that several cosmochemical sources contributed water and other volatiles at different stages of Earth's accretion. Potential contributors include the protosolar nebula gas that equilibrated with magma oceans, inner solar system bodies now represented by chondrites, and comets. Stable isotope ratios suggest volatiles where primarily sourced by planetary bodies from the inner solar system. However, recent measurements by the European Space Agency Rosetta probe on the coma of Comet 67P/Churyumov-Gerasimenko permit to set quantitative constraints on the cometary contribution to the surface of our planet. The surface and mantle reservoirs volatile elements exchanged volatile elements through time, with rates that are still uncertain. Some mantle regions remained isolated from whole mantle convection within the first tens to hundreds million years after start of solar system formation. These regions, now sampled by some mantle plumes (e.g., Iceland, Eifel) preserved their volatile load, as indicated by extinct and extant radioactivity systems. The abundance of volatile elements in the mantle is still not well known. Different approaches, such as high pressure experimental petrology, noble gas geochemistry, modelling, resulted in somewhat contrasted estimates, varying over one order of magnitude for water. Comparative planetology, that is, the study of volatiles on the Moon, Venus, Mars, Vesta, will shed light on the sources and strengths of these elements in the

  2. A method for measuring element fluxes in an undisturbed soil: nitrogen and carbon from earthworms

    International Nuclear Information System (INIS)

    Bouche, M.B.

    1984-01-01

    Data on chemical cycles, as nitrogen or carbon cycles, are extrapolated to the fields or ecosystems without the possibility for checking conclusions; i.e. from scientific knowledge (para-ecology). A new method, by natural introduction of an earthworm compartment into an undisturbed soil, with earthworms labelled both by isotopes ( 15 N, 14 C) and by staining is described. This method allows us to measure fluxes of chemicals. The first results, gathered during the improvement of the method in partly artificial conditions, are cross-checked with other data given by direct observation in the field. Measured flux (2.2 mg N/g fresh mass empty gut/day/15 0 C) is far more important than para-ecological estimations; animal metabolism plays directly an important role in nitrogen and carbon cycles. (author)

  3. Isotopic abundance analysis of carbon, nitrogen and sulfur with a combined elemental analyzer-mass spectrometer system

    International Nuclear Information System (INIS)

    Pichlmayer, F.; Blochberger, K.

    1988-01-01

    Stable isotope ratio measurements of carbon, nitrogen and sulfur are of growing interest as analytical tool in many fields of research, but applications were somewhat hindered in the past by the fact that cumbersome sample preparation was necessary. A method has therefore been developed, consisting in essential of coupling an elemental analyzer with an isotope mass spectrometer, enabling fast and reliable conversion of C-, N- and S-compounds in any solid or liquid sample into the measuring gases carbon dioxide, nitrogen and sulfur dioxide for on-line isotopic analysis. The experimental set-up and the main characteristics are described in short and examples of application in environmental research, food analysis and clinical diagnosis are given. (orig.)

  4. The stable isotope composition of nitrogen and carbon and elemental contents in modern and fossil seabird guano from Northern Chile - Marine sources and diagenetic effects.

    Directory of Open Access Journals (Sweden)

    Friedrich Lucassen

    Full Text Available Seabird excrements (guano have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic

  5. Mercury in litterfall and sediment using elemental and isotopic composition of carbon and nitrogen in the mangrove of Southeastern Brazil

    Science.gov (United States)

    Fragoso, Cynara Pedrosa; Bernini, Elaine; Araújo, Beatriz Ferreira; Almeida, Marcelo Gomes de; Rezende, Carlos Eduardo de

    2018-03-01

    Mercury and elemental and isotopic compositions of carbon and nitrogen were determined in litterfall and sediments from the mangrove of the Paraíba do Sul River, Rio de Janeiro, Brazil. Total mercury (THg) and monomethylmercury (MMHg) concentrations in sediment ranged from 33 to 123 ng g-1 and 0.20-1.38 ng g-1, respectively. The δ13C in sediment varied from -29.4 to -26.5‰ and from 2.4 to 5.8‰ in δ15N. The THg concentration in litterfall and its annual input to the mangrove was 21 ± 2 ng g-1 and 16 ± 4 μg m-2 for the species Laguncularia racemosa, 18 ± 1 ng g-1 and 17 ± 3 μg m-2 for Rhizophora mangle, and 53 ± 4 ng g-1 and 33 ± 4 μg m-2 for Avicennia germinans, respectively. The isotopic composition of leaf litter ranged from -28.6 to -26.9‰ for δ13C and 4.5-7.2‰ for δ15N. Both the highest annual Hg input via litterfall and highest sediment Hg concentration were observed in areas dominated by A. germinans. These results suggest that the rate of litterfall of plant species and the atmospheric deposition have played an important role in the Hg biogeochemical cycle in the mangrove ecosystem.

  6. Contribution to the simultaneous determination of several light elements in alkalin metals by gamma photon and charged particle activation. Application to carbon and nitrogen determination in sodium

    International Nuclear Information System (INIS)

    Bock, Patrice.

    1976-10-01

    A new γ activation method for the simultaneous determination of carbon and nitrogen in sodium is described. It makes use of the nuclear reactions: 12 C(γ,n) 11 C and 14 N(γ,n) 13 N. The process used to separate carbone-11 and nitrogen-13 from sodium with a view to their radio-activity determination is based on vacuum dissolution of the sample in a mixture of oxidizing and acid fused salts. The oxidized carbon is trapped as CO 2 on soda asbestos and the nitrogen as N 2 on molecular sieve at -196 deg C. The efficiency of the technique is estimated by means of tracer tests and by proton activation. The relative influence of competitive nuclear reactions on elements close to the above two impurities, or even on the matrix itself, is examined. The method described has a theoretical detection limit of some 10 -8 g.g -1 for the two elements in question and mean concentrations of 0.3+-0.1x10 -6 g.g -1 carbon and 1.0+-0.5x10 -6 g.g -1 nitrogen have in fact been measured in a batch of 0.5 g sodium samples [fr

  7. Is nitrogen the next carbon?

    Science.gov (United States)

    Battye, William; Aneja, Viney P.; Schlesinger, William H.

    2017-09-01

    Just as carbon fueled the Industrial Revolution, nitrogen has fueled an Agricultural Revolution. The use of synthetic nitrogen fertilizers and the cultivation of nitrogen-fixing crops both expanded exponentially during the last century, with most of the increase occurring after 1960. As a result, the current flux of reactive, or fixed, nitrogen compounds to the biosphere due to human activities is roughly equivalent to the total flux of fixed nitrogen from all natural sources, both on land masses and in the world's oceans. Natural fluxes of fixed nitrogen are subject to very large uncertainties, but anthropogenic production of reactive nitrogen has increased almost fivefold in the last 60 years, and this rapid increase in anthropogenic fixed nitrogen has removed any uncertainty on the relative importance of anthropogenic fluxes to the natural budget. The increased use of nitrogen has been critical for increased crop yields and protein production needed to keep pace with the growing world population. However, similar to carbon, the release of fixed nitrogen into the natural environment is linked to adverse consequences at local, regional, and global scales. Anthropogenic contributions of fixed nitrogen continue to grow relative to the natural budget, with uncertain consequences.

  8. A measuring system for the fast simultaneous isotope ratio and elemental analysis of carbon, hydrogen, nitrogen and sulfur in food commodities and other biological material.

    Science.gov (United States)

    Sieper, Hans-Peter; Kupka, Hans-Joachim; Williams, Tony; Rossmann, Andreas; Rummel, Susanne; Tanz, Nicole; Schmidt, Hanns-Ludwig

    2006-01-01

    The isotope ratio of each of the light elements preserves individual information on the origin and history of organic natural compounds. Therefore, a multi-element isotope ratio analysis is the most efficient means for the origin and authenticity assignment of food, and also for the solution of various problems in ecology, archaeology and criminology. Due to the extraordinary relative abundances of the elements hydrogen, carbon, nitrogen and sulfur in some biological material and to the need for individual sample preparations for H and S, their isotope ratio determination currently requires at least three independent procedures and approximately 1 h of work. We present here a system for the integrated elemental and isotope ratio analysis of all four elements in one sample within 20 min. The system consists of an elemental analyser coupled to an isotope ratio mass spectrometer with an inlet system for four reference gases (N(2), CO(2), H(2) and SO(2)). The combustion gases are separated by reversible adsorption and determined by a thermoconductivity detector; H(2)O is reduced to H(2). The analyser is able to combust samples with up to 100 mg of organic material, sufficient to analyse samples with even unusual elemental ratios, in one run. A comparison of the isotope ratios of samples of water, fruit juices, cheese and ethanol from wine, analysed by the four-element analyser and by classical methods and systems, respectively, yielded excellent agreements. The sensitivity of the device for the isotope ratio measurement of C and N corresponds to that of other systems. It is less by a factor of four for H and by a factor of two for S, and the error ranges are identical to those of other systems. Copyright (c) 2006 John Wiley & Sons, Ltd.

  9. The effects of oxides of carbon and nitrogen emissions on the isotope and element abundances in foliage of C3 plants

    International Nuclear Information System (INIS)

    Sucgang, Raymond; Pabroa, Preciosa Corazon; Petrache, Cristina; Bulanhagui, Jaika Faye; Legaspi, Charmaine; Niegas, Elaine; Enerva, Lorna; Luces, Arnicole

    2014-01-01

    The carbon and nitrogen stable isotope abundance of C3 plants mango (Magnifera indica L), molave (Vitex parviflora Juss), talisay (Terminalia catappa L.) leaves harvested from sites with ambient air conditions and sites receiving air pollution contributions from coal-fired power plants were determined and compared. Isotope Ratio Mass Spectroscopy, IRMS was used to determine 13 C and 15 N in the samples. The elemental composition of the samples was determined using Inductively Coupled Plasma-Atomic Emission Spectrometry, ICP-AES. The 13 C of the leaves grown in ambient air were found to fall within the range of -25.0 to -22.0 per mill and a close agreement with the literature values for the natural abundance of 13 C in C3 plants (-27.0 to -21.0 per mill). The 13 C abundance of plants obtained from sites polluted by coal-fired plants were sporadic from -35 to 24.0 per mille. The 15 N abundance in leaves grown under ambient air condition (-1.0 to 2.0 per mille) were way below the 15 N abundance of plants from coal-fired plant-polluted regions (16.0 to 17.5 per mille). Elemental exposition indicated no differences in element concentrations in leaves from ambient and polluted sites. Differences exist in the Ca, Mg, K ratios across species and are affected by seasonal variation. (author)

  10. Distribution of trace elements in organs of six species of cetaceans from the Ligurian Sea (Mediterranean), and the relationship with stable carbon and nitrogen ratios

    Energy Technology Data Exchange (ETDEWEB)

    Capelli, R. [Dipartimento di Chimica e Tecnologie Farmaceutiche ed Alimentari - Universita degli Studi di Genova - Via Brigata Salerno, 13 I-16147 Genova (Italy); Das, K. [MARE center, Laboratory for Oceanology, University of Liege, B6 Sart-Tilman, B-4000 Liege (Belgium); Pellegrini, R. De; Drava, G. [Dipartimento di Chimica e Tecnologie Farmaceutiche ed Alimentari - Universita degli Studi di Genova - Via Brigata Salerno, 13 I-16147 Genova (Italy); Lepoint, G. [MARE center, Laboratory for Oceanology, University of Liege, B6 Sart-Tilman, B-4000 Liege (Belgium); Miglio, C. [Dipartimento di Chimica e Tecnologie Farmaceutiche ed Alimentari - Universita degli Studi di Genova - Via Brigata Salerno, 13 I-16147 Genova (Italy); Minganti, V. [Dipartimento di Chimica e Tecnologie Farmaceutiche ed Alimentari - Universita degli Studi di Genova - Via Brigata Salerno, 13 I-16147 Genova (Italy)], E-mail: minganti@dictfa.unige.it; Poggi, R. [Museo Civico di Storia Naturale ' Giacomo Doria' - Via Brigata Liguria, 9 I-16121 Genova (Italy)

    2008-02-15

    Mercury (total and organic), cadmium, lead, copper, iron, manganese, selenium and zinc concentrations were measured in different organs of 6 different cetacean species stranded in an area of extraordinary ecological interest (Cetaceans' Sanctuary of the Mediterranean Sea) along the coast of the Ligurian Sea (North-West Mediterranean). Stable-isotopes ratios of carbon ({sup 13}C/{sup 12}C) and nitrogen ({sup 15}N/{sup 14}N) were also measured in the muscle. A significant relationship exists between {sup 15}N/{sup 14}N, mercury concentration and the trophic level. The distribution of essential and non-essential trace elements was studied on several organs, and a significant relationship between selenium and mercury, with a molar ratio close to 1, was found in the cetaceans' kidney, liver and spleen, regardless of their species. High selenium concentrations are generally associated with a low organic to total mercury ratio. While narrow ranges of concentrations were observed for essential elements in most organs, mercury and selenium concentrations are characterised by a wide range of variation. Bio-accumulation and bio-amplification processes in cetaceans can be better understood by comparing trace element concentrations with the stable-isotopes data.

  11. Quantifying sediment source contributions in coastal catchments impacted by the Fukushima nuclear accident with carbon and nitrogen elemental concentrations and stable isotope ratios

    Science.gov (United States)

    Laceby, J. Patrick; Huon Huon, Sylvain; Onda, Yuichi; Evrard, Olivier

    2016-04-01

    The Fukushima Dai-ichi Nuclear Power Plant accidental release of radioactive contaminants resulted in the significant fallout of radiocesium over several coastal catchments in the Fukushima Prefecture. Radiocesium, considered to be the greatest risk to the short and long term health of the local community, is rapidly bound to fine soil particles and thus is mobilized and transported during soil erosion and runoff processes. As there has been a broad-scale decontamination of rice paddy fields and rural residential areas in the contaminated region, one important long term question is whether there is, or may be, a downstream transfer of radiocesium from forests that covered over 65% of the most contaminated region. Accordingly, carbon and nitrogen elemental concentrations and stable isotope ratios are used to determine the relative contributions of forests and rice paddies to transported sediment in three contaminated coastal catchments. Samples were taken from the three main identified sources: cultivated soils (rice paddies and fields, n=30), forest soils (n=45), and subsoils (channel bank and decontaminated soils, n = 25). Lag deposit sediment samples were obtained from five sampling campaigns that targeted the main hydrological events from October 2011 to October 2014. In total, 86 samples of deposited sediment were analyzed for particulate organic matter elemental concentrations and isotope ratios, 24 from the Mano catchment, 44 from the Niida catchment, and 18 from the Ota catchment. Mann-Whitney U-tests were used to examine the source discrimination potential of this tracing suite and select the appropriate tracers for modelling. The discriminant tracers were modelled with a concentration-dependent distribution mixing model. Preliminary results indicate that cultivated sources (predominantly rice paddies) contribute disproportionately more sediment per unit area than forested regions in these contaminated catchments. Future research will examine if there are

  12. Predicting residential indoor concentrations of nitrogen dioxide, fine particulate matter, and elemental carbon using questionnaire and geographic information system based data

    Science.gov (United States)

    Baxter, Lisa K.; Clougherty, Jane E.; Paciorek, Christopher J.; Wright, Rosalind J.; Levy, Jonathan I.

    Previous studies have identified associations between traffic-related air pollution and adverse health effects. Most have used measurements from a few central ambient monitors and/or some measure of traffic as indicators of exposure, disregarding spatial variability and factors influencing personal exposure-ambient concentration relationships. This study seeks to utilize publicly available data (i.e., central site monitors, geographic information system, and property assessment data) and questionnaire responses to predict residential indoor concentrations of traffic-related air pollutants for lower socioeconomic status (SES) urban households. As part of a prospective birth cohort study in urban Boston, we collected indoor and outdoor 3-4 day samples of nitrogen dioxide (NO 2) and fine particulate matter (PM 2.5) in 43 low SES residences across multiple seasons from 2003 to 2005. Elemental carbon (EC) concentrations were determined via reflectance analysis. Multiple traffic indicators were derived using Massachusetts Highway Department data and traffic counts collected outside sampling homes. Home characteristics and occupant behaviors were collected via a standardized questionnaire. Additional housing information was collected through property tax records, and ambient concentrations were collected from a centrally located ambient monitor. The contributions of ambient concentrations, local traffic and indoor sources to indoor concentrations were quantified with regression analyses. PM 2.5 was influenced less by local traffic but had significant indoor sources, while EC was associated with traffic and NO 2 with both traffic and indoor sources. Comparing models based on covariate selection using p-values or a Bayesian approach yielded similar results, with traffic density within a 50 m buffer of a home and distance from a truck route as important contributors to indoor levels of NO 2 and EC, respectively. The Bayesian approach also highlighted the uncertanity in the

  13. Nitrogen-to-carbon ratio in 70 dwarf halo stars

    Energy Technology Data Exchange (ETDEWEB)

    Carbon, D.F.; Kraft, R.P.; Barbuy, B.; Friel, E.; Suntzeff, N.B.

    1986-02-01

    A survey of subdwarf selected from the lists by Sandage (1964, 1969, 1982) was carried out with the 3 m telescope at Lick Observatory, using the image dissector scanner IDS as detector. The blue tube was used in order to obtain the NH band at lambda 3360 A and the CH band at lambda 4300 A. By comparing synthetic spectra with the observations, nitrogen and carbon abundances were derived for the sample of subdwarfs. They found that the nitrogen-to-carbon ratio is constant in time (or with metallicity) showing that nitrogen was produced as a primary element at early times. 16 references, 1 figure.

  14. Optimising carbon and nitrogen sources for Azotobacter ...

    African Journals Online (AJOL)

    The present work deals with selecting and optimization of carbon and nitrogen sources for producing biomass from Azotobacter chroococcum. Four carbon sources (glucose, sucrose, manitol and sodium benzoate) and four nitrogen sources (yeast extract, meat extract, NH4Cl and (NH4)2SO4) were evaluated during the first ...

  15. Carbon-nitrogen interactions in forest ecosystems

    DEFF Research Database (Denmark)

    Gundersen, Per; Berg, Bjørn; Currie, W.S.

    This report is a summary of the main results from the EU project “CarbonNitrogen Interactions in Forest Ecosystems” (CNTER). Since carbon (C) and nitrogen (N) are bound together in organic matter we studied both the effect of N deposition on C cycling in forest ecosystems, and the effect of C ...

  16. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong; Wu, Tao

    2017-01-01

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced

  17. Carbon and nitrogen translocation between seagrass ramets

    NARCIS (Netherlands)

    Marbà, N.; Hemminga, M.A.; Mateo, M.A.; Duarte, C.M.; Maas, Y.E.M.; Terrados, J.; Gacia, E.

    2002-01-01

    The spatial scale and the magnitude of carbon and nitrogen translocation was examined in 5 tropical (Cymodocea serrulata, Halophila stipulacea, Halodule uninervis, Thalassodendron ciliatum, Thalassia hemprichii) and 3 temperate (Cymodocea nodosa, Posidonia oceanica, Zostera noltii) seagrass species

  18. Formation of short-lived positron emitters in reactions of protons of energies up to 200 MeV with the target elements carbon, nitrogen and oxygen

    CERN Document Server

    Kettern, K; Qaim, S M; Shubin, Yu N; Steyn, G F; Van der Walt, T N; 10.1016/j.apradiso.2004.02.007

    2004-01-01

    Excitation functions were measured by the stacked-foil technique for proton induced reactions on carbon, nitrogen and oxygen leading to the formation of the short-lived positron emitters /sup 11/C (T/sub 1 /2/=20.38 min) and /sup 13/N (T/sub 1/2/=9.96 min). The energy region covered extended up to 200 MeV. The product activity was measured non-destructively via gamma -ray spectrometry. A careful decay curve analysis of the positron annihilation radiation was invariably performed. The experimental results were compared with theoretical data obtained using the modified hybrid nuclear model code ALICE-IPPE for intermediate energies. The agreement was found to be generally satisfactory. The data are of importance in proton therapy.

  19. Preparation of nitrogen-doped carbon tubes

    Science.gov (United States)

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  20. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong

    2017-08-03

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced on a large-scale approach. The unique HNDCM holds great promise as components in separation and advanced carbon devices because they could offer unconventional fluidic transport phenomena on the nanoscale. Overall, the invention set forth herein covers a hierarchically structured, nitrogen-doped carbon membranes and methods of making and using such a membranes.

  1. Next Generation Carbon-Nitrogen Dynamics Model

    Science.gov (United States)

    Xu, C.; Fisher, R. A.; Vrugt, J. A.; Wullschleger, S. D.; McDowell, N. G.

    2012-12-01

    Nitrogen is a key regulator of vegetation dynamics, soil carbon release, and terrestrial carbon cycles. Thus, to assess energy impacts on the global carbon cycle and future climates, it is critical that we have a mechanism-based and data-calibrated nitrogen model that simulates nitrogen limitation upon both above and belowground carbon dynamics. In this study, we developed a next generation nitrogen-carbon dynamic model within the NCAR Community Earth System Model (CESM). This next generation nitrogen-carbon dynamic model utilized 1) a mechanistic model of nitrogen limitation on photosynthesis with nitrogen trade-offs among light absorption, electron transport, carboxylation, respiration and storage; 2) an optimal leaf nitrogen model that links soil nitrogen availability and leaf nitrogen content; and 3) an ecosystem demography (ED) model that simulates the growth and light competition of tree cohorts and is currently coupled to CLM. Our three test cases with changes in CO2 concentration, growing temperature and radiation demonstrate the model's ability to predict the impact of altered environmental conditions on nitrogen allocations. Currently, we are testing the model against different datasets including soil fertilization and Free Air CO2 enrichment (FACE) experiments across different forest types. We expect that our calibrated model will considerably improve our understanding and predictability of vegetation-climate interactions.itrogen allocation model evaluations. The figure shows the scatter plots of predicted and measured Vc,max and Jmax scaled to 25 oC (i.e.,Vc,max25 and Jmax25) at elevated CO2 (570 ppm, test case one), reduced radiation in canopy (0.1-0.9 of the radiation at the top of canopy, test case two) and reduced growing temperature (15oC, test case three). The model is first calibrated using control data under ambient CO2 (370 ppm), radiation at the top of the canopy (621 μmol photon/m2/s), the normal growing temperature (30oC). The fitted model

  2. Emissions of carbon, nitrogen, and sulfur from biomass burning in Nigeria

    International Nuclear Information System (INIS)

    Akeredolu, F.; Isichei, A.O.

    1991-01-01

    The atmospheric implications of the effects of burning of vegetation in Nigeria are discussed. The following topics are explored: the extent of biomass burning by geographical area; estimates of emission rates of carbon, nitrogen and sulfur; and the impact on biogeochemical cycling of elements. The results suggest that biomass burning generates a measurable impact on the cycling of carbon and nitrogen

  3. Adaptation of a radiofrequency glow discharge optical emission spectrometer (RF-GD-OES) to the analysis of light elements (carbon, nitrogen, oxygen and hydrogen) in solids: glove box integration for the analysis of nuclear samples

    International Nuclear Information System (INIS)

    Hubinois, J.-C.

    2001-01-01

    The purpose of this work is to use the radiofrequency glow discharge optical emission spectrometry in order to quantitatively determine carbon, nitrogen, oxygen and hydrogen at low concentration (in the ppm range) in nuclear materials. In this study, and before the definitive contamination of the system, works are carried out on non radioactive materials (steel, pure iron, copper and titanium). As the initial apparatus could not deliver a RF power inducing a reproducible discharge and was not adapted to the analysis of light elements: 1- The radiofrequency system had to be changed, 2- The systems controlling gaseous atmospheres had to be improved in order to obtain analytical signals stemming strictly from the sample, 3- Three discharge lamps had to be tested and compared in terms of performances, 4- The system of collection of light had to be optimized. The modifications that were brought to the initial system improved intensities and stabilities of signals which allowed lower detection limits (1000 times lower for carbon). These latter are in the ppm range for carbon and about a few tens of ppm for nitrogen and oxygen in pure irons. Calibration curves were plotted in materials presenting very different sputtering rates in order to check the existence of a 'function of analytical transfer' with the purpose of palliating the lack of reference materials certified in light elements at low concentration. Transposition of this type of function to other matrices remains to be checked. Concerning hydrogen, since no usable reference material with our technique is available, certified materials in deuterium (chosen as a surrogate for hydrogen) were studied in order to exhibit the feasibility the analysis of hydrogen. Parallel to these works, results obtained by modeling a RF discharge show that the performances of the lamp can be improved and that the optical system must be strictly adapted to the glow discharge. (author) [fr

  4. Contrast in air pollution components between major streets and background locations: Particulate matter mass, black carbon, elemental composition, nitrogen oxide and ultrafine particle number

    Science.gov (United States)

    Boogaard, Hanna; Kos, Gerard P. A.; Weijers, Ernie P.; Janssen, Nicole A. H.; Fischer, Paul H.; van der Zee, Saskia C.; de Hartog, Jeroen J.; Hoek, Gerard

    2011-01-01

    Policies to reduce outdoor air pollution concentrations are often assessed on the basis of the regulated pollutants. Whether these are the most appropriate components to assess the potential health benefits is questionable, as other health-relevant pollutants may be more strongly related to traffic. The aim of this study is to compare the contrast in concentration between major roads and (sub)urban background for a large range of pollutants and to analyze the magnitude of the measured difference in the street - background for major streets with different street configurations. Measurements of PM 10, PM 2.5, particle number concentrations (PNC), black carbon (BC), elemental composition of PM 10 and PM 2.5 and NO x were conducted simultaneously in eight major streets and nine (sub)urban background locations in the Netherlands. Measurements were done six times for a week during a six month period in 2008. High contrasts between busy streets and background locations in the same city were found for chromium, copper and iron (factor 2-3). These elements were especially present in the coarse fraction of PM. In addition, high contrasts were found for BC and NO x (factor 1.8), typically indicators of direct combustion emissions. The contrast for PNC was similar to BC. NO 2 contrast was lower (factor 1.5). The largest contrast was found for two street canyons and two streets with buildings at one side of the street only. The contrast between busy streets and urban background in NO 2 was less than the contrast found for BC, PNC and elements indicative of non-exhaust emissions, adding evidence that NO 2 is not representing (current) traffic well. The study supports a substantial role for non-exhaust emissions including brake- and tyre wear and road dust in addition to direct combustion emissions. Significant underestimation of disease burden may occur when relying too much on the regulated components.

  5. Worldwide organic soil carbon and nitrogen data

    Energy Technology Data Exchange (ETDEWEB)

    Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  6. Carbon and nitrogen stoichiometry across stream ecosystems

    Science.gov (United States)

    Wymore, A.; Kaushal, S.; McDowell, W. H.; Kortelainen, P.; Bernhardt, E. S.; Johnes, P.; Dodds, W. K.; Johnson, S.; Brookshire, J.; Spencer, R.; Rodriguez-Cardona, B.; Helton, A. M.; Barnes, R.; Argerich, A.; Haq, S.; Sullivan, P. L.; López-Lloreda, C.; Coble, A. A.; Daley, M.

    2017-12-01

    Anthropogenic activities are altering carbon and nitrogen concentrations in surface waters globally. The stoichiometry of carbon and nitrogen regulates important watershed biogeochemical cycles; however, controls on carbon and nitrogen ratios in aquatic environments are poorly understood. Here we use a multi-biome and global dataset (tropics to Arctic) of stream water chemistry to assess relationships between dissolved organic carbon (DOC) and nitrate, ammonium and dissolved organic nitrogen (DON), providing a new conceptual framework to consider interactions between DOC and the multiple forms of dissolved nitrogen. We found that across streams the total dissolved nitrogen (TDN) pool is comprised of very little ammonium and as DOC concentrations increase the TDN pool shifts from nitrate to DON dominated. This suggests that in high DOC systems, DON serves as the primary source of nitrogen. At the global scale, DOC and DON are positively correlated (r2 = 0.67) and the average C: N ratio of dissolved organic matter (molar ratio of DOC: DON) across our data set is approximately 31. At the biome and smaller regional scale the relationship between DOC and DON is highly variable (r2 = 0.07 - 0.56) with the strongest relationships found in streams draining the mixed temperate forests of the northeastern United States. DOC: DON relationships also display spatial and temporal variability including latitudinal and seasonal trends, and interactions with land-use. DOC: DON ratios correlated positively with gradients of energy versus nutrient limitation pointing to the ecological role (energy source versus nutrient source) that DON plays with stream ecosystems. Contrary to previous findings we found consistently weak relationships between DON and nitrate which may reflect DON's duality as an energy or nutrient source. Collectively these analyses demonstrate how gradients of DOC drive compositional changes in the TDN pool and reveal a high degree of variability in the C: N ratio

  7. Determination of carbon and nitrogen in silicon and germanium

    International Nuclear Information System (INIS)

    Gebauhr, W.; Martin, J.

    1975-01-01

    The essential aim of this study is to examine the various technical and economic problems encountered in the determination of carbon and nitrogen in silicon and germanium, for this is in a way an extension of the discussion concerning the presence of oxygen in these two elements. The greater part of the study is aimed at drawing up a catalogue of the methods of analysis used and of the results obtained so far

  8. Soil Carbon and Nitrogen Cycle Modeling

    Science.gov (United States)

    Woo, D.; Chaoka, S.; Kumar, P.; Quijano, J. C.

    2012-12-01

    Second generation bioenergy crops, such as miscanthus (Miscantus × giganteus) and switchgrass (Panicum virgatum), are regarded as clean energy sources, and are an attractive option to mitigate the human-induced climate change. However, the global climate change and the expansion of perennial grass bioenergy crops have the power to alter the biogeochemical cycles in soil, especially, soil carbon storages, over long time scales. In order to develop a predictive understanding, this study develops a coupled hydrological-soil nutrient model to simulate soil carbon responses under different climate scenarios such as: (i) current weather condition, (ii) decreased precipitation by -15%, and (iii) increased temperature up to +3C for four different crops, namely miscanthus, switchgrass, maize, and natural prairie. We use Precision Agricultural Landscape Modeling System (PALMS), version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and ¬nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained using available data recorded in Bondville Ameriflux Site. The model simulations are validated with observations of drainage and nitrate and ammonium concentrations recorded in drain tiles during 2011. The results of this study show (1) total soil carbon storage of miscanthus accumulates most noticeably due to the significant amount of aboveground plant carbon, and a relatively high carbon to nitrogen ratio and lignin content, which reduce the litter decomposition rate. Also, (2) the decreased precipitation contributes to the enhancement of total soil carbon storage and soil nitrogen concentration because of the reduced microbial biomass pool. However, (3) an opposite effect on the cycle is introduced by the increased

  9. Comparative analysis of vitamin C, crude protein, elemental nitrogen ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... greens (Brassica napus L.) and kale (Brassica oleracea var. acephala) ... Nitrogen is essential for protein production, for proper growth of ... Brassica crops. ..... the effect of trace element-amended fertilizers on their Co, Se, and.

  10. Nitrogen-doped carbon aerogels for electrical energy storage

    Science.gov (United States)

    Campbell, Patrick; Montalvo, Elizabeth; Baumann, Theodore F.; Biener, Juergen; Merrill, Matthew; Reed, Eric W.; Worsley, Marcus A.

    2017-10-03

    Disclosed here is a method for making a nitrogen-doped carbon aerogel, comprising: preparing a reaction mixture comprising formaldehyde, at least one nitrogen-containing resorcinol analog, at least one catalyst, and at least one solvent; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel; and thermally annealing the dry gel to produce the nitrogen-doped carbon aerogel. Also disclosed is a nitrogen-doped carbon aerogel obtained according to the method and a supercapacitor comprising the nitrogen-doped carbon aerogel.

  11. Nitrogen in highly crystalline carbon nanotubes

    International Nuclear Information System (INIS)

    Ducati, C; Koziol, K; Stavrinadis, A; Friedrichs, S; Windle, A H; Midgley, P A

    2006-01-01

    Multiwall carbon nanotubes (MWCNTs) with an unprecedented degree of internal order were synthesised by chemical vapour deposition (CVD) adding a nitrogen-containing compound to the hydrocarbon feedstock. Ferrocene was used as the metal catalyst precursor. The remarkable crystallinity of these nanotubes lies both in the isochirality and in the crystallographic register of their walls, as demonstrated by electron diffraction and high resolution electron microscopy experiments. High resolution transmission electron microscopy analysis shows that the walls of the nanotubes consist of truncated stacked cones, instead of perfect cylinders, with a range of apex angles that appears to be related to the nitrogen concentration in the synthesis process. The structure of armchair, zigzag and chiral nanotubes is modelled and discussed in terms of density of topological defects, providing an interesting comparison with our microscopy experiments. A growth mechanism based on the interplay of base- and tip-growth is proposed to account for our experimental observations

  12. The Synthesis of Nitrogen-Doped Multiwalled Carbon Nanotubes ...

    African Journals Online (AJOL)

    ACVDmethod was used to prepare high-quality nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) using acetonitrile as the nitrogen and carbon source and acetylene as a carbon source over an Fe-Co/CaCO3 catalyst in the temperature range 700–850 °C. This represents a continuation of earlier work in which ...

  13. Effect of various carbon and nitrogen sources on cellulose synthesis ...

    African Journals Online (AJOL)

    The effect of various carbon and nitrogen sources on cellulose production by Acetobacter lovaniensis HBB5 was examined. In this study, glucose, fructose, sucrose and ethanol as carbon source and yeast extract, casein hydrolysate and ammonium sulphate as nitrogen source were used. Among the carbon sources, ...

  14. Carbon and Nitrogen in the Lower Basin of the Paraíba do Sul River, Southeastern Brazil: Element fluxes and biogeochemical processes

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Martinelli

    2011-08-01

    Full Text Available The study was conducted in the lower basin of the Paraíba do Sul River (PSR, in which 57,000 km2 of the basin is located in the Brazilian states of São Paulo, Minas Gerais and Rio de Janeiro. We proposed to identify the main sources of C and N fluxes in the PSR waters, to evaluate biogeochemical processes in the watershed, and to estimate C and N riverine loads to the Atlantic Ocean in the context of the sugarcane plantation expansion for ethanol production. Riverine water samples were collected at seven stations along 12 months. Physicochemical and limnological parameters, as well as discharge, were measured together with organic and inorganic C and N species in the dissolved and suspended particulate material. C and N concentrations in bed fluvial sediments, and suspended particulate material were measured, and their elemental ([C:N]a and isotopic (δ13C compositions were compared with the [C:N]a and δ13C of the following sources: riparian soils, insular flooded soils, aquatic macrophytes, phytoplankton, pasture grass, sugarcane, sugarcane byproducts, and forest litterfall. Temporal patterns in the physicochemical and limnological environment were correlated to discharge. It also was observed that sugar cane production can increase riverine C and N fluxes. Riparian soils inputs were larger than insular soils, which was likely to act as a biogeochemical barrier. Effects of the macrophytes on riverine C and N were unclear, as well as urban sewage disposal effects. Although the PSR loads represented a very small percentage of the fluvial input to global biogeochemical cycles, we suggest that this and other medium sized watersheds in Eastern and Southeastern South America can be significant contributors to the continental biogeochemical riverine loads to the ocean, if their loads are considered together.

  15. Carbon and nitrogen elemental and isotopic ratios of filter-feeding bivalves along the French coasts: An assessment of specific, geographic, seasonal and multi-decadal variations.

    Science.gov (United States)

    Briant, Nicolas; Savoye, Nicolas; Chouvelon, Tiphaine; David, Valérie; Rodriguez, Samuel; Charlier, Karine; Sonke, Jeroen E; Chiffoleau, Jean François; Brach-Papa, Christophe; Knoery, Joël

    2018-02-01

    Primary consumers play a key role in coastal ecosystems by transferring organic matter from primary producers to predators. Among them, suspension-feeders, like bivalve molluscs are widely used in trophic web studies. The main goal of this study was to investigate variations of C and N elemental and isotopic ratios in common bivalves (M. edulis, M. galloprovincialis, and C. gigas) at large spatial (i.e. among three coastal regions) and different temporal (i.e. from seasonal to multi-decadal) scales in France, in order to identify potential general or specific patterns and speculate on their drivers. The observed spatial variability was related to the trophic status of the coastal regions (oligotrophic Mediterranean Sea versus meso- to eutrophic English Channel and Atlantic ocean), but not to ecosystem typology (estuaries, versus lagoons versus bays versus littoral systems). Furthermore, it highlighted local specificities in terms of the origin of the POM assimilated by bivalves (e.g., mainly continental POM vs. marine phytoplankton vs. microphytobenthic algae). Likewise, seasonal variability was related both to the reproduction cycle for C/N ratios of Mytilus spp. and to changes in trophic resources for δ 13 C of species located close to river mouth. Multi-decadal evolution exhibited shifts and trends for part of the 30-year series with decreases in δ 13 C and δ 15 N. Specifically, shifts appeared in the early 2000's, likely linking bivalve isotopic ratios to a cascade of processes affected by local drivers. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Carbon And Nitrogen Requirements For The Cultivation Of Oyster ...

    African Journals Online (AJOL)

    Carbon And Nitrogen Requirements For The Cultivation Of Oyster Mushroom ... It was found that under these experimental conditions, the carbon compounds supported growth except ribose, starch and dextrin. ... HOW TO USE AJOL.

  17. Carbon-nitrogen feedbacks in the UVic ESCM

    Directory of Open Access Journals (Sweden)

    R. Wania

    2012-09-01

    Full Text Available A representation of the terrestrial nitrogen cycle is introduced into the UVic Earth System Climate Model (UVic ESCM. The UVic ESCM now contains five terrestrial carbon pools and seven terrestrial nitrogen pools: soil, litter, leaves, stem and roots for both elements and ammonium and nitrate in the soil for nitrogen. Nitrogen cycles through plant tissue, litter, soil and the mineral pools before being taken up again by the plant. Biological N2 fixation and nitrogen deposition represent external inputs to the plant-soil system while losses occur via leaching. Simulated carbon and nitrogen pools and fluxes are in the range of other models and observations. Gross primary production (GPP for the 1990s in the CN-coupled version is 129.6 Pg C a−1 and net C uptake is 0.83 Pg C a−1, whereas the C-only version results in a GPP of 133.1 Pg C a−1 and a net C uptake of 1.57 Pg C a−1. At the end of a transient experiment for the years 1800–1999, where radiative forcing is held constant but CO2 fertilisation for vegetation is permitted to occur, the CN-coupled version shows an enhanced net C uptake of 1.05 Pg C a−1, whereas in the experiment where CO2 is held constant and temperature is transient the land turns into a C source of 0.60 Pg C a−1 by the 1990s. The arithmetic sum of the temperature and CO2 effects is 0.45 Pg C a−1, 0.38 Pg C a−1 lower than seen in the fully forced model, suggesting a strong nonlinearity in the CN-coupled version. Anthropogenic N deposition has a positive effect on Net Ecosystem Production of 0.35 Pg C a−1. Overall, the UVic CN-coupled version shows similar characteristics to other CN-coupled Earth System Models, as measured by net C balance and sensitivity to changes in climate, CO2 and temperature.

  18. Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture

    Science.gov (United States)

    Wan, Liu; Wang, Jianlong; Feng, Chong; Sun, Yahui; Li, Kaixi

    2015-04-01

    Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the CO2 capture performance. At 1 bar, high CO2 uptake of 4.02 and 6.35 mmol g-1 at 25 and 0 °C was achieved for the sample NPC-2 with a molar ratio of F127 : urea = 0.010 : 1. This can be attributed to its well-developed micropore structure and abundant pyridinic nitrogen, pyrrolic nitrogen and pyridonic nitrogen functionalities. The sample NPC-2 also exhibits a remarkable selectivity for CO2/N2 separation and a fast adsorption/desorption rate and can be easily regenerated. This suggests that the polybenzoxazine-based NPCs are desirable for CO2 capture because of possessing a high micropore surface area, a large micropore volume, appropriate pore size distribution, and a large number of basic nitrogen functionalities.Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the

  19. Climate-mediated nitrogen and carbon dynamics in a tropical watershed

    Science.gov (United States)

    Ballantyne, A. P.; Baker, P. A.; Fritz, S. C.; Poulter, B.

    2011-06-01

    Climate variability affects the capacity of the biosphere to assimilate and store important elements, such as nitrogen and carbon. Here we present biogeochemical evidence from the sediments of tropical Lake Titicaca indicating that large hydrologic changes in response to global glacial cycles during the Quaternary were accompanied by major shifts in ecosystem state. During prolonged glacial intervals, lake level was high and the lake was in a stable nitrogen-limited state. In contrast, during warm dry interglacials lake level fell and rates of nitrogen concentrations increased by a factor of 4-12, resulting in a fivefold to 24-fold increase in organic carbon concentrations in the sediments due to increased primary productivity. Observed periods of increased primary productivity were also associated with an apparent increase in denitrification. However, the net accumulation of nitrogen during interglacial intervals indicates that increased nitrogen supply exceeded nitrogen losses due to denitrification, thereby causing increases in primary productivity. Although primary productivity in tropical ecosystems, especially freshwater ecosystems, tends to be nitrogen limited, our results indicate that climate variability may lead to changes in nitrogen availability and thus changes in primary productivity. Therefore some tropical ecosystems may shift between a stable state of nitrogen limitation and a stable state of nitrogen saturation in response to varying climatic conditions.

  20. Terrestrial nitrogen-carbon cycle interactions at the global scale.

    Science.gov (United States)

    Zaehle, S

    2013-07-05

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.

  1. Environmental Systems Simulations for Carbon, Energy, Nitrogen, Water, and Watersheds: Design Principles and Pilot Testing

    NARCIS (Netherlands)

    Lant, C.; Pérez Lapena, B.; Xiong, W.; Kraft, S.; Kowalchuk, R.; Blair, M.

    2016-01-01

    Guided by the Next Generation Science Standards and elements of problem-based learning, four human-environment systems simulations are described in brief—carbon, energy, water, and watershed—and a fifth simulation on nitrogen is described in more depth. These science, technology, engineering, and

  2. Nitrogen/Sulfur-Codoped Carbon Materials from Chitosan for Supercapacitors

    Science.gov (United States)

    Li, Mei; Han, Xianlong; Chang, Xiaoqing; Yin, Wenchao; Ma, Jingyun

    2016-08-01

    d-Methionine and chitosan have been used for fabrication of nitrogen/sulfur-codoped carbon materials by a hydrothermal process followed by carbonization at 750°C for 3 h. The as-prepared carbon materials showed enhanced electrochemical performance, combining electrical double-layer capacitance with pseudocapacitance owing to the doping with sulfur and nitrogen. The specific capacitance of the obtained carbon material reached 135 F g-1 at current density of 1 A g-1, which is much higher than undoped chitosan (67 F g-1). The capacitance retention of the carbon material was almost 97.2% after 5000 cycles at current density of 1 A g-1. With such improved electrochemical performance, the nitrogen/sulfur-codoped carbon material may have promising potential for use in energy-storage electrodes of supercapacitors.

  3. Distribution and Sources of Carbon, Nitrogen, Phosphorus and ...

    Indian Academy of Sciences (India)

    69

    School of Environmental Sciences, Jawaharlal Nehru University, New Delhi – 110067 ... and macroalgae may be major contributors of organic matter in the lagoon. .... 3.2 Analysis of Carbon, Nitrogen, Phosphorus and Biogenic Silica.

  4. Bacterial nitrogen fixation in sand bioreactors treating winery wastewater with a high carbon to nitrogen ratio.

    Science.gov (United States)

    Welz, Pamela J; Ramond, Jean-Baptiste; Braun, Lorenz; Vikram, Surendra; Le Roes-Hill, Marilize

    2018-02-01

    Heterotrophic bacteria proliferate in organic-rich environments and systems containing sufficient essential nutrients. Nitrogen, phosphorus and potassium are the nutrients required in the highest concentrations. The ratio of carbon to nitrogen is an important consideration for wastewater bioremediation because insufficient nitrogen may result in decreased treatment efficiency. It has been shown that during the treatment of effluent from the pulp and paper industry, bacterial nitrogen fixation can supplement the nitrogen requirements of suspended growth systems. This study was conducted using physicochemical analyses and culture-dependent and -independent techniques to ascertain whether nitrogen-fixing bacteria were selected in biological sand filters used to treat synthetic winery wastewater with a high carbon to nitrogen ratio (193:1). The systems performed well, with the influent COD of 1351 mg/L being reduced by 84-89%. It was shown that the nitrogen fixing bacterial population was influenced by the presence of synthetic winery effluent in the surface layers of the biological sand filters, but not in the deeper layers. It was hypothesised that this was due to the greater availability of atmospheric nitrogen at the surface. The numbers of culture-able nitrogen-fixing bacteria, including presumptive Azotobacter spp. exhibited 1-2 log increases at the surface. The results of this study confirm that nitrogen fixation is an important mechanism to be considered during treatment of high carbon to nitrogen wastewater. If biological treatment systems can be operated to stimulate this phenomenon, it may obviate the need for nitrogen addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions.

    Science.gov (United States)

    Wang, Da-Wei; Li, Feng; Yin, Li-Chang; Lu, Xu; Chen, Zhi-Gang; Gentle, Ian R; Lu, Gao Qing; Cheng, Hui-Ming

    2012-04-23

    A nitrogen-doped porous carbon monolith was synthesized as a pseudo-capacitive electrode for use in alkaline supercapacitors. Ammonia-assisted carbonization was used to dope the surface with nitrogen heteroatoms in a way that replaced carbon atoms but kept the oxygen content constant. Ammonia treatment expanded the micropore size-distributions and increased the specific surface area from 383 m(2) g(-1) to 679 m(2) g(-1). The nitrogen-containing porous carbon material showed a higher capacitance (246 F g(-1)) in comparison with the nitrogen-free one (186 F g(-1)). Ex situ electrochemical spectroscopy was used to investigate the evolution of the nitrogen-containing functional groups on the surface of the N-doped carbon electrodes in a three-electrode cell. In addition, first-principles calculations were explored regarding the electronic structures of different nitrogen groups to determine their relative redox potentials. We proposed possible redox reaction pathways based on the calculated redox affinity of different groups and surface analysis, which involved the reversible attachment/detachment of hydroxy groups between pyridone and pyridine. The oxidation of nitrogen atoms in pyridine was also suggested as a possible reaction pathway. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Grassland Soil Carbon Responses to Nitrogen Additions

    Science.gov (United States)

    Hofmockel, K. S.; Tfailly, M.; Callister, S.; Bramer, L.; Thompson, A.

    2017-12-01

    Using a long-term continental scale experiment, we tested if increases in nitrogen (N) inputs augment the accumulation of plant and microbial residues onto mineral soil surfaces. This research investigates N effects on molecular biogeochemistry across six sites from the Nutrient Network (NutNet) experiment. The coupling between concurrently changing carbon (C) and N cycles remains a key uncertainty in understanding feedbacks between the terrestrial C cycle and climate change. Existing models do not consider the full suite of linked C-N processes, particularly belowground, that could drive future C-climate feedbacks. Soil harbors a wealth of diverse organic molecules, most of which have not been measured in hypothesis driven field research. For the first time we systematically assess the chemical composition of soil organic matter (SOM) and functional characteristics of the soil microbiome, to enhance our understanding of the molecular underpinnings of ecosystem C and N cycling. We have acquired soils from 5 ecosystem experiments across the US that have been subjected to 8 years of N addition treatments. These soils have been analyzed for chemical composition to identify how the soil fertility and stability is altered by N fertilization. We found distinct SOM signatures from our field experiments and shifts in soil chemistry in response to 8 years of N fertilization. Across all sites, we found the molecular composition of SOM varied with clay content, supporting the importance of soil mineralogy in the accumulation of specific chemical classes of SOM. While many molecules were common across sites, we discovered a suite of molecules that were site specific. N fertilization had a significant effect on SOM composition. Differences between control and N amended plots were greater in sites rich in lipids and more complex molecules, compared to sites with SOM rich in amino-sugar and protein like substances. Our results have important implications for how SOM is

  7. MIL-100 derived nitrogen-embodied carbon shells embedded with iron nanoparticles

    Science.gov (United States)

    Mao, Chengyu; Kong, Aiguo; Wang, Yuan; Bu, Xianhui; Feng, Pingyun

    2015-06-01

    The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst.The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst. Electronic supplementary information (ESI) available: Material synthesis and elemental analysis, electrochemistry measurements, and additional figures. See DOI: 10.1039/c5nr02346g

  8. Carbon and nitrogen isotope variations in tree-rings as records of perturbations in regional carbon and nitrogen cycles.

    Science.gov (United States)

    Bukata, Andrew R; Kyser, T Kurtis

    2007-02-15

    Increasing anthropogenic pollution from urban centers and fossil fuel combustion can impact the carbon and nitrogen cycles in forests. To assess the impact of twentieth century anthropogenic pollution on forested system carbon and nitrogen cycles, variations in the carbon and nitrogen isotopic compositions of tree-rings were measured. Individual annual growth rings in trees from six sites across Ontario and one in New Brunswick, Canada were used to develop site chronologies of tree-ring delta 15N and delta 13C values. Tree-ring 615N values were approximately 0.5% per hundred higher and correlated with contemporaneous foliar samples from the same tree, but not with delta 15N values of soil samples. Temporal trends in carbon and nitrogen isotopic compositions of these tree-rings are consistent with increasing anthropogenic influence on both the carbon and nitrogen cycles since 1945. Tree-ring delta 13C values and delta 15N values are correlated at both remote and urban-proximal sites, with delta 15N values decreasing since 1945 and converging on 1% per hundred at urban-proximal sites and decreasing but not converging on a single delta 15N value in remote sites. These results indicate that temporal trends in tree-ring nitrogen and carbon isotopic compositions record the regional extent of pollution.

  9. Thermal and chemical durability of nitrogen-doped carbon nanotubes

    International Nuclear Information System (INIS)

    Liu Hao; Zhang Yong; Li Ruying; Sun Xueliang; Abou-Rachid, Hakima

    2012-01-01

    Nitrogen-doped carbon nanotubes (CN x tubes) with nitrogen content of 7.6 at.% are synthesized on carbon papers. Thermal and chemical stability of the nanotubes are investigated by thermogravimetric analysis, differential scanning calorimetry and X-ray photoelectron spectroscopy techniques. The results indicate that the nitrogen can be firmly kept in the nanotubes after annealing at 300 °C in air. Under an argon atmosphere, the nitrogen would not release until 670 °C, and half of the nitrogen incorporated is released after annealing at 700 °C for 30 min. Chemical stability investigation indicates that the nitrogen incorporated in the nanotubes is very stable under the thermal and acid environment comparable to working condition of proton exchange membrane (PEM) fuel cells. Profile of the nitrogen species inside the nanotubes reveals that graphite-like nitrogen releases slower than any other kind of nitrogen in the nanotubes during the chemical stability measurement. These CN x tubes synthesized by this simple chemical vapor deposition method are expected to be suitable for many applications, such as PEM fuel cells that work under both thermal and corrosive conditions and some other mild thermal environments.

  10. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Li [Colloid Chemistry Department, Max-Planck Institute for Colloids and Interfaces, Am Muehlenberg 1, 14424 Potsdam (Germany); Institute of Coal Chemistry, Chinese Academy of Sciences, 27th Taoyuan South Road, 030001 Taiyuan (China); Fan, Li-Zhen; Zhou, Meng-Qi; Guan, Hui; Qiao, Suyan [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Antonietti, Markus; Titirici, Maria-Magdalena [Colloid Chemistry Department, Max-Planck Institute for Colloids and Interfaces, Am Muehlenberg 1, 14424 Potsdam (Germany)

    2010-12-01

    Microporous nitrogen-doped carbons produced by hydrothermal carbonization of biomass derivative followed by chemical activation showed excellent supercapacitive capacitance performance both in acid and base electrolytes. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Utilization of carbon and nitrogen sources by Streptomyces ...

    African Journals Online (AJOL)

    We tested a number of carbon and nitrogen compounds for their effect on the production of an antibacterial antibiotic by Streptomyces kananmyceticus M27. Dextrose was found to be the most suitable carbon source, though maltose, sucrose, and soluble starch gave moderate yields. (NH4)H2PO4 and yeast extract were ...

  12. Nitrogen doped carbon nanotubes : synthesis, characterization and catalysis

    NARCIS (Netherlands)

    van Dommele, S.

    2008-01-01

    Nitrogen containing Carbon Nanotubes (NCNT) have altered physical- and chemical properties with respect to polarity, conductivity and reactivity as compared to conventional carbon nanotubes (CNT) and have potential for use in electronic applications or catalysis. In this thesis the incorporation of

  13. The solubility of carbon in low-nitrogen liquid lithium

    International Nuclear Information System (INIS)

    Yonco, R.M.; Homa, M.I.

    1986-01-01

    The solubility of carbon in liquid lithium containing 0 C and compared with the solubility in lithium containing proportional 2600 wppm nitrogen in that same temperature range. A direct sampling method was employed in which filtered samples of the saturated solution were taken at randomly selected temperatures. The entire sample was analyzed for carbon by the acetylene evolution method. The analytical method was examined critically and it was found that (1) all of the carbon in solution, including carbon introduced as lithium cyanamide is detected and (2) ethylene and ethane must also be measured and included with the acetylene to get complete recovery of the carbon content of the sample. The solubility of carbon in low-nitrogen lithium can be expressed by the equations ln S=6.731-8617T -1 and log Ssup(*)=7.459-3740T -1 , where S is the mole percent Li 2 C 2 and Ssup(*) is in weight parts per million carbon. The presence of proportional 2600 wppm nitrogen does not affect the solubility of carbon in lithium at temperatures above proportional 350 0 C, but at lower temperatures it increased the solubility by as much as an order of magnitude compared to the solubility in low-nitrogen lithium. (orig.)

  14. Sequestration of Carbon in Mycorrhizal Fungi Under Nitrogen Fertilization

    Science.gov (United States)

    Treseder, K. K.; Turner, K. M.

    2005-12-01

    Mycorrhizal fungi are root symbionts that facilitate plant uptake of soil nutrients in exchange for plant carbohydrates. They grow in almost every terrestrial ecosystem on earth, form relationships with about 80% of plant species, and receive 10 to 20% of the carbon fixed by their host plants. As such, they could potentially sequester a significant amount of carbon in ecosystems. We hypothesized that nitrogen fertilization would decrease carbon storage in mycorrhizal fungi, because plants should reduce investment of carbon in mycorrhizal fungi when nitrogen availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in control and nitrogen-fertilized plots within three boreal ecosystems of inland Alaska. The ecosystems represented different recovery stages following severe fire, and comprised a young site dominated by AM fungi, an old site dominated by ECM fungi, and an intermediate site co-dominated by both groups. Pools of mycorrhizal carbon included root-associated AM and ECM structures, soil-associated AM hyphae, and soil-associated glomalin. Glomalin is a glycoprotein produced only by AM fungi. It is present in the cell walls of AM hyphae, and then is deposited in the soil as the hyphae senesce. Nitrogen significantly altered total mycorrhizal carbon pools, but its effect varied by site (site * N interaction, P = 0.05). Under nitrogen fertilization, mycorrhizal carbon was reduced from 99 to 50 g C m2 in the youngest site, was increased from 124 to 203 g C m2 in the intermediate-aged site, and remained at 35 g C m2 in the oldest site. The changes in total mycorrhizal carbon stocks were driven mostly by changes in glomalin (site * N interaction, P = 0.05), and glomalin stocks were strongly correlated with AM hyphal abundance (P stocks within root-associated AM structures increased significantly with nitrogen fertilization across all sites (P = 0.001), as did root

  15. Nitrogen: Unraveling the Secret to Stable Carbon-Supported Pt-Alloy Electrocatalysts

    Science.gov (United States)

    2013-10-01

    release; distribution is unlimited. Nitrogen: unraveling the secret to stable carbon-supported Pt- alloy electrocatalysts The views, opinions and/or...Nitrogen: unraveling the secret to stable carbon-supported Pt-alloy electrocatalysts Report Title Nitrogen functionalities significantly improve...design and optimization of next generation high performance catalyst materials. Nitrogen: unraveling the secret to stable carbon-supported Pt-alloy

  16. Biomass derived porous nitrogen doped carbon for electrochemical devices

    Directory of Open Access Journals (Sweden)

    Litao Yan

    2017-04-01

    Full Text Available Biomass derived porous nanostructured nitrogen doped carbon (PNC has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization, pyrolysis, and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption, improve the electronic conductivity, increase the bonding between carbon and sulfur, and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC, heteroatomic co- or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries, high energy density Li–S batteries, supercapacitors, metal-air batteries and electrochemical catalytic reaction (oxygen reduction and evolution reactions, hydrogen evolution reaction are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution, oxygen reduction and evolution, as promising electrodes for electrochemical devices including battery technologies, fuel cell and electrolyzer. Keywords: Biomass, Nitrogen doped carbon, Batteries, Fuel cell, Electrolyzer

  17. Optimising carbon and nitrogen sources for Azotobacter ...

    African Journals Online (AJOL)

    user

    2011-04-11

    Apr 11, 2011 ... Edificio Manuel Ancizar, Universidad Nacional de Colombia, Bogotá, D.C., Colombia. ..... 0,04. 0,06. 0,08. 0,10. Run 9 Run 10 Run 13 Run 14. A cetylen e red u ctio n. (n m .... Biological nitrogen fixation in the tropics: Social.

  18. Abundances in field dwarf stars. II. Carbon and nitrogen abundances

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J.B.

    1985-02-15

    Intermediate-dispersion spectra of 116 field dwarf stars, plus 10 faint field giants and 3 Hyades dwarfs, have been used to derive carbon and nitrogen abundances relative to iron. The program sample includes both disk and halo stars, spanning a range in (Fe/H) of +0.50 to -2.45. Synthetic spectra of CH and NH bands have been used to determine carbon and nitrogen abundances. The C/Fe ratio is solar over the range of metallicity studied, with an estimated intrinsic scatter of 0.10 dex. Down to (Fe/H)roughly-equal-1.8, below which the nitrogen abundance could not be measured, the N/Fe ratio is also constant for the majority of stars, indicating that nitrogen production is largely primary. Four halo stars are found to be enhanced in nitrogen relative to iron, by factors between 5 and 50, although their carbon abundances appear to be normal. These results are discussed in connection with the chemical evolution of the Galaxy and the sites of C, N, and Fe nucleosynthesis. The results require that C, N, and Fe be produced in stars of similar mass. Our current understanding of N production, then, implies that most Type I supernovae have intermediate-mass progenitors. The nitrogen in the N-enhanced halo stars is very probably primordial, indicating that the interstellar medium at early epochs contained substantial inhomogeneities.

  19. Abundances in field dwarf stars. II. Carbon and nitrogen abundances

    International Nuclear Information System (INIS)

    Laird, J.B.

    1985-01-01

    Intermediate-dispersion spectra of 116 field dwarf stars, plus 10 faint field giants and 3 Hyades dwarfs, have been used to derive carbon and nitrogen abundances relative to iron. The program sample includes both disk and halo stars, spanning a range in [Fe/H] of +0.50 to -2.45. Synthetic spectra of CH and NH bands have been used to determine carbon and nitrogen abundances. The C/Fe ratio is solar over the range of metallicity studied, with an estimated intrinsic scatter of 0.10 dex. Down to [Fe/H]roughly-equal-1.8, below which the nitrogen abundance could not be measured, the N/Fe ratio is also constant for the majority of stars, indicating that nitrogen production is largely primary. Four halo stars are found to be enhanced in nitrogen relative to iron, by factors between 5 and 50, although their carbon abundances appear to be normal. These results are discussed in connection with the chemical evolution of the Galaxy and the sites of C, N, and Fe nucleosynthesis. The results require that C, N, and Fe be produced in stars of similar mass. Our current understanding of N production, then, implies that most Type I supernovae have intermediate-mass progenitors. The nitrogen in the N-enhanced halo stars is very probably primordial, indicating that the interstellar medium at early epochs contained substantial inhomogeneities

  20. Organic carbon, nitrogen and phosphorus contents of some tea soils

    International Nuclear Information System (INIS)

    Ahmed, M.S.; Zamir, M.R.; Sanauallah, A.F.M.

    2005-01-01

    Soil samples were collected from Rungicherra Tea-Estate of Moulvibazar district, Bangladesh. Organic carbon, organic matter, total nitrogen and available phosphorus content of the collected soil of different topographic positions have been determined. The experimental data have been analyzed statistically and plotted against topography and soil depth. Organic carbon and organic matter content varied from 0.79 to 1.24% and 1.37 to 2.14%. respectively. Total nitrogen and available phosphorus content of these soils varied respectively from 0.095 to 0.13% and 2.31 to 4.02 ppm. (author)

  1. Carbon-nitrogen-water interactions: is model parsimony fruitful?

    Science.gov (United States)

    Puertes, Cristina; González-Sanchis, María; Lidón, Antonio; Bautista, Inmaculada; Lull, Cristina; Francés, Félix

    2017-04-01

    It is well known that carbon and nitrogen cycles are highly intertwined and both should be explained through the water balance. In fact, in water-controlled ecosystems nutrient deficit is related to this water scarcity. For this reason, the present study compares the capability of three models in reproducing the interaction between the carbon and nitrogen cycles and the water cycle. The models are BIOME-BGCMuSo, LEACHM and a simple carbon-nitrogen model coupled to the hydrological model TETIS. Biome-BGCMuSo and LEACHM are two widely used models that reproduce the carbon and nitrogen cycles adequately. However, their main limitation is that these models are quite complex and can be too detailed for watershed studies. On the contrary, the TETIS nutrient sub-model is a conceptual model with a vertical tank distribution over the active soil depth, dividing it in two layers. Only the input of the added litter and the losses due to soil respiration, denitrification, leaching and plant uptake are considered as external fluxes. Other fluxes have been neglected. The three models have been implemented in an experimental plot of a semi-arid catchment (La Hunde, East of Spain), mostly covered by holm oak (Quercus ilex). Plant transpiration, soil moisture and runoff have been monitored daily during nearly two years (26/10/2012 to 30/09/2014). For the same period, soil samples were collected every two months and taken to the lab in order to obtain the concentrations of dissolved organic carbon, microbial biomass carbon, ammonium and nitrate. In addition, between field trips soil samples were placed in PVC tubes with resin traps and were left incubating (in situ buried cores). Thus, mineralization and nitrification accumulated fluxes for two months, were obtained. The ammonium and nitrate leaching accumulated for two months were measured using ion-exchange resin cores. Soil respiration was also measured every field trip. Finally, water samples deriving from runoff, were collected

  2. Content of nitrogen in waste petroleum carbon for steel industries

    International Nuclear Information System (INIS)

    Rios, R.O; Jimenez, A.F; Szieber, C.W; Banchik, A.D

    2004-01-01

    Steel industries use refined carbon as an alloy for steel production. This alloy is produced from waste carbon from the distillation of the petroleum. The refined carbon, called recarburizer, is obtained by calcination at high temperature. Under these thermal conditions the organic molecules decompose and a fraction of the N 2 , S and H 2 , volatile material and moisture are released; while the carbon tends to develop a crystalline structure similar to graphite's. The right combination of calcinations temperature and time in the furnace can optimize the quality of the resulting product. The content of S and N 2 has to be minimized for the use of calcined carbon in the steel industry. Nitrogen content should be reduced by two orders of magnitude, from 1% - 2% down to hundreds of ppm by weight. This work describes the activities undertaken to obtain calcined coke from petroleum from crude oil carbon that satisfies the requirements of the Mercosur standard 02:00-169 (Pending) for use as a carborizer in steels industries. To satisfy the requirements of the Mercosur standards NM 236:00 IRAM-IAS-NM so that graphite is used as a carburizer a content of 300 ppm maximum weight of nitrogen has to be obtained. So the first stage in this development is to define a production process for supplying calcined coke in the range of nitrogen concentrations required by the Mercosur standards (CW)

  3. In vivo measurements of nitrogen, hydrogen, carbon and potassium in genetically obese and lean pigs

    International Nuclear Information System (INIS)

    Ellis, K.J.; Shypailo, R.J.; Sheng, H.P.; Mersmann, H.J.; Pond, W.G.

    1991-01-01

    Characteristic gamma rays are emitted promptly by elements during exposure to neutrons. Gamma ray emissions enable a radioanalytical analysis of the body's composition of protein (nitrogen), water (hydrogen), fat (carbon), and muscle (natural 40 K). The authors have used this method in vivo to detect changes in the body composition of obese and lean pigs (10-20 kg body wt) in response to an altered cholesterol diet

  4. In vivo measurements of nitrogen, hydrogen, and carbon in genetically obese and lean pigs

    International Nuclear Information System (INIS)

    Ellis, K.J.; Shypailo, R.J.; Sheng, H.-P.; Pond, W.G.

    1992-01-01

    Characteristic gamma-rays are emitted promptly by elements during exposure to neutrons. These emissions enable a radioanalytical analysis of the body's composition of protein (nitrogen), water (hydrogen), and fat (carbon). We have used this method in vivo to determine the body composition of obese and lean pigs (10 to 20 kg body wt) fed an altered cholesterol diet. (author) 10 refs.; 5 figs.; 1 tab

  5. Remarkable activity of nitrogen-doped hollow carbon spheres encapsulated Cu on synthesis of dimethyl carbonate: Role of effective nitrogen

    Science.gov (United States)

    Li, Haixia; Zhao, Jinxian; Shi, Ruina; Hao, Panpan; Liu, Shusen; Li, Zhong; Ren, Jun

    2018-04-01

    A critical aspect in the improvement of the catalytic performance of Cu-based catalysts for the synthesis of dimethyl carbonate (DMC) is the development of an appropriate support. In this work, nitrogen-doped hollow carbon spheres (NHCSs), with 240 nm average diameter, 17 nm shell thickness, uniform mesoporous structure and a specific surface area of 611 m2 g-1, were prepared via a two-step Stӧber method. By varying the quantity of nitrogen-containing phenols used in the preparation it has been possible to control the nitrogen content and, consequently, the sphericity of the NHCSs. It was found that perfect spheres were obtained for nitrogen contents below 5.4 wt.%. The catalysts (Cu@NHCSs) were prepared by the hydrothermal impregnation method. The catalytic activity towards DMC synthesis was notably enhanced due to the immobilization effect on Cu particles and the enhanced electron transfer effect exercised by the effective nitrogen species, including pyridinic-N and graphitic-N. When the average size of the copper nanoparticles was 7.4 nm and the nitrogen content was 4.0 wt.%, the values of space-time yield of DMC and of turnover frequency (TOF) reached 1528 mg/(g h) and 11.0 h-1, respectively. The TOF value of Cu@NHCSs was 6 times higher than non-doped Cu@Carbon (2.1 h-1). The present work introduces the potential application of nitrogen-doped carbon materials and presents a novel procedure for the preparation of catalysts for DMC synthesis.

  6. Minerilization of carbon and nitrogen of organic residues from ...

    African Journals Online (AJOL)

    Minerilization of carbon and nitrogen of organic residues from selected plants in a tropical cropping system. O M Onuh, HA Okorie. Abstract. No Abstract. Journal of Agriculture and Food Sciences Vol. 3 (1) 2005 pp. 11-24. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  7. Synthesis of Nitrogen-doped Carbon Nanotubes with Layered ...

    African Journals Online (AJOL)

    NICO

    Nitrogen-doped carbon nanotubes (CNx) were synthesized by the catalytic chemical vapour deposition ... dispersed metal nanoparticles over oxide matrices can be obtained ..... 18 S.Y. Kim, J. Lee, C.W. Na, J. Park, K. Seo and B. Kim, Chem.

  8. Evaluation of the soil organic carbon, nitrogen and available ...

    African Journals Online (AJOL)

    The result obtained indicates that the level of these chemical properties were generally low as compared to standard measures and parameter for ratings soil fertility in the Nigerian Savanna. Keywords: Status of organic carbon, total nitrogen, available phosphorus, top horizons, research farm. Bowen Journal of Agriculture ...

  9. Effects of organic nitrogen and carbon sources on mycelial growth ...

    African Journals Online (AJOL)

    Grifola umbellate is a famous and expensive Chinese herb medicine and the main medicinal component is polysaccharide mainly produced by its mycelia. Effects of organic nitrogen and carbon resources on mycelial growth and polysaccharides production of a medicinal mushroom, G. umbellate were studied in the ...

  10. A mobile light source for carbon/nitrogen cameras

    International Nuclear Information System (INIS)

    Trower, W.P.; Melekhin, V.N.; Shvedunov, V.I.; Sobenin, N.P.

    1995-01-01

    The pulsed light source for carbon/nitrogen cameras developed to image concealed narcotics/explosives is described. This race-track microtron will produce 40 mA pulses of 70 MeV electrons, have minimal size and weight, and maximal ruggedness and reliability, so that it can be transported on a truck. (orig.)

  11. A mobile light source for carbon/nitrogen cameras

    Science.gov (United States)

    Trower, W. P.; Karev, A. I.; Melekhin, V. N.; Shvedunov, V. I.; Sobenin, N. P.

    1995-05-01

    The pulsed light source for carbon/nitrogen cameras developed to image concealed narcotics/explosives is described. This race-track microtron will produce 40 mA pulses of 70 MeV electrons, have minimal size and weight, and maximal ruggedness and reliability, so that it can be transported on a truck.

  12. Effects of carbon and nitrogen sources on the induction and ...

    African Journals Online (AJOL)

    user

    about the induction and repression mechanism of this hydrolytic enzyme. This report ... chitin as a sole source of carbon followed by the medium containing an extra nitrogen source, yeast extract. .... against fluorescent background by UV illumination. Statistical ..... Virulence Associated with Native and Mutant Isolates of an.

  13. Effects of carbon and nitrogen sources on the induction and ...

    African Journals Online (AJOL)

    Effects of carbon and nitrogen sources on the induction and repression of chitinase enzyme from Beauveria bassiana isolates. Priyanka Dhar, Gurvinder Kaur. Abstract. Beauveria bassiana a natural soil borne insect pathogen is being used effectively these days in integrated pest management system. Foliar application of ...

  14. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples

    DEFF Research Database (Denmark)

    Otte, S.; Kuenen, JG; Nielsen, LP

    1999-01-01

    Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store...

  15. Stable carbon, nitrogen and sulfur isotopes in non-carbonate fractions of cold-seep carbonates

    Science.gov (United States)

    Feng, Dong; Peng, Yongbo; Peckmann, Jörn; Roberts, Harry; Chen, Duofu

    2017-04-01

    Sulfate-driven anaerobic oxidation of methane (AOM) supports chemosynthesis-based communities and limits the release of methane from marine sediments. This process promotes the formation of carbonates close to the seafloor along continental margins. The geochemical characteristics of the carbonate minerals of these rocks are increasingly understood, questions remain about the geochemical characteristics of the non-carbonate fractions. Here, we report stable carbon, nitrogen and sulfur isotope patterns in non-carbonate fractions of seep carbonates. The authigenic carbonates were collected from three modern seep provinces (Black Sea, Gulf of Mexico, and South China Sea) and three ancient seep deposits (Marmorito, northern Italy, Miocene; SR4 deposit of the Lincoln Creek Formation and Whiskey Creek, western Washington, USA, Eocene to Oligocene). The δ13C values of non-carbonate fractions range from ˜-25‰ to -80‰ VPDB. These values indicate that fossil methane mixed with varying amounts of pelagic organic matter is the dominant source of carbon in these fractions. The relatively small offset between the δ34S signatures of the non-carbonate fractions and the respective sulfide minerals suggests that locally produced hydrogen sulfide is the main source of sulfur in seep environments. The δ15N values of the non-carbonate fractions are generally lower than the corresponding values of deep-sea sediments, suggesting that organic nitrogen is mostly of a local origin. This study reveals the potential of using δ13C, δ15N, δ34S values to discern seep and non-seep deposits. In cases where δ13Ccarbonate values are only moderately low due to mixing processes and lipid biomarkers have been erased in the course of burial, it is difficult to trace back AOM owing to the lack of other records. This problem is even more pronounced when authigenic carbonate is not available in ancient seep environments. Acknowledgments: The authors thank BOEM and NOAA for their years' support

  16. A Compilation of Global Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the concentrations of soil microbial biomass carbon (C), nitrogen (N) and phosphorus (P), soil organic carbon, total nitrogen, and total...

  17. Total Protein Content Determination of Microalgal Biomass by Elemental Nitrogen Analysis and a Dedicated Nitrogen-to-Protein Conversion Factor

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Olstad-Thompson, Jessica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Templeton, David W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-02

    Accurately determining protein content is important in the valorization of algal biomass in food, feed, and fuel markets, where these values are used for component balance calculations. Conversion of elemental nitrogen to protein is a well-accepted and widely practiced method, but depends on developing an applicable nitrogen-to-protein conversion factor. The methodology reported here covers the quantitative assessment of the total nitrogen content of algal biomass and a description of the methodology that underpins the accurate de novo calculation of a dedicated nitrogen-to-protein conversion factor.

  18. Impact of elevated CO2 and nitrogen fertilization on foliar elemental composition in a short rotation poplar plantation

    International Nuclear Information System (INIS)

    Marinari, Sara; Calfapietra, Carlo; De Angelis, Paolo; Mugnozza, Giuseppe Scarascia; Grego, Stefano

    2007-01-01

    The experiment was carried out on a short rotation coppice culture of poplars (POP-EUROFACE, Central Italy), growing in a free air carbon dioxide enriched atmosphere (FACE). The specific objective of this work was to study whether elevated CO 2 and fertilization (two CO 2 treatments, elevated CO 2 and control, two N fertilization treatments, fertilized and unfertilized), as well as the interaction between treatments caused an unbalanced nutritional status of leaves in three poplar species (P. x euramericana, P. nigra and P. alba). Finally, we discuss the ecological implications of a possible change in foliar nutrients concentration. CO 2 enrichment reduced foliar nitrogen and increased the concentration of magnesium; whereas nitrogen fertilization had opposite effects on leaf nitrogen and magnesium concentrations. Moreover, the interaction between elevated CO 2 and N fertilization amplified some element unbalances such as the K/N-ratio. - CO 2 enrichment reduced foliar nitrogen and increased the magnesium concentration in poplar

  19. Phosphorus and nitrogen-containing carbons obtained by the carbonization of conducting polyaniline complex with phosphites

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Trchová, Miroslava; Morávková, Zuzana; Kovářová, Jana; Vulić, I.; Gavrilov, N.; Pašti, I. A.; Stejskal, Jaroslav

    2017-01-01

    Roč. 246, 20 August (2017), s. 443-450 ISSN 0013-4686 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : carbonization * conducting polymer * nitrogen-containing carbon Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.798, year: 2016

  20. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions

    International Nuclear Information System (INIS)

    Long, Christopher M.; Nascarella, Marc A.; Valberg, Peter A.

    2013-01-01

    Airborne particles containing elemental carbon (EC) are currently at the forefront of scientific and regulatory scrutiny, including black carbon, carbon black, and engineered carbon-based nanomaterials, e.g., carbon nanotubes, fullerenes, and graphene. Scientists and regulators sometimes group these EC-containing particles together, for example, interchangeably using the terms carbon black and black carbon despite one being a manufactured product with well-controlled properties and the other being an undesired, incomplete-combustion byproduct with diverse properties. In this critical review, we synthesize information on the contrasting properties of EC-containing particles in order to highlight significant differences that can affect hazard potential. We demonstrate why carbon black should not be considered a model particle representative of either combustion soots or engineered carbon-based nanomaterials. Overall, scientific studies need to distinguish these highly different EC-containing particles with care and precision so as to forestall unwarranted extrapolation of properties, hazard potential, and study conclusions from one material to another. -- Highlights: •Major classes of elemental carbon-containing particles have distinct properties. •Despite similar names, carbon black should not be confused with black carbon. •Carbon black is distinguished by a high EC content and well-controlled properties. •Black carbon particles are characterized by their heterogenous properties. •Carbon black is not a model particle representative of engineered nanomaterials. -- This review demonstrates the significant physical and chemical distinctions between elemental carbon-containing particles e.g., carbon black, black carbon, and engineered nanomaterials

  1. [Interactions of straw, nitrogen fertilizer and bacterivorous nematodes on soil labile carbon and nitrogen and greenhouse gas emissions].

    Science.gov (United States)

    Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng

    2014-11-01

    A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.

  2. Carbon and nitrogen transport in sodium systems

    International Nuclear Information System (INIS)

    Schrock, S.L.; Shiels, S.A.; Bagnall, C.

    1976-01-01

    Materials for the liquid metal cooled fast breeder reactor will be exposed to high temperature sodium for time periods up to 30 years. One consequence of this exposure will be changes in the interstitial element concentrations of the alloys and concomitant alterations in their mechanical behavior characteristics. Several ongoing technology programs have as their objective a quantitative definition of the rate and extent of this interstitial movement. The paper summarizes the status of these programs and reports in detail on the results of a recently completed, USERDA funded program at the Advanced Reactors Division of Westinghouse. These results, while substantiating earlier reported trends on interstitial movement, indicate the problem is not as severe as initially estimated. Moreover, the present wastage allowance for most reactor components contains sufficient conservatism to compensate for changes in mechanical strength resulting from this change in interstitial concentration

  3. Pulsed TEA CO2 Laser Irradiation of Titanium in Nitrogen and Carbon Dioxide Gases

    Science.gov (United States)

    Ciganovic, J.; Matavulj, P.; Trtica, M.; Stasic, J.; Savovic, J.; Zivkovic, S.; Momcilovic, M.

    2017-12-01

    Surface changes created by interaction of transversely excited atmospheric carbon dioxide (TEA CO2) laser with titanium target/implant in nitrogen and carbon dioxide gas were studied. TEA CO2 laser operated at 10.6 μm, pulse length of 100 ns and fluence of ˜17 J/cm2 which was sufficient for inducing surface modifications. Induced changes depend on the gas used. In both gases the grain structure was produced (central irradiated zone) but its forms were diverse, (N2: irregular shape; CO2: hill-like forms). Hydrodynamic features at peripheral zone, like resolidified droplets, were recorded only in CO2 gas. Elemental analysis of the titanium target surface indicated that under a nitrogen atmosphere surface nitridation occurred. In addition, irradiation in both gases was followed by appearance of plasma in front of the target. The existence of plasma indicates relatively high temperatures created above the target surface offering a sterilizing effect.

  4. Nitrogen-doped carbon nanotubes as a metal catalyst support

    CSIR Research Space (South Africa)

    Mabena, LF

    2011-05-01

    Full Text Available ., which are among the most commonly used heterogeneous catalyst supports (Mart??nez-Me?ndez et al. 2006). Catalyst activity depends on the particle size and appropriate dis- tance between each particle. These catalysts deposited on a support... supported Pt electrodes. Appl Catal B Environ 80:286?295 Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44:1429?1437 Mart??nez-Me?ndez S, Henr??quez Y...

  5. Carbon and nitrogen assimilation in deep subseafloor microbial cells

    OpenAIRE

    Morono, Yuki; Terada, Takeshi; Nishizawa, Manabu; Ito, Motoo; Hillion, François; Takahata, Naoto; Sano, Yuji; Inagaki, Fumio

    2011-01-01

    Remarkable numbers of microbial cells have been observed in global shallow to deep subseafloor sediments. Accumulating evidence indicates that deep and ancient sediments harbor living microbial life, where the flux of nutrients and energy are extremely low. However, their physiology and energy requirements remain largely unknown. We used stable isotope tracer incubation and nanometer-scale secondary ion MS to investigate the dynamics of carbon and nitrogen assimilation activities in individua...

  6. Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance

    International Nuclear Information System (INIS)

    Zhai, Yunbo; Xu, Bibo; Zhu, Yun; Qing, Renpeng; Peng, Chuan; Wang, Tengfei; Li, Caiting; Zeng, Guangming

    2016-01-01

    Nitrogen doped porous activated carbon was prepared by annealing treatment of Camellia oleifera shell activated carbon under NH 3 . We found that nitrogen content of activated carbon up to 10.43 at.% when annealed in NH 3 at 800 °C. At 600 °C or above, the N-doped carbon further reacts with NH 3 , leads to a low surface area down to 458 m 2 /g and low graphitization degree. X-ray photoelectron spectroscope (XPS) analysis indicated that the nitrogen functional groups on the nitrogen-doped activated carbons (NACs) were mostly in the form of pyridinic nitrogen. We discovered that the oxygen groups and carbon atoms at the defect and edge sites of graphene play an important role in the reaction, leading to nitrogen atoms incorporated into the lattice of carbon. When temperatures were lower than 600 °C the nitrogen atoms displaced oxygen groups and formed nitrogen function groups, and when temperatures were higher than 600 °C and ~ 4 at.% carbon atoms and part of oxygen function groups reacted with NH 3 . When compared to pure activated carbon, the nitrogen doped activated carbon shows nearly four times the capacitance (191 vs 51 F/g). - Highlights: • The nitrogen content up to 10.43 at % during CAC pyrolysis under NH3 at 800 °C. • The oxygen groups and carbon atoms played an important role in the nitrogen doping. • NAC-600 shows a much higher specific capacitance than CAC.

  7. Hierarchical porous nitrogen-doped partial graphitized carbon monoliths for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yifeng; Du, Juan; Liu, Lei; Wang, Guoxu; Zhang, Hongliang; Chen, Aibing, E-mail: chen-ab@163.com [Hebei University of Science and Technology, College of Chemical and Pharmaceutical Engineering (China)

    2017-03-15

    Porous carbon monoliths have attracted great interest in many fields due to their easy availability, large specific surface area, desirable electronic conductivity, and tunable pore structure. In this work, hierarchical porous nitrogen-doped partial graphitized carbon monoliths (N–MC–Fe) with ordered mesoporous have been successfully synthesized by using resorcinol-formaldehyde as precursors, iron salts as catalyst, and mixed triblock copolymers as templates via a one-step hydrothermal method. In the reactant system, hexamethylenetetramine (HMT) is used as nitrogen source and one of the carbon precursors under hydrothermal conditions instead of using toxic formaldehyde. The N–MC–Fe show hierarchically porous structures, with interconnected macroporous and ordered hexagonally arranged mesoporous. Nitrogen element is in situ doped into carbon through decomposition of HMT. Iron catalyst is helpful to improve the graphitization degree and pore volume of N–MC–Fe. The synthesis strategy is user-friendly, cost-effective, and can be easily scaled up for production. As supercapacitors, the N–MC–Fe show good capacity with high specific capacitance and good electrochemical stability.

  8. Oxygen etching mechanism in carbon-nitrogen (CNx) domelike nanostructures

    International Nuclear Information System (INIS)

    Acuna, J. J. S.; Figueroa, C. A.; Kleinke, M. U.; Alvarez, F.; Biggemann, D.

    2008-01-01

    We report a comprehensive study involving the ion beam oxygen etching purification mechanism of domelike carbon nanostructures containing nitrogen. The CN x nanodomes were prepared on Si substrate containing nanometric nickel islands catalyzed by ion beam sputtering of a carbon target and assisting the deposition by a second nitrogen ion gun. After preparation, the samples were irradiated in situ by a low energy ion beam oxygen source and its effects on the nanostructures were studied by x-ray photoelectron spectroscopy in an attached ultrahigh vacuum chamber, i.e., without atmospheric contamination. The influence of the etching process on the morphology of the samples and structures was studied by atomic force microscopy and field emission gun-secondary electron microscopy, respectively. Also, the nanodomes were observed by high resolution transmission electron microscopy. The oxygen atoms preferentially bond to carbon atoms by forming terminal carbonyl groups in the most reactive parts of the nanostructures. After the irradiation, the remaining nanostructures are grouped around two well-defined size distributions. Subsequent annealing eliminates volatile oxygen compounds retained at the surface. The oxygen ions mainly react with nitrogen atoms located in pyridinelike structures

  9. Nitrogen doped silicon-carbon multilayer protective coatings on carbon obtained by TVA method

    Science.gov (United States)

    Ciupina, Victor; Vasile, Eugeniu; Porosnicu, Corneliu; Lungu, Cristian P.; Vladoiu, Rodica; Jepu, Ionut; Mandes, Aurelia; Dinca, Virginia; Caraiane, Aureliana; Nicolescu, Virginia; Cupsa, Ovidiu; Dinca, Paul; Zaharia, Agripina

    2017-08-01

    Protective nitrogen doped Si-C multilayer coatings on carbon, used to improve the oxidation resistance of carbon, were obtained by Thermionic Vacuum Arc (TVA) method. The initial carbon layer having a thickness of 100nm has been deposed on a silicon substrate in the absence of nitrogen, and then a 3nm Si thin film to cover carbon layer was deposed. Further, seven Si and C layers were alternatively deposed in the presence of nitrogen ions, each having a thickness of 40nm. In order to form silicon carbide at the interface between silicon and carbon layers, all carbon, silicon and nitrogen ions energy has increased up to 150eV . The characterization of microstructure and electrical properties of as-prepared N-Si-C multilayer structures were done using Transmission Electron Microscopy (TEM, STEM) techniques, Thermal Desorption Spectroscopy (TDS) and electrical measurements. Oxidation protection of carbon is based on the reaction between oxygen and silicon carbide, resulting in SiO2, SiO and CO2, and also by reaction involving N, O and Si, resulting in silicon oxynitride (SiNxOy) with a continuously variable composition, and on the other hand, since nitrogen acts as a trapping barrier for oxygen. To perform electrical measurements, 80% silver filled two-component epoxy-based glue ohmic contacts were attached on the N-Si-C samples. Electrical conductivity was measured in constant current mode. The experimental data show the increase of conductivity with the increase of the nitrogen content. To explain the temperature behavior of electrical conductivity we assumed a thermally activated electric transport mechanism.

  10. Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes

    Czech Academy of Sciences Publication Activity Database

    Kopáček, Jiří; Cosby, B. J.; Evans, C. D.; Hruška, J.; Moldan, F.; Oulehle, F.; Šantrůčková, H.; Tahovská, K.; Wright, R. F.

    2013-01-01

    Roč. 115, 1-3 (2013), s. 33-51 ISSN 0168-2563. [BIOGEOMON : international symposium on ecosystem behavior /7./. Northport, 15.07.2012-20.07.2012] R&D Projects: GA ČR(CZ) GAP504/12/1218 Institutional support: RVO:60077344 Keywords : nitrogen * carbon * sulphur * acidification * forest soil * modelling Subject RIV: DJ - Water Pollution ; Quality Impact factor: 3.730, year: 2013

  11. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Science.gov (United States)

    Atul Jain; Xiaojuan Yang; Haroon Kheshgi; A. David McGuire; Wilfred Post; David. Kicklighter

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen...

  12. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrog...... implications for modelling the carbon sink-strength of temperate forests under global change.......Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...... (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...

  13. Measurement of total-body oxygen, nitrogen, and carbon in vivo by photon activation analysis

    International Nuclear Information System (INIS)

    Ulin, K.

    1984-01-01

    With the aim of assessing nutritional status, the feasibility of measuring the total body quantities of the major body elements, i.e. oxygen, nitrogen, and carbon, using the photon beam of a 45 MV betatron and a whole-body counter, has been evaluated in detail. Following photon activation a single energy γ-radiation (.511 MeV) is observed from all three elements to be measured. The half-lives of 15 O, 13 N, and 11 C, however, are sufficiently different (20.5 min, 10.0 min, and 20.4 min. respectively) to permit their measurement from an analysis of the measured decay curve. Following corrections for interfering reactions, a computer curve-fitting algorithm is used to resolve the data into 15 O, 13 N, and 11 C components. Measurements of O, N, and C have been made both in phantoms and in live and dead rats. A comparison of the body composition results from this technique with results from chemical analysis indicates that measured carbon can quite accurately predict total body fat. The comparison of the total body nitrogen measurement by photon activation with total body protein by chemical analysis was inconclusive and suggests that further work be done to verify the estimated accuracy of the nitrogen measurement

  14. Moisture effects on carbon and nitrogen emission from burning of wildland biomass

    Directory of Open Access Journals (Sweden)

    L.-W. A. Chen

    2010-07-01

    Full Text Available Carbon (C and nitrogen (N released from biomass burning have multiple effects on the Earth's biogeochemical cycle, climate change, and ecosystem. These effects depend on the relative abundances of C and N species emitted, which vary with fuel type and combustion conditions. This study systematically investigates the emission characteristics of biomass burning under different fuel moisture contents, through controlled burning experiments with biomass and soil samples collected from a typical alpine forest in North America. Fuel moisture in general lowers combustion efficiency, shortens flaming phase, and introduces prolonged smoldering before ignition. It increases emission factors of incompletely oxidized C and N species, such as carbon monoxide (CO and ammonia (NH3. Substantial particulate carbon and nitrogen (up to 4 times C in CO and 75% of N in NH3 were also generated from high-moisture fuels, maily associated with the pre-flame smoldering. This smoldering process emits particles that are larger and contain lower elemental carbon fractions than soot agglomerates commonly observed in flaming smoke. Hydrogen (H/C ratio and optical properties of particulate matter from the high-moisture fuels show their resemblance to plant cellulous and brown carbon, respectively. These findings have implications for modeling biomass burning emissions and impacts.

  15. The carbon-nitrogen balance of the nodule and its regulation under elevated carbon dioxide concentration.

    Science.gov (United States)

    Libault, Marc

    2014-01-01

    Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.

  16. Measurement of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen

    International Nuclear Information System (INIS)

    Wiedenbeck, M.E.; Greiner, D.E.; Bieser, F.S.; Crawford, H.J.; Heckman, H.H.; Lindstrom, P.J.

    1979-06-01

    The results of an investigation of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen (E approx. 80 to 230 MeV/amu) made using the U.C. Berkeley HKH instrument aboard the ISEE-3 spacecraft are reported. The combination of high mass resolution and a large statistical sample makes possible a precise determination of the relative isotopic abundances for these elements. In local interplanetary space we find: 13 C/C = 0.067 +- 0.008, 15 N/N = 0.54 +- 0.03, 17 O/O 18 O/O = 0.019 +- 0.003

  17. Current-voltage characteristics of carbon nanotubes with substitutional nitrogen

    DEFF Research Database (Denmark)

    Kaun, C.C.; Larade, B.; Mehrez, H.

    2002-01-01

    unit cell generates a metallic transport behavior. Nonlinear I-V characteristics set in at high bias and a negative differential resistance region is observed for the doped tubes. These behaviors can be well understood from the alignment/mis-alignment of the current carrying bands in the nanotube leads......We report ab initio analysis of current-voltage (I-V) characteristics of carbon nanotubes with nitrogen substitution doping. For zigzag semiconducting tubes, doping with a single N impurity increases current flow and, for small radii tubes, narrows the current gap. Doping a N impurity per nanotube...

  18. Isotopic-spectral determination of hydrogen, nitrogen, oxygen and carbon in semiconductor materials

    International Nuclear Information System (INIS)

    Dudich, G.K.; Eremeev, V.A.; Li, V.N.; Nemets, V.M.

    1981-01-01

    Techniques of low-temperature isotopic-spectral determination of impurities of hydrogen, nitrogen, oxygen and carbon in semiconductor materials Bi, Ge, Pb tellurides are developed. The techniques include selection into special vessel with the known volume (exchanger) of sample analyzed, dosed introduction into exchanger of rare isotope of the element determined ( 2 H, 15 N, 18 O, 13 C) in the form of isotope-containing gas, balancing of the determined element isotopes in the system sample-isotope, containing gas, spectroscopic, determination of its isotope composition in gaseous phase of the system and calculation of the amount of the element determined in the sample. The lower boundaries of the amounts determined constitute 10 -7 , 10 -7 , 10 -6 and 10 -5 mass % respectively when sample of 20 g are used [ru

  19. Soil carbon and nitrogen erosion in forested catchments: implications for erosion-induced terrestrial carbon sequestration

    Science.gov (United States)

    E. M. Stacy; S. C. Hart; C. T. Hunsaker; D. W. Johnson; A. A. Berhe

    2015-01-01

    Lateral movement of organic matter (OM) due to erosion is now considered an important flux term in terrestrial carbon (C) and nitrogen (N) budgets, yet most published studies on the role of erosion focus on agricultural or grassland ecosystems. To date, little information is available on the rate and nature of OM eroded from forest ecosystems. We present annual...

  20. Carbonization-dependent nitrogen-doped hollow porous carbon nanospheres synthesis and electrochemical study for supercapacitors

    Science.gov (United States)

    Zhou, Lingyun; Xie, Guohong; Chen, Xiling

    2018-05-01

    In this paper, a nitrogen-doped hollow microporous carbon nanospheres was synthesized via the combination of hyper-crosslinking mediated self-assembly and further pyrolysis using polylactide-b-polystyrene (PLA-b-PS) copolymers and aniline monomers as precursor. The pore structure and the correlative electrochemical performance of nitrogen-doped hollow microporous carbon nanospheres were affected by the molar mass ratio of aniline and PS in block copolymers and the carbonization conditions. The electrochemical measurements results showed that the obtained PLA150-PS250-N4-900-10H sample with nitrogen content of 3.57% and the BET surface area of 945 m2 g-1 displays the best capacitance performance. At a current density of 1.0 Ag-1, the resultant specific capacitance is 250 Fg-1. In addition, it also exhibits high capacitance retention of 98% after charging-discharging 1500 times at 25 Ag-1. The results demonstrate the nitrogen-doped hollow microporous carbon nanospheres can be used as promising supercapacitor electrode materials for high performance energy storage devices.

  1. Nitrogen controlled iron catalyst phase during carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Bernhard C., E-mail: bernhard.bayer@univie.ac.at [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Faculty of Physics, University of Vienna, A-1090 Vienna (Austria); Baehtz, Carsten [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Kidambi, Piran R.; Weatherup, Robert S.; Caneva, Sabina; Cabrero-Vilatela, Andrea; Hofmann, Stephan [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Mangler, Clemens; Kotakoski, Jani; Meyer, Jannik C. [Faculty of Physics, University of Vienna, A-1090 Vienna (Austria); Goddard, Caroline J. L. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2014-10-06

    Close control over the active catalyst phase and hence carbon nanotube structure remains challenging in catalytic chemical vapor deposition since multiple competing active catalyst phases typically co-exist under realistic synthesis conditions. Here, using in-situ X-ray diffractometry, we show that the phase of supported iron catalyst particles can be reliably controlled via the addition of NH{sub 3} during nanotube synthesis. Unlike polydisperse catalyst phase mixtures during H{sub 2} diluted nanotube growth, nitrogen addition controllably leads to phase-pure γ-Fe during pre-treatment and to phase-pure Fe{sub 3}C during growth. We rationalize these findings in the context of ternary Fe-C-N phase diagram calculations and, thus, highlight the use of pre-treatment- and add-gases as a key parameter towards controlled carbon nanotube growth.

  2. Organic carbon, nitrogen and phosphorus contents of some soils of kaliti tea-estate, Bangladesh

    International Nuclear Information System (INIS)

    Ahmed, M. S.; Shahin, M. M. H.; Sanaullah, A. F. M.

    2005-01-01

    Some soil samples were collected from Kaliti Tea-Estate of Moulvibazar district, Bangladesh. Total nitrogen, organic carbon, organic matter, carbon-nitrogen ratio and available phosphorus content of the collected soil samples of different depths and of different topographic positions have been determined. Total nitrogen was found 0.07 to 0.12 % organic carbon and organic matter content found to vary from 0.79 to 1.25 and 1.36 to 2.15 % respectively. Carbon-nitrogen ratio of these soils varied from 9.84 to 10.69, while available phosphorus content varied from 2.11 to 4.13 ppm. (author)

  3. Mutagenic effects of nitrogen and carbon ions on stevia

    International Nuclear Information System (INIS)

    Wang Cailian; Chen Qiufang; Shen Mei; Lu Ting; Shu Shizhen

    1998-06-01

    Dry seeds of stevia were implanted by 60∼100 keV nitrogen ion and 75 keV carbon ion with various doses. The biological effects in M 1 and mutation in M 2 were studied. The results showed that ion beam was able to induce variation on chromosome structure and inhibited mitosis action in root tip cells. The rate of cells with chromosome aberration was increased with the increase of ion beam energy and dose. Energy effects of mitosis were presented between 75 keV and 60, 100 keV. As compared with γ-rays, the effects of ion beam were lower on chromosomal aberration but were higher on frequency of the mutation. The rate of cell with chromosome aberration and M 2 useful mutation induced by implantation of carbon ion was higher than those induced by implantation of nitrogen ion. Mutagenic effects of Feng 1 x Ri Yuan and of Ri Yuan x Feng 2 are higher than that of Ji Ning and Feng 2

  4. Carbon-nitrogen interactions and biomass partitioning of Carex rostrata grown at three levels of nitrogen supply

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T [Helsinki Univ. (Finland). Dept. of Ecology and Systematics

    1997-12-31

    Biomass and production of vascular plants constitutes a major source of carbon input in peatlands. As rates of decomposition vary considerably with depth, the vertical distribution of biomass may substantially affect accumulation of carbon in peatlands. Therefore, allocation patterns between shoot and roots are particularly important when considering carbon balance of peatland ecosystems. The stimulatory effect of increasing atmospheric concentration of CO{sub 2} or photosynthesis may increase availability of carbon to most C3 plants. Availability of nitrogen may also alter both due to increased atmospheric deposition and changer in mineralisation rates associated with climate change. Most root-shoot partitioning models predict that allocation of biomass is dependent of the availability and uptake of carbon and nitrogen. A decrease in supply of carbon would favour allocation to shoots and a decrease in supply of nitrogen would increase allocation to roots. At a cellular level, non structural carbohydrates and free amino acids are thought to represent the biochemically available fraction of carbon and nitrogen, respectively. The aim of this work is study the long-term growth responses of Carex rostrata to changes in the availability of nitrogen. Special attention is paid to soluble sugars ant free amino acids, which may control partitioning of biomass. (10 refs.)

  5. Carbon-nitrogen interactions and biomass partitioning of Carex rostrata grown at three levels of nitrogen supply

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T. [Helsinki Univ. (Finland). Dept. of Ecology and Systematics

    1996-12-31

    Biomass and production of vascular plants constitutes a major source of carbon input in peatlands. As rates of decomposition vary considerably with depth, the vertical distribution of biomass may substantially affect accumulation of carbon in peatlands. Therefore, allocation patterns between shoot and roots are particularly important when considering carbon balance of peatland ecosystems. The stimulatory effect of increasing atmospheric concentration of CO{sub 2} or photosynthesis may increase availability of carbon to most C3 plants. Availability of nitrogen may also alter both due to increased atmospheric deposition and changer in mineralisation rates associated with climate change. Most root-shoot partitioning models predict that allocation of biomass is dependent of the availability and uptake of carbon and nitrogen. A decrease in supply of carbon would favour allocation to shoots and a decrease in supply of nitrogen would increase allocation to roots. At a cellular level, non structural carbohydrates and free amino acids are thought to represent the biochemically available fraction of carbon and nitrogen, respectively. The aim of this work is study the long-term growth responses of Carex rostrata to changes in the availability of nitrogen. Special attention is paid to soluble sugars ant free amino acids, which may control partitioning of biomass. (10 refs.)

  6. Simulated Nitrogen Deposition has Minor Effects on Ecosystem Pools and Fluxes of Energy, Elements, and Biochemicals in a Northern Hardwoods Forest

    Science.gov (United States)

    Talhelm, A. F.; Pregitzer, K. S.; Burton, A. J.; Xia, M.; Zak, D. R.

    2017-12-01

    The elemental and biochemical composition of plant tissues is an important influence on primary productivity, decomposition, and other aspects of biogeochemistry. Human activity has greatly altered biogeochemical cycles in ecosystems downwind of industrialized regions through atmospheric nitrogen deposition, but most research on these effects focuses on individual elements or steps in biogeochemical cycles. Here, we quantified pools and fluxes of biomass, the four major organic elements (carbon, oxygen, hydrogen, nitrogen), four biochemical fractions (lignin, structural carbohydrates, cell walls, and soluble material), and energy in a mature northern hardwoods forest in Michigan. We sampled the organic and mineral soil, fine and coarse roots, leaf litter, green leaves, and wood for chemical analyses. We then combined these data with previously published and archival information on pools and fluxes within this forest, which included replicated plots receiving either ambient deposition or simulated nitrogen deposition (3 g N m-2 yr-1 for 18 years). Live wood was the largest pool of energy and all elements and biochemical fractions. However, the production of wood, leaf litter, and fine roots represented similar fluxes of carbon, hydrogen, oxygen, cell wall material, and energy, while nitrogen fluxes were dominated by leaf litter and fine roots. Notably, the flux of lignin via fine roots was 70% higher than any other flux. Experimental nitrogen deposition had relatively few significant effects, increasing foliar nitrogen, increasing the concentration of lignin in the soil organic horizon and decreasing pools of all elements and biochemical fractions in the soil organic horizon except nitrogen, lignin, and structural carbohydrates. Overall, we found that differences in tissue chemistry concentrations were important determinants of ecosystem-level pools and fluxes, but that nitrogen deposition had little effect on concentrations, pools, or fluxes in this mature forest

  7. Modelling nitrogen saturation and carbon accumulation in heathland soils under elevated nitrogen deposition

    International Nuclear Information System (INIS)

    Evans, C.D.; Caporn, S.J.M.; Carroll, J.A.; Pilkington, M.G.; Wilson, D.B.; Ray, N.; Cresswell, N.

    2006-01-01

    A simple model of nitrogen (N) saturation, based on an extension of the biogeochemical model MAGIC, has been tested at two long-running heathland N manipulation experiments. The model simulates N immobilisation as a function of organic soil C/N ratio, but permits a proportion of immobilised N to be accompanied by accumulation of soil carbon (C), slowing the rate of C/N ratio change and subsequent N saturation. The model successfully reproduced observed treatment effects on soil C and N, and inorganic N leaching, for both sites. At the C-rich upland site, N addition led to relatively small reductions in soil C/N, low inorganic N leaching, and a substantial increase in organic soil C. At the C-poor lowland site, soil C/N ratio decreases and N leaching increases were much more dramatic, and soil C accumulation predicted to be smaller. The study suggests that (i) a simple model can effectively simulate observed changes in soil and leachate N; (ii) previous model predictions based on a constant soil C pool may overpredict future N leaching; (iii) N saturation may develop most rapidly in dry, organic-poor, high-decomposition systems; and (iv) N deposition may lead to significantly enhanced soil C sequestration, particularly in wet, nutrient-poor, organic-rich systems. - Enhanced carbon sequestration may slow the rate of nitrogen saturation in heathlands

  8. Soil Carbon and Nitrogen Stocks of Different Hawaiian Sugarcane Cultivars

    Directory of Open Access Journals (Sweden)

    Rebecca Tirado-Corbalá

    2015-06-01

    Full Text Available Sugarcane has been widely used as a biofuel crop due to its high biological productivity, ease of conversion to ethanol, and its relatively high potential for greenhouse gas reduction and lower environmental impacts relative to other derived biofuels from traditional agronomic crops. In this investigation, we studied four sugarcane cultivars (H-65-7052, H-78-3567, H-86-3792 and H-87-4319 grown on a Hawaiian commercial sugarcane plantation to determine their ability to store and accumulate soil carbon (C and nitrogen (N across a 24-month growth cycle on contrasting soil types. The main study objective establish baseline parameters for biofuel production life cycle analyses; sub-objectives included (1 determining which of four main sugarcane cultivars sequestered the most soil C and (2 assessing how soil C sequestration varies among two common Hawaiian soil series (Pulehu-sandy clay loam and Molokai-clay. Soil samples were collected at 20 cm increments to depths of up to 120 cm using hand augers at the three main growth stages (tillering, grand growth, and maturity from two experimental plots at to observe total carbon (TC, total nitrogen (TN, dissolved organic carbon (DOC and nitrates (NO−3 using laboratory flash combustion for TC and TN and solution filtering and analysis for DOC and NO−3. Aboveground plant biomass was collected and subsampled to determine lignin and C and N content. This study determined that there was an increase of TC with the advancement of growing stages in the studied four sugarcane cultivars at both soil types (increase in TC of 15–35 kg·m2. Nitrogen accumulation was more variable, and NO−3 (<5 ppm were insignificant. The C and N accumulation varies in the whole profile based on the ability of the sugarcane cultivar’s roots to explore and grow in the different soil types. For the purpose of storing C in the soil, cultivar H-65-7052 (TC accumulation of ~30 kg·m−2 and H-86-3792 (25 kg·m−2 rather H-78

  9. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    Energy Technology Data Exchange (ETDEWEB)

    Tsubouchi, Naoto, E-mail: tsubon@eng.hokudai.ac.jp; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-15

    Highlights: • Activated carbon prepared from a lignin/urea/K{sub 2}CO{sub 3} mixture provides a high specific surface area and a large pore volume. • Part of the urea nitrogen present in the mixture is retained as heterocyclic nitrogen in the solid phase after activation/carbonization. • Pore development is thought to proceed through interactions between K-species and C–N forms. - Abstract: The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K{sub 2}CO{sub 3} activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500–900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m{sup 2}/g and 0.13 cm{sup 3}/g at 800 °C, and 540 m{sup 2}/g and 0.31 cm{sup 3}/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300–3400 m{sup 2}/g and 2.0–2.3 cm{sup 3}/g after holding at 800–900 °C for 1 h. Heating a lignin/urea/K{sub 2}CO{sub 3} mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K{sub 2}CO{sub 3} and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  10. Oxygen- and nitrogen-co-doped activated carbon from waste particleboard for potential application in high-performance capacitance

    International Nuclear Information System (INIS)

    Shang, Tong-Xin; Ren, Ru-Quan; Zhu, Yue-Mei; Jin, Xiao-Juan

    2015-01-01

    Graphical abstract: All electrodes showed excellent capacitance and retention versus discharge current density from 0.05 to 5 A/g. - Abstract: Oxygen- and nitrogen-co-doped activated carbons were obtained from phosphoric acid treated nitrogen-doped activated carbons which were prepared from waste particleboard bonded with urea-formaldehyde resin adhesives. The activated carbon samples obtained were tested as supercapacitors in two-electrode cell and extensive wetting 7 M KOH electrolytes. Their structural properties and surface chemistry, before the electrical testing, were investigated using elemental analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, Raman spectra, and adsorption of nitrogen. Activated carbon treated by 4 M phosphoric acid of the highest capacitance (235 F/g) was measured in spite of a relatively lower surface (1360 m 2 /g) than that of the activated carbon treated by 2 M phosphoric acid (1433 m 2 /g). The surface chemistry, and especially oxygen- and nitrogen-containing functional groups, was found of paramount importance for the capacitive behavior and for the effective pore space utilization by the electrolyte ions

  11. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg -1 soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg -1 soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO 2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. 3D analysis of the morphology and spatial distribution of nitrogen in nitrogen-doped carbon nanotubes by energy-filtered transmission electron microscopy tomography.

    Science.gov (United States)

    Florea, Ileana; Ersen, Ovidiu; Arenal, Raul; Ihiawakrim, Dris; Messaoudi, Cédric; Chizari, Kambiz; Janowska, Izabela; Pham-Huu, Cuong

    2012-06-13

    We present here the application of the energy-filtered transmission electron microscopy (EFTEM) in the tomographic mode to determine the precise 3D distribution of nitrogen within nitrogen-doped carbon nanotubes (N-CNTs). Several tilt series of energy-filtered images were acquired on the K ionization edges of carbon and nitrogen on a multiwalled N-CNT containing a high amount of nitrogen. Two tilt series of carbon and nitrogen 2D maps were then calculated from the corresponding energy-filtered images by using a proper extraction procedure of the chemical signals. Applying iterative reconstruction algorithms provided two spatially correlated C and N elemental-selective volumes, which were then simultaneously analyzed with the shape-sensitive reconstruction deduced from Zero-Loss recordings. With respect to the previous findings, crucial information obtained by analyzing the 3D chemical maps was that, among the two different kind of arches formed in these nanotubes (transversal or rounded ones depending on their morphology), the transversal arches contain more nitrogen than do the round ones. In addition, a detailed analysis of the shape-sensitive volume allowed the observation of an unexpected change in morphology along the tube axis: close to the round arches (with less N), the tube is roughly cylindrical, whereas near the transversal ones (with more N), its shape changes to a prism. This relatively new technique is very powerful in the material science because it combines the ability of the classical electron tomography to solve 3D structures and the chemical selectivity of the EFTEM imaging.

  13. Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yunbo, E-mail: ybzhai@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Xu, Bibo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zhu, Yun [Office of Scientific R& D, Hunan University, Changsha 410082 (China); Qing, Renpeng; Peng, Chuan; Wang, Tengfei; Li, Caiting; Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2016-04-01

    Nitrogen doped porous activated carbon was prepared by annealing treatment of Camellia oleifera shell activated carbon under NH{sub 3}. We found that nitrogen content of activated carbon up to 10.43 at.% when annealed in NH{sub 3} at 800 °C. At 600 °C or above, the N-doped carbon further reacts with NH{sub 3}, leads to a low surface area down to 458 m{sup 2}/g and low graphitization degree. X-ray photoelectron spectroscope (XPS) analysis indicated that the nitrogen functional groups on the nitrogen-doped activated carbons (NACs) were mostly in the form of pyridinic nitrogen. We discovered that the oxygen groups and carbon atoms at the defect and edge sites of graphene play an important role in the reaction, leading to nitrogen atoms incorporated into the lattice of carbon. When temperatures were lower than 600 °C the nitrogen atoms displaced oxygen groups and formed nitrogen function groups, and when temperatures were higher than 600 °C and ~ 4 at.% carbon atoms and part of oxygen function groups reacted with NH{sub 3}. When compared to pure activated carbon, the nitrogen doped activated carbon shows nearly four times the capacitance (191 vs 51 F/g). - Highlights: • The nitrogen content up to 10.43 at % during CAC pyrolysis under NH3 at 800 °C. • The oxygen groups and carbon atoms played an important role in the nitrogen doping. • NAC-600 shows a much higher specific capacitance than CAC.

  14. A one-step carbonization route towards nitrogen-doped porous carbon hollow spheres with ultrahigh nitrogen content for CO 2 adsorption

    KAUST Repository

    Wang, Yu

    2015-01-01

    © The Royal Society of Chemistry 2015. Nitrogen doped porous carbon hollow spheres (N-PCHSs) with an ultrahigh nitrogen content of 15.9 wt% and a high surface area of 775 m2 g-1 were prepared using Melamine-formaldehyde nanospheres as hard templates and nitrogen sources. The N-PCHSs were completely characterized and were found to exhibit considerable CO2 adsorption performance (4.42 mmol g-1).

  15. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems

    NARCIS (Netherlands)

    Vries, de W.; Du, E.; Butterbach-Bahl, K.

    2014-01-01

    The carbon to nitrogen response of forest ecosystems depends on the possible occurrence of nitrogen limitation versus possible co-limitations by other drivers, such as low temperature or availability of phosphorus. A combination of nitrogen retention estimates and stoichiometric scaling is used to

  16. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock.

    Science.gov (United States)

    Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A

    2011-08-31

    Nitrogen (N) limits the productivity of many ecosystems worldwide, thereby restricting the ability of terrestrial ecosystems to offset the effects of rising atmospheric CO(2) emissions naturally. Understanding input pathways of bioavailable N is therefore paramount for predicting carbon (C) storage on land, particularly in temperate and boreal forests. Paradigms of nutrient cycling and limitation posit that new N enters terrestrial ecosystems solely from the atmosphere. Here we show that bedrock comprises a hitherto overlooked source of ecologically available N to forests. We report that the N content of soils and forest foliage on N-rich metasedimentary rocks (350-950 mg N kg(-1)) is elevated by more than 50% compared with similar temperate forest sites underlain by N-poor igneous parent material (30-70 mg N kg(-1)). Natural abundance N isotopes attribute this difference to rock-derived N: (15)N/(14)N values for rock, soils and plants are indistinguishable in sites underlain by N-rich lithology, in marked contrast to sites on N-poor substrates. Furthermore, forests associated with N-rich parent material contain on average 42% more carbon in above-ground tree biomass and 60% more carbon in the upper 30 cm of the soil than similar sites underlain by N-poor rocks. Our results raise the possibility that bedrock N input may represent an important and overlooked component of ecosystem N and C cycling elsewhere.

  17. THE EFFECT OF WATER (VAPOR-PHASE) AND CARBON ON ELEMENTAL MERCURY REMOVAL IN A FLOW REACTOR

    Science.gov (United States)

    The paper gives results of studying the effect of vapor-phase moisture on elemental mercury (Hgo) removal by activated carbon (AC) in a flow reactor. tests involved injecting AC into both a dry and a 4% moisture nitrogen (N2) /Hgo gas stream. A bituminous-coal-based AC (Calgon WP...

  18. Sub-ambient carbon dioxide adsorption properties of nitrogen doped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Tamilarasan, P.; Ramaprabhu, Sundara, E-mail: ramp@iitm.ac.in [Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2015-04-14

    Carbon dioxide adsorption on carbon surface can be enhanced by doping the surface with heterogeneous atoms, which can increase local surface affinity. This study presents the carbon dioxide adsorption properties of nitrogen doped graphene at low pressures (<100 kPa). Graphene was exposed to nitrogen plasma, which dopes nitrogen atoms into carbon hexagonal lattice, mainly in pyridinic and pyrrolic forms. It is found that nitrogen doping significantly improves the CO{sub 2} adsorption capacity at all temperatures, due to the enrichment of local Lewis basic sites. In general, isotherm and thermodynamic parameters suggest that doped nitrogen sites have nearly same adsorption energy of surface defects and residual functional groups. The isosteric heat of adsorption remains in physisorption range, which falls with surface coverage, suggesting the distribution of magnitude of adsorption energy. The absolute values of isosteric heat and entropy of adsorption are slightly increased upon nitrogen doping.

  19. [Spatial characteristics of soil organic carbon and nitrogen storages in Songnen Plain maize belt].

    Science.gov (United States)

    Zhang, Chun-Hua; Wang, Zong-Ming; Ren, Chun-Ying; Song, Kai-Shan; Zhang, Bai; Liu, Dian-Wei

    2010-03-01

    By using the data of 382 typical soil profiles from the second soil survey at national and county levels, and in combining with 1:500000 digital soil maps, a spatial database of soil profiles was established. Based on this, the one meter depth soil organic carbon and nitrogen storage in Songnen Plain maize belt of China was estimated, with the spatial characteristics of the soil organic carbon and nitrogen densities as well as the relationships between the soil organic carbon and nitrogen densities and the soil types and land use types analyzed. The soil organic carbon and nitrogen storage in the maize belt was (163.12 +/- 26.48) Tg and (9.53 +/- 1.75) Tg, respectively, mainly concentrated in meadow soil, chernozem, and black soil. The soil organic carbon and nitrogen densities were 5.51-25.25 and 0.37-0.80 kg x m(-2), respectively, and the C/N ratio was about 7.90 -12.67. The eastern and northern parts of the belt had much higher carbon and nitrogen densities than the other parts of the belt, and upland soils had the highest organic carbon density [(19.07 +/- 2.44) kg x m(-2)], forest soils had the highest nitrogen density [(0.82 +/- 0.25) kg x m(-2)], while lowland soils had the lower organic carbon and nitrogen densities.

  20. Extraction of Uranium Using Nitrogen Dioxide and Carbon Dioxide for Spent Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kayo Sawada; Daisuke Hirabayashi; Youichi Enokida [EcoTopia Science Institute, Nagoya University, Nagoya, 464-8603 (Japan)

    2008-07-01

    For the reprocessing of spent nuclear fuels, a new method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. Uranium extraction from broken pieces, whose average grain size was 5 mm, of uranium dioxide pellet with nitrogen dioxide and carbon dioxide was demonstrated in the present study. (authors)

  1. Graphitic Nitrogen Triggers Red Fluorescence in Carbon Dots.

    Science.gov (United States)

    Holá, Kateřina; Sudolská, Mária; Kalytchuk, Sergii; Nachtigallová, Dana; Rogach, Andrey L; Otyepka, Michal; Zbořil, Radek

    2017-12-26

    Carbon dots (CDs) are a stable and highly biocompatible fluorescent material offering great application potential in cell labeling, optical imaging, LED diodes, and optoelectronic technologies. Because their emission wavelengths provide the best tissue penetration, red-emitting CDs are of particular interest for applications in biomedical technologies. Current synthetic strategies enabling red-shifted emission include increasing the CD particle size (sp 2 domain) by a proper synthetic strategy and tuning the surface chemistry of CDs with suitable functional groups (e.g., carboxyl). Here we present an elegant route for preparing full-color CDs with well-controllable fluorescence at blue, green, yellow, or red wavelengths. The two-step procedure involves the synthesis of a full-color-emitting mixture of CDs from citric acid and urea in formamide followed by separation of the individual fluorescent fractions by column chromatography based on differences in CD charge. Red-emitting CDs, which had the most negative charge, were separated as the last fraction. The trend in the separation, surface charge, and red-shift of photoluminescence was caused by increasing amount of graphitic nitrogen in the CD structure, as was clearly proved by XPS, FT-IR, Raman spectroscopy, and DFT calculations. Importantly, graphitic nitrogen generates midgap states within the HOMO-LUMO gap of the undoped systems, resulting in significantly red-shifted light absorption that in turn gives rise to fluorescence at the low-energy end of the visible spectrum. The presented findings identify graphitic nitrogen as another crucial factor that can red-shift the CD photoluminescence.

  2. Carbon and nitrogen trade-offs in biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cucek, Lidija; Klemes, Jiri Jaromir [University of Pannonia, Centre for Process Integration and Intensification (CPI" 2), Research Institute of Chemical and Process Engineering, Faculty of Information Technology, Veszprem (Hungary); Kravanja, Zdravko [University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor (Slovenia)

    2012-06-15

    This contribution provides an overview of carbon (CFs) and nitrogen footprints (NFs) concerning their measures and impacts on the ecosystem and human health. The adversarial relationship between them is illustrated by the three biomass energy production applications, which substitute fossil energy production applications: (i) domestic wood combustion where different fossil energy sources (natural gas, coal, and fuel oil) are supplemented, (ii) bioethanol production from corn grain via the dry-grind process, where petrol is supplemented, and (iii) rape methyl ester production from rape seed oil via catalytic trans-esterification, where diesel is supplemented. The life cycle assessment is applied to assess the CFs and NFs resulting from different energy production applications from 'cradle-to-grave' span. The results highlighted that all biomass-derived energy generations have lower CFs and higher NFs whilst, on the other hand, fossil energies have higher CFs and lower NFs. (orig.)

  3. CN emission spectroscopy study of carbon plasma in nitrogen environment

    International Nuclear Information System (INIS)

    Abdelli-Messaci, S.; Kerdja, T.; Bendib, A.; Malek, S.

    2005-01-01

    Spectroscopic emission diagnostics of a carbon plasma created by an excimer KrF laser pulse at three laser fluences (12, 25 and 32 J/cm 2 ) is performed under nitrogen ambient at pressures of 0.5 and 1 mbar. By following the time evolution of the radical CN spectral emission profiles, we notice, at a certain distance from the target surface, the existence of twin peaks for the time of flight distribution. This double structure depends on laser fluence and gas pressure parameters. The first peak moves forward in relation with the plasma expansion whereas the second peak moves backward and it is attributed to CN species undergoing oscillations or reflected shocks

  4. Reactivity of niobium cluster anions with nitrogen and carbon monoxide

    Science.gov (United States)

    Mwakapumba, Joseph; Ervin, Kent M.

    1997-02-01

    Reactions of small niobium cluster anions, Nbn-(n = 2-7), with CO and N2 are investigated using a flow tube reactor (flowing afterglow) apparatus. Carbon monoxide chemisorption on niobium cluster anions occurs with faster reaction rates than nitrogen chemisorption on corresponding cluster sizes. N2 addition to niobium cluster anions is much more size-selective than is CO addition. These general trends follow those reported in the literature for reactions of neutral and cationic niobium clusters with CO and N2. Extensive fragmentation of the clusters is observed upon chemisorption. A small fraction of the larger clusters survive and sequentially add multiple CO or N2 units without fragmentation. However, chemisorption saturation is not reached at the experimentally accessible pressure and reagent concentration ranges. The thermochemistry of the adsorption processes and the nature of the adsorbed species, molecular or dissociated, are discussed.

  5. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Xu, Jingjing; Lu, Shiyao; Chen, Xu; Wang, Jianan; Zhang, Bo; Zhang, Xinyu; Xiao, Chunhui; Ding, Shujiang

    2017-12-01

    Investigating low-cost and highly active electrocatalysts for oxygen reduction reactions (ORR) is of crucial importance for energy conversion and storage devices. Herein, we design and prepare mesoporous carbon supported nitrogen-doped carbon by pyrolysis of polyaniline coated on CMK-3. This electrocatalyst exhibits excellent performance towards ORR in alkaline media. The optimized nitrogen-doped mesoporous electrocatalyst show an onset potential (E onset) of 0.95 V (versus reversible hydrogen electrode (RHE)) and half-wave potential (E 1/2) of 0.83 V (versus RHE) in 0.1 M KOH. Furthermore, the as-prepared catalyst presents superior durability and methanol tolerance compared to commercial Pt/C indicating its potential applications in fuel cells and metal-air batteries.

  6. Patterns in Stable Isotope Values of Nitrogen and Carbon in ...

    Science.gov (United States)

    Stable isotope measurements of nitrogen and carbon (15N, 13ddC) are often used to characterize estuarine, nearshore, and open ocean ecosystems. Reliable information about the spatial distribution of base-level stable isotope values, often represented by primary producers, is critical to interpreting values in these ecosystems. While base-level isotope data are generally readily available for estuaries, nearshore coastal waters, and the open ocean, the continental shelf is less studied. To address this, and as a first step toward developing a surrogate for base-level isotopic signature in this region, we collected surface and deep water samples from the United States’ eastern continental shelf in the Western Atlantic Ocean, from the Gulf of Maine to Cape Hatteras, periodically between 2000 and 2013. During the study, particulate matter 15dN values ranged from 0.8 to 17.4‰, and 13dC values from −26.4 to −15.6‰over the region. We used spatial autocorrelation analysis and random forest modeling to examine the spatial trends and potential environmental drivers of the stable isotope values. We observed general trends toward lower values for both nitrogen and carbon isotopes at the seaward edge of the shelf. Conversely, higher 15dN and 13dC values were observed on the landward edge of the shelf, in particular in the southern portion of the sampling area. Across all sites, the magnitude of the difference between the 15dN of subsurface and surface particulate m

  7. Modelling carbon and nitrogen turnover in variably saturated soils

    Science.gov (United States)

    Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.

    2009-04-01

    Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative

  8. Direct synthesis of nitrogen-containing carbon nanotubes on carbon paper for fuel cell electrode

    Science.gov (United States)

    Yin, Wong Wai; Daud, Wan Ramli Wan; Mohamad, Abu Bakar; Kadhum, Abdul Amir Hassan; Majlan, Edy Herianto; Shyuan, Loh Kee

    2012-06-01

    Organic catalyst has recently been identified as the potential substitution for expensive platinum electrocatalyst for fuel cell application. Numerous studies have shown that the nitrogen-containing carbon nanotubes (N-CNT) can be synthesized through spray pyrolysis or floating chemical vapor deposition (CVD) technique using various type of organometallic as precursors. This paper presents the method of synthesis and the initial findings of the growth of N-CNT directly on carbon paper using a modified CVD technique. In this research, nickel (II) phthalocyanines (Ni-Pc) as precursor was dissolved in ethanol solvent, stirred and sonicated to become homogenized. The solution was poured into a bubbler and heated up to allow the mixture to vaporize. Subsequently, the solution vapor was flowed into the tubical reactor maintained at 900°C. Carbon paper sputtered with nickel nanoparticles was used as the substrate. The synthesized sample was examined through Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM) and Fourier Transform Infra-Red (FTIR). Long, entangled and compartmentalized nanotubes with tube diameter ranging 23-27 nm were found covered the carbon paper surface with approximate of 5.5-6.0 μm in thickness. EDX analysis has successfully showed the presence of nitrogen in the carbon nanotube. FTIR analysis showed the presence of the C-N bond on CNT.

  9. Structure and photoluminescence of boron and nitrogen co-doped carbon nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Gao, B. [College of Computer Science, Chongqing University, Chongqing 400044 (China); Chongqing Municipal Education Examinations Authority, Chongqing 401147 (China); Zhong, X.X., E-mail: xxzhong@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Shao, R.W.; Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2016-07-15

    Graphical abstract: Boron- and nitrogen- doped carbon nanorods. - Highlights: • The co-doping of nitrogen and boron in carbon nanorods. • The doping mechanism of nitrogen and boron in carbon nanorods by plasma. • Photoluminescence properties of nitrogen- and boron-doped carbon nanorods. - Abstract: Boron and nitrogen doped carbon nanorods (BNCNRs) were synthesized by plasma-enhanced hot filament chemical vapor deposition, where methane, nitrogen and hydrogen were used as the reaction gases and boron carbide was the boron source. The results of scanning electron microscopy, micro-Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy indicate that boron and nitrogen can be used as co-dopants in amorphous carbon nanorods. Combined with the characterization results, the doping mechanism was studied. The mechanism is used to explain the formation of different carbon materials by different methods. The photoluminescence (PL) properties of BNCNRs were studied. The PL results show that the BNCNRs generate strong green PL bands and weak blue PL bands, and the PL intensity lowered due to the doping of boron. The outcomes advance our knowledge on the synthesis and optical properties of carbon-based nanomaterials and contribute to the development of optoelectronic nanodevices based on nano-carbon mateirals.

  10. ICP-AES determination of trace elements in carbon steel

    International Nuclear Information System (INIS)

    Sengupta, Arijit; Rajeswari, B.; Kadam, R.M.; Babu, Y.; Godbole, S.V.

    2010-01-01

    Full text: Carbon steel, a combination of the elements iron and carbon, can be classified into four types as mild, medium, high and very high depending on the carbon content which varies from 0.05% to 2.1%. Carbon steel of different types finds application in medical devices, razor blades, cutlery and spring. In the nuclear industry, it is used in feeder pipes in the reactor. A strict quality control measure is required to monitor the trace elements, which have deleterious effects on the mechanical properties of the carbon steel. Thus, it becomes imperative to check the purity of carbon steel as a quality control measure before it is used in feeder pipes in the reactor. Several methods have been reported in literature for trace elemental determination in high purity iron. Some of these include neutron activation analysis, atomic absorption spectrometry and atomic emission spectrometry. Inductively coupled plasma atomic emission spectrometry (ICP-AES) is widely recognized as a sensitive technique for the determination of trace elements in various matrices, its major advantages being good accuracy and precision, high sensitivity, multi-element capability, large linear dynamic range and relative freedom from matrix effects. The present study mainly deals with the direct determination of trace elements in carbon steel using ICP-AES. An axially viewing ICP spectrometer having a polychromator with 35 fixed analytical channels and limited sequential facility to select any analytical line within 2.2 nm of a polychromator line was used in these studies. Iron, which forms one of the main constituents of carbon steel, has a multi electronic configuration with line rich emission spectrum and, therefore, tends to interfere in the determination of trace impurities in carbon steel matrix. Spectral interference in ICP-AES can be seriously detrimental to the accuracy and reliability of trace element determinations, particularly when they are performed in the presence of high

  11. Ruthenium supported on nitrogen-doped carbon nanotubes for the oxygen reduction reaction in alkaline electrolyte; Poster

    CSIR Research Space (South Africa)

    Mabena, LF

    2012-07-01

    Full Text Available . Recently, several researchers have shown that nitrogen modified carbon nanotubes (CNTs) are good electrocatalyst supports and that they enhance the electrocatalytic activity for the ORR. Nitrogen-doped carbon nanotubes (N-CNTs) prepared via thermal chemical...

  12. Nitrogen-doped mesoporous carbons for high performance supercapacitors

    Science.gov (United States)

    Wu, Kai; Liu, Qiming

    2016-08-01

    The mesoporous carbons have been synthesized by using α-D(+)-Glucose, D-Glucosamine hydrochloride or their mixture as carbon precursors and mesoporous silicas (SBA-15 or MCF) as hard templates. The as-prepared products show a large pore volume (0.59-0.97 cm3 g-1), high surface areas (352.72-1152.67 m2 g-1) and rational nitrogen content (ca. 2.5-3.9 wt.%). The results of electrochemical tests demonstrate that both heteroatom doping and suitable pore structure play a decisive role in the performance of supercapacitors. The representative sample of SBA-15 replica obtained using D-Glucosamine hydrochloride only exhibits high specific capacitance (212.8 F g-1 at 0.5 A g-1) and good cycle durability (86.1% of the initial capacitance after 2000 cycles) in 6 M KOH aqueous electrolyte, which is attributed to the contribution of double layer capacitance and pseudo-capacitance. The excellent electrochemical performance makes it a promising electrode material for supercapacitors.

  13. Effect of Nitrogen Oxides on Elemental Mercury Removal by Nanosized Mineral Sulfide.

    Science.gov (United States)

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Lee, Po-Heng; Feng, Yong; Shih, Kaimin

    2017-08-01

    Because of its large surface area, nanosized zinc sulfide (Nano-ZnS) has been demonstrated in a previous study to be efficient for removal of elemental mercury (Hg 0 ) from coal combustion flue gas. The excellent mercury adsorption performance of Nano-ZnS was found to be insusceptible to water vapor, sulfur dioxide, and hydrogen chloride. However, nitrogen oxides (NO X ) apparently inhibited mercury removal by Nano-ZnS; this finding was unlike those of many studies on the promotional effect of NO X on Hg 0 removal by other sorbents. The negative effect of NO X on Hg 0 adsorption over Nano-ZnS was systematically investigated in this study. Two mechanisms were identified as primarily responsible for the inhibitive effect of NO X on Hg 0 adsorption over Nano-ZnS: (1) active sulfur sites on Nano-ZnS were oxidized to inactive sulfate by NO X ; and (2) the chemisorbed mercury, i.e., HgS, was reduced to Hg 0 by NO X . This new insight into the role of NO X in Hg 0 adsorption over Nano-ZnS can help to optimize operating conditions, maximize Hg 0 adsorption, and facilitate the application of Nano-ZnS as a superior alternative to activated carbon for Hg 0 removal using existing particulate matter control devices in power plants.

  14. Comparing carbon to carbon: Organic and inorganic carbon balances across nitrogen fertilization gradients in rainfed vs. irrigated Midwest US cropland

    Science.gov (United States)

    Hamilton, S. K.; McGill, B.

    2017-12-01

    The top meter of the earth's soil contains about twice the amount of carbon than the atmosphere. Agricultural management practices influence whether a cropland soil is a net carbon source or sink. These practices affect both organic and inorganic carbon cycling although the vast majority of studies examine the former. We will present results from several rarely-compared carbon fluxes: carbon dioxide emissions and sequestration from lime (calcium carbonate) weathering, dissolved gases emitted from groundwater-fed irrigation, dissolved organic carbon (DOC) leaching to groundwater, and soil organic matter storage. These were compared in a corn-soybean-wheat rotation under no-till management across a nitrogen fertilizer gradient where half of the replicated blocks are irrigated with groundwater. DOC and liming fluxes are also estimated from a complementary study in neighboring plots comparing a gradient of management practices from conventional to biologically-based annuals and perennials. These studies were conducted at the Kellogg Biological Station Long Term Ecological Research site in Michigan where previous work estimated that carbon dioxide emissions from liming accounted for about one quarter of the total global warming impact (GWI) from no-till systems—our work refines that figure. We will present a first time look at the GWI of gases dissolved in groundwater that are emitted when the water equilibrates with the atmosphere. We will explore whether nitrogen fertilizer and irrigation increase soil organic carbon sequestration by producing greater crop biomass and residues or if they enhance microbial activity, increasing decomposition of organic matter. These results are critical for more accurately estimating how intensive agricultural practices affect the carbon balance of cropping systems.

  15. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Science.gov (United States)

    2010-07-01

    ....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen, carbon monoxide...

  16. Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Vikkisk, Merilin; Kruusenberg, Ivar; Joost, Urmas; Shulga, Eugene; Tammeveski, Kaido

    2013-01-01

    Highlights: ► Pyrolysis in the presence of urea was used for nitrogen doping of carbon nanotubes. ► N-doped carbon nanotubes were used as catalysts for the oxygen reduction reaction. ► N-doped carbon material showed a high catalytic activity for ORR in alkaline media. ► N-containing CNT material is an attractive cathode catalyst for alkaline membrane fuel cells. - Abstract: The electrochemical reduction of oxygen was studied on nitrogen-doped multi-walled carbon nanotube (NCNT) modified glassy carbon (GC) electrodes employing the rotating disk electrode (RDE) method. Nitrogen doping was achieved by simple pyrolysis of the carbon nanotube material in the presence of urea. The surface morphology and composition of the NCNT samples were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed a rather uniform distribution of NCNTs on the GC electrode substrate. The XPS analysis showed a successful doping of carbon nanotubes with nitrogen species. The RDE results revealed that in alkaline solution the N-doped nanotube materials showed a remarkable electrocatalytic activity towards oxygen reduction. At low overpotentials the reduction of oxygen followed a two-electron pathway on undoped carbon nanotube modified GC electrodes, whereas on NCNT/GC electrodes a four-electron pathway of O 2 reduction predominated. The results obtained are significant for the development of nitrogen-doped carbon-based cathodes for alkaline membrane fuel cells.

  17. Stable carbon and nitrogen isotopes in vertical peat profiles of natural and drained boreal peatlands

    Science.gov (United States)

    Nykänen, Hannu; Mpamah, Promise; Rissanen, Antti; Pitkänen, Aki; Turunen, Jukka; Simola, Heikki

    2015-04-01

    Peatlands form a significant carbon pool in the global carbon cycle. Change in peat hydrology, due to global warming is projected to change microbiological processes and peat carbon pool. We tested if bulk stable carbon and nitrogen isotopes serve as indicators of severe long term drying in peatlands drained for forestry. Depth profile analysis of peat, for their carbon and nitrogen content as well as their carbon and nitrogen stable isotopic signatures, were conducted for peatlands in southern and eastern Finland, having ombrotrophic and minerotrophic natural and corresponding drained pairs or separate drained sites. The selection of sites allowed us to compare changes due to different fertility and changes due to long term artificial drying. Drainage lasting over 40 years has led to changes in hydrology, vegetation, nutrient mineralization and respiration. Furthermore, increased nutrient uptake and possible recycling of peat nitrogen and carbon trough vegetation back to the peat surface, also possibly has an effect on the stable isotopic composition of peat carbon and nitrogen. We think that drainage induced changes somehow correspond to those caused by changed hydrology due to climate change. We will present data from these measurements and discuss their implications for carbon and nitrogen flows in peatlands.

  18. Non-destructive photon activation analysis of carbon and nitrogen in thin films

    International Nuclear Information System (INIS)

    Shikano, Koji; Katoh, Masaaki; Masumoto, Kazuyoshi; Ohtsuki, Tsutomu

    1998-01-01

    Study was made on interference nuclear reactions with 12 C(γ,n) 11 C and 14 N(γ,n) 13 N reactions, interference radioactivity from the matrix, and prevention of contamination from the atmosphere. The following were made clear: Interference nuclear reactions can be neglected by controlling the radiation energy of bremsstrahlung below 30 MeV; radiation interference can be avoided by starting measurement 20-30 min after irradiation, though 29 Al is formed from Si substrate; and contamination from the atmosphere can be controlled by He gas replacement. With graphite and boron nitride used as the reference standards, carbon in silicon carbide film and nitrogen in silicon nitride film were determined with the result that their concentrations in the films were 37.03±1.28 μg/cm 2 and 52.97±2.97 μg/cm 2 , respectively. The determination limits of this method were 0.3 μg for carbon and 3 μg for nitrogen. The measurement of film thickness distribution revealed that these film samples could be used as light element reference standards for charged particle activation analysis. (N.H.)

  19. Organic carbon and nitrogen stable isotopes in the intertidal sediments from the Yangtze Estuary, China

    International Nuclear Information System (INIS)

    Liu, M. . E-mail mliu@geo.ecnu.edu.cn; Hou, L.J.; Xu, S.Y.; Ou, D.N.; Yang, Y.; Yu, J.; Wang, Q.

    2006-01-01

    The natural isotopic compositions and C/N elemental ratios of sedimentary organic matter were determined in the intertidal flat of the Yangtze Estuary. The results showed that the ratios of carbon and nitrogen stable isotopes were respectively -29.8 per mille to - 26.0 per mille and 1.6 per mille -5.5 per mille in the flood season (July), while they were -27.3 per mille to - 25.6 per mille and 1.7 per mille -7.8 per mille in the dry season (February), respectively. The δ 13 C signatures were remarkably higher in July than in February, and gradually increased from the freshwater areas to the brackish areas. In contrast, there were relatively complex seasonal and spatial changes in stable nitrogen isotopes. It was also reflected that δ 15 N and C/N compositions had been obviously modified by organic matter diagenesis and biological processing, and could not be used to trace the sources of organic matter at the study area. In addition, it was considered that the mixing inputs of terrigenous and marine materials generally dominated sedimentary organic matter in the intertidal flat. The contribution of terrigenous inputs to sedimentary organic matter was roughly estimated according to the mixing balance model of stable carbon isotopes

  20. Nitrogen doped silicon-carbon multilayer protective coatings on carbon obtained by thermionic vacuum arc (TVA) method

    Science.gov (United States)

    Ciupinǎ, Victor; Vasile, Eugeniu; Porosnicu, Corneliu; Vladoiu, Rodica; Mandes, Aurelia; Dinca, Virginia; Nicolescu, Virginia; Manu, Radu; Dinca, Paul; Zaharia, Agripina

    2018-02-01

    To obtain protective nitrogen doped Si-C multilayer coatings on carbon, used to improve the oxidation resistance of carbon, was used TVA method. The initial carbon layer has been deposed on a silicon substrate in the absence of nitrogen, and then a 3nm Si thin film to cover carbon layer was deposed. Further, seven Si and C layers were alternatively deposed in the presence of nitrogen ions. In order to form silicon carbide at the interface between silicon and carbon layers, all carbon, silicon and nitrogen ions energy has increased up to 150eV. The characterization of microstructure and electrical properties of as-prepared N-Si-C multilayer structures were done using Transmission Electron Microscopy (TEM, STEM) techniques, Thermal Desorption Spectroscopy (TDS) and electrical measurements. The retention of oxygen in the protective layer of N-Si-C is due to the following phenomena: (a) The reaction between oxygen and silicon carbide resulting in silicon oxide and carbon dioxide; (b) The reaction involving oxygen, nitrogen and silicon resulting silicon oxinitride with a variable composition; (c) Nitrogen acts as a trapping barrier for oxygen. To perform electrical measurements, ohmic contacts were attached on the N-Si-C samples. Electrical conductivity was measured in constant current mode. To explain the temperature behavior of electrical conductivity we assumed a thermally activated electric transport mechanism.

  1. Adsorption/oxidation of sulfur-containing gases on nitrogen-doped activated carbon

    Directory of Open Access Journals (Sweden)

    Liu Qiang

    2016-01-01

    Full Text Available Coconut shell-based activated carbon (CAC was used for the removal of methyl mercaptan (MM. CAC was modified by urea impregnation and calcined at 450°C and 950°C. The desulfurization activity was determined in a fixed bed reactor under room temperature. The results showed that the methyl mercaptan adsorption/oxidation capacity of modified carbon caicined at 950°C is more than 3 times the capacity of original samples. On the other hand, the modified carbon caicined at 950°C also has a high capacity for the simultaneous adsorption/oxidation of methyl mercaptan and hydrogen sulfide.The introduce of basic nitrogen groups siginificantly increases the desulfurization since it can facilitate the electron transfer process between sulfur and oxygen. The structure and chemical properties are characterized using Boehm titration, N2 adsorption-desorption method, thermal analysis and elemental analysis. The results showed that the major oxidation products were dimethyl disulfide and methanesulfonic acid which adsorbed in the activated carbon.

  2. Modelling soil nitrogen: The MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics

    International Nuclear Information System (INIS)

    Oulehle, F.; Cosby, B.J.; Wright, R.F.; Hruška, J.; Kopáček, J.; Krám, P.; Evans, C.D.; Moldan, F.

    2012-01-01

    We present a new formulation of the acidification model MAGIC that uses decomposer dynamics to link nitrogen (N) cycling to carbon (C) turnover in soils. The new model is evaluated by application to 15–30 years of water chemistry data at three coniferous-forested sites in the Czech Republic where deposition of sulphur (S) and N have decreased by >80% and 40%, respectively. Sulphate concentrations in waters have declined commensurately with S deposition, but nitrate concentrations have shown much larger decreases relative to N deposition. This behaviour is inconsistent with most conceptual models of N saturation, and with earlier versions of MAGIC which assume N retention to be a first-order function of N deposition and/or controlled by the soil C/N ratio. In comparison with earlier versions, the new formulation more correctly simulates observed short-term changes in nitrate leaching, as well as long-term retention of N in soils. The model suggests that, despite recent deposition reductions and recovery, progressive N saturation will lead to increased future nitrate leaching, ecosystem eutrophication and re-acidification. - Highlights: ► New version of the biogeochemical model MAGIC developed to simulate C/N dynamics. ► New formulation of N retention based directly on the decomposer processes. ► The new formulation simulates observed changes in nitrate leaching and in soil C/N. ► The model suggests progressive N saturation at sites examined. ► The model performance meets a growing need for realistic process-based simulations. - Process-based modelling of nitrogen dynamics and acidification in forest ecosystems.

  3. A facile approach towards increasing the nitrogen-content in nitrogen-doped carbon nanotubes via halogenated catalysts

    International Nuclear Information System (INIS)

    Ombaka, L.M.; Ndungu, P.G.; Omondi, B.; McGettrick, J.D.; Davies, M.L.; Nyamori, V.O.

    2016-01-01

    Nitrogen-doped carbon nanotubes (N-CNTs) have been synthesized at 850 °C via a CVD deposition technique by use of three ferrocenyl derivative catalysts, i.e. para-CN, -CF_3 and -Cl substituted-phenyl rings. The synthesized catalysts have been characterized by NMR, IR, HR-MS and XRD. The XRD analysis of the para-CF_3 catalyst indicates that steric factors influence the X-ray structure of 1,1′-ferrocenylphenyldiacrylonitriles. Acetonitrile or pyridine was used as carbon and nitrogen sources to yield mixtures of N-CNTs and carbon spheres (CS). The N-CNTs obtained from the para-CF_3 catalysts, in pyridine, have the highest nitrogen-doping level, show a helical morphology and are less thermally stable compared with those synthesized by use of the para-CN and -Cl as catalyst. This suggests that fluorine heteroatoms enhance nitrogen-doping in N-CNTs and formation of helical-N-CNTs (H-N-CNTs). The para-CF_3 and para-Cl catalysts in acetonitrile yielded iron-filled N-CNTs, indicating that halogens promote encapsulation of iron into the cavity of N-CNT. The use of acetonitrile, as carbon and nitrogen source, with the para-CN and -Cl as catalysts also yielded a mixture of N-CNTs and carbon nanofibres (CNFs), with less abundance of CNFs in the products obtained using para-Cl catalysts. However, para-CF_3 catalyst in acetonitrile gave N-CNTs as the only shaped carbon nanomaterials. - Graphical abstract: Graphical abstract showing the synthesis of N-CNTs using halogenated-ferrocenyl derivatives as catalyst with pyridine or acetonitrile as nitrogen and carbon sources via the chemical vapour deposition technique. - Highlights: • N-CNTs were synthesized from halogenated ferrocenyl catalysts. • Halogenated catalysts promote nitrogen-doping and pyridinic nitrogen in N-CNTs. • Halogenated catalysts facilitate iron filling of N-CNTs.

  4. The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations.

    Science.gov (United States)

    Robertson, G Philip; Hamilton, Stephen K; Del Grosso, Stephen J; Parton, William J

    2011-06-01

    The biogeochemical liabilities of grain-based crop production for bioenergy are no different from those of grain-based food production: excessive nitrate leakage, soil carbon and phosphorus loss, nitrous oxide production, and attenuated methane uptake. Contingent problems are well known, increasingly well documented, and recalcitrant: freshwater and coastal marine eutrophication, groundwater pollution, soil organic matter loss, and a warming atmosphere. The conversion of marginal lands not now farmed to annual grain production, including the repatriation of Conservation Reserve Program (CRP) and other conservation set-aside lands, will further exacerbate the biogeochemical imbalance of these landscapes, as could pressure to further simplify crop rotations. The expected emergence of biorefinery and combustion facilities that accept cellulosic materials offers an alternative outcome: agricultural landscapes that accumulate soil carbon, that conserve nitrogen and phosphorus, and that emit relatively small amounts of nitrous oxide to the atmosphere. Fields in these landscapes are planted to perennial crops that require less fertilizer, that retain sediments and nutrients that could otherwise be transported to groundwater and streams, and that accumulate carbon in both soil organic matter and roots. If mixed-species assemblages, they additionally provide biodiversity services. Biogeochemical responses of these systems fall chiefly into two areas: carbon neutrality and water and nutrient conservation. Fluxes must be measured and understood in proposed cropping systems sufficient to inform models that will predict biogeochemical behavior at field, landscape, and regional scales. Because tradeoffs are inherent to these systems, a systems approach is imperative, and because potential biofuel cropping systems and their environmental contexts are complex and cannot be exhaustively tested, modeling will be instructive. Modeling alternative biofuel cropping systems converted

  5. Spectral isotopic methods of determining nitrogen and carbon in plant specimens with laser volatization

    International Nuclear Information System (INIS)

    Lazeeva, G.S.

    1986-01-01

    Methods have been devised for the local determination of nitrogen and carbon isotope compositions in plant specimens, which provide separate and joint determination. Local laser evaporation has been combined with spectroscopic determination of the isotope compositions in the gas phase. A continuous-wave CO 2 laser is preferable for the local evaporation; the carbon isotope composition may be determined directly on the sum of the evaporation products, whereas nitrogen must first be separated as N 2 . Methods have also been developed for the local determination of total nitrogen and carbon in a sample with isotope dilution on the basis of laser evaporation. In order to eliminate systematic errors in determining total carbon in plant material, an evaporation method free from a rim has been devised. These methods have been used in determining isotope concentration profiles in plant specimens grown in experiments employing labeled nitrogen and carbon

  6. Elements and isotopic composition of organic carbon and nitrogen

    African Journals Online (AJOL)

    conditions or high contribution of C3 high land plant materials in response to increase in forest ... smell of hydrogen sulfide detected in water samples collected at approximately 20 m, suggest that ... used δ18O and δ13C record in corals off ... experienced high temperature in 900 AD and ... Furthermore, historical records.

  7. Elemental and isotopic compositions of organic carbon and nitrogen ...

    African Journals Online (AJOL)

    The general downcore trend can be attributed to systematic changes in relative proportion between C3 and C4 types of organic matter (OM), resulting from climatic changes or nutrient changes and shift between algae and higher plants. The lower most section containing the most depleted values can be attributed either to ...

  8. Interannual variability in seagrass carbon and nitrogen stable isotopes from the Florida Keys National Marine Sanctuary, a preliminary study

    Science.gov (United States)

    Fourqurean, J. W.; Fourqurean, J. W.; Anderson, W. T.; Anderson, W. T.

    2001-12-01

    The shallow marine waters surrounding the southern tip of Florida provide an ideal environment for seagrasses, which are the most common benthic community in the region. Yet, these communities are susceptible to a variety of anthropogenic disturbances, especially changes in water quality caused by an increase the nutrient flux to the near shore environment. In order to better understand the carbon and nitrogen isotopic ratio in marine plants, an extensive times series analysis was constructed from quarterly sampling of Thalassia testudinum (the dominate species in the study area) from 1996 through 1998. Sites for study where selected from permanent stations within the Florida Keys National Marine Sanctuary (FKNMS), from both sides of the Florida Keys - two stations on the bay side and two stations on the reef side. These data will also help to constrain elements of the carbon and nitrogen cycles affecting this region. The data analyzed over the three year study period show unique cyclic trends associated with seasonal changes in primary productivity and potentially changes in the nitrogen and carbon pools. Additionally, the analysis of our time series indicates that isotope food web studies need to take into account spatial and temporal changes when evaluating trophic levels. The mean carbon and nitrogen isotope values of T. testudinum from all 4 stations vary respectively from -7.2 per mil to -10.41 and 1.1 per mil to 2.2 per mil (n = 48). However, certain stations displayed anonymously depleted nitrogen isotope values, values as low as -1.2 per mil. These values potentially indicated that biogeochmical processes like N fixation, ammonification and denitrification cause regional pattern in the isotopic composition of the source DIN. Both carbon and nitrogen isotopes displayed seasonal enrichment-depletion trends, with maximum enrichment occurring during the summer. The overall seasonal variation for carbon 13 from the different stations ranged from 1 per mil to

  9. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity

    Science.gov (United States)

    Pellegrini, Adam F. A.; Ahlström, Anders; Hobbie, Sarah E.; Reich, Peter B.; Nieradzik, Lars P.; Staver, A. Carla; Scharenbroch, Bryant C.; Jumpponen, Ari; Anderegg, William R. L.; Randerson, James T.; Jackson, Robert B.

    2018-01-01

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  10. Nitrogen deposition, land cover conversion, and contemporary carbon balance of Europe

    Science.gov (United States)

    Churkina, G.; Zaehle, S.; Hughes, J.; Viovy, N.; Jung, M.; Chen, Y.; Heimann, M.; Roedenbeck, C.; Jones, C.

    2009-04-01

    In Europe, atmospheric nitrogen deposition has more than doubled, forest cover was steadily increasing, and agricultural area was declining over the last 50 years. What effect have these changes had on the European carbon balance? In this study we estimate responses of the European land ecosystems to nitrogen deposition, land cover conversion and climate. We use results from four ecosystem process models such as BIOME-BGC, JULES, ORCHIDEE, and ORCHIDEE-CN to address this question. We discuss to which degree carbon balance of Europe has been altered by nitrogen deposition in comparison to other drivers and identify areas which carbon balance has been most effected by anthropogenic changes.

  11. Long-term nitrogen addition decreases carbon leaching in a nitrogen-rich forest ecosystem

    Directory of Open Access Journals (Sweden)

    X. Lu

    2013-06-01

    Full Text Available Dissolved organic carbon (DOC plays a critical role in the carbon (C cycle of forest soils, and has been recently connected with global increases in nitrogen (N deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.

  12. Long-term nitrogen regulation of forest carbon sequestration

    Science.gov (United States)

    Yang, Y.; Luo, Y.

    2009-12-01

    It is well established that nitrogen (N) limits plant production but unclear how N regulates long-term terrestrial carbon (C) sequestration in response to rising atmospheric C dioxide (CO2)(Luo et al., 2004). Most experimental evidence on C-N interactions is primarily derived from short-term CO2 manipulative studies (e.g. Oren et al., 2001; Reich et al., 2006a), which abruptly increase C inputs into ecosystems and N demand from soil while atmospheric CO2 concentration in the real world is gradually increasing over time (Luo & Reynolds, 1999). It is essential to examine long-term N regulations of C sequestration in natural ecosystems. Here we present results of a synthesis of more than 100 studies on long-term C-N interactions during secondary succession. C significantly accumulates in plant, litter and forest floor in most studies, and in mineral soil in one-third studies during stand development. Substantial increases in C stock are tightly coupled with N accretion. The C: N ratio in plant increases with stand age in most cases, but remains relatively constant in litter, forest floor and mineral soil. Our results suggest that natural ecosystems could have the intrinsic capacity to maintain long-term C sequestration through external N accrual, high N use efficiency, and efficient internal N cycling.

  13. Nitrogen-doped carbon based on peptides of hair as electrode materials for surpercapacitors

    International Nuclear Information System (INIS)

    Guo, Zihan; Zhou, Qingwen; Wu, Zhaojun; Zhang, Zhiguo; Zhang, Wen; Zhang, Yao; Li, Lijun; Cao, Zhenzhu; Wang, Hong; Gao, Yanfang

    2013-01-01

    Highlights: • Hair was directly carbonized by environmental and energy-saving methods. • Hair was utilized to prepare nitrogen-doped carbon materials for supercapacitor. • A new approache for preparing nitrogen-rich active carbon from biomass waste of hair-like precursor. • Hair-based carbon having a non-crystalline layered structure and excellent capacitive performance. -- Abstract: Hair, a high-nitrogen energetic material, is utilized as a precursor for nitrogen-doped porous carbon. The preparation procedures for obtaining carbon from hair are very simple, namely, reductant or deionized water activation process followed by hair carbonization under argon atmosphere at 800 °C for 2 h. The samples are characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption, and X-ray photoelectron microscopy. The carbon samples are tested as electrode materials in supercapacitors in a three-electrode system. The carbon (soaked in deionized water at 80 °C) presents relatively low specific surface areas (441.34 m 2 g −1 ) and shows higher capacitance (154.5 F g −1 ) compared with nitrogen-free commercial activated carbons (134.5 F g −1 ) at 5 A g −1 . The capacitance remains at 130.5 F g −1 even when the current load is increased to 15 A g −1 . The capacitance loss is only 5% in 6 M KOH after 10,000 charge and discharge cycles at 5 A g −1 . It is the unique microstructure after activation processing and electroactive nitrogen functionalities that enable the carbon obtained through a simple, ecological, and economical process to be utilized as a potential electrode material for electrical double-layer capacitors

  14. Understanding spatial heterogeneity in soil carbon and nitrogen cycling in regenerating tropical dry forests

    Science.gov (United States)

    Waring, B. G.; Powers, J. S.; Branco, S.; Adams, R.; Schilling, E.

    2015-12-01

    Tropical dry forests (TDFs) currently store significant amounts of carbon in their biomass and soils, but these highly seasonal ecosystems may be uniquely sensitive to altered climates. The ability to quantitatively predict C cycling in TDFs under global change is constrained by tremendous spatial heterogeneity in soil parent material, land-use history, and plant community composition. To explore this variation, we examined soil carbon and nitrogen dynamics in 18 permanent plots spanning orthogonal gradients of stand age and soil fertility. Soil C and N pools, microbial biomass, and microbial extracellular enzyme activities were most variable at small (m2) spatial scales. However, the ratio of organic vs. inorganic N cycling was consistently higher in forest stands dominated by slow-growing, evergreen trees that associate with ectomycorrhizal fungi. Similarly, although bulk litter stocks and turnover rates varied greatly among plots, litter decomposition tended to be slower in ectomycorrhizae-dominated stands. Soil N cycling tended to be more conservative in older plots, although the relationship between stand age and element cycling was weak. Our results emphasize that microscale processes, particularly interactions between mycorrhizal fungi and free-living decomposers, are important controls on ecosystem-scale element cycling.

  15. Carbon nanotubes doped with trivalent elements by using back - scattering Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    S. A. Babanejad

    2008-12-01

    Full Text Available  In this paper by using DC arc discharge method and acetylene gas, as the carbon source, and nitrogen, as the carrier gas, canrbon nanotubes, CNTs, doped with trivalent element boron, B, have been produced. The deposited CNTs on the cathod electrod, which have structural doped properties to boron element, have been collected and after purification have been investigated by back-scattering Raman spectroscopy. The results reveal that the high frequency G mode component in CNTs doped with electron acceptor element, B, shift to higher wavenumbers. The low frequency G mode component which can appear at approximately 1540–1570 cm-1 wavenumber region, called BWF mode, is a sign of metallic CNT. In the synthesized doped CNTs due to the presence of boron dopant, D mode has sharp peaks and has relatively high intensity in the Raman spectra .

  16. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors.

    Science.gov (United States)

    Jeon, Ju-Won; Sharma, Ronish; Meduri, Praveen; Arey, Bruce W; Schaef, Herbert T; Lutkenhaus, Jodie L; Lemmon, John P; Thallapally, Praveen K; Nandasiri, Manjula I; McGrail, Benard Peter; Nune, Satish K

    2014-05-28

    A hierarchically structured nitrogen-doped porous carbon is prepared from a nitrogen-containing isoreticular metal-organic framework (IRMOF-3) using a self-sacrificial templating method. IRMOF-3 itself provides the carbon and nitrogen content as well as the porous structure. For high carbonization temperatures (950 °C), the carbonized MOF required no further purification steps, thus eliminating the need for solvents or acid. Nitrogen content and surface area are easily controlled by the carbonization temperature. The nitrogen content decreases from 7 to 3.3 at % as carbonization temperature increases from 600 to 950 °C. There is a distinct trade-off between nitrogen content, porosity, and defects in the carbon structure. Carbonized IRMOFs are evaluated as supercapacitor electrodes. For a carbonization temperature of 950 °C, the nitrogen-doped porous carbon has an exceptionally high capacitance of 239 F g(-1). In comparison, an analogous nitrogen-free carbon bears a low capacitance of 24 F g(-1), demonstrating the importance of nitrogen dopants in the charge storage process. The route is scalable in that multi-gram quantities of nitrogen-doped porous carbons are easily produced.

  17. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest canopy...

  18. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest...

  19. LBA-ECO ND-11 Litter Decomposition, Carbon, and Nitrogen Dynamics in Agroforestry

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the results of an experiment to determine litter decomposition and dynamics of carbon and nitrogen release from plant litter of differing...

  20. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation

    KAUST Repository

    Ning, Xue; Koros, William J.

    2014-01-01

    A commercial polyimide, Matrimid® 5218, was pyrolyzed under an inert argon atmosphere to produce carbon molecular sieve (CMS) dense film membranes for nitrogen/methane separation. The resulting CMS dense film separation performance was evaluated

  1. LBA-ECO ND-08 Soil Respiration, Soil Fractions, Carbon and Nitrogen, Para, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides (1) carbon (C) and nitrogen (N) concentration measurements of two soil aggregate fractions (250-2000 micon, small macro-aggregates...

  2. LBA-ECO ND-11 Litter Decomposition, Carbon, and Nitrogen Dynamics in Agroforestry

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains the results of an experiment to determine litter decomposition and dynamics of carbon and nitrogen release from plant litter of...

  3. The certification of carbon and nitrogen in molybdenum (BCR No.23)

    International Nuclear Information System (INIS)

    Vandecasteele, C.

    1985-01-01

    The experimental procedures used for the certification of carbon and nitrogen in molybdenum (CRM 023), which has already been certified for oxygen, are presented. Samples were analysed by 5 different laboratories using photon and charged particle activation analysis. The analytical methods and the approach used to analyse the data are described. The carbon content is certified to be below 0.2 μg/g; the nitrogen content to be below 0.3 μg/g

  4. Effects of wetland recovery on soil labile carbon and nitrogen in the Sanjiang Plain.

    Science.gov (United States)

    Huang, Jingyu; Song, Changchun; Nkrumah, Philip Nti

    2013-07-01

    Soil management significantly affects the soil labile organic factors. Understanding carbon and nitrogen dynamics is extremely helpful in conducting research on active carbon and nitrogen components for different kinds of soil management. In this paper, we examined the changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) to assess the effect and mechanisms of land types, organic input, soil respiration, microbial species, and vegetation recovery under Deyeuxia angustifolia freshwater marshes (DAMs) and recovered freshwater marsh (RFM) in the Sanjiang Plain, Northeast China. Identifying the relationship among the dynamics of labile carbon, nitrogen, and soil qualification mechanism using different land management practices is therefore important. Cultivation and land use affect intensely the DOC, DON, MBC, and MBN in the soil. After DAM soil tillage, the DOC, DON, MBC, and MBN at the surface of the agricultural soil layer declined significantly. In contrast, their recovery was significant in the RFM surface soil. A long time was needed for the concentration of cultivated soil total organic carbon and total nitrogen to be restored to the wetland level. The labile carbon and nitrogen fractions can reach a level similar to that of the wetland within a short time. Typical wetland ecosystem signs, such as vegetation, microbes, and animals, can be recovered by soil labile carbon and nitrogen fraction restoration. In this paper, the D. angustifolia biomass attained natural wetland level after 8 years, indicating that wetland soil labile fractions can support wetland eco-function in a short period of time (4 to 8 years) for reconstructed wetland under suitable environmental conditions.

  5. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors

    Science.gov (United States)

    Wang, Yanqing; Fugetsu, Bunshi; Wang, Zhipeng; Gong, Wei; Sakata, Ichiro; Morimoto, Shingo; Hashimoto, Yoshio; Endo, Morinobu; Dresselhaus, Mildred; Terrones, Mauricio

    2017-01-01

    Nitrogen-doped porous activated carbon monoliths (NDP-ACMs) have long been the most desirable materials for supercapacitors. Unique to the conventional template based Lewis acid/base activation methods, herein, we report on a simple yet practicable novel approach to production of the three-dimensional NDP-ACMs (3D-NDP-ACMs). Polyacrylonitrile (PAN) contained carbon nanotubes (CNTs), being pre-dispersed into a tubular level of dispersions, were used as the starting material and the 3D-NDP-ACMs were obtained via a template-free process. First, a continuous mesoporous PAN/CNT based 3D monolith was established by using a template-free temperature-induced phase separation (TTPS). Second, a nitrogen-doped 3D-ACM with a surface area of 613.8 m2/g and a pore volume 0.366 cm3/g was obtained. A typical supercapacitor with our 3D-NDP-ACMs as the functioning electrodes gave a specific capacitance stabilized at 216 F/g even after 3000 cycles, demonstrating the advantageous performance of the PAN/CNT based 3D-NDP-ACMs. PMID:28074847

  6. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors.

    Science.gov (United States)

    Wang, Yanqing; Fugetsu, Bunshi; Wang, Zhipeng; Gong, Wei; Sakata, Ichiro; Morimoto, Shingo; Hashimoto, Yoshio; Endo, Morinobu; Dresselhaus, Mildred; Terrones, Mauricio

    2017-01-11

    Nitrogen-doped porous activated carbon monoliths (NDP-ACMs) have long been the most desirable materials for supercapacitors. Unique to the conventional template based Lewis acid/base activation methods, herein, we report on a simple yet practicable novel approach to production of the three-dimensional NDP-ACMs (3D-NDP-ACMs). Polyacrylonitrile (PAN) contained carbon nanotubes (CNTs), being pre-dispersed into a tubular level of dispersions, were used as the starting material and the 3D-NDP-ACMs were obtained via a template-free process. First, a continuous mesoporous PAN/CNT based 3D monolith was established by using a template-free temperature-induced phase separation (TTPS). Second, a nitrogen-doped 3D-ACM with a surface area of 613.8 m 2 /g and a pore volume 0.366 cm 3 /g was obtained. A typical supercapacitor with our 3D-NDP-ACMs as the functioning electrodes gave a specific capacitance stabilized at 216 F/g even after 3000 cycles, demonstrating the advantageous performance of the PAN/CNT based 3D-NDP-ACMs.

  7. An Integrated Tool for Calculating and Reducing Institution Carbon and Nitrogen Footprints

    Science.gov (United States)

    Galloway, James N.; Castner, Elizabeth A.; Andrews, Jennifer; Leary, Neil; Aber, John D.

    2017-01-01

    Abstract The development of nitrogen footprint tools has allowed a range of entities to calculate and reduce their contribution to nitrogen pollution, but these tools represent just one aspect of environmental pollution. For example, institutions have been calculating their carbon footprints to track and manage their greenhouse gas emissions for over a decade. This article introduces an integrated tool that institutions can use to calculate, track, and manage their nitrogen and carbon footprints together. It presents the methodology for the combined tool, describes several metrics for comparing institution nitrogen and carbon footprint results, and discusses management strategies that reduce both the nitrogen and carbon footprints. The data requirements for the two tools overlap substantially, although integrating the two tools does necessitate the calculation of the carbon footprint of food. Comparison results for five institutions suggest that the institution nitrogen and carbon footprints correlate strongly, especially in the utilities and food sectors. Scenario analyses indicate benefits to both footprints from a range of utilities and food footprint reduction strategies. Integrating these two footprints into a single tool will account for a broader range of environmental impacts, reduce data entry and analysis, and promote integrated management of institutional sustainability. PMID:29350217

  8. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    Science.gov (United States)

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region. © 2015 John Wiley & Sons Ltd.

  9. The influence of different nitrogen and carbon sources on mycotoxin production in Alternaria alternata.

    Science.gov (United States)

    Brzonkalik, Katrin; Herrling, Tanja; Syldatk, Christoph; Neumann, Anke

    2011-05-27

    The aim of this study was to determine the influence of different carbon and nitrogen sources on the production of the mycotoxins alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) by Alternaria alternata at 28°C using a semi-synthetic medium (modified Czapek-Dox broth) supplemented with nitrogen and carbon sources. Additionally the effect of shaken and static cultivation on mycotoxin production was tested. Initial experiments showed a clear dependency between nitrogen depletion and mycotoxin production. To assess whether nitrogen limitation in general or the type of nitrogen source triggers the production, various nitrogen sources including several ammonium/nitrate salts and amino acids were tested. In static culture the production of AOH/AME can be enhanced greatly with phenylalanine whereas some nitrogen sources seem to inhibit the AOH/AME production completely. TA was not significantly affected by the choice of nitrogen source. In shaken culture the overall production of all mycotoxins was lower compared to static cultivation. Furthermore tests with a wide variety of carbon sources including monosaccharides, disaccharides, complex saccharides such as starch as well as glycerol and acetate were performed. In shaken culture AOH was produced when glucose, fructose, sucrose, acetate or mixtures of glucose/sucrose and glucose/acetate were used as carbon sources. AME production was not detected. The use of sodium acetate resulted in the highest AOH production. In static culture AOH production was also stimulated by acetate and the amount is comparable to shaken conditions. Under static conditions production of AOH was lower except when cultivated with acetate. In static cultivation 9 of 14 tested carbon sources induced mycotoxin production compared to 4 in shaken culture. This is the first study which analyses the influence of carbon and nitrogen sources in a semi-synthetic medium and assesses the effects of culture conditions on

  10. Impacts of Human Induced Nitrogen Deposition on Ecosystem Carbon Sequestration and Water Balance in China

    Science.gov (United States)

    Sheng, M.; Yang, D.; Tang, J.; Lei, H.

    2017-12-01

    Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, many experiments around the world reported that nitrogen availability could limit the sustainability of the ecosystems' response to elevated CO2. In the recent 20 years, atmospheric nitrogen deposition, primarily from fossil fuel combustion, has increased sharply about 25% in China and meanwhile, China has the highest carbon emission in the world, implying a large opportunity to increase vegetation greenness and ecosystem carbon sequestration. Moreover, the water balance of the ecosystem will also change. However, in the future, the trajectory of increasing nitrogen deposition from fossil fuel use is to be controlled by the government policy that shapes the energy and industrial structure. Therefore, the historical and future trajectories of nitrogen deposition are likely very different, and it is imperative to understand how changes in nitrogen deposition will impact the ecosystem carbon sequestration and water balance in China. We here use the Community Land Model (CLM 4.5) to analyze how the change of nitrogen deposition has influenced and will influence the ecosystem carbon and water cycle in China at a high spatial resolution (0.1 degree). We address the following questions: 1) what is the contribution of the nitrogen deposition on historical vegetation greenness? 2) How does the change of nitrogen deposition affect the carbon sequestration? 3) What is its influence to water balance? And 4) how different will be the influence of the nitrogen deposition on ecosystem carbon and water cycling in the future?

  11. Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Chemistry and Chemical Engineering, Lyuliang University, Lyuliang 033001 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Yaling [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Feng, Xiaoting [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Feng [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Yang, Yongzhen, E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang, E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2016-11-30

    Highlights: • Nitrogen-doped carbon dots (NCDs) from ammonia solution and citric acid were synthesized at different temperatures. • Quantum yield (QY) of NCDs depends largely on the amount of fluorescent polymer chains (FPC), more FPC gives higher QY. • The law of QY of NCDs first increase and then decrease with the reaction temperature increased is found and explained. • Nitrogen doping plays significant role in getting increased UV–vis absorption and QY. - Abstract: To investigate the effect of reaction temperature and nitrogen doping on the structure and fluorescence properties of carbon dots (CDs), six kinds of nitrogen-doped CDs (NCDs) were synthesized at reaction temperatures of 120, 140, 160, 180, 200 and 220 °C, separately, by using citric acid as carbon source and ammonia solution as nitrogen source. Nitrogen-free CDs (N-free CDs-180) was also prepared at 180 °C by using citric acid as the only carbon source for comparison. Results show that reaction temperature has obvious effect on carbonization degree, quantum yield (QY), ultraviolet-visible (UV–vis) absorption and photoluminescence (PL) spectra but less effect on functional groups, nitrogen doping degree and fluorescence lifetime of NCDs. Compared with N-free CDs-180, NCDs-180 possesses enchanced QY and longer fluorescence lifetime. Doping nitrogen has obvious effect on UV–vis absorption and PL spectra but less effect on particles sizes and carbonization degree. The formation mechanism of NCDs is explored: QY of NCDs depends largely on the number of fluorescent polymer chains (FPC), the competition between FPC formation on the surface of NCDs and carbon core growth leads to the change in number of FPC, and consequently to the NCDs with highest QY at appropriate hydrothermal temperature.

  12. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    Science.gov (United States)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in

  13. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S. [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology and RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of)

    2016-09-01

    Graphical abstract: Well-ordered nitrogen-doped mesoporous carbon materials were prepared by in-situ polymerization of polyacrylonitrile in SBA-15 template. The composite of sulfur and nitrogen-doped carbon was successfully used as a cathode material for lithium sulfur battery. - Highlights: • N-doped mesoporous carbons were prepared with PAN as carbon source. • Highly ordered pore system facilitates sulfur loading. • Ladder-type carbon matrix provides good structural stability for confining sulfur. • N-doping ensures an improved absorbability of soluble polysulfides. - Abstract: Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g{sup −1} and enhanced capacity retention of 862 mAh g{sup −1} at 0.1 C after 100 cycles.

  14. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury.

    Science.gov (United States)

    Ghorishi, S Behrooz; Keeney, Robert M; Serre, Shannon D; Gullett, Brian K; Jozewicz, Wojciech S

    2002-10-15

    Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury (Hg0) and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to increases (by a factor of 2-3) in fixed-bed capture of these mercury species. A commercially available activated carbon (DARCO FGD, NORITAmericas Inc. [FGD])was Cl-impregnated (Cl-FGD) [5 lb (2.3 kg) per batch] and tested for entrained-flow, short-time-scale capture of Hg0. In an entrained flow reactor, the Cl-FGD was introduced in Hg0-laden flue gases (86 ppb of Hg0) of varied compositions with gas/solid contact times of about 3-4 s, resulting in significant Hg0 removal (80-90%), compared to virgin FGD (10-15%). These levels of Hg0 removal were observed across a wide range of very low carbon-to-mercury weight ratios (1000-5000). Variation of the natural gas combustion flue gas composition, by doping with nitrogen oxides and sulfur dioxide, and the flow reactor temperature (100-200 degrees C) had minimal effects on Hg0 removal bythe Cl-FGD in these carbon-to-mercury weight ratios. These results demonstrate significant enhancement of activated carbon reactivity with minimal treatment and are applicable to combustion facilities equipped with downstream particulate matter removal such as an electrostatic precipitator.

  15. Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors

    Science.gov (United States)

    Wang, Zhen; Tan, Yongtao; Yang, Yunlong; Zhao, Xiaoning; Liu, Ying; Niu, Lengyuan; Tichnell, Brandon; Kong, Lingbin; Kang, Long; Liu, Zhen; Ran, Fen

    2018-02-01

    In this work, biomass pomelo peel is used to fabricate the porous activated carbon microsheets, and diammonium hydrogen phosphate (DHP) is employed to dual-dope carbon with nitrogen and phosphorus elements. With the benefit of DHP inducement and dual-doping of nitrogen and phosphorus, the prepared carbon material has a higher carbon yield, and exhibits higher specific surface area (about 807.7 m2/g), and larger pore volume (about 0.4378 cm3/g) with hierarchically structure of interconnected thin microsheets compared to the pristine carbon. The material exhibits not only high specific capacitance (240 F/g at 0.5 A/g), but also superior cycling performance (approximately 100% of capacitance retention after 10,000 cycles at 2 A/g) in 2 M KOH aqueous electrolyte. Furthermore, the assembled symmetric electrochemical capacitor in 1 M Na2SO4 aqueous electrolyte exhibits a high energy density of 11.7 Wh/kg at a power density of 160 W/kg.

  16. Freshwater mineral nitrogen and essential elements in autotrophs in James Ross Island, West Antarctica

    Directory of Open Access Journals (Sweden)

    Coufalík Pavel

    2016-12-01

    Full Text Available The lakes and watercourses are habitats for various communities of cyanobacteria and algae, which are among the few primary producers in Antarctica. The amount of nutrients in the mineral-poor Antarctic environment is a limiting factor for the growth of freshwater autotrophs in most cases. In this study, the main aim was to assess the availability of mineral nitrogen for microorganisms in cyanobacterial mats in James Ross Island. The nitrate and ammonium ions in water environment were determined as well as the contents of major elements (C, N, P, S, Na, K, Ca, Mg, Al, Fe, Mn in cyanobacterial mats. The molar ratios of C:N, C:P and N:P in mats were in focus. The growth of freshwater autotrophs seems not to be limited by the level of nitrogen, according to the content of available mineral nitrogen in water and the biogeochemical stoichiometry of C:N:P. The source of nutrients in the Ulu Peninsula is not obvious. The nitrogen fixation could enhance the nitrogen content in mats, which was observed in some samples containing the Nostoc sp.

  17. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    Directory of Open Access Journals (Sweden)

    X. Yang

    2010-10-01

    Full Text Available We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades

  18. Modeling of carbon and nitrogen gaseous emissions from cattle manure compost windrows

    Science.gov (United States)

    Windrow composting of cattle manure is a significant source of gaseous emissions, which include ammonia (NH3) and the greenhouse gases (GHGs) of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). A manure compost model was developed to simulate carbon (C) and nitrogen (N) processes includ...

  19. Carbon availability for the fungus triggers nitrogen uptake and transport in the arbuscular mycorrhizal symbiosis

    Science.gov (United States)

    The arbuscular mycorrhizal (AM) symbiosis is characterized by a transfer of nutrients in exchange for carbon. We tested the effect of the carbon availability for the AM fungus Glomus intraradices on nitrogen (N) uptake and transport in the symbiosis. We followed the uptake and transport of 15N and ...

  20. Assessing the ratio of leaf carbon to nitrogen in winter wheat and spring barley based on hyperspectral data

    Science.gov (United States)

    Xu, Xin-gang; Gu, Xiao-he; Song, Xiao-yu; Xu, Bo; Yu, Hai-yang; Yang, Gui-jun; Feng, Hai-kuan

    2016-10-01

    The metabolic status of carbon (C) and nitrogen (N) as two essential elements of crop plants has significant influence on the ultimate formation of yield and quality in crop production. The ratio of carbon to nitrogen (C/N) from crop leaves, defined as ratio of LCC (leaf carbon concentration) to LNC (leaf nitrogen concentration), is an important index that can be used to diagnose the balance between carbon and nitrogen, nutrient status, growth vigor and disease resistance in crop plants. Thus, it is very significant for effectively evaluating crop growth in field to monitor changes of leaf C/N quickly and accurately. In this study, some typical indices aimed at N estimation and chlorophyll evaluation were tested to assess leaf C/N in winter wheat and spring barley. The multi-temporal hyperspectral measurements from the flag-leaf, anthesis, filling, and milk-ripe stages were used to extract these selected spectral indices to estimate leaf C/N in wheat and barley. The analyses showed that some tested indices such as MTCI, MCARI/OSAVI2, and R-M had the better performance of assessing C/N for both of crops. Besides, a mathematic algorithm, Branch-and-Bound (BB) method was coupled with the spectral indices to assess leaf C/N in wheat and barley, and yielded the R2 values of 0.795 for winter wheat, R2 of 0.727 for spring barley, 0.788 for both crops combined. It demonstrates that using hyperspectral data has a good potential for remote assessment of leaf C/N in crops.

  1. Green synthesis of nitrogen-doped graphitic carbon sheets with use of Prunus persica for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Atchudan, Raji, E-mail: atchudanr@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan 38541 (Korea, Republic of); Edison, Thomas Nesakumar Jebakumar Immanuel [School of Chemical Engineering, Yeungnam University, Gyeongsan 38541 (Korea, Republic of); Perumal, Suguna [Department of Applied Chemistry, Kyungpook National University, Daegu 41566 (Korea, Republic of); Lee, Yong Rok, E-mail: yrlee@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan 38541 (Korea, Republic of)

    2017-01-30

    Highlights: • N-GCSs was synthesized from the unripe Prunus persica by direct hydrothermal method. • The resulting N-GCSs-2 exhibit an excellent graphitization with 9.33% of nitrogen. • N-GCSs-2 provide high C{sub s} of 176 F g{sup −1} at current density of 0.1 A g{sup −1} in 1 M H{sub 2}SO{sub 4}. • N-GCSs-2 have high capacitance retention and 20% capacity growth after 2000 cycles. • First time, N-GCSs resulted from peach via green route for flexible supercapacitors. - Abstract: Nitrogen-doped graphitic carbon sheets (N-GCSs) were prepared from the extract of unripe Prunus persica fruit by a direct hydrothermal method. The synthesized N-GCSs were examined by high resolution transmission electron microscopy (HRTEM), nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectroscopy. HRTEM showed that the synthesized carbon sheets were graphitic with lattice fringes and an inter-layer distance of 0.36 nm. Doping with the nitrogen moiety present over the synthesized GCSs was confirmed by XPS, FT-IR spectroscopy, and energy dispersive X-ray spectroscopy elemental mapping. The fruit extract associated with hydrothermal-carbonization method is economical and eco-friendly with a single step process. The resulting carbon sheets could be modified and are promising candidates for nano-electronic applications, including supercapacitors. The synthesized N-GCSs-2 provided a high specific capacitance of 176 F g{sup −1} at a current density of 0.1 A g{sup −1}. This electrode material has excellent cyclic stability, even after 2000 cycles of charge-discharge at a current density of 0.5 A g{sup −1}.

  2. Microbes mediate carbon and nitrogen retention in shallow photic sediments

    Science.gov (United States)

    Hardison, A.; Anderson, I.; Canuel, E. A.; Tobias, C.; Veuger, B.

    2009-12-01

    Sediments in shallow coastal bays are sites of intense biogeochemical cycling facilitated by a complex microbial consortium. Unlike deeper coastal environments, much of the benthos is illuminated by sunlight in these bays. As a result, benthic autotrophs such as benthic microalgae (BMA) and macroalgae play an integral role in nutrient cycling. Investigating pathways of carbon (C) and nitrogen (N) flow through individual compartments within the sediment microbial community has previously proved challenging due to methodological difficulties. However, it is now possible using stable isotopes and microbial biomarkers such as fatty acids and amino acids to track C and N flow through individual microbial pools. We investigated the uptake and retention of C and N by bacteria and BMA in a shallow subtidal system. Using bulk and compound specific isotopic analysis, we traced the pathways of dissolved inorganic 13C and 15N under various treatments: 1) in ambient light or dark, 2) from porewater or water column sources, and 3) in the presence or absence of bloom forming nuisance macroalgae. Excess 13C and 15N in THAAs and excess 13C in total PLFAs showed a strong dependence on light. Enrichment of these pools represents uptake by the microbial community, which can include both autotrophic and heterotrophic components. Higher excess 13C in benthic microalgal fatty acids (C20, C22 PUFAs) provides evidence that benthic microalgae were fixing 13C. Aditionally, the ratio of excess 13C in branched fatty acids to microbial fatty acids (BAR) and excess 13C and 15N in D-Ala to L-Ala (D/L-Ala) were low, suggesting dominance by benthic microalgae over bacteria to total label incorporation. Our results support uptake and retention of C and N by the sediment microbial community and indicate a tight coupling between BMA and bacteria in shallow illuminated systems. This uptake is diminished in the presence of macroalgae, likely due to shading and/or nutrient competition. Therefore

  3. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide

    DEFF Research Database (Denmark)

    Xu, Junyuan; Kan, Yuhe; Huang, Rui

    2016-01-01

    Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2). The investigation explores the origin of the catalyst’s activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90% current efficiency...... for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2, which leads to the formation of carbon dioxide radical anion (CO2C). The initial...

  4. The influence of various carbon and nitrogen sources on oil production by Fusarium oxysporum.

    Science.gov (United States)

    Joshi, S; Mathur, J M

    1987-01-01

    The oil-synthesizing capacity of Fusarium oxysporum, cultivated on basal nutrient medium, was evaluated using different carbon and nitrogen sources. In one of the media, molasses was also used as a principal carbon source. Media containing glucose and ammonium nitrate were found to be most efficient for oil production. Fatty acid profile of the fungal oil indicated the presence of a wide range of fatty acids ranging from C8 to C24. Fatty acid composition largely depends on the type of carbon and nitrogen sources.

  5. Effects of organic nitrogen and carbon sources on mycelial growth ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... mycelial growth and polysaccharides production and their optimization in the ... Soybean meal was selected as the optimal organic nitrogen source for its significant ..... economy and high yield in industrial production. There-.

  6. Effect of the addition of nitrogen sources to cassava fiber and carbon-to-nitrogen ratios on Agaricus brasiliensis growth.

    Science.gov (United States)

    Mantovani, T R D; Linde, G A; Colauto, N B

    2007-01-01

    The same substratum formulation to grow Agaricus bisporus has been used to grow Agaricus brasiliensis since its culture started in Brazil. Despite being different species, many of the same rules have been used for composting or axenic cultivation when it comes to nitrogen content and source in the substrate. The aim of this study was to verify the mycelial growth of A. brasiliensis in different ammonium sulfate and (or) urea concentrations added to cassava fiber and different carbon-to-nitrogen (C:N) ratios to increase the efficiency of axenic cultivation. Two nitrogen sources (urea and (or) ammonium sulfate) added to cassava fiber were tested for the in vitro mycelial growth in different C:N ratios (ranging from 2.5:l to 50:l) in the dark at 28 degrees C. The radial mycelial growth was measured after 8 days of growth and recorded photographically at the end of the experiment. Nitrogen from urea enhanced fungal growth better than ammonium sulfate or any mixture of nitrogen. The best C:N ratios for fungal growth were from 10:l to 50:l; C:N ratios below 10:l inhibited fungal growth.

  7. Nitrogen deposition, land cover conversion, climate, and contemporary carbon balance of Europe (Invited)

    Science.gov (United States)

    Churkina, G.; Zahle, S.; Hughes, J.; Viovy, N.; Chen, Y.; Jung, M.; Ramankutty, N.; Roedenbeck, C.; Heimann, M.; Jones, C.

    2009-12-01

    In Europe, atmospheric nitrogen deposition has more than doubled, air temperature was rising, forest cover was steadily increasing, while agricultural area was declining over the last 50 years. What effect have these changes had on the European carbon balance? In this study we estimate responses of the European land ecosystems to nitrogen deposition, rising CO2, land cover conversion and climate change. We use results from three ecosystem process models such as BIOME-BGC, JULES, and ORCHIDEE (-CN) to address this question. We discuss to which degree carbon balance of Europe has been altered by nitrogen deposition in comparison to other drivers and identify areas which carbon balance has been affected by anthropogenic changes the most. We also analyze ecosystems carbon pools which were affected by the abovementioned environmental changes.

  8. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming; Sun, Xiaohui; Ould-Chikh, Samy; Osadchii, Dmitrii; Bai, Fan; Kapteijn, Freek; Gascon, Jorge

    2018-01-01

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  9. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming

    2018-04-11

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  10. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    Science.gov (United States)

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-08

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  12. Biophysical Controls over Carbon and Nitrogen Stocks in Desert Playa Wetlands

    Science.gov (United States)

    McKenna, O. P.; Sala, O. E.

    2014-12-01

    Playas are ephemeral desert wetlands situated at the bottom of closed catchments. Desert playas in the Southwestern US have not been intensively studied despite their potential importance for the functioning of desert ecosystems. We want to know which geomorphic and ecological variables control of the stock size of soil organic carbon, and soil total nitrogen in playas. We hypothesize that the magnitude of carbon and nitrogen stocks depends on: (a) catchment size, (b) catchment slope, (d) catchment vegetation cover, (e) bare-ground patch size, and (f) catchment soil texture. We chose thirty playas from across the Jornada Basin (Las Cruces, NM) ranging from 0.5-60ha in area and with varying catchment characteristics. We used the available 5m digital elevation map (DEM) to calculate the catchment size and catchment slope for these thirty playas. We measured percent cover, and patch size using the point-intercept method with three 10m transects in each catchment. We used the Bouyoucos-hydrometer soil particle analysis to determine catchment soil texture. Stocks of organic carbon and nitrogen were measured from soil samples at four depths (0-10 cm, 10-30 cm, 30-60 cm, 60-100 cm) using C/N combustion analysis. In terms of nitrogen and organic carbon storage, we found soil nitrogen values in the top 10cm ranging from 41.963-214.365 gN/m2, and soil organic carbon values in the top 10cm ranging from 594.339-2375.326 gC/m2. The results of a multiple regression analysis show a positive relationship between catchment slope and both organic carbon and nitrogen stock size (nitrogen: y= 56.801 +47.053, R2=0.621; organic carbon: y= 683.200 + 499.290x, R2= 0.536). These data support our hypothesis that catchment slope is one of factors controlling carbon and nitrogen stock in desert playas. We also applied our model to the 69 other playas of the Jornada Basin and estimated stock sizes (0-10cm) between 415.07-447.97 Mg for total soil nitrogen and 4627.99-5043.51 Mg for soil organic

  13. Responses of Carbon Dynamics to Nitrogen Deposition in Typical Freshwater Wetland of Sanjiang Plain

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-01-01

    Full Text Available The effects of nitrogen deposition (N-deposition on the carbon dynamics in typical Calamagrostis angustifolia wetland of Sanjiang Plain were studied by a pot-culture experiment during two continuous plant growing seasons. Elevated atmospheric N-deposition caused significant increases in the aboveground net primary production and root biomass; moreover, a preferential partition of carbon to root was also observed. Different soil carbon fractions gained due to elevated N-deposition and their response intensities followed the sequence of labile carbon > dissolved organic carbon > microbial biomass carbon, and the interaction between N-deposition and flooded condition facilitated the release of different carbon fractions. Positive correlations were found between CO2 and CH4 fluxes and liable carbon contents with N-deposition, and flooded condition also tended to facilitate CH4 fluxes and to inhibit the CO2 fluxes with N-deposition. The increases in soil carbon fractions occurring in the nitrogen treatments were significantly correlated with increases in root, aboveground parts, total biomass, and their carbon uptake. Our results suggested that N-deposition could enhance the contents of active carbon fractions in soil system and carbon accumulation in plant of the freshwater wetlands.

  14. Stoichiometric carbon nitride synthesized by ion beam sputtering and post nitrogen ion implantation

    International Nuclear Information System (INIS)

    Valizadeh, R.; Colligon, J.S.; Katardiev, I.V.; Faunce, C.A.; Donnelly, S.E.

    1998-01-01

    Full text: Carbon nitride films have been deposited on Si (100) by ion beam sputtering a vitreous graphite target with nitrogen and argon ions with and without concurrent N2 ion bombardment at room temperature. The sputtering beam energy was 1000 eV and the assisted beam energy was 300 eV with ion / atom arrival ratio ranging from 0.5 to 5. The carbon nitride films were deposited both as single layer directly on silicon substrate and as multilayer between two layers of stoichiometric amorphous silicon nitride and polycrystalline titanium nitride. The deposited films were implanted ex-situ with 30 keV nitrogen ions with various doses ranging from 1E17 to 4E17 ions.cm -2 and 2 GeV xenon ion with a dose of 1E12 ions.cm -2 . The nitrogen concentration of the films was measured with Rutherford Backscattering (RBS), Secondary Neutral Mass Spectrometry (SNMS) and Parallel Electron Energy Loss Spectroscopy (PEELS). The nitrogen concentration for as deposited sample was 34 at% and stoichiometric carbon nitride C 3 N 4 was achieved by post nitrogen implantation of the multi-layered films. Post bombardment of single layer carbon nitride films lead to reduction in the total nitrogen concentration. Carbon K edge structure obtained from PEELS analysis suggested that the amorphous C 3 N 4 matrix was predominantly sp 2 bonded. This was confirmed by Fourier Transforrn Infra-Red Spectroscopy (FTIR) analysis of the single CN layer which showed the nitrogen was mostly bonded with carbon in nitrile (C≡N) and imine (C=N) groups. The microstructure of the film was determined by Transmission Electron Microscopy (TEM) which indicated that the films were amorphous

  15. Contribution to the application of nuclear microprobe in geochemistry. Carbon and nitrogen microanalysis in glasses and minerals

    International Nuclear Information System (INIS)

    Mosbah, M.

    1988-01-01

    The morphological complexity of geological materials implies the use of microanalysis techniques utilization. Nuclear microprobe allows selective and no destructive light elements determination, through nuclear reactions. Nuclear microanalysis has been used to characterize carbon and nitrogen in volatile phase dissolved in magmatic samples. The application of some microanalysis techniques in geochemistry are discussed, nuclear microprobe theory and techniques are developed. Minerals, glasses and glassy inclusions are described, and more particularly, the interest of these investigations. Optimal conditions of carbon and nitrogen analysis ( 12 C(d.p) 13 C and 14 N(d,p) 15 N reaction respectively), as deuteron energy and observation angle are studied. A methodology has been established for this purpose. Several results are exposed: Punctual analysis, carbon concentration profile in depth surface scanning, surficial mapping in glassy inclusions. The carbon content interpretation in glassy inclusions measured conveniently for the first time agrees with data obtained through other techniques. In conclusion, degazing schedule improvements require more analysis. Perspective research axis are evocated [fr

  16. Scavenging of particulate elemental carbon into stratus cloud

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, Naoki; Maeda, Takahisa [National Inst. for Resources and Environment, Tsukuba (Japan)

    1995-12-31

    The role of atmospheric aerosols on the alternation of cloud radiative properties has widely been recognized since 1977 when Tomey and his coworkers have numerically demonstrated the effect of increased cloud condensation nuclei (CCN). At the same time, cloud processes are one of the most important factor in controlling the residence time of atmospheric aerosols through the wet removal process. The redistribution of the size and the composition of pre-cloud aerosols is also the important role of cloud process on the nature of atmospheric aerosols. In order to study these cloud-aerosol interaction phenomena, the incorporation of aerosols into cloud droplets is the first mechanism to be investigated. Among the several mechanisms for the incorporation of aerosols into cloud droplets, nucleation scavenging, is the potentially important process in the view of cloud-aerosol interactions. This critical supersaturation for a given radius of a particle can be theoretically calculated only for pure species, e.g., NaCl. However, a significant portion of the atmospheric aerosols is in the form of internal mixture of multiple components, such as SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, NH{sub 4}{sup +} and particulate elemental carbon. The knowledge acquired by field measurements is therefore essential on this subject. The present study focuses on the scavenging of major components of urban atmospheric aerosols, in particular the incorporation of particulate elemental carbon into stratus cloud. Particulate elemental carbon is the strongest light absorbing species in visible region, and has potential to change the optical property of cloud. On the basis of the measurements conducted at a mountain located in the suburb of Tokyo Metropolitan area, Japan, some insights on the scavenging of particulate elemental carbon into cloud droplet will be presented

  17. Scavenging of particulate elemental carbon into stratus cloud

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, Naoki; Maeda, Takahisa [National Inst. for Resources and Environment, Tsukuba (Japan)

    1996-12-31

    The role of atmospheric aerosols on the alternation of cloud radiative properties has widely been recognized since 1977 when Tomey and his coworkers have numerically demonstrated the effect of increased cloud condensation nuclei (CCN). At the same time, cloud processes are one of the most important factor in controlling the residence time of atmospheric aerosols through the wet removal process. The redistribution of the size and the composition of pre-cloud aerosols is also the important role of cloud process on the nature of atmospheric aerosols. In order to study these cloud-aerosol interaction phenomena, the incorporation of aerosols into cloud droplets is the first mechanism to be investigated. Among the several mechanisms for the incorporation of aerosols into cloud droplets, nucleation scavenging, is the potentially important process in the view of cloud-aerosol interactions. This critical supersaturation for a given radius of a particle can be theoretically calculated only for pure species, e.g., NaCl. However, a significant portion of the atmospheric aerosols is in the form of internal mixture of multiple components, such as SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, NH{sub 4}{sup +} and particulate elemental carbon. The knowledge acquired by field measurements is therefore essential on this subject. The present study focuses on the scavenging of major components of urban atmospheric aerosols, in particular the incorporation of particulate elemental carbon into stratus cloud. Particulate elemental carbon is the strongest light absorbing species in visible region, and has potential to change the optical property of cloud. On the basis of the measurements conducted at a mountain located in the suburb of Tokyo Metropolitan area, Japan, some insights on the scavenging of particulate elemental carbon into cloud droplet will be presented

  18. Textura, materia orgánica y composición química elemental (C y N de sedimentos marinos superficiales de la zona Puerto Montt a Boca del Guafo (Norpatagonia chilena Grain size, total organic matter, organic carbon, inorganic carbon and organic nitrogen in surface marine sediments from Puerto Montt to Boca del Guafo (Chilean North Patagonia

    Directory of Open Access Journals (Sweden)

    Nelson Silva

    2010-01-01

    Full Text Available Se determinó la distribución horizontal de la textura, concentración de materia orgánica, carbono orgánico e inorgánico y nitrógeno orgánico, del sedimento en muestras superficiales, recolectadas entre Puerto Montt y Boca del Guafo, durante los cruceros CIMAR 10 Fiordos (2004, CIMAR 11 Fiordos (2005 y CIMAR 12 Fiordos (2006. La distribución superficial de las características químicas permitió identificar dos zonas: una norte, entre Puerto Montt y el grupo de islas Desertores-Apiao-Quehui-Lemuy con concentraciones, que en general fueron altas (MOT > 5%, C-org > 1,6%, C-inorg >0,4% y N-org > 0,2%, y una sur, entre dicho grupo de islas y la Boca del Guafo con concentraciones, en general, bajas (MOT 7,5%, C-org >2,4%, C-inorg >0,4% y N-org >0,2%. La textura de las muestras marinas fue arenosa y limo-arcillosa, siendo la presencia de grava escasa e inferior al 4% en algunas muestras. El sedimento terrígeno del borde de los ríos fue preferentemente arenoso. La procedencia del sedimento (marino versus terrígeno se infirió sobre la base de los valores de la relación C:N. Este resultó ser, mayoritariamente de origen marino, con la excepción de los fiordos continentales en que la componente terrígena fue importante.The horizontal distribution of the organic matter, organic and inorganic carbon, organic nitrogen content, and surface sediment texture was determined between Puerto Montt and Boca del Guafo using samples collected during the cruises CIMAR 10 Fiordos (2004, CIMAR 11 Fiordos (2005 and CIMAR 12 Fiordos (2006. Two zones were identified: the northern zone (from Puerto Montt to the Desertores-Apiao-Quehui-Lemuy island group had mostly high concentrations (TOM >5%; C-org >1.6%; C-inorg >0.4% and N-org > 0.2% the southern zone (from the same island group to Boca del Guafo had mostly low concentrations (TOM 7.5%, C-org > 2.4%, C-inorg > 0.4% and N-org > 0.2%. The texture of the marine sediments was mostly sand and silt + clay

  19. Carbon and nitrogen isotopic signatures and nitrogen profile to identify adulteration in organic fertilizers.

    Science.gov (United States)

    Verenitch, Sergei; Mazumder, Asit

    2012-08-29

    Recently it has been shown that stable isotopes of nitrogen can be used to discriminate between organic and synthetic fertilizers, but the robustness of the approach is questionable. This work developed a comprehensive method that is far more robust in identifying an adulteration of organic nitrogen fertilizers. Organic fertilizers of various types (manures, composts, blood meal, bone meal, fish meal, products of poultry and plant productions, molasses and seaweed based, and others) available on the North American market were analyzed to reveal the most sensitive criteria as well as their quantitative ranges, which can be used in their authentication. Organic nitrogen fertilizers of known origins with a wide δ(15)N range between -0.55 and 28.85‰ (n = 1258) were characterized for C and N content, δ(13)C, δ(15)N, viscosity, pH, and nitrogen profile (urea, ammonia, organic N, water insoluble N, and NO3). A statistically significant data set of characterized unique organic nitrogen fertilizers (n = 335) of various known origins has been assembled. Deliberately adulterated samples of different types of organic fertilizers mixed with synthetic fertilizers at a wide range of proportions have been used to develop the quantitative critical characteristics of organic fertilizers as the key indicators of their adulteration. Statistical analysis based on the discriminant functions of the quantitative critical characteristics of organic nitrogen fertilizers from 14 different source materials revealed a very high average rate of correct classification. The developed methodology has been successfully used as a source identification tool for numerous commercial nitrogen fertilizers available on the North American market.

  20. Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination

    Directory of Open Access Journals (Sweden)

    Hanxu Ji

    2016-05-01

    Full Text Available Nitrogen-doped carbon dots are introduced as a novel substrate suitable for enzyme immobilization in electrochemical detection metods. Nitrogen-doped carbon dots are easily synthesised from polyacrylamide in just one step. With the help of the amino group on chitosan, glucose oxidase is immobilized on nitrogen-doped carbon dots-modified carbon glassy electrodes by amino-carboxyl reactions. The nitrogen-induced charge delocalization at nitrogen-doped carbon dots can enhance the electrocatalytic activity toward the reduction of O2. The specific amino-carboxyl reaction provides strong and stable immobilization of GOx on electrodes. The developed biosensor responds efficiently to the presence of glucose in serum samples over the concentration range from 1 to 12 mM with a detection limit of 0.25 mM. This novel biosensor has good reproducibility and stability, and is highly selective for glucose determination under physiological conditions. These results indicate that N-doped quantum dots represent a novel candidate material for the construction of electrochemical biosensors.

  1. Carbon and nitrogen - The key to biological activity, diversity and productivity in a Haplic Acrisol

    International Nuclear Information System (INIS)

    Okae-Anti, Daniel; Torkpo, Addison; Kankam-Boadu, Maryross; Agyei Frimpong, Kwame; Obuobi, Daniel

    2004-10-01

    Soil organic matter is important because it impacts all soil quality functions. Much less information is available on the dynamics of the residual carbon and nitrogen content and their distribution in continuously cropped arable fields. We described the values of the soil properties, pH, moisture content, organic carbon and total nitrogen considering them to be random variables. We treated their spatial variation as a function of the distance between observations within the study site, a continuously-cropped field dominated by Haplic Acrisols. We discussed the nature and structure of the modeled functions, the semivariograms, and interpreted these in the light of the potential of these soils to sustain agricultural productivity. At these sites there had been no conversion of natural forests to agriculture so the paper does not discuss soil carbon storage for either the regional or global storage. All the properties studied showed spatial non-stationarity for the distances covered, indicating that the variance between pairs of observations increased as separating distances also increased. pH, moisture content and total nitrogen were fitted with the power model whereas the linear model best fitted organic carbon. Total nitrogen had the least nugget variance and pH the highest estimated exponent, α, from the power equations. The soils are highly variable in terms of input or return of organic residue to provide a sink for carbon and nitrogen and the breakdown of these materials as affected by pH, moisture availability and microorganisms. (author)

  2. Carbon and nitrogen - The key to biological activity, diversity and productivity in a Haplic Acrisol

    Energy Technology Data Exchange (ETDEWEB)

    Okae-Anti, Daniel [Department of Soil Science, School of Agriculture, University of Cape Coast, Cape Coast (Ghana); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)] E-mail: dokaent@yahoo.co.uk; Torkpo, Addison; Kankam-Boadu, Maryross; Agyei Frimpong, Kwame [Department of Soil Science, School of Agriculture, University of Cape Coast, Cape Coast (Ghana); Obuobi, Daniel [Department of Computer Science and Information Technology, University of Cape Coast, Cape Coast (Ghana)

    2004-10-01

    Soil organic matter is important because it impacts all soil quality functions. Much less information is available on the dynamics of the residual carbon and nitrogen content and their distribution in continuously cropped arable fields. We described the values of the soil properties, pH, moisture content, organic carbon and total nitrogen considering them to be random variables. We treated their spatial variation as a function of the distance between observations within the study site, a continuously-cropped field dominated by Haplic Acrisols. We discussed the nature and structure of the modeled functions, the semivariograms, and interpreted these in the light of the potential of these soils to sustain agricultural productivity. At these sites there had been no conversion of natural forests to agriculture so the paper does not discuss soil carbon storage for either the regional or global storage. All the properties studied showed spatial non-stationarity for the distances covered, indicating that the variance between pairs of observations increased as separating distances also increased. pH, moisture content and total nitrogen were fitted with the power model whereas the linear model best fitted organic carbon. Total nitrogen had the least nugget variance and pH the highest estimated exponent, {alpha}, from the power equations. The soils are highly variable in terms of input or return of organic residue to provide a sink for carbon and nitrogen and the breakdown of these materials as affected by pH, moisture availability and microorganisms. (author)

  3. The production of cyanobacterial carbon under nitrogen-limited cultivation and its potential for nitrate removal.

    Science.gov (United States)

    Huang, Yingying; Li, Panpan; Chen, Guiqin; Peng, Lin; Chen, Xuechu

    2018-01-01

    Harmful cyanobacterial blooms (CyanoHABs) represent a serious threat to aquatic ecosystems. A beneficial use for these harmful microorganisms would be a promising resolution of this urgent issue. This study applied a simple method, nitrogen limitation, to cultivate cyanobacteria aimed at producing cyanobacterial carbon for denitrification. Under nitrogen-limited conditions, the common cyanobacterium, Microcystis, efficiently used nitrate, and had a higher intracellular C/N ratio. More importantly, organic carbons easily leached from its dry powder; these leachates were biodegradable and contained a larger amount of dissolved organic carbon (DOC) and carbohydrates, but a smaller amount of dissolved total nitrogen (DTN) and proteins. When applied to an anoxic system with a sediment-water interface, a significant increase of the specific NO X - -N removal rate was observed that was 14.2 times greater than that of the control. This study first suggests that nitrogen-limited cultivation is an efficient way to induce organic and carbohydrate accumulation in cyanobacteria, as well as a high C/N ratio, and that these cyanobacteria can act as a promising carbon source for denitrification. The results indicate that application as a carbon source is not only a new way to utilize cyanobacteria, but it also contributes to nitrogen removal in aquatic ecosystems, further limiting the proliferation of CyanoHABs. Copyright © 2017. Published by Elsevier Ltd.

  4. Enhanced photosynthetic capacity increases nitrogen metabolism through the coordinated regulation of carbon and nitrogen assimilation in Arabidopsis thaliana.

    Science.gov (United States)

    Otori, Kumi; Tanabe, Noriaki; Maruyama, Toshiki; Sato, Shigeru; Yanagisawa, Shuichi; Tamoi, Masahiro; Shigeoka, Shigeru

    2017-09-01

    Plant growth and productivity depend on interactions between the metabolism of carbon and nitrogen. The sensing ability of internal carbon and nitrogen metabolites (the C/N balance) enables plants to regulate metabolism and development. In order to investigate the effects of an enhanced photosynthetic capacity on the metabolism of carbon and nitrogen in photosynthetically active tissus (source leaves), we herein generated transgenic Arabidopsis thaliana plants (ApFS) that expressed cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in their chloroplasts. The phenotype of ApFS plants was indistinguishable from that of wild-type plants at the immature stage. However, as plants matured, the growth of ApFS plants was superior to that of wild-type plants. Starch levels were higher in ApFS plants than in wild-type plants at 2 and 5 weeks. Sucrose levels were also higher in ApFS plants than in wild-type plants, but only at 5 weeks. On the other hand, the contents of various free amino acids were lower in ApFS plants than in wild-type plants at 2 weeks, but were similar at 5 weeks. The total C/N ratio was the same in ApFS plants and wild-type plants, whereas nitrite levels increased in parallel with elevations in nitrate reductase activity at 5 weeks in ApFS plants. These results suggest that increases in the contents of photosynthetic intermediates at the early growth stage caused a temporary imbalance in the free-C/free-N ratio and, thus, the feedback inhibition of the expression of genes involved in the Calvin cycle and induction of the expression of those involved in nitrogen metabolism due to supply deficient free amino acids for maintenance of the C/N balance in source leaves of ApFS plants.

  5. Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions

    Science.gov (United States)

    Ghimire, Bardan; Riley, William J.; Koven, Charles D.; Mu, Mingquan; Randerson, James T.

    2016-06-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis rates are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.

  6. Determination of aluminium nitride or free nitrogen in low carbon steel

    International Nuclear Information System (INIS)

    Guetaz, V.; Soler, M.; Massardier, V.; Merlin, J.; Ravaine, D.

    2001-01-01

    As the aluminium nitrides play an important role in the manufacturing of steel sheets, a specific methodology was developed based on the thermoelectric power (TEP) technique, in order to determine the AIN nitrogen by an indirect method. The free nitrogen was determined and then the AIN nitrogen was calculated by the difference between the total nitrogen and the free nitrogen. Indeed, it is easier to determine the dissolved nitrogen, the content of which gradually decreases during the AIN precipitation, than the AIN nitrogen. A low carbon aluminium killed steel was employed with 580 ppm of aluminium and 50 ppm of nitrogen. A comparison of the results obtained by TEP with those obtained by other techniques (hot hydrogen extraction, electrochemical dissolution followed by a mineralization, electrochemical dissolution followed by a sodic decomposition and the Beeghly method) was conducted, in order to determine a reliable technique likely to quantify the amount of aluminium nitrides in aluminium killed steels. With these techniques, it is possible to determine either free nitrogen or precipitated nitrogen. From an experimental point of view, the precipitation kinetics of AIN was followed during an annealing performed at 973 K (700 C) by TEP and then different precipitation states of AIN were investigated to compare the different techniques: three annealing states (when no nitrogen, half the nitrogen and the total nitrogen has precipitated) and two soaking states (1403 and 1523 K). Thus, it was possible to compare states where the AIN precipitates are in various forms (different shapes, crystallographic structures, sizes, distributions in the matrix). This work showed that the quantification by TEP, hot hydrogen extraction and electrochemical dissolution followed by a mineralization seem reliable whereas the Beeghly method gives good results only for the precipitates formed at high temperatures. In contrast, the quantification by electrochemical dissolution followed by

  7. Improving representation of nitrogen uptake, allocation, and carbon assimilation in the Community Land Model

    Science.gov (United States)

    Ghimire, B.; Riley, W. J.; Koven, C.

    2013-12-01

    Nitrogen is the most important nutrient limiting plant carbon assimilation and growth, and is required for production of photosynthetic enzymes, growth and maintenance respiration, and maintaining cell structure. The forecasted rise in plant available nitrogen through atmospheric nitrogen deposition and the release of locked soil nitrogen by permafrost thaw in high latitude ecosystems is likely to result in an increase in plant productivity. However a mechanistic representation of plant nitrogen dynamics is lacking in earth system models. Most earth system models ignore the dynamic nature of plant nutrient uptake and allocation, and further lack tight coupling of below- and above-ground processes. In these models, the increase in nitrogen uptake does not translate to a corresponding increase in photosynthesis parameters, such as maximum Rubisco capacity and electron transfer rate. We present an improved modeling framework implemented in the Community Land Model version 4.5 (CLM4.5) for dynamic plant nutrient uptake, and allocation to different plant parts, including leaf enzymes. This modeling framework relies on imposing a more realistic flexible carbon to nitrogen stoichiometric ratio for different plant parts. The model mechanistically responds to plant nitrogen uptake and leaf allocation though changes in photosynthesis parameters. We produce global simulations, and examine the impacts of the improved nitrogen cycling. The improved model is evaluated against multiple observations including TRY database of global plant traits, nitrogen fertilization observations and 15N tracer studies. Global simulations with this new version of CLM4.5 showed better agreement with the observations than the default CLM4.5-CN model, and captured the underlying mechanisms associated with plant nitrogen cycle.

  8. Co-implantation of carbon and nitrogen into silicon dioxide for synthesis of carbon nitride materials

    CERN Document Server

    Huang, M B; Nuesca, G; Moore, R

    2002-01-01

    Materials synthesis of carbon nitride has been attempted with co-implantation of carbon and nitrogen into thermally grown SiO sub 2. Following implantation of C and N ions to doses of 10 sup 1 sup 7 cm sup - sup 2 , thermal annealing of the implanted SiO sub 2 sample was conducted at 1000 degree sign C in an N sub 2 ambient. As evidenced in Fourier transform infrared measurements and X-ray photoelectron spectroscopy, different bonding configurations between C and N, including C-N single bonds, C=N double bonds and C=N triple bonds, were found to develop in the SiO sub 2 film after annealing. Chemical composition profiles obtained with secondary ion mass spectroscopy were correlated with the depth information of the chemical shifts of N 1s core-level electrons, allowing us to examine the formation of C-N bonding for different atomic concentration ratios between N and C. X-ray diffraction and transmission electron microscopy showed no sign of the formation of crystalline C sub 3 N sub 4 precipitates in the SiO ...

  9. Remote Sensing of Vegetation Nitrogen Content for Spatially Explicit Carbon and Water Cycle Estimation

    Science.gov (United States)

    Zhang, Y. L.; Miller, J. R.; Chen, J. M.

    2009-05-01

    Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without

  10. Carbon and nitrogen balances for six shrublands across Europe

    DEFF Research Database (Denmark)

    Beier, Claus; Emmett, Bridget A.; Tietema, Albert

    2009-01-01

    ,546 g C m−2, and the systems ranged from being net sinks (126 g C m−2 a−1) to being net sources (−536 g C m−2 a−1) of carbon with the largest storage and sink of carbon at wet and cold climatic conditions. The soil carbon store dominates the carbon budget at all sites and in particular at the site...... with a cold and wet climate where soil C constitutes 95% of the total carbon in the ecosystem. Respiration of carbon from the soil organic matter pool dominated the carbon loss at all sites while carbon loss from aboveground litter decomposition appeared less important. Total belowground carbon allocation...... that in the future a climate-driven land cover change between grasslands and shrublands in Europe will likely lead to increased ecosystem C where shrublands are promoted and less where grasses are promoted. However, it also emphasizes that if feedbacks on the global carbon cycle are to be predicted it is critically...

  11. Effect of carbon and silicon on nitrogen solubility in liquid chromium and iron-chromium alloys

    International Nuclear Information System (INIS)

    Khyakkinen, V.I.; Bezobrazov, S.V.

    1986-01-01

    The study is aimed at specifying the role of carbon and silicon in high-chromium melts nitridation processes. It is shown that in high-chromium melts of the Cr-Fe-C system the nitrogen solubility is reduced with the growth of carbon content and in the chromium concentration range of 70-100% at 1873 K and P N 2 =0.1 MPa it is described by the lg[%N] Cr-Fe-C =lg[%N] cr-fe -0.098[%C] equation. While decreasing the temperature the nitrogen solubility in alloys is increased. Silicon essentially decreases the nitrogen solubility in liquid chromium. For the 0-10% silicon concentration range the relation between the equilibrium content of nitrogen and silicon at 1873 K and P N 2 =0.1 MPa is described by the straight line equation [%N] Cr-Si =6.1-0.338 [%Si

  12. Kinetics and mechanisms of interactions of nitrogen and carbon monoxide with liquid niobium

    International Nuclear Information System (INIS)

    Park, H.G.

    1990-01-01

    The kinetics and mechanisms of interactions of N 2 and CO with liquid niobium were investigated in the temperature range of 2,700 to 3,000 K in samples levitated in N 2 /Ar and CO/Ar streams. The nitrogen absorption and desorption processes were found to be second-order with respect to nitrogen concentration, indicating that the rate controlling step is either the adsorption of nitrogen molecules on the liquid surface or dissociation of absorbed nitrogen molecules into adsorbed atoms. The carbon and oxygen dissolution in liquid niobium from CO gas is an exothermic process and the solubilities of carbon and oxygen (C Ce , C Oe in at%) are related to the temperature and the partial pressure of CO. The reaction CO → [C] + [O] along with the evaporation of niobium oxide takes place during C and O dissolution, whereas C and O desorption occurs via CO evolution only

  13. Nitrogen-doping effects on the growth, structure and electrical performance of carbon nanotubes obtained by spray pyrolysis method

    Energy Technology Data Exchange (ETDEWEB)

    Ionescu, Mihnea Ioan; Zhang Yong; Li Ruying [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON N6A 5B9 (Canada); Abou-Rachid, Hakima [Defense Research and Development Canada - Valcartier, 2459 Boulevard PieXI Nord, Quebec, QC G3J 1X5 (Canada); Sun Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON N6A 5B9 (Canada)

    2012-03-01

    Vertically aligned nitrogen-doped carbon nanotubes (CNTs) with modulated nitrogen content have been synthesized in a large scale by using spray pyrolysis chemical vapor deposition technique. The effects of nitrogen doping on the growth, structure and electrical performance of carbon nanotubes have been systematically examined. Field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman techniques have been employed to characterize the morphology, composition, and vibrational properties of nanotubes. The results indicate that the nitrogen incorporation significantly influences the growth rate, morphology, size and structure of nanotubes. Electrical measurement investigation of the nanotubes indicates that the change in electrical resistance increases with temperature and pressure as the nitrogen concentration increases inside the tubes. This work presents a versatile, safe, and easy way to scale up route of growing carbon nanotubes with controlled nitrogen content and modulated structure, and may provide an insight in developing various nitrogen-doped carbon-based nanodevices.

  14. Structural investigation of two carbon nitride solids produced by cathodic arc deposition and nitrogen implantation

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, A.R.; McCulloch, D.; McKenzie, D.R.; Yin, Y.; Gerstner, E.G. [New South Wales Univ., Kensington, NSW (Australia)

    1996-12-31

    Carbon nitride materials have been the focus of research efforts worldwide. Most materials studied have been amorphous, with only a few groups claiming to have found a crystalline material. In this paper, carbon nitride materials prepared by two different techniques are analysed, and found to be remarkably similar in bonding and structure. The materials appear to have a primarily sp{sup 2} bonded carbon structure with a lower bond length than found in an amorphous carbon. This is explained by nitrogen substituting into `rings` to a saturation level of about one nitrogen per three carbon atoms. No evidence was found for a crystalline structure of formula C{sub 3}N{sub 4}, or any amorphous derivative of it. 16 refs., 1 tab., 5 figs.

  15. Structural investigation of two carbon nitride solids produced by cathodic arc deposition and nitrogen implantation

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, A R; McCulloch, D; McKenzie, D R; Yin, Y; Gerstner, E G [New South Wales Univ., Kensington, NSW (Australia)

    1997-12-31

    Carbon nitride materials have been the focus of research efforts worldwide. Most materials studied have been amorphous, with only a few groups claiming to have found a crystalline material. In this paper, carbon nitride materials prepared by two different techniques are analysed, and found to be remarkably similar in bonding and structure. The materials appear to have a primarily sp{sup 2} bonded carbon structure with a lower bond length than found in an amorphous carbon. This is explained by nitrogen substituting into `rings` to a saturation level of about one nitrogen per three carbon atoms. No evidence was found for a crystalline structure of formula C{sub 3}N{sub 4}, or any amorphous derivative of it. 16 refs., 1 tab., 5 figs.

  16. Structural investigation of two carbon nitride solids produced by cathodic arc deposition and nitrogen implantation

    International Nuclear Information System (INIS)

    Merchant, A.R.; McCulloch, D.; McKenzie, D.R.; Yin, Y.; Gerstner, E.G.

    1996-01-01

    Carbon nitride materials have been the focus of research efforts worldwide. Most materials studied have been amorphous, with only a few groups claiming to have found a crystalline material. In this paper, carbon nitride materials prepared by two different techniques are analysed, and found to be remarkably similar in bonding and structure. The materials appear to have a primarily sp 2 bonded carbon structure with a lower bond length than found in an amorphous carbon. This is explained by nitrogen substituting into 'rings' to a saturation level of about one nitrogen per three carbon atoms. No evidence was found for a crystalline structure of formula C 3 N 4 , or any amorphous derivative of it. 16 refs., 1 tab., 5 figs

  17. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor.

    Science.gov (United States)

    Ma, Guofu; Yang, Qian; Sun, Kanjun; Peng, Hui; Ran, Feitian; Zhao, Xiaolong; Lei, Ziqiang

    2015-12-01

    High capacitance property and low cost are the pivotal requirements for practical application of supercapacitor. In this paper, a low cost and high capacitance property nitrogen-doped porous carbon with high specific capacitance is prepared. The as-prepared nitrogen-doped porous carbon employing potato waste residue (PWR) as the carbon source, zinc chloride (ZnCl2) as the activating agent and melamine as nitrogen doping agent. The morphology and structure of the carbon materials are studied by scanning electron microscopy (SEM), N2 adsorption/desorption, X-ray diffraction (XRD) and Raman spectra. The surface area of the nitrogen-doped carbon which prepared under 700°C is found to be 1052m(2)/g, and the specific capacitance as high as 255Fg(-1) in 2M KOH electrolyte is obtained utilize the carbon as electrode materials. The electrode materials also show excellent cyclability with 93.7% coulombic efficiency at 5Ag(-1) current density of for 5000cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Synthesis of 2D Nitrogen-Doped Mesoporous Carbon Catalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Zhipeng Yu

    2017-02-01

    Full Text Available 2D nitrogen-doped mesoporous carbon (NMC is synthesized by using a mesoporous silica film as hard template, which is then investigated as a non-precious metal catalyst for the oxygen reduction reaction (ORR. The effect of the synthesis conditions on the silica template and carbon is extensively investigated. In this work, we employ dual templates—viz. graphene oxide and triblock copolymer F127—to control the textural features of a 2D silica film. The silica is then used as a template to direct the synthesis of a 2D nitrogen-doped mesoporous carbon. The resultant nitrogen-doped mesoporous carbon is characterized by transmission electron microscopy (TEM, nitrogen ad/desorption isotherms, X-ray photoelectron spectroscopy (XPS, cyclic voltammetry (CV, and rotating disk electrode measurements (RDE. The electrochemical test reveals that the obtained 2D-film carbon catalyst yields a highly electrochemically active surface area and superior electrocatalytic activity for the ORR compared to the 3D-particle. The superior activity can be firstly attributed to the difference in the specific surface area of the two catalysts. More importantly, the 2D-film morphology makes more active sites accessible to the reactive species, resulting in a much higher utilization efficiency and consequently better activity. Finally, it is noted that all the carbon catalysts exhibit a higher ORR activity than a commercial Pt catalyst, and are promising for use in fuel cells.

  19. Stress Effects of Chlorate on Longan (Dimocarpus longan Lour.) Trees: Changes in Nitrogen and Carbon Nutrition

    OpenAIRE

    Jiemei LU; Ruitao YANG; Huicong WANG; Xuming HUANG

    2017-01-01

    Three-year-old potted longan (Dimocarpus longan Lour. cv. Shixia) trees were treated with potassium chlorate and effects on nitrogen and carbon nutrition were examined. The results showed that potassium chlorate at 10 and 20 g per pot failed to induce flower but suppressed shoot growth and caused leaf chlorosis and drop. The treatment significantly inhibited nitrate reductase but increased nitrogen concentration in the leaves and buds. Concentration of soluble amino acids in the leaves of tre...

  20. Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition

    Czech Academy of Sciences Publication Activity Database

    Oulehle, F.; Evans, C. D.; Hofmeister, J.; Krejci, R.; Tahovská, K.; Persson, T.; Cudlín, Pavel; Hruška, J.

    2011-01-01

    Roč. 17, č. 10 (2011), 3115–3129 ISSN 1354-1013 R&D Projects: GA MŠk OC10022 Institutional research plan: CEZ:AV0Z60870520 Keywords : acidification * carbon * deposition * DOC * forest floor * leaching * nitrogen * nitrogen saturation * soil * sulphur Subject RIV: DD - Geochemistry Impact factor: 6.862, year: 2011 http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2011.02468.x/pdf

  1. Synthesis of Nitrogen-Doped Mesoporous Carbon for the Catalytic Oxidation of Ethylbenzene

    Science.gov (United States)

    Wang, Ruicong; Yu, Yifeng; Zhang, Yue; Lv, Haijun; Chen, Aibing

    2017-06-01

    Nitrogen-doped ordered mesoporous carbon (NOMC) was fabricated via a simple hard-template method by functionalized ionic liquids as carbon and nitrogen source, SBA-15 as a hard-template. The obtained NOMC materials have a high nitrogen content of 5.55 %, a high surface area of 446.2 m2 g-1, and an excellent performance in catalysing oxidation of ethylbenzene. The conversion rate of ethylbenzene can be up to 84.5% and the yield of acetophenone can be up to 69.9%, the results indicated that the NOMC materials have a faster catalytic rate and a higher production of acetophenone than catalyst-free and CMK-3, due to their uniform pore size, high surface area and rich active sites in the carbon pore walls.

  2. Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Qiliang Wei

    2015-09-01

    Full Text Available Nitrogen-doped carbon materials, including nitrogen-doped carbon nanotubes (NCNTs and nitrogen-doped graphene (NG, have attracted increasing attention for oxygen reduction reaction (ORR in metal-air batteries and fuel cell applications, due to their optimal properties including excellent electronic conductivity, 4e− transfer and superb mechanical properties. Here, the recent progress of NCNTs- and NG-based catalysts for ORR is reviewed. Firstly, the general preparation routes of these two N-doped carbon-allotropes are introduced briefly, and then a special emphasis is placed on the developments of both NCNTs and NG as promising metal-free catalysts and/or catalyst support materials for ORR. All these efficient ORR electrocatalysts feature a low cost, high durability and excellent performance, and are thus the key factors in accelerating the widespread commercialization of metal-air battery and fuel cell technologies.

  3. Carbon and nitrogen budgets of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Somasundar, K.; Rajendran, A.; DileepKumar, M.; SenGupta, R.

    , W.S., Peng, T.H. and Ostlund, G., 1986. The distribution of bomb tritium in the oceans. J. Geophys. Res., 91:14 331-14 334. Carpenter, E.J., 1983. Nitrogen fixation by marine oscillatoria ( Trichodesmium ) in the world's oceans. In: E.J. Carpenter...

  4. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.

    Science.gov (United States)

    Xu, Junyuan; Kan, Yuhe; Huang, Rui; Zhang, Bingsen; Wang, Bolun; Wu, Kuang-Hsu; Lin, Yangming; Sun, Xiaoyan; Li, Qingfeng; Centi, Gabriele; Su, Dangsheng

    2016-05-23

    Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2 ). The investigation explores the origin of the catalyst's activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2 , which leads to the formation of carbon dioxide radical anion (CO2 (.-) ). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Freezing and fractionation: effects of preservation on carbon and nitrogen stable isotope ratios of some limnetic organisms.

    Science.gov (United States)

    Wolf, J Marshall; Johnson, Brett; Silver, Douglas; Pate, William; Christianson, Kyle

    2016-03-15

    Stable isotopes of carbon and nitrogen have become important natural tracers for studying food-web structure and function. Considerable research has demonstrated that chemical preservatives and fixatives shift the isotopic ratios of aquatic organisms. Much less is known about the effects of freezing as a preservation method although this technique is commonly used. We conducted a controlled experiment to test the effects of freezing (-10 °C) and flash freezing (–79 °C) on the carbon and nitrogen isotope ratios of zooplankton (Cladocera), Mysis diluviana and Rainbow Trout (Oncorhynchus mykiss). Subsamples (~0.5 mg) of dried material were analyzed for percentage carbon, percentage nitrogen, and the relative abundance of stable carbon and nitrogen isotopes (δ13C and δ15N values) using a Carlo Erba NC2500 elemental analyzer interfaced to a ThermoFinnigan MAT Delta Plus isotope ratio mass spectrometer. The effects of freezing were taxon-dependent. Freezing had no effect on the isotopic or elemental values of Rainbow Trout muscle. Effects on the δ13C and δ15N values of zooplankton and Mysis were statistically significant but small relative to typical values of trophic fractionation. The treatment-control offsets had larger absolute values for Mysis (δ13C: ≤0.76 ± 0.41‰, δ15N: ≤0.37 ± 0.16‰) than for zooplankton (δ13C: ≤0.12 ± 0.06‰, δ15N: ≤0.30 ± 0.27‰). The effects of freezing were more variable for the δ13C values of Mysis, and more variable for the δ15N values of zooplankton. Generally, both freezing methods reduced the carbon content of zooplankton and Mysis, but freezing had a negative effect on the %N of zooplankton and a positive effect on the %N of Mysis. The species-dependencies and variability of freezing effects on aquatic organisms suggest that more research is needed to understand the mechanisms responsible for freezing-related fractionation before standardized protocols for freezing as a preservation method can be adopted.

  6. Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and Fenton based bio-sensor.

    Science.gov (United States)

    Das, Poushali; Ganguly, Sayan; Bose, Madhuparna; Mondal, Subhadip; Choudhary, Sumita; Gangopadhyay, Subhashis; Das, Amit Kumar; Banerjee, Susanta; Das, Narayan Chandra

    2018-07-01

    Carbon dots with heteroatom co-doping associated with consummate luminescence features are of acute interest in diverse applications such as biomolecule markers, chemical sensing, photovoltaic, and trace element detection. Herein, we demonstrate a straightforward, highly efficient hydrothermal dehydration technique to synthesize zinc and nitrogen co-doped multifunctional carbon dots (N, Zn-CDs) with superior quantum yield (50.8%). The luminescence property of the carbon dots can be tuned by regulating precursor ratio and surface oxidation states in the carbon dots. A unique attribution of the as-prepared carbon dots is the high monodispersity and robust excitation-independent emission behavior that is stable in enormously reactive environment and over a wide range of pH. These N, Zn-CDs unveils captivating bacteriostatic activity against gram-negative bacteria Escherichia coli. Furthermore, the excellent luminescence properties of these carbon dots were applied as a platform of sensitive biosensor for the detection of hydrogen peroxide. Under optimized conditions, these N, Zn-CDs reveals high sensitivity over a broad range of concentrations with an ultra-low limit of detection (LOD) indicating their pronounced prospective as a fluorescent probe for chemical sensing. Overall, the experimental outcomes propose that these zero-dimensional nano-dots could be developed as bacteriostatic agents to control and prevent the persistence and spreading of bacterial infections and as a fluorescent probe for hydrogen peroxide detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    Science.gov (United States)

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-01-01

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon−nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw. PMID:25775603

  8. Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study – an elemental mass balance approach

    Directory of Open Access Journals (Sweden)

    J. Czerny

    2013-05-01

    Full Text Available Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air–sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation, all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC, nitrogen (DON and particulate organic phosphorus (POP were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon

  9. Search for correlatable, isotopically light carbon and nitrogen components in Lunar soils and breccias

    International Nuclear Information System (INIS)

    Norris, S.J.; Swart, P.K.; Wright, I.P.; Grady, M.M.; Pillinger, C.T.

    1983-01-01

    Using stepped heating extraction techniques, determinations of carbon and nitrogen content and delta 13 C and delta 15 N values have been obtained for selected lunar soils and breccias. Only nitrogen data have been gathered for representative splits separated by size, density and magnetic properties from 12023. A plot of the total delta 13 C (after terrestrial contamination is removed) versus delta 15 N values for the bulk samples reveals little evidence for a correlation between isotopically light carbon and isotopically light nitrogen of putative ancient solar wind origin. Soil 12023 is used to examine the current interpretation for the stepped release profile of nitrogen from bulk lunar samples. Mature agglutinates, postulated by previous workers to be the host of the light nitrogen, are shown to have a very constant delta 15 N value which is heavy rather than light. The actual host of the light nitrogen in 12023 has not been identified. The lowest values encountered during the study were found associated with the finest soil, but none of these was as low as for some temperature steps of the bulk soil. Interpretations regarding the origin of light nitrogen, if it is not present in agglutinates, await the results of more definitive efforts to identify the host phase

  10. Modelling soil nitrogen: The MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics

    Czech Academy of Sciences Publication Activity Database

    Oulehle, F.; Cosby, B. J.; Wright, R. F.; Hruška, J.; Kopáček, Jiří; Krám, P.; Evans, C. D.; Moldan, F.

    2012-01-01

    Roč. 165, June (2012), s. 158-166 ISSN 0269-7491 Grant - others:FM EHS(CZ) CZ-0051 Institutional support: RVO:60077344 Keywords : nitrogen saturation * leaching * acidification * Norway spruce * Bohemian Forest * Slavkov Forest * Ore Mountains * Erzgebirge Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.730, year: 2012

  11. Facile preparation of nitrogen-doped hierarchical porous carbon with high performance in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Kun [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Kong, Ling-Bin, E-mail: konglb@lut.cn [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Shen, Kui-Wen; Dai, Yan-Hua; Shi, Ming; Hu, Bing [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Luo, Yong-Chun; Kang, Long [School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China)

    2016-02-28

    Graphical abstract: Preparing and activating process of nitrogen-doped hierarchical porous carbon (NHPC). - Highlights: • The well-defined PAN-b-PMMA copolymer was synthesized by atom transfer radical polymerization with narrow molecular weight distribution. • Nitrogen-doped hierarchical porous structure (NHPC) was prepared through a simple carbonization procedure of PAN-b-PMMA precursor. • NHPC possessed hierarchical porous structure with high BET surface area of 257 m{sup 2} g{sup −1} and DFT mesopore size of 14.61 nm. • Effects of activation conditions on supercapacitive behavior were systematically studied. - Abstract: The nitrogen-doped hierarchical porous carbon (NHPC) material was successfully prepared through a simple carbonization procedure of well-defined diblock copolymer precursor containing nitrogen-enriched carbon source, i.e., polyacrylonitrile (PAN), and asacrificial block, i.e., polymethylmethacrylate (PMMA). PAN-b-PMMA diblock copolymer was synthesized by atom transfer radical polymeriation (ATRP) with narrow molecular weight distribution. The as-obtained NHPC possessed nitrogen-doped hierarchical porous structure with high BET surface area of 257 m{sup 2} g{sup −1} and Nonlocal density functional theory (NLDFT) mesopore size of 14.61 nm. Surface activated nitrogen-doped hierarchical porous carbon (A-NHPC) materials were obtained by subsequent surface activation with HNO{sub 3} solution. The effects of activation conditions on supercapacitive behavior were systematically studied, a maximum specific capacitance of 314 F g{sup −1} at a current density of 0.5 A g{sup −1} was achieved in 2 M KOH aqueous electrolyte. Simultaneously, it exhibited excellent rate capability of 67.8% capacitance retention as the current density increased from 0.5 to 20 A g{sup −1} and superior cycling performance of 90% capacitance retention after 10,000 cycles at the current density of 2 A g{sup −1}.

  12. Facile preparation of nitrogen-doped hierarchical porous carbon with high performance in supercapacitors

    International Nuclear Information System (INIS)

    Yan, Kun; Kong, Ling-Bin; Shen, Kui-Wen; Dai, Yan-Hua; Shi, Ming; Hu, Bing; Luo, Yong-Chun; Kang, Long

    2016-01-01

    Graphical abstract: Preparing and activating process of nitrogen-doped hierarchical porous carbon (NHPC). - Highlights: • The well-defined PAN-b-PMMA copolymer was synthesized by atom transfer radical polymerization with narrow molecular weight distribution. • Nitrogen-doped hierarchical porous structure (NHPC) was prepared through a simple carbonization procedure of PAN-b-PMMA precursor. • NHPC possessed hierarchical porous structure with high BET surface area of 257 m"2 g"−"1 and DFT mesopore size of 14.61 nm. • Effects of activation conditions on supercapacitive behavior were systematically studied. - Abstract: The nitrogen-doped hierarchical porous carbon (NHPC) material was successfully prepared through a simple carbonization procedure of well-defined diblock copolymer precursor containing nitrogen-enriched carbon source, i.e., polyacrylonitrile (PAN), and asacrificial block, i.e., polymethylmethacrylate (PMMA). PAN-b-PMMA diblock copolymer was synthesized by atom transfer radical polymeriation (ATRP) with narrow molecular weight distribution. The as-obtained NHPC possessed nitrogen-doped hierarchical porous structure with high BET surface area of 257 m"2 g"−"1 and Nonlocal density functional theory (NLDFT) mesopore size of 14.61 nm. Surface activated nitrogen-doped hierarchical porous carbon (A-NHPC) materials were obtained by subsequent surface activation with HNO_3 solution. The effects of activation conditions on supercapacitive behavior were systematically studied, a maximum specific capacitance of 314 F g"−"1 at a current density of 0.5 A g"−"1 was achieved in 2 M KOH aqueous electrolyte. Simultaneously, it exhibited excellent rate capability of 67.8% capacitance retention as the current density increased from 0.5 to 20 A g"−"1 and superior cycling performance of 90% capacitance retention after 10,000 cycles at the current density of 2 A g"−"1.

  13. Benthic biogeochemical cycling, nutrient stoichiometry, and carbon and nitrogen mass balances in a eutrophic freshwater bay

    Science.gov (United States)

    Klump, J.V.; Fitzgerald, S.A.; Waplesa, J.T.

    2009-01-01

    Green Bay, while representing only ,7% of the surface area and ??1.4% of the volume of Lake Michigan, contains one-third of the watershed of the lake, and receives approximately one-third of the total nutrient loading to the Lake Michigan basin, largely from the Fox River at the southern end of the bay. With a history of eutrophic conditions dating back nearly a century, the southern portion of the bay behaves as an efficient nutrient and sediment trap, sequestering much of the annual carbon and nitrogen input within sediments accumulating at up to 1 cm per year. Depositional fluxes of organic matter varied from ??0.1 mol C m-2 yr-1 to >10 mol C m-2 yr-1 and were both fairly uniform in stoichiometric composition and relatively labile. Estimates of benthic recycling derived from pore-water concentration gradients, whole-sediment incubation experiments, and deposition-burial models of early diagenesis yielded an estimated 40% of the carbon and 50% of the nitrogen recycled back into the overlying water. Remineralization was relatively rapid with ??50% of the carbon remineralized within <15 yr of deposition, and a mean residence time for metabolizable carbon and nitrogen in the sediments of 20 yr. On average, organic carbon regeneration occurred as 75% CO2, 15% CH4, and 10% dissolved organic carbon (DOC). Carbon and nitrogen budgets for the southern bay were based upon direct measurements of inputs and burial and upon estimates of export and production derived stoichiometrically from a coupled phosphorus budget. Loadings of organic carbon from rivers were ??3.7 mol m-2 yr-1, 80% in the form of DOC and 20% as particulate organic carbon. These inputs were lost through export to northern Green Bay and Lake Michigan (39%), through sediment burial (26%), and net CO2 release to the atmosphere (35%). Total carbon input, including new production, was 4.54 mol m-2 C yr-1, equivalent to ??10% of the gross annual primary production. Nitrogen budget terms were less well quantified

  14. Carbon sequestration and Jerusalem artichoke biomass under nitrogen applications in coastal saline zone in the northern region of Jiangsu, China

    International Nuclear Information System (INIS)

    Niu, Li; Manxia, Chen; Xiumei, Gao; Xiaohua, Long; Hongbo, Shao; Zhaopu, Liu; Zed, Rengel

    2016-01-01

    Agriculture is an important source of greenhouse gases, but can also be a significant sink. Nitrogen fertilization is effective in increasing agricultural production and carbon storage. We explored the effects of different rates of nitrogen fertilization on biomass, carbon density, and carbon sequestration in fields under the cultivation of Jerusalem artichoke as well as in soil in a coastal saline zone for two years. Five nitrogen fertilization rates were tested (in g urea m"− "2): 4 (N1), 8 (N2), 12 (N3), 16 (N4), and 0 (control, CK). The biomass of different organs of Jerusalem artichoke during the growth cycle was significantly higher in N2 than the other treatments. Under different nitrogen treatments, carbon density in organs of Jerusalem artichoke ranged from 336 to 419 g C kg"− "1. Carbon sequestration in Jerusalem artichoke was higher in treatments with nitrogen fertilization compared to the CK treatment. The highest carbon sequestration was found in the N2 treatment. Soil carbon content was higher in the 0–10 cm than 10–20 cm layer, with nitrogen fertilization increasing carbon content in both soil layers. The highest soil carbon sequestration was measured in the N2 treatment. Carbon sequestration in both soil and Jerusalem artichoke residue was increased by nitrogen fertilization depending on the rates in the coastal saline zone studied. - Highlights: • Dry matter accumulation increased under nitrogen fertilization application. • Carbon density in Jerusalem artichoke ranged from 336 to 419 g C kg"− "1. • Soil carbon storage increased under nitrogen fertilizer application. • Nitrogen application is effective in increasing carbon sequestration.

  15. Carbon sequestration and Jerusalem artichoke biomass under nitrogen applications in coastal saline zone in the northern region of Jiangsu, China

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Li; Manxia, Chen; Xiumei, Gao [Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Xiaohua, Long, E-mail: longxiaohua@njau.edu.cn [Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Hongbo, Shao, E-mail: shaohongbochu@126.com [Institute of Agro-biotechnology, Jiangsu Academy of Agriculture Sciences, Nanjing 210014 (China); Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Zhaopu, Liu [Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Zed, Rengel [Soil Science and Plant Nutrition, School of Earth and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2016-10-15

    Agriculture is an important source of greenhouse gases, but can also be a significant sink. Nitrogen fertilization is effective in increasing agricultural production and carbon storage. We explored the effects of different rates of nitrogen fertilization on biomass, carbon density, and carbon sequestration in fields under the cultivation of Jerusalem artichoke as well as in soil in a coastal saline zone for two years. Five nitrogen fertilization rates were tested (in g urea m{sup −} {sup 2}): 4 (N1), 8 (N2), 12 (N3), 16 (N4), and 0 (control, CK). The biomass of different organs of Jerusalem artichoke during the growth cycle was significantly higher in N2 than the other treatments. Under different nitrogen treatments, carbon density in organs of Jerusalem artichoke ranged from 336 to 419 g C kg{sup −} {sup 1}. Carbon sequestration in Jerusalem artichoke was higher in treatments with nitrogen fertilization compared to the CK treatment. The highest carbon sequestration was found in the N2 treatment. Soil carbon content was higher in the 0–10 cm than 10–20 cm layer, with nitrogen fertilization increasing carbon content in both soil layers. The highest soil carbon sequestration was measured in the N2 treatment. Carbon sequestration in both soil and Jerusalem artichoke residue was increased by nitrogen fertilization depending on the rates in the coastal saline zone studied. - Highlights: • Dry matter accumulation increased under nitrogen fertilization application. • Carbon density in Jerusalem artichoke ranged from 336 to 419 g C kg{sup −} {sup 1}. • Soil carbon storage increased under nitrogen fertilizer application. • Nitrogen application is effective in increasing carbon sequestration.

  16. Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Cheng, Q.J. [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Chen, X. [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Ostrikov, K., E-mail: kostya.ostrikov@csiro.au [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2011-09-22

    Highlights: > A new and custom-designed bias-enhanced hot-filament chemical vapor deposition system is developed to synthesize vertically aligned carbon nanotubes. > The carbon nanotubes are later treated with nitrogen plasmas. > The electron field emission characteristics of the carbon nanotubes are significantly improved after the nitrogen plasma treatment. > A new physical mechanism is proposed to interpret the improvement of the field emission characteristics. - Abstract: The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 {mu}A/cm{sup 2}) achieved at a low applied field (3.50 V/{mu}m) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.

  17. Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment

    International Nuclear Information System (INIS)

    Wang, B.B.; Cheng, Q.J.; Chen, X.; Ostrikov, K.

    2011-01-01

    Highlights: → A new and custom-designed bias-enhanced hot-filament chemical vapor deposition system is developed to synthesize vertically aligned carbon nanotubes. → The carbon nanotubes are later treated with nitrogen plasmas. → The electron field emission characteristics of the carbon nanotubes are significantly improved after the nitrogen plasma treatment. → A new physical mechanism is proposed to interpret the improvement of the field emission characteristics. - Abstract: The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 μA/cm 2 ) achieved at a low applied field (3.50 V/μm) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.

  18. Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction

    International Nuclear Information System (INIS)

    Zhao Peng; Zhang Ying; Wang Pei-Ji; Zhang Zhong; Liu De-Sheng

    2011-01-01

    Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbon-nanotube-based molecular junction. Obvious rectifying behavior is observed and it is strongly dependent on the doping site. The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer. Moreover, the rectifying performance can be further improved by adjusting the distance between the C 60 nanotube caps. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. [Relationship between Fe, Al oxides and stable organic carbon, nitrogen in the yellow-brown soils].

    Science.gov (United States)

    Heng, Li-Sha; Wang, Dai-Zhang; Jiang, Xin; Rao, Wei; Zhang, Wen-Hao; Guo, Chun-Yan; Li, Teng

    2010-11-01

    The stable organic carbon and nitrogen of the different particles were gained by oxidation of 6% NaOCl in the yellow-brown soils. The relationships between the contents of selective extractable Fe/Al and the stable organic carbon/nitrogen were investigated. It shown that amounts of dithionite-citrate-(Fe(d)) and oxalate-(Fe(o)) and pyrophosphate extractable (Fe(p)) were 6-60.8 g x kg(-1) and 0.13-4.8 g x kg(-1) and 0.03-0.47 g x kg(-1) in 2-250 microm particles, respectively; 43.1-170 g x kg(-1) and 5.9-14.0 g x kg(-1) and 0.28-0.78 g x kg(-1) in soils than in arid yellow-brown soils, and that of selective extractable Al are lower in the former than in the latter. Amounts of the stable organic carbon and nitrogen, higher in paddy yellow-brown soils than in arid yellow-brown soils, were 0.93-6.0 g x kg(-1) and 0.05-0.36 g x kg(-1) in 2-250 microm particles, respectively; 6.05-19.3 g x kg(-1) and 0.61-2.1 g x kg(-1) in stabilization index (SI(C) and SI(N)) of the organic carbon and nitrogen were 14.3-50.0 and 11.9-55.6 in 2-250 microm particles, respectively; 53.72-88.80 and 40.64-70.0 in soils than in paddy yellow-brown soils. The organic carbon and nitrogen are advantageously conserved in paddy yellow-brown soil. An extremely significant positive correlation of the stable organic carbon and nitrogen with selective extractable Fe/Al is observed. The most amounts between the stable organic carbon and nitrogen and selective extractable Fe/Al appear in clay particles, namely the clay particles could protect the soil organic carbon and nitrogen.

  20. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process.

    Science.gov (United States)

    Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang

    2014-11-01

    A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). Copyright © 2014. Published by Elsevier B.V.

  1. Nitrogen-Rich Polyacrylonitrile-Based Graphitic Carbons for Hydrogen Peroxide Sensing

    Directory of Open Access Journals (Sweden)

    Brandon Pollack

    2017-10-01

    Full Text Available Catalytic substrate, which is devoid of expensive noble metals and enzymes for hydrogen peroxide (H2O2, reduction reactions can be obtained via nitrogen doping of graphite. Here, we report a facile fabrication method for obtaining such nitrogen doped graphitized carbon using polyacrylonitrile (PAN mats and its use in H2O2 sensing. A high degree of graphitization was obtained with a mechanical treatment of the PAN fibers embedded with carbon nanotubes (CNT prior to the pyrolysis step. The electrochemical testing showed a limit of detection (LOD 0.609 µM and sensitivity of 2.54 µA cm−2 mM−1. The promising sensing performance of the developed carbon electrodes can be attributed to the presence of high content of pyridinic and graphitic nitrogens in the pyrolytic carbons, as confirmed by X-ray photoelectron spectroscopy. The reported results suggest that, despite their simple fabrication, the hydrogen peroxide sensors developed from pyrolytic carbon nanofibers are comparable with their sophisticated nitrogen-doped graphene counterparts.

  2. Influence of carbon dioxide content in the biogas to nitrogen oxides emissions

    Directory of Open Access Journals (Sweden)

    Živković Marija A.

    2010-01-01

    Full Text Available Fuels derived from biomass are an alternative solution for the fossil fuel shortage. Usually this kind of fuels is called low calorific value fuels, due to the large proportion of inert components in their composition. The most common is carbon dioxide, and its proportion in biogas can be different, from 10 up to 40%, or even more. The presence of inert component in the composition of biogas causes the problems that are related with flame blow off limits. One of the possibilities for efficient combustion of biogas is the combustion in swirling flow including a pilot burner, aimed to expand the borders of stable combustion. This paper presents an analysis of the influence of the carbon dioxide content to the nitrogen oxides emissions. Laboratory biogas was used with different content of CO2 (10, 20, 30 and 40%. Investigation was carried out for different nominal powers, coefficients of excess air and carbon dioxide content. With increasing content of carbon dioxide, emission of nitrogen oxides was reduced, and this trend was the same throughout the whole range of excess air, carried out through measurements. Still, the influence of carbon dioxide content is significantly less than the influence of excess air. The coefficient of excess air greatly affects the production of radicals which are essential for the formation of nitrogen oxides, O, OH and CH. Also, the results show that the nominal power has no impact on the emission of nitrogen oxides.

  3. Eco-Friendly Synthesis of Nitrogen-Doped Mesoporous Carbon for Supercapacitor Application

    Directory of Open Access Journals (Sweden)

    Georges Moussa

    2018-03-01

    Full Text Available A sustainable and simple synthesis procedure involving the co-assembly of green phenolic resin and amphiphilic polymer template in water/ethanol mixture at room temperature to synthesize nitrogen doped mesoporous carbon is reported herein. Guanine is proposed as a novel nitrogen-based precursor which is able to create H-bondings both with the phenolic resin and the template allowing the formation of mesoporous carbons with nitrogen atoms uniformly distributed in their framework. The influence of the synthesis procedure, template amount and annealing temperature on the carbon textural properties, structure and surface chemistry were investigated. For several conditions, carbon materials with ordered pore size and high nitrogen content (up to 10.6 at % could be achieved. The phase separation procedure combined with optimal amount of template favor the formation of ordered mesoporous carbons with higher specific surface area while the increase in the temperature induces a decrease in the surface area and amount of heteroatoms (N and O. The electrochemical performances as electrode in supercapacitors were evaluated in acidic medium and the capacitance was closely related to the material conductivity and surface chemistry.

  4. Nitrogen-enriched bituminous coal-based active carbons as materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    R. Pietrzak; K. Jurewicz; P. Nowicki; K. Babel; H. Wachowska [A. Mickiewicz University, Poznan (Poland). Laboratory of Coal Chemistry and Technology

    2010-11-15

    The paper presents the results of a study on obtaining N-enriched active carbons from bituminous coal and on testing its use as an electrode material in supercapacitors. The coal was carbonised, activated with KOH and ammoxidised by a mixture of ammonia and air at the ratio 1:3 at 300{sup o}C or 350{sup o}C, at different stages of the production, that is, at those of precursor, carbonisate, and active carbon. The products were microporous N-enriched active carbon samples of well-developed surface area reaching from 1577 to 2510 m{sup 2}/g and containing 1.0 to 8.5 wt% of nitrogen. The XPS measurements have shown that in the active carbons enriched in nitrogen at the stage of precursor and at the stage of carbonisate, the dominant nitrogen species are the N-5 groups, while in the samples ammoxidised at the last stage of the treatment the dominant nitrogen species are the surface groups of imines and/or nitriles, probably accompanied by amines and amides. The paper reports the results of a comprehensive study of the effect of the structure and chemical composition of a series of active carbon samples of different properties on their capacity performance in water solutions of H{sub 2}SO{sub 4} or KOH, with the behaviour of positive and negative electrodes analysed separately. 33 refs., 7 figs., 8 tabs.

  5. Regulation of Carbon Flow by Nitrogen and Light in the Red Alga, Gelidium coulteri1

    Science.gov (United States)

    Macler, Bruce A.

    1986-01-01

    The red alga Gelidium coulteri Harv. photosynthetically fixed [14C] bicarbonate at high rates under defined conditions in unialgal laboratory culture. The fixation rate and flow of photosynthate into various end products were dependent on the nitrogen status of the tissue. Plants fed luxury levels of nitrogen (approximately 340 micromolar) showed fixation rates several-fold higher than those seen for plants starved for nitrogen. The addition of NO3− or NH4+ to such starved plants further inhibited fixation over at least the first several hours after addition. The majority of 14C after incubations of 30 minutes to 8 hours was found in the compounds floridoside, agar and floridean starch. In addition, amino acids and intermediate compounds of the reductive pentose phosphate pathway, glycolytic pathway and tricarboxylic acid cycle were detected. Nitrogen affected the partitioning of labeled carbon into these compounds. Plants under luxury nitrogen conditions had higher floridoside levels and markedly lower amounts of agar and starch than found in plants limited for nitrogen. Amino acid, phycobiliprotein and chlorophyll levels were also significantly higher in nitrogen-enriched plants. Addition of NO3− to starved plants led to an increase in floridoside, tricarboxylic acid cycle intermediates and amino acids within 1 hour and inhibited carbon flow into agar and starch. Carbon fixation in the dark was only 1 to 7% of that seen in the light. Dark fixation of [14C]bicarbonate yielded label primarily in tricarboxylic acid cycle intermediates, amino acids and polysaccharides. Nitrogen stimulated amino acid synthesis at the expense of agar and starch. Floridoside was only a minor component in the dark. Pulse-chase experiments, designed to show carbon turnover, indicated a 2-fold increase in labeling of agar over 96 hours of chase in the light. No increases were seen in the dark. Low molecular weight pools, including floridoside, decreased 2- to 5-fold over this period

  6. Regulation of Carbon Flow by Nitrogen and Light in the Red Alga, Gelidium coulteri.

    Science.gov (United States)

    Macler, B A

    1986-09-01

    The red alga Gelidium coulteri Harv. photosynthetically fixed [(14)C] bicarbonate at high rates under defined conditions in unialgal laboratory culture. The fixation rate and flow of photosynthate into various end products were dependent on the nitrogen status of the tissue. Plants fed luxury levels of nitrogen (approximately 340 micromolar) showed fixation rates several-fold higher than those seen for plants starved for nitrogen. The addition of NO(3) (-) or NH(4) (+) to such starved plants further inhibited fixation over at least the first several hours after addition. The majority of (14)C after incubations of 30 minutes to 8 hours was found in the compounds floridoside, agar and floridean starch. In addition, amino acids and intermediate compounds of the reductive pentose phosphate pathway, glycolytic pathway and tricarboxylic acid cycle were detected. Nitrogen affected the partitioning of labeled carbon into these compounds. Plants under luxury nitrogen conditions had higher floridoside levels and markedly lower amounts of agar and starch than found in plants limited for nitrogen. Amino acid, phycobiliprotein and chlorophyll levels were also significantly higher in nitrogen-enriched plants. Addition of NO(3) (-) to starved plants led to an increase in floridoside, tricarboxylic acid cycle intermediates and amino acids within 1 hour and inhibited carbon flow into agar and starch. Carbon fixation in the dark was only 1 to 7% of that seen in the light. Dark fixation of [(14)C]bicarbonate yielded label primarily in tricarboxylic acid cycle intermediates, amino acids and polysaccharides. Nitrogen stimulated amino acid synthesis at the expense of agar and starch. Floridoside was only a minor component in the dark. Pulse-chase experiments, designed to show carbon turnover, indicated a 2-fold increase in labeling of agar over 96 hours of chase in the light. No increases were seen in the dark. Low molecular weight pools, including floridoside, decreased 2- to 5-fold

  7. Graphitic Nitrogen Triggers Red Fluorescence in Carbon Dots

    Czech Academy of Sciences Publication Activity Database

    Holá, K.; Sudolská, M.; Kalytchuk, S.; Nachtigallová, Dana; Rogach, A. L.; Otyepka, M.; Zbořil, R.

    2017-01-01

    Roč. 11, č. 12 (2017), s. 12402-12410 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : nitrogen-doped * graphene dots * red fluorescence * fluorescence mechanism * band-gap tuning Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 13.942, year: 2016

  8. Carbon amendment stimulates benthic nitrogen cycling during the bioremediation of particulate aquaculture waste

    Science.gov (United States)

    Robinson, Georgina; MacTavish, Thomas; Savage, Candida; Caldwell, Gary S.; Jones, Clifford L. W.; Probyn, Trevor; Eyre, Bradley D.; Stead, Selina M.

    2018-03-01

    The treatment of organic wastes remains one of the key sustainability challenges facing the growing global aquaculture industry. Bioremediation systems based on coupled bioturbation-microbial processing offer a promising route for waste management. We present, for the first time, a combined biogeochemical-molecular analysis of the short-term performance of one such system that is designed to receive nitrogen-rich particulate aquaculture wastes. Using sea cucumbers (Holothuria scabra) as a model bioturbator we provide evidence that adjusting the waste C : N from 5 : 1 to 20 : 1 promoted a shift in nitrogen cycling pathways towards the dissimilatory nitrate reduction to ammonium (DNRA), resulting in net NH4+ efflux from the sediment. The carbon amended treatment exhibited an overall net N2 uptake, whereas the control receiving only aquaculture waste exhibited net N2 production, suggesting that carbon supplementation enhanced nitrogen fixation. The higher NH4+ efflux and N2 uptake was further supported by meta-genome predictions that indicate that organic-carbon addition stimulated DNRA over denitrification. These findings indicate that carbon addition may potentially result in greater retention of nitrogen within the system; however, longer-term trials are necessary to determine whether this nitrogen retention is translated into improved sea cucumber biomass yields. Whether this truly constitutes a remediation process is open for debate as there remains the risk that any increased nitrogen retention may be temporary, with any subsequent release potentially raising the eutrophication risk. Longer and larger-scale trials are required before this approach may be validated with the complexities of the in-system nitrogen cycle being fully understood.

  9. A Natural Light/Dark Cycle Regulation of Carbon-Nitrogen Metabolism and Gene Expression in Rice Shoots.

    Science.gov (United States)

    Li, Haixing; Liang, Zhijun; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2016-01-01

    Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites, and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00, and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate, and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism, and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention, and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799) were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant growth and

  10. Carbon sequestration and Jerusalem artichoke biomass under nitrogen applications in coastal saline zone in the northern region of Jiangsu, China.

    Science.gov (United States)

    Niu, Li; Manxia, Chen; Xiumei, Gao; Xiaohua, Long; Hongbo, Shao; Zhaopu, Liu; Zed, Rengel

    2016-10-15

    Agriculture is an important source of greenhouse gases, but can also be a significant sink. Nitrogen fertilization is effective in increasing agricultural production and carbon storage. We explored the effects of different rates of nitrogen fertilization on biomass, carbon density, and carbon sequestration in fields under the cultivation of Jerusalem artichoke as well as in soil in a coastal saline zone for two years. Five nitrogen fertilization rates were tested (in guream(-2)): 4 (N1), 8 (N2), 12 (N3), 16 (N4), and 0 (control, CK). The biomass of different organs of Jerusalem artichoke during the growth cycle was significantly higher in N2 than the other treatments. Under different nitrogen treatments, carbon density in organs of Jerusalem artichoke ranged from 336 to 419gCkg(-1). Carbon sequestration in Jerusalem artichoke was higher in treatments with nitrogen fertilization compared to the CK treatment. The highest carbon sequestration was found in the N2 treatment. Soil carbon content was higher in the 0-10cm than 10-20cm layer, with nitrogen fertilization increasing carbon content in both soil layers. The highest soil carbon sequestration was measured in the N2 treatment. Carbon sequestration in both soil and Jerusalem artichoke residue was increased by nitrogen fertilization depending on the rates in the coastal saline zone studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Extraction of transplutonium elements from carbonate solutions by alkylpyrocatechol

    International Nuclear Information System (INIS)

    Karalova, Z.K.; Myasoedov, B.F.; Rodionova, L.M.; Kuznetsova, V.S.

    1983-01-01

    Extraction of americium, berkelium as well as Ce, Eu, Th, U, Zr, Cs, Fe with solution of 4(α, α-dioctylethyl)pyrocatechol (DOP) in toluene from carbonate solutions to determine conditions of their separation has been studied. It is established that americium extraction is quite sensitive to the changes of potassium carbonate concentration. The maximum extraction of americium (R >90%) is observed in the case of 0.1-0.5 mol/l of K 2 CO 3 solutions and the minimum one (R=2.5%) - in the case of 8 mol/l K 2 CO 3 . Americium extraction increases sharply when sodium hydroxide is introduced in carbonate solutions. It is shown that varying sodium hydroxide concentration it is possible to achieve qualitative extraction of americium even from saturated solution of potassium carbonate. Reextraction of TPE is easily realized with 3 mol/l HCl solution. The system K 2 CO 3 (KOH)-DOP proved to be perspective for Am separation from Bk, Ce, Cs, actinoid elements as well as from Fe

  12. On the linkages between the global carbon-nitrogen-phosphorus cycles

    Science.gov (United States)

    Tanaka, Katsumasa; Mackenzie, Fred; Bouchez, Julien; Knutti, Reto

    2013-04-01

    State-of-the-art earth system models used for long-term climate projections are becoming ever more complex in terms of not only spatial resolution but also the number of processes. Biogeochemical processes are beginning to be incorporated into these models. The motivation of this study is to quantify how climate projections are influenced by biogeochemical feedbacks. In the climate modeling community, it is virtually accepted that climate-Carbon (C) cycle feedbacks accelerate the future warming (Cox et al. 2000; Friedlingstein et al. 2006). It has been demonstrated that the Nitrogen (N) cycle suppresses climate-C cycle feedbacks (Thornton et al. 2009). On the contrary, biogeochemical studies show that the coupled C-N-Phosphorus (P) cycles are intimately interlinked via biosphere and the N-P cycles amplify C cycle feedbacks (Ver et al. 1999). The question as to whether the N-P cycles enhance or attenuate C cycle feedbacks is debated and has a significant implication for projections of future climate. We delve into this problem by using the Terrestrial-Ocean-aTmosphere Ecosystem Model 3 (TOTEM3), a globally-aggregated C-N-P cycle box model. TOTEM3 is a process-based model that describes the biogeochemical reactions and physical transports involving these elements in the four domains of the Earth system: land, atmosphere, coastal ocean, and open ocean. TOTEM3 is a successor of earlier TOTEM models (Ver et al. 1999; Mackenzie et al. 2011). In our presentation, we provide an overview of fundamental features and behaviors of TOTEM3 such as the mass balance at the steady state and the relaxation time scales to various types of perturbation. We also show preliminary results to investigate how the N-P cycles influence the behavior of the C cycle. References Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh

  13. Effects of nitrogen and water addition on trace element stoichiometry in five grassland species

    DEFF Research Database (Denmark)

    Cai, Jiangping; Weiner, Jacob; Wang, Ruzhen

    2017-01-01

    A 9-year manipulative experiment with nitrogen (N) and water addition, simulating increasing N deposition and changing precipitation regime, was conducted to investigate the bioavailability of trace elements, iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in soil, and their uptake by plants...... in the organism and the chemical concentration in the growth substrate) and foliar Fe:Mn ratio in each plant was calculated. Our results showed that soil available Fe, Mn and Cu concentrations increased under N addition and were negatively correlated with both soil pH and cation exchange capacity. Water addition...... under the two environmental change factors in a semi-arid grassland of Inner Mongolia. We measured concentrations of trace elements in soil and in foliage of five common herbaceous species including 3 forbs and 2 grasses. In addition, bioaccumulation factors (BAF, the ratio of the chemical concentration...

  14. Carbon Nitrogen Co-Doped P25: Parameter Study on Photodegradation of Reactive Red 4

    Directory of Open Access Journals (Sweden)

    Azami M. S.

    2016-01-01

    Full Text Available Photocatalytic degradation rate of reactive red 4 (RR4 using carbon coated nitrogen doped TiO2 (C N co-doped TiO2 in photocatalysis process is main goal on this research. The main operating the parameters such as effect of initial dye concentration, catalyst loading, aeration flow rate and initial pH on degradation of RR4 under 45 W fluorescent lamp was investigated. photocatalytic activity of RR4 dye decreased with increasing RR4 dye concentration. The optimum loading is around 0.04 g and optimum aeration rate is about 25 mL min-1 of C N co-doped TiO2. Effect of pH was conducted based on the optimum loading and conclude that the photocatalytic degradation of RR4 became faster at pH 2 - 7. For the future work, the modification of doping with others element like non-metal or metal with C N co-doped TiO2 can be enhanced toward the higher efficieny of photodegradation under visible light. Moreover, the immobilized technique can be used in future to overcome the difficulty of filtration on suspension.

  15. Application of fast pyrolysis biochar to a loamy soil - Effects on carbon and nitrogen dynamics and potential for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bruun, E W

    2011-05-15

    Thermal decomposition of biomass in an oxygen-free environment (pyrolysis) produces bio-oil, syngas, and char. All three products can be used to generate energy, but an emerging new use of the recalcitrant carbon-rich char (biochar) is to apply it to the soil in order to enhance soil fertility and at the same time mitigate climate change by sequestering carbon in the soil. In general, the inherent physicochemical characteristics of biochars make these materials attractive agronomic soil conditioners. However, different pyrolysis technologies exist, i.e. slow pyrolysis, fast pyrolysis, and full gasification systems, and each of these influence the biochar quality differently. As of yet, there is only limited knowledge on the effect of applying fast pyrolysis biochar (FP-biochar) to soil. This PhD project provides new insights into the short-term impacts of adding FP-biochar to soil on the greenhouse gas (GHG) emissions and on soil carbon and nitrogen dynamics. The FP-biochars investigated in the thesis were generated at different reactor temperatures by fast pyrolysis of wheat straw employing a Pyrolysis Centrifuge Reactor (PCR). The carbohydrate content ranged from more than 35 % in FP-biochars made at a low reactor temperature (475 deg. C) down to 3 % in FP-biochars made at high temperatures (575 deg. C). The relative amount of carbohydrates in the FP-biochar was found to be correlated to the short-term degradation rates of the FP-biochars when applied to soil. Fast and slow pyrolysis of wheat straw resulted in two different biochar types with each their distinct physical structures and porosities, carbohydrate contents, particle sizes, pH values, BET surface areas, and elemental compositions. These different physicochemical properties obviously have different impacts on soil processes, which underscores that results obtained from soil studies using slow pyrolysis biochars (SP-biochar) are not necessarily applicable for FP-biochars. For example, the incorporation

  16. Application of fast pyrolysis biochar to a loamy soil - Effects on carbon and nitrogen dynamics and potential for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bruun, E.W.

    2011-05-15

    Thermal decomposition of biomass in an oxygen-free environment (pyrolysis) produces bio-oil, syngas, and char. All three products can be used to generate energy, but an emerging new use of the recalcitrant carbon-rich char (biochar) is to apply it to the soil in order to enhance soil fertility and at the same time mitigate climate change by sequestering carbon in the soil. In general, the inherent physicochemical characteristics of biochars make these materials attractive agronomic soil conditioners. However, different pyrolysis technologies exist, i.e. slow pyrolysis, fast pyrolysis, and full gasification systems, and each of these influence the biochar quality differently. As of yet, there is only limited knowledge on the effect of applying fast pyrolysis biochar (FP-biochar) to soil. This PhD project provides new insights into the short-term impacts of adding FP-biochar to soil on the greenhouse gas (GHG) emissions and on soil carbon and nitrogen dynamics. The FP-biochars investigated in the thesis were generated at different reactor temperatures by fast pyrolysis of wheat straw employing a Pyrolysis Centrifuge Reactor (PCR). The carbohydrate content ranged from more than 35 % in FP-biochars made at a low reactor temperature (475 deg. C) down to 3 % in FP-biochars made at high temperatures (575 deg. C). The relative amount of carbohydrates in the FP-biochar was found to be correlated to the short-term degradation rates of the FP-biochars when applied to soil. Fast and slow pyrolysis of wheat straw resulted in two different biochar types with each their distinct physical structures and porosities, carbohydrate contents, particle sizes, pH values, BET surface areas, and elemental compositions. These different physicochemical properties obviously have different impacts on soil processes, which underscores that results obtained from soil studies using slow pyrolysis biochars (SP-biochar) are not necessarily applicable for FP-biochars. For example, the incorporation

  17. A co-confined carbonization approach to aligned nitrogen-doped mesoporous carbon nanofibers and its application as an adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aibing [College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018 (China); Liu, Chao [College of Gemmology and Material Technics, Shijiazhuang University of Economic, Huaian Road 136, Shijiazhuang 050031 (China); Yu, Yifeng; Hu, Yongqi; Lv, Haijun; Zhang, Yue; Shen, Shufeng [College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018 (China); Zhang, Jian [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2014-07-15

    Highlights: • MCNFs were synthesized by a co-confined carbonization method. • The diameter size of MCNFs with bimodal mesoporous structure can be modulated. • The obtained MCNFs manifest better adsorption capacity for SO{sub 2}, CO{sub 2} and Cd{sup 2+}. - Abstract: Nitrogen-doped carbon nanofibers (MCNFs) with an aligned mesoporous structure were synthesized by a co-confined carbonization method using anodic aluminum oxide (AAO) membrane and tetraethylorthosilicate (TEOS) as co-confined templates and ionic liquids as the precursor. The as-synthesized MCNFs with the diameter of 80–120 nm possessed a bulk nitrogen content of 5.3 wt% and bimodal mesoporous structure. The nitrogen atoms were mostly bound to the graphitic network in two forms, i.e. pyridinic and pyrrolic nitrogen, providing adsorption sites for acidic gases like SO{sub 2} and CO{sub 2}. Cyclic experiments revealed a considerable stability of MCNFs over 20 runs of SO{sub 2} adsorption and 15 runs for CO{sub 2} adsorption. The MCNFs also have a preferable adsorption performance for Cd{sup 2+}.

  18. A co-confined carbonization approach to aligned nitrogen-doped mesoporous carbon nanofibers and its application as an adsorbent

    International Nuclear Information System (INIS)

    Chen, Aibing; Liu, Chao; Yu, Yifeng; Hu, Yongqi; Lv, Haijun; Zhang, Yue; Shen, Shufeng; Zhang, Jian

    2014-01-01

    Highlights: • MCNFs were synthesized by a co-confined carbonization method. • The diameter size of MCNFs with bimodal mesoporous structure can be modulated. • The obtained MCNFs manifest better adsorption capacity for SO 2 , CO 2 and Cd 2+ . - Abstract: Nitrogen-doped carbon nanofibers (MCNFs) with an aligned mesoporous structure were synthesized by a co-confined carbonization method using anodic aluminum oxide (AAO) membrane and tetraethylorthosilicate (TEOS) as co-confined templates and ionic liquids as the precursor. The as-synthesized MCNFs with the diameter of 80–120 nm possessed a bulk nitrogen content of 5.3 wt% and bimodal mesoporous structure. The nitrogen atoms were mostly bound to the graphitic network in two forms, i.e. pyridinic and pyrrolic nitrogen, providing adsorption sites for acidic gases like SO 2 and CO 2 . Cyclic experiments revealed a considerable stability of MCNFs over 20 runs of SO 2 adsorption and 15 runs for CO 2 adsorption. The MCNFs also have a preferable adsorption performance for Cd 2+

  19. Porous Hierarchical Nitrogen-doped Carbon Coated ZnFe_2O_4 Composites as High Performance Anode Materials for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Yue, Hongyun; Wang, Qiuxian; Shi, Zhenpu; Ma, Chao; Ding, Yanmin; Huo, Ningning; Zhang, Jun; Yang, Shuting

    2015-01-01

    Porous hierarchical and nitrogen-doped carbon coated ZnFe_2O_4 (ZnFe_2O_4@NC) was obtained by combustion method and unique carbon coating technology. Gum Arabic was firstly introduced in the carbon coating process as an additive, which played an important role to control the uniformity of carbon coating layer. The nitrogen-doped carbon layer was obtained through the pyrolysis of glycine. The elemental composition and content of the nitrogen-doped carbon in composites were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS) and thermal gravimetric analysis (TGA). The galvanostatic charge/discharge cycling was used to test the electrochemical performance of ZnFe_2O_4@NC and pure ZnFe_2O_4. The sub-micro size ZnFe_2O_4@NC with unique porous structure showed an excellent electrochemical performance as an anode material, which was higher than that of pure ZnFe_2O_4. ZnFe_2O_4@NC could maintain the specific discharge capacity of 1477 mAh g"−"1 at 0.1 A g"−"1 after 100 cycles and 705 mAh g"−"1 at 1 A g"−"1 after 1000 cycles, respectively.

  20. Theoretical Investigation on Single-Wall Carbon Nanotubes Doped with Nitrogen, Pyridine-Like Nitrogen Defects, and Transition Metal Atoms

    Directory of Open Access Journals (Sweden)

    Michael Mananghaya

    2012-01-01

    Full Text Available This study addresses the inherent difficulty in synthesizing single-walled carbon nanotubes (SWCNTs with uniform chirality and well-defined electronic properties through the introduction of dopants, topological defects, and intercalation of metals. Depending on the desired application, one can modify the electronic and magnetic properties of SWCNTs through an appropriate introduction of imperfections. This scheme broadens the application areas of SWCNTs. Under this motivation, we present our ongoing investigations of the following models: (i (10, 0 and (5, 5 SWCNT doped with nitrogen (CNxNT, (ii (10, 0 and (5, 5 SWCNT with pyridine-like defects (3NV-CNxNT, (iii (10, 0 SWCNT with porphyrine-like defects (4ND-CNxNT. Models (ii and (iii were chemically functionalized with 14 transition metals (TMs: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, Ag, Pt and Au. Using the spin-unrestricted density functional theory (DFT, stable configurations, deformations, formation and binding energies, the effects of the doping concentration of nitrogen, pyridine-like and porphyrine-like defects on the electronic properties were all examined. Results reveal that the electronic properties of SWCNTs show strong dependence on the concentration and configuration of nitrogen impurities, its defects, and the TMs adsorbed.

  1. Polyol synthesis in Aspergillus niger : influence of oxygen availability, carbon and nitrogen sources on the metabolism

    DEFF Research Database (Denmark)

    Diano, Audrey; Bekker-Jensen, S; Dynesen, Jens Østergaard

    2006-01-01

    Polyol production has been studied in Aspergillus niger under different conditions. Fermentations have been run using high concentration of glucose or xylose as carbon source and ammonium or nitrate as nitrogen source. The growth of biomass, as freely dispersed hyphae, led to an increase of medium...

  2. Novel porous carbon materials with ultrahigh nitrogen contents for selective CO 2 capture

    KAUST Repository

    Zhao, Yunfeng; Zhao, Lan; Yao, Kexin; Yang, Yang; Zhang, Qiang; Han, Yu

    2012-01-01

    Nitrogen-doped carbon materials were prepared by a nanocasting route using tri-continuous mesoporous silica IBN-9 as a hard template. Rationally choosing carbon precursors and carefully controlling activation conditions result in an optimized material denoted as IBN9-NC1-A, which possesses a very high nitrogen doping concentration (∼13 wt%) and a large surface area of 890 m 2 g -1 arising from micropores (<1 nm). It exhibits an excellent performance for CO 2 adsorption over a wide range of CO 2 pressures. Specifically, its equilibrium CO 2 adsorption capacity at 25 °C reaches up to 4.50 mmol g -1 at 1 bar and 10.53 mmol g -1 at 8 bar. In particular, it shows a much higher CO 2 uptake at low pressure (e.g. 1.75 mmol g -1 at 25 °C and 0.2 bar) than any reported carbon-based materials, owing to its unprecedented nitrogen doping level. The high nitrogen contents also give rise to significantly enhanced CO 2/N 2 selectivities (up to 42), which combined with the high adsorption capacities, make these new carbon materials promising sorbents for selective CO 2 capture from power plant flue gas and other relevant applications. © 2012 The Royal Society of Chemistry.

  3. Carbon, Nitrogen and Phosphorus Tranformations are Related to Age of a Constructe Wetland

    Czech Academy of Sciences Publication Activity Database

    Zemanová, K.; Picek, T.; Dušek, Jiří; Edwards, K.; Šantrůčková, H.

    2010-01-01

    Roč. 207, 1-4 (2010), s. 39-48 ISSN 0049-6979 Institutional research plan: CEZ:AV0Z60870520 Keywords : constucted wetlands * carbon * nitrogen * phosphorus * mineralization * microbial processes * greenhouse gasses Subject RIV: EH - Ecology, Behaviour Impact factor: 1.765, year: 2010 http://www.springerlink.com/content/l3g88621603934r0/

  4. Effects of harvest on carbon and nitrogen dynamics in a Pacific Northwest forest catchment

    Science.gov (United States)

    We used a new ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest on catchment carbon and nitrogen dynamics. We applied the model to a 10 ha headwater catchment in the western Oregon Cascade Range where t...

  5. Burrowing herbivores alter soil carbon and nitrogen dynamics in a semi-arid ecosystem, Argentina

    Science.gov (United States)

    Kenneth L. Clark; Lyn C. Branch; Jose L. Hierro; Diego Villarreal

    2016-01-01

    Activities of burrowing herbivores, including movement of soil and litter and deposition of waste material, can alter the distribution of labile carbon (C) and nitrogen (N) in soil, affecting spatial patterning of nutrient dynamics in ecosystems where they are abundant. Their role in ecosystem processes in surface soil has been studied extensively, but effects of...

  6. Carbon respiration and nitrogen dynamics in Corsican pine litter amended with aluminium and tannins

    NARCIS (Netherlands)

    Kraal, P.; Nierop, K.G.J.; Kaal, J.; Tietema, A.

    2009-01-01

    We investigated the carbon (C) mineralisation and nitrogen (N) dynamics in litter from a Corsican pine forest in response to individual and combined additions of aluminium (M), condensed tannin (extracted from fresh Corsican pine needles) and hydrolysable tannin (commercial tannic acid). Production

  7. Studies on organic carbon, nitrogen and phosphorous in the sediments of Mandovi Estuary, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Nasnolkar, C.M.; Shirodkar, P.V.; Singbal, S.Y.S.

    indicated a significant linear variation with clay and silt. The organic carbon varies from 1.04 to 32.77 mg.g sup(-1) and the total nitrogen and total phosphorous varies from 3.81 to 32.71 mg.g sup(-1) and from 0.46 to 6.74 mg.g sup(-1) respectively. A...

  8. Carbon and Nitrogen Pools and Fluxes in Adjacent Mature Norway Spruce and European Beech Forests

    Czech Academy of Sciences Publication Activity Database

    Oulehle, Filip; Růžek, M.; Tahovská, K.; Bárta, J.; Myška, O.

    2016-01-01

    Roč. 7, č. 11 (2016), č. článku 282. ISSN 1999-4907 Institutional support: RVO:67179843 Keywords : Fagus sylvatica * Picea abies * carbon * nitrogen * budget * respiration * productivity Subject RIV: EH - Ecology, Behaviour Impact factor: 1.951, year: 2016

  9. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests

    Science.gov (United States)

    Daniela F. Cusack; Whendee L. Silver; Margaret S. Torn; William H. McDowell

    2011-01-01

    Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and...

  10. Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest

    Science.gov (United States)

    Leslie A. Boby; Edward A.G. Schuur; Michelle C. Mack; David Verbyla; Jill F. Johnstone

    2010-01-01

    The boreal region stores a large proportion of the world's terrestrial carbon (C) and is subject to high-intensity, stand-replacing wildfires that release C and nitrogen (N) stored in biomass and soils through combustion. While severity and extent of fires drives overall emissions, methods for accurately estimating fire severity are poorly tested in this unique...

  11. Carbon and nitrogen flows through the benthic food web of a photic subtidal sandy sediment

    NARCIS (Netherlands)

    Evrard, V.P.E.; Soetaert, K.E.R.; Heip, C.H.R.; Huettel, M.; Xenopoulos, M.A.; Middelburg, J.J.

    2010-01-01

    Carbon and nitrogen flows within the food web of a subtidal sandy sediment were studied using stable isotope natural abundances and tracer addition. Natural abundances of 13C and 15N stable isotopes of the consumers and their potential benthic and pelagic resources were measured. δ13C data revealed

  12. Diet influences rates of carbon and nitrogen mineralization from decomposing grasshopper frass and cadavers

    Science.gov (United States)

    Insect herbivory can produce a pulse of mineral nitrogen (N) in soil from the decomposition of frass and cadavers. In this study we examined how diet quality affects rates of N and carbon (C) mineralization from grasshopper frass and cadavers. Frass was collected from grasshoppers fed natural or mer...

  13. Phase Equilibria of Three Binary Mixtures: Methanethiol + Methane, Methanethiol + Nitrogen, and Methanethiol + Carbon Dioxide

    DEFF Research Database (Denmark)

    Awan, Javeed; Tsivintzelis, Ioannis; Coquelet, Christophe

    2012-01-01

    New vapor–liquid equilibrium (VLE) data for methanethiol (MM) + methane (CH4), methanethiol (MM) + nitrogen (N2), and methanethiol (MM) + carbon dioxide (CO2) is reported for temperatures of (304, 334, and 364) K in the pressure range (1 to 8) MPa. A “static–analytic” method was used for performing...

  14. Nitrogen, phosphorus and carbon excretion and losses in growing pigs fed Danish or Asian diets

    DEFF Research Database (Denmark)

    Prapaspongsa, Trakarn; Vu, Van Thi Khanh; Poulsen, Hanne Damgaard

    2008-01-01

    The objectives of this study were to determine inputs and outputs of nitrogen (N), phosphorus (P) and carbon (C) and to estimate the nutrient losses during housing and storage in order to address these important parts of the whole manure management systems in pigs fed different diets....

  15. Developing Ecological Models on Carbon and Nitrogen in Secondary Facultative Ponds

    Directory of Open Access Journals (Sweden)

    Aponte-Reyes Alexander

    2014-07-01

    Full Text Available Ecological models formulated for TOC, CO2, NH4+, NO3- and NTK, based in literature reviewed and field work were obtained monitoring three facultative secondary stabilization ponds, FSSP, pilots: conventional pond, CP, baffled pond, BP, and baffled-meshed pond, BMP. Models were sensitive to flow inlet, solar radiation, pH and oxygen content; the sensitive parameters in Carbon Model were KCOT Ba, umax Ba, umax Al, K1OX, VAl, R1DCH4, YBh. The sensitive parameters in the Nitrogen model were KCOT Ba, umax Ba, umax Al, VAl, KOPH, KOPA, r4An. The test t–paired showed a good simulating of Carbon model refers to TOC in FSSP; on the other side, the Nitrogen model showed a good simulating of NH4+. Different topological models modify ecosystem ecology forcing different transformation pathways of Nitrogen; equal transformations of the Carbon BMP topology could be achieved using lower volumes, however, a calibration for a new model would be required. Carbon and Nitrogen models developed could be coupled to hydrodynamics models for better modeling of FSSP.

  16. The ternary Fe-C-N system: Homogeneous distributions of nitrogen and carbon

    DEFF Research Database (Denmark)

    Brink, Bastian; Ståhl, Kenny; Christiansen, Thomas Lundin

    2017-01-01

    of the nitriding and carburizing potentials, tailored nitrogen and carbon contents can be achieved, which allows assessment of a phase stability diagram for the Fe-N-C system, for which available experimental data is limited. Thermal decomposition sequences were established for the various iron carbides and (carbo...

  17. Carbon and nitrogen pools in oak-hickory forests of varying productivity

    Science.gov (United States)

    Donald J. Kaczmarek; Karyn S. Rodkey; Robert T. Reber; Phillip E. Pope; Felix, Jr. Ponder

    1995-01-01

    Carbon (C) and nitrogen (N) storage capacities are critical issues facing forest ecosystem management in the face of potential global climate change. The amount of C sequestered by forest ecosystems can be a significant sink for increasing atmospheric CO2 levels. N availability can interact with other environmental factors such as water...

  18. ANALYTICAL EMPLOYMENT OF STABLE ISOTOPES OF CARBON, NITROGEN, OXYGEN AND HYDROGEN FOR FOOD AUTHENTICATION

    Directory of Open Access Journals (Sweden)

    E. Novelli

    2011-04-01

    Full Text Available Stable isotopes of carbon, nitrogen, oxygen and hydrogen were used for analytical purposes for the discrimination of the type of production (farming vs. fishing in the case of sea bass and for geographical origin in the case of milk. These results corroborate similar experimental evidences and confirm the potential of this analytical tool to support of food traceability.

  19. Characterization of carbon, nitrogen, oxygen and refractory metals in binary and ternary silicon-based films using ion beam methods; Caracterisation des elements: carbone, azote, oxygene et metal refractaire dans des depots binaires et ternaires a base de silicium par methodes d'analyse utilisant les faisceaux d'ions

    Energy Technology Data Exchange (ETDEWEB)

    Somatri-Bouamrane, R. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire]|[Universite Claude Bernard, 69 - Lyon (France)

    1996-12-19

    Ion beam methods (non Rutherford backscattering, nuclear reactions) have been carried out in order to characterize silicon-based films. The cross sections for the reactions {sup 12}C({alpha},{alpha}), {sup 14}N({alpha},{alpha}), {sup 16}O({alpha},{alpha}), {sup 28}Si({alpha},{alpha}) and {sup 14}N({alpha},p) have been measured within 2 and 7 MeV. CVD beta SiC films could be analyzed and the interface between silicon carbide and the (100) silicon substrate was studied. The epitaxial growth of the beta SiC film could be modelled by comparing the results obtained with ion beam analysis, infrared spectroscopy and electron microscopy. Moreover, the stoichiometry of low pressure CVD Me-Si-N (Me=Re, W, Ti, Ta) ternary systems was studied. The evolution of the nitrogen content in W-Si-N systems allowed to study their stability with respect to the annealing conditions. (N.T.)

  20. Microbial responses to carbon and nitrogen supplementation in an Antarctic dry valley soil

    DEFF Research Database (Denmark)

    Dennis, P. G.; Sparrow, A. D.; Gregorich, E. G.

    2013-01-01

    The soils of the McMurdo Dry Valleys are exposed to extremely dry and cold conditions. Nevertheless, they contain active biological communities that contribute to the biogeochemical processes. We have used ester-linked fatty acid (ELFA) analysis to investigate the effects of additions of carbon...... and nitrogen in glucose and ammonium chloride, respectively, on the soil microbial community in a field experiment lasting three years in the Garwood Valley. In the control treatment, the total ELFA concentration was small by comparison with temperate soils, but very large when expressed relative to the soil...... organic carbon concentration, indicating efficient conversion of soil organic carbon into microbial biomass and rapid turnover of soil organic carbon. The ELFA concentrations increased significantly in response to carbon additions, indicating that carbon supply was the main constraint to microbial...

  1. The first investigation of Wilms' tumour atomic structure-nitrogen and carbon isotopic composition as a novel biomarker for the most individual approach in cancer disease

    Science.gov (United States)

    Taran, Katarzyna; Frączek, Tomasz; Sikora-Szubert, Anita; Sitkiewicz, Anna; Młynarski, Wojciech; Kobos, Józef; Paneth, Piotr

    2016-01-01

    The paper describes a novel approach to investigating Wilms' tumour (nephroblastoma) biology at the atomic level. Isotope Ratio Mass Spectrometry (IRMS) was used to directly assess the isotope ratios of nitrogen and carbon in 84 Wilms' tumour tissue samples from 28 cases representing the histological spectrum of nephroblastoma. Marked differences in nitrogen and carbon isotope ratios were found between nephroblastoma histological types and along the course of cancer disease, with a breakout in isotope ratio of the examined elements in tumour tissue found between stages 2 and 3. Different isotopic compositions with regard to nitrogen and carbon content were observed in blastemal Wilms' tumour, with and without focal anaplasia, and in poorly- and well-differentiated epithelial nephroblastoma. This first assessment of nitrogen and carbon isotope ratio reveals the previously unknown part of Wilms' tumour biology and represents a potential novel biomarker, allowing for a highly individual approach to treating cancer. Furthermore, this method of estimating isotopic composition appears to be the most sensitive tool yet for cancer tissue evaluation, and a valuable complement to established cancer study methods with prospective clinical impact. PMID:27732932

  2. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    Science.gov (United States)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  3. The Biogeochemistry of Bioenergy Landscapes: Carbon, Nitrogen, and Water Considerations

    Science.gov (United States)

    The biogeochemical liabilities of grain-based crop production for bioenergy are no different from those of grain-based food production: excessive nitrate leakage, soil carbon and phosphorus loss, nitrous oxide production, and attenuated methane uptake. Contingent problems are well-known, increasingl...

  4. Modeling carbon and nitrogen biogeochemistry in forest ecosystems

    Science.gov (United States)

    Changsheng Li; Carl Trettin; Ge Sun; Steve McNulty; Klaus Butterbach-Bahl

    2005-01-01

    A forest biogeochemical model, Forest-DNDC, was developed to quantify carbon sequestration in and trace gas emissions from forest ecosystems. Forest-DNDC was constructed by integrating two existing moels, PnET and DNDC, with several new features including nitrification, forest litter layer, soil freezing and thawing etc, PnET is a forest physiological model predicting...

  5. Carbon and nitrogen burial in a plateau lake during eutrophication and phytoplankton blooms.

    Science.gov (United States)

    Huang, Changchun; Zhang, Linlin; Li, Yunmei; Lin, Chen; Huang, Tao; Zhang, Mingli; Zhu, A-Xing; Yang, Hao; Wang, Xiaolei

    2018-03-01

    Organic carbon (OC) buried in lake sediment is an important component of the global carbon cycle. The impact of eutrophication on OC burial in lakes should be addressed due to worldwide lake eutrophication. Fourteen 210 Pb- and 137 Cs-dated sediment cores taken in Dianchi Lake (China) in August 2006 (seven cores) and July 2014 (seven cores) were analyzed to evaluate the response of the organic carbon accumulation rate (OCAR) to eutrophication and algal blooms over the past hundred years. The mean value of OCAR before eutrophication occurred in 1979, 16.62±7.53 (mean value±standard deviation), increased to 54.33±27.29gm -2 yr -1 after eutrophication. It further increased to 61.98±28.94gm -2 yr -1 after algal blooms occurred (1989). The accumulation rate of organic nitrogen (ONAR) is coupled with OCAR. The high loss rate of OC and organic nitrogen (ON) leads to a long-term burial efficiency of only 10% and 5% of OC and ON. However, this efficiency can still lead to an increase in OCAR by a factor of 4.55 during algal blooms in Dianchi Lake. Dianchi Lake stored 1.26±0.32 Tg carbon and 0.071±0.018 Tg nitrogen, including 0.94±0.23 Tg OC and 0.32±0.14 Tg inorganic carbon, 0.066±0.018 Tg ON, 0.002±0.001 Tg nitrate nitrogen (NO 3 -N) and 0.003±0.001 Tg ammonium nitrogen (NH 4 -N) between 1900 and 2012. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon cloth

    International Nuclear Information System (INIS)

    Wang, C.-H.; Shih, H.-C.; Tsai, Y.-T.; Du, H.-Y.; Chen, L.-C.; Chen, K.-H.

    2006-01-01

    The microstructure and electrochemical activity of the Pt-Ru supported by nitrogen-containing carbon nanotubes (CN x NTs) directly grown on the carbon cloth have been investigated. The CN x NTs directly grown on the carbon cloth (CN x NTs-carbon cloth composite electrode) were synthesized using microwave-plasma-enhanced chemical vapour deposition first and then use as the template to support the Pt-Ru nanoclusters subsequently sputtered on. The ferricyanide/ferrocyanide redox reaction in cyclic voltammetry (CV) measurements showed a faster electron transfer on the CN x NTs-carbon cloth composite electrode than the one with carbon cloth alone. Comparing their methanol oxidation abilities, it is found that the Pt-Ru nanoclusters supported by the CN x NTs-carbon cloth composite electrode have considerably higher electrocatalytic activity than the carbon cloth counterpart. This result suggests high performance of the CN x NTs-carbon cloth composite electrode, and demonstrates its suitability for direct methanol fuel cell applications

  7. High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon cloth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.-H. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Shih, H.-C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Institue of Materials Science and Nano Technology, Chinese Culture University, Taipei, Taiwan (China); Tsai, Y.-T. [Institue of Materials Science and Nano Technology, Chinese Culture University, Taipei, Taiwan (China); Du, H.-Y. [Institue of Materials Science and Nano Technology, Chinese Culture University, Taipei, Taiwan (China); Chen, L.-C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan (China); Chen, K.-H. [Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan (China) and Institue of Atomic and Molecular Science, Academia Sinica, Taipei, Taiwan (China)]. E-mail: chenkh@pub.iams.sinica.edu.tw

    2006-12-01

    The microstructure and electrochemical activity of the Pt-Ru supported by nitrogen-containing carbon nanotubes (CN {sub x} NTs) directly grown on the carbon cloth have been investigated. The CN {sub x} NTs directly grown on the carbon cloth (CN {sub x} NTs-carbon cloth composite electrode) were synthesized using microwave-plasma-enhanced chemical vapour deposition first and then use as the template to support the Pt-Ru nanoclusters subsequently sputtered on. The ferricyanide/ferrocyanide redox reaction in cyclic voltammetry (CV) measurements showed a faster electron transfer on the CN {sub x} NTs-carbon cloth composite electrode than the one with carbon cloth alone. Comparing their methanol oxidation abilities, it is found that the Pt-Ru nanoclusters supported by the CN {sub x} NTs-carbon cloth composite electrode have considerably higher electrocatalytic activity than the carbon cloth counterpart. This result suggests high performance of the CN {sub x} NTs-carbon cloth composite electrode, and demonstrates its suitability for direct methanol fuel cell applications.

  8. Nitrogen-doped carbon capsules via poly(ionic liquid)-based layer-by-layer assembly.

    Science.gov (United States)

    Zhao, Qiang; Fellinger, Tim-Patrick; Antonietti, Markus; Yuan, Jiayin

    2012-07-13

    Layer-by-layer (LbL) assembly technique is applied for the first time for the preparation of nitrogen-doped carbon capsules. This approach uses colloid silica as template and two polymeric deposition components, that is, poly(ammonium acrylate) and a poly (ionic liquid) poly(3-cyanomethyl-1-vinylimidazolium bromide), which acts as both the carbon precursor and nitrogen source. Nitrogen-doped carbon capsules are prepared successfully by polymer wrapping, subsequent carbonization and template removal. The as-synthesized carbon capsules contain ≈7 wt% of nitrogen and have a structured specific surface area of 423 m(2) g(-1). Their application as supercapacitor has been briefly introduced. This work proves that LbL assembly methodology is available for preparing carbon structures of complex morphology. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors

    Science.gov (United States)

    Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao

    2015-10-01

    Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m2 g-1 present high specific capacities of the 308 and 200 F g-1 in KOH electrolyte at current densities of 0.1 and 10 A g-1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g-1 at 0.1 A g-1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry.

  10. Nitrogen-Doped Carbon for Red Phosphorous Based Anode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiaoyang Li

    2018-01-01

    Full Text Available Serving as conductive matrix and stress buffer, the carbon matrix plays a pivotal role in enabling red phosphorus to be a promising anode material for high capacity lithium ion batteries and sodium ion batteries. In this paper, nitrogen-doping is proved to effective enhance the interface interaction between carbon and red phosphorus. In detail, the adsorption energy between phosphorus atoms and oxygen-containing functional groups on the carbon is significantly reduced by nitrogen doping, as verified by X-ray photoelectron spectroscopy. The adsorption mechanisms are further revealed on the basis of DFT (the first density functional theory calculations. The RPNC (red phosphorus/nitrogen-doped carbon composite material shows higher cycling stability and higher capacity than that of RPC (red phosphorus/carbon composite anode. After 100 cycles, the RPNC still keeps discharge capacity of 1453 mAh g−1 at the current density of 300 mA g−1 (the discharge capacity of RPC after 100 cycles is 1348 mAh g−1. Even at 1200 mA g−1, the RPNC composite still delivers a capacity of 1178 mAh g−1. This work provides insight information about the interface interactions between composite materials, as well as new technology develops high performance phosphorus based anode materials.

  11. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors

    Science.gov (United States)

    Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao

    2015-01-01

    Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m2 g−1 present high specific capacities of the 308 and 200 F g−1 in KOH electrolyte at current densities of 0.1 and 10 A g−1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g−1 at 0.1 A g−1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry. PMID:26472144

  12. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.

    Science.gov (United States)

    Tan, Yueming; Xu, Chaofa; Chen, Guangxu; Liu, Zhaohui; Ma, Ming; Xie, Qingji; Zheng, Nanfeng; Yao, Shouzhuo

    2013-03-01

    Synthesis of nitrogen-doped carbons with large surface area, high conductivity, and suitable pore size distribution is highly desirable for high-performance supercapacitor applications. Here, we report a novel protocol for template synthesis of ultrathin nitrogen-doped graphitic carbon nanocages (CNCs) derived from polyaniline (PANI) and their excellent capacitive properties. The synthesis of CNCs involves one-pot hydrothermal synthesis of Mn3O4@PANI core-shell nanoparticles, carbonization to produce carbon coated MnO nanoparticles, and then removal of the MnO cores by acidic treatment. The CNCs prepared at an optimum carbonization temperature of 800 °C (CNCs-800) have regular frameworks, moderate graphitization, high specific surface area, good mesoporosity, and appropriate N doping. The CNCs-800 show high specific capacitance (248 F g(-1) at 1.0 A g(-1)), excellent rate capability (88% and 76% capacitance retention at 10 and 100 A g(-1), respectively), and outstanding cycling stability (~95% capacitance retention after 5000 cycles) in 6 M KOH aqueous solution. The CNCs-800 can also exhibit great pseudocapacitance in 0.5 M H2SO4 aqueous solution besides the large electrochemical double-layer capacitance. The excellent capacitance performance coupled with the facile synthesis of ultrathin nitrogen-doped graphitic CNCs indicates their great application potential in supercapacitors.

  13. Non-platinum nanocatalyst on porous nitrogen-doped carbon fabricated by cathodic vacuum arc plasma technique

    Energy Technology Data Exchange (ETDEWEB)

    Sirirak, Reungruthai [Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sarakonsri, Thapanee, E-mail: tsarakonsri@gmail.com [Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Medhesuwakul, Min [Plasma & Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-11-30

    Highlights: • High surface area porous coral-like nitrogen-doped carbon (NC) and non-platinum nanocatalysts were fabricated on proton exchange membrane using the cathodic vacuum arc plasma (CVAP) technique. • It is a one-step catalysts preparation directly on nafion proton exchange membrane. This CVAP technique is the first new method that was applied in a polymer electrolyte membrane fuel cells (PEMFCs) catalysts preparation. • Due to these excellent characteristics of nitrogen-doped carbon, it is expected to exhibit a good catalyst supporter for PEMFC. • In addition, the Fe–NC catalysts fabricated via this CVAP technique are sphere-like nanoparticle and well disperse on coral-like NC film, which particularity exhibits that these prepared catalysts ought to be a good oxygen reduction reaction (ORR) catalyst for PEMFC. • This approach can be extended to the synthesis of other non-platinum ORR catalyst for broad range applications in energy conversion. - Abstract: Polymer electrolyte membrane fuel cells (PEMFCs) convert chemical energy directly into electrical energy where catalysts composing of non-noble transition metals, nitrogen, and carbon compounds are the most promising materials to replace the expensive platinum catalysts for oxygen reduction reaction (ORR). In this research, cathodic vacuum arc plasma (CVAP) technique was used to fabricate porous nitrogen doped carbon (NC) and non-platinum catalyst on porous NC (Fe–NC) directly on ion exchange membrane for being used as an ORR catalyst at the cathode. The porous NC layer was fabricated on silicon wafer at 0.05 mTorr, 0.1 mTorr, 0.5 mTorr, 1 mTorr, and 5 mTorr of nitrogen gas inlet. The AFM, and SEM images are observed to be regularly big with quite high hillocks and thin NC layers; these results indicate that the optimum process pressure of nitrogen gas inlet is 5 mTorr for porous NC fabrication. The SEM–EDS detects Fe, N, and C elements in the prepared catalysts, and the XRD pattern reviews

  14. Non-platinum nanocatalyst on porous nitrogen-doped carbon fabricated by cathodic vacuum arc plasma technique

    International Nuclear Information System (INIS)

    Sirirak, Reungruthai; Sarakonsri, Thapanee; Medhesuwakul, Min

    2015-01-01

    Highlights: • High surface area porous coral-like nitrogen-doped carbon (NC) and non-platinum nanocatalysts were fabricated on proton exchange membrane using the cathodic vacuum arc plasma (CVAP) technique. • It is a one-step catalysts preparation directly on nafion proton exchange membrane. This CVAP technique is the first new method that was applied in a polymer electrolyte membrane fuel cells (PEMFCs) catalysts preparation. • Due to these excellent characteristics of nitrogen-doped carbon, it is expected to exhibit a good catalyst supporter for PEMFC. • In addition, the Fe–NC catalysts fabricated via this CVAP technique are sphere-like nanoparticle and well disperse on coral-like NC film, which particularity exhibits that these prepared catalysts ought to be a good oxygen reduction reaction (ORR) catalyst for PEMFC. • This approach can be extended to the synthesis of other non-platinum ORR catalyst for broad range applications in energy conversion. - Abstract: Polymer electrolyte membrane fuel cells (PEMFCs) convert chemical energy directly into electrical energy where catalysts composing of non-noble transition metals, nitrogen, and carbon compounds are the most promising materials to replace the expensive platinum catalysts for oxygen reduction reaction (ORR). In this research, cathodic vacuum arc plasma (CVAP) technique was used to fabricate porous nitrogen doped carbon (NC) and non-platinum catalyst on porous NC (Fe–NC) directly on ion exchange membrane for being used as an ORR catalyst at the cathode. The porous NC layer was fabricated on silicon wafer at 0.05 mTorr, 0.1 mTorr, 0.5 mTorr, 1 mTorr, and 5 mTorr of nitrogen gas inlet. The AFM, and SEM images are observed to be regularly big with quite high hillocks and thin NC layers; these results indicate that the optimum process pressure of nitrogen gas inlet is 5 mTorr for porous NC fabrication. The SEM–EDS detects Fe, N, and C elements in the prepared catalysts, and the XRD pattern reviews

  15. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.

    Science.gov (United States)

    Chen, Li-Feng; Zhang, Xu-Dong; Liang, Hai-Wei; Kong, Mingguang; Guan, Qing-Fang; Chen, Ping; Wu, Zhen-Yu; Yu, Shu-Hong

    2012-08-28

    Supercapacitors (also known as ultracapacitors) are considered to be the most promising approach to meet the pressing requirements of energy storage. Supercapacitive electrode materials, which are closely related to the high-efficiency storage of energy, have provoked more interest. Herein, we present a high-capacity supercapacitor material based on the nitrogen-doped porous carbon nanofibers synthesized by carbonization of macroscopic-scale carbonaceous nanofibers (CNFs) coated with polypyrrole (CNFs@polypyrrole) at an appropriate temperature. The composite nanofibers exhibit a reversible specific capacitance of 202.0 F g(-1) at the current density of 1.0 A g(-1) in 6.0 mol L(-1) aqueous KOH electrolyte, meanwhile maintaining a high-class capacitance retention capability and a maximum power density of 89.57 kW kg(-1). This kind of nitrogen-doped carbon nanofiber represents an alternative promising candidate for an efficient electrode material for supercapacitors.

  16. Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli

    Science.gov (United States)

    2012-10-22

    optimally, balancing effectively the conversion of carbon into energy versus biomass . To investigate the link between the metabolism of different nutrients...diverse nutrient conditions, E. coli  grows nearly optimally, balancing effectively the  conversion  of carbon  into energy versus  biomass . Here we  show... enzymatic  connections, with kinetic parameters taken from the  literature or computationally  inferred  based on  the data  from Aim 1. As proposed  initially

  17. Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air.

    Science.gov (United States)

    Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin

    2016-04-08

    Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m²/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection.

  18. Carbon and nitrogen in Type 2 supernova diamonds

    Science.gov (United States)

    Clayton, Donald D.; Eleid, Mounib; Brown, Lawrence E.

    1993-03-01

    Abundant diamonds found in meteorites seem either to have condensed within supernova interiors during their expansions and coolings or to have been present around those explosions. Either alternative allows implantation of Xe-HL prior to interstellar mixing. A puzzling feature is the near normalcy of the carbon isotopes, considering that the only C-rich matter, the He-burning shell, is pure C-12 in that region. That last fact has caused many to associate supernova carbon with C-12 carbon, so that its SUNOCONS have been anticipated as very C-12-rich. We show that this expectation is misleading because the C-13-rich regions of Type 2's have been largely overlooked in this thinking. We here follow the idea that the diamonds nucleated in the C-12-rich He shell, the only C-rich site for nucleation, but then attached C-13-rich carbon during turbulent encounters with overlying C-13-rich matter. That is, the initial diamonds continued to grow during the same collisional encounters that cause the Xe-HL implantation. Instead of interacting with the small carbon mass having 13/12 = 0.2 in the upper He zone, however, we have calculated the remnants of the initial H-burning core, which left behind C-13-rich matter as it receded during core hydrogen burning. Howard et al. described why the velocity mixing would be essential to understanding the implantation of both the Xe-H and Xe-L components. Velocity mixing is now known to occur from the X-ray and gamma-ray light curves of supernova 1987A. Using the stellar evolution code developed at Goettingen, we calculated at Clemson the evolution of a grid of massive stars up to the beginning of core He burning. We paid attention to all H-burning reactions throughout the star, to the treatment of both convection and semiconvection, and to the recession of the outer boundary of the convective H-burning core as the star expands toward a larger redder state. This program was to generate a careful map of the CNO isotope distribution as He

  19. Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance.

    Science.gov (United States)

    Wang, Cunjing; Wu, Dapeng; Wang, Hongju; Gao, Zhiyong; Xu, Fang; Jiang, Kai

    2018-08-01

    A facile potassium chloride salt-locking technique combined with hydrothermal treatment on precursors was explored to prepare nitrogen-doped hierarchical porous carbon sheets in air from biomass. Benefiting from the effective synthesis strategy, the as-obtained carbon possesses a unique nitrogen-doped thin carbon sheet structure with abundant hierarchical pores and large specific surface areas of 1459 m 2  g -1 . The doped nitrogen in carbon framework has a positive effect on the electrochemical properties of the electrode material, the thin carbon sheet structure benefits for fast ion transfer, the abundant meso-pores provide convenient channels for rapid charge transportation, large specific surface area and lots of micro-pores guarantee sufficient ion-storage sites. Therefore, applied for supercapacitors, the carbon electrode material exhibits an outstanding specific capacitance of 451 F g -1 at 0.5 A g -1 in a three-electrode system. Moreover, the assembled symmetric supercapacitor based on two identical carbon electrodes also displays high specific capacitance of 309 F g -1 at 0.5 A g -1 , excellent rate capacity and remarkable cycling stability with 99.3% of the initial capacitance retention after 10,000 cycles at 5 A -1 . The synthesis strategy avoids expensive inert gas protection and the use of corrosive KOH and toxic ZnCl 2 activated reagents, representing a promising green route to design advanced carbon electrode materials from biomass for high-capacity supercapacitors. Copyright © 2018. Published by Elsevier Inc.

  20. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis

    Science.gov (United States)

    Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.

    2003-12-01

    Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.

  1. Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water.

    Science.gov (United States)

    Sumaraj; Padhye, Lokesh P

    2017-10-01

    Inorganic nitrogen contaminants (INC) (NH 4 + , NO 3 - , NO 2 - , NH 3 , NO, NO 2 , and N 2 O) pose a growing risk to the environment, and their remediation methods are highly sought after. Application of carbon materials (CM), such as biochar and activated carbon, to remediate INC from agricultural fields and wastewater treatment plants has gained a significant interest since past few years. Understanding the role of surface chemistry of CM in adsorption of various INC is highly critical to increase adsorption efficiency as well as to assess the long term impact of using these highly recalcitrant CM for remediation of INC. Critical reviews of adsorption studies related to INC have revealed that carbon surface chemistry (surface functional groups, pH, Eh, elemental composition, and mineral content) has significant influence on adsorption of INC. Compared to basic functional groups, oxygen containing surface functional groups have been found to be more influential for adsorption of INC. However, basic sites on carbon materials still play an important role in chemisorption of anionic INC. Apart from surface functional groups, pH, Eh and pH zpc of CM and elemental and mineral composition of its surface are important properties capable of altering INC interactions with CM. This review summarizes our current understanding of INC interactions with CM's surface through the known chemisorption mechanisms: electrostatic interaction, hydrogen bonding, electron donor-acceptor mechanism, hydrophobic and hydrophilic interaction, chemisorption aided by minerals, and interactions influenced by pH and elemental composition. Change in surface chemistry of CM in soil during aging is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples

    DEFF Research Database (Denmark)

    Otte, S.; Kuenen, JG; Nielsen, LP

    1999-01-01

    in combination with (15)N compounds and mass spectrometry and found that these Thioploca samples produce ammonium at a rate of 1 nmol min(-1) mg of protein(-1). Controls showed no significant activity. Sulfate was shown to be the end product of sulfide oxidation and was observed at a rate of 2 to 3 nmol min(-1......) mg of protein(-1). The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol......]acetate incorporation was 0.4 nmol min(-1) mg of protein(-1), which is equal to the CO(2) fixation rate, and no (14)CO(2) production was detected. These results suggest that Thioploca species are facultative chemolithoautotrophs capable of mixotrophic growth. Microautoradiography confirmed that Thioploca cells...

  3. In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High Performance Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Ju Won [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Texas A & M Univ., College Station, TX (United States); Sharma, Ronish [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meduri, Praveen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arey, Bruce W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schaef, Herbert T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lutkenhaus, Jodie [Texas A & M Univ., College Station, TX (United States); Lemmon, John P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, Praveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nandasiri, Manjula I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nune, Satish K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-30

    Electrochemical performance of the existing state-of-the art capacitors is not very high, key scientific barrier is that its charge storage mechanism wholly depends on adsorption of electrolyte on electrode. We present a novel method for the synthesis of nitrogen -doped porous carbons and address the drawback by precisely controlling composition and surface area. Nitrogen-doped porous carbon was synthesized using a self-sacrificial template technique without any additional nitrogen and carbon sources. They exhibited exceptionally high capacitance (239 Fg-1) due to additional pseudocapacitance originating from doped nitrogen. Cycling tests showed no obvious capacitance decay even after 10,000 cycles, which meets the requirement of commercial supercapacitors. Our method is simple and highly efficient for the production of large quantities of nitrogen-doped porous carbons.

  4. Biogeochemical reactive transport of carbon, nitrogen and iron in the hyporheic zone

    Science.gov (United States)

    Dwivedi, D.; Steefel, C. I.; Newcomer, M. E.; Arora, B.; Spycher, N.; Hammond, G. E.; Moulton, J. D.; Fox, P. M.; Nico, P. S.; Williams, K. H.; Dafflon, B.; Carroll, R. W. H.

    2017-12-01

    To understand how biogeochemical processes in the hyporheic zone influence carbon and nitrogen cycling as well as stream biogeochemistry, we developed a biotic and abiotic reaction network and integrated it into a reactive transport simulator - PFLOTRAN. Three-dimensional reactive flow and transport simulations were performed to describe the hyporheic exchange of fluxes from and within an intra-meander region encompassing two meanders of East River in the East Taylor watershed, Colorado. The objectives of this study were to quantify (1) the effect of transience on the export of carbon, nitrogen, and iron; and (2) the biogeochemical transformation of nitrogen and carbon species as a function of the residence time. The model was able to capture reasonably well the observed trends of nitrate and dissolved oxygen values that decreased as well as iron (Fe (II)) values that increased along the meander centerline away from the stream. Hyporheic flow paths create lateral redox zonation within intra-meander regions, which considerably impact nitrogen export into the stream system. Simulation results further demonstrated that low water conditions lead to higher levels of dissolved iron in groundwater, which (Fe (II)> 80%) is exported to the stream on the downstream side during high water conditions. An important conclusion from this study is that reactive transport models representing spatial and temporal heterogeneities are required to identify important factors that contribute to the redox gradients at riverine scales.

  5. Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors

    Science.gov (United States)

    Zhou, Ying; Wang, Dao-Long; Wang, Chun-Lei; Jin, Xin-Xin; Qiu, Jie-Shan

    2014-08-01

    Oxidized asphaltene (OA), a thermosetting material with plenty of functional groups, is synthesized from asphaltene (A) using HNO3/H2SO4 as the oxidizing agent. Boron, nitrogen co-doped porous carbon (BNC—OA) is prepared by carbonization of the mixture of boric acid and OA at 1173 K in an argon atmosphere. X-ray photoelectron spectroscopy (XPS) characterization reveals that the BNC—OA has a nitrogen content of 3.26 at.% and a boron content of 1.31 at.%, while its oxidation-free counterpart (BNC—SA) has a nitrogen content of 1.61 at.% and a boron content of 3.02 at.%. The specific surface area and total pore volume of BNC—OA are 1103 m2·g-1 and 0.921 cm3·g-1, respectively. At a current density of 0.1 A·g-1, the specific capacitance of BNC-OA is 335 F·g-1 and the capacitance retention can still reach 83% at 1 A·g-1. The analysis shows that the superior electrochemical performance of the BNC—OA is attributed to the pseudocapacitance behavior of surface heteroatom functional groups and an abundant pore-structure. Boron, nitrogen co-doped porous carbon is a promising electrode material for supercapacitors.

  6. Structural properties of nitrogenated amorphous carbon films: Influence of deposition temperature and radiofrequency discharge power

    International Nuclear Information System (INIS)

    Lazar, G.; Bouchet-Fabre, B.; Zellama, K.; Clin, M.; Ballutaud, D.; Godet, C.

    2008-01-01

    The structural properties of nitrogenated amorphous carbon deposited by radiofrequency magnetron sputtering of graphite in pure N 2 plasma are investigated as a function of the substrate temperature and radiofrequency discharge power. The film composition is derived from x-ray photoemission spectroscopy, nuclear reaction analysis and elastic recoil detection measurements and the film microstructure is discussed using infrared, Raman, x-ray photoemission and near edge x-ray absorption fine structure spectroscopic results. At low deposition temperature and low radiofrequency power, the films are soft, porous, and easily contaminated with water vapor and other atmospheric components. The concentration of nitrogen in the films is very large for low deposition temperatures (∼33.6 at. % N at 150 deg. C) but decreases strongly when the synthesis temperature increases (∼15 at. % N at 450 deg. C). With increasing deposition temperature and discharge power values, the main observed effects in amorphous carbon nitride alloys are a loss of nitrogen atoms, a smaller hydrogen and oxygen contamination related to the film densification, an increased order of the aromatic sp 2 phase, and a strong change in the nitrogen distribution within the carbon matrix. Structural changes are well correlated with modifications of the optical and transport properties

  7. Raising the Corrosion Resistance of Low-Carbon Steels by Electrolytic-Plasma Saturation with Nitrogen and Carbon

    Science.gov (United States)

    Kusmanov, S. A.; Grishina, E. P.; Belkin, P. N.; Kusmanova, Yu. V.; Kudryakova, N. O.

    2017-05-01

    Structural features of the external oxide layer and internal nitrided, carbonitrided and carburized layers in steels 10, 20 and St3 produced by the method of electrolytic plasma treatment are studied. Specimens of the steels are tested for corrosion in a naturally aerated 1-N solution of sodium chloride. The condition of the metal/sodium chloride solution interface is studied by the method of electrochemical impedance spectroscopy. It is shown that the corrosion resistance of low-carbon steels can be raised by anode electrolytic-plasma saturation with nitrogen and carbon. Recommendations are given on the choice of carbonitriding modes for structural steels.

  8. Carbon and nitrogen uptake of calcareous benthic foraminifera along a depth-related oxygen gradient in the OMZ of the Arabian Sea

    Directory of Open Access Journals (Sweden)

    Annekatrin Julie Enge

    2016-02-01

    Full Text Available Foraminifera are an important faunal element of the benthos in oxygen-depleted settings such as Oxygen Minimum Zones (OMZs where they can play a relevant role in the processing of phytodetritus. We investigated the uptake of phytodetritus (labeled with 13C and 15N by cal-careous foraminifera in the 0-1 cm sediment horizon under different oxygen concentrations within the OMZ in the eastern Arabian Sea. The in situ tracer experiments were carried out along a depth transect on the Indian margin over a period of 4 to 10 days. The uptake of phy-todetrital carbon within 4 days by all investigated species shows that phytodetritus is a rele-vant food source for foraminifera in OMZ sediments. The decrease of total carbon uptake from 540 to 1100 m suggests a higher demand for carbon by species in the low-oxygen core region of the OMZ or less food competition with macrofauna. Especially Uvigerinids showed high uptake of phytodetrital carbon at the lowest oxygenated site. Variation in the ratio of phytodetrital carbon to nitrogen between species and sites indicates that foraminiferal carbon and nitrogen use can be decoupled and different nutritional demands are found between spe-cies. Lower ratio of phytodetrital carbon and nitrogen at 540 m could hint for greater demand or storage of food-based nitrogen, ingestion or hosting of bacteria under almost anoxic condi-tions. Shifts in the foraminiferal assemblage structure (controlled by oxygen or food availabil-ity and in the presence of other benthic organisms account for observed changes in the pro-cessing of phytodetritus in the different OMZ habitats. Foraminifera dominate the short-term processing of phytodetritus in the OMZ core but are less important in the lower OMZ bounda-ry region of the Indian margin as biological interactions and species distribution of foraminif-era change with depth and oxygen levels.

  9. Modelling the carbon and nitrogen balances of direct land use changes from energy crops in Denmark

    DEFF Research Database (Denmark)

    Hamelin, Lorie; Jørgensen, Uffe; Petersen, Bjørn Molt

    2012-01-01

    This paper addresses the conversion of Danish agricultural land from food/feed crops to energy crops. To this end, a life cycle inventory, which relates the input and output flows from and to the environment of 528 different crop systems, is built and described. This includes seven crops (annuals...... and perennials), two soil types (sandy loam and sand), two climate types (wet and dry), three initial soil carbon level (high, average, low), two time horizons for soil carbon changes (20 and 100 years), two residues management practices (removal and incorporation into soil) as well as three soil carbon turnover...... rate reductions in response to the absence of tillage for some perennial crops (0%, 25%, 50%). For all crop systems, nutrient balances, balances between above- and below-ground residues, soil carbon changes, biogenic carbon dioxide flows, emissions of nitrogen compounds and losses of macro...

  10. Nitrogen Doped Macroporous Carbon as Electrode Materials for High Capacity of Supercapacitor

    Directory of Open Access Journals (Sweden)

    Yudong Li

    2017-01-01

    Full Text Available Nitrogen doped carbon materials as electrodes of supercapacitors have attracted abundant attention. Herein, we demonstrated a method to synthesize N-doped macroporous carbon materials (NMC with continuous channels and large size pores carbonized from polyaniline using multiporous silica beads as sacrificial templates to act as electrode materials in supercapacitors. By the nice carbonized process, i.e., pre-carbonization at 400 °C and then pyrolysis at 700/800/900/1000 °C, NMC replicas with high BET specific surface areas exhibit excellent stability and recyclability as well as superb capacitance behavior (~413 F ⋅ g−1 in alkaline electrolyte. This research may provide a method to synthesize macroporous materials with continuous channels and hierarchical pores to enhance the infiltration and mass transfer not only used as electrode, but also as catalyst somewhere micro- or mesopores do not work well.

  11. Carbon and nitrogen fluxes in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Naik, H.; DeSouza, W.; Narvekar, P.V.; Paropkari, A.L.; Bange, H.W.

    , the reverse is probably true for the burial. Notwithstanding these uncertainties, it seems reasonable to conclude that the POC delivery by rivers substantially exceeds sedimentary organic carbon burial in the NEIO. In spite of the higher sedimentation... in the NEIO has been reported to range from 0.3 to 2.5 (average 1.4) Tg N yr -1 (Schäfer et al., 1993). This is slightly higher than the DIN delivery by rivers. Rate of N 2 -fixation in the NEIO has not been measured so far. However, it is probably much...

  12. Chemical bonding modifications of tetrahedral amorphous carbon and nitrogenated tetrahedral amorphous carbon films induced by rapid thermal annealing

    International Nuclear Information System (INIS)

    McCann, R.; Roy, S.S.; Papakonstantinou, P.; Bain, M.F.; Gamble, H.S.; McLaughlin, J.A.

    2005-01-01

    Tetrahedral amorphous carbon (ta-C) and nitrogenated tetrahedral amorphous carbon films (ta-CN x ), deposited by double bend off plane Filtered Vacuum Cathodic Arc were annealed up to 1000 deg. C in flowing argon for 2 min. Modifications on the chemical bonding structure of the rapidly annealed films, as a function of temperature, were investigated by NEXAFS, X-ray photoelectron and Raman spectroscopies. The interpretation of these spectra is discussed. The results demonstrate that the structure of undoped ta-C films prepared at floating potential with an arc current of 80 A remains stable up to 900 deg. C, whereas that of ta-CN x containing 12 at.% nitrogen is stable up to 700 deg. C. At higher temperatures, all the spectra indicated the predominant formation of graphitic carbon. Through NEXAFS studies, we clearly observed three π* resonance peaks at the ' N K edge structure. The origin of these three peaks is not well established in the literature. However our temperature-dependant study ascertained that the first peak originates from C=N bonds and the third peak originates from the incorporation of nitrogen into the graphite like domains

  13. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations

    Directory of Open Access Journals (Sweden)

    Ehrenfeld Nicole

    2008-12-01

    Full Text Available Abstract Background Carbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacteria isolated from mine sites in Chile was performed. This study demonstrated that there are important differences in the carbon dioxide and nitrogen fixation mechanisms among bioleaching bacteria that coexist in mining environments. Results In this study, we probed that both Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans incorporate CO2 via the Calvin-Benson-Bassham cycle; however, the former bacterium has two copies of the Rubisco type I gene whereas the latter has only one copy. In contrast, we demonstrated that Leptospirillum ferriphilum utilizes the reductive tricarboxylic acid cycle for carbon fixation. Although all the species analyzed in our study can incorporate ammonia by an ammonia transporter, we demonstrated that Acidithiobacillus thiooxidans could also assimilate nitrate and nitrite but only Acidithiobacillus ferrooxidans could fix nitrogen directly from the air. Conclusion The current study utilized genomic and molecular evidence to verify carbon and nitrogen fixation mechanisms for three bioleaching bacteria and provided an analysis of the potential regulatory pathways and functional networks that control carbon and nitrogen fixation in these microorganisms.

  14. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations

    Science.gov (United States)

    Levicán, Gloria; Ugalde, Juan A; Ehrenfeld, Nicole; Maass, Alejandro; Parada, Pilar

    2008-01-01

    Background Carbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacteria isolated from mine sites in Chile was performed. This study demonstrated that there are important differences in the carbon dioxide and nitrogen fixation mechanisms among bioleaching bacteria that coexist in mining environments. Results In this study, we probed that both Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans incorporate CO2 via the Calvin-Benson-Bassham cycle; however, the former bacterium has two copies of the Rubisco type I gene whereas the latter has only one copy. In contrast, we demonstrated that Leptospirillum ferriphilum utilizes the reductive tricarboxylic acid cycle for carbon fixation. Although all the species analyzed in our study can incorporate ammonia by an ammonia transporter, we demonstrated that Acidithiobacillus thiooxidans could also assimilate nitrate and nitrite but only Acidithiobacillus ferrooxidans could fix nitrogen directly from the air. Conclusion The current study utilized genomic and molecular evidence to verify carbon and nitrogen fixation mechanisms for three bioleaching bacteria and provided an analysis of the potential regulatory pathways and functional networks that control carbon and nitrogen fixation in these microorganisms. PMID:19055775

  15. A density functional study of nitrogen adsorption in single-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Zhu Jie; Wang Yao; Li Wenjun; Wei Fei; Yu Yangxin

    2007-01-01

    An understanding of the adsorption behaviour of nitrogen in single-wall carbon nanotubes (SWCNTs) is necessary for obtaining information on its pores by nitrogen adsorption manometry. Non-local density functional theory was used to simulate nitrogen adsorption behaviour, including the adsorption isotherms, equilibrium density profiles and potential energy of the nitrogen molecules at 77 K, inside SWCNTs with diameters ranging from 0.696 to 3.001 nm. With increasing diameter, nitrogen adsorption changes from continuous filling in one dimension to a two-stage adsorption that corresponds to monolayer formation followed by multilayer condensation. The average density of the adsorbed nitrogen and the density profiles, especially in small diameter SWCNTs, were used to analyse the adsorbate phase at the saturation pressure. The results indicate that the type of pore filling depends primarily on the ratio of the SWCNT diameter to the adsorbate molecular diameter. The filling of SWCNTs is not a simple capillary condensation process, but is dominated by geometrical limitation

  16. Effects of nitrogen and carbon sources on the production of inulinase from strain Bacillus sp. SG113

    Science.gov (United States)

    Gavrailov, Simeon; Ivanova, Viara

    2016-03-01

    The effects of the carbon and nitrogen substrates on the growth of Bacillus sp. SG113 strain were studied. The use of organic nitrogen sources (peptone, beef extract, yeast extract, casein) leads to rapid cellular growth and the best results for the Bacillus strain were obtained with casein hydrolysate. From the inorganic nitrogen sources studied, the (NH4) 2SO4 proved to be the best nitrogen source. Casein hydrolysate and (NH4) 2SO4 stimulated the invertase synthesis. In the presence of Jerusalem artichoke, onion and garlic extracts as carbon sources the strain synthesized from 6 to 10 times more inulinase.

  17. The carbon isotope ratios and contents of mineral elements in leaves of Chinese medicinal plants

    International Nuclear Information System (INIS)

    Lin Zhifang; Sun Guchou; Wang Wei

    1989-01-01

    Leaf carbon isotope ratios and 13 kinds of mineral elements were measured on 36 species of common Chinese medicinal plants in a subtropical monsoon forest of Ding Hu Shan in Guangdong Province. The .delta.13C value were from -26.4 to -32.6%, indicating that all of the species belonged the photosynthetic C3 types. The relative lower value of δ13C was observed in the life form of shrubs. The contents of 7 elements (N, P, K, Ca, Na Mg, Si) were dependent upon the species, life form, medicinal function and medicinal part. Herb type medicine and the used medicinal part of leaves or whole plant showed higher levels of above elements than the others. Among the nine groups with different medicinal functions, it was found that more nitrogen was in the leaves of medicinal plants for hemophthisis, hypertension and stomachic troubles, more phosphorus and potassium were in the leaves for cancer and snake bite medicines, but more calcium and magnesium were in the leaves for curing rheumatics. Ferric, aluminium and manganese were the main composition of microelements in leaves. There were higher content of ferric in leaves for hemophthisis medicine, higher zinc in leaves for cold and hypertension medicine, and higher Cup in leaves of stomachic medicine. It was suggested that the pattern of mineral elements in leaves of Chinese medicinal plants reflected the different properties of absorption and accumulation. Some additional effect due to the high content of certain element might be associated with the main function of that medicine

  18. Distinguishing ectomycorrhizal and saprophytic fungi using carbon and nitrogen isotopic compositions

    Directory of Open Access Journals (Sweden)

    Weiguo Hou

    2012-05-01

    Full Text Available Ectomycorrhizal fungi, a group of widespread symbiotic fungi with plant, obtain carbon source from trees and improve plant mineral nutrient uptake with their widespread hyphal network. Ectomycorrhizal fungi can be used as inoculants to improve the survival rates of plantation. Saprophytic fungi use the nutrition from the debris of plant or animals, and it is difficult to distinguish the saprophytic and ectomycorrhizal fungi by morphological and anatomic methods. In this research, the differences of stable carbon and nitrogen isotopic compositions of these fungi were analyzed. The results showed that the abundances of 13C of were higher than those of ectomycorrhizal fungi and the abundances of 15N of saprophytic fungi were lower than those of ectomycorrhizal fungi. Such differences of stable carbon and nitrogen isotopic compositions between ectomycorrhizal fungi and saprophytic fungi can be ascribed to their different nutrition sources and ecological functions. These results collectively indicate that stable carbon and nitrogen isotopic compositions are an effective proxy for distinguishing between ectomycorrhizal and saprophytic fungi.

  19. Nitrogen reduction pathways in estuarine sediments: Influences of organic carbon and sulfide

    Science.gov (United States)

    Plummer, Patrick; Tobias, Craig; Cady, David

    2015-10-01

    Potential rates of sediment denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) were mapped across the entire Niantic River Estuary, CT, USA, at 100-200 m scale resolution consisting of 60 stations. On the estuary scale, denitrification accounted for ~ 90% of the nitrogen reduction, followed by DNRA and anammox. However, the relative importance of these reactions to each other was not evenly distributed through the estuary. A Nitrogen Retention Index (NIRI) was calculated from the rate data (DNRA/(denitrification + anammox)) as a metric to assess the relative amounts of reactive nitrogen being recycled versus retained in the sediments following reduction. The distribution of rates and accompanying sediment geochemical analytes suggested variable controls on specific reactions, and on the NIRI, depending on position in the estuary and that these controls were linked to organic carbon abundance, organic carbon source, and pore water sulfide concentration. The relationship between NIRI and organic carbon abundance was dependent on organic carbon source. Sulfide proved the single best predictor of NIRI, accounting for 44% of its observed variance throughout the whole estuary. We suggest that as a single metric, sulfide may have utility as a proxy for gauging the distribution of denitrification, anammox, and DNRA.

  20. Enhanced wear resistance of production tools and steel samples by implantation of nitrogen and carbon ions

    International Nuclear Information System (INIS)

    Mikkelsen, N.J.; Straede, C.A.

    1992-01-01

    In recent years ion implantation has become a feasible technique for obtaining improved wear resistance of production tools. However, basic knowledge of how and in which cases ion implantation is working at its best is still needed. The present paper discusses structural and tribological investigations of carbon and nitrogen implanted steels. The nitrogen data were obtained mainly from field tests and the investigation of carbon implantations took place mainly in the laboratory. A study was made of how the tribological behaviour of implanted steels changes with different implantation parameters. The tribological laboratory investigations were carried out using pin-on-disc equipment under controlled test conditions, and deal with high dose carbon implantation (approximately (1-2)x10 18 ions cm -2 ). The wear resistance of steels was enhanced dramatically, by up to several orders of magnitude. The field test results cover a broad range of ion implanted production tools, which showed a marked improvement in wear resistance. Nitrogen implanted tools are also compared with carbon and titanium implanted tools. (orig.)

  1. Quantitative proteomic analyses of the microbial degradation of estrone under various background nitrogen and carbon conditions.

    Science.gov (United States)

    Du, Zhe; Chen, Yinguang; Li, Xu

    2017-10-15

    Microbial degradation of estrogenic compounds can be affected by the nitrogen source and background carbon in the environment. However, the underlying mechanisms are not well understood. The objective of this study was to elucidate the molecular mechanisms of estrone (E1) biodegradation at the protein level under various background nitrogen (nitrate or ammonium) and carbon conditions (no background carbon, acetic acid, or humic acid as background carbon) by a newly isolated bacterial strain. The E1 degrading bacterial strain, Hydrogenophaga atypica ZD1, was isolated from river sediments and its proteome was characterized under various experimental conditions using quantitative proteomics. Results show that the E1 degradation rate was faster when ammonium was used as the nitrogen source than with nitrate. The degradation rate was also faster when either acetic acid or humic acid was present in the background. Proteomics analyses suggested that the E1 biodegradation products enter the tyrosine metabolism pathway. Compared to nitrate, ammonium likely promoted E1 degradation by increasing the activities of the branched-chain-amino-acid aminotransferase (IlvE) and enzymes involved in the glutamine synthetase-glutamine oxoglutarate aminotransferase (GS-GOGAT) pathway. The increased E1 degradation rate with acetic acid or humic acid in the background can also be attributed to the up-regulation of IlvE. Results from this study can help predict and explain E1 biodegradation kinetics under various environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Modeling effects of hydrological changes on the carbon and nitrogen balance of oak in floodplains.

    Science.gov (United States)

    Pietsch, Stephan A; Hasenauer, Hubert; Kucera, Jiŕi; Cermák, Jan

    2003-08-01

    We extended the applicability of the ecosystem model BIOME-BGC to floodplain ecosystems to study effects of hydrological changes on Quercus robur L. stands. The extended model assesses floodplain peculiarities, i.e., seasonal flooding and water infiltration from the groundwater table. Our interest was the tradeoff between (a). maintaining regional applicability with respect to available model input information, (b). incorporating the necessary mechanistic detail and (c). keeping the computational effort at an acceptable level. An evaluation based on observed transpiration, timber volume, soil carbon and soil nitrogen content showed that the extended model produced unbiased results. We also investigated the impact of hydrological changes on our oak stands as a result of the completion of an artificial canal network in 1971, which has stopped regular springtime flooding. A comparison of the 11 years before versus the 11 years after 1971 demonstrated that the hydrological changes affected mainly the annual variation across years in leaf area index (LAI) and soil carbon and nitrogen sequestration, leading to stagnation of carbon and nitrogen stocks, but to an increase in the variance across years. However, carbon sequestration to timber was unaffected and exhibited no significant change in cross-year variation. Finally, we investigated how drawdown of the water table, a general problem in the region, affects modeled ecosystem behavior. We found a further amplification of cross-year LAI fluctuations, but the variance in soil carbon and nitrogen stocks decreased. Volume increment was unaffected, suggesting a stabilization of the ecosystem two decades after implementation of water management measures.

  3. QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions.

    Science.gov (United States)

    Li, Ling; Zheng, Wenguang; Zhu, Yanbing; Ye, Huaxun; Tang, Buyun; Arendsee, Zebulun W; Jones, Dallas; Li, Ruoran; Ortiz, Diego; Zhao, Xuefeng; Du, Chuanlong; Nettleton, Dan; Scott, M Paul; Salas-Fernandez, Maria G; Yin, Yanhai; Wurtele, Eve Syrkin

    2015-11-24

    The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua-Quine Starch; At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates metabolic processes affecting carbon and nitrogen partitioning among proteins and carbohydrates, modulating leaf and seed composition in Arabidopsis and soybean. Here the universality of QQS function in modulating carbon and nitrogen allocation is exemplified by a series of transgenic experiments. We show that ectopic expression of QQS increases soybean protein independent of the genetic background and original protein content of the cultivar. Furthermore, transgenic QQS expression increases the protein content of maize, a C4 species (a species that uses 4-carbon photosynthesis), and rice, a protein-poor agronomic crop, both highly divergent from Arabidopsis. We determine that QQS protein binds to the transcriptional regulator AtNF-YC4 (Arabidopsis nuclear factor Y, subunit C4). Overexpression of AtNF-YC4 in Arabidopsis mimics the QQS-overexpression phenotype, increasing protein and decreasing starch levels. NF-YC, a component of the NF-Y complex, is conserved across eukaryotes. The NF-YC4 homologs of soybean, rice, and maize also bind to QQS, which provides an explanation of how QQS can act in species where it does not occur endogenously. These findings are, to our knowledge, the first insight into the mechanism of action of QQS in modulating carbon and nitrogen allocation across species. They have major implications for the emergence and function of orphan genes, and identify a nontransgenic strategy for modulating protein levels in crop species, a trait of great agronomic significance.

  4. Effect of rate and time of nitrogen application on fruit yield and accumulation of nutrient elements in Momordica charantia

    Directory of Open Access Journals (Sweden)

    Mostafa Heidari

    2012-06-01

    Full Text Available Cucurbitaceae is one of the largest families in vegetable kingdom consisting of largest number of edible type species. Momordica charantia is one such important vegetable that belongs to the family of Cucurbitaceae. In order to evaluate the effect of rate and time of nitrogen application on M. charantia, a field experiment was conducted at the University of Zabol in Iran during 2011 growing season. The experiment was laid out as split plot based on randomized complete block design with three replications. Three levels of nitrogen rates consisting of: N1 = 75, N2 = 150 and N3 = 225 kg N ha−1 as main plot and three time application including: T1 = 1/2 at 3 and 4 leaves and 1/2 before flowering, T2 = 1/2 at 3 and 4 leaves and 1/2 after fruit to start, and T3 = 1/3 at 3 and 4 leaves, 1/3 before flowering, and 1/3 after fruit to start were used as sub plot. The results revealed that both rate and time of nitrogen application had a significant effect on fruit yield. The highest fruit yield was recorded at the rate of N3 and time of nitrogen application in T3 treatment. In this study, by increasing nitrogen levels from 75 to 225 kg N ha−1, the values of nitrogen, phosphorus and potassium content in fruit increased. The time of nitrogen application and interaction between rate and time of nitrogen treatments had no significant effect on the amounts of these three elements. Nitrogen level had a significant effect on the amounts of calcium, manganese and zinc elements. The highest values of calcium and zinc were obtained at N2 and manganese at N3 nitrogen level. Time of nitrogen application treatment in this experiment had only significant effect on the amounts of calcium and zinc elements and had no significant effect on the other elements.

  5. Improved Electrochemical Performance of LiFePO4@N-Doped Carbon Nanocomposites Using Polybenzoxazine as Nitrogen and Carbon Sources.

    Science.gov (United States)

    Wang, Ping; Zhang, Geng; Li, Zhichen; Sheng, Wangjian; Zhang, Yichi; Gu, Jiangjiang; Zheng, Xinsheng; Cao, Feifei

    2016-10-03

    Polybenzoxazine is used as a novel carbon and nitrogen source for coating LiFePO 4 to obtain LiFePO 4 @nitrogen-doped carbon (LFP@NC) nanocomposites. The nitrogen-doped graphene-like carbon that is in situ coated on nanometer-sized LiFePO 4 particles can effectively enhance the electrical conductivity and provide fast Li + transport paths. When used as a cathode material for lithium-ion batteries, the LFP@NC nanocomposite (88.4 wt % of LiFePO 4 ) exhibits a favorable rate performance and stable cycling performance.

  6. Selection of Suitable Carbon, Nitrogen and Sulphate Source for the Production of Alkaline Protease by Bacillus licheniformis NCIM-2042

    Directory of Open Access Journals (Sweden)

    Biswanath BHUNIA

    2010-06-01

    Full Text Available In this study, selection of suitable carbon, nitrogen and sulphate sources were carried out by one-variable-at-time approach for the production of alkaline protease enzyme by Bacillus licheniformis NCIM-2042. Maximum levels of alkaline protease were found in culture media supplemented with magnesium sulphate, starch and soybean meal as a good sulphate, carbon and nitrogen sources which influenced the maximum yield of this enzyme (137.69�4.57, 135.23�1.73 and 134.74�1.77, respectively in comparison with the other sulphate, carbon and nitrogen sources.

  7. Selection of Suitable Carbon, Nitrogen and Sulphate Source for the Production of Alkaline Protease by Bacillus licheniformis NCIM-2042

    Directory of Open Access Journals (Sweden)

    Biswanath BHUNIA

    2010-06-01

    Full Text Available In this study, selection of suitable carbon, nitrogen and sulphate sources were carried out by one-variable-at-time approach for the production of alkaline protease enzyme by Bacillus licheniformis NCIM-2042. Maximum levels of alkaline protease were found in culture media supplemented with magnesium sulphate, starch and soybean meal as a good sulphate, carbon and nitrogen sources which influenced the maximum yield of this enzyme (137.694.57, 135.231.73 and 134.741.77, respectively in comparison with the other sulphate, carbon and nitrogen sources.

  8. Organic carbon and nitrogen export from a tropical dam-impacted floodplain system

    Science.gov (United States)

    Zurbrügg, R.; Suter, S.; Lehmann, M. F.; Wehrli, B.; Senn, D. B.

    2013-01-01

    Tropical floodplains play an important role in organic matter transport, storage, and transformation between headwaters and oceans. However, the fluxes and quality of organic carbon (OC) and organic nitrogen (ON) in tropical river-floodplain systems are not well constrained. We explored the quantity and characteristics of dissolved and particulate organic matter (DOM and POM, respectively) in the Kafue River flowing through the Kafue Flats (Zambia), a tropical river-floodplain system in the Zambezi River basin. During the flooding season, > 80% of the Kafue River water passed through the floodplain, mobilizing large quantities of OC and ON, which resulted in a net export of 69-119 kg OC km-2 d-1 and 3.8-4.7 kg ON km-2 d-1, 80% of which was in the dissolved form. The elemental C : N ratio of ~ 20, the comparatively high δ13C values of -25‰ to -21‰, and its spectroscopic properties (excitation-emission matrices) showed that DOM in the river was mainly of terrestrial origin. Despite a threefold increase in OC loads due to inputs from the floodplain, the characteristics of the riverine DOM remained relatively constant along the sampled 410-km river reach. This suggests that floodplain DOM displayed properties similar to those of DOM leaving the upstream reservoir and implied that the DOM produced in the reservoir was relatively short-lived. In contrast, the particulate fraction was 13C-depleted (-29‰) and had a C : N ratio of ~ 8, which indicated that POM originated from phytoplankton production in the reservoir and in the floodplain, rather than from plant debris or resuspended sediments. While the upstream dam had little effect on the DOM pool, terrestrial particles were retained, and POM from algal and microbial sources was released to the river. A nitrogen mass balance over the 2200 km2 flooded area revealed an annual deficit of 15 500-22 100 t N in the Kafue Flats. The N isotope budget suggests that these N losses are balanced by intense N-fixation. Our

  9. Organic carbon and nitrogen export from a tropical dam-impacted floodplain system

    Directory of Open Access Journals (Sweden)

    R. Zurbrügg

    2013-01-01

    Full Text Available Tropical floodplains play an important role in organic matter transport, storage, and transformation between headwaters and oceans. However, the fluxes and quality of organic carbon (OC and organic nitrogen (ON in tropical river-floodplain systems are not well constrained. We explored the quantity and characteristics of dissolved and particulate organic matter (DOM and POM, respectively in the Kafue River flowing through the Kafue Flats (Zambia, a tropical river-floodplain system in the Zambezi River basin. During the flooding season, > 80% of the Kafue River water passed through the floodplain, mobilizing large quantities of OC and ON, which resulted in a net export of 69–119 kg OC km−2 d−1 and 3.8–4.7 kg ON km−2 d−1, 80% of which was in the dissolved form. The elemental C : N ratio of ~ 20, the comparatively high δ13C values of −25‰ to −21‰, and its spectroscopic properties (excitation-emission matrices showed that DOM in the river was mainly of terrestrial origin. Despite a threefold increase in OC loads due to inputs from the floodplain, the characteristics of the riverine DOM remained relatively constant along the sampled 410-km river reach. This suggests that floodplain DOM displayed properties similar to those of DOM leaving the upstream reservoir and implied that the DOM produced in the reservoir was relatively short-lived. In contrast, the particulate fraction was 13C-depleted (−29‰ and had a C : N ratio of ~ 8, which indicated that POM originated from phytoplankton production in the reservoir and in the floodplain, rather than from plant debris or resuspended sediments. While the upstream dam had little effect on the DOM pool, terrestrial particles were retained, and POM from algal and microbial sources was released to the river. A nitrogen mass balance over the 2200 km2 flooded area revealed an annual deficit of 15 500–22 100 t N in

  10. High Variability in Cellular Stoichiometry of Carbon, Nitrogen, and Phosphorus Within Classes of Marine Eukaryotic Phytoplankton Under Sufficient Nutrient Conditions.

    Science.gov (United States)

    Garcia, Nathan S; Sexton, Julie; Riggins, Tracey; Brown, Jeff; Lomas, Michael W; Martiny, Adam C

    2018-01-01

    Current hypotheses suggest that cellular elemental stoichiometry of marine eukaryotic phytoplankton such as the ratios of cellular carbon:nitrogen:phosphorus (C:N:P) vary between phylogenetic groups. To investigate how phylogenetic structure, cell volume, growth rate, and temperature interact to affect the cellular elemental stoichiometry of marine eukaryotic phytoplankton, we examined the C:N:P composition in 30 isolates across 7 classes of marine phytoplankton that were grown with a sufficient supply of nutrients and nitrate as the nitrogen source. The isolates covered a wide range in cell volume (5 orders of magnitude), growth rate (temperature (2-24°C). Our analysis indicates that C:N:P is highly variable, with statistical model residuals accounting for over half of the total variance and no relationship between phylogeny and elemental stoichiometry. Furthermore, our data indicated that variability in C:P, N:P, and C:N within Bacillariophyceae (diatoms) was as high as that among all of the isolates that we examined. In addition, a linear statistical model identified a positive relationship between diatom cell volume and C:P and N:P. Among all of the isolates that we examined, the statistical model identified temperature as a significant factor, consistent with the temperature-dependent translation efficiency model, but temperature only explained 5% of the total statistical model variance. While some of our results support data from previous field studies, the high variability of elemental ratios within Bacillariophyceae contradicts previous work that suggests that this cosmopolitan group of microalgae has consistently low C:P and N:P ratios in comparison with other groups.

  11. Carbon Dioxide and Nitrogen Infused Compressed Air Foam for Depopulation of Caged Laying Hens

    Science.gov (United States)

    Gurung, Shailesh; White, Dima; Archer, Gregory; Styles, Darrel; Zhao, Dan; Farnell, Yuhua; Byrd, James; Farnell, Morgan

    2018-01-01

    Simple Summary Compressed air, detergent, and water make up compressed air foam. Our laboratory has previously reported that compressed air foam may be an effective method for mass depopulation of caged layer hens. Gases, such as carbon dioxide and nitrogen, have also been used for poultry euthanasia and depopulation. The objective of this study was to produce compressed air foam infused with carbon dioxide or nitrogen to compare its efficacy against foam with air and gas inhalation methods (carbon dioxide or nitrogen) for depopulation of caged laying hens. The study showed that a carbon dioxide-air mixture or 100% nitrogen can replace air to make compressed air foam. However, the foam with carbon dioxide had poor foam quality compared to the foam with air or nitrogen. The physiological stress response of hens subjected to foam treatments with and without gas infusion did not differ significantly. Hens exposed to foam with nitrogen died earlier as compared to methods such as foam with air and carbon dioxide. The authors conclude that infusion of nitrogen into compressed air foam results in better foam quality and shortened time to death as compared to the addition of carbon dioxide. Abstract Depopulation of infected poultry flocks is a key strategy to control and contain reportable diseases. Water-based foam, carbon dioxide inhalation, and ventilation shutdown are depopulation methods available to the poultry industry. Unfortunately, these methods have limited usage in caged layer hen operations. Personnel safety and welfare of birds are equally important factors to consider during emergency depopulation procedures. We have previously reported that compressed air foam (CAF) is an alternative method for depopulation of caged layer hens. We hypothesized that infusion of gases, such as carbon dioxide (CO2) and nitrogen (N2), into the CAF would reduce physiological stress and shorten time to cessation of movement. The study had six treatments, namely a negative control

  12. Synthesis and electrochemical capacitive properties of nitrogen-doped porous carbon micropolyhedra by direct carbonization of zeolitic imidazolate framework-11

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Fei; Li, Li; Zhang, Xiaohua, E-mail: mickyxie@hnu.edu.cn; Chen, Jinhua, E-mail: chenjinhua@hnu.edu.cn

    2015-06-15

    Highlights: • Nitrogen-doped porous carbon micropolyhedra (N-PCMPs) were prepared from ZIF-11. • The activated N-PCMPs with fused KOH (N-PCMPs-A) have high specific surface area. • N-PCMPs-A exhibits high specific capacitance. • N-PCMPs-A reveals good cycling performance even at a high current density. - Abstract: Nitrogen-doped porous carbon micropolyhedra (N-PCMPs) were successfully prepared by direct carbonization of ZIF-11 polyhedra and further activated with fused KOH to obtain N-PCMPs-A. The morphology and microstructure of samples were examined by scanning electron microscopy, X-ray diffraction, and micropore and chemisorption analyzer. Electrochemical properties were characterized by cyclic voltammetry and galvanostatic charge/discharge method in 1.0 M H{sub 2}SO{sub 4} aqueous solution on a standard three-electrode system. Results show that, compared with N-PCMPs, N-PCMPs-A has higher specific surface area (2188 m{sup 2} g{sup −1}) and exhibits improved electrochemical capacitive properties (307 F g{sup −1} at 1.0 A g{sup −1}). The mass specific capacitance of N-PCMPs-A is also higher than that of most MOF-derived carbons, some carbide-derived carbons and carbon aerogel-derived carbons. In addition, the capacitance of the N-PCMPs-A retains 90% after 4000 cycles even at a high current density of 10 A g{sup −1}. These imply that N-PCMPs-A is the promising materials for the construction of a high-performance supercapacitor.

  13. Boreal mire carbon exchange: sensitivity to climate change and anthropogenic nitrogen and sulfur deposition

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Tobias

    2010-07-01

    Boreal peatlands are important long-term sinks of atmospheric carbon and in the same time the largest natural source of methane to the atmosphere. A changing climate as well as deposition of anthropogenically derived pollutants, such as nitrogen and sulfur, has the potential to affect the processes that control the carbon exchange in peatlands. Many of the biogeochemical responses to changed environmental conditions, such as changed plant community composition, are slow and therefore long-term studies are required. In this thesis I have investigated the long-term effects of nitrogen addition, sulfur addition and greenhouse enclosures on carbon exchange by using a field manipulation experiment in a boreal minerogenic, oligotrophic mire after 10-12 years of treatment. Treatment effects on CH{sub 4} emissions, gross primary production (GPP), ecosystem respiration (Reco) and net ecosystem exchange (NEE) were estimated from 1-2 seasons of chamber flux measurements. Treatment effects on potential CH{sub 4} production and oxidation were estimated in incubations of peat from different depth intervals. The effect of nitrogen deposition on carbon accumulation was evaluated in peat cores at different depth intervals. The long-term nitrogen additions have: shifted plant community composition from being dominated by Sphagnum to being dominated by sedges and dwarf shrubs; changed mire surface microtopography so that mean water table is closer to the surface in plots with high nitrogen; increased CH{sub 4} production and emission; increased Reco slightly but have not affected GPP or NEE; reduced the peat height increment, but increased both peat bulk density and carbon content, leading to an unchanged carbon accumulation. The long-term sulfur additions have not reduced CH{sub 4} emissions, only slightly reduced CH{sub 4} production and did not have any effect on the CO{sub 2} carbon exchange. The greenhouse treatment, manifested in increased air and soil temperatures, reduced

  14. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability

    Directory of Open Access Journals (Sweden)

    Daniel eOsuna

    2015-11-01

    Full Text Available Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO and phytohormones (ABA, auxins and GAs in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones.

  15. Atmospheric Inputs of Nitrogen, Carbon, and Phosphorus across an Urban Area: Unaccounted Fluxes and Canopy Influences

    Science.gov (United States)

    Decina, Stephen M.; Templer, Pamela H.; Hutyra, Lucy R.

    2018-02-01

    Rates of atmospheric deposition are declining across the United States, yet urban areas remain hotspots of atmospheric deposition. While past studies show elevated rates of inorganic nitrogen (N) deposition in cities, less is known about atmospheric inputs of organic N, organic carbon (C), and organic and inorganic phosphorus (P), all of which can affect ecosystem processes, water quality, and air quality. Further, the effect of the tree canopy on amounts and forms of nutrients reaching urban ground surfaces is not well-characterized. We measured growing season rates of total N, organic C, and total P in bulk atmospheric inputs, throughfall, and soil solution around the greater Boston area. We found that organic N constitutes a third of total N inputs, organic C inputs are comparable to rural inputs, and inorganic P inputs are 1.2 times higher than those in sewage effluent. Atmospheric inputs are enhanced two-to-eight times in late spring and are elevated beneath tree canopies, suggesting that trees augment atmospheric inputs to ground surfaces. Additionally, throughfall inputs may directly enter runoff when trees extend above impervious surfaces, as is the case with 26.1% of Boston's tree canopy. Our results indicate that the urban atmosphere is a significant source of elemental inputs that may impact urban ecosystems and efforts to improve water quality, particularly in terms of P. Further, as cities create policies encouraging tree planting to provide ecosystem services, locating trees above permeable surfaces to reduce runoff nutrient loads may be essential to managing urban biogeochemical cycling and water quality.

  16. Stable carbon and nitrogen isotopic compositions of ambient aerosols collected from Okinawa Island in the western North Pacific Rim, an outflow region of Asian dusts and pollutants

    Science.gov (United States)

    Kunwar, Bhagawati; Kawamura, Kimitaka; Zhu, Chunmao

    2016-04-01

    Stable carbon (δ13C) and nitrogen (δ15N) isotope ratios were measured for total carbon (TC) and nitrogen (TN), respectively, in aerosol (TSP) samples collected at Cape Hedo, Okinawa, an outflow region of Asian pollutants, during 2009-2010. The averaged δ13C and δ15N ratios are -22.2‰ and +12.5‰, respectively. The δ13C values are similar in both spring (-22.5‰) and winter (-22.5‰), suggesting the similar sources and/or source regions. We found that δ13C from Okinawa aerosols are ca. 2‰ higher than those reported from Chinese megacities probably due to photochemical aging of organic aerosols. A strong correlation (r = 0.81) was found between nss-Ca and TSP, suggesting that springtime aerosols are influenced from Asian dusts. However, carbonates in the Asian dusts were titrated with acidic species such as sulfuric acid and oxalic acid during atmospheric transport although two samples suggested the presence of remaining carbonate. No correlations were found between δ13C and tracer compounds (levoglucosan, elemental carbon, oxalic acid, and Na+). During winter and spring, coal burning is significant source in China. Based on isotopic mass balance, contribution of coal burning origin particles to total aerosol carbon was estimated as ca. 97% in winter, which is probably associated with the high emissions in China. Contribution of NO3- to TN was on average 45% whereas that of NH4+ was 18%. These results suggest that vehicular exhaust is an important source of TN in Okinawa aerosols. Concentration of water-soluble organic nitrogen (WSON) is higher in summer, suggesting that WSON is more emitted from the ocean in warmer season whereas inorganic nitrogen is more emitted in winter and spring from pollution sources in the Asian continent.

  17. Increased iron availability resulting from increased CO2 enhances carbon and nitrogen metabolism in the economical marine red macroalga Pyropia haitanensis (Rhodophyta).

    Science.gov (United States)

    Chen, Binbin; Zou, Dinghui; Yang, Yufeng

    2017-04-01

    Ocean acidification caused by rising CO 2 is predicted to increase the concentrations of dissolved species of Fe(II) and Fe(III), leading to the enhanced photosynthetic carbon sequestration in some algal species. In this study, the carbon and nitrogen metabolism in responses to increased iron availability under two CO 2 levels (390 μL L -1 and 1000 μL L -1 ), were investigated in the maricultivated macroalga Pyropia haitanensis (Rhodophyta). The results showed that, elevated CO 2 increased soluble carbonhydrate (SC) contents, resulting from enhanced photosynthesis and photosynthetic pigment synthesis in this algae, but declined its soluble protein (SP) contents, resulting in increased ratio of SC/SP. This enhanced photosynthesis performance and carbon accumulation was more significant under iron enrichment condition in seawater, with higher iron uptake rate at high CO 2 level. As a key essential biogenic element for algae, Fe-replete functionally contributed to P. haitanensis photosynthesis. Increased SC fundamentally provided carbon skeletons for nitrogen assimilation. The significant increase of carbon and nitrogen assimilation finally contributed to enhanced growth in this alga. This was also intuitively reflected by respiration that provided energy for cellular metabolism and algal growth. We propose that, in the predicted scenario of rising atmospheric CO 2 , P. haitanensis is capable to adjust its physiology by increasing its carbon and nitrogen metabolism to acclimate the acidified seawater, at the background of global climate change and simultaneously increased iron concentration due to decreased pH levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Monitoring of organic and elemental carbon (OC/EC) in the atmospheric aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, A.; Fuchs, J.; Jaeschke, W.; Weingartner, E.; Baltensperger, U.

    2003-03-01

    A new instrument for the measurement of ambient carbonaceous aerosol concentrations is described, which enables discrimination between organic and elemental carbon on a semi-continuous basis. (author)

  19. [Effects of carbon and nitrogen sources on 5-keto-gluconic acid production].

    Science.gov (United States)

    Tan, Zhilei; Wang, Hongcui; Wei, Yuqiao; Li, Yanyan; Zhong, Cheng; Jia, Shiru

    2014-01-01

    Gluconobacter oxydans is known to oxidize glucose to gluconic acid (GA), and subsequently, to 2-keto-gluconic acid (2KGA) and 5-keto-gluconic acid (5KGA), while 5KGA can be converted to L-(+)-tartaric acid. In order to increase the production of 5KGA, Gluconobacter oxydans HGI-1 that converts GA to 5KGA exclusively was chosen in this study, and effects of carbon sources (lactose, maltose, sucrose, amylum and glucose) and nitrogen sources (yeast extract, fish meal, corn steep liquor, soybean meal and cotton-seed meal) on 5KGA production were investigated. Results of experiment in 500 mL shake-flask show that the highest yield of 5KGA (98.20 g/L) was obtained using 100 g/L glucose as carbon source. 5KGA reached 100.20 g/L, 109.10 g/L, 99.83 g/L with yeast extract, fish meal and corn steep liquor as nitrogen source respectively, among which the optimal nitrogen source was fish meal. The yield of 5KGA by corn steep liquor is slightly lower than that by yeast extract. For the economic reason, corn steep liquor was selected as nitrogen source and scaled up to 5 L stirred-tank fermentor, and the final concentration of 5KGA reached 93.80 g/L, with its maximum volumetric productivity of 3.48 g/(L x h) and average volumetric productivity of 1.56 g/(L x h). The result obtained in this study showed that carbon and nitrogen sourses for large-scale production of 5KGA by Gluconobacter oxydans HGI-1 were glucose and corn steep liquor, respectively, and the available glucose almost completely (85.93%) into 5KGA.

  20. Does high reactive nitrogen input from the atmosphere decrease the carbon sink strength of a peatland?

    Science.gov (United States)

    Brümmer, Christian; Zöll, Undine; Hurkuck, Miriam; Schrader, Frederik; Kutsch, Werner

    2017-04-01

    Mid-latitude peatlands are often exposed to high atmospheric nitrogen deposition when located in close vicinity to agricultural land. As the impacts of altered deposition rates on nitrogen-limited ecosystems are poorly understood, we investigated the surface-atmosphere exchange of several nitrogen and carbon compounds using multiple high-resolution measurement techniques and modeling. Our study site was a protected semi-natural bog ecosystem. Local wind regime and land use in the adjacent area clearly regulated whether total reactive nitrogen (ΣNr) concentrations were ammonia (NH3) or NOx-dominated. Eddy-covariance measurements of NH3 and ΣNr revealed concentration, temperature and surface wetness-dependent deposition rates. Intermittent periods of NH3 and ΣNr emission likely attributed to surface water re-emission and soil efflux, respectively, were found, thereby indicating nitrogen oversaturation in this originally N-limited ecosystem. Annual dry plus wet deposition resulted in 20 to 25 kg N ha-1 depending on method and model used, which translated into a four- to fivefold exceedance of the ecosystem-specific critical load. As the bog site had likely been exposed to the observed atmospheric nitrogen burden over several decades, a shift in grass species' composition towards a higher number of nitrophilous plants was already visible. Three years of CO2 eddy flux measurements showed that the site was a small net sink in the range of 33 to 268 g CO2 m-2 yr-1. Methane emissions of 32 g CO2-eq were found to partly offset the sequestered carbon through CO2. Our study indicates that the sink strength of the peatland has likely been decreased through elevated N deposition over the past decades. It also demonstrates the applicability of novel micrometeorological measurement techniques in biogeochemical sciences and stresses the importance of monitoring long-term changes in vulnerable ecosystems under anthropogenic pressure and climate change.

  1. How intensive agriculture affects surface-atmosphere exchange of nitrogen and carbon compounds over peatland

    Science.gov (United States)

    Bruemmer, C.; Richter, U.; Schrader, F.; Hurkuck, M.; Kutsch, W. L.

    2016-12-01

    Mid-latitude peatlands are often exposed to high atmospheric nitrogen deposition when located in close vicinity to agricultural land. As the impacts of altered deposition rates on nitrogen-limited ecosystems are poorly understood, we investigated the surface-atmosphere exchange of several nitrogen and carbon compounds using multiple high-resolution measurement techniques and modeling. Our study site was a protected semi-natural bog ecosystem. Local wind regime and land use in the adjacent area clearly regulated whether total reactive nitrogen (∑Nr) concentrations were ammonia (NH3) or NOx-dominated. Eddy-covariance measurements of NH3 and ∑Nr revealed concentration, temperature and surface wetness-dependent deposition rates. Intermittent periods of NH3 and ∑Nr emission likely attributed to surface water re-emission and soil efflux, respectively, were found, thereby indicating nitrogen oversaturation in this originally N-limited ecosystem. Annual dry plus wet deposition resulted in 20 to 25 kg N ha-1 depending on method and model used, which translated into a four- to fivefold exceedance of the ecosystem-specific critical load. As the bog site had likely been exposed to the observed atmospheric nitrogen burden over several decades, a shift in grass species' composition towards a higher number of nitrophilous plants was already visible. Three years of CO2 eddy flux measurements showed that the site was a small net sink in the range of 33 to 268 g CO2 m-2 yr-1. Methane emissions of 32 g CO2-eq were found to partly offset the sequestered carbon through CO2. Our study demonstrates the applicability of novel micrometeorological measurement techniques in biogeochemical sciences and stresses the importance of monitoring long-term changes in vulnerable ecosystems under anthropogenic pressure and climate change.

  2. Subtropical urban turfs: Carbon and nitrogen pools and the role of enzyme activity.

    Science.gov (United States)

    Kong, Ling; Chu, L M

    2018-03-01

    Urban grasslands not only provide a recreational venue for urban residents, but also sequester organic carbon in vegetation and soils through photosynthesis, and release carbon dioxide through respiration, which largely contribute to carbon storage and fluxes at regional and global scales. We investigated organic carbon and nitrogen pools in subtropical turfs and found that dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) were regulated by several factors including microbial activity which is indicated by soil enzymatic activity. We observed a vertical variation and different temporal patterns in both soil DOC, DON and enzyme activities, which decreased significantly with increasing soil depths. We further found that concentration of soil DON was linked with turf age. There were correlations between grass biomass and soil properties, and soil enzyme activities. In particular, soil bulk density was significantly correlated with soil moisture and soil organic carbon (SOC). In addition, DOC correlated significantly with DON. Significant negative correlations were also observed between soil total dissolved nitrogen (TDN) and grass biomass of Axonopus compressus and Zoysia matrella. Specifically, grass biomass was significantly correlated with the soil activity of urease and β-glucosidase. Soil NO 3 -N concentration also showed negative correlations with the activity of both β-glucosidase and protease but there were no significant correlations between cellulase and soil properties or grass biomass. Our study demonstrated a relationship between soil C and N dynamics and soil enzymes that could be modulated to enhance SOC pools through management and maintenance practices. Copyright © 2017. Published by Elsevier B.V.

  3. Changes of stable isotopes carbon-13 and nitrogen-15 in different tissues of cattle

    International Nuclear Information System (INIS)

    Sun Fengmei; Yu Hongxia; Wu Wei; Yang Shuming

    2009-01-01

    Stable isotope analysis is a potential tool for tracing food origin. The stable carbon and nitrogen isotope composition in different tissues of two varieties of cattle under the same culture condition were investigated. δ 13 C and δ 15 N values of different defatted muscle and crude fat, cattle tail hair, blood, liver and feed were determined by isotope ratio mass spectrometry, and statistical analysis was carried out. The results showed that stable isotopes of carbon and nitrogen composition was not affected by cattle variety; the δ 13 C values between different defatted muscle, blood, liver and cattle hair were not significantly different, but δ 15 N value in the liver was much higher than other muscle and the δ 13 C values didn't show difference among all the crude fat samples. So these results indicated that isotope fractionation in the various tissue was discrepant. (authors)

  4. Synthesis of carbon-11, fluorine-18, and nitrogen-13 labeled radiotracers for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Wolf, A.P.

    1981-01-01

    A number of reviews, many of them recent, have appeared on various aspects of /sup 11/C, /sup 18/F and /sup 13/N-labeled radiotracers. This monograph treats the topic principally from the standpoint of synthetic organic chemistry while keeping in perspective the necessity of integrating the organic chemistry with the design and ultimate application of the radiotracer. Where possible, recent examples from the literature of organic synthesis are introduced to suggest potentially new routes which may be applied to problems in labeling organic molecules with the short-lived positron emitters, carbon-11, fluorine-18, and nitrogen-13. The literature survey of carbon-11, fluorine-18 and nitrogen-13 labeled compounds presented are of particular value to scientists working in this field. Two appendices are also included to provide supplementary general references. A subject index concludes this volume.

  5. Vertical distribution of total carbon, nitrogen and phosphorus in sediments of Drug Spring Lake, Wudalianchi

    Science.gov (United States)

    Zeng, Ying; Yang, Chen

    2018-02-01

    The content of total organic carbon, total nitrogen and total phosphorus in sediments of Drug Spring Lake was detected and their vertical distribution characteristic was analysed. Results showed that there were significant changes to the content of total organic carbon, total nitrogen and total phosphorus in different depth of the columnar sediments. Their highest content both appeared in the interval of 10cm to 25cm corresponding to the period of 1980s to 1990s, when the tourism of Wudalianchi scenic area began to develop. It reflected the impact of human activities on the Drug Spring Lake. That means the regulation was still not enough, although a series of pollution control measures adopted by the government in recent years had initial success.

  6. Successive ionization of positive ions of carbon and nitrogen by electron bombardment

    International Nuclear Information System (INIS)

    Donets, E.D.; Ilyushchenko, V.I.

    Experimental studies of deep ionization of heavy ions are described. The applications of such studies in atomic physics, plasma physics and space physics are discussed. Investigations using intersecting ion-electron beams, shifted beams and ion trap sources are described, and data are presented for multi-charged ions of carbon, oxygen and nitrogen. A detailed description of the development of the IEL (electron beam ionizer) source, and the KRION (cryogenic version) source is given, and further data for the multiple ionization of carbon and nitrogen are given for charge states up to C 6+ and N 7+ . The advantages and disadvantages of the KRION source are discussed, and preliminary studies of a new torroidal ion trap source (HIRAC) are presented. (11 figs, 57 refs) (U.S.)

  7. Marine meiofauna, carbon and nitrogen mineralization in sandy and soft sediments of Disko Bay, West Greenland

    DEFF Research Database (Denmark)

    Rysgaard, S.; Christensen, P.B.; Sørensen, Martin Vinther

    2000-01-01

    Organic carbon mineralization was studied in a shallow-water (4 m), sandy sediment and 2 comparatively deep-water (150 and 300 m), soft sediments in Disko Bay, West Greenland. Benthic microalgae inhabiting the shallow-water locality significantly affected diurnal O-2 conditions within the surface...... is regulated primarily by the availability of organic matter and not by temperature. The shallow-water sediment contained a larger meiofauna population than the deep-water muddy sediments. Crustacean nauplia dominated the upper 9 mm while nematodes dominated below. A typical interstitial fauna of species...... layers of the sediment. Algal photosynthetic activity and nitrogen uptake reduced nitrogen effluxes and denitrification rates. Sulfate reduction was the most important pathway for carbon mineralization in the sediments of the shallow-water station. In contrast, high bottom-water NO3- concentrations...

  8. Carbon and nitrogen distribution in oak-hickory forests distributed along a productivity gradient

    Energy Technology Data Exchange (ETDEWEB)

    Reber, R.T.; Kaczmarek, D.J.; Pope, P.E.; Rodkey, K.S. [Purdue Univ., West Lafayette, IN (United States)

    1993-12-31

    Biomass, carbon and nitrogen pools were determined for oak-hickory forests of varying productivity. Little information of this type is available for the central hardwood region. Six oak-hickory dominated forests were chosen to represent a range in potential site productivity as influenced by soil type, amount of recyclable nutrients and available water. Biomass, carbon and nitrogen storage were determined for the following components: above ground standing biomass, fine root biomass, forest floor organic layers and litterfall. As site sequestered at each site was dependent more on the amount of living biomass at each site Litterfall, to some extent, increased with increasing site productivity. As potential site productivity decreased, total fine root biomass increased. The data suggest that as site quality decreased fine root production and turnover may become as important in nutrient cycling as annual litterfall.

  9. Synthesis of carbon-11, fluorine-18, and nitrogen-13 labeled radiotracers for biomedical applications

    International Nuclear Information System (INIS)

    Fowler, J.S.; Wolf, A.P.

    1981-01-01

    A number of reviews, many of them recent, have appeared on various aspects of 11 C, 18 F and 13 N-labeled radiotracers. This monograph treats the topic principally from the standpoint of synthetic organic chemistry while keeping in perspective the necessity of integrating the organic chemistry with the design and ultimate application of the radiotracer. Where possible, recent examples from the literature of organic synthesis are introduced to suggest potentially new routes which may be applied to problems in labeling organic molecules with the short-lived positron emitters, carbon-11, fluorine-18, and nitrogen-13. The literature survey of carbon-11, fluorine-18 and nitrogen-13 labeled compounds presented are of particular value to scientists working in this field. Two appendices are also included to provide supplementary general references. A subject index concludes this volume

  10. Influences of Air, Oxygen, Nitrogen, and Carbon Dioxide Nanobubbles on Seed Germination and Plant Growth.

    Science.gov (United States)

    Ahmed, Ahmed Khaled Abdella; Shi, Xiaonan; Hua, Likun; Manzueta, Leidy; Qing, Weihua; Marhaba, Taha; Zhang, Wen

    2018-05-23

    Nanobubbles (NBs) hold promise in green and sustainable engineering applications in diverse fields (e.g., water/wastewater treatment, food processing, medical applications, and agriculture). This study investigated the effects of four types of NBs on seed germination and plant growth. Air, oxygen, nitrogen, and carbon dioxide NBs were generated and dispersed in tap water. Different plants, including lettuce, carrot, fava bean, and tomato, were used in germination and growth tests. The seeds in water-containing NBs exhibited 6-25% higher germination rates. Especially, nitrogen NBs exhibited considerable effects in the seed germination, whereas air and carbon dioxide NBs did not significantly promote germination. The growth of stem length and diameter, leave number, and leave width were promoted by NBs (except air). Furthermore, the promotion effect was primarily ascribed to the generation of exogenous reactive oxygen species by NBs and higher efficiency of nutrient fixation or utilization.

  11. Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil

    KAUST Repository

    Keuskamp, Joost A.

    2013-02-01

    Mangrove forests are sites of intense carbon and nutrient cycling, which result in soil carbon sequestration on a global scale. Currently, mangrove forests receive increasing quantities of exogenous nutrients due to coastal development. The present paper quantifies the effects of nutrient loading on microbial growth rates and the mineralisation of soil organic carbon (SOC) in two mangrove soils contrasting in carbon content. An increase in SOC mineralisation rates would lead to the loss of historically sequestered carbon and an enhanced CO2 release from these mangrove soils.In an incubation experiment we enriched soils from Avicennia and Rhizophora mangrove forests bordering the Red Sea with different combinations of nitrogen, phosphorus and glucose to mimic the effects of wastewater influx. We measured microbial growth rates as well as carbon mineralisation rates in the natural situation and after enrichment. The results show that microbial growth is energy limited in both soils, with nitrogen as a secondary limitation. Nitrogen amendment increased the rate at which labile organic carbon was decomposed, while it decreased SOC mineralisation rates. Such an inhibitory effect on SOC mineralisation was not found for phosphorus enrichment.Our data confirm the negative effect of nitrogen enrichment on the mineralisation of recalcitrant carbon compounds found in other systems. Based on our results it is not to be expected that nutrient enrichment by itself will cause degradation of historically sequestered soil organic carbon in nitrogen limited mangrove forests. © 2012 Elsevier Ltd.

  12. Nitrogen doped activated carbon from pea skin for high performance supercapacitor

    Science.gov (United States)

    Ahmed, Sultan; Ahmed, Ahsan; Rafat, M.

    2018-04-01

    In this work, nitrogen doped porous carbon (NDC) has been synthesized employing a facile two-step process. Firstly, carbon precursor (pea skin) was heated with melamine (acting as nitrogen source) followed by activation with KOH in different ratios. The dependence of porosity and nitrogen content on impregnation ratio was extensively studied. Other textural properties of prepared NDC sample were studied using standard techniques of material characterization. The electrochemical performance of NDC sample as an electrode was studied in two-electrode symmetric supercapacitor system. 1 M LiTFSI (lithium bis-trifluoromethanesulfonimide) solution in IL EMITFSI (1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), was used as electrolyte. It was found that the fabricated supercapacitor cell offers high values of specific capacitance (141.1 F g‑1), specific energy (19.6 Wh kg‑1) and specific power (25.4 kW kg‑1) at current density of 1.3 A g‑1. More importantly, the fabricated supercapacitor cell shows capacitance retention of ∼75%, for more than 5000 cycles. The enhanced performance of NDC sample is primarily due to large surface area with favorable surface structure (contributing to double layer capacitance) and presence of nitrogen functionalities (contributing to pseudo-capacitance). Such important features make the synthesized NDC sample, an attractive choice for electrode material in high performance supercapacitor.

  13. Structure, thermodynamic and electronic properties of carbon-nitrogen cubanes and protonated polynitrogen cations

    Science.gov (United States)

    Chaban, Vitaly V.; Andreeva, Nadezhda A.

    2017-12-01

    Energy generation and storage are at the center of modern civilization. Energetic materials constitute quite a large class of compounds with a high amount of stored chemical energy that can be released. We hereby use a combination of quantum chemistry methods to investigate feasibility and properties of carbon-nitrogen cubanes and multi-charged polynitrogen cations in the context of their synthesis and application as unprecedented energetic materials. We show that the stored energy increases gradually with the nitrogen content increase. Nitrogen-poor cubanes retain their stabilities in vacuum, even at elevated temperatures. Such molecules will be probably synthesized at some point. In turn, polynitrogen cations are highly unstable, except N8H+, despite they are isoelectronic to all-carbon cubane. Kinetic stability of the cation decays drastically as its total charge increases. High-level thermodynamic calculations revealed that large amounts of energy are liberated upon decompositions of polynitrogen cations, which produce molecular nitrogen, acetylene, and protons. The present results bring a substantial insights to the design of novel high-energy compounds.

  14. Coupling of oceanic carbon and nitrogen: A window to spatially resolved quantitative reconstruction of nitrate inventories

    Science.gov (United States)

    Glock, N.; Liebetrau, V.; Gorb, S.; Wallmann, K. J. G.; Erdem, Z.; Schönfeld, J.; Eisenhauer, A.

    2017-12-01

    Anthropogenic impact has led to a severe acceleration of the global nitrogen cycle. Every second nitrogen atom in the biosphere may now originate from anthropogenic sources such as chemical fertilizers and the burning of fossil fuels. A quantitative reconstruction of past reactive nitrogen inventories is invaluable to facilitate projections for future scenarios and calibrations for such paleoproxies should be done as long the natural signature is still visible. Here we present a first quantitative reconstruction of nitrate concentrations in intermediate water depths of the Peruvian oxygen minimum zone over the last deglaciation using the pore density in the benthic foraminiferal species Bolivina spissa. A comparison of the nitrate reconstruction to the stable carbon isotope (δ13C) record reveals a strong coupling between the carbon and nitrogen cycles. The linear correlation between δ13C and nitrate availability remained stable over the last 22,000 years, facilitating the use of δ13C records as a quantitative nitrate proxy. The combination of the pore density record with δ13C records shows an elevated oceanic nitrate inventory during the Last Glacial Maximum as compared to the Holocene. Our novel proxy approach is consistent with the results of previous δ15N-based biogeochemical modeling studies, and thus provides sound estimates of the nitrate inventory in the glacial and deglacial ocean.

  15. Changes of the electronic structure of the atoms of nitrogen in nitrogen-doped multiwalled carbon nanotubes under the influence of pulsed ion radiation

    Energy Technology Data Exchange (ETDEWEB)

    Korusenko, P.M., E-mail: korusenko@obisp.oscsbras.ru [Omsk Scientific Centre, Siberian Branch, Russian Academy of Sciences, Karl Marx Avenue, 15, Omsk 644024 (Russian Federation); Bolotov, V.V.; Nesov, S.N.; Povoroznyuk, S.N. [Omsk Scientific Centre, Siberian Branch, Russian Academy of Sciences, Karl Marx Avenue, 15, Omsk 644024 (Russian Federation); Khailov, I.P. [Tomsk Polytechnic University, Lenin Ave. 2a, Tomsk 634028 (Russian Federation)

    2015-09-01

    With the use of X-ray photoelectron spectroscopy (XPS) there have been investigated the changes of the chemical state of nitrogen atoms in the structure of nitrogen-doped multiwalled carbon nanotubes (CN{sub x}-MWCNTs) resulting from the impact of pulsed ion beam at various parameters of the beam (energy density, number of pulses). It has been established that irradiation with the pulsed ion beam leads to a reduction of the total amount of nitrogen in CN{sub x} nanotubes. It has been shown that a single pulse irradiation of ion beam at the energy densities of 0.5, 1, 1.5 J/cm{sup 2} leads to restructuring of the nitrogen from pyridinic and pyrrolic configuration to graphitic state. Complete removal of nitrogen (pyridinic, pyrrolic, graphitic) embedded in the structure of the walls of CN{sub x} nanotubes occurs at ten pulses and 1.5 J/cm{sup 2}.

  16. CO{sub 2} capture by adsorption with nitrogen enriched carbons

    Energy Technology Data Exchange (ETDEWEB)

    M.G. Plaza; C. Pevida; A. Arenillas; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon (CSIC), Oviedo (Spain)

    2007-09-15

    The success of CO{sub 2} capture with solid sorbents is dependent on the development of a low cost sorbent with high CO{sub 2} selectivity and adsorption capacity. Immobilised amines are expected to offer the benefits of liquid amines in the typical absorption process, with the added advantages that solids are easy to handle and that they do not give rise to corrosion problems. In this work, different alkylamines were evaluated as a potential source of basic sites for CO{sub 2} capture, and a commercial activated carbon was used as a preliminary support in order to study the effect of the impregnation. The amine coating increased the basicity and nitrogen content of the carbon. However, it drastically reduced the microporous volume of the activated carbon, which is chiefly responsible for CO{sub 2} physisorption, thus decreasing the capacity of raw carbon at room temperature. 33 refs., 7 figs., 3 tabs.

  17. CO{sub 2} removal potential of carbons prepared by co-pyrolysis of sugar and nitrogen containing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Drage, T.C.; Smith, K.; Snape, C.E. [University of Nottingham, Fuel Science Group, School of Chemical, Environmental and Mining Engineering, University Park, Nottingham NG7 2RD (United Kingdom)

    2005-08-15

    The nitrogen enrichment of active carbons is reported to be effective in enhancing the specific adsorbate-adsorbent interactions for CO{sub 2}. In this work, nitrogen-enriched carbons were prepared by co-pyrolysis of sugar and a series of nitrogen compounds with different nitrogen functionalities. The results show that although the amount of nitrogen incorporated to the final adsorbent is important, the N-functionality seems to be more relevant for increasing CO{sub 2} uptake. Thus, the adsorbent obtained from urea co-pyrolysis presents the highest nitrogen content but the lowest CO{sub 2} adsorption capacity. However, the adsorbent obtained from carbazole co-pyrolysis, despite the lower amount of N incorporated, shows high CO{sub 2} uptake, up to 9wt.%, probably because the presence of more basic functionalities as determined by XPS analysis.

  18. Discrimination factors of carbon and nitrogen stable isotopes in meerkat feces

    Directory of Open Access Journals (Sweden)

    Shaena Montanari

    2017-06-01

    Full Text Available Stable isotope analysis of feces can provide a non-invasive method for tracking the dietary habits of nearly any mammalian species. While fecal samples are often collected for macroscopic and genetic study, stable isotope analysis can also be applied to expand the knowledge of species-specific dietary ecology. It is somewhat unclear how digestion changes the isotope ratios of animals’ diets, so more controlled diet studies are needed. To date, most diet-to-feces controlled stable isotope experiments have been performed on herbivores, so in this study I analyzed the carbon and nitrogen stable isotope ratios in the diet and feces of the meerkat (Suricata suricatta, a small omnivorous mammal. The carbon trophic discrimination factor between diet and feces (Δ13Cfeces is calculated to be 0.1 ± 1.5‰, which is not significantly different from zero, and in turn, not different than the dietary input. On the other hand, the nitrogen trophic discrimination factor (Δ15Nfeces is 1.5 ± 1.1‰, which is significantly different from zero, meaning it is different than the average dietary input. Based on data generated in this experiment and a review of the published literature, carbon isotopes of feces characterize diet, while nitrogen isotope ratios of feces are consistently higher than dietary inputs, meaning a discrimination factor needs to be taken into account. The carbon and nitrogen stable isotope values of feces are an excellent snapshot of diet that can be used in concert with other analytical methods to better understand ecology, diets, and habitat use of mammals.

  19. Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress

    DEFF Research Database (Denmark)

    Zhu, Xian-Can; Song, Feng-Bin; Liu, Fulai

    2015-01-01

    Effects of the arbuscular mycorrhizal (AM) fungus Glomus tortuosum on carbon (C) and nitrogen (N) metabolism of Zea mays L. grown under low-temperature stress was investigated. Maize plants inoculated or not inoculated with AM fungus were grown in a growth chamber at 258C for 4 weeks...... temperature regimes. AM symbiosis modulated C metabolic enzymes, thereby inducing an accumulation of soluble sugars, which may have contributed to an increased tolerance to low temperature, and therefore higher Pn in maize plants....

  20. Litter Controls Earthworm-Mediated Carbon and Nitrogen Transformations in Soil from Temperate Riparian Buffers

    OpenAIRE

    Maria Kernecker; Joann K. Whalen; Robert L. Bradley

    2014-01-01

    Nutrient cycling in riparian buffers is partly influenced by decomposition of crop, grass, and native tree species litter. Nonnative earthworms in riparian soils in southern Quebec are expected to speed the processes of litter decomposition and nitrogen (N) mineralization, increasing carbon (C) and N losses in gaseous forms or via leachate. A 5-month microcosm experiment evaluated the effect of Aporrectodea turgida on the decomposition of 3 litter types (deciduous leaves, reed canarygrass, an...

  1. Cement Pastes and Mortars Containing Nitrogen-Doped and Oxygen-Functionalized Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mauricio Martínez-Alanis

    2016-01-01

    Full Text Available Cement pastes and mortars based on ordinary Portland cement containing nitrogen-doped multiwalled carbon nanotubes (MWCNT-Nx or oxygen-functionalized multiwalled carbon nanotubes (MWCNT-Ox are investigated. To incorporate MWCNTs into the cementitious matrix, the as-produced carpets are dispersed over periods of 1 and 2 hours in distilled water at pH levels of 1 and 7. The cement pastes are prepared by adding 0.1 wt% of MWCNTs to cement powder, followed by characterization with SEM and X-ray diffraction (XRD at an early age (first hours of hydration. The mortars are mechanically characterized during the hydration process for a period of 28 days. SEM characterization of cement pastes revealed that the carbon nanotubes are well incorporated in the cementitious matrix, with the hydrated cement grains interconnected by long carbon nanotubes. XRD characterizations demonstrated that, during the hydration of cement pastes, different peaks emerged that were associated with ettringite, hydrated calcium silicate, and calcium hydroxide, among other structures. Results of the compressive strength measurements for mortars simultaneously mixed with MWCNT-Nx and MWCNT-Ox reached an increment of approximately 30% in compressive strength. In addition, density functional theory calculations were performed in nitrogen-doped and oxygen-functionalized carbon nanotubes interacting with a cement grain.

  2. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblobby pine forest ecosystem grown in elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Springer, C. J.; Thomas, R. B.; Delucia, E. H.

    2005-01-01

    The effects of elevated carbon dioxide concentration on the relationship between light-saturated net photosynthesis and area-based foliar nitrogen concentration in the canopy of a loblobby pine forest at the Duke Forest FACE experiment was examined. Two overstory and four understory tree species were examined at their growth carbon dioxide concentrations during the early summer and late summer of 1999, 2001 and 2002. Light-saturated net photosynthesis and foliar nitrogen relationship were compared to determine if the stimulatory effects of elevated carbon dioxide on net photosynthesis had declined. Results at all three sample times showed no difference in either the slopes, or in the y-intercepts of the net photosynthesis-foliar nitrogen relationship when measured at common carbon dioxide concentrations. Net photosynthesis was also unaffected by growth in elevated carbon dioxide, indicating that these overstory and understory trees continued to show strong stimulation of photosynthesis by elevated carbon dioxide. 46 refs., 6 tabs., 3 figs

  3. Constraining the Exchange of Carbon and Nitrogen in Eastern Long Island Sound

    Science.gov (United States)

    Byrd, A.; Warren, J. K.; Vlahos, P.; Whitney, M. M.

    2017-12-01

    Long Island Sound (LIS) is an urban estuary on the US east coast that undergoes seasonal hypoxia in its western and central regions. Currently, the budgets of both carbon and nitrogen in LIS remain unbalanced, despite their importance to the efficient and strategic management of the health of coastal and aquatic ecosystems. In this study, we evaluated the exchange values of C and N at the mouth of LIS (the Race), in order to constrain export through this important boundary. Discreet water samples were collected during four 15 km transects over the Race at five stations and three depths each station to resolve the temporal variability over a complete tidal cycle, in order to assess both net flux and variations across the tidal period. By evaluating both the particulate and dissolved pools of carbon (POC, PIC, DOC, DIC) and nitrogen (PON, DON, DIN) during the spring, summer and winter (high and low flow conditions) and pairing these measurements with physical data, we were able to identify a variety of forcing and export regimes. Preliminary results indicate the importance of spatial and tidal variability on flux estimates and show little or no export (and sometimes import) of nitrogen and significant export of organic carbon.

  4. Responses of microbial biomass carbon and nitrogen to experimental warming: a meta-analysis

    Science.gov (United States)

    Xu, W.; Yuan, W.

    2017-12-01

    Soil microbes play important roles in regulating terrestrial carbon and nitrogen cycling and strongly influence feedbacks of ecosystem to global warming. However, the inconsistent responses of microbial biomass carbon (MBC) and nitrogen (MBN) to experimental warming have been observed, and the response on ratio between MBC and MBN (MBC:MBN) has not been identified. This meta-analysis synthesized the warming experiments at 58 sites globally to investigate the responses of MBC:MBN to climate warming. Our results showed that warming significantly increased MBC by 3.61 ± 0.80% and MBN by 5.85 ± 0.90% and thus decreased the MBC:MBN by 3.34 ± 0.66%. MBC showed positive responses to warming but MBN exhibited negative responses to warming at low warming magnitude (2°C) the results were inverted. The different effects of warming magnitude on microbial biomass resulted from the warming-induced decline in soil moisture and substrate supply. Moreover, MBC and MBN had strong positive responses to warming at the mid-term (3-4 years) or short-term (1-2 years) duration, but the responses tended to decrease at long-term (≥ 5 years) warming duration. This study fills the knowledge gap on the responses of MBC:MBN to warming and may benefit the development of coupled carbon and nitrogen models.

  5. The Influence of Leaf Fall and Organic Carbon Availability on Nitrogen Cycling in a Headwater Stream

    Science.gov (United States)

    Thomas, S. A.; Kristin, A.; Doyle, B.; Goodale, C. L.; Gurwick, N. P.; Lepak, J.; Kulkari, M.; McIntyre, P.; McCalley, C.; Raciti, S.; Simkin, S.; Warren, D.; Weiss, M.

    2005-05-01

    The study of allochthonous carbon has a long and distinguished history in stream ecology. Despite this legacy, relatively little is known regarding the influence of leaf litter on nutrient dynamics. We conducted 15N-NO3 tracer additions to a headwater stream in upstate New York before and after autumn leaf fall to assess the influence of leaf litter on nitrogen spiraling. In addition, we amended the stream with labile dissolved organic carbon (as acetate) midway through each experiment to examine whether organic carbon availability differentially stimulated nitrogen cycling. Leaf standing stocks increased from 53 to 175 g dry mass m-2 and discharge more than tripled (6 to 20 L s-1) between the pre- and post-leaf fall period. In contrast, nitrate concentration fell from approximately 50 to less then 10 ug L-1. Despite higher discharge, uptake length was shorter following leaf fall under both ambient (250 and 72 m, respectively) and DOC amended (125 and 45 m) conditions. Uptake velocity increased dramatically following leaf fall, despite a slight decline in the areal uptake rate. Dissolved N2 gas samples were also collected to estimate denitrification rates under each experimental condition. The temporal extent of increased nitrogen retention will also be explored.

  6. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction

    Science.gov (United States)

    Liu, Hui; Zhao, Qingshan; Liu, Jingyan; Ma, Xiao; Rao, Yuan; Shao, Xiaodong; Li, Zhongtao; Wu, Wenting; Ning, Hui; Wu, Mingbo

    2017-11-01

    With rapid dissociative adsorption of oxygen, nitrogen-doped carbon nanomaterials have been demonstrated to be efficient alternative catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we developed a mild hydrothermal strategy to construct nitrogen-doped carbon dots/graphene (NCDs-NG) composites towards ORR. Carbon dots (CDs) were derived from petroleum coke via acid oxidation while graphene oxide (GO) was obtained from graphite by modified Hummer's method. Graphene was employed as a conductive substrate to disperse CDs during hydrothermal reducing reaction while ammonia was utilized as N source to dope both graphene and CDs. The synergistic effects, i.e. CDs as pillars for graphene and catalytic sites for ORR, the high conductivity of graphene, the quick O2 adsorption on doped pyridinic nitrogen endow the NCDs-NG composites with enhanced ORR catalytic performance in alkaline electrolyte. The onset potential of -95 mV and kinetic current density of 12.7 mA cm-2 at -0.7 V (vs. Ag/AgCl) can be compared to those of the commercial 20 wt% Pt/C catalyst. The electron transfer number is about 3.9, revealing a four-electron pathway for ORR. The optimal NCDs-NG catalyst shows superior durability and methanol tolerance than 20 wt% Pt/C. This work demonstrates a feasible and effective strategy to prepare metal-free efficient ORR electrocatalysts for fuel cell applications.

  7. Carbon and Nitrogen Sources for Shrimp Postlarvae Fed Natural Diets from a Tropical Mangrove System

    Science.gov (United States)

    Dittel, A. I.; Epifanio, C. E.; Cifuentes, L. A.; Kirchman, D. L.

    1997-11-01

    Postlarvae ofPenaeus vannameiwere fed various diets in order to examine the importance of detritus and other possible prey items in supporting postlarval growth. Stable isotopes (C and N) were used to determine the carbon and nitrogen source of the prey in the various diets. The zooplankton diet contained mostly copepods. The subtidal detritus treatment consisted mostly of plant material whereas the diets from both intertidal sites contained a mixture of plant detritus and associated meiofauna. Postlarvae reared on zooplankton and detritus plus meiofauna diets more than tripled their weight during a 6-day period. In contrast, postlarvae fed the detritus diet barely doubled their weight. Based on isotopic composition, postlarvae appear to obtain their carbon and nitrogen from various food sources. Postlarvae were enriched by 0·4‰ in13C and 2·7‰ in15N relative to the zooplankton diet, which is consistent with isotopic fractionation between successive trophic levels. In turn, the isotopic signal of the zooplankton was consistent with phytoplankton being the initial source of organic matter. In contrast, mean δ13C values of the shrimp fed detritus plus meiofauna were significantly different from their respective diets. Isotopic ratios of the postlarvae fed the mixed diet from Chomes were two trophic levels above benthic algae suggesting that the shrimp preyed on organisms that derived their carbon and nitrogen from benthic algae and/or phytoplankton.

  8. Nitrogen

    Science.gov (United States)

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  9. High-capacitance supercapacitors using nitrogen-decorated porous carbon derived from novolac resin containing peptide linkage

    OpenAIRE

    Kim, Yong Jung; Jang, In Young; Park, Ki Chul; Jung, Yong Chae; Oka, Takuyuki; Iinou, Satoshi; Komori, Yasuhiro; Kozutsumi, Toshihiko; Hashiba, Takashi; Kim, Yoong Ahm; Endo, Morinobu

    2010-01-01

    We fabricated nitrogen-decorated porous carbon exhibiting high capacitance per unit volume and unit weight via chemical activation of novolac resin containing peptide linkage. The porosity and the amount of nitrogen atoms were controlled by changing the molecular weight of novolac resin, the added amount of potassium hydroxide, or both. After chemical activation, positively charged nitrogen atoms (i.e., pyridine/pyrrole) at 400.3 eV in photoemission spectra contributed to both a shift in the ...

  10. Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors

    Science.gov (United States)

    Kim, Dae Kyom; Kim, Nam Dong; Park, Seung-Keun; Seong, Kwang-dong; Hwang, Minsik; You, Nam-Ho; Piao, Yuanzhe

    2018-03-01

    Flexible all-solid-state supercapacitors are desirable as potential energy storage systems for wearable technologies. Herein, we synthesize aminophenyl multiwall carbon nanotube (AP-MWCNT) grafted polyimide precursor by in situ polymerization method as a nitrogen-doped carbon precursor. Flexible supercapacitor electrodes are fabricated via a coating of carbon precursor on carbon cloth surface and carbonization at high temperature directly. The as-obtained electrodes, which can be directly used without any binders or additives, can deliver a high specific capacitance of 333.4 F g-1 at 1 A g-1 (based on active material mass) and excellent cycle stability with 103% capacitance retention after 10,000 cycles in a three-electrode system. The flexible all-solid-state supercapacitor device exhibits a high volumetric capacitance of 3.88 F cm-3 at a current density of 0.02 mA cm-3. And also the device can deliver a maximum volumetric energy density of 0.50 mWh cm-3 and presents good cycling stability with 85.3% capacitance retention after 10,000 cycles. This device cell can not only show extraordinary mechanical flexibilities allowing folding, twisting, and rolling but also demonstrate remarkable stable electrochemical performances under their forms. This work provides a novel approach to obtain carbon textile-based flexible supercapacitors with high electrochemical performance and mechanical flexibility.

  11. Using stable isotopes of carbon and nitrogen as in-situ tracers for monitoring the natural attenuation of explosives

    National Research Council Canada - National Science Library

    Miyares, Paul H

    1999-01-01

    The use of carbon and nitrogen stable isotope measurements from TNT was examined as a possible tool for monitoring the natural attenuation of TNT incubation studies of spiked soil samples were conducted...

  12. The direction of carbon and nitrogen fluxes between ramets in Agrostis stolonifera changes during ontogeny under simulated competition for light

    Czech Academy of Sciences Publication Activity Database

    Duchoslavová, J.; Jansa, Jan

    2018-01-01

    Roč. 69, č. 8 (2018), s. 2149-2158 ISSN 0022-0957 Institutional support: RVO:61388971 Keywords : Carbon * clonal plant * nitrogen Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 5.830, year: 2016

  13. On the virtue of acid–base titrations for the determination of basic sites in nitrogen doped carbon nanotubes

    NARCIS (Netherlands)

    Bitter, J.H.; van Dommele, S.; de Jong, K.P.

    2013-01-01

    The basicity and nature of basic species in nitrogen containing carbon nanotubes (NCNT) prepared under different conditions were investigated by acid–base titrations. Proton uptake curves were derived from the titration data and were used to establish the basicity (pKa) ranges of nitrogen species

  14. Spectroscopic study of nitrogen distribution in N-doped carbon nanotubes and nanofibers synthesized by catalytic ethylene-ammonia decomposition

    Science.gov (United States)

    Svintsitskiy, Dmitry A.; Kibis, Lidiya S.; Smirnov, Dmitry A.; Suboch, Arina N.; Stonkus, Olga A.; Podyacheva, Olga Yu.; Boronin, Andrei I.; Ismagilov, Zinfer R.

    2018-03-01

    Carbon and nitrogen species on the surface of carbon nanotubes (N-CNTs) and nanofibers (N-CNFs) were studied by X-ray absorption (XAS) and photoelectron spectroscopy (PES) including the analysis of nitrogen distribution over the depth of materials. The study was performed with a series of bamboo-like carbon nanotubes and nanofibers having the platelet-like and herringbone-like morphology. It was shown that the main nitrogen species in the composition of the studied materials are pyridine, pyrrole (and/or amino groups), graphite-like and oxidized states of nitrogen. In distinction to nanofibers, the bamboo-like nanotubes additionally contain molecular nitrogen encapsulated in the internal hollows. Spectral data for different depths of analysis were obtained by varying the energy of incident radiation. Such an approach revealed that N-CNTs are characterized by non-uniform distribution of chemically bound nitrogen species. Thus, nitrogen enrichment was observed on the external surface and in the internal arches of carbon nanotubes. Nitrogen enrichment in the subsurface region was found for N-CNFs, whereas the full depth analysis of N-distribution was limited by a large diameter of nanofibers.

  15. Nitrogen-modified carbon nanostructures derived from metal-organic frameworks as high performance anodes for Li-ion batteries

    International Nuclear Information System (INIS)

    Shen, Cai; Zhao, Chongchong; Xin, Fengxia; Cao, Can; Han, Wei-Qiang

    2015-01-01

    Here, we report preparation of nitrogen-modified nanostructure carbons through carbonization of Cu-based metal organic nanofibers at 700 °C under argon gas atmosphere. After removal of copper through chemical treatment with acids, pure N-modified nanostructure carbon with a nitrogen content of 8.62 wt% is obtained. When use as anodes for lithium-ion battery, the nanostructure carbon electrode has a discharge capacity of 853.1 mAh g −1 measured at a current of 500 mA g −1 after 800 cycles.

  16. Carbon and nitrogen co-doping self-assembled MoS{sub 2} multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoqin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Xu, Jiao; Chai, Liqiang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); He, Tengfei [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Yu, Fucheng [School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Wang, Peng, E-mail: pengwang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-01

    Highlights: • Mo–S–C–N composite films were synthesized by using reactive magnetron sputtering. • A self-assembled multilayer structure with periodicity in the nanometer scale was formed in the composite film. • The hardness of Mo–S–C–N film deposited at optimized parameter reaches up to 9.76 GPa. • The wear rate of deposited Mo–S–C–N film both in vacuum and ambient atmosphere decreases dramatically. - Abstract: Mo–S–C–N composite films were prepared using reactive magnetron sputtering of graphite and MoS{sub 2} targets in argon and nitrogen atmospheres. The effects of carbon/nitrogen co-doping and carbon concentration on the composition, microstructure, mechanical and tribological properties of deposited films have been investigated by various characterization techniques. The results show that the deposited films comprise MoS{sub 2} nanocrystalline and amorphous carbon, and the incorporating nitrogen forms Mo-N and C–N chemical bonds. Increasing carbon concentration leads to the increase of sp{sup 2} carbon fraction in the films. Furthermore, the high-resolution transmission electron microscopy reveals that a self-assembled multilayer structure with periodicity in the nanometer scale is formed in the Mo–S–C–N film. Benefiting from the composite and self-assembled multilayer structures, the hardness of Mo–S–C–N film deposited at optimized parameter reaches up to 9.76 GPa, and corresponding friction experiment indicates that this composite films display low friction coefficient and high wear resistance both in vacuum and ambient air conditions.

  17. Reassessing carbon sequestration in the North China Plain via addition of nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wenxu, E-mail: dongwx@sjziam.ac.cn [Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021 (China); Duan, Yongmei, E-mail: 106086193@QQ.com [Geological Survey of Jiangxi Province, Nanchang 330030 (China); Wang, Yuying, E-mail: wangyy@sjziam.ac.cn [Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021 (China); Hu, Chunsheng, E-mail: cshu@sjziam.ac.cn [Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021 (China)

    2016-09-01

    Soil inorganic carbon (SIC) exerts a strong influence on the carbon (C) sequestered in response to nitrogen (N) additions in arid and semi-arid ecosystems, but limited information is available on in situ SIC storage and dissolution at the field level. This study determined the soil organic/inorganic carbon storage in the soil profile at 0–100 cm depths and the concentration of dissolved inorganic carbon (DIC) in soil leachate in 4 N application treatments (0, 200, 400, and 600 kg N ha{sup −1} yr{sup −1}) for 15 years in the North China Plain. The objectives were to evaluate the effect of nitrogen fertilizer on total amount of carbon sequestration and the uptake of atmospheric CO{sub 2} in an agricultural system. Results showed that after 15 years of N fertilizer application the SOC contents at depths of 0–100 cm significantly increased, whereas the SIC contents significantly decreased at depths of 0–60 cm. However, the actual measured loss of carbonate was far higher than the theoretical maximum values of dissolution via protons from nitrification. Furthermore, the amount of HCO{sub 3}{sup −} and the HCO{sub 3}{sup −} / (Ca{sup 2+} + Mg{sup 2+}) ratio in soil leachate were higher in the N application treatments than no fertilizer input (CK) for the 0–80 cm depth. The result suggested that the dissolution of carbonate was mainly enhanced by soil carbonic acid, a process which can absorb soil or atmosphere CO{sub 2} and less influenced by protons through the nitrification which would release CO{sub 2}. To accurately evaluate soil C sequestration under N input scenarios in semi-arid regions, future studies should include both changes in SIC storage as well as the fractions of dissolution with different sources of acids in soil profiles. - Highlights: • The SOC contents significantly increased after long-term nitrogen application, while SIC decreased. • The measured loss of carbonate was far higher than the theoretical values of dissolution from

  18. A natural light/dark cycle regulation of carbon-nitrogen metabolism and gene expression in rice shoots

    Directory of Open Access Journals (Sweden)

    Haixing Li

    2016-08-01

    Full Text Available Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00 and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799 were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant

  19. Carbon and Nitrogen dynamics in deciduous and broad leaf trees under drought stress

    Science.gov (United States)

    Joseph, Jobin; Schaub, Marcus; Arend, Matthias; Saurer, Matthias; siegwolf, Rolf; Weiler, Markus; Gessler, Arthur

    2017-04-01

    Climate change is projected to lead to an increased frequency and duration of severe drought events in future. Already within the last twenty years, however, drought stress related forest mortality has been increasing across the globe. Tree and forest die off events have multiple adverse effects on ecosystem functioning and might convert previous carbon sinks to act as carbon sources instead and can thus intensify the effect of climate change and global warming. Current predictions of forest's functioning under drought and thus forest mortality under future climatic conditions are constrained by a still incomplete picture of the trees' physiological reactions that allows some trees to survive drought periods while others succumb. Concerning the effects of drought on the carbon balance and on tree hydraulics our picture is getting more complete, but still interactions between abiotic factors and pest and diseases as well as the interaction between carbon and nutrient balances as factors affecting drought induced mortality are not well understood. Reduced carbon allocation from shoots to roots might cause a lack of energy for root nutrient uptake and to a shortage of carbon skeletons for nitrogen assimilation and thus to an impaired nutrient status of trees. To tackle these points, we have performed a drought stress experiment with six different plant species, 3 broad leaf (maple, beech and oak) and 3 deciduous (pine, fir and spruce). Potted two-year-old seedlings were kept inside a greenhouse for 5 months and 3 levels of drought stress (no stress (control), intermediate and intensive drought stress) were applied by controlling water supply. Gas exchange measurements were performed periodically to monitor photosynthesis, transpiration, stomatal conductance. At the pinnacle of drought stress, we applied isotopic pulse labelling: On the one hand we exposed trees to 13CO2 to investigate on carbon dynamics and the allocation of new assimilates within the plant. Moreover

  20. Radiobiological investigations of soft X-rays near carbon, nitrogen, oxygen K-shell edges on Aspergillus oryzae spores

    International Nuclear Information System (INIS)

    Chen, L.; Jiang, S. P.; Wan, L. B.; Ma, X. D.; Li, M. F.

    2008-01-01

    Soft X-rays at carbon, nitrogen, oxygen K-shell edges have special radiobiological effects. Using Aspergillus oryzae spores as sample, the radiation effects of soft X-rays near the K-shell edges of C, N and O elements from synchrotron radiation were investigated. Also the dose depositions of different X-ray energies in spore were discussed. At the same time, the spores were irradiated by gamma rays from 60 Co and relative biological effects were compared with those produced by soft X-rays. The results showed that soft X-rays near K-shell edges of O element had higher ability of radiation damage than that of X-rays near K-shell edges of C and N elements as compared with one another. But they all had higher killing abilities per unit dose than that of gamma rays from 60 Co. The relative biological effects (RBEs), the comparison of dose to gamma rays at 10% survival level, of the three soft X-rays were 1.65, 1.73 and 1.91, respectively. (authors)

  1. The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels

    International Nuclear Information System (INIS)

    Masumura, Takuro; Nakada, Nobuo; Tsuchiyama, Toshihiro; Takaki, Setsuo; Koyano, Tamotsu; Adachi, Kazuhiko

    2015-01-01

    In order to evaluate the effects of carbon and nitrogen addition on the stability of austenite, athermal and deformation-induced α′-martensitic transformation behaviors were investigated using type 304-metastable austenitic stainless steels containing 0.1 mass% carbon or nitrogen. The difference in the development of the deformation microstructure in particular is discussed in terms of the stacking-fault energy (SFE). Since carbon-added steel has a lower SFE than that of nitrogen-added steel, deformation twins and ε-martensite were preferentially formed in the carbon-added steel, whereas a dislocation cell structure developed in the nitrogen-added steel. Crystallographic analysis using the electron backscatter diffraction method revealed that the difference in the deformation microstructure has a significant influence on the growth behavior of deformation-induced α′-martensite, that is, the interface of the deformation twins and ε-martensite suppresses the growth of α′-martensite, whereas dislocation cell boundaries are not effective. As a result, the mechanical stability of carbon-added steel is slightly higher than that of nitrogen-added steel, although the thermal stabilization effect of carbon is much lower than that of nitrogen

  2. Tribological properties of nitrogen-containing amorphous carbon film produced by dc plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhang Wei; Wazumi, Koichiro; Tanaka, Akihiro; Koga, Yoshinori

    2003-01-01

    The nitrogen-contained amorphous carbon (a-C:N) films were deposited in a dc plasma chemical vapor deposition system with different substrate bias voltages. The structural, mechanical, and tribological properties of the a-C:N films were investigated. The influence of the bias voltage on the tribological behaviors of the a-C:N films was evaluated under various environments (dry air, O 2 , N 2 , and vacuum) using a ball-on-disk friction tester. It showed that the sp 3 C and hydrogen concentration of the a-C:N films decreases with increasing the bias voltage. However, the nitrogen concentration increases with increasing the bias voltage. As a result, the hardness and internal stress decrease and the critical load for fracturing increases as the substrate bias increases. For the tribological properties of the a-C:N films, the friction coefficient of the films slightly decreases in the environments of N 2 , O 2 , or dry air, but increases slightly in the vacuum environment by increasing the bias voltage. It indicates that the incorporated nitrogen in the a-C:N films would decrease the friction coefficient of the films in N 2 or O 2 environments, but slightly increases the friction coefficient of the films in a vacuum. The excellent wear resistance of the a-C:N films, in the level of 10 -9 -10 -8 mm 3 /Nm, can be observed in N 2 , vacuum, and dry air environments. In addition, the effect of the bias voltage on the wear rate of the a-C:N films becomes less obvious by nitrogen incorporation. So, we suggest the incorporated nitrogen, which bonded to carbon and restrained the increase of the fraction of sp 2 C-C, would restrain the wear of the a-C:N films in different environments, especially in dry air

  3. Arctic shelves as platforms for biogeochemical activity: Nitrogen and carbon transformations in the Chukchi Sea, Alaska

    Science.gov (United States)

    Hardison, Amber K.; McTigue, Nathan D.; Gardner, Wayne S.; Dunton, Kenneth H.

    2017-10-01

    Continental shelves comprise 50% of marine denitrification. The Hanna Shoal region, part of the continental shelf system in the northeast Chukchi Sea, Alaska, is recognized for its high biodiversity and productivity. We investigated the role of sediments in organic matter decomposition and nutrient cycling at five stations on the shallow Hanna Shoal. In particular, we asked (1) how much sediment organic matter is remineralized in the Chukchi Sea, and what factors drive this degradation, (2) do sediments function as a net source for fixed nitrogen (thus fueling primary production in the overlying water), or as a net sink for fixed nitrogen (thereby removing it from the system), and (3) what is the balance between sediment NH4+ uptake and regeneration, and what factors drive NH4+ cycling? We conducted dark sediment core incubations to measure sediment O2 consumption, net N2 and nutrient (NH4+, NO3-, NO2-, PO43-) fluxes, and rates of sediment NH4+ cycling, including uptake and regeneration. Rates of sediment O2 consumption and NH4+ and PO43- efflux suggest that high organic matter remineralization rates occurred in these cold (-2 °C) sediments. We estimated that total organic carbon remineralization accounted for 20-57% of summer export production measured on the Chukchi Shelf. Net N2 release was the dominant nitrogen flux, indicating that sediments acted as a net sink for bioavailable nitrogen via denitrification. Organic carbon remineralization via denitrification accounted for 6-12% of summer export production, which made up 25% of the total organic carbon oxidized in Hanna Shoal sediments. These shallow, productive Arctic shelves are ;hotspots; for organic matter remineralization.

  4. Spectroscopic properties of nitrogen doped hydrogenated amorphous carbon films grown by radio frequency plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Hayashi, Y.; Yu, G.; Rahman, M. M.; Krishna, K. M.; Soga, T.; Jimbo, T.; Umeno, M.

    2001-01-01

    Nitrogen doped hydrogenated amorphous carbon thin films have been deposited by rf plasma-enhanced chemical vapor deposition using CH 4 as the source of carbon and with different nitrogen flow rates (N 2 /CH 4 gas ratios between 0 and 3), at 300 K. The dependence modifications of the optical and the structural properties on nitrogen incorporation were investigated using different spectroscopic techniques, such as, Raman spectroscopy, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, ultraviolet-visible (UV-VIS) spectroscopy, electron spin resonance (ESR), photoluminescence (PL) and spectroscopic ellipsometry (SE). Raman spectroscopy and IR absorption reveal an increase in sp 2 -bonded carbon or a change in sp 2 domain size with increasing nitrogen flow rate. It is found that the configuration of nitrogen atoms incorporated into an amorphous carbon network gradually changes from nitrogen atoms surrounded by three (σ bonded) to two (π bonded) neighboring carbons with increasing nitrogen flow rate. Tauc optical gap is reduced from 2.6 to 2.0 eV, and the ESR spin density and the peak-to-peak linewidth increase sharply with increasing nitrogen flow rate. Excellent agreement has been found between the measured SE data and modeled spectra, in which an empirical dielectric function of amorphous materials and a linear void distribution along the thickness have been assumed. The influence of nitrogen on the electronic density of states is explained based on the optical properties measured by UV-VIS and PL including nitrogen lone pair band. [copyright] 2001 American Institute of Physics

  5. Simulated effects of nitrogen saturation the global carbon budget using the IBIS model

    Science.gov (United States)

    Lu, Xuehe; Jiang, Hong; Liu, Jinxun; Zhang, Xiuying; Jin, Jiaxin; Zhu, Qiuan; Zhang, Zhen; Peng, Changhui

    2016-01-01

    Over the past 100 years, human activity has greatly changed the rate of atmospheric N (nitrogen) deposition in terrestrial ecosystems, resulting in N saturation in some regions of the world. The contribution of N saturation to the global carbon budget remains uncertain due to the complicated nature of C-N (carbon-nitrogen) interactions and diverse geography. Although N deposition is included in most terrestrial ecosystem models, the effect of N saturation is frequently overlooked. In this study, the IBIS (Integrated BIosphere Simulator) was used to simulate the global-scale effects of N saturation during the period 1961–2009. The results of this model indicate that N saturation reduced global NPP (Net Primary Productivity) and NEP (Net Ecosystem Productivity) by 0.26 and 0.03 Pg C yr−1, respectively. The negative effects of N saturation on carbon sequestration occurred primarily in temperate forests and grasslands. In response to elevated CO2 levels, global N turnover slowed due to increased biomass growth, resulting in a decline in soil mineral N. These changes in N cycling reduced the impact of N saturation on the global carbon budget. However, elevated N deposition in certain regions may further alter N saturation and C-N coupling.

  6. Nitrogen-Containing Functional Groups-Facilitated Acetone Adsorption by ZIF-8-Derived Porous Carbon

    Directory of Open Access Journals (Sweden)

    Liqing Li

    2018-01-01

    Full Text Available Nitrogen-doped porous carbon (ZC is prepared by modification with ammonia for increasing the specific surface area and surface polarity after carbonization of zeolite imidazole framework-8 (ZIF-8. The structure and properties of these ZCs were characterized by Transmission electron microscopy, X-ray diffraction, N2 sorption, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Through static adsorption tests of these carbons, the sample obtained at 600 °C was selected as an excellent adsorbent, which exhibited an excellent acetone capacity of 417.2 mg g−1 (25 °C with a very large surface area and high-level nitrogen doping (13.55%. The microporosity, surface area and N-containing groups of the materials, pyrrolic-N, pyridinic-N, and oxidized-N groups in particular, were found to be the determining factors for acetone adsorption by means of molecular simulation with density functional theory. These findings indicate that N-doped microporous carbon materials are potential promising adsorbents for acetone.

  7. Fungi contribute critical but spatially varying roles in nitrogen and carbon cycling in acid mine drainage

    Directory of Open Access Journals (Sweden)

    Annika C. Mosier

    2016-03-01

    Full Text Available The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the environment using metagenomics and that transcriptomics and proteomics could simultaneously reveal metabolic differentiation across habitats. We reconstructed the near-complete 27 Mbp genome of a filamentous fungus, Acidomyces richmondensis, and evaluated transcript and protein expression in floating and streamer biofilms from an acid mine drainage system. A. richmondensis transcripts involved in denitrification and in the degradation of complex carbon sources (including cellulose were up-regulated in floating biofilms, whereas central carbon metabolism and stress-related transcripts were significantly up-regulated in streamer biofilms. These findings suggest that the biofilm niches are distinguished by distinct carbon and nitrogen resource utilization, oxygen availability and environmental challenges. An isolated A. richmondensis strain from this environment was used to validate the metagenomics-derived genome and confirm nitrous oxide production at pH 1. Overall, our analyses defined mechanisms of fungal adaptation and identified a functional shift related to different roles in carbon and nitrogen turnover for the same species of fungi growing in closely located but distinct biofilm niches.

  8. Progressive Tool Wear in Cryogenic Machining: The Effect of Liquid Nitrogen and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Yusuf Kaynak

    2018-05-01

    Full Text Available This experimental study focuses on various cooling strategies and lubrication-assisted cooling strategies to improve machining performance in the turning process of AISI 4140 steel. Liquid nitrogen (LN2 and carbon dioxide (CO2 were used as cryogenic coolants, and their performances were compared with respect to progression of tool wear. Minimum quantity lubrication (MQL was also used with carbon dioxide. Progression of wear, including flank and nose, are the main outputs examined during experimental study. This study illustrates that carbon dioxide-assisted cryogenic machining alone and with minimum quantity lubrication does not contribute to decreasing the progression of wear within selected cutting conditions. This study also showed that carbon dioxide-assisted cryogenic machining helps to increase chip breakability. Liquid nitrogen-assisted cryogenic machining results in a reduction of tool wear, including flank and nose wear, in the machining process of AISI 4140 steel material. It was also observed that in the machining process of this material at a cutting speed of 80 m/min, built-up edges occurred in both cryogenic cooling conditions. Additionally, chip flow damage occurs in particularly dry machining.

  9. Finite Element Simulation of Total Nitrogen Transport in Riparian Buffer in an Agricultural Watershed

    Directory of Open Access Journals (Sweden)

    Xiaosheng Lin

    2016-03-01

    Full Text Available Riparian buffers can influence water quality in downstream lakes or rivers by buffering non-point source pollution in upstream agricultural fields. With increasing nitrogen (N pollution in small agricultural watersheds, a major function of riparian buffers is to retain N in the soil. A series of field experiments were conducted to monitor pollutant transport in riparian buffers of small watersheds, while numerical model-based analysis is scarce. In this study, we set up a field experiment to monitor the retention rates of total N in different widths of buffer strips and used a finite element model (HYDRUS 2D/3D to simulate the total N transport in the riparian buffer of an agricultural non-point source polluted area in the Liaohe River basin. The field experiment retention rates for total N were 19.4%, 26.6%, 29.5%, and 42.9% in 1,3,4, and 6m-wide buffer strips, respectively. Throughout the simulation period, the concentration of total N of the 1mwide buffer strip reached a maximum of 1.27 mg/cm3 at 30 min, decreasing before leveling off. The concentration of total N about the 3mwide buffer strip consistently increased, with a maximum of 1.05 mg/cm3 observed at 60 min. Under rainfall infiltration, the buffer strips of different widths showed a retention effect on total N transport, and the optimum effect was simulated in the 6mwide buffer strip. A comparison between measured and simulated data revealed that finite element simulation could simulate N transport in the soil of riparian buffer strips.

  10. Heavily Graphitic-Nitrogen Self-doped High-porosity Carbon for the Electrocatalysis of Oxygen Reduction Reaction

    Science.gov (United States)

    Feng, Tong; Liao, Wenli; Li, Zhongbin; Sun, Lingtao; Shi, Dongping; Guo, Chaozhong; Huang, Yu; Wang, Yi; Cheng, Jing; Li, Yanrong; Diao, Qizhi

    2017-11-01

    Large-scale production of active and stable porous carbon catalysts for oxygen reduction reaction (ORR) from protein-rich biomass became a hot topic in fuel cell technology. Here, we report a facile strategy for synthesis of nitrogen-doped porous nanocarbons by means of a simple two-step pyrolysis process combined with the activation of zinc chloride and acid-treatment process, in which kidney bean via low-temperature carbonization was preferentially adopted as the only carbon-nitrogen sources. The results show that this carbon material exhibits excellent ORR electrocatalytic activity, and higher durability and methanol-tolerant property compared to the state-of-the-art Pt/C catalyst for the ORR, which can be mainly attributed to high graphitic-nitrogen content, high specific surface area, and porous characteristics. Our results can encourage the synthesis of high-performance carbon-based ORR electrocatalysts derived from widely-existed natural biomass.

  11. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland

    Science.gov (United States)

    Sanders, Christian J.; Eyre, Bradley D.; Santos, Isaac R.; Machado, Wilson; Luiz-Silva, Wanilson; Smoak, Joseph M.; Breithaupt, Joshua L.; Ketterer, Michael E.; Sanders, Luciana; Marotta, Humberto; Silva-Filho, Emmanoel

    2014-04-01

    The effect of nutrient enrichment on mangrove sediment accretion and carbon accumulation rates is poorly understood. Here we quantify sediment accretion through radionuclide tracers to determine organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) accumulation rates during the previous 60 years in both a nutrient-enriched and a pristine mangrove forest within the same geomorphological region of southeastern Brazil. The forest receiving high nutrient loads has accumulated OC, TN, and TP at rates that are fourfold, twofold, and eightfold respectively, higher than those from the undisturbed mangrove. Organic carbon and TN stable isotopes (δ13C and δ15N) reflect an increased presence of organic matter (OM) originating with either phytoplankton, benthic algae, or another allochthonous source within the more rapidly accumulated sediments of the impacted mangrove. This suggests that the accumulation rate of OM in eutrophic mangrove systems may be enhanced through the addition of autochthonous and allochthonous nonmangrove material.

  12. Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source.

    Science.gov (United States)

    Nakajima-Kambe, T; Onuma, F; Kimpara, N; Nakahara, T

    1995-06-01

    Various soil samples were screened for the presence of microorganisms which have the ability to degrade polyurethane compounds. Two strains with good polyurethane degrading activity were isolated. The more active strain was tentatively identified as Comamonas acidovorans. This strain could utilize polyester-type polyurethanes but not the polyether-type polyurethanes as sole carbon and nitrogen sources. Adipic acid and diethylene glycol were probably the main degradation products when polyurethane was supplied as a sole carbon and nitrogen source. When ammonium nitrate was used as nitrogen source, only diethylene glycol was detected after growth on polyurethane.

  13. A microbial biogeochemistry network for soil carbon and nitrogen cycling and methane flux: model structure and application to Asia

    Science.gov (United States)

    Xu, X.; Song, C.; Wang, Y.; Ricciuto, D. M.; Lipson, D.; Shi, X.; Zona, D.; Song, X.; Yuan, F.; Oechel, W. C.; Thornton, P. E.

    2017-12-01

    A microbial model is introduced for simulating microbial mechanisms controlling soil carbon and nitrogen biogeochemical cycling and methane fluxes. The model is built within the CN (carbon-nitrogen) framework of Community Land Model 4.5, named as CLM-Microbe to emphasize its explicit representation of microbial mechanisms to biogeochemistry. Based on the CLM4.5, three new pools were added: bacteria, fungi, and dissolved organic matter. It has 11 pools and 34 transitional processes, compared with 8 pools and 9 transitional flow in the CLM4.5. The dissolve organic carbon was linked with a new microbial functional group based methane module to explicitly simulate methane production, oxidation, transport and their microbial controls. Comparing with CLM4.5-CN, the CLM-Microbe model has a number of new features, (1) microbial control on carbon and nitrogen flows between soil carbon/nitrogen pools; (2) an implicit representation of microbial community structure as bacteria and fungi; (3) a microbial functional-group based methane module. The model sensitivity analysis suggests the importance of microbial carbon allocation parameters on soil biogeochemistry and microbial controls on methane dynamics. Preliminary simulations validate the model's capability for simulating carbon and nitrogen dynamics and methane at a number of sites across the globe. The regional application to Asia has verified the model in simulating microbial mechanisms in controlling methane dynamics at multiple scales.

  14. Effects of some inorganic elements on nitrogen-fixation in blue-green algae and some ecological aspects of pollution

    Energy Technology Data Exchange (ETDEWEB)

    Henriksson, L.E.; DaSilva, E.J.

    1978-01-01

    Nitrogen-fixation by two species of Nostoc, one of them a lichen phycobiont, was generally stimulated by low concentrations of arsenic, cadmium, nickel, lead, palladium, and zinc. Higher concentrations (0.025 to 0.125 ppM) of arsenic, nickel, and palladium were also stimulatory; however, higher concentrations of cadmium, lead, and zinc tended to inhibit fixation. With the exception of palladium and zinc at low concentrations these six tested elements tended to inhibit nitrogen-fixation in Chlorogloea fritschii and Westiellopsis sp.

  15. The effect of carbon and nitrogen sources on the fatty acids profile of Mortierella vinacea

    Directory of Open Access Journals (Sweden)

    Mina Mohammadi Nasr

    2017-01-01

    Full Text Available Introduction: Microbial lipids attract attention of many researchers due to their therapeutic effects. The goal of this study is the production and optimization of lipids and fatty acids in Mortierella vinaceaby applying different media to achieve invaluable fatty acids in pharmaceutical and food industry. Materials and methods: Mortierella vinacea was cultured on potato dextrose agar. Then the spores were inoculated to the production medium. After 72 hours, the lipids were extracted and they were analyzedby gas chromatography. To optimize lipid and important fatty acids production in medium, various carbon and nitrogen sources were substituted with glucose and yeast extract respectively. Results: The effect of some carbon and nitrogen sources on biomass, lipid and fatty acids production were assayed. The highest level of lipid production was in a medium which contains lactose and yeast extract (26.66%. Linoleic acid was only produced in presence of lactose and yeast extract (25.7%. While, M. vinacea yielded the highest level of linoleic acid (52.76% in a medium containing peptone, linolenic acid was achieved only in presence of lactose and triptone. Discussion and conclusion: In this study, lactose as a carbon source was the most effective one in the production of lipids. In addition, linoleic acid was produced in presence of lactose, so lactose was selected as the best carbon source. Peptone and triptone as a nitrogen source were chosen for the production of linoleic acid and linolenic acid in M. vinacea respectively. All of these findings reveal that Mortierella strain is a potential candidate for enhancement of linoleic acid and linolenic acid production. Furthermore, this simple media can be used in production of linoleic acid and linolenic acid for industrial goals in large scales.

  16. Ecosystem services and biogeochemical cycles on a global scale: valuation of water, carbon and nitrogen processes

    International Nuclear Information System (INIS)

    Watanabe, Marcos D.B.; Ortega, Enrique

    2011-01-01

    Ecosystem services (ES) are provided by healthy ecosystems and are fundamental to support human life. However, natural systems have been degraded all over the world and the process of degradation is partially attributed to the lack of knowledge regarding the economic benefits associated with ES, which usually are not captured in the market. To valuate ES without using conventional approaches, such as the human's willingness-to-pay for ecosystem goods and services, this paper uses a different method based on Energy Systems Theory to estimate prices for biogeochemical flows that affect ecosystem services by considering their emergy content converted to equivalent monetary terms. Ecosystem services related to water, carbon and nitrogen biogeochemical flows were assessed since they are connected to a range of final ecosystem services including climate regulation, hydrological regulation, food production, soil formation and others. Results in this paper indicate that aquifer recharge, groundwater flow, carbon dioxide sequestration, methane emission, biological nitrogen fixation, nitrous oxide emission and nitrogen leaching/runoff are the most critical biogeochemical flows in terrestrial systems. Moreover, monetary values related to biogeochemical flows on a global scale could provide important information for policymakers concerned with payment mechanisms for ecosystem services and costs of greenhouse gas emissions.

  17. Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency

    Science.gov (United States)

    Peschiutta, María Laura; Scholz, Fabián Gustavo; Goldstein, Guillermo; Bucci, Sandra Janet

    2018-01-01

    Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.

  18. Adsorption of hydrogen in Scandium/Titanium decorated nitrogen doped carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Mananghaya, Michael, E-mail: mikemananghaya@gmail.com [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines); DOST-ASTHRDP, PCIEERD, Gen. Santos Ave., Bicutan, Taguig City 1631 (Philippines); Belo, Lawrence Phoa; Beltran, Arnel [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines)

    2016-09-01

    Nitrogen doped Carbon Nanotube with divacancy (4ND-CN{sub x}NT) that is decorated with Scandium and Titanium as potential hydrogen storage medium using the pseudo potential density functional method was investigated. Highly localized states near the Fermi level, which are derived from the nitrogen defects, contribute to strong Sc and Ti bindings, which prevent metal aggregation and improve the material stability. A detailed Comparison of the Hydrogen adsorption capability with promising system-weight efficiency of Sc over Ti was elucidated when functionalized with 4ND-CN{sub x}NT. Finally, the (Sc/4ND){sub 10}-CN{sub x}CNT composite material has a thermodynamically favorable adsorption and consecutive adsorption energy for ideal reversible adsorption and desorption of hydrogen at room temperature such that it can hold at least 5.8 wt% hydrogen molecules at the LDA and GGA level. - Highlights: • Carbon Nanotube with divacancy (4ND-CN{sub x}NT) decorated with Sc and Ti. • Nitrogen defects, contribute to strong Sc and Ti bindings. • H{sub 2} and (Sc/4ND){sub 10}-CN{sub x}CNT has a favorable adsorption. • 5.8 wt% adsorption at the LDA and GGA level.

  19. High-capacitance supercapacitors using nitrogen-decorated porous carbon derived from novolac resin containing peptide linkage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jung [Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Jang, In Young; Park, Ki Chul; Jung, Yong Chae; Oka, Takuyuki [Department of Electric and Electronic Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Iinou, Satoshi [MEFS, Co. Ltd. Choei Nagano, Higasiguchi Bldg, 2F, 1000-1 Gentakubo, Kurita, Nagano 380-0921 (Japan); Komori, Yasuhiro; Kozutsumi, Toshihiko; Hashiba, Takashi [SHOWA HIGHPOLYMER, Co., Ltd. 1021 Tomizuka-cho, Isesaki-City, Gunma 372-0833 (Japan); Kim, Yoong Ahm, E-mail: yak@endomoribu.shinshu-u.ac.j [Department of Electric and Electronic Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Endo, Morinobu [Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan)] [Department of Electric and Electronic Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan)

    2010-08-01

    We fabricated nitrogen-decorated porous carbon exhibiting high capacitance per unit volume and unit weight via chemical activation of novolac resin containing peptide linkage. The porosity and the amount of nitrogen atoms were controlled by changing the molecular weight of novolac resin, the added amount of potassium hydroxide, or both. After chemical activation, positively charged nitrogen atoms (i.e., pyridine/pyrrole) at 400.3 eV in photoemission spectra contributed to both a shift in the point of zero charge toward negative potential and the generation of pseudocapacitance. Suitably developed pores and the positively charged nitrogen atoms make nitrogen-decorated novolac resin-derived porous carbon a promising material for electrodes in high-performance supercapacitors.

  20. Amorphous carbon nitrogenated films prepared by plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Durrant, Steven F.; Rangel, Rita C.C.; Kayama, Milton E.; Landers, Richard; Cruz, Nilson C. da

    2006-01-01

    In this work, an investigation was conducted on amorphous hydrogenated-nitrogenated carbon films prepared by plasma immersion ion implantation and deposition. Glow discharge was excited by radiofrequency power (13.56 MHz, 40 W) whereas the substrate-holder was biased with 25 kV negative pulses. The films were deposited from benzene, nitrogen and argon mixtures. The proportion of nitrogen in the chamber feed (R N ) was varied against that of argon, while keeping the total pressure constant (1.3 Pa). From infrared reflectance-absorbance spectroscopy it was observed that the molecular structure of the benzene is not preserved in the film. Nitrogen was incorporated from the plasma while oxygen arose as a contaminant. X-ray photoelectron spectroscopy revealed that N/C and O/C atomic ratios change slightly with R N . Water wettability decreased as the proportion of N in the gas phase increased while surface roughness underwent just small changes. Nanoindentation measurements showed that film deposition by means of ion bombardment was beneficial to the mechanical properties of the film-substrate interface. The intensity of the modifications correlates well with the degree of ion bombardment

  1. Electronic states of carbon alloy catalysts and nitrogen substituent effects on catalytic activity

    Science.gov (United States)

    Hata, Tomoyuki; Ushiyama, Hiroshi; Yamashita, Koichi

    2013-03-01

    In recent years, Carbon Alloy Catalysts (CACs) are attracting attention as a candidate for non-platinum-based cathode catalysts in fuel cells. Oxygen reduction reactions at the cathode are divided into two elementary processes, electron transfer and oxygen adsorption. The electron transfer reaction is the rate-determining, and by comparison of energy levels, catalytic activity can be evaluated quantitatively. On the other hand, to begin with, adsorption mechanism is obscure. The purpose of this study is to understand the effect of nitrogen substitution and oxygen adsorption mechanism, by first-principle electronic structure calculations for nitrogen substituted models. To reproduce the elementary processes of oxygen adsorption, we assumed that the initial structures are formed based on the Pauling model, a CACs model and nitrogen substituted CACs models in which various points are replaced with nitrogen. When we try to focus only on the DOS peaks of oxygen, in some substituted model that has high adsorption activity, a characteristic partial occupancy state was found. We conclude that this state will affect the adsorption activity, and discuss on why partially occupied states appear with simplification by using an orbital correlation diagram.

  2. Synthesis of Dispersible Mesoporous Nitrogen-Doped Hollow Carbon Nanoplates with Uniform Hexagonal Morphologies for Supercapacitors.

    Science.gov (United States)

    Cao, Jie; Jafta, Charl J; Gong, Jiang; Ran, Qidi; Lin, Xianzhong; Félix, Roberto; Wilks, Regan G; Bär, Marcus; Yuan, Jiayin; Ballauff, Matthias; Lu, Yan

    2016-11-02

    In this study, dispersible mesoporous nitrogen-doped hollow carbon nanoplates have been synthesized as a new anisotropic carbon nanostructure using gibbsite nanoplates as templates. The gibbsite-silica core-shell nanoplates were first prepared before the gibbsite core was etched away. Dopamine as carbon precursor was self-polymerized on the hollow silica nanoplates surface assisted by sonification, which not only favors a homogeneous polymer coating on the nanoplates but also prevents their aggregation during the polymerization. Individual silica-polydopamine core-shell nanoplates were immobilized in a silica gel in an insulated state via a silica nanocasting technique. After pyrolysis in a nanoconfine environment and elimination of silica, discrete and dispersible hollow carbon nanoplates are obtained. The resulted hollow carbon nanoplates bear uniform hexagonal morphology with specific surface area of 460 m 2 ·g -1 and fairly accessible small mesopores (∼3.8 nm). They show excellent colloidal stability in aqueous media and are applied as electrode materials for symmetric supercapacitors. When using polyvinylimidazolium-based nanoparticles as a binder in electrodes, the hollow carbon nanoplates present superior performance in parallel to polyvinylidene fluoride (PVDF) binder.

  3. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors

    Science.gov (United States)

    Liu, Haiyan; Song, Huaihe; Chen, Xiaohong; Zhang, Su; Zhou, Jisheng; Ma, Zhaokun

    2015-07-01

    A kind of nitrogen- and oxygen-containing activated carbon nanotubes (ACNTs) has been prepared by carbonization and activation of polyaniline nanotubes obtained by rapidly mixed reaction. The ACNTs show oxygen content of 15.7% and nitrogen content of 2.97% (atomic ratio). The ACNTs perform high capacitance and good rate capability (327 F g-1 at the current density of 10 A g-1) when used as the electrode materials for supercapacitors. Hydrogen reduction has been further used to investigate the effects of surface functional groups on the electrochemical performance. The changes for both structural component and electrochemical performance reveal that the quinone oxygen, pyridinic nitrogen, and pyrrolic nitrogen of carbon have the most obvious influence on the capacitive property because of their pseudocapacitive contributions.

  4. Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis.

    Science.gov (United States)

    Schlüter, Urte; Mascher, Martin; Colmsee, Christian; Scholz, Uwe; Bräutigam, Andrea; Fahnenstich, Holger; Sonnewald, Uwe

    2012-11-01

    Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under sufficient (15 mM) or limiting (0.15 mM) nitrate supply for up to 30 d. Limited availability of N caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the N stress but showed strong genotype- and age-dependent patterns. N starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation-related transcripts, on the other hand, were not influenced. Carbon assimilation-related transcripts were characterized by high transcriptional coordination and general down-regulation under low-N conditions. N deprivation caused a slight accumulation of starch but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions.

  5. Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition

    Science.gov (United States)

    He, Ping; Wan, Song-Ze; Fang, Xiang-Min; Wang, Fang-Chao; Chen, Fu-Sheng

    2016-01-01

    It is unclear whether exogenous nutrients and carbon (C) additions alter substrate immobilization to deposited nitrogen (N) during decomposition. In this study, we used laboratory microcosm experiments and 15N isotope tracer techniques with five different treatments including N addition, N+non-N nutrients addition, N+C addition, N+non-N nutrients+C addition and control, to investigate the coupling effects of non-N nutrients, C addition and N deposition on forest floor decomposition in subtropical China. The results indicated that N deposition inhibited soil organic matter and litter decomposition by 66% and 38%, respectively. Soil immobilized 15N following N addition was lowest among treatments. Litter 15N immobilized following N addition was significantly higher and lower than that of combined treatments during the early and late decomposition stage, respectively. Both soil and litter extractable mineral N were lower in combined treatments than in N addition treatment. Since soil N immobilization and litter N release were respectively enhanced and inhibited with elevated non-N nutrient and C resources, it can be speculated that the N leaching due to N deposition decreases with increasing nutrient and C resources. This study should advance our understanding of how forests responds the elevated N deposition. PMID:27020048

  6. Unusually high dispersion of nitrogen-doped carbon nanotubes in DNA solution.

    Science.gov (United States)

    Kim, Jin Hee; Kataoka, Masakazu; Fujisawa, Kazunori; Tojo, Tomohiro; Muramatsu, Hiroyuki; Vega-Díaz, Sofía M; Tristán-López, F; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Terrones, Mauricio; Dresselhaus, Mildred S

    2011-12-08

    The dispersibility in a DNA solution of bundled multiwalled carbon nanotubes (MWCNTs), having different chemical functional groups on the CNT sidewall, was investigated by optical spectroscopy. We observed that the dispersibility of nitrogen (N)-doped MWCNTs was significantly higher than that of pure MWCNTs and MWCNTs synthesized in the presence of ethanol. This result is supported by the larger amount of adsorbed DNA on N-doped MWCNTs, as well as by the higher binding energy established between nucleobases and the N-doped CNTs. Pure MWCNTs are dispersed in DNA solution via van der Waals and hydrophobic interactions; in contrast, the nitrogenated sites within N-doped MWCNTs provided additional sites for interactions that are important to disperse nanotubes in DNA solutions. © 2011 American Chemical Society

  7. Optimizing Carbon/Nitrogen Ratio for Biosurfactant Production by a Bacillus subtilis Strain

    Science.gov (United States)

    Fonseca, R. R.; Silva, A. J. R.; de Franca, F. P.; Cardoso, V. L.; Sérvulo, E. F. C.

    A Bacillus subtilis strain isolated from contaminated soil from a refinery has been screened for biosurfactant production in crystal sugar (sucrose) with different nitrogen sources (NaNO3' (NH4)2SO4' urea, and residual brewery yeast). The highest reduction in surface tension was achieved with a 48-h fermentation of crystal sugar and ammonium nitrate. Optimization of carbon/nitrogen ratio (3,9, and 15) and agitation rate (50, 150, and 250 rpm) for biosurfactant production was carried out using complete factorial design and response surface analysis. The condition of C/N 3 and 250 rpm allowed the maximum increase in surface activity of biosurfactant. A suitable model has been developed, having presented great accordance experimental data. Preliminary characterization of the bioproduct suggested it to be a lipopeptide with some isomers differing from those of a commercial surfactin.

  8. Balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen

    International Nuclear Information System (INIS)

    Zumberge, J.F.

    1981-01-01

    The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen have been measured at energies near 300 MeV amu -1 , using a balloon-borne instrument at an atmospheric depth of approx. 5 g cm -2 . The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintillators used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from approx. 0.3 amu at boron to approx. 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near earth consistent with the measurements

  9. Thin films of amorphous nitrogenated carbon a-CN{sub x}: Electron transfer and surface reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Tamiasso-Martinhon, P.; Cachet, H.; Debiemme-Chouvy, C.; Deslouis, C. [Universite Pierre et Marie Curie-Paris 6, Laboratoire Interfaces et Systemes Electrochimiques, CNRS, UPR15-LISE, 4 Place Jussieu, Paris F-75005 (France)

    2008-08-01

    The electrochemical behaviour of thin films of nitrogenated amorphous carbon a-CN{sub x} is similar to that of boron-doped diamond, with a wide potential window in aqueous media. They are elaborated by cathodic sputtering of a graphite target in an Ar-N{sub 2} active plasma for varying nitrogen contents, determined by XPS (0.06 {<=} x {<=} 0.39). Their electrochemical reactivity is sensitive to the surface state. The present study reports on the influence of electrochemical pre treatment on the electronic transfer rate of a fast redox system ferri-ferrocyanide, by focusing on the direction of the potential excursion. On the other hand, the role of both the pH and the potential on the interfacial capacitance in the presence of Na{sub 2}SO{sub 4} without redox species is documented. The results show up the sensitivity of the film surface to the electrochemical conditions. (author)

  10. Amount, composition and seasonality of dissolved organic carbon and nitrogen export from agriculture in contrasting climates

    DEFF Research Database (Denmark)

    Graeber, Daniel; Meerhof, Mariana; Zwirnmann, Elke

    2014-01-01

    Agricultural catchments are potentially important but often neglected sources of dissolved organic matter (DOM), of which a large part is dissolved organic carbon (DOC) and nitrogen (DON). DOC is an important source of aquatic microbial respiration and DON may be an important source of nitrogen...... to aquatic ecosystems. However, there is still a lack of comprehensive studies on the amount, composition and seasonality of DOM export from agricultural catchments in different climates. The aim of our study was to assess the amount, composition and seasonality of DOM in a total of four streams in the wet......-temperate and subtropical climate of Denmark and Uruguay, respectively. In each climate, we investigated one stream with extensive agriculture (mostly pasture) and one stream with intensive agriculture (mostly intensively used arable land) in the catchment. We sampled each stream taking grab samples fortnightly for two...

  11. Nitrogen-doped porous carbons for highly selective CO2 capture from flue gases and natural gas upgrading

    NARCIS (Netherlands)

    Wang, J.; Krishna, R.; Yang, J.; Dandamudi, K.P.R.; Deng, S.

    2015-01-01

    Nitrogen-doped microporous activated carbon adsorbents were synthesized by a self-template method with KOH as the porogen agent at pyrolysis temperatures of 600, 700, and 800 degrees C. The carbon adsorbent samples were characterized with N-2 adsorption at 77 K, X-ray diffraction, scanning electron

  12. The Crc protein inhibits the production of polyhydroxyalkanoates in Pseudomonas putida under balanced carbon/nitrogen growth conditions.

    Science.gov (United States)

    La Rosa, Ruggero; de la Peña, Fernando; Prieto, María Axiliadora; Rojo, Fernando

    2014-01-01

    Pseudomonas putida synthesizes polyhydroxyalkanoates (PHAs) as storage compounds. PHA synthesis is more active when the carbon source is in excess and the nitrogen source is limiting, but can also occur at a lower rate under balanced carbon/nitrogen ratios. This work shows that PHA synthesis is controlled by the Crc global regulator, a protein that optimizes carbon metabolism by inhibiting the expression of genes involved in the use of non-preferred carbon sources. Crc acts post-transcriptionally. The mRNAs of target genes contain characteristic catabolite activity (CA) motifs near the ribosome binding site. Sequences resembling CA motifs can be predicted for the phaC1 gene, which codes for a PHA polymerase, and for phaI and phaF, which encode proteins associated to PHA granules. Our results show that Crc inhibits the translation of phaC1 mRNA, but not that of phaI or phaF, reducing the amount of PHA accumulated in the cell. Crc inhibited PHA synthesis during exponential growth in media containing a balanced carbon/nitrogen ratio. No inhibition was seen when the carbon/nitrogen ratio was imbalanced. This extends the role of Crc beyond that of controlling the hierarchical utilization of carbon sources and provides a link between PHA synthesis and the global regulatory networks controlling carbon flow. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Multi-wall carbon nanotubes with nitrogen-containing carbon coating

    Czech Academy of Sciences Publication Activity Database

    Tomšík, Elena; Morávková, Zuzana; Stejskal, Jaroslav; Trchová, Miroslava; Šálek, Petr; Kovářová, Jana; Zemek, Josef; Cieslar, M.; Prokeš, J.

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1054-1065 ISSN 0366-6352 R&D Projects: GA ČR GPP108/11/P763; GA ČR GAP205/12/0911; GA ČR GA202/09/0428 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : polyaniline coating * carbon ization * multi-wall carbon nanotubes Subject RIV: CD - Macromolecular Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.193, year: 2013

  14. Effects of euthanasia method on stable-carbon and stable-nitrogen isotope analysis for an ectothermic vertebrate.

    Science.gov (United States)

    Atwood, Meredith A

    2013-04-30

    Stable isotope analysis is a critical tool for understanding ecological food webs; however, results can be sensitive to sample preparation methods. To limit the possibility of sample contamination, freezing is commonly used to euthanize invertebrates and preserve non-lethal samples from vertebrates. For destructive sampling of vertebrates, more humane euthanasia methods are preferred to freezing and it is essential to evaluate how these euthanasia methods affect stable isotope results. Stable isotope ratios and elemental composition of carbon and nitrogen were used to evaluate whether the euthanasia method compromised the integrity of the sample for analysis. Specifically, the stable isotope and C:N ratios were compared for larval wood frogs (Rana sylvatica  =  Lithobates sylvaticus), an ectothermic vertebrate, that had been euthanized by freezing with four different humane euthanasia methods: CO2, benzocaine, MS-222 (tricaine methanesulfonate), and 70% ethanol. The euthanasia method was not related to the δ(13)C or δ(15)N values and the comparisons revealed no differences between freezing and any of the other treatments. However, there were slight (non-significant) differences in the isotope ratios of benzocaine and CO2 when each was compared with freezing. The elemental composition was altered by the euthanasia method employed. The percentage nitrogen was higher in CO2 treatments than in freezing, and similar (non-significant) trends were seen for ethanol treatments relative to freezing. The resulting C:N ratios were higher for benzocaine treatments than for both CO2 and ethanol. Similar (non-significant) trends suggested that the C:N ratios were also higher for animals euthanized by freezing than for both CO2 and ethanol euthanasia methods. The euthanasia method had a larger effect on elemental composition than stable isotope ratios. The percentage nitrogen and the subsequent C:N ratios were most affected by the CO2 and ethanol euthanasia methods, whereas

  15. High-temperature interaction of low niobium oxides with carbon and nitrogen

    International Nuclear Information System (INIS)

    Lyubimov, V.D.; Alyamovskij, S.I.; Askarova, L.Kh.

    1980-01-01

    Presented are the results of investigation on the process of high-temperature interaction (1200-1300 deg C) of NbO 2 and NbO with carbon (in the helium medium) and nitrogen. The reaction between NbO 2 and carbon is successfully realized at 1300 deg C and involves two stages, viz. reduction of oxide by the mechanism of direct reduction and subsequent insertion of metalloid into the oxygen vacancies formed. As a result, on the base of the initial oxide a cubic phase is formed, its final composition at 1300 deg C corresponding to the formula NbCsub(0.74)Osub(0.28). Neither NbO monoxide, nor metal is detected in the reaction products under these conditions. Interaction of NbO 2 with carbon and nitrogen proceeds in the similar way. In this case, the oxygen vacancies formed are occupied by the atoms of the two metalloids the end-product of the reaction at 1300 deg C being oxycarbonitride NbCsub(0.30)Nsub(0.66)Osub(0.66). Intermediate products of the reaction between NbO and metalloids involve oxycarbide, oxynitride, or oxycarbonitride and dioxide of niobium, while the end products contain only a cubic phase [ru

  16. Biological nitrogen and carbon removal in a gravity flow biomass concentrator reactor for municipal sewage treatment.

    Science.gov (United States)

    Scott, Daniel; Hidaka, Taira; Campo, Pablo; Kleiner, Eric; Suidan, Makram T; Venosa, Albert D

    2013-01-01

    A novel membrane system, the Biomass Concentrator Reactor (BCR), was evaluated as an alternative technology for the treatment of municipal wastewater. Because the BCR is equipped with a membrane whose average poresize is 20 μm (18-28 μm), the reactor requires low-pressure differential to operate (gravity). The effectiveness of this system was evaluated for the removal of carbon and nitrogen using two identical BCRs, identified as conventional and hybrid, that were operated in parallel. The conventional reactor was operated under full aerobic conditions (i.e., organic carbon and ammonia oxidation), while the hybrid reactor incorporated an anoxic zone for nitrate reduction as well as an aerobic zone for organic carbon and ammonia oxidation. Both reactors were fed synthetic wastewater at a flow rate of 71 L d(-1), which resulted in a hydraulic retention time of 9 h. In the case of the hybrid reactor, the recycle flow from the aerobic zone to the anoxic zone was twice the feed flow rate. Reactor performance was evaluated under two solids retention times (6 and 15 d). Under these conditions, the BCRs achieved nearly 100% mixed liquor solids separation with a hydraulic head differential of less than 2.5 cm. The COD removal efficiency was over 90%. Essentially complete nitrification was achieved in both systems, and nitrogen removal in the hybrid reactor was close to the expected value (67%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Sulfur and nitrogen co-doped carbon dots sensors for nitric oxide fluorescence quantification

    Energy Technology Data Exchange (ETDEWEB)

    Simões, Eliana F.C. [Centro de Investigação em Química da Universidade do Porto (CIQ-UP), Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra (Portugal); Centro de Investigação em Química da Universidade do Porto (CIQ-UP), Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre 687, 4169-007 Porto (Portugal); Leitão, João M.M., E-mail: jleitao@ff.uc.pt [Centro de Investigação em Química da Universidade do Porto (CIQ-UP), Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra (Portugal); Esteves da Silva, Joaquim C.G. [Centro de Investigação em Química da Universidade do Porto (CIQ-UP), Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre 687, 4169-007 Porto (Portugal)

    2017-04-01

    Microwave synthetized sulfur and nitrogen co-doped carbon dots responded selectively to nitric oxide (NO) at pH 7. Citric acid, urea and sodium thiosulfate in the proportion of 1:1:3 were used respectively as carbon, nitrogen and sulfur sources in the carbon dots microwave synthesis. For this synthesis, the three compounds were diluted in 15 mL of water and exposed for 5 min to a microwave radiation of 700 W. It is observed that the main factor contributing to the increased sensitivity and selectivity response to NO at pH 7 is the sodium thiosulfate used as sulfur source. A linear response range from 1 to 25 μM with a sensitivity of 16 μM{sup −1} and a detection limit of 0.3 μM were obtained. The NO quantification capability was assessed in standard and in fortified serum solutions. - Highlights: • S,N co-doped CDs were microwave synthetized from citric acid, urea and sodium thiosulfate. • The NO fluorescence sensing was evaluated at pH 7. • The selective and sensitive detection of NO at pH 7 was achieved. • Good NO quantification results in serum samples were obtained.

  18. Adsorption/oxidation of hydrogen sulfide on nitrogen-containing activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Adib, F.; Bagreev, A.; Bandosz, T.J.

    2000-02-22

    Wood-based activated carbon was modified by impregnation with urea and heat treatment at 450 and 950 C. The chemical and physical properties of materials were determined using acid/base titration, FTIR, thermal analysis, IGC, and sorption of nitrogen. The surface features were compared to those of a commercial urea-modified carbon. Then, the H{sub 2}S breakthrough capacity tests were carried out, and the sorption capacity was evaluated. The results showed that urea-modified sorbents have a capacity similar to that of the received material; however, the conversion of hydrogen sulfide to a water-soluble species is significantly higher. It happens due to a high dispersion of basic nitrogen compounds in the small pores of carbons, where oxidation of hydrogen sulfide ions to sulfur radicals followed by the creation of sulfur oxides and sulfuric acid occurs. It is proposed that the process proceeds gradually, from small pores to larger, and that the degree of microporosity is an important factor.

  19. Sulfur and nitrogen co-doped carbon dots sensors for nitric oxide fluorescence quantification

    International Nuclear Information System (INIS)

    Simões, Eliana F.C.; Leitão, João M.M.; Esteves da Silva, Joaquim C.G.

    2017-01-01

    Microwave synthetized sulfur and nitrogen co-doped carbon dots responded selectively to nitric oxide (NO) at pH 7. Citric acid, urea and sodium thiosulfate in the proportion of 1:1:3 were used respectively as carbon, nitrogen and sulfur sources in the carbon dots microwave synthesis. For this synthesis, the three compounds were diluted in 15 mL of water and exposed for 5 min to a microwave radiation of 700 W. It is observed that the main factor contributing to the increased sensitivity and selectivity response to NO at pH 7 is the sodium thiosulfate used as sulfur source. A linear response range from 1 to 25 μM with a sensitivity of 16 μM"−"1 and a detection limit of 0.3 μM were obtained. The NO quantification capability was assessed in standard and in fortified serum solutions. - Highlights: • S,N co-doped CDs were microwave synthetized from citric acid, urea and sodium thiosulfate. • The NO fluorescence sensing was evaluated at pH 7. • The selective and sensitive detection of NO at pH 7 was achieved. • Good NO quantification results in serum samples were obtained.

  20. Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors.

    Science.gov (United States)

    Wan, Liu; Wang, Jianlong; Xie, Lijing; Sun, Yahui; Li, Kaixi

    2014-09-10

    Nitrogen-enriched hierarchically porous carbons (HPCs) were synthesized from a novel nitrile-functionalized benzoxazine based on benzoxazine chemistry using a soft-templating method and a potassium hydroxide (KOH) chemical activation method and used as electrode materials for supercapacitors. The textural and chemical properties could be easily tuned by adding a soft template and changing the activation temperature. The introduction of the soft-templating agent (surfactant F127) resulted in the formation of mesopores, which facilitated fast ionic diffusion and reduced the internal resistance. The micropores of HPCs were extensively developed by KOH activation to provide large electrochemical double-layer capacitance. As the activation temperature increased from 600 to 800 °C, the specific surface area of nitrogen-enriched carbons increased dramatically, micropores were enlarged, and more meso/macropores were developed, but the nitrogen and oxygen content decreased, which affected the electrochemical performance. The sample HPC-800 activated at 800 °C possesses a high specific surface area (1555.4 m(2) g(-1)), high oxygen (10.61 wt %) and nitrogen (3.64 wt %) contents, a hierarchical pore structure, a high graphitization degree, and good electrical conductivity. It shows great pseudocapacitance and the largest specific capacitance of 641.6 F g(-1) at a current density of 1 A g(-1) in a 6 mol L(-1) KOH aqueous electrolyte when measured in a three-electrode system. Furthermore, the HPC-800 electrode exhibits excellent rate capability (443.0 F g(-1) remained at 40 A g(-1)) and good cycling stability (94.3% capacitance retention over 5000 cycles).

  1. Diurnal variability in carbon and nitrogen pools within Chesapeake Bay and northern Gulf of Mexico: implications for future ocean color satellite sensors

    Science.gov (United States)

    Mannino, A.; Novak, M. G.; Tzortziou, M.; Salisbury, J.

    2016-02-01

    Relative to their areal extent, estuaries and coastal ocean ecosystems contribute disproportionately more to global biogeochemical cycling of carbon, nitrogen and other elements compared to the open ocean. Applying ocean color satellite data to study biological and biogeochemical processes within coastal ecosystems is challenging due to the complex mixtures of aquatic constituents derived from terrestrial, anthropogenic, and marine sources, human-impacted atmospheric properties, presence of clouds during satellite overpass, fine-scale spatial gradients, and time-varying processes on diurnal scales that cannot be resolved with current sensors. On diurnal scales, biological, photochemical, and biogeochemical processes are regulated by the variation in solar radiation. Other physical factors, such as tides, river discharge, estuarine and coastal ocean circulation, wind-driven mixing, etc., impart further variability on biological and biogeochemical processes on diurnal to multi-day time scales. Efforts to determine the temporal frequency required from a NASA GEO-CAPE ocean color satellite sensor to discern diurnal variability C and N stocks, fluxes and productivity culminated in field campaigns in the Chesapeake Bay and northern Gulf of Mexico. Near-surface drogues were released and tracked in quasi-lagrangian space to monitor hourly changes in community production, C and N stocks, and optical properties. While only small diurnal changes were observed in dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) absorption in Chesapeake Bay, substantial variation in particulate organic carbon (POC) and nitrogen (PN), chlorophyll-a, and inorganic nitrogen (DIN) were measured. Similar or greater diurnal changes in POC, PN, chlorophyll-a and DIN were found in Gulf of Mexico nearshore and offshore sites. These results suggest that satellite observations at hourly frequency are desirable to capture diurnal variability in carbon and nitrogen stocks, fluxes

  2. Measurement of whole body cellular and collagen nitrogen, potassium, and other elements by neutron activation and whole body counting

    International Nuclear Information System (INIS)

    James, H.M.; Fabricius, P.J.; Dykes, P.W.

    1987-01-01

    Whole body nitrogen can be measured by neutron activation analysis with an acceptable radiation dose; it is an index of body protein which, in normal subjects, is 65% cellular protein and 35% extracellular connective collagen. Whole body potassium can be measured by whole body counting without irradiating the subject; it is an index of body cell mass. We measured whole body nitrogen, potassium, extracellular water, intracellular water, and fat-folds. The differences between 37 malnourished patients and five normal subjects suggested that the patients had 9 kg less cell mass than normal, but no difference in extracellular mass. Measurements were made on eight patients before and after 14 days of total parenteral nutrition; balance of nitrogen intake and excretion also was measured. The changes were consistent with mean increases of 3 kg of cellular mass and 3 kg of fat with no change of extracellular mass. The accuracy and sensitivity of the whole body measurements need further confirmation for use in patients with changing body composition. Where tissue wasting is largely from the cellular compartment, potassium could be a more sensitive index of wasting than nitrogen. Multielement analysis of nitrogen, potassium, chlorine, and carbon will probably be valuable in elucidating body composition in malnutrition

  3. The Effect of Fuel Quality on Carbon Dioxide and Nitrogen Oxide Emissions, While Burning Biomass and RDF

    Science.gov (United States)

    Kalnacs, J.; Bendere, R.; Murasovs, A.; Arina, D.; Antipovs, A.; Kalnacs, A.; Sprince, L.

    2018-02-01

    The article analyses the variations in carbon dioxide emission factor depending on parameters characterising biomass and RDF (refuse-derived fuel). The influence of moisture, ash content, heat of combustion, carbon and nitrogen content on the amount of emission factors has been reviewed, by determining their average values. The options for the improvement of the fuel to result in reduced emissions of carbon dioxide and nitrogen oxide have been analysed. Systematic measurements of biomass parameters have been performed, by determining their average values, seasonal limits of variations in these parameters and their mutual relations. Typical average values of RDF parameters and limits of variations have been determined.

  4. Application in industry and energy production of active carbon/cobalt catalyst for nitrogen oxide neutralization

    International Nuclear Information System (INIS)

    Mekhandzhiev, D.; Nikolov, R.; Lyutskanov, L.; Dushanov, D.; Lakov, L.

    1997-01-01

    A new material for neutralization of nitrogen oxides is presented. Two or three metals containing catalysts with a good activity and selectivity towards NO x have been obtained. Preparation of carbon catalysts by deposition of the active phase precursor on the initial carbon material prior to activation is considered as the most promising method. An active carbon-based catalyst (AC/Co) has been synthesized Apricot shells preliminary impregnated with a water-alcohol solution of Co nitrate have been used as initial carbon material. after drying they have been subjected to one-phase steam pyrolysis using a fix-bed reactor. The catalyst thus obtained has a specific surface area (BET) of 53 m 2 g -1 , a favorable mesopore volume/total volume ratio (about 0.85) determined by nitrogen adsorption, a suitable mesopore distribution, about 70% of the mesopores being characterized by r p larger than 25 A and a high dispersion of the Co oxide phase. In addition the catalyst possesses the necessary mechanical resistance. The catalyst has exhibited a high activity with respect to NO x reduction with CO at low temperatures (at 150-250 o C which are the temperatures of industrial flue gases, nO conversion up to 60-95% occurs) and a high selectivity. No presence of H 2 O has been established over the whole temperature range (100-300 o C). An additional advantage of the catalyst is the fact that the amount of CO above 150 o C is lower than the stoichiometric which indicates parallel participation in the process of both the active phase and the support (active carbon) It is also important that the presented catalyst has a low price due to the use of waste products from agriculture and the elimination of special thermal treatment of the supported Co nitrate. There are possibilities of using of other organic wastes from agriculture as well as wastes obtained during flotation of coal. (author)

  5. Elemental and organic carbon in aerosols over urbanized coastal region (southern Baltic Sea, Gdynia).

    Science.gov (United States)

    Lewandowska, Anita; Falkowska, Lucyna; Murawiec, Dominika; Pryputniewicz, Dorota; Burska, Dorota; Bełdowska, Magdalena

    2010-09-15

    Studies on PM 10, total particulate matter (TSP), elemental carbon (EC) and organic carbon (OC) concentrations were carried out in the Polish coastal zone of the Baltic Sea, in urbanized Gdynia. The interaction between the land, the air and the sea was clearly observed. The highest concentrations of PM 10, TSP and both carbon fractions were noted in the air masses moving from southern and western Poland and Europe. The EC was generally of primary origin and its contribution to TSP and PM 10 mass was on average 2.3% and 3.7% respectively. Under low wind speed conditions local sources (traffic and industry) influenced increases in elemental carbon and PM 10 concentrations in Gdynia. Elemental carbon demonstrated a pronounced weekly cycle, yielding minimum values at the weekend and maximum values on Thursdays. The role of harbors and ship yards in creating high EC concentrations was clearly observed. Concentration of organic carbon was ten times higher than that of elemental carbon, and the average OC contribution to PM 10 mass was very high (31.6%). An inverse situation was observed when air masses were transported from over the Atlantic Ocean, the North Sea and the Baltic Sea. These clean air masses were characterized by the lowest concentrations of all analysed compounds. Obtained results for organic and elemental carbon fluxes showed that atmospheric aerosols can be treated, along with water run-off, as a carbon source for the coastal waters of the Baltic Sea. The enrichment of surface water was more effective in the case of organic carbon (0.27+/-0.19 mmol m(-2) d(-1)). Elemental carbon fluxes were one order of magnitude smaller, on average 0.03+/-0.04 mmol m(-2) d(-1). We suggest that in some situations atmospheric carbon input can explain up to 18% of total carbon fluxes into the Baltic coastal waters. Copyright 2010 Elsevier B.V. All rights reserved.

  6. State factor relationships of dissolved organic carbon and nitrogen losses from unpolluted temperate forest watersheds

    Science.gov (United States)

    Perakis, S.S.; Hedin, L.O.

    2007-01-01

    We sampled 100 unpolluted, old-growth forested watersheds, divided among 13 separate study areas over 5 years in temperate southern Chile and Argentina, to evaluate relationships among dominant soil-forming state factors and dissolved carbon and nitrogen concentrations in watershed streams. These watersheds provide a unique opportunity to examine broad-scale controls over carbon (C) and nitrogen (N) biogeochemistry in the absence of significant human disturbance from chronic N deposition and land use change. Variations in the ratio dissolved organic carbon (DOC) to nitrogen (DON) in watershed streams differed by underlying soil parent material, with average C:N = 29 for watersheds underlain by volcanic ash and basalt versus C:N = 73 for sedimentary and metamorphic parent materials, consistent with stronger adsorption of low C:N hydrophobic materials by amorphous clays commonly associated with volcanic ash and basalt weathering. Mean annual precipitation was related positively to variations in both DOC (range: 0.2-9.7 mg C/L) and DON (range: 0.008-0.135 mg N/L) across study areas, suggesting that variations in water volume and concentration may act synergistically to influence C and N losses across dry to wet gradients in these forest ecosystems. Dominance of vegetation by broadleaf versus coniferous trees had negligible effects on organic C and N concentrations in comparison to abiotic factors. We conclude that precipitation volume and soil parent material are important controls over chemical losses of dissolved organic C and N from unpolluted temperate forest watersheds. Our results raise the possibility that biotic imprints on watershed C and N losses may be less pronounced in naturally N-poor forests than in areas impacted by land use change and chronic N deposition. Copyright 2007 by the American Geophysical Union.

  7. Salt melt synthesis of curved nitrogen-doped carbon nanostructures: ORR kinetics boost

    Science.gov (United States)

    Rybarczyk, Maria K.; Gontarek, Emilia; Lieder, Marek; Titirici, Maria-Magdalena

    2018-03-01

    Implementing metal-free electrocatalysts for the oxygen reduction reaction (ORR) and revealing crucial chemical or topographical parameters driving their activity are vital for the development of power cells. The carbon-based catalysts are very often synthesized through carbonization of biopolymers, in particular, those one containing nitrogen groups such as chitosan. Unfortunately, the resulting carbonaceous materials usually lack specific porosity and exhibit low catalytic activity. Here, we demonstrate that pyrolysis of chitosan in a ZnCl2 melt assisted by the presence of LiCl results not only in a highly porous activated carbon material with a specific surface area of 1317.97 m2/g and the total nitrogen content of 6.5%, but also induces unexpected curvature in the grown graphitic layers. This is the first work that shows curved graphene layers obtained from a biopolymer precursor by its pyrolytic decomposition in the melted salt media. On the other hand, a carbonaceous material obtained from chitosan but without the salts has very low specific surface area of 7.8 m2/g, possesses no specific structural features, and contains 4.7% of nitrogen. The electrochemical studies show, that the former material is highly active towards four-electron pathway of the ORR in terms of an onset potential (0.89 V vs RHE) and the turnover frequency (TOFmax = 0.095 e site-1 s-1). We attribute this high catalytic performance to the presence of the pyridinic and pyrrolic sites in the structure. The ORR kinetics is probably further promoted by curvature in the graphitic layers.

  8. CARBON CYCLES, NITROGEN FIXATION AND THE LEGUME-RHIZOBIA SYMBIOSIS AS SOIL CONTAMINANT BIOTEST SYSTEM

    Directory of Open Access Journals (Sweden)

    Dietrich Werner

    2008-06-01

    Full Text Available The major pools and turnover  rates of the global carbon (C cycles are presented and compared to the human production of CO2  from the burning of fossil fuels (e.g. coal and oil and geothermal  fuels (natural  gases, both categorized as non-renewable energy resources which  in amount  reaches around  6.5 Gigatons C per year. These pools that serve as C-holding stallions  are in the atmosphere,  the land plant biomass, the organic soils carbon, the ocean carbon and the lithosphere. In another related case, the present focus in the area of nitrogen  fixation  is discussed with  data on world  production of grain  legumes  compared  to cereals production and nitrogen  fertilizer use. The focus to understand  the molecular  biology of the legume-rhizobia symbiosis as a major contributor to nitrogen  fixation  is in the areas of signal exchange between  host plants and rhizobia  in the rhizophere including  the nod factor signalling, the infection  and nodule compartmentation and the soils stress factors affecting the symbiosis. The use of the Legume-Rhizobia symbiosis as a biotest system for soil contaminants includes data for cadmium,  arsenate, atrazine,  lindane,  fluoranthene, phenantrene and acenaphthene and also results  on the mechanism,  why the symbiotic system is more sensitive  than test systems with plant growth  parameters.

  9. ORGANIC CARBON AND TOTAL NITROGEN IN THE DENSIMETRIC FRACTIONS OF ORGANIC MATTER UNDER DIFFERENT SOIL MANAGEMEN

    Directory of Open Access Journals (Sweden)

    MARCELO RIBEIRO VILELA PRADO

    2016-01-01

    Full Text Available The evaluation of land use and management by the measurement of soil organic matter and its fractions has gained attention since it helps in the understanding of the dynamics of their contribution to soil productivity, especially in tropical environments. This study was conducted in the municipality of Colorado do Oeste, state of Rondônia, Brazil and its aim was to determinethe quantity of organic carbon and total nitrogen in the light and heavy fractions of organic matter in the surface layers of a typic hapludalf under different land use systems: Native Forest: open evergreen forest, reference environment; Agroforestry System 1: teak (Tectona grandis LF and kudzu (Pueraria montana; Agroforestry System 2: coffee (Coffea canephora, marandu palisade grass (Brachiaria brizantha cv. Marandu, “pinho cuiabano” (Parkia multijuga, teak and kudzu.; Agroforestry System 3: teak and cocoa (Theobroma cacao; Silvopasture System: teak, cocoa and marandu palisade grass; and Extensive Grazing System: marandu palisade grass. The experimental design was a randomized block in split-split plots (use systems versus soil layers of 0-0.05 and 0.05-0.10 m with three replications. The results showed that relative to Native Forest, the Agroforestry System 2 had equal- and greater amounts of organic carbon and total nitrogen respectively (light and heavy fractions in the soil organic matter, with the light fraction being responsible for storage of approximately 45% and 70% of the organic carbon and total nitrogen, respectively. Therefore, the light densimetric fraction proved to be useful in the early identification of the general decline of the soil organic matter in the land use systems evaluated.

  10. [Carbon, nitrogen, and phosphorus budgets of bottom-cultured clam Ruditapes philippinarum].

    Science.gov (United States)

    Zhang, Sheng-li; Zhang, An-guo; Yuan, Xiu-tang; Liang, Bin; Liu, Shu-xi

    2015-04-01

    In order to elucidate the role of bottom-cultured clams in the coastal nutrient cycle, the seasonal filtration, ingestion and biodeposition rates were in situ measured and carbon (C), nitrogen (N) and phosphorus (P) budgets of Ruditapes philippinarum among four seasons were modeled. The results showed that the scope for growth of R. philippinarum in carbon (SFG(C)), nitrogen (SFG(N)), and phosphorus (SFG(P)) all varied significantly among seasons, with the highest values in spring. Meanwhile, SFG(C) was negative in summer, SFG(N) and SFG(P) were always positive throughout the year. The seasonal variations of SFG(C), SFG(N) and SFG(P) were -3.94-49.82 mg C x ind(-1) x d(-1), 0.72-9.49 mg N x ind(-1) x d(-1), and 0.15-3.06 mg P x ind(-1) x d(-1), respectively. The net growth efficiencies in carbon (K(C2)), nitrogen (K(N2)), and phosphorus (K(P2)) also showed a distinct seasonal pattern among seasons, and ranked as K(P2) > K(N2) > K(C2). The C, N, and P budgets illustrated that the R. philippinarum population relatively used more N and P than C for growth and efficiently transferred the pelagic primary production to a higher trophic level. The current study suggested that R. philippinarum bottom-cultured at large scale might play a dominant role in the nutrient cycle of the coastal ecosystem and should be considered as an important ecological component in coastal areas.

  11. Martensitic transformations, structure, and strengthness of processed high-nitrogen and high-carbon ferrous alloys

    Science.gov (United States)

    Kaputkina, L. M.; Prokoshkina, V. G.

    2003-10-01

    Structures and properties of metastable austenitic alloys Fe-18Cr-16Ni-I2Mn-(0.17 to 0. 50)N, Fe-18Cr-12Mn-(0.48 to 1.12)N, Fe-18Cr-(0.1 to 1.18)N, and Fe-(12 to 20)Ni-(0.6 to 1.3)C, Fe-(6 to 8)Mn-(0.6 to 1.0)C, Fe-(5 to 6)Cr-(4 to 5)Mn-(0.6 to 0.8)C, Fe-6Cr-(1.0 to 1.3)C resulting from martensitic transformations under cooling and cold deformation (CD), as well as following tempering processes, were studied by magnetometry, X-ray and electron microscopy analyses, hardness measurements and mechanical properties tests. Martensite with a b.c.t. lattice was formed in all alloys with M_s{>}-196^circC during cooling. Under CD transformations of γ{to}α, γ{to}\\varepsilon{to}α, or γ{to}\\varepsilon types were realized depending on the alloy composition. Carbon increased but nitrogen decreased stacking fault energy. Thus carbon assists α-martensite formation but nitrogen promotese. As CD level and/or concentration of carbon and nitrogen increase residual stresses resulting from the CD also increase. The martensitic transformation during CD can decrease the residual stresses. Kinetic of tempering of b.c.t. thermal martensite differs from those of CD-induced martensite. In the second case, deformation aging, texture, and residual stresses are more visible. The maximal strengthening under CD takes place in (Mn+N)-steels. (Cr+N) and (Cr+Mn+N)-steels are high-strength, non-magnetic and corrosion resistant and are easily hardened by a low level of plastic deformation.

  12. One-Step Synthesis of Microporous Carbon Monoliths Derived from Biomass with High Nitrogen Doping Content for Highly Selective CO2 Capture

    OpenAIRE

    Geng, Zhen; Xiao, Qiangfeng; Lv, Hong; Li, Bing; Wu, Haobin; Lu, Yunfeng; Zhang, Cunman

    2016-01-01

    The one-step synthesis method of nitrogen doped microporous carbon monoliths derived from biomass with high-efficiency is developed using a novel ammonia (NH3)-assisted activation process, where NH3 serves as both activating agent and nitrogen source. Both pore forming and nitrogen doping simultaneously proceed during the process, obviously superior to conventional chemical activation. The as-prepared nitrogen-doped active carbons exhibit rich micropores with high surface area and high nitrog...

  13. Dissolved organic carbon biodegradability from thawing permafrost stimulated by sunlight rather than inorganic nitrogen

    Science.gov (United States)

    Liu, F.; Chen, L.; Zhang, B.; Wang, G.; Qin, S.; Yang, Y.

    2017-12-01

    Permafrost thaw could result in a large portion of frozen carbon being laterally transferred to aquatic ecosystems as dissolved organic carbon (DOC). During this delivery process, the size of biodegradable DOC (BDOC) determines the proportion of DOC mineralized by microorganisms and associated carbon loss to the atmosphere, which may further trigger positive carbon-climate feedback. Thermokarst is an abrupt permafrost thaw process that can enhance DOC export and also impact DOC processing through increased inorganic nitrogen (N) and sunlight exposure. However, it remains unclear how thermokarst-impacted BDOC responds to inorganic N addition and ultraviolet (UV) light irradiation. Here we explored the responses of DOC concentration, composition and its biodegradability to inorganic N and UV light in a typical thermokarst on the Tibetan Plateau, by combining field observation and laboratory incubation with spectra analyses (UV-visible absorption and three-dimensional fluorescence spectra) and parallel factor analyses. Our results showed that BDOC in thermokarst feature outflows was significantly higher than in reference water. Furthermore, inorganic N addition had no influence on thermokarst-impacted BDOC, whereas exposure to UV light significantly increased BDOC by as much as 2.3 times higher than the dark-control. Moreover, N addition and UV irradiation did not generate additive effects on BDOC. These results imply that sunlight rather than inorganic N can increase thermokarst-derived BDOC, potentially strengthening the positive permafrost carbon-climate feedback.

  14. Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity.

    Science.gov (United States)

    Li, Jia; Liu, Kang; Gao, Xiang; Yao, Bin; Huo, Kaifu; Cheng, Yongliang; Cheng, Xiaofeng; Chen, Dongchang; Wang, Bo; Sun, Wanmei; Ding, Dong; Liu, Meilin; Huang, Liang

    2015-11-11

    Efficient utilization and broader commercialization of alternative energies (e.g., solar, wind, and geothermal) hinges on the performance and cost of energy storage and conversion systems. For now and in the foreseeable future, the combination of rechargeable batteries and electrochemical capacitors remains the most promising option for many energy storage applications. Porous carbonaceous materials have been widely used as an electrode for batteries and supercapacitors. To date, however, the highest specific capacitance of an electrochemical double layer capacitor is only ∼200 F/g, although a wide variety of synthetic approaches have been explored in creating optimized porous structures. Here, we report our findings in the synthesis of porous carbon through a simple, one-step process: direct carbonization of kelp in an NH3 atmosphere at 700 °C. The resulting oxygen- and nitrogen-enriched carbon has a three-dimensional structure with specific surface area greater than 1000 m(2)/g. When evaluated as an electrode for electrochemical double layer capacitors, the porous carbon structure demonstrated excellent volumetric capacitance (>360 F/cm(3)) with excellent cycling stability. This simple approach to low-cost carbonaceous materials with unique architecture and functionality could be a promising alternative to fabrication of porous carbon structures for many practical applications, including batteries and fuel cells.

  15. Nitrogen-Doped Carbon Encapsulated Nickel/Cobalt Nanoparticle Catalysts for Olefin Migration of Allylarenes

    DEFF Research Database (Denmark)

    Kramer, Søren; Mielby, Jerrik Jørgen; Buss, Kasper Spanggård

    2017-01-01

    Olefin migration of allylarenes is typically performed with precious metal-based homogeneous catalysts. In contrast, very limited progress has been made using cheap, earth-abundant base metals as heterogeneous catalysts for these transformations - in spite of the obvious economic and environmental...... advantages. Herein, we report on the use of an easily prepared heterogeneous catalyst material for the migration of olefins, in particular allylarenes. The catalyst material consists of nickel/cobalt alloy nanoparticles encapsulated in nitrogen-doped carbon shells. The encapsulated nanoparticles are stable...

  16. Fractionation of nitrogen and carbon isotopes by means of urea chromatography

    International Nuclear Information System (INIS)

    Hirschberg, K.; Krumbiegel, P.; Faust, H.

    1981-01-01

    Between aqueous urea solutions and strongly acid cation exchange resins of the polystyrene-sulfoacid type a solid-liquid-phase distribution equilibrium develops with an isotope effect of nitrogen and carbon in urea. The [ 13 C, 15 N] urea molecules are preferably bound to the exchanger matrix. The elementary separation factors for 15 N and 13 C enrichment have been determined to be 1.00 per cent. Column chromatographic separation with the aid of Dowex 50 WX8 renders the preparation of double-labelled urea feasible. (author)

  17. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China

    DEFF Research Database (Denmark)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere Abdisa

    2015-01-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling...... and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle....

  18. Microstructure and tribology of carbon, nitrogen, and oxygen implanted ferrous materials

    International Nuclear Information System (INIS)

    Williamson, D.L.

    1993-01-01

    Nitrogen, carbon, and oxygen ions have been implanted into ferrous materials under unusual conditions of elevated temperatures and very high dose rates. The tribological durabilities of the resulting surfaces are examined with a special type of pin-on-disc wear test apparatus and found in most cases to be dramatically improved compared to surfaces prepared with conventional implantation conditions. Near-surface microstructures and compositions are characterized after implantation and after wear testing by backscatter Moessbauer spectroscopy, X-ray diffraction, scanning electron microscopy, and Auger electron spectroscopy. These data provide evidence for the predominant mechanisms responsible for the observed sliding wear behavior induced by each of the three species. (orig.)

  19. Locations of oxygen, nitrogen and carbon atoms in vanadium determined by neutron diffraction

    International Nuclear Information System (INIS)

    Hiraga, K.; Onozuka, T.; Hirabayashi, M.

    1977-01-01

    The occupation sites of oxygen, nitrogen, and carbon atoms dissolved interstitially in vanadium have been determined by means of neutron diffraction with use of single crystals of VOsub(0.032), VNsub(0.013) and VCsub(0.006). It is revealed that the interstitial atoms occupy, randomly, the octahedral sites in the b.c.c. host lattice of the three crystals. Neutron diffraction is advantageous for the present purpose, since the coherent scattering amplitudes of the solute atoms are much larger than that of the vanadium atom. (Auth.)

  20. Effects of Carbon and Nitrogen Sources on Lipase Production by Candida rugosa

    OpenAIRE

    ERKMEN, Sibel FADILOĞLU and Osman

    2014-01-01

    The production of lipase by Candida rugosa growing on media with various carbon and nitrogen sources was studied. While high yields of enzyme activity (5.58 U mL-1) were obtained with yeast extract and proteose-peptone in the medium with olive oil, the minimum lipase activity (2.81 U mL-1) was observed with tryptone and lactose. In the absence of olive oil, the media with proteose peptone and glucose gave the maximum enzyme activity (2.21 U mL-1). The best results in the production of lipa...

  1. Carbon and nitrogen in forest floor and mineral soil under six common European tree species

    DEFF Research Database (Denmark)

    Vesterdal, Lars; Schmidt, Inger K.; Callesen, Ingeborg

    2007-01-01

    The knowledge of tree species effects on soil C and N pools is scarce, particularly for European deciduous tree species. We studied forest floor and mineral soil carbon and nitrogen under six common European tree species in a common garden design replicated at six sites in Denmark. Three decades...... on forest floor C and N content was primarily attributed to large differences in turnover rates as indicated by fractional annual loss of forest floor C and N. The C/N ratio of foliar litterfall was a good indicator of forest floor C and N contents, fractional annual loss of forest floor C and N...

  2. Prediction of manure nitrogen and carbon output from grower-finisher pigs

    DEFF Research Database (Denmark)

    Vu Thi Khanh, Van; Prapaspongsa, Trakarn; Poulsen, Hanne Damgaard

    2009-01-01

    Intensive pig production may be a hazard to the environment due to plant nutrient leakage and losses. To facilitate efficient and sustainable manure management and reduce oversupplying of crops with nutrients, there is a need for precise assessment of nutrient content in manure and manure excretion....... This study has developed algorithms for predicting the amount of excreta and manure content of nitrogen (N) and carbon (C). Data compiled from 285 digestibility and N balance experiments with growing-finishing pigs diets fed diets varying widely in chemical composition were used to establish algorithms...

  3. Sulphur, nitrogen and carbon content of Sphagnum capillifolium and Pseudevernia furfuracea exposed in bags in the Naples urban area

    International Nuclear Information System (INIS)

    Vingiani, S.; Adamo, P.; Giordano, S.

    2004-01-01

    The accumulation ability of the major elements sulphur, nitrogen and carbon by the moss Sphagnum capillifolium (Ehrh.) Hedw. and the lichen Pseudevernia furfuracea (L.) Zopf exposed in bags in Naples urban area,was investigated. Bags were exposed at the beginning of July 1999 and gathered in two subsequent moments: at the end of the dry season (after 10 weeks of exposure) and during the wet season (after 17 weeks of exposure), to include the effects of rainy conditions. Sulphur and N content of the lichen increased all over the exposure period, while the level of C did not change significantly either after 10 or 17 weeks of exposition. For the moss the S accumulation was limited to the dry period of exposure, whereas N and C content decreased with exposure. Results, in contrast with those obtained in a previous study on trace elements bioaccumulation [Adamo et al., Environmental Pollution, (2003) 122, 91-103], suggest that accumulation of gaseous pollutants is strongly influenced by biomonitor vitality and that lichen bags are a more reliable and effective tool for monitoring S, N and C atmospheric depositions in urban areas compared to moss bags, because of greater lichen resistance to dry and stressing conditions of urban environment. - The lichen Pseudevernia furfuracea is more effective than the moss Sphagnum capillifolium as S and N pollutants biomonitor

  4. Nitrogen Doped Ordered Mesoporous Carbon as Support of PtRu Nanoparticles for Methanol Electro-Oxidation

    Directory of Open Access Journals (Sweden)

    David Sebastián

    2018-04-01

    Full Text Available The low oxidation kinetics of alcohols and the need for expensive platinum group metals are still some of the main drawbacks for the commercialization of energy efficient direct alcohol fuel cells. In this work, we investigate the influence of nitrogen doping of ordered mesoporous carbon (CMK as support on the electrochemical activity of PtRu nanoparticles. Nitrogen doping procedures involve the utilization of pyrrole as both nitrogen and carbon precursor by means of a templating method using mesoporous silica. This method allows obtaining carbon supports with up to 14 wt. % nitrogen, with an effective introduction of pyridinic, pyrrolic and quaternary nitrogen. PtRu nanoparticles were deposited by sodium formate reduction method. The presence of nitrogen mainly influences the Pt:Ru atomic ratio at the near surface, passing from 50:50 on the bare (un-doped CMK to 70:30 for the N-doped CMK catalyst. The electroactivity towards the methanol oxidation reaction (MOR was evaluated in acid and alkaline electrolytes. The presence of nitrogen in the support favors a faster oxidation of methanol due to the enrichment of Pt at the near surface together with an increase of the intrinsic activity of PtRu nanoparticles.

  5. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.

    Science.gov (United States)

    Shi, Mingjie; Fisher, Joshua B; Brzostek, Edward R; Phillips, Richard P

    2016-03-01

    Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr(-1) to acquire 1.0 Pg N yr(-1) , and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2 , and warming temperatures) may impact the land C sink. © 2015 John Wiley & Sons Ltd.

  6. Retention of elemental 131I by activated carbons under accident conditions

    International Nuclear Information System (INIS)

    Deuber, H.

    1984-09-01

    Under simulated accident conditions (maximum temperature: 130 0 C) no significant difference was found in the retention of I-131 loaded as elemental iodine, by various fresh and aged commercial activated carbons. In all the cases, the I-131 passing through deep beds of activated carbon was in a non-elemental form. It is concluded that a minimum retention of 99.99% for elemental radioiodine, as required by the RSK guidelines for PWR accident filters, can be equally well achieved with various commercial activated carbons. (orig.) [de

  7. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand

    International Nuclear Information System (INIS)

    Rogers, Karyne M.

    2003-01-01

    Stable carbon and nitrogen isotopes have been used to assess sewage contamination of a sewage outfall, discharging milli-screened effluent into Moa Point Bay, New Zealand, and monitor the recovery of flora and fauna after the outfall's closure. An initial study characterising the extent of the discharge and the effects on seaweed (Ulva lactuca L.), blue mussels (Mytilus galloprovincialis) and limpets (Cellana denticulata) from the area, showed effects of the sewage discharge on flora and fauna were localised within in the bay. The immediate area surrounding the discharge area was found to contain limited biodiversity, with an abundance of Ulva lactuca, a bright green lettuce-like seaweed, typically found in areas with high nutrient input, limpets and small blue mussels. The nitrogen isotopic signature (δ 15 N) is shown to be a good tracer of sewage pollution in seaweed and associated grazers (i.e. limpets) as a result of the increased contribution of urea and ammonia to seawater nitrogen derived from the effluent. The carbon isotopic signature (δ 13 C) is suggested as a more appropriate sewage tracer for mussels, which filter feed the effluent's particulate organic matter from the water. Lower carbon:nitrogen ratios were found in Ulva lactuca sampled from around the outfall region compared to uncontaminated control sites. However carbon:nitrogen ratios do not vary significantly amongst shellfish species. After closure, monitoring continued for 9 months and showed that the carbon and nitrogen isotopic signatures of algae (Ulva lactuca L.) returned to similar control site levels within 3 months. Limpet and blue mussels (Cellana denticulata and Mytilus galloprovincialis) showed slower recovery times than the Ulva lactuca, with detectable levels of the sewage-derived carbon and nitrogen remaining in the animal's tissue for up to 9 months

  8. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Karyne M

    2003-07-01

    Stable carbon and nitrogen isotopes have been used to assess sewage contamination of a sewage outfall, discharging milli-screened effluent into Moa Point Bay, New Zealand, and monitor the recovery of flora and fauna after the outfall's closure. An initial study characterising the extent of the discharge and the effects on seaweed (Ulva lactuca L.), blue mussels (Mytilus galloprovincialis) and limpets (Cellana denticulata) from the area, showed effects of the sewage discharge on flora and fauna were localised within in the bay. The immediate area surrounding the discharge area was found to contain limited biodiversity, with an abundance of Ulva lactuca, a bright green lettuce-like seaweed, typically found in areas with high nutrient input, limpets and small blue mussels. The nitrogen isotopic signature ({delta}{sup 15}N) is shown to be a good tracer of sewage pollution in seaweed and associated grazers (i.e. limpets) as a result of the increased contribution of urea and ammonia to seawater nitrogen derived from the effluent. The carbon isotopic signature ({delta}{sup 13}C) is suggested as a more appropriate sewage tracer for mussels, which filter feed the effluent's particulate organic matter from the water. Lower carbon:nitrogen ratios were found in Ulva lactuca sampled from around the outfall region compared to uncontaminated control sites. However carbon:nitrogen ratios do not vary significantly amongst shellfish species. After closure, monitoring continued for 9 months and showed that the carbon and nitrogen isotopic signatures of algae (Ulva lactuca L.) returned to similar control site levels within 3 months. Limpet and blue mussels (Cellana denticulata and Mytilus galloprovincialis) showed slower recovery times than the Ulva lactuca, with detectable levels of the sewage-derived carbon and nitrogen remaining in the animal's tissue for up to 9 months.

  9. [Impacts of Land Use Changes on Soil Light Fraction and Particulate Organic Carbon and Nitrogen in Jinyun Mountain].

    Science.gov (United States)

    Lei, Li-guo; Jiang, Chang-sheng; Hao, Qing-ju

    2015-07-01

    Four land types including the subtropical evergreen broad-leaved forest, sloping farmland, orchard and abandoned land were selected to collect soil samples from 0 to 60 cm depth at the same altitude of sunny slope in the Jinyun Mountain in this study. Soil light fraction organic carbon and nitrogen ( LFOC and LFON), and particulate organic carbon and nitrogen (POC and PON) were determined and the distribution ratios and C/N ratios were calculated. The results showed that the contents of LFOC and LFON decreased significantly by 71. 42% and 38. 46% after the forest was changed into sloping farmland (P 0. 05), while the contents of LFOC and LFON increased significantly by 3. 77 and 1. 38 times after the sloping farmland was changed into abandoned land (P organic carbon and nitrogen accumulation; on the contrary, sloping farmland was easy to lose soil labile carbon and nitrogen. The LFOC and LFON distribution ratios were significantly reduced by 31. 20% and 30. 08%, respectively after the forest was changed into the sloping farmland, and increased by 18. 74% and 20. 33% respectively after the forest was changed into the orchard. Nevertheless, the distribution ratios of LFOC and LFON were changed little by converting the forest into the sloping farmland and orchard. The distribution ratios of LFOC, LFON, POC and PON all increased significantly after the farmland was abandoned (P organic carbon and nitrogen was enhanced after forest reclamation, while reduced after the sloping farmland was abandoned. The ratios of carbon to nitrogen in soil organic matter, light fraction organic matter and particulate organic matter were in the order of abandoned land (12. 93) > forest (8. 53) > orchard (7. 52) > sloping farmland (4. 40), abandoned land (16. 32) > forest (14. 29) > orchard (11. 32) > sloping farmland (7. 60), abandoned land (23. 41) > sloping farmland (13. 85 ) > forest (10. 30) > orchard (9. 64), which indicated that the degree of organic nitrogen mineralization was

  10. Particulate carbon and nitrogen determinations in tracer studies: The neglected variables

    International Nuclear Information System (INIS)

    Collos, Yves; Jauzein, Cécile; Hatey, Elise

    2014-01-01

    We address two issues in the determination of particulate carbon and nitrogen in suspended matter of aquatic environments. One is the adsorption of dissolved organic matter on filters, leading to overestimate particulate matter. The second is the material loss during filtration due to fragile algal cells breaking up. Examples from both laboratory cultures and natural samples are presented. We recommend using stacked filters in order to estimate the first and filtering different volumes of water in order to evaluate the second. - Highlights: • Adsorption of dissolved organic matter on GF/F filters saturates below 1 ml. • Such adsorption can overestimate (up to 5 fold at low volumes) particulate matter. • Plankton breakage during filtration underestimates (up to 3 fold) particulate matter. • Different volumes should be filtered to detect biases in PC and PN concentrations. • Adsorbed organic carbon is higher in surface ocean than in mid-waters

  11. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    Science.gov (United States)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  12. Torrefaction of corncob to produce charcoal under nitrogen and carbon dioxide atmospheres.

    Science.gov (United States)

    Li, Shu-Xian; Chen, Chang-Zhou; Li, Ming-Fei; Xiao, Xiao

    2018-02-01

    Corncob was torrefied under nitrogen and carbon dioxide atmospheres at 220-300 °C, obtaining solid products with mass yields of 69.38-95.03% and 67.20-94.99% and higher heating values of 16.58-24.77 MJ/kg and 16.68-24.10 MJ/kg, respectively. The changes of physicochemical properties of the charcoal was evaluated by many spectroscopies, contact angle determination, and combustion test. Hemicelluloses were not detected for the torrefaction under the hard conditions. As the severity increased, C concentration raised while H and O concentrations reduced. Combustion test showed that the burnout temperature of charcoal declined with the elevation of reaction temperature, and torrefaction at a high temperature shortened the time for the whole combustion process. Base on the data, torrefaction at 260 °C under carbon dioxide was recommended for the torrefaction of corncob. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. [The change of bacterial adhesion during deposition nitrogen-diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Xiao, Yun

    2011-10-01

    The aim of this study was to observe the change of bacterial adhesion on pure titanium coated with nitrogen-diamond like carbon (N-DLC) films and to guide the clinical application. N-DLC was deposited on titanium using ion plating machine, TiN film, anodic oxide film and non-deposition were used as control, then made specimens adhering on the surface of resin denture base for 6 months. The adhesion of Saccharomyces albicans on the titanium surface was observed using scanning electron microscope, and the roughness was tested by roughness detector. The number of Saccharomyces albicans adhering on diamond-like carbon film was significantly less than on the other groups (P DLC film was less than other group (P coated with N-DLC film reduced the adhesion of Saccharomyces albicans after clinical application, thereby reduced the risk of denture stomatitis.

  14. Effect of powdered activated carbon technology on short-cut nitrogen removal for coal gasification wastewater.

    Science.gov (United States)

    Zhao, Qian; Han, Hongjun; Xu, Chunyan; Zhuang, Haifeng; Fang, Fang; Zhang, Linghan

    2013-08-01

    A combined process consisting of a powdered activated carbon technology (PACT) and short-cut biological nitrogen removal reactor (SBNR) was developed to enhance the removal efficiency of the total nitrogen (TN) from the effluent of an upflow anaerobic sludge bed (UASB) reactor, which was used to treat coal gasification wastewater (CGW). The SBNR performance was improved with the increasing of COD and TP removal efficiency via PACT. The average removal efficiencies of COD and TP in PACT were respectively 85.80% and 90.30%. Meanwhile, the NH3-N to NO2-N conversion rate was achieved 86.89% in SBNR and the total nitrogen (TN) removal efficiency was 75.54%. In contrast, the AOB in SBNR was significantly inhibited without PACT or with poor performance of PACT in advance, which rendered the removal of TN. Furthermore, PAC was demonstrated to remove some refractory compounds, which therefore improved the biodegradability of the coal gasification wastewater. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Synthesis of puric bases labelled with carbon 14 and nitrogen 15

    International Nuclear Information System (INIS)

    Lamorre, Yves

    1975-01-01

    In this report for graduation in organic chemistry engineering, the author reports the synthesis of adenine 14 C-2 et 14 C-6 by two different chemical ways from two derivatives of imidazole. He has used adenine 14 C-6 to obtain hypoxanthine 14 C-6, and then, by enzymatic processing, uric acid 14 C-6. He reports the study of the production of guanine 14 C-2 by cyclization of silylated derivative of imidazole with the carbon 14 C sulphur. However, a method of complete synthesis of this same compound revealed to be more practical. This complete synthesis way allowed the labelling of guanine in positions 1, 2 and 3 by the 96 per cent isotopic nitrogen. Nitrogen in positions 7 and 9 could have been labelled by the same way from the ethyl cyanoacetate 15 N and from the sodium nitrite 15 N. The study of the mass spectrum of these compounds labelled with nitrogen 15 N allowed most of fragments obtained during this analysis to be identified [fr

  16. Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts.

    Science.gov (United States)

    Schnierda, T; Bauer, F F; Divol, B; van Rensburg, E; Görgens, J F

    2014-05-01

    The impact of different nitrogen and carbon sources on biomass production of the non-Saccharomyces wine yeast species Lachancea thermotolerans, Metschnikowia pulcherrima and Issatchenkia orientalis was assessed. Using a molasses-based medium, yeast extract and corn steep liquor as well as ammonium sulphate and di-ammonium phosphate (DAP) as nitrogen sources were compared in shake-flask cultures. A medium with 20 g l⁻¹ sugar (diluted molasses) and 500 mg l⁻¹ total yeast assimilable nitrogen, from yeast extract, gave the highest biomass concentrations and yields. Invertase pretreatment was required for cultures of M. pulcherrima and I. orientalis, and respective biomass yields of 0.7 and 0.8 g g⁻¹ were achieved in aerobic bioreactor cultures. The absence of ethanol production suggested Crabtree-negative behaviour by these yeasts, whereas Crabtree-positive behaviour by L. thermotolerans resulted in ethanol and biomass concentrations of 5.5 and 11.1 g l⁻¹, respectively. Recent studies demonstrate that non-Saccharomyces yeasts confer positive attributes to the final composition of wine. However, optimal process conditions for their biomass production have not been described, thereby limiting commercial application. In this study, industrial media and methods of yeast cultivation were investigated to develop protocols for biomass production of non-Saccharomyces yeast starter cultures for the wine industry. © 2014 The Society for Applied Microbiology.

  17. Mathematical modeling of simultaneous carbon-nitrogen-sulfur removal from industrial wastewater.

    Science.gov (United States)

    Xu, Xi-Jun; Chen, Chuan; Wang, Ai-Jie; Ni, Bing-Jie; Guo, Wan-Qian; Yuan, Ye; Huang, Cong; Zhou, Xu; Wu, Dong-Hai; Lee, Duu-Jong; Ren, Nan-Qi

    2017-01-05

    A mathematical model of carbon, nitrogen and sulfur removal (C-N-S) from industrial wastewater was constructed considering the interactions of sulfate-reducing bacteria (SRB), sulfide-oxidizing bacteria (SOB), nitrate-reducing bacteria (NRB), facultative bacteria (FB), and methane producing archaea (MPA). For the kinetic network, the bioconversion of C-N by heterotrophic denitrifiers (NO 3 - →NO 2 - →N 2 ), and that of C-S by SRB (SO 4 2- →S 2- ) and SOB (S 2- →S 0 ) was proposed and calibrated based on batch experimental data. The model closely predicted the profiles of nitrate, nitrite, sulfate, sulfide, lactate, acetate, methane and oxygen under both anaerobic and micro-aerobic conditions. The best-fit kinetic parameters had small 95% confidence regions with mean values approximately at the center. The model was further validated using independent data sets generated under different operating conditions. This work was the first successful mathematical modeling of simultaneous C-N-S removal from industrial wastewater and more importantly, the proposed model was proven feasible to simulate other relevant processes, such as sulfate-reducing, sulfide-oxidizing process (SR-SO) and denitrifying sulfide removal (DSR) process. The model developed is expected to enhance our ability to predict the treatment of carbon-nitrogen-sulfur contaminated industrial wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Facile Synthesis of Nitrogen-doped Carbon Quantum Dots for Bio-imaging

    Directory of Open Access Journals (Sweden)

    de Yro Persia Ada N.

    2016-01-01

    Full Text Available Carbon quantum dots (CQD with fascinating properties has gradually become a rising star as a new nanocarbon member due to its nonthreatening, abundant and inexpensive nature. This study reports on a facile preparation of fluorescent carbon quantum dots (CQD from iota Carrageenan. CQD from iota Carrageenan was produced by hydrothermal method with a quantum yield (QY of 16 to 20%. Doping the CQD with nitrogen by the addition of tetraethylene pentamine (TEPE produced CQD with a QY of 77%. FTIR data confirmed the formation of hydroxyl, carboxylic and carbonyl functional groups as confirmed by the ToFSIMS data due to the presence of nitrogen bonds on the N-CQD produced with TEPE. The CQD and N-CQD produced are crystalline with graphitic structures because of the presence of sp2 graphitic d line spacing with the sizes ranging from 2 to 10nm. To examine the feasibility of using the CQD as nanoprobe in practical applications, labelling and detection of E.coli was performed. The E.coli fluoresced proving CQD as an effective probe in bio imaging application. This study has successfully demonstrated a facile approach of producing CQD with significant high quantum yields to fluorescent CQD for bio imaging applications.

  19. Fabrication of Nitrogen-Doped Hollow Mesoporous Spherical Carbon Capsules for Supercapacitors.

    Science.gov (United States)

    Chen, Aibing; Xia, Kechan; Zhang, Linsong; Yu, Yifeng; Li, Yuetong; Sun, Hexu; Wang, Yuying; Li, Yunqian; Li, Shuhui

    2016-09-06

    A novel "dissolution-capture" method for the fabrication of nitrogen-doped hollow mesoporous spherical carbon capsules (N-HMSCCs) with high capability for supercapacitor is developed. The fabrication process is performed by depositing mesoporous silica on the surface of the polyacrylonitrile nanospheres, followed by a dissolution-capture process occurring in the polyacrylonitrile core and silica shell. The polyacrylonitrile core is dissolved by dimethylformamide treatment to form a hollow cavity. Then, the polyacrylonitrile is captured into the mesochannel of silica. After carbonization and etching of silica, N-HMSCCs with uniform mesopore size are produced. The N-HMSCCs show a high specific capacitance of 206.0 F g(-1) at a current density of 1 A g(-1) in 6.0 M KOH due to its unique hollow nanostructure, high surface area, and nitrogen content. In addition, 92.3% of the capacitance of N-HMSCCs still remains after 3000 cycles at 5 A g(-1). The "dissolution-capture" method should give a useful enlightenment for the design of electrode materials for supercapacitor.

  20. Diet and mobility in Early Medieval Bavaria: a study of carbon and nitrogen stable isotopes.

    Science.gov (United States)

    Hakenbeck, Susanne; McManus, Ellen; Geisler, Hans; Grupe, Gisela; O'Connell, Tamsin

    2010-10-01

    This study investigates patterns of mobility in Early Medieval Bavaria through a combined study of diet and associated burial practice. Carbon and nitrogen isotope ratios were analyzed in human bone samples from the Late Roman cemetery of Klettham and from the Early Medieval cemeteries of Altenerding and Straubing-Bajuwarenstrasse. For dietary comparison, samples of faunal bone from one Late Roman and three Early Medieval settlement sites were also analyzed. The results indicate that the average diet was in keeping with a landlocked environment and fairly limited availability of freshwater or marine resources. The diet appears not to have changed significantly from the Late Roman to the Early Medieval period. However, in the population of Altenerding, there were significant differences in the diet of men and women, supporting a hypothesis of greater mobility among women. Furthermore, the isotopic evidence from dietary outliers is supported by "foreign" grave goods and practices, such as artificial skull modification. These results reveal the potential of carbon and nitrogen isotope analysis for questions regarding migration and mobility. © 2010 Wiley-Liss, Inc.

  1. Carbon and Nitrogen Isotopic Survey of Northern Peruvian Plants: Baselines for Paleodietary and Paleoecological Studies

    Science.gov (United States)

    Szpak, Paul; White, Christine D.; Longstaffe, Fred J.; Millaire, Jean-François; Vásquez Sánchez, Víctor F.

    2013-01-01

    The development of isotopic baselines for comparison with paleodietary data is crucial, but often overlooked. We review the factors affecting the carbon (δ13C) and nitrogen (δ15N) isotopic compositions of plants, with a special focus on the carbon and nitrogen isotopic compositions of twelve different species of cultivated plants (n = 91) and 139 wild plant species collected in northern Peru. The cultivated plants were collected from nineteen local markets. The mean δ13C value for maize (grain) was −11.8±0.4 ‰ (n = 27). Leguminous cultigens (beans, Andean lupin) were characterized by significantly lower δ15N values and significantly higher %N than non-leguminous cultigens. Wild plants from thirteen sites were collected in the Moche River Valley area between sea level and ∼4,000 meters above sea level (masl). These sites were associated with mean annual precipitation ranging from 0 to 710 mm. Plants growing at low altitude sites receiving low amounts of precipitation were characterized by higher δ15N values than plants growing at higher altitudes and receiving higher amounts of precipitation, although this trend dissipated when altitude was >2,000 masl and MAP was >400 mm. For C3 plants, foliar δ13C was positively correlated with altitude and precipitation. This suggests that the influence of altitude may overshadow the influence of water availability on foliar δ13C values at this scale. PMID:23341996

  2. The potential of carbon and nitrogen isotopes to conservatively discriminate between subsoil sediment sources

    Science.gov (United States)

    Laceby, J. Patrick; Olley, Jon

    2013-04-01

    Moreton Bay, in South East Queensland, Australia, is a Ramsar wetland of international significance. A decline of the bay's ecosystem health has been primarily attributed to sediments and nutrients from catchment sources. Sediment budgets for three catchments indicated gully erosion dominates the supply of sediment in Knapp Creek and the Upper Bremer River whereas erosion from cultivated soils is the primary sediment source in Blackfellow Creek. Sediment tracing with fallout-radionuclides confirmed subsoil erosion processes dominate the supply of sediment in Knapp Creek and the Upper Bremer River whereas in Blackfellow Creek cultivated and subsoil sources contribute >90% of sediments. Other sediment properties are required to determine the relative sediment contributions of channel bank, gully and cultivated sources in these catchments. The potential of total organic carbon (TOC), total nitrogen (TN), and carbon and nitrogen stable isotopes (δ13C, δ15N) to conservatively discriminate between subsoil sediment sources is presented. The conservativeness of these sediment properties was examined through evaluating particle size variations in depth core soil samples and investigating whether they remain constant in source soils over two sampling occasions. Varying conservative behavior and source discrimination was observed. TN in the

  3. Optimal nitrogen and phosphorus codoping carbon dots towards white light-emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Wang, Yaling; Miao, Yanqin; Yang, Yongzhen, E-mail: yyztyut@126.com, E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); He, Yuheng; Liu, Xuguang, E-mail: yyztyut@126.com, E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2016-08-22

    Through a one-step fast microwave-assisted approach, nitrogen and phosphorus co-doped carbon dots (N,P-CDs) were synthesized using ammonium citrate (AC) as a carbon source and phosphates as additive reagent. Under the condition of an optimal reaction time of 140 s, the influence of additive with different N and P content on fluorescent performance of N,P-CDs was further explored. It was concluded that high nitrogen content and moderate phosphorus content are necessary for obtaining high quantum yield (QY) N,P-CDs, among which the TAP-CDs (CDs synthesized using ammonium phosphate as additive reagent) show high quantum yield (QY) of 62% and red-green-blue (RGB) spectral composition of 51.67%. Besides, the TAP-CDs exhibit satisfying thermal stability within 180 °C. By virtue of good optical and thermal properties of TAP-CDs, a white light-emitting device (LED) was fabricated by combining ultraviolet chip with TAP-CDs as phosphor. The white LED emits bright warm-white light with the CIE chromaticity coordinate of (0.38, 0.35) and the corresponding color temperature (CCT) of 4450 K, indicating the potential of TAP-CDs phosphor in white LED.

  4. Carbon dioxide emission from maize straw incubated with soil under various moisture and nitrogen levels

    International Nuclear Information System (INIS)

    Abro, S.A.; Tian, X.; Hussain, Q.; Talpur, M.; Singh, U.

    2012-01-01

    A laboratory incubation experiment was conducted to investigate the decomposition of maize straw incorporated into soil amended with nitrogen (N) and moisture (M) levels. Clay loam topsoil amended with maize straw was adjusted to four initial nitrogen treatments (C/N ratios of 72, 36, 18, and 9) and four moisture levels (60%, 70%, 80% and 90 % of field capacity) for the total of 16 treatments and incubated at 20 deg. C for 51 days. CO/sub 2/-C evolved was regularly recorded for all treatments during entire incubation period. Results showed that the mixing of straw with soil accelerated decomposition rates and enhanced cumulative CO/sub 2/-C production. The incorporation of straw brought about 50% increase in the cumulative CO/sub 2/-C production as compared with controls. About 45% of added maize straw C was mineralized to CO/sub 2/-C in 51 days. We conclude that incorporation of straw into soil along with the addition of N and moisture levels significantly affected CO/sub 2/-C evolution, cumulative CO/sub 2-C/, C mineralization and soil organic carbon deposition. The CO/sub 2/ emission was in positive correlation with (R2=0.99) N, moisture and incubation time (days). The straw returning into soil may enhance carbon pools and, thus will improve soil and environmental quality. (author)

  5. Electronic sputtering by swift highly charged ions of nitrogen on amorphous carbon

    International Nuclear Information System (INIS)

    Caron, M.; Haranger, F.; Rothard, H.; Ban d'Etat, B.; Boduch, P.; Clouvas, A.; Potiriadis, C.; Neugebauer, R.; Jalowy, T.

    2001-01-01

    Electronic sputtering with heavy ions as a function of both electronic energy loss dE/dx and projectile charge state q was studied at the French heavy ion accelerator GANIL. Amorphous carbon (untreated, and sputter-cleaned and subsequently exposed to nitrogen) was irradiated with swift highly charged ions (Z=6-73, q=6-54, energy 6-13 MeV/u) in an ultrahigh vacuum scattering chamber. The fluence dependence of ion-induced electron yields allows to deduce a desorption cross-section σ which varies approximately as σ∼(dE/dx) 1.65 or σ∼q 3.3 for sputter-cleaned amorphous carbon exposed to nitrogen. This q dependence is close to the cubic charge dependence observed for the emission of H + secondary ions which are believed to be emitted from the very surface. However, the power law σ∼(dE/dx) 1.65 , related to the electronic energy loss gives the best empirical description. The dependence on dE/dx is close to a quadratic one thus rather pointing towards a thermal evaporation-like effect

  6. The Implications of Growing Bioenergy Crops on Water Resources, Carbon and Nitrogen Dynamics

    Science.gov (United States)

    Jain, A. K.; Song, Y.; Kheshgi, H. S.

    2016-12-01

    What is the potential for the crops Corn, Miscanthus and switchgrass to meet future energy demands in the U.S.A., and would they mitigate climate change by offsetting fossil fuel greenhouse gas (GHG) emissions? The large-scale cultivation of these bioenergy crops itself could also drive climate change through changes in albedo, evapotranspiration (ET), and GHG emissions. Whether these climate effects will mitigate or exacerbate climate change in the short- and long-term is uncertain. This uncertainty stems from our incomplete understanding of the effects of expanded bioenergy crop production on terrestrial water and energy balance, carbon and nitrogen dynamics, and their interactions. This study aims to understand the implications of growing large-scale bioenergy crops on water resources, carbon and nitrogen dynamics in the United States using a data-modeling framework (ISAM) that we developed. Our study indicates that both Miscanthus and Cave-in-Rock switchgrass can attain high and stable yield over parts of the Midwest, however, this high production is attained at the cost of increased soil water loss as compared to current natural vegetation. Alamo switchgrass can attain high and stable yield in the southern US without significant influence on soil water quantity.

  7. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction.

    Science.gov (United States)

    Zitolo, Andrea; Ranjbar-Sahraie, Nastaran; Mineva, Tzonka; Li, Jingkun; Jia, Qingying; Stamatin, Serban; Harrington, George F; Lyth, Stephen Mathew; Krtil, Petr; Mukerjee, Sanjeev; Fonda, Emiliano; Jaouen, Frédéric

    2017-10-16

    Single-atom catalysts with full utilization of metal centers can bridge the gap between molecular and solid-state catalysis. Metal-nitrogen-carbon materials prepared via pyrolysis are promising single-atom catalysts but often also comprise metallic particles. Here, we pyrolytically synthesize a Co-N-C material only comprising atomically dispersed cobalt ions and identify with X-ray absorption spectroscopy, magnetic susceptibility measurements and density functional theory the structure and electronic state of three porphyrinic moieties, CoN 4 C 12 , CoN 3 C 10,porp and CoN 2 C 5 . The O 2 electro-reduction and operando X-ray absorption response are measured in acidic medium on Co-N-C and compared to those of a Fe-N-C catalyst prepared similarly. We show that cobalt moieties are unmodified from 0.0 to 1.0 V versus a reversible hydrogen electrode, while Fe-based moieties experience structural and electronic-state changes. On the basis of density functional theory analysis and established relationships between redox potential and O 2 -adsorption strength, we conclude that cobalt-based moieties bind O 2 too weakly for efficient O 2 reduction.Nitrogen-doped carbon materials with atomically dispersed iron or cobalt are promising for catalytic use. Here, the authors show that cobalt moieties have a higher redox potential, bind oxygen more weakly and are less active toward oxygen reduction than their iron counterpart, despite similar coordination.

  8. Quantification of Humic Substances in Natural Water Using Nitrogen-Doped Carbon Dots.

    Science.gov (United States)

    Guan, Yan-Fang; Huang, Bao-Cheng; Qian, Chen; Yu, Han-Qing

    2017-12-19

    Dissolved organic matter (DOM) is ubiquitous in aqueous environments and plays a significant role in pollutant mitigation, transformation and organic geochemical circulation. DOM is also capable of forming carcinogenic byproducts in the disinfection treatment processes of drinking water. Thus, efficient methods for DOM quantification are highly desired. In this work, a novel sensor for rapid and selective detection of humic substances (HS), a key component of DOM, based on fluorescence quenching of nitrogen-doped carbon quantum dots was developed. The experimental results show that the HS detection range could be broadened to 100 mg/L with a detection limit of 0.2 mg/L. Moreover, the detection was effective within a wide pH range of 3.0 to 12.0, and the interferences of ions on the HS measurement were negligible. A good detection result for real surface water samples further validated the feasibility of the developed detection method. Furthermore, a nonradiation electron transfer mechanism for quenching the nitrogen-doped carbon-dots fluorescence by HS was elucidated. In addition, we prepared a test paper and proved its effectiveness. This work provides a new efficient method for the HS quantification than the frequently used modified Lowry method in terms of sensitivity and detection range.

  9. Carbon and nitrogen isotopic survey of northern peruvian plants: baselines for paleodietary and paleoecological studies.

    Directory of Open Access Journals (Sweden)

    Paul Szpak

    Full Text Available The development of isotopic baselines for comparison with paleodietary data is crucial, but often overlooked. We review the factors affecting the carbon (δ(13C and nitrogen (δ(15N isotopic compositions of plants, with a special focus on the carbon and nitrogen isotopic compositions of twelve different species of cultivated plants (n = 91 and 139 wild plant species collected in northern Peru. The cultivated plants were collected from nineteen local markets. The mean δ(13C value for maize (grain was -11.8±0.4 ‰ (n = 27. Leguminous cultigens (beans, Andean lupin were characterized by significantly lower δ(15N values and significantly higher %N than non-leguminous cultigens. Wild plants from thirteen sites were collected in the Moche River Valley area between sea level and ∼4,000 meters above sea level (masl. These sites were associated with mean annual precipitation ranging from 0 to 710 mm. Plants growing at low altitude sites receiving low amounts of precipitation were characterized by higher δ(15N values than plants growing at higher altitudes and receiving higher amounts of precipitation, although this trend dissipated when altitude was >2,000 masl and MAP was >400 mm. For C(3 plants, foliar δ(13C was positively correlated with altitude and precipitation. This suggests that the influence of altitude may overshadow the influence of water availability on foliar δ(13C values at this scale.

  10. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements.

    Directory of Open Access Journals (Sweden)

    Yushi Ye

    Full Text Available Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C, nitrogen (N and phosphorus (P, in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD and four N managements (control, N0; conventional urea at 240 kg N ha(-1, UREA; controlled-release bulk blending fertilizer at 240 kg N ha(-1, BBF; polymer-coated urea at 240 kg N ha(-1, PCU. We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems.

  11. Carbon, Nitrogen and Phosphorus Accumulation and Partitioning, and C:N:P Stoichiometry in Late-Season Rice under Different Water and Nitrogen Managements

    Science.gov (United States)

    Ye, Yushi; Liang, Xinqiang; Chen, Yingxu; Li, Liang; Ji, Yuanjing; Zhu, Chunyan

    2014-01-01

    Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C), nitrogen (N) and phosphorus (P), in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle) of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD) and four N managements (control, N0; conventional urea at 240 kg N ha−1, UREA; controlled-release bulk blending fertilizer at 240 kg N ha−1, BBF; polymer-coated urea at 240 kg N ha−1, PCU). We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems. PMID:24992006

  12. Oxygen- and nitrogen-chemisorbed carbon nanostructures for Z-scheme photocatalysis applications

    International Nuclear Information System (INIS)

    Qian Zhao; Pathak, Biswarup; Nisar, Jawad; Ahuja, Rajeev

    2012-01-01

    Here focusing on the very new experimental finding on carbon nanomaterials for solid-state electron mediator applications in Z-scheme photocatalysis, we have investigated different graphene-based nanostructures chemisorbed by various types and amounts of species such as oxygen (O), nitrogen (N) and hydroxyl (OH) and their electronic structures using density functional theory. The work functions of different nanostructures have also been investigated by us to evaluate their potential applications in Z-scheme photocatalysis for water splitting. The N-, O–N-, and N–N-chemisorbed graphene-based nanostructures (32 carbon atoms supercell, corresponding to lattice parameter of about 1 nm) are found promising to be utilized as electron mediators between reduction level and oxidation level of water splitting. The O- or OH-chemisorbed nanostructures have potential to be used as electron conductors between H 2 -evolving photocatalysts and the reduction level (H + /H 2 ). This systematic study is proposed to understand the properties of graphene-based carbon nanostructures in Z-scheme photocatalysis and guide experimentalists to develop better carbon-based nanomaterials for more efficient Z-scheme photocatalysis applications in the future.

  13. The carbonization of colloidal polyaniline nanoparticles to nitrogen-containing carbon analogues

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchová, Miroslava; Hromádková, Jiřina; Kovářová, Jana; Kalendová, A.

    2010-01-01

    Roč. 59, č. 7 (2010), s. 875-878 ISSN 0959-8103 R&D Projects: GA AV ČR IAA400500905; GA AV ČR KAN200520704; GA ČR GA203/08/0686; GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * colloids * carbonization Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.056, year: 2010

  14. Valuing multiple eelgrass ecosystem services in Sweden: fish production and uptake of carbon and nitrogen

    Directory of Open Access Journals (Sweden)

    Scott Glenn Cole

    2016-01-01

    Full Text Available Valuing nature’s benefits in monetary terms is necessary for policy-makers facing trade-offs in how to spend limited financial resources on environmental protection. We provide information to assess trade-offs associated with the management of seagrass beds, which provide a number of ecosystem services, but are presently impacted by many stressors. We develop an interdisciplinary framework for valuing multiple ecosystem services and apply it to the case of eelgrass (Zostera marina, a dominant seagrass species in the northern hemisphere. We identify and quantify links between three eelgrass functions (habitat for fish, carbon and nitrogen uptake and economic goods in Sweden, quantify these using ecological endpoints, estimate the marginal average value of the impact of losing one hectare of eelgrass along the Swedish northwest coast on welfare in monetary terms, and aggregate these values while considering double-counting. Over a 20 to 50 year period we find that compared to unvegetated habitats, a hectare of eelgrass, including the organic material accumulated in the sediment, produces an additional 626 kg cod fishes and 7,535 wrasse individuals and sequesters 98.6 ton carbon and 466 kg nitrogen. We value the flow of future benefits associated with commercial fishing, avoided climate change damages, and reduced eutrophication at 170,000 SEK in 2014 (20,700 US$ or 11,000 SEK (1,300 US$ annualized at 4%. Fish production, which is the most commonly valued ecosystem service in the seagrass literature, only represented 25% of the total value whereas a conservative estimate of nitrogen regulation constituted 46%, suggesting that most seagrass beds are undervalued. Comparing these values with historic losses of eelgrass we show that the Swedish northwest coast has suffered a substantial reduction in fish production and mineral regulation. Future work should improve the understanding of the geographic scale of eelgrass functions, how local variables

  15. Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils.

    Science.gov (United States)

    Ravindran, Anita; Yang, Shang-Shyng

    2015-08-01

    Microbial biomass plays an important role in nutrient transformation and conservation of forest and grassland ecosystems. The objective of this study was to determine the microbial biomass among three vegetation types in subalpine mountain forest soils of Taiwan. Tatachia is a typical high-altitude subalpine temperate forest ecosystem in Taiwan with an elevation of 1800-3952 m and consists of three vegetation types: spruce, hemlock, and grassland. Three plots were selected in each vegetation type. Soil samples were collected from the organic layer, topsoil, and subsoil. Microbial biomass carbon (Cmic) was determined by the chloroform fumigation-extraction method, and microbial biomass nitrogen (Nmic) was determined from the total nitrogen (Ntot) released during fumigation-extraction. Bacteria, actinomycetes, fungi, cellulolytic microbes, phosphate-solubilizing microbes, and nitrogen-fixing microbes were also counted. The Cmic and Nmic were highest in the surface soil and declined with the soil depth. These were also highest in spruce soils, followed by in hemlock soils, and were lowest in grassland soils. Cmic and Nmic had the highest values in the spring season and the lowest values in the winter season. Cmic and Nmic had significantly positive correlations with total organic carbon (Corg) and Ntot. Contributions of Cmic and Nmic, respectively, to Corg and Ntot indicated that the microbial biomass was immobilized more in spruce and hemlock soils than in grassland soils. Microbial populations of the tested vegetation types decreased with increasing soil depth. Cmic and Nmic were high in the organic layer and decreased with the depth of layers. These values were higher for spruce and hemlock soils than for grassland soils. Positive correlations were observed between Cmic and Nmic and between Corg and Ntot. Copyright © 2014. Published by Elsevier B.V.

  16. Nitrogen-enriched carbon sheets derived from egg white by using expanded perlite template and its high-performance supercapacitors

    Science.gov (United States)

    Chen, Jiucun; Liu, Yinqin; Li, Wenjun; Xu, Liqun; Yang, Huan; Li, Chang Ming

    2015-08-01

    Nitrogen-enriched carbon sheets were synthesized using egg white as a unique carbon source and expanded perlite as a novel template. The as-prepared material was further used as an electrode material for supercapacitor applications, demonstrating excellent supercapacitance with a maximum gravimetric specific capacitance of 302 F g-1 at 0.5 A g-1 in a 3-electrode setup for a sample carbonized at 850 °C and activated for 6 h. Moreover, the carbon sheet-based capacitor with 2-symmetric electrodes showed an excellent cycle life (2% loss at 0.1 A g-1 after 10 000 cycles). The excellent performance may be attributed to the combination of the 3D carbon structure and the highly concentrated doped nitrogen component from the natural egg source for superior pseudocapacitance.

  17. Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Dan; Shang, Shaoming, E-mail: smshang@jiangnan.edu.cn; Yu, Qin; Shen, Jie

    2016-12-30

    Graphical abstract: Fluorescent nitrogen-doped carbon dots were synthesized by a facile, green, and fast microwave method, using lotus root as carbon source. These nitrogen-doped carbon dots can be used for Hg{sup 2+} detection and cell imaging. - Highlights: • A green, fast strategy for synthesizing carbon dots was established. • A simple, sensitive, selective and wide linear range sensing of Hg{sup 2+} was developed. • The sensor system was demonstrated to detect Hg{sup 2+} in environmental water sample. • The carbon dots could serve for multicolor fluorescence bioimaging. - Abstract: Herein, a facile, green, and fast method was developed in the synthesis of fluorescent nitrogen-doped carbon dots (CDs) with nitrogen content of 5.23%, using one-pot microwave treatment of lotus root (LR), without using any other surface passivation agents. The results show that these LR-CDs (with an average diameter of 9.41 nm) possess many outstanding features and have a high quantum yield of 19.0%. We further demonstrated applications of LR-CDs as probes for heavy metal ion detection. The LR-CDs exhibit captivating sensitivity and selectivity toward Hg{sup 2+} with a linear range from 0.1 to 60.0 μM and a detection limit of 18.7 nM. Eventually, the LR-CDs were applied for multicolor cell imaging, demonstrating their potential toward diverse applications.

  18. Carbon Concentration and Carbon-to-Nitrogen Ratio Influence Submerged-Culture Conidiation by the Potential Bioherbicide Colletotrichum truncatum NRRL 13737

    Science.gov (United States)

    Jackson, Mark A.; Bothast, Rodney J.

    1990-01-01

    We assessed the influence of various carbon concentrations and carbon-to-nitrogen (C:N) ratios on Colletotrichum truncatum NRRL 13737 conidium formation in submerged cultures grown in a basal salts medium containing various amounts of glucose and Casamino Acids. Under the nutritional conditions tested, the highest conidium concentrations were produced in media with carbon concentrations of 4.0 to 15.3 g/liter. High carbon concentrations (20.4 to 40.8 g/liter) inhibited sporulation and enhanced the formation of microsclerotiumlike hyphal masses. At all the carbon concentrations tested, a culture grown in a medium with a C:N ratio of 15:1 produced more conidia than cultures grown in media with C:N ratios of 40:1 or 5:1. While glucose exhaustion was often coincident with conidium formation, cultures containing residual glucose sporulated and those with high carbon concentrations (>25 g/liter) exhausted glucose without sporulation. Nitrogen source studies showed that the levels of C. truncatum NRRL 13737 conidiation were similar for all protein hydrolysates tested. Reduced conidiation occurred when amino acid and inorganic nitrogen sources were used. Of the nine carbon sources evaluated, acetate as the sole carbon source resulted in the lowest level of sporulation. Images PMID:16348348

  19. Effects of elevated nitrogen deposition on soil microbial biomass carbon in major subtropical forests of southern China

    Institute of Scientific and Technical Information of China (English)

    Hui WANG; Jiangming MO; Xiankai LU; Jinghua XUE; Jiong LI; Yunting FANG

    2009-01-01

    The effects of elevated nitrogen deposition on soil microbial biomass carbon (C) and extractable dissolved organic carbon (DOC) in three types of forest of southern China were studied in November, 2004 and June, 2006. Plots were established in a pine forest (PF), a mixed pine and broad-leaved forest (MF) and monsoon evergreen broad-leaved forest (MEBF) in the Dinghushan Nature Reserve. Nitrogen treatments included a control (no N addition), low N (50 kg N/(hm2.a)), medium N (100 kg N/ (hm2. a)) and high N (150 kg N/(hm2. a)). Microbial biomass C and extractable DOC were determined using a chloro-form fumigation-extraction method. Results indicate that microbial biomass C and extractable DOC were higher in June, 2006 than in November, 2004 and higher in the MEBF than in the PF or the MF. The response of soil microbial biomass C and extractable DOC to nitrogen deposition varied depending on the forest type and the level of nitrogen treatment. In the PF or MF forests, no significantly different effects of nitrogen addition were found on soil microbial biomass C and extractable DOC. In the MEBF, however, the soil microbial biomass C generally decreased with increased nitrogen levels and high nitrogen addition significantly reduced soil microbial biomass C. The response of soil extractable DOC to added nitrogen in the MEBF shows the opposite trend to soil microbial biomass C. These results suggest that nitrogen deposition may increase the accumulation of soil organic carbon in the MEBF in the st