WorldWideScience

Sample records for elementary particle research

  1. A research Program in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sobel, Henry; Molzon, William; Lankford, Andrew; Taffard, Anyes; Whiteson, Daniel; Kirkby, David

    2013-07-25

    Work is reported in: Neutrino Physics, Cosmic Rays and Elementary Particles; Particle Physics and Charged Lepton Flavor Violation; Research in Collider Physics; Dark Energy Studies with BOSS and LSST.

  2. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Bland, R.W.; Greensite, J.

    1992-01-01

    Task A of this contract supports research in elementary particle physics using cryogenic particle detectors. We have developed superconducting aluminum tunnel-junction detectors sensitive to a variety of particle signals, and with potential application to a number of particle-physics problems. We have extended our range of technologies through a collaboration with Simon Labov, on niobium tri-layer junctions, and Jean-Paul Maneval, on high-T c superconducting bolometers. We have new data on response to low-energy X-rays and to alpha-particle signals from large-volume detectors. The theoretical work under this contract (Task B) is a continued investigation of nonperturbative aspects of quantum gravity. A Monte Carlo calculation is proposed for Euclidian quantum gravity, based on the ''fifth-time action'' stabilization procedure. Results from the last year include a set of seven papers, summarized below, addressing various aspects of nonperturbative quantum gravity and QCD. Among the issues- addressed is the so-called ''problem of time'' in canonical quantum gravity

  3. [Research in elementary particles and interactions

    International Nuclear Information System (INIS)

    Adair, R.; Sandweiss, J.; Schmidt, M.

    1992-05-01

    Research of the Yale University groups in the areas of elementary particles and their interactions are outlined. Work on the following topics is reported: development of CDF trigger system; SSC detector development; study of heavy flavors at TPL; search for composite objects produced in relativistic heavy-ion collisions; high-energy polarized lepton-nucleon scattering; rare K + decays; unpolarized high-energy muon scattering; muon anomalous magnetic moment; theoretical high-energy physics including gauge theories, symmetry breaking, string theory, and gravitation theory; study of e + e - interactions with the SLD detector at SLAC; and the production and decay of particles containing charm and beauty quarks

  4. Is an elementary particle really: (i) a particle? (ii) elementary?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Is an elementary particle really: (i) a particle? (ii) elementary? Over centuries, naïve notions about this have turned out incorrect. Particles are not really pointlike. The word elementary is not necessarily well-defined. Notes:

  5. Physics through the 1990s: Elementary-particle physics

    International Nuclear Information System (INIS)

    Kirk, W.T.

    1986-01-01

    This report on elementary-particle physics is part of an overall survey of physics carried out for the National Academy of Sciences by the National Research Council. The panel that wrote this report had three goals. The first goal was to explain the nature of elementary-particle physics and to describe how research is carried out in this field. The second goal was to summarize our present knowledge of the elementary particles and the fundamental forces. The third goal was to consider the future course of elementary-particle physics research and to propose a program for this research in the United States. All of these goals are covered in this report

  6. The Joint Institute for Nuclear Research in Experimental Physics of Elementary Particles

    Science.gov (United States)

    Bednyakov, V. A.; Russakovich, N. A.

    2018-05-01

    The year 2016 marks the 60th anniversary of the Joint Institute for Nuclear Research (JINR) in Dubna, an international intergovernmental organization for basic research in the fields of elementary particles, atomic nuclei, and condensed matter. Highly productive advances over this long road clearly show that the international basis and diversity of research guarantees successful development (and maintenance) of fundamental science. This is especially important for experimental research. In this review, the most significant achievements are briefly described with an attempt to look into the future (seven to ten years ahead) and show the role of JINR in solution of highly important problems in elementary particle physics, which is a fundamental field of modern natural sciences. This glimpse of the future is full of justified optimism.

  7. Elementary particle physics at the University of Florida

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP)

  8. Elementary particle physics at the University of Florida

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).

  9. Elementary particles. 2

    International Nuclear Information System (INIS)

    Ranft, G.; Ranft, J.

    1977-01-01

    In this part the subject is covered under the following headings, methods for producing high-energy particles; interaction of high-energy particles with matter; methods for the detection of high-energy particles; symmetry properties and conservation laws; quantum number and selection rules; theorem of scattering behaviour at asymptotically high energies; statistical methods in elementary particle physics; interaction of high-energy particles with nuclei; relations of high-energy physics to other branches of science and its response to engineering. Intended as information on high-energy physics for graduate students and research workers familiar with the fundamentals of classical and quantum physics

  10. Elementary particles physics

    International Nuclear Information System (INIS)

    1990-01-01

    It is discussed the physics in Brazil in the next decade with regard to elementary particles and field theories. The situation of brazilian research institutes as well as its personnel is also presented. Some recommendations and financing of new projects are also considered. (A.C.A.S.)

  11. Elementary particles

    International Nuclear Information System (INIS)

    Prasad, R.

    1984-01-01

    Two previous monographs report on investigations into the extent to which a unified field theory can satisfactorily describe physical reality. The first, Unified field Theory, showed that the paths within a non-Riemannian space are governed by eigenvalue equations. The second, Fundamental Constants, show that the field tensors satisfy sets of differential equations with solutions which represent the evolution of the fields along the paths of the space. The results from the first two monographs are used in this one to make progress on the theory of elementary particles. The five chapters are as follows - Quantum mechanics, gravitation and electromagnetism are aspects of the Unified theory; the fields inside the particle; the quadratic and linear theories; the calculation of the eigenvalues and elementary particles as stable configurations of interacting fields. It is shown that it is possible to construct an internal structure theory for elementary particles. The theory lies within the framework of Einstein's programme-to identify physical reality with a specified geometrical structure. (U.K.)

  12. Elementary particle physics in early physics education

    CERN Document Server

    Wiener, Gerfried

    2017-01-01

    Current physics education research is faced with the important question of how best to introduce elementary particle physics in the classroom early on. Therefore, a learning unit on the subatomic structure of matter was developed, which aims to introduce 12-year-olds to elementary particles and fundamental interactions. This unit was iteratively evaluated and developed by means of a design-based research project with grade-6 students. In addition, dedicated professional development programmes were set up to instruct high school teachers about the learning unit and enable them to investigate its didactical feasibility. Overall, the doctoral research project led to successful results and showed the topic of elementary particle physics to be a viable candidate for introducing modern physics in the classroom. Furthermore, thanks to the design-based research methodology, the respective findings have implications for both physics education and physics education research, which will be presented during the PhD defen...

  13. Research program in elementary particle theory

    International Nuclear Information System (INIS)

    1989-01-01

    The Syracuse High Energy Theory group has continued to make significant contributions to many areas. Many novel aspects of Chern-Simons terms and effective Lagrangians were investigated. Various interesting aspects of quantum gravity and string theory were explored. Gauge models of elementary particles were studied in depth. The investigations of QCD at finite temperatures and multiply connected configuration spaces continued. 24 refs

  14. Research in elementary particle physics. Technical progress report, June 1, 1985-May 31, 1986

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Abbott, L.F.; Blocker, C.A.

    1986-01-01

    Progress is reported in both experimental and theoretical elementary particle research. Experimental activities include: construction of the Forward Electromagnetic Shower Counters for the Collider Detector at Fermilab (CDF); a test run in the CDF, involving observation of a small number of proton-antiproton collisions; design of a self-contained single wire proportional chamber with pressure and temperature sensing for monitoring the gain of gases used by various components of the CDF; data acquisition, and calibration. Also included are a search for a dibaryon of strangeness=-1; hyperon weak radiative decay. Theoretical research is reported in the areas of quantum field theory, string theory, elementary particle phenomenology, cosmology, field theory in curved spacetimes, and cosmology. 34 refs

  15. Elementary particles and particle interactions

    International Nuclear Information System (INIS)

    Bethge, K.; Schroeder, U.E.

    1986-01-01

    This book is a textbook for an introductory course of elementary particle physics. After a general introduction the symmetry principles governing the interactions of elementary particles are discussed. Then the phenomenology of the electroweak and strong interactions are described together with a short introduction to the Weinberg-Salam theory respectively to quantum chromodynamics. Finally a short outlook is given to grand unification with special regards to SU(5) and cosmology in the framework of the current understanding of the fundamental principles of nature. In the appendix is a table of particle properties and physical constants. (HSI) [de

  16. Elementary particle physics at the University of Florida. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).

  17. Research in elementary particle physics. Technical progress report, June 1, 1983-May 31, 1984

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Abbott, L.F.

    1984-01-01

    Under this contract, research has been performed on both the theoretical and experimental properties of elementary particles. A brief description of the work which is either in progress or has been completed is given. Publications are listed

  18. Do Elementary Particles Have an Objective Existence?

    OpenAIRE

    Nissenson, Bilha

    2007-01-01

    The formulation of quantum theory does not comply with the notion of objective existence of elementary particles. Objective existence independent of observation implies the distinguishability of elementary particles. In other words: If elementary particles have an objective existence independent of observations, then they are distinguishable. Or if elementary particles are indistinguishable then matter cannot have existence independent of our observation. This paper presents a simple deductio...

  19. Notes on elementary particle physics

    CERN Document Server

    Muirhead, William Hugh

    1972-01-01

    Notes of Elementary Particle Physics is a seven-chapter text that conveys the ideas on the state of elementary particle physics. This book emerged from an introductory course of 30 lectures on the subject given to first-year graduate students at the University of Liverpool. The opening chapter deals with pertinent terminologies in elementary particle physics. The succeeding three chapters cover the concepts of transition amplitudes, probabilities, relativistic wave equations and fields, and the interaction amplitude. The discussion then shifts to tests of electromagnetic interactions, particul

  20. Research in elementary particle physics at the University of Florida: Annual progress report

    International Nuclear Information System (INIS)

    1988-01-01

    This is a progress report on the Elementary Particle Physics program at the University of Florida. The program has five tasks covering a broad range of topics in theoretical and experimental high energy physics: Theoretical Elementary Particle Physics, Experimental High Energy Physics, Axion Search, Detector Development, and Computer Requisition

  1. Resource Letter HEPP-1: History of elementary-particle physics

    International Nuclear Information System (INIS)

    Hovis, R.C.; Kragh, H.

    1991-01-01

    This Resource Letter provides a guide to literature on the history of modern elementary-particle physics. Histories that treat developments from the 1930s through the 1980s are focused on and a sampling is included of the historiography covering the period c. 1890--1930, the prehistory of elementary-particle physics as a discipline. Also included are collections of scientific papers, which might be especially valuable to individuals who wish to undertake historical research on particular scientists or subfields of elementary-particle physics. The introduction presents some statistical data and associated references for elementary-particle physics and surveys historiographical approaches and issues that are represented in historical accounts in the bibliography. All references are assigned a rating of E (Elementary), I (Intermediate), or A (Advanced) based on their technical or conceptual difficulty or their appropriateness for a person attempting a graduated study of the history of modern particle physics. That is, items labeled E are suitable for the layman or would be fundamental to a beginning exploration of the history of particle physics, whereas items labeled A are technically demanding (mathematically, historiographically, or philosophically) or would be most appropriate for specialized or advanced examinations of various topics

  2. Elementary particles and cosmology

    International Nuclear Information System (INIS)

    Audouze, J.; Paty, M.

    2000-01-01

    The universe is the most efficient laboratory of particle physics and the understanding of cosmological processes implies the knowledge of how elementary particles interact. This article recalls the mutual influences between on the one hand: astrophysics and cosmology and on the other hand: nuclear physics and particle physics. The big-bang theory relies on nuclear physics to explain the successive stages of nucleo-synthesis and the study of solar neutrinos has led to discover new aspects of this particle: it is likely that neutrinos undergo oscillations from one neutrino type to another. In some universe events such as the bursting of a super-nova, particles are released with a kinetic energy that would be impossible to reach on earth with a particle accelerator. These events are become common points of interest between astrophysicists and particle physicists and have promoted a deeper cooperation between astrophysics and elementary particle physics. (A.C.)

  3. Research in elementary particle physics. Technical progress report, May 1, 1980-April 30, 1981

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.

    1981-01-01

    Research in theoretical and experimental properties of elementary particles is described. This includes measurements made at the multiparticle spectrometer facility at Brookhaven, studies of baryonium production, inclusive hyperon production, and E 0 production. Theroetical work included extended field theories, subconstituent models, finite temperature QCD, grand unified theories, and calculational techniques in gauge theories

  4. Elementary particle physics at the University of Florida. Annual progress report

    International Nuclear Information System (INIS)

    1996-01-01

    This report discusses the following topics: Task A: theoretical elementary particle physics; Task B: experimental elementary particle physics; Task C: axion project; Task G: experimental research in collider physics; and Task S: computer acquisition. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  5. Some problems of high-energy elementary particle physics

    International Nuclear Information System (INIS)

    Isaev, P.S.

    1995-01-01

    The problems of high-energy elementary particle physics are discussed. It is pointed out that the modern theory of elementary-particle physics has no solutions of some large physical problems: origin of the mass, electric charge, identity of particle masses, change of the mass of elementary particles in time and others. 7 refs

  6. Non-European facilities for elementary particle physics research

    International Nuclear Information System (INIS)

    Mann, A.K.

    1983-01-01

    The facilities we now employ in high energy physics cover a broad spectrum of particle energies and intensities and provide therefore a multiplicity of probes with which to study the behavior of elementary particles. In general, the goal has been to achieve ever higher particle energies and intensities, with emphasis on energy, and to develop more versatile and more sensitive detectors with which to study the resultant particle-particle interactions. Most energy regimes that have been explored have yielded new, fundamental information which often becomes clearer and more easily developed when particle energies are further increased. In this talk I shall try to delineate the nature of those facilities in Canada, Japan and the U.S.A. It is useful, I believe, to begin with a brief discussion of the funding and management of facilities in those countries and a short summary of recent history. The main body of the talk concentrates on the present, planned and contemplated facilities of the major non-European accelerator laboratories, and address briefly the status of accelerator development. The concluding section will summarize the salient features of the discussion. (author)

  7. Elementary particle theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1984-12-01

    The present state of the art in elementary particle theory is reviewed. Topics include quantum electrodynamics, weak interactions, electroweak unification, quantum chromodynamics, and grand unified theories. 113 references

  8. On the ontology of the elementary particles. A philosophical analysis of the actual elementary-particle physics

    International Nuclear Information System (INIS)

    Brueckner, Thomas Christian

    2015-01-01

    After a description of the standard model of elementary-particle physics the author describes structuralistic reconstructions. Then the problem of the theoretical terms is discussed. Therafter the reconstruction of the standard-model elementary particles is described. Finally the ontology of leptons, quarks and both free and in atoms bound protons is considered.

  9. About limit masses of elementary particles

    International Nuclear Information System (INIS)

    Ibadova, U.R.

    2002-01-01

    The simple examples of spontaneous breaking of various symmetries for the scalar theory with fundamental mass have been considered. Higgs' generalizations on 'fundamental masses' that was introduced into the theory on a basis of the five-dimensional de Sitter space. The connection among 'fundamental mass', 'Planck's mass' and 'maxim ons' has been found. Consequently, the relationship among G-gravitational constant and other universal parameters can be established. The concept the mass having its root from deep antiquity (including Galilee's Pis sans experiment, theoretical research of the connection of mass with the Einstein's energy etc.) still remains fundamental. Every theoretical and experimental research in classical physics and quantum physics associated with mass is of step to the discernment of Nature. Besides of mass, the other fundamental constants such as Planck's constant ℎ and the speed of light also play the most important role in the modern theories. The first one related to quantum mechanics and the second one is related to the theory of relativity. Nowadays the properties and interactions of elementary particles can be described more or less adequately in terms of local fields that are affiliated with the lowest representations of corresponding compact groups of symmetry. It is known that the mass of any body is composed of masses of its comprising elementary particles. The mass of elementary particles is the Casimir operator of the non-compact Poincare group, and those representations of the given group, that are being used in Quantum Field Theory (QFT), and it can take any values in the interval of 0≤m≤∞. Two particles, today referred to as elementary particles, can have masses; distinct one from another by many orders. For example, vectorial bosons with the mass of ∼10 15 GeV take place in general relativity theory modules, whereas the mass of an electron is only ∼0.5·10 3 GeV. Formally, the standard QFT remains logical in a case

  10. Cornell's LEPP, CHESS research labs expected to get $124 million in NSF funding for elementary particle and X-ray research

    CERN Multimedia

    2003-01-01

    "Cornell University will be awarded up to $124 million over the next five years by the National Science Foundation (NSF) to support research at the Laboratory for Elementary-Particle Physics (LEPP) and the Cornell High Energy Synchrotron Source (CHESS), a national user facility" (1 page).

  11. A survey of research in elementary particle physics

    International Nuclear Information System (INIS)

    Baton, J.P.; Cohen-Tannoudji, G.

    1986-05-01

    These notes are devoted to the current trends in elementary particle physics. They are not intended for the training of experts in the field. After a brief historical survey, one discusses the difficulties which have made necessary to move from classical physics to relativistic quantum physics. The main concepts of this new theory are rapidly presented. The experimental methods are discussed within a few typical experiments, already performed or scheduled. The main questions which are still unsolved are rapidly mentioned [fr

  12. A survey of research in elementary particle physics

    International Nuclear Information System (INIS)

    Baton, J.P.; Cohen-Tannoudji, G.

    1986-10-01

    These notes are devoted to the current trends in elementary particle physics. They are not intended for the training of experts in the field. After a brief historical survey, one discusses the difficulties which have made necessary to move from classical physics to relativistic quantum physics. The main concepts of this new theory are rapidly presented. The experimental methods are discussed within a few typical experiments, already performed or scheduled. The main questions which are still unsolved are rapidly mentioned [fr

  13. Charm-quarks and new elementary particles

    International Nuclear Information System (INIS)

    Petersen, J.L.

    1978-01-01

    This is the first part of an extensive paper which discusses: the Nobel prize in physics 1976; discovery of the J/psi-particle; elementary particles and elementary building blocks; the four reciprocal effects; gauge theories; quark-antiquark reciprocal effects; the high-energy approximation; a simple quark-antiquark potential; and quark diagrams and the Zweig rule. (Auth.)

  14. On the Origin of Elementary Particle Masses

    OpenAIRE

    Hansson, Johan

    2012-01-01

    The oldest enigma in fundamental particle physics is: Where do the observed masses of elementary particles come from? Inspired by observation of the empirical particle mass spectrum we propose that the masses of elementary parti cles arise solely due to the self-interaction of the fields associated with a particle. We thus assume that the mass is proportional to the strength of the interaction of th e field with itself. A simple application of this idea to the fermi...

  15. Dimensional considerations about elementary particles

    International Nuclear Information System (INIS)

    Cocconi, G.

    1978-01-01

    The search for fundamental elementary particles responsible for the observed behaviour of matter during the past decades is briefly reviewed, and the possibility is considered that the four fundamental interactions that shape things merge into a unique field when matter is so compressed that particles are at extremely small distances from one another. These interactions are the gravitational interaction, the electromagnetic interaction, the strong interaction, and the weak interaction. It is thought that a simple geometrical criterion, termed the 'elementary criterion', would suffice to indicate how the various interactions should behave as particles are brought closer to one another and thus approach the situation where all interactions merge. (6 references). (U.K.)

  16. Research in elementary particle physics. Technical progress report, June 1, 1984-May 31, 1985

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Abbott, L.F.

    1985-01-01

    Research performed on both the experimental and theoretical properties of elementary particles is briefly described, including: construction of forward electromagnetic shower counters; BO test facility; gas monitor development and production; off-line simulation work for trigger studies; hyperon weak radiative decay; search for dibaryons of strangeness = -1; study of the Skyrme model; collider physics; quarkonium spectroscopy; some theoretical studies of the standard model; and studies of cosmology, the cosmological constant, and scalar fields in curved space-time. 37 refs

  17. Compilation of data on elementary particles

    International Nuclear Information System (INIS)

    Trippe, T.G.

    1984-09-01

    The most widely used data compilation in the field of elementary particle physics is the Review of Particle Properties. The origin, development and current state of this compilation are described with emphasis on the features which have contributed to its success: active involvement of particle physicists; critical evaluation and review of the data; completeness of coverage; regular distribution of reliable summaries including a pocket edition; heavy involvement of expert consultants; and international collaboration. The current state of the Review and new developments such as providing interactive access to the Review's database are described. Problems and solutions related to maintaining a strong and supportive relationship between compilation groups and the researchers who produce and use the data are discussed

  18. Progress in elementary particle theory, 1950-1964

    International Nuclear Information System (INIS)

    Gell-Mann, M.

    1989-01-01

    This final chapter of the book lists advances in elementary particle theory from 1950 to 1964 in an order of progressive understanding of ideas rather than chronologically. Starting with quantum field theory and the important discoveries within it, the author explains the connections and items missing in this decade, but understood later. The second part of the chapter takes the same pattern, but deals with basic interactions (strong, electromagnetic, weak and gravitational) and elementary particles, including quarks. By 1985, theory had developed to such a degree that it was hoped that the long-sought-after unified field theory of all elementary particles and interactions of nature might be close at hand. (UK)

  19. Structures in elementary particles. An electromagnetic elementary-particle model

    International Nuclear Information System (INIS)

    Meyer, Carl-Friedrich

    2015-01-01

    A picture of matter is developed, which is suited to develope and to explain the experimentally determined properties of the elementary particles and the basing structures starting from few known physical conditions in a simple and understandable way. It explains illustratively the spin and the structure of the stable particles, symmetry properties resulting from the half-integerness of the spin, the nature of the electric charge and the third-integerness of the charges in hadrons resulting from this, the stability and the indivisibility f the proton, the conditions for the formation and stability of the particles, and the causes for the limited lifetime of unstable particles like the free neutron. It opens also the view on the cause for the quantization of all for us known processes in the range of the microcosm and creates so an illustrative picture of the matter surrounding us.

  20. Elementary particle interactions

    International Nuclear Information System (INIS)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Ward, B.F.L.; Close, F.E.; Christophorou, L.G.

    1990-10-01

    This report discusses freon bubble chamber experiments exposed to μ + and neutrinos, photon-proton interactions; shower counter simulations; SLD detectors at the Stanford Linear Collider, and the detectors at the Superconducting Super Collider; elementary particle interactions; physical properties of dielectric materials used in High Energy Physics detectors; and Nuclear Physics

  1. Quantum Black Holes As Elementary Particles

    OpenAIRE

    Ha, Yuan K.

    2008-01-01

    Are black holes elementary particles? Are they fermions or bosons? We investigate the remarkable possibility that quantum black holes are the smallest and heaviest elementary particles. We are able to construct various fundamental quantum black holes: the spin-0, spin 1/2, spin-1, and the Planck-charge cases, using the results in general relativity. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox posed by the Greisen-Zatsepin-Kuzmin limit on the energy of cosmi...

  2. Condensed elementary particle matter

    International Nuclear Information System (INIS)

    Kajantie, K.

    1996-01-01

    Quark matter is a special case of condensed elementary particle matter, matter governed by the laws of particle physics. The talk discusses how far one can get in the study of particle matter by reducing the problem to computations based on the action. As an example the computation of the phase diagram of electroweak matter is presented. It is quite possible that ultimately an antireductionist attitude will prevail: experiments will reveal unpredicted phenomena not obviously reducible to the study of the action. (orig.)

  3. Elementary Particles A New Approach

    Directory of Open Access Journals (Sweden)

    FranciscoMartnezFlores.

    2015-07-01

    Full Text Available ABSTRACT It is shown the inexistence of neutrinos to define precisely the concept of relativistics mass under this scheme to elementarys particles as electron and interactions particles like photons correspond an electromagnetic and virtual mass. Nucleons protons and neutrons have real or inertial mass for being composite particles since inertia needs structure it is provided by an interactive network originated by strong and weak forces. This mass is building up atoms and all the material world under Classical Physics and Chemistrys laws.These actual masses may be considered as electromagnetic and virtual one thanks to its charge in order to establish the high energies level needed to obtain all particles physics elementary or not which are governed by the laws of Quantum Physics. With all this one may set up amore reasonable and understandable new Standard Model which being projected into Cosmological Model can get rid of some inconsistencies and concepts difficult to be admitted.

  4. Research in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    White, Andrew Paul [Univ. of Texas, Arlington, TX (United States); De, Kaushik [Univ. of Texas, Arlington, TX (United States); Brandt, Andrew [Univ. of Texas, Arlington, TX (United States); Yu, Jaehoon [Univ. of Texas, Arlington, TX (United States); Farbin, Amir [Univ. of Texas, Arlington, TX (United States)

    2015-02-02

    This report details the accomplishments and research results for the High Energy Physics Group at the University of Texas at Arlington at the Energy and Intensity Frontiers. For the Energy Frontier we have made fundamental contributions in the search for supersymmetric particles, proposed to explain the stabilization of the mass of the Higgs Boson – the agent giving mass to all known particles. We have also made major contributions to the search for additional Higgs Bosons and to the planning for future searches. This work has been carried out in the context of the ATLAS Experiment at CERN (European Nuclear Research Laboratory) and for which we have made major contributions to computing and data distribution and processing, and have worked to calibrate the detector and prepare upgraded electronics for the future. Our other contribution to the Energy Frontier has been to the International Linear Collider (ILC) project, potentially hosted by Japan, and to the Silicon Detector Concept (SiD) in particular. We have lead the development of the SiD Concept and have worked on a new form of precise energy measurement for particles from the high energy collisions of electrons and positrons at the ILC. For the Intensity Frontier, we have worked to develop the concept of Long Baseline Neutrino Experiment(s) (LBNE) at the Fermi National Accelerator Laboratory. Our contributions to detector development, neutrino beam studies, particle identification, software development will facilitate future studies of the oscillation of one type of neutrino into other type(s), establish the order of the neutrino masses, and, through an innovative new idea, allow us to create a beam of dark matter particles.

  5. Recent advances in elementary particle physics

    International Nuclear Information System (INIS)

    Zepeda, D.A.

    1985-01-01

    A brief review of recent successful results in elementary particle physics, as well as of those problems which may be dealt with in the present of near future is presented. A description of elementary particles and their interactions as they are presently conceived is given. The standard model of electroweak interactions is discussed in detail and the relevance of the recent discovery of the intermediate bosons W + and Z is analized. Finally, the weak features of the standard model and the theories which solve these problems are pointed out. (author)

  6. Cosmic objects and elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Rozental, I L [AN SSSR, Moscow. Inst. Kosmicheskikh Issledovanij

    1977-02-01

    Considered are the connections between the parameters of elementary particles (mass ''size'') and the characteristics of stars (the main sequence stars, white dwarf stars and pulsars). Presented is the elementary theory of black hole radiation in the framework of which all the regularities of the process are derived. The emphiric numerical sequence connecting nucleon mass and universe constants (G, h, c) with the masses of some cosmic objects is given.

  7. Introduction to the elementary particle physics

    International Nuclear Information System (INIS)

    Shellard, R.C.

    1982-03-01

    An introduction is given to the subject of elementary particle physics. Several particle properties are discussed and some models are shown. This introduction covers the theoretical as well as the experimental aspects including a topic on detectors. (L.C.) [pt

  8. Puzzle of the particles and the universe. The inner life of the elementary particles IX d

    International Nuclear Information System (INIS)

    Geitner, Uwe W.

    2013-01-01

    The series The Inner Life of the Elementary Particles attempts to develop the elementary particles along of a genealogical tree, which begins before the ''big bang''. The simple presentation without mathematics opens also for the interested layman a plastic understanding. Volume IX discusses the known puzzles of particle physics and cosmology and offers for many of them explanation models. Explanation approaches are among others the ''DNA'' of the elementary particles and the interpretation of the quanta and the spin.

  9. Physical Origin of Elementary Particle Masses

    OpenAIRE

    Hansson, Johan

    2014-01-01

    In contemporary particle physics, the masses of fundamental particles are incalculable constants, being supplied by experimental values. Inspired by observation of the empirical particle mass spectrum, and their corresponding physical interaction couplings, we propose that the masses of elementary particles arise solely due to the self-interaction of the fields associated with the charges of a particle. A first application of this idea is seen to yield correct order of magnitude predictions f...

  10. In search of elementary spin 0 particles

    International Nuclear Information System (INIS)

    Krasny, Mieczyslaw Witold; Płaczek, Wiesław

    2015-01-01

    The Standard Model of strong and electroweak interactions uses point-like spin 1/2 particles as the building bricks of matter and point-like spin 1 particles as the force carriers. One of the most important questions to be answered by the present and future particle physics experiments is whether the elementary spin 0 particles exist, and if they do, what are their interactions with the spin 1/2 and spin 1 particles. Spin 0 particles have been searched extensively over the last decades. Several initial claims of their discoveries were finally disproved in the final experimental scrutiny process. The recent observation of the excess of events at the LHC in the final states involving a pair of vector bosons, or photons, is commonly interpreted as the discovery of the first elementary scalar particle, the Higgs boson. In this paper we recall examples of claims and subsequent disillusions in precedent searches spin 0 particles. We address the question if the LHC Higgs discovery can already be taken for granted, or, as it turned out important in the past, whether it requires a further experimental scrutiny before the existence of the first ever found elementary scalar particle is proven beyond any doubt. An example of the Double Drell–Yan process for which such a scrutiny is indispensable is discussed in some detail. - Highlights: • We present a short history of searches of spin 0 particles. • We construct a model of the Double Drell–Yan Process (DDYP) at the LHC. • We investigate the contribution of the DDYP to the Higgs searches background

  11. 100 years of elementary particles [Beam Line, vol. 27, issue 1, Spring 1997

    Energy Technology Data Exchange (ETDEWEB)

    Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K.H.; Trimble, Virginia

    1997-04-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.

  12. 100 years of elementary particles [Beam Line, vol. 27, number 1, Spring 1997

    International Nuclear Information System (INIS)

    Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K.H.; Trimble, Virginia

    1997-01-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe

  13. Research in theoretical elementary-particle physics. Progress report, March 1, 1981-February 28, 1983

    International Nuclear Information System (INIS)

    Field, R.D.; Ramond, P.M.; Thorn, C.B.

    1982-01-01

    The first two years of operation of the Theoretical Particle Physics group at the University of Florida are discussed. At present our group consists of three full professors, one assistant professor, one DOE Outstanding Junior Instructor, three post-docs and one graduate student. The group has been very productive during the first two years of its existence resulting in the publication of over 30 papers covering a broad range of topics in theoretical high energy physics. In addition, members of our group have traveled and given important talks at national and international physics conferences. The research we have accomplished in such subjects as quantum field theory, quantum chromodynamics, and grand unified theories has increased mankind's understanding of elementary particle physics. It is the intention of our group to continue to actively participate in the further development of high energy physics

  14. Elementary particles and physics interaction unification

    International Nuclear Information System (INIS)

    Leite-Lopes, J.

    1985-01-01

    Quantum theory and relativity theory are fundamental of relativistic quantum mechanics, quantum field theory, which is the base of elementary particle physics, gauge field theory and basic force unification models. After a short introduction of relativistic equations of the main fields, the free scalar field, the free vector field, the free electromagnetic field and the free spinor field, and of elementary particles and basic interactions, gauge invariance and electromagnetic gauge field are detailed. Then the presentation of internal degrees of freedom, especially isospin, introduces gauge field theory of Yang-Mills. At last weak interactions and strong interactions are presented and lead to grand unification theory in conclusion [fr

  15. Tachyons: may they have a role in elementary particle physics

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues, W. A.

    1985-01-01

    The possible role of space like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of tachyons. Particular attention is paid : 1) to tachyons as the possible carriers of interactions (''internal lines''); e.g., to the links between ''virtual particles'' and superluminal objects; 2) to the possibility of ''vacuum decays'' at the classical level; 3) to a Lorentz-invariant bootstrap model; 4) to the apparent shape of the tachyonic elementary particles (''elementary tachyons'') and its possible connection with the de Broglie wave-particle dualism

  16. Tachyons: may they have a role in elementary particle physics

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues Junior, W.A.

    1985-01-01

    The possible role of space-like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of Tachyons. Particular attention is paid: (i) to tachyons as the possible carriers of interactions ('internal lines'); e.g., to the links between 'virtual particles' and superluminal objects; (ii) to the possibility of 'vacuum decays' at the classical level; (iii) to a Lorentz-invariant bootstrap model; (iv) to the apparent shape of the tachyonic elementary particles ('elementary tachyons') and its possible connection with the de Broglie wave-particle dualism. (Author) [pt

  17. The origin of mass elementary particles and fundamental symmetries

    CERN Document Server

    Iliopoulos, John

    2017-01-01

    The discovery of a new elementary particle at the Large Hadron Collider at CERN in 2012 made headlines in world media. Since we already know of a large number of elementary particles, why did this latest discovery generate so much excitement? This small book reveals that this particle provides the key to understanding one of the most extraordinary phenomena which occurred in the early Universe. It introduces the mechanism that made possible, within tiny fractions of a second after the Big Bang, the generation of massive particles. The Origin of Mass is a guided tour of cosmic evolution, from the Big Bang to the elementary particles we study in our accelerators today. The guiding principle of this book is a concept of symmetry which, in a profound and fascinating way, seems to determine the structure of the Universe.

  18. On Adiabatic Processes at the Elementary Particle Level

    OpenAIRE

    A, Michaud

    2016-01-01

    Analysis of adiabatic processes at the elementary particle level and of the manner in which they correlate with the principle of conservation of energy, the principle of least action and entropy. Analysis of the initial and irreversible adiabatic acceleration sequence of newly created elementary particles and its relation to these principles. Exploration of the consequences if this first initial acceleration sequence is not subject to the principle of conservation.

  19. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P. (Lawrence Berkeley Lab., CA (USA)); Oyanagi, Y. (Tsukuba Univ., Ibaraki (Japan)); Dodder, D.C. (Los Alamos National Lab., NM (USA)); Ryabov, Yu.G.; Slabospitsky, S.R. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov (USSR). Inst. Fiziki Vysokikh Ehnergij); Frosch, R. (Swiss Inst. for Nuclear Research, Villigen (Switzerla

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  20. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P.; Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Slabospitsky, S.R.; Olin, A.; Klumov, I.A.

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized

  1. Research program in elementary particle theory. Progress report, 1984

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Dicus, D.A.

    1984-04-01

    Research progress is reported on the following topics: gauge theory and monopole physics; supersymmetry and proton decay; strong interactions and model of particles; quantum rotator and spectrum generating group models of particles; geometric foundations of particle physics and optics; and application of particle physics to astrophysics. The titles of DOE reports are listed, and research histories of the scientific staff of the Center for Particle Theory are included

  2. Dynamic model of elementary particles and the nature of mass and “electric” charge

    OpenAIRE

    Kreidik, Leonid G.; Institute of Mathematics & Physics, UTA; Shpenkov, George P.; Institute of Mathematics & Physics, UTA

    2009-01-01

    The physical model of elementary particles, based on the wave features of their behavior, is described here. Elementary particles are regarded as elementary dynamical structures of the microworld, interrelated with all levels of the Universe, i.e., inseparable from the structure of the Universe as a whole. Between any elementary particles and the ambient field of matter-space-time, as well as between elementary particles themselves, there exists an interchange of matter-space-time occurring b...

  3. Topics in elementary particle physics

    International Nuclear Information System (INIS)

    Dugan, M.J.

    1985-01-01

    Topics in elementary particle physics are discussed. Models with N = 2 supersymmetry are constructed. The CP violation properties of a class of N = 1 supergravity models are analyzed. The structure of a composite Higgs model is investigated. The implications of a 17 keV neutrino are considered

  4. String model of elementary particles

    International Nuclear Information System (INIS)

    Kikkawa, Keiji

    1975-01-01

    Recent development of the models of elementary particles is described. The principal features of elementary particle physics can be expressed by quark model, mass spectrum, the Regge behavior of scattering amplitude, and duality. Venezians showed in 1968 that the B function can express these features. From the analysis of mass spectrum, the string model was introduced. The quantization of the string is performed with the same procedure as the ordinary quantum mechanics. The motion of the string is determined by the Nambu-Goto action integral, and the Schroedinger equation is obtained. Mass spectrum from the string model was same as that from the duality model such as Veneziano model. The interaction between strings can be introduced, and the Lagrangian can be formulated. The relation between the string model and the duality model has been studied. The string model is the first theory of non-local field, and the further development is attractive. The relation between this model and the quark model is still not clear. (Kato, T.)

  5. The Sun as a system of elementary particles

    International Nuclear Information System (INIS)

    Kleczek, J.

    1986-01-01

    The paper based on known facts of solar physics-is an attempt to interpret the Sun as a selfgravitating system of about 10/sup 57/ nucleons and electrons. These elementary particles are endowed with strong, electromagnetic, weak and gravitational interactions. Origin of the Sun, its evolution, structure and physiology are consequences of the four interactions. Each structural property, every evolutionary process, any activity phenomenon or event on the Sun can be traced backwards to the four fundamental forces of nature, viz. to interactions of elementary particles

  6. Atomic nucleus and elementary particles

    International Nuclear Information System (INIS)

    Zakrzewski, J.

    1976-01-01

    Negatively charged leptons and hadrons can be incorporated into atomic shells forming exotic atoms. Nucleon resonances and Λ hyperons can be considered as constituents of atomic nuclei. Information derived from studies of such exotic systems enriches our knowledge of both the interactions of elementary particles and of the structure of atomic nuclei. (author)

  7. A Simple Mathematical Model for Standard Model of Elementary Particles and Extension Thereof

    Science.gov (United States)

    Sinha, Ashok

    2016-03-01

    An algebraically (and geometrically) simple model representing the masses of the elementary particles in terms of the interaction (strong, weak, electromagnetic) constants is developed, including the Higgs bosons. The predicted Higgs boson mass is identical to that discovered by LHC experimental programs; while possibility of additional Higgs bosons (and their masses) is indicated. The model can be analyzed to explain and resolve many puzzles of particle physics and cosmology including the neutrino masses and mixing; origin of the proton mass and the mass-difference between the proton and the neutron; the big bang and cosmological Inflation; the Hubble expansion; etc. A novel interpretation of the model in terms of quaternion and rotation in the six-dimensional space of the elementary particle interaction-space - or, equivalently, in six-dimensional spacetime - is presented. Interrelations among particle masses are derived theoretically. A new approach for defining the interaction parameters leading to an elegant and symmetrical diagram is delineated. Generalization of the model to include supersymmetry is illustrated without recourse to complex mathematical formulation and free from any ambiguity. This Abstract represents some results of the Author's Independent Theoretical Research in Particle Physics, with possible connection to the Superstring Theory. However, only very elementary mathematics and physics is used in my presentation.

  8. Latest AMS Results on elementary particles in cosmic rays

    Science.gov (United States)

    Kounine, Andrei; AMS Collaboration

    2017-01-01

    AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of all elementary charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the elementary cosmic ray particles are presented. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of the AMS Collaboration.

  9. Theoretical aspects of elementary particle physics

    International Nuclear Information System (INIS)

    Wess, J.

    1985-01-01

    The author presents a populary introduction to the theory of elementary particles on the base of quantum mechanics and special relativity theory. The families of quarks, leptons, and gauge bosons are presented, and the connection between symmetry and conservation laws is discussed with special regards to gauge theories. Thereby the description of particle interactions by Feynman diagrams is considered. Finally a brief introduction to supersymmetry and supergravity is given. (HSI) [de

  10. Elementary particles and basic interactions. Trends and perspectives

    International Nuclear Information System (INIS)

    Baton, J.P.; Cohen-Tannoudji, G.

    1992-06-01

    This lesson given to Physics teachers, takes stock of actual knowledge and trends in Particle Physics: basic interactions and unification, elementary particles (lepton-quarks), fields theories, boson and gluon discovery. It reminds the operating principle of different large accelerators established in the world and associated particle detectors. It includes also a glossary

  11. Making elementary particles visible

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Eyal [ArSciMed (art, science, media), 100, rue du Faubourg Saint Antoine, 75012 Paris (France)

    1994-07-15

    Ever since the days of the ancient Greek atomists, the notion that matter is made up of tiny fundamental elements has dominated the history of scientific theories. Elementary particles (and now strings...) are the latest in this chronological list of fundamental objects. Our notions of what a physical theory should be like, and what precisely ''matter is made up of...'' really means, have evolved with the years, undergoing a profound revolution with quantum mechanics.

  12. On the ontology of the elementary particles. A philosophical analysis of the actual elementary-particle physics; Zur Ontologie der Elementarteilchen. Eine philosophische Analyse der aktuellen Elementarteilchenphysik

    Energy Technology Data Exchange (ETDEWEB)

    Brueckner, Thomas Christian

    2015-07-01

    After a description of the standard model of elementary-particle physics the author describes structuralistic reconstructions. Then the problem of the theoretical terms is discussed. Therafter the reconstruction of the standard-model elementary particles is described. Finally the ontology of leptons, quarks and both free and in atoms bound protons is considered.

  13. Tracking and imaging elementary particles

    International Nuclear Information System (INIS)

    Breuker, H.; Drevermann, H.; Grab, C.; Rademakers, A.A.; Stone, H.

    1991-01-01

    The Large Electron-Positron (LEP) Collider is one of the most powerful particle accelerators ever built. It smashes electrons into their antimatter counterparts, positrons, releasing as much as 100 billion electron volts of energy within each of four enormous detectors. Each burst of energy generates a spray of hundreds of elementary particles that are monitored by hundreds of thousands of sensors. In less than a second, an electronic system must sort through the data from some 50,000 electron-positron encounters, searching for just one or two head-on collisions that might lead to discoveries about the fundamental forces and the elementary particles of nature. When the electronic systems identify such a promising event, a picture of the data must be transmitted to the most ingenious image processor ever created. The device is the human brain. Computers cannot match the brain's capacity to recognize complicated patterns in the data collected by the LEP detectors. The work of understanding subnuclear events begins therefore through the visualization of objects that are trillions of times smaller than the eye can see and that move millions of times faster than the eye can follow. During the past decade, the authors and their colleagues at the European laboratory for particle physics (CERN) have attempted to design the perfect interface between the minds of physicists and the barrage of electronic signals from the LEP detectors. Using sophisticated computers, they translate raw data - 500,000 numbers from each event - into clear, meaningful images. With shapes, curves and colors, they represent the trajectories of particles, their type, their energy and many other properties

  14. Tachyons: may they have a role in elementary particle physics

    International Nuclear Information System (INIS)

    Recami, Erasmo

    1985-01-01

    The possible role of space-like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of Tachyons. Particular attention is paid: (i) to tachyons as the possible carriers of interactions; (ii) to the possibility of ''vacuum decays'' at the classical level; (iii) to a Lorentz-invariant bootstrap model; (iv) to the apparent shape of the tachyonic elementary particles and its possible connection with the de Broglie wave-particle dualism. (author)

  15. Elementary Particles The first hundred years

    CERN Document Server

    Perkins, Donald Hill

    1997-01-01

    To mark the centenary of the discovery of that first elementary particle, the electron, some remarks and recollections from the early days of high energy physics, including the impact of early experiments and ideas on todayÕs research. Much of our progress in this field has been carefully anticipated and planned, but a surprising number of successes were the result of incredibly lucky breaks, where headway was made despite - or even because of - incorrect experimental results, crossed wires or simply asking the wrong question at the right time. We can be sure therefore that the next century - or perhaps even what remains of this one - will have unexpected surprises in store.

  16. Making elementary particles visible

    International Nuclear Information System (INIS)

    Cohen, Eyal

    1994-01-01

    Ever since the days of the ancient Greek atomists, the notion that matter is made up of tiny fundamental elements has dominated the history of scientific theories. Elementary particles (and now strings...) are the latest in this chronological list of fundamental objects. Our notions of what a physical theory should be like, and what precisely ''matter is made up of...'' really means, have evolved with the years, undergoing a profound revolution with quantum mechanics

  17. Mass spectrum of elementary particles in a temperature-dependent model

    International Nuclear Information System (INIS)

    Malik, G.P.; Singh, Santokh; Varma, V.S.

    1994-01-01

    It is shown that the temperature-generalization of a popular model of quark-confinement seems to provide a rather interesting insight into the origin of mass of elementary particles: as the universe cooled, there was an era when particles did not have an identity since their masses were variable; the temperature at which the conversion of these 'nomadic' particles into 'elementary' particles took place seems to have been governed by the value of a dimensionless coupling constant C c . For C c =0.001(0.1) this temperature is of the order of 10 9 K (10 11 K), below which the particle masses do not change. (author). 27 refs., 1 tab

  18. The geometry of elementary particles

    International Nuclear Information System (INIS)

    Lov, T.R.

    1987-01-01

    A new model of elementary particles based on the geometry of Quantum deSitter space QdS = SU (3,2)/(SU(3,1) x U(1)) is introduced and studied. QdS is a complexification of quantization of anti-de Sitter space, AdS = SO(3,2)/SO(3,1), which in recent years had played a pivotal role in supergravity. The nontrival principle fiber bundle has total space SU(3,2), fiber SU(3,1) x U(1) and base QdS. In this setting, the standard recipes for Yang-Mills fields don't work. These require connections and the associated covariant derivatives. Here it is shown that the Lie derivatives, not the covariant derivatives are important in quantization. In this setting, the no-go theorems are not valid. This new quantum mechanics leads to a model of elementary particles as vertical vector fields in the bundle with interaction via the Lie bracket. There are five physical interactions modelled by the bracket interaction. The quantum numbers are identified as the roots of su(3,2) and are preserved under the bracket interaction. The model explains conservation of charge, baryon number, lepton number, parity and the heirarchy problem. Since the bracket is the curvature of a homogeneous space, particles are then the curvature of QdS. This model for particles is consistent with the requirements of General Relativity. Furthermore, since the curvature tensor is built from the quantized wave functions, the curvature tensor is quantized and this is quantum theory of gravity

  19. Introduction to elementary particles

    CERN Document Server

    Griffiths, David J

    2008-01-01

    This is the first quantitative treatment of elementary particle theory that is accessible to undergraduates. Using a lively, informal writing style, the author strikes a balance between quantitative rigor and intuitive understanding. The first chapter provides a detailed historical introduction to the subject. Subsequent chapters offer a consistent and modern presentation, covering the quark model, Feynman diagrams, quantum electrodynamics, and gauge theories. A clear introduction to the Feynman rules, using a simple model, helps readers learn the calculational techniques without the complicat

  20. Some questions on the research in particle physics

    International Nuclear Information System (INIS)

    Kiss, D.

    1978-01-01

    Some new developments in elementary particle physics and interaction processes are reviewed. Recent advances in the field of particle physics including the observation of an anomalous behaviour of interaction cross section at high energy levels, the deep inelastic scattering of electrons from protons, the existence of neutral currents and the relative frequency of events with high transverse pulses are pointed out. A special development is the discovery and identification of a number of new particles and processes. New advances in understanding of the structure of subelementary particles, and the combination of electromagnetic and weak interactions are described. After a discussion of the technical and instrumental requirements and possibilities in the field of elementary particle research, the role and achievements of Hungarian scientists in high-energy facilities of the Soviet Union are emphasized. (P.J.)

  1. REDUCE in elementary particle physics. Quantum electrodynamics

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1990-01-01

    This preprint is the second part of the problem book on using REDUCE for calculations of cross sections and decay probabilities in elementary particle physics. It contains examples of calculations in quantum electrodynamics. 5 refs

  2. Theoretical Studies in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Collins, John C.; Roiban, Radu S

    2013-04-01

    This final report summarizes work at Penn State University from June 1, 1990 to April 30, 2012. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.

  3. REDUCE system in elementary particle physics

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1990-01-01

    This preprint is the first part of the problem book on using REDUCE for calculations of cross sections and decay probabilities in elementary particle physics. It contains the review of the necessary formulae and examples of using REDUCE for calculations with vectors and Dirac matrices. 5 refs.; 11 figs

  4. Electron, Muon, and Tau Heavy Lepton--Are These the Truly Elementary Particles?

    Science.gov (United States)

    Perl, Martin L.

    1980-01-01

    Discussed is the present concept of the ultimate nature of matter--the elementary particle. An explanation is given for why the lepton family of particles--the electron, muon, and tau--may be truly elementary. The tau lepton is described in more detail. (Author/DS)

  5. Are Black Holes Elementary Particles?

    OpenAIRE

    Ha, Yuan K.

    2009-01-01

    Quantum black holes are the smallest and heaviest conceivable elementary particles. They have a microscopic size but a macroscopic mass. Several fundamental types have been constructed with some remarkable properties. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox of ultra-high energy cosmic rays detected in Earth's atmosphere. They may also play a role as dark matter in cosmology.

  6. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1991-01-01

    The current research position is summarized, and what could be done in the future to clarify issues which were opened up by the research is indicated. Following on the discussion of the viability of catalyzed fusion, there is presented along with the key experimental results, a short account of the physics surrounding the subject. This is followed by a discussion of key research topics addressed. In consequence of the progress made, it appears that the feasibility of a small-scale fusion based on catalyzed reactions rests on either the remote chance that a yet undiscovered ultraheavy negatively charged elementary particle exists in Nature, or on the possible technical realization of a system based on muon-catalyzed fusion (MuCF) in high-density degenerate hydrogen plasma (density 1000 LHD, temperature O(100 eV)). The lattter is considered to have practical promise

  7. Research program in elementary-particle theory, 1981. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1981-01-01

    Progress is reported for research in the physics of ultra high energies and cosmology, the phenomenology of particle physics, composite models of particles and quantum field theory, quantum mechanics, geometric formulations, fiber bundles, and other algebraic models

  8. The periodic table of elementary particles

    International Nuclear Information System (INIS)

    Bhattacharjee, B.J.

    1994-01-01

    It is shown that a periodic classification of elementary particles (eps) may be done with the basic properties of eps: viz. mass, spin and parity. Further application of spacing rule and GMO mass formulae show repetitions at very regular intervals. It is found that properties of eps are periodic function of rest mass. (author). 17 refs., 6 tabs

  9. The periodic table of elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, B J [St. Anthony' s College, Shillong (India). Dept. of Physics

    1994-01-01

    It is shown that a periodic classification of elementary particles (eps) may be done with the basic properties of eps: viz. mass, spin and parity. Further application of spacing rule and GMO mass formulae show repetitions at very regular intervals. It is found that properties of eps are periodic function of rest mass. (author). 17 refs., 6 tabs.

  10. Elementary particle physics and cosmology: current status and prospects

    International Nuclear Information System (INIS)

    Rubakov, Valerii A

    1999-01-01

    The current status of elementary particle physics can be briefly summarized as follows: the Standard Model of elementary particles is perfectly (at the level of radiation effects!) adequate in describing all the available experimental data except for the recent indications of neutrino oscillations. At the same time, much (and possibly most) of today's cosmology is not encompassed by the Standard Model - a fact which, together with intrinsic theoretical difficulties and the neutrino oscillation challenge, strongly indicates that the Standard Model is incomplete. It is expected that in the current decade a 'new physics', i.e. particles and interactions beyond the Standard Model, will emerge. Major advances in cosmology, both in terms of qualitatively improved observations and theoretical analysis of the structure and evolution of the Universe, are expected as well. (special issue)

  11. UCLA Particle Physics Research Group annual progress report

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.

    1981-08-01

    The objectives, basic research programs, recent results and continuing activities of the UCLA Particle Physics Research Group are presented. The objectives of the research are to discover, to formulate, and to elucidate the physics laws that govern the elementary constituents of matter and to determine basic properties of particles. A synopsis of research carried out last year is given. The main body of this report is the account of the techniques used in our investigations, the results obtained, and the plans for continuing and new research

  12. Research in elementary particle physics: Technical progress report, June 1, 1986-May 31, 1987

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Abbott, L.F.; Bensinger, J.R.; Blocker, C.A.

    1987-01-01

    Work is reported in the areas of: design, construction, and testing of components of the CDF, including shower counters, electronics, and electron identification algorithms; contributions to the design and construction of the Brookhaven MultiParticle Spectrometer; search for charm and K*'s and baryonium; measurement of differential cross section and polarization in the Lambda-antiLambda channel; a study of Xi states which measured the Xi asymmetry parameter; and dibaryon searches using the Brookhaven Hypernuclear Spectrometer. Theoretical efforts are reported in the areas of string theory, the Skyrme model applied to elementary particle phenomenology, quantum field theory, cosmology, galaxy formation, supernova 187A, field theory in curved space-times, and spin-glasses

  13. Theoretical and Experimental Studies of Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Harold G [Indiana University; Kostelecky, V Alan [Indiana University; Musser, James A [Indiana University

    2013-07-29

    The elementary particle physics research program at Indiana University spans a broad range of the most interesting topics in this fundamental field, including important contributions to each of the frontiers identified in the recent report of HEPAP's Particle Physics Prioritization Panel: the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. Experimentally, we contribute to knowledge at the Energy Frontier through our work on the D0 and ATLAS collaborations. We work at the Intensity Frontier on the MINOS and NOvA experiments and participate in R&D for LBNE. We are also very active on the theoretical side of each of these areas with internationally recognized efforts in phenomenology both in and beyond the Standard Model and in lattice QCD. Finally, although not part of this grant, members of the Indiana University particle physics group have strong involvement in several astrophysics projects at the Cosmic Frontier. Our research efforts are divided into three task areas. The Task A group works on D0 and ATLAS; Task B is our theory group; and Task C contains our MINOS, NOvA, and LBNE (LArTPC) research. Each task includes contributions from faculty, senior scientists, postdocs, graduate and undergraduate students, engineers, technicians, and administrative personnel. This work was supported by DOE Grant DE-FG02-91ER40661. In the following, we describe progress made in the research of each task during the final period of the grant, from November 1, 2009 to April 30, 2013.

  14. Supersymmetry in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Michael E.; /SLAC

    2008-02-05

    These lectures give a general introduction to supersymmetry, emphasizing its application to models of elementary particle physics at the 100 GeV energy scale. I discuss the following topics: the construction of supersymmetric Lagrangians with scalars, fermions, and gauge bosons, the structure and mass spectrum of the Minimal Supersymmetric Standard Model (MSSM), the measurement of the parameters of the MSSM at high-energy colliders, and the solutions that the MSSM gives to the problems of electroweak symmetry breaking and dark matter.

  15. Current status of elementary particle physics

    International Nuclear Information System (INIS)

    Okun', L.B.

    1998-01-01

    A brief review is given of the state-of-the art in elementary particle physics based on the talk of the same title given on January 22, 1998, at the seminar marking the 90th birth anniversary of L.D. Landau. (The seminar was hosted by the P.L. Kapitza Institute for Physical Problems in cooperation with the L.D. Landau Institute for Theoretical Physics)

  16. On the number of elementary particles in a resolution dependent fractal spacetime

    International Nuclear Information System (INIS)

    He Jihuan

    2007-01-01

    We reconsider the fundamental question regarding the number of elementary particles in a minimally extended standard model. The main conclusion is that since the dimension of E-infinity spacetime is resolution dependent, then the number of elementary particles is also resolution dependent. For D = 10 of superstrings, D = 11 of M theory and D = 12 of F theory one finds N(SM) equal to (6)(10) = 60 (6)(11) = 66 and (6)(12) = 72 particles, respectively. This is in perfect agreement with prediction made previously by Mohamed Saladin El-Naschie and Marek-Crnjac

  17. Electric dipole moments of elementary particles, nuclei, atoms, and molecules

    International Nuclear Information System (INIS)

    Commins, Eugene D.

    2007-01-01

    The significance of particle and nuclear electric dipole moments is explained in the broader context of elementary particle physics and the charge-parity (CP) violation problem. The present status and future prospects of various experimental searches for electric dipole moments are surveyed. (author)

  18. Supersymmetry violation in elementary particle-monopole scattering

    International Nuclear Information System (INIS)

    Casher, A.; Shamir, Y.

    1991-10-01

    We show that the scattering of elementary particles on solitons (monopoles, fluxons, etc.) in supersymmetric gauge theories violates the relations dictated by supersymmetry at tree level. The violation arises because of the discrepancy between the spectra of bosonic and fermionic fluctuations and because of the fermionic nature of the supersymmetry generators. (author). 14 refs

  19. Four different animated sub-particles as the origins of the life and creator of different angular momentums of elementary particles

    Science.gov (United States)

    Gholibeigian, Hassan; Gholibeigian, Zeinab

    2015-04-01

    Understanding the internal structure of the proton is crucial challenge for QCD, and one important aspect of this is to understand how the spin of the nucleon is build-up from the angular momentum of its quarks and gluons. In this way, what's the origin of differences between angular momentums of fundamental particles? It may be from their substructures. It seems there are four sub-particles of mater, plant, animal and human in substructure of each fundamental particle (string) as the origins of life and cause of differences between spins of those elementary particles. Material's sub-particle always is on and active. When the environmental conditions became ready for creation of each field of the plant, animal and human, sub-particles of their elementary particles became on and active and then, those elementary particles participated in processes of creation in their own field. God, as the main source of information, has been communicated with their sub-particles and transfers a package (bit) of information and laws (plus standard ethics for human sub-particles) to each of them for process and selection (mutation) of the next step of motion and interaction of their fundamental particles with each other in each Plank's time. This is causality for particles' motion in quantum area.

  20. Nuclei, hadrons, and elementary particles

    International Nuclear Information System (INIS)

    Bopp, F.W.

    1989-01-01

    This book is a short introduction to the physics of the nuclei, hadrons, and elementary particles for students of physics. Important facts and model imaginations on the structure, the decay, and the scattering of nuclei, the 'zoology' of the hadrons and basic facts of hadronic scattering processes, a short introduction to quantum electrodynamics and quantum chromodynamics and the most important processes of lepton and parton physics, as well as the current-current approach of weak interactions and the Glashow-Weinberg-Salam theory are presented. (orig.) With 153 figs., 10 tabs [de

  1. The Search for Stable, Massive, Elementary Particles

    International Nuclear Information System (INIS)

    Kim, Peter C.

    2001-01-01

    In this paper we review the experimental and observational searches for stable, massive, elementary particles other than the electron and proton. The particles may be neutral, may have unit charge or may have fractional charge. They may interact through the strong, electromagnetic, weak or gravitational forces or through some unknown force. The purpose of this review is to provide a guide for future searches--what is known, what is not known, and what appear to be the most fruitful areas for new searches. A variety of experimental and observational methods such as accelerator experiments, cosmic ray studies, searches for exotic particles in bulk matter and searches using astrophysical observations is included in this review

  2. Experimental elementary particle physics at the University of Pittsburgh: Progress report, April 1, 1987-March 31, 1988

    International Nuclear Information System (INIS)

    Cleland, W.E.; Coon, D.D.; Engels, E. Jr.; Shepard, P.F.; Thompson, J.A.

    1987-12-01

    This paper discusses research activity at the University of Pittsburgh in experimental elementary particle physics. The three main tasks included are: Study of lepton production at the SPS and study of large P/sub T/ direct photon production at the ISR; Direct photon production at the Fermi Tevatron; and Search for fractional charge particles in semiconductors

  3. On the Origin of Elementary Particle Masses

    Directory of Open Access Journals (Sweden)

    Hansson J.

    2014-04-01

    Full Text Available The oldest enigma in fundamental particle physics is: Where do the observed masses of elementary particles come from? Inspired by observation of the empirical particle mass spectrum we propose that the masses of elementary parti cles arise solely due to the self-interaction of the fields associated with a particle. We thus assume that the mass is proportional to the strength of the interaction of th e field with itself. A simple application of this idea to the fermions is seen to yield a mas s for the neutrino in line with constraints from direct experimental upper limits and correct order of magnitude predictions of mass separations between neutrinos, charge d leptons and quarks. The neutrino interacts only through the weak force, hence becom es light. The electron in- teracts also via electromagnetism and accordingly becomes heavier. The quarks also have strong interactions and become heavy. The photon is the only fundamental parti- cle to remain massless, as it is chargeless. Gluons gain mass comparable to quarks, or slightly larger due to a somewhat larger color charge. Inclu ding particles outside the standard model proper, gravitons are not exactly massless, but very light due to their very weak self-interaction. Some immediate and physically interesting consequences arise: i Gluons have an e ff ective range ∼ 1 fm, physically explaining why QCD has finite reach; ii Gravity has an effective range ∼ 100 Mpc coinciding with the largest known structures, the cosmic voids; iii Gravitational waves undergo dispersion even in vacuum, and have all five polarizations (not just the two of m = 0, which might explain why they have not yet been detected.

  4. Quantum Optics, Diffraction Theory, and Elementary Particle Physics

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Physical optics has expanded greatly in recent years. Though it remains part of the ancestry of elementary particle physics, there are once again lessons to be learned from it. I shall discuss several of these, including some that have emerged at CERN and Brookhaven.

  5. A Search for Free Fractional Electric Charge Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    Halyo, Valerie

    2000-12-04

    A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied--about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup -22} particles per nucleon with 95% confidence.

  6. A Search for Free Fractional Electric Charge Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    Halyo, Valerie

    2000-12-04

    A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied| about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup -22} particles per nucleon with 95% confidence.

  7. Elementary particles and the laws of physics: The 1986 Dirac Memorial Lectures

    International Nuclear Information System (INIS)

    Feynman, R.P.; Weinberg, S.

    1987-01-01

    Elementary Particles and the Laws of Physics contains transcriptions of the two lectures given in Cambridge, England, in 1986 by Nobel Laureates Richard P. Feynman and Steven Weinberg to commemorate the famous British physicist Paul Dirac. The talks focus on the fundamental problems of physics and the present state of our knowledge. Professor Feynman discusses how the laws of physics require the existence of antiparticles; Professor Weinberg examines the development of the fundamental laws of elementary particle intersection

  8. Physics through the 1990s: Elementary-particle physics

    Science.gov (United States)

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.

  9. Physics through the 1990s: Elementary-particle physics

    Science.gov (United States)

    1986-01-01

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.

  10. Current experiments in elementary-particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1983-03-01

    Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated

  11. A re-examination of symmetry/Group relationships as applied ot the elementary particles

    International Nuclear Information System (INIS)

    Byrd, K.; Cole R.

    1993-01-01

    The purpose of this investigation is to apply Group Theory to the elementary particles. Group Theory is a mathematical discipline used to predict the existence of elementary particles by physicists. Perhaps, the most famous application of Group Theory to the elementary particles was by Murray Gell-Mann in 1964. Gell-Mann used the theory to predict the existence and characteristics of the then undiscovered Omega Minus Particle. Group Theory relies heavily on symmetry relationships and expresses them in terms of geometry. Existence and the characteristics of a logical intuitable, but unobserved member of a group are given by extrapolation of the geometric relationships and characteristics of the known members of the group. In this study, the Delta, Sigma, Chi and Omega baryons are used to illustrate how physicists apply geometry and symmetrical relationships to predict new particles. The author's hypothesis is that by using the D3 crystal symmetry group and Gell-Mann's baryons, three new particles will be predicted. The results of my new symmetry predicts the Omega 2, Omega 3, and Chi 3. However, the Chi 3 does not have characteristics consistent with those of the other known group members

  12. Instrumentation in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Fabjan, C W [European Organization for Nuclear Research, Geneva (Switzerland); Pilcher, J E [Chicago Univ., IL (United States); eds.

    1988-01-01

    The first International Committee for Future Accelerators Instrumentation School was held at the International Centre for Theoretical Physics, Trieste, Italy from 8 to 19 June 1987. The School was attended by 74 students of whom 45 were from developing countries, 10 lecturers and 9 laboratory instructors. The next generation of elementary particle physics experiments would depend vitally on new ideas in instrumentation. This is a field where creativity and imagination play a major role and large budgets are not a prerequisite. One of the unique features was the presentation of four laboratory experiments using modern techniques and instrumentation. Refs, figs and tabs.

  13. Instrumentation in elementary particle physics

    International Nuclear Information System (INIS)

    Fabjan, C.W.; Pilcher, J.E.

    1988-01-01

    The first International Committee for Future Accelerators Instrumentation School was held at the International Centre for Theoretical Physics, Trieste, Italy from 8 to 19 June 1987. The School was attended by 74 students of whom 45 were from developing countries, 10 lecturers and 9 laboratory instructors. The next generation of elementary particle physics experiments would depend vitally on new ideas in instrumentation. This is a field where creativity and imagination play a major role and large budgets are not a prerequisite. One of the unique features was the presentation of four laboratory experiments using modern techniques and instrumentation. Refs, figs and tabs

  14. Facts and mysteries in elementary particle physics

    CERN Document Server

    Veltman, Martinus J G

    2018-01-01

    This book provides a comprehensive overview of modern particle physics accessible to anyone with a true passion for wanting to know how the universe works. We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson. Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the spectacular discovery of the Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons an...

  15. Uses of solid state analogies in elementary particle theory

    International Nuclear Information System (INIS)

    Anderson, P.W.

    1976-01-01

    The solid state background of some of the modern ideas of field theory is reviewed, and additional examples of model situations in solid state or many-body theory which may have relevance to fundamental theories of elementary particles are adduced

  16. 1975 annual report of the Elementary Particle Physics Department

    International Nuclear Information System (INIS)

    1976-03-01

    The annual report gives a short summary of experiments in progress and of approved proposals of experiments to be performed at CERN by the Elementary Particle Physics Department of Saclay, and also publication lists and informations about the Department activities during 1975 [fr

  17. Elementary particles as micro-universes or micro-black holes

    International Nuclear Information System (INIS)

    Rodrigues Junior, W.A.

    1985-01-01

    The idea that elementary particles can be presented as micro-universes and/or micro-black holes (Lorentzian manifolds) is presented and the fundamental mathematical problem associated with the simplest world manifold that 'contains' both the macrocosm and the microcosmes is discussed. (Author) [pt

  18. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Galic, H.; Dodder, D.C.; Klyukhin, V.I.; Ryabov, Yu.G.; Illarionova, N.S.; Lehar, F.; Oyanagi, Y.; Frosch, R.

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  19. Vol. 1: Physics of Elementary Particles and Quantum Field Theory. General Problems

    International Nuclear Information System (INIS)

    Sitenko, A.

    1993-01-01

    Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceedings are published in 6 volumes. The papers presented in this volume refer to elementary particle physics and quantum field theory. The main attention is paid to the following problems: - development of science in Ukraine and its role in the state structures; - modern state of scientific research in Ukraine; - education and training of specialists; - history of Ukrainian physics and contribution of Ukrainian scientists in the world science; - problems of the Ukrainian scientific terminology

  20. Gauge evolution of elementary particles physics during the last fifty years

    International Nuclear Information System (INIS)

    Khodjaev, L.Sh

    2002-01-01

    Gauge evolution of the elementary particle physics has been remarked by outstanding and exiting discoveries during the last fifty years of X X century. We review a new tendency in the development of the modern elementary particle physics. The phenomenological basis for the formulation of Standard Model has been reviewed. The Standard Model based on the fundamental postulates has been formulated. The concept of the fundamental symmetries has been introduced to look for not fundamental particles but fundamental symmetries. The Standard Model is renormalizable and therefore potentially consistent in all energy scales. The Standard Model in principle can describe the properties of the Universe beginning at 10 -43 sec. after Big Bang. In searching of more general theory obvious program is to searching the first of all global symmetries and then learn consequences connected with the localization of these global symmetries

  1. Supersymmetry of elementary particles

    International Nuclear Information System (INIS)

    Sardanashvili, G.A.; Zakharov, O.A.

    1986-01-01

    Some difficulties, connected with correct application of supersymmetry mathematical tools in the field and elementary particle theory are pointed out. The role of Grassman algebra in the usual field theory and the role of Lee superalgebra in supertransformations mixing bosons and fermions are shown. Grassman algebra in the theory of supersymmetries plays a role of numerical field. A supersymmetrical model, when indexes {i} of Grassman algebra corresponding to ''color'', and indexes {α} of Lee superalgebra representations - to ''flavor'', is considered. It is marked that the problem of interpretation of Grassman algebra indexes is a key one for the theory of supersymmetries. In particular, it gives no possibility to come from the theory of supersymmetries to the usual field theory, whose indexes of Grassman algebra possess obvious physical meaning

  2. Elementary particles in curved spaces

    International Nuclear Information System (INIS)

    Lazanu, I.

    2004-01-01

    The theories in particle physics are developed currently, in Minkowski space-time starting from the Poincare group. A physical theory in flat space can be seen as the limit of a more general physical theory in a curved space. At the present time, a theory of particles in curved space does not exist, and thus the only possibility is to extend the existent theories in these spaces. A formidable obstacle to the extension of physical models is the absence of groups of motion in more general Riemann spaces. A space of constant curvature has a group of motion that, although differs from that of a flat space, has the same number of parameters and could permit some generalisations. In this contribution we try to investigate some physical implications of the presumable existence of elementary particles in curved space. In de Sitter space (dS) the invariant rest mass is a combination of the Poincare rest mass and the generalised angular momentum of a particle and it permits to establish a correlation with the vacuum energy and with the cosmological constant. The consequences are significant because in an experiment the local structure of space-time departs from the Minkowski space and becomes a dS or AdS space-time. Discrete symmetry characteristics of the dS/AdS group suggest some arguments for the possible existence of the 'mirror matter'. (author)

  3. Second class current and structure of elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Senju, H [Nagoya Municipal Women' s Junior Coll. (Japan); Matsushima, T

    1976-10-01

    We examine what is required for the structure of elementary particles by the second class nucleonic currents which was recently discovered by Sugimoto et al. The experiment strongly suggests that the quark has a radius of a few tenth of fermi and the partons are constituents of quarks. We discuss briefly a possible internal structure of the quark.

  4. Elementary particle physics in a nutshell

    CERN Document Server

    Tully, Christopher C

    2011-01-01

    The new experiments underway at the Large Hadron Collider at CERN in Switzerland may significantly change our understanding of elementary particle physics and, indeed, the universe. This textbook provides a cutting-edge introduction to the field, preparing first-year graduate students and advanced undergraduates to understand and work in LHC physics at the dawn of what promises to be an era of experimental and theoretical breakthroughs. Christopher Tully, an active participant in the work at the LHC, explains some of the most recent experiments in the field. But this book, which emerged fr

  5. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  6. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized

  7. Research in elementary particle physics

    International Nuclear Information System (INIS)

    1992-01-01

    Experimental and theoretical work on high energy physics is reviewed. Included are preparations to study high-energy electron-proton interactions at HERA, light-cone QCD, decays of charm and beauty particles, neutrino oscillation, electron-positron interactions at CLEO II, detector development, and astrophysics and cosmology

  8. UCLA Particle Physics Research Group annual progress report

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.

    1983-11-01

    The objectives, basic research programs, recent results, and continuing activities of the UCLA Particle Physics Research Group are presented. The objectives of the research are to discover, to formulate, and to elucidate the physics laws that govern the elementary constituents of matter and to determine basic properties of particles. The research carried out by the Group last year may be divided into three separate programs: (1) baryon spectroscopy, (2) investigations of charge symmetry and isospin invariance, and (3) tests of time reversal invariance. The main body of this report is the account of the techniques used in our investigations, the results obtained, and the plans for continuing and new research. An update of the group bibliography is given at the end

  9. Research program in elementary particle theory, 1980. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1980-01-01

    Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification

  10. Research program in elementary particle theory, 1980. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E. C.G.; Ne' eman, Y.

    1980-01-01

    Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification. (GHT)

  11. Inner life of elementary particles. Pt. V. Detail model

    International Nuclear Information System (INIS)

    Geitner, Uwe W.

    2011-01-01

    The author tries to develop a model for the cosmological beginning of the universe starting from the existing world. The booklet (part IV) includes the following chapters: introduction; origin of vibrations; origin of the big-bang; origin of elementary particles; charges and fields, unified conception of forces; conclusions.

  12. Review of the Elementary Particles Physics in the External Electromagnetic Fields Studies at KEK

    Science.gov (United States)

    Konstantinova, O. Tanaka

    2017-03-01

    High Energy Accelerator Research Organization (KEK [1]) is a world class accelerator-based research laboratory. The field of its scientific interests spreads widely from the study of fundamental properties of matter, particle physics, nuclear physics to materials science, life science, technical researches, and industrial applications. Research outcomes from the laboratory achieved making use of high-energy particle beams and synchrotron radiation. Two synchrotron facilities of KEK, the Photon Factory (PF) ring and the Photon Factory Advanced Ring (PF-AR) are the second biggest synchrotron light source in Japan. A very wide range of the radiated light, from visible light to X-ray, is provided for a variety of materials science, biology, and life science [2]. KEK strives to work closely with national and international research institutions, promoting collaborative research activities. Advanced research and facilities provision are key factors to be at the frontier of the accelerator science. In this review I am going to discuss KEK overall accelerator-based science, and to consider light sources research and development. The state of arts of the current projects with respect to the elementary particles physics in the external electromagnetic fields is also stressed here.

  13. What are the masses of elementary particles?

    International Nuclear Information System (INIS)

    Good, I.J.

    1988-01-01

    The paper concerns the numerology on the masses of elementary particles, and examines the formula m(n)-m(p)/m(p) 136α/6x120 (where m(n) and m(p) are the rest masses of the neutron and proton respectively and α is the fine structure constant). The author reports that this simple relationship between fundamental constants is correct to one part in at least 51,000, and is comfortably consistent with experimental results. (U.K.)

  14. Quantum field theory and the internal states of elementary particles

    CSIR Research Space (South Africa)

    Greben, JM

    2011-01-01

    Full Text Available A new application of quantum field theory is developed that gives a description of the internal dynamics of dressed elementary particles and predicts their masses. The fermionic and bosonic quantum fields are treated as interdependent fields...

  15. Proceedings of the XXVI international symposium Ahrenshoop on the theory of elementary particles

    International Nuclear Information System (INIS)

    Doerfel, B.; Wieczorek, E.

    1993-02-01

    These proceedings contain most of the invited talks and short communications presented at the XXVI th International Symposium Ahrenshoop on the Theory of Elementary Particles which took place from September 9 th to 13 th , 1992 at Wendisch-Rietz near Berlin. The Symposium was organized jointly by the Institute for Elementary Particle Physics of the Humboldt University Berlin, the Institute for Theoretical Physics of the University Hannover, the Sektion Physik of the University Munich, and DESY - Institute for High Energy Physics Zeuthen. See hints under the relevant topics. (orig.)

  16. Elementary particles, dark matter candidate and new extended standard model

    Science.gov (United States)

    Hwang, Jaekwang

    2017-01-01

    Elementary particle decays and reactions are discussed in terms of the three-dimensional quantized space model beyond the standard model. Three generations of the leptons and quarks correspond to the lepton charges. Three heavy leptons and three heavy quarks are introduced. And the bastons (new particles) are proposed as the possible candidate of the dark matters. Dark matter force, weak force and strong force are explained consistently. Possible rest masses of the new particles are, tentatively, proposed for the experimental searches. For more details, see the conference paper at https://www.researchgate.net/publication/308723916.

  17. Elementary particles and emergent phase space

    CERN Document Server

    Zenczykowski, Piotr

    2014-01-01

    The Standard Model of elementary particles, although very successful, contains various elements that are put in by hand. Understanding their origin requires going beyond the model and searching for ""new physics"". The present book elaborates on one particular proposal concerning such physics. While the original conception is 50 years old, it has not lost its appeal over time. Its basic idea is that space - an arena of events treated in the Standard Model as a classical background - is a concept which emerges from a strictly discrete quantum layer in the limit of large quantum numbers. This bo

  18. Current experiments in elementary particle physics. Revision

    International Nuclear Information System (INIS)

    Galic, H.; Armstrong, F.E.; von Przewoski, B.

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  19. Current experiments in elementary particle physics. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Armstrong, F.E. [Lawrence Berkeley Lab., CA (United States); von Przewoski, B. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States)] [and others

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  20. Elementary particle theory in Japan, 1930-1960

    International Nuclear Information System (INIS)

    Brown, L.M.; Kawabe, Rokuo; Konuma, Michiji; Maki, Ziro

    1991-01-01

    The present volume consists of the combined proceedings of two Japan-USA Collaborative Workshops, organized to explore historical developments of particle theory in Japan during the period 1930-1960, i.e., the three decades that include the birth and development of Meson Theory. The first phase of workshops was held during September 1978-July 1979 and the second during July 1984-September 1985. The original versions of these proceedings were published informally; namely, the former was distributed as a series of preprints of the Yukawa Institute (then called RIFP) entitled 'Particle Physics in Japan, 1930-50 Vol. I, II' (RIFP-407 and -408, September 1980); the latter was issued in the form of camera-ready printing from Yukawa Hall Archival Library (YHAL) in May 1988, under the title 'Elementary Particle Theory in Japan, 1935-1960'. Only a small number of copies were printed for both sets of proceedings due to financial limitations of the project. (author)

  1. Research program in elementary particle theory. Progress report, 1975--1976

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1976-01-01

    Research on particle theory is summarized including field theory models, phenomenological applications of field theory, strong interactions, the algebraic approach to weak and electromagnetic interactions, and superdense matter. A list of reports is also included

  2. Point-counterpoint in physics: theoretical prediction and experimental discovery of elementary particles

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1984-01-01

    A report is given on the theoretical prediction and the experimental discovery of elementary particles from the electron to the weak intermediate vector bosons. The work of Lattes, Occhialini and Powell which put in evidence the pions predicted by Yukawa was the starting point of the modern experimental particle physics

  3. Detailed examination of 'standard elementary particle theories' based on measurement with Tristan

    International Nuclear Information System (INIS)

    Kamae, Tsuneyoshi

    1989-01-01

    The report discusses possible approaches to detailed analysis of 'standard elementary particle theories' on the basis of measurements made with Tristan. The first section of the report addresses major elementary particles involved in the 'standard theories'. The nature of the gauge particles, leptons, quarks and Higgs particle are briefly outlined. The Higgs particle and top quark have not been discovered, though the Higgs particle is essential in the Weiberg-Salam theory. Another important issue in this field is the cause of the collapse of the CP symmetry. The second section deals with problems which arise in universalizing the concept of the 'standard theories'. What are required to solve these problems include the discovery of supersymmetric particles, discovery of conflicts in the 'standard theories', and accurate determination of fundamental constants used in the 'standard theories' by various different methods. The third and fourth sections address the Weinberg-Salam theory and quantum chromodynamics (QCD). There are four essential parameters for the 'standard theories', three of which are associated with the W-S theory. The mass of the W and Z bosons measured in proton-antiproton collision experiments is compared with that determined by applying the W-S theory to electron-positron experiments. For QCD, it is essential to determine the lambda constant. (N.K.)

  4. Some current experimental challenges in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Cline, D.B. (California Univ., Los Angeles (USA). Dept. of Physics)

    1990-06-01

    We describe three experimental challenges for experimental elementary particle physics: (1) the ongoing search for flavor changing weak neutral currents, including future prospect for a anti BB factory, (2) the status of the tests of the standard model in the W, Z and t quark sectors and (3) some current search for physics beyond the standard model, to include the possibility of searching for CPT violation using a {Phi} factory. (orig.).

  5. Current experiments in elementary particle physics. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Wohl, C.G.; Armstrong, B. [Lawrence Berkeley Lab., CA (United States); Dodder, D.C. [Los Alamos National Lab., NM (United States); Klyukhin, V.I.; Ryabov, Yu.G. [Inst. for High Energy Physics, Serpukhov (Russian Federation); Illarionova, N.S. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation); Lehar, F. [CEN Saclay, Gif-sur-Yvette (France); Oyanagi, Y. [Univ. of Tokyo (Japan). Faculty of Sciences; Olin, A. [TRIUMF, Vancouver, BC (Canada); Frosch, R. [Paul Scherrer Inst., Villigen (Switzerland)

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  6. Point-counterpoint in physics: theoretical prediction and experimental discovery of elementary particles

    International Nuclear Information System (INIS)

    Lopes, J.L.

    1984-01-01

    A report is given on the theoretical prediction and the experimental discovery of elementary particles from the electron to the weak intermediate vector bosons. The work of Lattes, Occhialini and Powell which put in evidence the pions predicted by Yukawa was the starting point of the modern experimental particle physics. (Author) [pt

  7. Elementary Particle Spectroscopy in Regular Solid Rewrite

    International Nuclear Information System (INIS)

    Trell, Erik

    2008-01-01

    The Nilpotent Universal Computer Rewrite System (NUCRS) has operationalized the radical ontological dilemma of Nothing at All versus Anything at All down to the ground recursive syntax and principal mathematical realisation of this categorical dichotomy as such and so governing all its sui generis modalities, leading to fulfilment of their individual terms and compass when the respective choice sequence operations are brought to closure. Focussing on the general grammar, NUCRS by pure logic and its algebraic notations hence bootstraps Quantum Mechanics, aware that it ''is the likely keystone of a fundamental computational foundation'' also for e.g. physics, molecular biology and neuroscience. The present work deals with classical geometry where morphology is the modality, and ventures that the ancient regular solids are its specific rewrite system, in effect extensively anticipating the detailed elementary particle spectroscopy, and further on to essential structures at large both over the inorganic and organic realms. The geodetic antipode to Nothing is extension, with natural eigenvector the endless straight line which when deployed according to the NUCRS as well as Plotelemeian topographic prescriptions forms a real three-dimensional eigenspace with cubical eigenelements where observed quark-skewed quantum-chromodynamical particle events self-generate as an Aristotelean phase transition between the straight and round extremes of absolute endlessness under the symmetry- and gauge-preserving, canonical coset decomposition SO(3)xO(5) of Lie algebra SU(3). The cubical eigen-space and eigen-elements are the parental state and frame, and the other solids are a range of transition matrix elements and portions adapting to the spherical root vector symmetries and so reproducibly reproducing the elementary particle spectroscopy, including a modular, truncated octahedron nano-composition of the Electron which piecemeal enter into molecular structures or compressed to each

  8. New developments in elementary-particle physics

    CERN Document Server

    Zichichi, A

    1979-01-01

    The modern attempt at unification of all the forces in nature is based on supersymmetry. To achieve the unification of strong and electroweak forces the distinction between leptons and hadrons (quarks) must go. The fundamental symmetry of nature is the SU(3)/sub c/ gauge symmetry, where c stands for colour. There are three colours which are the basic changes of nature and act between quarks and gluons. Elementary particles are now thought to be made of quarks and gluons. The fundamental forces of nature now appear to be the superstrong (which generates strong and semi-strong forces), electroweak (generating electromagnetic, weak and superweak) and gravitational forces. (89 refs).

  9. Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13

    Energy Technology Data Exchange (ETDEWEB)

    Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.; DeWolfe, Oliver; Ford, William T.; Hasenfratz, Anna; Mahanthappa, K. T.; Marino, Alysia D.; Nauenberg, Uriel; Smith, James G.; Stenson, Kevin; Wagner, Stephen R.; Zimmerman, Eric D.

    2013-06-27

    The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions, lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.

  10. Theoretical studies in elementary particle physics: [Progress report for the period June 1986 to February 1987

    International Nuclear Information System (INIS)

    Collins, J.C.

    1987-01-01

    Theoretical research on elementary particles is reported, with progress discussed in these areas: heavy quark production, the cosmic rays observed from Cygnus X-3, hadron-hadron collisions at small values of x, Monte Carlo event generators for hadron-hadron collisions, review of perturbative QCD theorems, direct computation of helicity amplitudes for tree diagrams, and application of the factorization of helicity amplitudes to the effective W approximation

  11. The new classification of elementary particle resonance mass spectra

    International Nuclear Information System (INIS)

    Gareev, F.A.; Barabanov, M.Yu.; Kazacha, G.S.

    1997-01-01

    Elementary particle resonances have been systematically analyzed from the first principles: the conservation laws of energy-momentum and Ehrenfest adiabatic invariant. As a result, resonance decay product momenta and masses of resonances were established to be quantized. Radial excited states of resonances were revealed. These observations give us a possibility to formulate the strategy of experimental searches for new resonances and to systematize already known ones. (author)

  12. Research program in elementary particle theory: Progress report, January 1, 1987-December 1987

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Dicus, D.A.

    1987-08-01

    Progress is reported in the areas of: strings and gauge theories, mathematical physics and quantum optics, high energy physics phenomenology, quantum chromodynamic sum rules, and application of particle physics to astrophysics. Titles of DOE reports resulting from this research are listed, and the research histories of the scientific staff of the Center for Particle Theory are given

  13. Impact of storage rings on elementary particle physics

    International Nuclear Information System (INIS)

    Trilling, G.H.

    1979-03-01

    It is well known that new experimental discoveries often closely follow the development of new technology. There is hardly a better example of this than the close coupling between new discoveries in the frontiers of elementary particle physics and the development of the art and science of making high-energy accelerators. It is almost twenty-five years since the construction of the Bevatron made possible the discovery of the antiproton; and, since that time, knowledge and understanding of particle physics has made enormous strides in step with new developments in both the accelerator and the detector arts. An attempt is made to document how intimately many of the recent advances have been tied to the success in the development of storage rings and colliding beams

  14. Systematics of experimental charge radii of elements and elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Antony, M.S.; Britz, J.

    1987-02-01

    The systematics of experimental charge radii of elements and elementary particles ..pi../sup -/, K/sup -/, K/sup 0/, p and n is discussed. The root-meansquare charge radius of a quark core in nucleous derived from the systematics is estimated to be 0.3 fm. Charge radii evaluated from Coulomb displacement energies are also tabulated.

  15. The basic elementary particles as martensitic nucleus

    International Nuclear Information System (INIS)

    Aguinaco-Bravo, V. J.; Onoro, J.

    1999-01-01

    The martensitic transformation is a diffusional structural change that produces an important modification of the microstructure and properties of materials. In this paper we propose how the martensitic phase is nucleated from a basic elementary particle (bep). The bep is formed in several stages. Vacancies, divacancies, etc. are formed at high temperature, which collapse into prismatic dislocation loops during the cooling process. We define a bep as a dislocation loop reaching a critical radius and fulfilling certain elastic energy conditions. A martensitic nucleus is a bep that coincides crystallographically with the habit plane of the matrix. (Author) 16 refs

  16. Research program in elementary particle theory. Progress report, 1975--1976. [Summaries of research activities

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E.C.G.; Ne' eman, Y.

    1976-01-01

    Research on particle theory is summarized including field theory models, phenomenological applications of field theory, strong interactions, the algebraic approach to weak and electromagnetic interactions, and superdense matter. A list of reports is also included. (JFP)

  17. Toward unification of elementary particle physics and cosmology in 10-dimensions

    International Nuclear Information System (INIS)

    Chapline, G.; Gibbons, G.

    1984-01-01

    Ten-dimensions seem to be a unique setting for unifying at the classical level cosmology and elementary particle physics. Some interesting results along these lines are obtained starting with a Yang-Mills coupled to supergravity theory in 10-dimensions. However, further progress will require finding an underlying quantum theory

  18. Elementary particle interactions

    International Nuclear Information System (INIS)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.

    1992-10-01

    Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out

  19. Non-potential interactions and the origin of masses of elementary particles

    International Nuclear Information System (INIS)

    Sun, J.

    1982-01-01

    We propose a fundamental assumption on internal states of particles. It follows from the fundamental assumption that: (1) the constituents of particles become non-particle objects; and (2) there appear naturally non-potential interactions. This non-potential interaction leads to a series of interesting results, one of which is that it yields the origin of masses of elementary particles. All mass values are given by the theory without pre-assumed mass values of the constituents (except the rest mass of the electron; mass is a physical quantity which appears only in particles but not in their constituents). The theoretically calculated mass values are in excellent agreement with the experimental values. In all calculations, only one constant b = 0.99935867 is introduced (bc being the speed of internal motion)

  20. Proceedings of the 28. international symposium Ahrenshoop on the theory of elementary particles

    International Nuclear Information System (INIS)

    Luest, D.; Weigt, G.

    1995-03-01

    The following topics were dealt with: elementary particle theory, string theory, algebra, group theory, symmetries, Lie groups, unified field theories, topology and theories of gravitation.ok place from August 30 to September 3, 1994 at Wendisch-Rietz near Berlin. The Symposium was organized jointly by the Institute for Elementary Particle Physics of the Humboldt University of Berlin, the Institute for Theoretical Physics of the University Hannover, the Section of Physics of the University Munich, and DESY Institute for High Energy Physics Zeuthen. It was made possible thanks to the financial support of the Bundesland Brandenburg, the DESY Institute for High Energy Physics Zeuthen, the Walter and Eva Andrejewski Stiftung, and last but not least the Deutsche Forschungsgemeinschaft (DFG). We also would like to thank Karin Pipke for her dedicated assistance to prepare this manuscript. (orig.)

  1. Proceedings of the fourth workshop on elementary-particle picture of the universe

    International Nuclear Information System (INIS)

    Hikasa, Ken-ichi; Nakamura, Takashi; Ohshima, Takayoshi; Suzuki, Atsuo

    1990-01-01

    The Fourth Workshop on Elementary-Particle Picture of the Universe was held at Tateyama National Rest House from November 22 to 25, 1989. The main purpose of this workshop focuses on most of current experimental and theoretical activities in non-accelerator particle physics and astrophysics. It is also aimed to promote effective collaborations between experimentalists and theorists in these fields. The solar neutrino problem and the dark matter problem are the most exciting subjects in the astroparticle physics. They threw some doubts on the standard theories of astrophysics and also particle physics. We picked up both problems in this workshop as main themes, and discussed what they are at present and how they can be solved. Cosmology gives stringent constraints on particle properties which are frequently plausible candidates to solve the astrophysical problems. However, it is scarce to argue about how to determine the cosmological parameters and their ambiguities. We had some talks for this subject given by astronomers. New experimental results and detector developments were also presented. The atmosphere of workshop was informal, and there were extensive discussions on the above subjects. We got the confirm response that experimental and theoretical research activities in astroparticle physics were increasing here in Japan. (J.P.N.)

  2. Theoretical & Experimental Studies of Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    McFarland, Kevin [Univ. of Rochester, NY (United States)

    2012-10-04

    Abstract High energy physics has been one of the signature research programs at the University of Rochester for over 60 years. The group has made leading contributions to experimental discoveries at accelerators and in cosmic rays and has played major roles in developing the theoretical framework that gives us our ``standard model'' of fundamental interactions today. This award from the Department of Energy funded a major portion of that research for more than 20 years. During this time, highlights of the supported work included the discovery of the top quark at the Fermilab Tevatron, the completion of a broad program of physics measurements that verified the electroweak unified theory, the measurement of three generations of neutrino flavor oscillations, and the first observation of a ``Higgs like'' boson at the Large Hadron Collider. The work has resulted in more than 2000 publications over the period of the grant. The principal investigators supported on this grant have been recognized as leaders in the field of elementary particle physics by their peers through numerous awards and leadership positions. Most notable among them is the APS W.K.H. Panofsky Prize awarded to Arie Bodek in 2004, the J.J. Sakurai Prizes awarded to Susumu Okubo and C. Richard Hagen in 2005 and 2010, respectively, the Wigner medal awarded to Susumu Okubo in 2006, and five principal investigators (Das, Demina, McFarland, Orr, Tipton) who received Department of Energy Outstanding Junior Investigator awards during the period of this grant. The University of Rochester Department of Physics and Astronomy, which houses the research group, provides primary salary support for the faculty and has waived most tuition costs for graduate students during the period of this grant. The group also benefits significantly from technical support and infrastructure available at the University which supports the work. The research work of the group has provided educational opportunities

  3. Use of new computer technologies in elementary particle physics

    International Nuclear Information System (INIS)

    Gaines, I.; Nash, T.

    1987-01-01

    Elementary particle physics and computers have progressed together for as long as anyone can remember. The symbiosis is surprising considering the dissimilar objectives of these fields, but physics understanding cannot be had simply by detecting the passage of particles. It requires a selection of interesting events and their analysis in comparison with quantitative theoretical predictions. The extraordinary reach made by experimentalists into realms always further removed from everyday observation frequently encountered technology constraints. Pushing away such barriers has been an essential activity of the physicist since long before Rossi developed the first practical electronic AND gates as coincidence circuits in 1930. This article describes the latest episode of this history, the development of new computer technologies to meet the various and increasing appetite for computing of experimental (and theoretical) high energy physics

  4. Vanishing cosmological constant in elementary particles theory

    International Nuclear Information System (INIS)

    Pisano, F.; Tonasse, M.D.

    1997-01-01

    The quest of a vanishing cosmological constant is considered in the simplest anomaly-free chiral gauge extension of the electroweak standard model where the new physics is limited to a well defined additional flavordynamics above the Fermi scale, namely up to a few TeVs by matching the gauge coupling constants at the electroweak scale, and with an extended Higgs structure. In contrast to the electroweak standard model, it is shown how the extended scalar sector of the theory allows a vanishing or a very small cosmological constant. the details of the cancellation mechanism are presented. At accessible energies the theory is indistinguishable from the standard model of elementary particles and it is in agreement with all existing data. (author). 32 refs

  5. Advances in elementary particle physics with applied superconductivity. Contribution of superconducting technology to CERN large hadron collider accelerator

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2011-01-01

    The construction of the Large Hadron Collider (LHC) was started in 1994 and completed in 2008. The LHC consists of more than seven thousand superconducting magnets and cavities, which play an essential role in elementary particle physics and its energy frontier. Since 2010, physics experiments at the new energy frontier have been carried out to investigate the history and elementary particle phenomena in the early universe. The superconducting technology applied in the energy frontier physics experiments is briefly introduced. (author)

  6. A Research on the Impact of Internet Use in American Elementary School Libraries

    Directory of Open Access Journals (Sweden)

    Feng-Hsiung Hou

    2003-03-01

    Full Text Available The purpose of this research was to explore the impact of Internet use in American elementary school libraries operations and to find the best way for use Internet tools in elementary school libraries operations. This study may offer important information about the impact of Internet usage for elementary school library s operations. The research question was: Is the Internet usage having significant impact for organizational operations in the American elementary school libraries? This study employed survey research to conduct the research process. Research participants were 50 administrators in 50 elementary school libraries; Texas, U.S.A. Descriptive statistics was used to analyze the impact of Internet applied in the elementary school libraries. Results indicated that there was a significant impact of the Internet usage in American elementary school libraries operations. The author suggests that elementary school libraries organizational leaders need pay attention to the impact of Internet usage in their business and they also need plan how to utilize the Internet into their elementary school libraries in the future.

  7. [Elementary particle physics research

    International Nuclear Information System (INIS)

    Rutherfoord, J.

    1992-01-01

    This summary of our activities supported by our DOE contract DE-SC02-91ER40605 covers the period from 1 January to 31 January 1992. The major areas which consumed most of our time are D0 at the Fermilab collider, E800 at the Fermilab fixed target facility and SSC work on major detectors and in detector R ampersand D. The research in these areas is discussed in this report

  8. Current experiments in elementary particle physics. Revision 1-85

    International Nuclear Information System (INIS)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1985-01-01

    This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  9. Progress report on research program in elementary particle theory, 1979-1980

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1980-01-01

    A qualitative description is given of research in the following areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics and quark-parton physics; quantum mechanics, quantum field theory, and fundamental problems; and groups, gauges, and grand unified theories. Reports on this work have already been published, or will be, when it is completed

  10. Elementary particle treatment of the radiative muon capture

    International Nuclear Information System (INIS)

    Gmitro, M.; Ovchinnikova, A.A.

    1979-01-01

    Radiative nucleon-capture amplitudes have been constructed for the 12 C(O + ) → 12 B(1 + ) and 16 O(O + ) → 16 N(2 - ) transitions using assumptions about the conservation of electromagnetic and weak hadronic currents supplemented by a dynamical hypothesis. The nucleus is treated as an elementary particle and therefore is completely defined by its charge e, magnetic moment μ, spin J and parity π. In this case the radiative amplitude obtained in the framework of perturbation theory with minimal coupling sometimes does not satisfy the CVC and PCAC conditions and it can be even gauge noninvariant. The method considered allows one to overcome these shortcomings. (G.M.)

  11. Elementary particle physics at the University of Florida. Annual report

    International Nuclear Information System (INIS)

    Field, R.D.; Ramond, P.M.; Sikivie, P.

    1995-01-01

    This is the annual progress report of the University of Florida's elementary particle physics group. The theoretical high energy physics group's research covers a broad range of topics, including both theory and phenomenology. Present work of the experimental high energy physics group is directed toward the CLEO detector, with some effort going to B physics at Fermilab. The Axion Search project is participating in the operation of a large-scale axion detector at Lawrence Livermore National Laboratory, with the University of Florida taking responsibility for this experiment's high-resolution spectrometer's assembly, programming, and installation, and planning to take shifts during operation of the detector in FY96. The report also includes a continuation of the University's three-year proposal to the United States Department of Energy to upgrade the University's high-energy physics computing equipment and to continue student support, system manager/programmer support, and maintenance. Report includes lists of presentations and publications by members of the group

  12. How elementary paticles are discovered. From the cyclotron to the LHC - an expedition through the world of the particle accelerators; Wie man Elementarteilchen entdeckt. Vom Zyklotron zum LHC - ein Streifzug durch die Welt der Teilchenbeschleuniger

    Energy Technology Data Exchange (ETDEWEB)

    Freytag, Carl; Osterhage, Wolfgang W.

    2016-07-01

    This book explains the physical foundations and the technology of the elementary-particle research and describes the particle accelerators, the detector, and their concerted acting. On some milestones of the research - from the production of transuranium elements via the discovery of exotic mesons until the Higgs particle - the way from theory via the experiment to the research result is shown.

  13. Proceedings of International Symposium TEPA 2016: Thunderstorms and Elementary Particle Acceleration

    International Nuclear Information System (INIS)

    Chilingarian, A.

    2017-03-01

    The problem of the thundercloud electrification and how particle fluxes and lightning flashes are initiated inside thunderclouds are among the biggest unsolved problems in atmospheric sciences. The relationship between thundercloud electrification, lightning initiation, and particle fluxes from the clouds has not been yet unambiguously established. Cosmic Ray Division of Yerevan Physics Institute (YerPhI), Armenia and Skobeltsyn Institute of Nuclear Physics of Moscow State University (SINP), Russia already 6th year are organizing Thunderstorms and Elementary Particle Acceleration (TEPA) annual meeting, creating environment for leading scientists and students to meet each other and discuss last discoveries in these fields (see reports of previous TEPA symposia in Fishman and Chilingarian, 2010, Chilingarian, 2013, 2014, 2016). The CRD have an impressing profile of the investigations in the emerging field of high- energy physics in the atmosphere. New designed particle detector networks and unique geographical location of Aragats station allows observation in last 8 years near 500 intensive particle fluxes from the thunderclouds, which were called TGEs – Thunderstorm ground enhancements. Aragats physicists enlarge the TGE research by coherent detection of the electrical and geomagnetic fields, temperature, relative humidity and other meteorological parameters, as well as by detection of the lightning flashes. An adopted multivariate approach allows interrelate particle fluxes, electric fields, and lightning occurrences and finally come to a comprehensive model of the TGE. One of most intriguing opportunities opening by observation of the high-energy processes in the atmosphere is their relation to lightning initiation. C.T.R. Wilson postulated acceleration of electrons in the strong electric fields inside thunderclouds in 1924. In 1992 Gurevich et al. developed the theory of the runaway breakdown (RB), now mostly referred to as relativistic runaway electron

  14. Search for free fractional electric charge elementary particles using an automated millikan oil drop technique

    Science.gov (United States)

    Halyo; Kim; Lee; Lee; Loomba; Perl

    2000-03-20

    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied-about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0. 16e ( e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71x10(-22) particles per nucleon with 95% confidence.

  15. Research program in elementary-particle theory, 1983. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1983-08-01

    Progress is reviewed on the following topics: physics of ultra high energies and cosmology; phenomenology of particle physics; quantum field theory, supersymmetry and models of particles; and geometric formulations and algebraic models. Recent DOE reports resulting from the contract are listed

  16. Research program in elementary-particle theory, 1983. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E C.G.; Ne& #x27; eman, Y

    1983-08-01

    Progress is reviewed on the following topics: physics of ultra high energies and cosmology; phenomenology of particle physics; quantum field theory, supersymmetry and models of particles; and geometric formulations and algebraic models. Recent DOE reports resulting from the contract are listed. (WHK)

  17. Elementary particle physics with atoms

    International Nuclear Information System (INIS)

    Wieman, C.E.

    1993-01-01

    One of the unique aspects of atomic physics is the capacity to make measurements with extraordinarily high precision. In suitably chosen systems, precision measurements can reveal information about fundamental interactions in nature that is not available from other sources. Although elementary particle physics is often perceived as synonymous with open-quotes high energyclose quotes and open-quotes high cost,close quotes atomic physics has played, and can continue to play, a significant role in this area. A few illustrative examples of this include (1) the measurement of the Lamb shift in hydrogen and its, influence on the modern development of quantum field theory, (2) the severe limits placed on possible time reversal violating interactions by atomic (and neutron) searches for electric dipole moments, and (3) the measurement (and closely related atomic theory) of parity, nonconservation in atoms. This latter work has provides a precise confirmation of the Standard Model of the weak, electromagnetic, and strong interactions, and is a uniquely sensitive test for the validity of a variety of alternative models that have been put forth. I will also discuss some of the joys and frustrations of doggedly pursuing the open-quotes ultimateclose quotes measurement of ridiculously tiny effects

  18. Teaching the Conceptual Scheme "The Particle Nature of Matter" in the Elementary School.

    Science.gov (United States)

    Pella, Milton O.; And Others

    Conclusions of an extensive project aimed to prepare lessons and associated materials related to teaching concepts included in the scheme "The Particle Nature of Matter" for grades two through six are presented. The hypothesis formulated for the project was that children in elementary schools can learn theoretical concepts related to the particle…

  19. Models for Quarks and Elementary Particles --- Part IV: How Much Do We Know of This Universe?

    Directory of Open Access Journals (Sweden)

    Ulrich K. W. Neumann

    2008-07-01

    Full Text Available Essential laws and principles of the natural sciences were discovered at the high aggregation levels of matter such as molecules, metal crystals, atoms and elementary particles. These principles reappear in these models in modified form at the fundamental level of the quarks. However, the following is probably true: since the principles apply at the fundamental level of the quarks they also have a continuing effect at the higher aggregation levels. In the manner of the law of mass action, eight processes for weak interaction are formulated, which are also called Weak Processes here. Rules for quark exchange of the reacting elementary particles are named and the quasi-Euclidian or complex spaces introduced in Part I associated with the respective particles. The weak processes are the gateway to the second strand of this universe which we practically do not know. The particles with complex space, e.g. the neutrino, form this second strand. According to the physical model of gravitation from Part III the particles of both strands have fields and are thus subject to the superposition, which results in the attraction by gravity of the particles of both strands. The weak processes (7 and (8 offer a fair chance for the elimination of highly radioactive waste.

  20. Knots on a Torus: A Model of the Elementary Particles

    Directory of Open Access Journals (Sweden)

    Jack S. Avrin

    2012-02-01

    Full Text Available Two knots; just two rudimentary knots, the unknot and the trefoil. That’s all we need to build a model of the elementary particles of physics, one with fermions and bosons, hadrons and leptons, interactions weak and strong and the attributes of spin, isospin, mass, charge, CPT invariance and more. There are no quarks to provide fractional charge, no gluons to sequester them within nucleons and no “colors” to avoid violating Pauli’s principle. Nor do we require the importation of an enigmatic Higgs boson to confer mass upon the particles of our world. All the requisite attributes emerge simply (and relativistically invariant as a result of particle conformation and occupation in and of spacetime itself, a spacetime endowed with the imprimature of general relativity. Also emerging are some novel tools for systemizing the particle taxonomy as governed by the gauge group SU(2 and the details of particle degeneracy as well as connections to Hopf algebra, Dirac theory, string theory, topological quantum field theory and dark matter. One exception: it is found necessary to invoke the munificent geometry of the icosahedron in order to provide, as per the group “flavor” SU(3, a scaffold upon which to organize the well-known three generations—no more, no less—of the particle family tree.

  1. LATTICE SIMULATIONS OF THE THERMODYNAMICS OF STRONGLY INTERACTING ELEMENTARY PARTICLES AND THE EXPLORATION OF NEW PHASES OF MATTER IN RELATIVISTIC HEAVY ION COLLISIONS

    International Nuclear Information System (INIS)

    KARSCH, F.

    2006-01-01

    At high temperatures or densities matter formed by strongly interacting elementary particles (hadronic matter) is expected to undergo a transition to a new form of matter--the quark gluon plasma--in which elementary particles (quarks and gluons) are no longer confined inside hadrons but are free to propagate in a thermal medium much larger in extent than the typical size of a hadron. The transition to this new form of matter as well as properties of the plasma phase are studied in large scale numerical calculations based on the theory of strong interactions--Quantum Chromo Dynamics (QCD). Experimentally properties of hot and dense elementary particle matter are studied in relativistic heavy ion collisions such as those currently performed at the relativistic heavy ion collider (RHIC) at BNL. We review here recent results from studies of thermodynamic properties of strongly interacting elementary particle matter performed on Teraflops-Computer. We present results on the QCD equation of state and discuss the status of studies of the phase diagram at non-vanishing baryon number density

  2. Factorization of the Laplacian and families of elementary particles

    International Nuclear Information System (INIS)

    Keller, J.

    1994-01-01

    It is shown that multi-vector Clifford algebra allows a series of factorizations of the Laplacian operator and associated Dirac-like equations, this set of related equations generates 3 families of elementary particles with the experimentally observed lepton and quark content for each family and the experimentally observed electroweak color interactions and other related properties. In contrast to the usual approach to the standard model the properties for the different fields of the model are consequences of the relative properties of the equations, among themselves and in relation to space-time, and therefore, they do not need to be postulates of the theory. 11 refs

  3. Final report. [Research in theoretical and experimental elementary particle physics

    International Nuclear Information System (INIS)

    1998-01-01

    This report gives summaries of particle physics research conducted by different group members for Task A. A summary of work on the CLEO experiment and detector is included for Task B along with a list of CLEO publications. During the present grant period for Task C, the authors had responsibility for the design, assembly, and programming of the high-resolution spectrometer which looks for narrow peaks in the output of the cavity in the LLNL experiment. They successfully carried out this task. Velocity peaks are expected in the spectrum of dark matter axions on Earth. The computing proposal (Task S) is submitted in support of the High Energy Experiment (CLEO, Fermilab, CMS) and the Theory tasks

  4. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Blocker, C.A.

    1992-01-01

    This report discusses research in the following areas of high energy physics: B meson mixing; CDF response to low energy jets; jet scaling behavior; search for pair produced leptoquarks at CDF; SSC program; quantum field theory; and neural networks. (LSP)

  5. Models for Quarks and Elementary Particles. Part IV: How Much do We Know of This Universe?

    Directory of Open Access Journals (Sweden)

    Neumann U. K. W.

    2008-07-01

    Full Text Available Essential laws and principles of the natural sciences were discovered at the high aggre- gation levels of matter such as molecules, metal crystals, atoms and elementary parti- cles. These principles reappear in these models in modified form at the fundamental level of the quarks. However, the following is probably true: since the principles apply at the fundamental level of the quarks they also have a continuing effect at the higher aggregation levels. In the manner of the law of mass action, eight processes for weak interaction are formulated, which are also called Weak Processes here. Rules for quark exchange of the reacting elementary particles are named and the quasi-Euclidian or complex spaces introduced in Part I associated with the respective particles. The weak processes are the gateway to the “second” strand of this universe which we practically do not know. The particles with complex space, e.g. the neutrino, form this second strand. According to the physical model of gravitation from Part III the particles of both strands have >-fields and are thus subject to the superposition, which results in the attraction by gravity of the particles of both strands. The weak processes (7 and (8 offer a fair chance for the elimination of highly radioactive waste.

  6. A Research on the Impact of Internet Use in American Elementary School Libraries

    OpenAIRE

    Feng-Hsiung Hou

    2003-01-01

    The purpose of this research was to explore the impact of Internet use in American elementary school libraries operations and to find the best way for use Internet tools in elementary school libraries operations. This study may offer important information about the impact of Internet usage for elementary school library s operations. The research question was: Is the Internet usage having significant impact for organizational operations in the American elementary school libraries? This study e...

  7. Elementary Atom Interaction with Matter

    OpenAIRE

    Mrowczynski, Stanislaw

    1998-01-01

    The calculations of the elementary atom (the Coulomb bound state of elementary particles) interaction with the atom of matter, which are performed in the Born approximation, are reviewed. We first discuss the nonrelativistic approach and then its relativistic generalization. The cross section of the elementary atom excitation and ionization as well as the total cross section are considered. A specific selection rule, which applies for the atom formed as positronium by particle-antiparticle pa...

  8. Superstrings, entropy and the elementary particles content of the standard model

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2006-01-01

    A number of interconnected issues involving superstring theory, entropy and the particle content of the standard model of high energy physics are discussed in the present work. It is found that within a non-transfinite approximation, the number of elementary particles is given by DimSU(8) in full agreement with the prediction gained from dividing the total number of the massless level of Heterotic string theory (256)(16)=8064 by the spin representation 2 7 =128 which gives DimSU(8)=(8) 2 -1=(8064)/(128)=63 particles. For the exact transfinite case however, one finds our previously established E-infinity result:N=(336+16k)(3/2+k)(16+k)/(128+8k)=α-bar o /2,where k=φ 3 (1-φ 3 ), φ=(5-1)/2 and α-bar o /2=68.54101965. Setting k=0 one finds that n=63 exactly as in the non-transfinite case

  9. Research program in elementary-particle theory. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1982-08-01

    This progress report of the Center for Particle Theory of the University of Texas at Austin reviews the work done over the past year and is part of the renewal proposal for the period from January 1, 1983 to December 31, 1983

  10. At the origins of mass: elementary particles and fundamental symmetries

    International Nuclear Information System (INIS)

    Iliopoulos, Jean; Englert, Francois

    2015-01-01

    After a brief recall of the history of cosmology, the author proposes an overview of the different symmetries (symmetries in space and in time, internal symmetries, local or gauge symmetries), describes the mass issue (gauge interactions, quarks and leptons as matter mass constituents, chirality), addresses the spontaneous symmetry breaking (the Curie theorem, spontaneous symmetry breaking in classical physics and in quantum physics, the Goldstone theorem, spontaneous symmetry breaking in presence of gauge interactions), presents the standard theory (electromagnetic and weak interactions, strong interactions, relationship with experiment). An appendix presents elementary particles, and notably reports the story of the neutrino

  11. Conceptual citation frequency - quantum mechanics and elementary particle physics

    International Nuclear Information System (INIS)

    Hurt, C.D.

    1986-01-01

    The differences in conceptual citation frequency are examined between quantum mechanics literature and elementary particle physics literature. Using a sample based on increments of 5 years, 7 contrast tests were generated over a literature period of 35 years. A Dunn planned comparison procedure indicated a statistical difference in years 5 and 10 but no differences were found in the remaining years. The results must be weighed against the time frames in which the literature was produced but clearly point to an initial difference in the two areas. Additional work is required to reevaluate the findings and to investigate the conceptual citation frequency issue further. The frequency distribution generated approximates a cumulative advantage process. (author)

  12. Particle physics 2012. Highlights and annual report

    International Nuclear Information System (INIS)

    Fleischer, Manfred; Kasemann, Matthias; Medinnis, Michael

    2013-01-01

    The following topics are dealt with: Particle physics at DESY, the work of the Helmholtz alliance concerning the LHC and the ILC, bringing particle physics into people's mind, research at HERA, LHC, and the linear accelerators, plasma wakefield acceleration, astroparticle physics, theory of elementary particles, research projects and scientific infrastructure. (HSI)

  13. A data acquisition system for elementary particle physics

    International Nuclear Information System (INIS)

    Grittenden, J.A.; Benenson, G.; Cunitz, H.; Hsuing, Y.B.; Kaplan, D.M.; Sippach, W.; Stern, B.

    1984-01-01

    The data acquisition system experiment 605 at the Fermi National Accelerator Laboratory employs a set of data transfer protocols developed at Columbia University and implemented in the Nevis Laboratories Data Transport System. The authors describe the logical design of the Transport System, its physical realization, and its particular application during the Spring, 1982 data run of experiment 605. During that run it served as the interface between the data latches and a megabyte of fast memory, operating at a data transfer rate of 200 nsec/16-bit word. Up to two thousand events were read out during the one second beam spill, each event consisting of about 250 words. Included are details of proposed improvements to the data acquisition system and append a brief comment of the need for inexpensive, versatile readout systems in experimental elementary particle physics

  14. Incremental discovery of hidden structure: Applications in theory of elementary particles

    International Nuclear Information System (INIS)

    Zytkow, J.M.; Fischer, P.J.

    1996-01-01

    Discovering hidden structure is a challenging, universal research task in Physics, Chemistry, Biology, and other disciplines. Not only must the elements of hidden structure be postulated by the discoverer, but they can only be verified by indirect evidence, at the level of observable objects. In this paper we describe a framework for hidden structure discovery, built on a constructive definition of hidden structure. This definition leads to operators that build models of hidden structure step by step, postulating hidden objects, their combinations and properties, reactions described in terms of hidden objects, and mapping between the hidden and the observed structure. We introduce the operator dependency diagram, which shows the order of operator application and model evaluation. Different observational knowledge supports different evaluation criteria, which lead to different search systems with verifiable sequences of operator applications. Isomorph-free structure generation is another issue critical for efficiency of search. We apply our framework in the system GELL-MANN, that hypothesizes hidden structure for elementary particles and we present the results of a large scale search for quark models

  15. What can we learn about elementary particles from atomic physics

    International Nuclear Information System (INIS)

    Sanders, P.G.H.

    1976-01-01

    Information about elementary particles can be obtained from atomic physics in two ways. One can compare the results of high precision experiments with accurate theoretical predictions in those simple systems, such as hydrogen, where these are possible. Alternatively, one can carry out experiments designed to look with great sensitivity for small effects, such as non-conservation of parity or violation of time reversal invariance which are forbidden in the normal atomic theory. Current work which will be described can yield significant information concerning quantum electrodynamics, the values of the fundamental constants, the structure of nucleons and the nature of the weak interactions. (orig.) [de

  16. [Theoretical elementary particle studies.] Final report, September 1983-July 1985

    International Nuclear Information System (INIS)

    Collins, J.C.

    1985-01-01

    The work done during the period September 1983 to July 1985 covers several areas of the theory of the strong interactions of elementary particles, mostly in the area characterized as 'perturbative QCD'. The specific topics are: the proof of factorization for hard processes, such as the Drell-Yan process; calculation of transverse-mementum distributions for these processes; investigation of the small-x region; demonstration of the applicability of perturbative QCD (quantum chromodynamics) to the production of heavy quarks; and improved methods of calculation of the effects of heavy quarks in hard processes, and in particular of their distribution functions in hadrons ('structure functions'). 31 refs

  17. Fiscal 1998 research report on micro-particle control process technology; 1998 nendo micro ryushi seigyo process gijutsu no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For establishment of process technology realizing control of forms and structures of micro-particles on practical equipment, research was made on related elementary technologies and current technologies. The research was promoted aiming at synthesis of micro-particles from nanometer to micrometer in size and their application to functional materials, establishment of the methodology for correlating the microstructure and function of micro-particle materials with fabrication process, and establishment of a common-base technology system in chemical technology aiming at fabrication of functional materials. As for the common- base technology, to clarify its importance, research was made on the fabrication method and dispersion mechanism of nano- particles, particle arraying method by coating, device fabrication technique by coating, and one-step synthesis and coating of nano-particles. As for the project research, synthesis of monodispersed nano-particles at large production rates, fabrication of thin films and bulk materials by arraying and coating. (NEDO)

  18. Elementary particle physics: Experimental

    International Nuclear Information System (INIS)

    Lord, J.J.; Burnett, T.H.; Wilkes, R.J.

    1989-01-01

    We are carrying out a research program in high energy experimental particle physics. Studies of high energy hadronic interactions and leptoproduction processes continue using several experimental techniques. Progress has been made on the study of multiparticle production processes in nuclei. Ultra-high energy cosmic ray nucleus-nucleus interactions have been investigated by the Japanese American Cosmic Emulsion Experiment (JACEE) using balloon-borne emulsion chamber detectors. In the area of particle astrophysics, our studies of cosmic ray nuclear interactions have enabled use to make the world's most accurate determination of the comparison of the cosmic rays above 10 13 eV. We have only the detector that can observe interaction vertices and identify particles at energies up to 10**15 eV. Our observations are getting close to placing limits on the acceleration mechanisms postulated for pulsars in which the spin and magnetic moment axes are at different angles. In June, 1989 approval was given by NASA for our participation in the Space Station program. The SCINATT experiment will make use of emulsion chamber detectors, similar to the planned JACEE hybrid balloon flight detectors. These detector will permit precise determination of secondary particle charges, momenta and rapidities, and the accumulation of data will be at least a factor of 10 to 100 greater than in balloon experiments. Emulsion chamber techniques ate also employed in an experiment using accelerator heavy ion beams at CERN and Brookhaven National Laboratory to investigate particle production processes in central collisions of nuclei in the energy range 15 -- 200A GeV. Our study of hadroproduction in lepton interactions is continuing with approval of another 8 months run for deep inelastic muon scattering experiment E665 at Fermilab

  19. Particle physics experiments 1986

    International Nuclear Information System (INIS)

    Stuart, G.W.

    1987-01-01

    The paper presents research work carried out in 1986 on 52 elementary particle experiments approved by the Particle Physics Experiments Selection Panel. Most of the experiments were collaborative and involved research groups from different countries. About half of the experiments were conducted at CERN, the remaining experiments employed the accelerators: LAMPT, LEP, PETRA, SLAC, and HERA. The contents consist of unedited contributions from each experiment. (U.K.)

  20. From the universe to the elementary particles a first introduction to cosmology and the fundamental interactions

    CERN Document Server

    Ellwanger, Ulrich

    2012-01-01

    In this book, the author leads the reader, step by step and without any advanced mathematics, to a clear understanding of the foundations of modern elementary particle physics and cosmology. He also addresses current and controversial questions on topics such as string theory. The book contains gentle introductions to the theories of special and general relativity, and also classical and quantum field theory. The essential aspects of these concepts are understood with the help of simple calculations; for example, the force of gravity as a consequence of the curvature of the space-time. Also treated are the Big Bang, dark matter and dark energy, as well as the presently known interactions of elementary particles: electrodynamics, the strong and the weak interactions including the Higgs boson. Finally, the book sketches as yet speculative theories: Grand Unification theories, supersymmetry, string theory and the idea of additional dimensions of space-time. Since no higher mathematical or physics expertise is r...

  1. Elementary excitations in nuclei

    International Nuclear Information System (INIS)

    Lemmer, R.H.

    1987-01-01

    The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited

  2. Task A: Research in theoretical elementary particle physics at the University of Florida; Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1993-11-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DoE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie) and three Assistant Professors (Qiu, Woodard, Kennedy). Dallas Kennedy recently joined our group increasing the Particle Theory faculty to seven. In addition, we have three postdoctoral research associates, an SSC fellow, and eight graduate students. The research of our group covers a broad range of topics in theoretical high energy physics with balance between theory and phenomenology. Included in this report is a summary of the last several years of operation of the group and an outline of our current research program.

  3. From the universe to the elementary particles. A first introduction to cosmology and the fundamental interactions. 2. ed.

    International Nuclear Information System (INIS)

    Ellwanger, Ulrich

    2011-01-01

    This book serves for a representation of the foundations of modern elementary-particle physics and cosmology as well as the actual open questions up to the string theory. It contains elementary introductions to the special and general relativity theory, the classical and quantum field theory. The essential aspects of these concepts and many phenomena are understood by means of simple calculations like for instance the gravitational force as consequence of the curvature of the space. Treated are the big bang, the dark matter and the dark energy, as well as the contemporarily known interactions of the elementary-particle physics, electrodynamics, the strong and the weak interactions including the Higgs boson. Finally today (still?) speculative theories are sketched: Theories of the grand unification of the interactions, supersymmetry, the string theory, and additional dimensions of the space-time. The second edition contains significantly extended descriptions of the functionality of the LHC accelerator, the search for the Higgs boson, as well as the search for dark matter. No bigger mathematical and physical knowledges are presupposed; the book is also suited for grammar-school absolvents and students of the first semesters.

  4. Unification of all elementary-particle forces including gravity

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi; Chikashige, Yuichi; Matsuki, Takayuki; Akama, Keiichi.

    1978-07-01

    A unified model of the Nambu-Jona-Lasinio type for all elementary-particle forces including gravity is reviewed in some detail. Starting with a nonlinear fermion Lagrangian of the Heisenberg type and imposing the massless conditions of Bjorken on vector auxiliary fields, on effective Lagrangian is constructed, which combines the unified SU (2) x U (1) gauge theory of Weinberg and Salam for the weak and electromagnetic interactions of leptons and quarks and the Yang-Mills gauge theory of color SU (3) for the strong interaction of quarks. The photon, the weak vector bosons, and the physical Higgs scalar appear as collective excitations of lepton-antilepton or quark-antiquark pairs while the color-octet gluons appear as those of quark-antiquark pairs. The most important results of this unified model are presented. The Weinberg angle and the gluon coupling constant are determined, and the masses of the weak vector bosons are predicted. (Yoshimori, M.)

  5. [Studies of interactions between elementary particles and nuclei

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1990-08-01

    This report discusses the following research: Particle production in p bar p collision at √s = 1.8 TeV; SSC subsystems R ampersand D; the solenoid detector collaboration particle nucleus collisions; task expenditure statement. Hadroproduction using 300 GeV particle beams Fermilab; hadroproduction of beauty Fermilab; and vector meson photo production

  6. Research in elementary particle physics. [Ohio State Univ. , Columbus

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Experimental and theoretical work on high energy physics is reviewed. Included are preparations to study high-energy electron-proton interactions at HERA, light-cone QCD, decays of charm and beauty particles, neutrino oscillation, electron-positron interactions at CLEO II, detector development, and astrophysics and cosmology.

  7. The momentum degree of freedom of elementary particles and the gravitation

    International Nuclear Information System (INIS)

    Tati, Takao.

    1978-01-01

    A universal time-like vector has been introduced into the momentum space of elementary particles, in a quantum field theory with a finite degree of freedom, in order to specify the Lorentz-system in which the cutoff function of momentum is given. In this paper, the relationship between quantum field theory and general relativity is considered and it is argued that, when the effect of gravitation on the momentum degree of freedom is taken into account, the universal time-like vector depends on the position of macroscopic space-time and can be considered, in a cosmological model, to coincide, on an average, with the Weyl's cosmic time. (auth.)

  8. Investigations in Elementary Particle Theory

    Energy Technology Data Exchange (ETDEWEB)

    Weiler, Thomas J. [Vanderbilt Univ., Nashville, TN (United States); Kephart, Thomas W. [Vanderbilt Univ., Nashville, TN (United States); Scherrer, Robert J. [Vanderbilt Univ., Nashville, TN (United States)

    2014-07-02

    The research interests of our three Co-PI’s complement each other very well. Kephart works mainly on models of particle unification in four or higher dimensions, on aspects of gravity such as inflation, black-holes, and the very early Universe, and on applications of knot theory and topology to various physical systems (including gluon dynamics). Scherrer works mainly on aspects of the intermediate-aged Universe, including dark matter and dark energy, and particle physics in the early Universe. Weiler works mainly on neutrino physics, dark matter signatures, and extreme particle-astrophysics in the late Universe, including origins of the highest-energy cosmic-rays and gamma-rays, and the future potential of neutrino astrophysics. Kephart and Weiler have lately devoted some research attention to the LHC and its reach for probing physics beyond the Standard Model. During the 3-year funding period, our grant supported one postdoc (Chiu Man Ho) and partially supported two students, Peter Denton and Lingjun Fu. Chiu Man collaborated with all three of the Co-PI’s during the 3-year funding period and published 16 refereed papers. Chiu Man has gone on to a postdoc with Steve Hsu at Michigan State University. Denton and Fu will both receive their PhDs during the 2014-15 academic year. The total number of our papers published in refereed journals by the three co-PIs during the period of this grant (2011-present) is 54. The total number of talks given by the group members during this time period, including seminars, colloquia, and conference presentations, is 47. Some details of the accomplishments of our DOE funded researchers during the grant period include Weiler being named a Simons Fellow in 2013. He presented an invited TEDx talk in 2012. His paper on closed timelike curves (2013) garnered a great deal of national publicity. Scherrer’s paper on the “little rip” (2011) fostered a new area of cosmological research, and the name “little rip” has now entered

  9. Proceedings of the fifth workshop on elementary-particle picture of the universe

    International Nuclear Information System (INIS)

    Fukugita, Masataka; Suzuki, Atsuto

    1991-01-01

    The Fifth Workshop on the Elementary-Particle of the Universe was held at Minami-Izu, from 19 to 21, November, 1990. The 80 participants included high-energy physicists, nuclear physicists, cosmic-ray physicists and astrophysicists, both from the theoretic and experimental fields. In this workshop most of the time was given to reviews of the present status and prospects of the subjects of the present project as well as some others, in order to find future directions. A detector symposium was held to explore the applicability of new technologies. This publication collects the presented papers and transparencies. (J.P.N.)

  10. Elementary Particle Interactions with CMS at LHC

    International Nuclear Information System (INIS)

    Spanier, Stefan

    2016-01-01

    The High Energy Particle Physics group of the University of Tennessee participates in the search for new particles and forces in proton-proton collisions at the LHC with the Compact Muon Solenoid experiment. Since the discovery of the Higgs boson in 2012, the search has intensified to find new generations of particles beyond the standard model using the higher collision energies and ever increasing luminosity, either directly or via deviations from standard model predictions such as the Higgs boson decays. As part of this effort, the UTK group has expanded the search for new particles in four-muon final states, and in final states with jets, has successfully helped and continues to help to implement and operate an instrument for improved measurements of the luminosity needed for all data analyses, and has continued to conduct research of new technologies for charged particle tracking at a high-luminosity LHC.

  11. Elementary Particle Interactions with CMS at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Spanier, Stefan [Univ. of Tennessee, Knoxville, TN (United States)

    2016-07-31

    The High Energy Particle Physics group of the University of Tennessee participates in the search for new particles and forces in proton-proton collisions at the LHC with the Compact Muon Solenoid experiment. Since the discovery of the Higgs boson in 2012, the search has intensified to find new generations of particles beyond the standard model using the higher collision energies and ever increasing luminosity, either directly or via deviations from standard model predictions such as the Higgs boson decays. As part of this effort, the UTK group has expanded the search for new particles in four-muon final states, and in final states with jets, has successfully helped and continues to help to implement and operate an instrument for improved measurements of the luminosity needed for all data analyses, and has continued to conduct research of new technologies for charged particle tracking at a high-luminosity LHC.

  12. Fibre bundle varieties and the number of generations of elementary particles

    International Nuclear Information System (INIS)

    Ross, D.K.

    1985-01-01

    The idea is presented that the number of generations of elementary particles in a gauge theory characterised by a given Lie algebra is the same as the number of topologically distinct principal fibre bundles with a structure group having the same Lie algebra and R 3 -(0) as base space. Two different generations thus have a different global structure or 'twist' to their fibre bundles. It is found that at most three generations are allowed for groups with the same Lie algebra as E 6 , at most four generations for groups with the same Lie algebra as SOsub(41+2) with 1>=2, and at most n generations for groups with the same Lie algebra as SUsub(n). (author)

  13. Elementary particle theory

    CERN Document Server

    Stefanovich, Eugene

    2018-01-01

    This book introduces notation, terminology, and basic ideas of relativistic quantum theories. The discussion proceeds systematically from the principle of relativity and postulates of quantum logics to the construction of Poincaré invariant few-particle models of interaction and scattering. It is the first of three volumes formulating a consistent relativistic quantum theory of interacting charged particles.

  14. Effective Lagrangians in elementary particle physics

    International Nuclear Information System (INIS)

    Trahern, C.G.

    1982-01-01

    Non-linear effective Lagrangians are constructed to represent the low energy phenomenology of elementary particles. As approximate descriptions of the dynamics of hadrons, these models simulate the expected (but unproven) behavior of more complex theories such as quantum Chromo-dynamics [QCD]. A general formalism for non-linear models was developed in the late 1960's by Coleman, Wess and Zumino. This dissertation utilizes and extends their work by incorporating some of the advances that have been made in the understanding of quantum field theories in the last decade. In particular the significance of spatial boundary conditions for interpreting the ground state behavior of the non-linear models is investigated. In addition the existence of a dual theory for the non-linear model is discussed. For experimental purposes duality refers to the possibility that in different enrgy regimes there may be wholly distinct kinds of excitations in the physical spectrum. Corresponding to these phenomenological distinctions are mutually exclusive mathematical descriptions. A familiar example is the duality of electric and magnetic charge in electro-dynamics. If magnetic charges do exist, they are expected to be extremely massive states that are unobservable up to very high energies. The analysis of such states within electrodynamics shows that one cannot describe both electric and magnetic charges without admitting the presence of singularities in the electric potential. A completely analogous form of duality is found and discussed for the non-linear models

  15. From the universe to the elementary particles. A first introduction to cosmology and the fundamental interactions

    International Nuclear Information System (INIS)

    Ellwanger, Ulrich

    2012-01-01

    In this book, the author leads the reader, step by step and without any advanced mathematics, to a clear understanding of the foundations of modern elementary particle physics and cosmology. He also addresses current and controversial questions on topics such as string theory. The book contains gentle introductions to the theories of special and general relativity, and also classical and quantum field theory. The essential aspects of these concepts are understood with the help of simple calculations; for example, the force of gravity as a consequence of the curvature of the space-time. Also treated are the Big Bang, dark matter and dark energy, as well as the presently known interactions of elementary particles: electrodynamics, the strong and the weak interactions including the Higgs boson. Finally, the book sketches as yet speculative theories: Grand Unification theories, supersymmetry, string theory and the idea of additional dimensions of space-time. Since no higher mathematical or physics expertise is required, the book is also suitable for college and university students at the beginning of their studies. Hobby astronomers and other science enthusiasts seeking a deeper insight than can be found in popular treatments will also appreciate this unique book.

  16. Accelerators of atomic particles

    International Nuclear Information System (INIS)

    Sarancev, V.

    1975-01-01

    A brief survey is presented of accelerators and methods of accelerating elementary particles. The principle of collective accelerating of elementary particles is clarified and the problems are discussed of its realization. (B.S.)

  17. Remarks on search methods for stable, massive, elementary particles

    International Nuclear Information System (INIS)

    Perl, Martin L.

    2001-01-01

    This paper was presented at the 69th birthday celebration of Professor Eugene Commins, honoring his research achievements. These remarks are about the experimental techniques used in the search for new stable, massive particles, particles at least as massive as the electron. A variety of experimental methods such as accelerator experiments, cosmic ray studies, searches for halo particles in the galaxy and searches for exotic particles in bulk matter are described. A summary is presented of the measured limits on the existence of new stable, massive particle

  18. Science in the Elementary School Classroom: Portraits of Action Research.

    Science.gov (United States)

    McDonald, Jane B., Ed.; Gilmer, Penny J., Ed.

    Teacher knowledge and skills are critical elements in the student learning process. Action research serves as an increasingly popular technique to engage teachers in educational change in classrooms. This document focuses on action research reports of elementary school teachers. Chapters include: (1) "First Graders' Beliefs and Perceptions of…

  19. Probability and statistics in particle physics

    International Nuclear Information System (INIS)

    Frodesen, A.G.; Skjeggestad, O.

    1979-01-01

    Probability theory is entered into at an elementary level and given a simple and detailed exposition. The material on statistics has been organised with an eye to the experimental physicist's practical need, which is likely to be statistical methods for estimation or decision-making. The book is intended for graduate students and research workers in experimental high energy and elementary particle physics, and numerous examples from these fields are presented. (JIW)

  20. Research program in elementary particle theory

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Rosenzweig, C.; Schechter, J.; Wali, K.C.

    1990-01-01

    Discussed in this paper is a brief account of the research work of the principal investigators and their co-workers during the past few years. The topics covered include: Topology in Physics; Skyrme Model; High Temperature Superconductivity; fractional statistics, and generalized spin statistics theorem; QCD as a dual chromomagnetic superconductor; confinement and string picture in QCD; quark gluon plasmas; cosmic strings; effective Lagrangians for QCD; ''proton spin,'' ''strange content'' and related topics; physical basis of the Skyrme model; gauge theories and weak interactions; grand unification; Universal ''see saw mechanism''; abelian and non-abelian interactions of a test string

  1. Experimental Studies of Elementary Particle Interactions at High Energies

    Energy Technology Data Exchange (ETDEWEB)

    Goulianos, Konstantin [Rockefeller Univ., New York, NY (United States)

    2013-07-30

    This is the final report of a program of research on "Experimental Studies of Elementary Particle Interactions at High Energies'' of the High Energy Physics (HEP) group of The Rockefeller University. The research was carried out using the Collider Detector at Fermilab (CDF) and the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN. Three faculty members, two research associates, and two postdoctoral associates participated in this project. At CDF, we studied proton-antiproton collisions at an energy of 1.96 TeV. We focused on diffractive interactions, in which the colliding antiproton loses a small fraction of its momentum, typically less than 1%, while the proton is excited into a high mass state retaining its quantum numbers. The study of such collisions provides insight into the nature of the diffractive exchange, conventionally referred to as Pomeron exchange. In studies of W and Z production, we found results that point to a QCD-based interpretation of the diffractive exchange, as predicted in a data-driven phenomenology developed within the Rockefeller HEP group. At CMS, we worked on diffraction, supersymmetry (SUSY), dark matter, large extra dimensions, and statistical applications to data analysis projects. In diffraction, we extended our CDF studies to higher energies working on two fronts: measurement of the single/double diffraction and of the rapidity gap cross sections at 7 TeV, and development of a simulation of diffractive processes along the lines of our successful model used at CDF. Working with the PYTHIA8 Monte Carlo simulation authors, we implemented our model as a PYTHIA8-MBR option in PYTHIA8 and used it in our data analysis. Preliminary results indicate good agreement. We searched for SUSY by measuring parameters in the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM) and found results which, combined with other experimental constraints and theoretical considerations, indicate

  2. MEG studies prohibited muon decays to explore grand unified theories of elementary particles

    International Nuclear Information System (INIS)

    Mori, Toshinori

    2009-01-01

    The MEG experiment, designed and proposed by Japanese physicists, is being carried out at Paul Scherrer Institute (PSI) in Switzerland, in collaboration with physicists from Italy, Switzerland, Russia and U.S.A. The experiment will make an extensive search for a muon's two-body decay into an electron and a gamma ray, μ→eγ, which is prohibited in the Standard Model of elementary particles, to explore Supersymmetric Grand Unified Theories. This article gives a brief description of the MEG experiment with an emphasis on the innovative experimental techniques developed to achieve the unprecedented experimental sensitivity. (author)

  3. Violation of Particle Anti-particle Symmetry

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Symmetry is a fundamental concept which can be found in the whole range of human activities e. g. from arts to science. The beauty of a statues is often related to its symmetric form. In physics, all the laws are related to some sort of symmetry. Equally important is a small breakdown ofsymmetry. Even for the case of a statue, its beauty might be enhanced by introducing small distortions. In this course, we investigate the role symmetry in the world of elementary particles. Some symmetries found there are very similar to those which can be seen in our daily life, while others are more exotic and related to the quantum nature of the elementary particles. Our particular focus ismade on symmetry and its violation between the matter and anti-matter, known as CP violation. It is experimentally well established that particleand anti-particle behave a tiny bit differently in the world of elementary particles. We discuss how this would be explained and how we can extendour knowledge. Evolution of our universe is stro...

  4. Music of elementary particles

    International Nuclear Information System (INIS)

    Sternheimer, J.

    1983-01-01

    This Note offers a new point of view on particle masses. It is shown that they are distributed following a musical scale, the chromatic tempered scale -for stable particles- subdivided into microintervals including unstable particles. A theoretical explanation, based on causality, allows one also to calculate their global distribution along the mass scale, in agreement with experiment, and indicating the existence of ''musical'' laws in the vibratory organisation of matter [fr

  5. Research program in elementary particle theory. Progress report for the period ending June 30, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The Syracuse High-Energy Theory group has contributed significantly to many of the current areas of active research in particle physics. Multigenerational grand unified theories have been explored in depth and the predictions of grand unified theories for proton decay have been critically examined. The properties of magnetic monopoles predicted by such theories have been studied. Topological solutions predicted by chiral and other phenomenologically interesting models have been studied. Various properties of glueballs have been explored using the effective Lagrangian approach. Now results of neutrinoless double beta decay in lepton-number-violating gauge theories were found. Aspects of galaxy formation, the nature of phase transitions in general field theories, and properties of supersymmetric theories have been explored. Progress has also been made in the formulation of relativistic particle dynamics. Publications are listed

  6. Music of elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Sternheimer, J.

    1983-12-12

    This note offers a new point of view on particle masses. It is shown that they are distributed following a musical scale, the chromatic tempered scale -for stable particles- subdivided into microintervals including unstable particles. A theoretical explanation, based on causality, allows one also to calculate their global distribution along the mass scale, in agreement with experiment, and indicating the existence of ''musical'' laws in the vibratory organisation of matter.

  7. Centre for Particle Physics of Marseille. 1994-1995 Activity report

    International Nuclear Information System (INIS)

    1996-01-01

    The Center for particle physics of Marseilles (CPPM) is one of the laboratories of the National Institute of Nuclear Physics and Particle Physics of the CNRS which gathers the means of the particle physics studies. The laboratory is a mixed research unit which concerns at the same time the CNRS/IN2P3 and the Aix-Marseille University. The principal role of the laboratory is fundamental research in particle physics which deals with the elementary components of the matter and their interactions; astro-particles physics i.e. observation of the elementary particles in the Universe and in observational cosmology to understand the universe behaviour through the observation and study of supernovas. This document is the 1994-1995 Activity report of the CPPM. It presents the experiments in which the CPPM is involved (Aleph, Atlas, Bugey, CPLear, Delphi, H1, Particle astrophysics), the training, teaching, industrial relations/valorisation and technical activities (electronics, computers and information technology, mechanics), and the list of publications (seminars, conference papers, journal articles, dissertations) of the Centre. A list of the CPPM staff is attached to the document

  8. Cosmology and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Steigman, G [California Univ., Santa Barbara (USA). Inst. for Theoretical Physics; Bartol Research Foundation, Newark, Delaware (USA))

    1982-01-29

    The cosmic connections between physics on the very largest and very smallest scales are reviewed with an emphasis on the symbiotic relation between elementary particle physics and cosmology. After a review of the early Universe as a cosmic accelerator, various cosmological and astrophysical constraints on models of particle physics are outlined. To illustrate this approach to particle physics via cosmology, reference is made to several areas of current research: baryon non-conservation and baryon asymmetry; free quarks, heavy hadrons and other exotic relics; primordial nucleosynthesis and neutrino masses.

  9. Research in theoretical elementary particle physics at the University of Florida: Task A. Annual progress report

    International Nuclear Information System (INIS)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1994-01-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DOE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie), one Associate Professor (Woodard), and two Assistant Professors (Qiu, Kennedy). In addition, we have four postdoctoral research associates and seven graduate students. The research of our group covers a broad range of topics in theoretical high energy physics including both theory and phenomenology. Included in this report is a summary of the last several years, an outline of our current research program

  10. Some studies in parastatistical theories and its applications in the internal symmetry of elementary particles

    International Nuclear Information System (INIS)

    Silva, H.V. da.

    1984-01-01

    The results of investigations in parastatistical theories and in their applications to the internal symmetries of elementary particles are present. The paraquantization and the 'generalized paraquantization' (of Levine and Tomozawa) of the relativistic Schroedinger wave equations for non-zero mass and arbitrary spin (s), involving locally covariant wave functions, Ψ o,s + Ψ s,o are executed, and the restrictions resulting from the criterion of microscopic causality and the manner of establishment of the connection between spin and statistics in these quantizations are explicitly demonstrated. (Author) [pt

  11. Big Bang Day: 5 Particles - 3. The Anti-particle

    CERN Multimedia

    Franck Close

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  12. Re-Placing the Arts in Elementary School Curricula: An Interdisciplinary, Collaborative Action Research Project

    Science.gov (United States)

    Trent, Allen; Riley, Jorge-Ayn

    2009-01-01

    This article describes a collaborative action research project aimed at deliberately "re-placing" art in the elementary curriculum through targeted planning, implementation, and assessment of an art integrated unit in an urban 4th grade classroom. Findings and implications should be relevant to elementary teachers, administrators, art specialists,…

  13. Centre for Particle Physics of Marseille. 1996-1997 Activity report

    International Nuclear Information System (INIS)

    1998-01-01

    The Center for particle physics of Marseilles (CPPM) is one of the laboratories of the National Institute of Nuclear Physics and Particle Physics of the CNRS which gathers the means of the particle physics studies. The laboratory is a mixed research unit which concerns at the same time the CNRS/IN2P3 and the Aix-Marseille University. The principal role of the laboratory is fundamental research in particle physics which deals with the elementary components of the matter and their interactions; astro-particles physics i.e. observation of the elementary particles in the Universe and in observational cosmology to understand the universe behaviour through the observation and study of supernovas. This document is the 1996-1997 Activity report of the CPPM. It presents the experiments in which the CPPM is involved (Aleph, Antares, Atlas, CPLear, H1), the training, teaching and technical activities (electronics, computers and information technology, mechanics), and the list of publications (seminars, conference papers, journal articles, dissertations) of the Centre. A list of the CPPM staff is attached to the document

  14. Centre for Particle Physics of Marseille. 1989-1991 Activity report

    International Nuclear Information System (INIS)

    1992-01-01

    The Center for particle physics of Marseilles (CPPM) is one of the laboratories of the National Institute of Nuclear Physics and Particle Physics of the CNRS which gathers the means of the particle physics studies. The laboratory is a mixed research unit which concerns at the same time the CNRS/IN2P3 and the Aix-Marseille University. The principal role of the laboratory is fundamental research in particle physics which deals with the elementary components of the matter and their interactions; astro-particles physics i.e. observation of the elementary particles in the Universe and in observational cosmology to understand the universe behaviour through the observation and study of supernovas. This document is the 1989-1991 Activity report of the CPPM. It presents the experiments in which the CPPM is involved (Aleph, Bugey, CPLear, Delphi, LHC), the teaching and technical activities (electronics, computers and information technology, mechanics), and the list of publications (seminars, conference papers, journal articles, dissertations) of the Centre. A list of the CPPM staff is attached to the document

  15. Centre for Particle Physics of Marseille. 1992-1993 Activity report

    International Nuclear Information System (INIS)

    1994-01-01

    The Center for particle physics of Marseilles (CPPM) is one of the laboratories of the National Institute of Nuclear Physics and Particle Physics of the CNRS which gathers the means of the particle physics studies. The laboratory is a mixed research unit which concerns at the same time the CNRS/IN2P3 and the Aix-Marseille University. The principal role of the laboratory is fundamental research in particle physics which deals with the elementary components of the matter and their interactions; astro-particles physics i.e. observation of the elementary particles in the Universe and in observational cosmology to understand the universe behaviour through the observation and study of supernovas. This document is the 1992-1993 Activity report of the CPPM. It presents the experiments in which the CPPM is involved (Aleph, Atlas, Bugey, CPLear, Delphi), the training, teaching, industrial relations/valorisation and technical activities (electronics, computers and information technology, mechanics), and the list of publications (seminars, conference papers, journal articles, dissertations) of the Centre. A list of internal seminars and of the CPPM staff is attached to the document

  16. Research in theoretical and elementary particle physics

    International Nuclear Information System (INIS)

    Mitselmakher, G.

    1996-01-01

    In 1995 the University of Florida started a major expansion of the High Energy Experimental Physics group (HEE) with the goal of adding four new faculty level positions to the group in two years. This proposal covers the second year of operation of the new group and gives a projection of the planned research program for the next five years, when the group expects their activities to be broader and well defined. The expansion of the HEE group started in the Fall of 1995 when Guenakh Mitselmakher was hired from Fermilab as a Full Professor. A search was then performed for two junior faculty positions. The first being a Research Scientist/Scholar position which is supported for 9 months by the University on a faculty line at the same level as Assistant Professor but without the teaching duties. The second position is that of an Assistant Professor. The search has been successfully completed and Jacobo Konigsberg from Harvard University has accepted the position of Research Scientist and Andrey Korytov from MIT has accepted the position of Assistant Professor. They will join the group in August 1996. The physics program for the new group is focused on hadron collider physics. G. Mitselmakher has been leading the CMS endcap muon project since 1994. A Korytov is the coordinator of the endcap muon chamber effort for CMS and a member of the CDF collaboration and J. Konigsberg is a member of CDF where he has participated in various physics analyses and has been coordinator of the gas calorimetry group. The group at the U. of Florida has recently been accepted as an official collaborating institution on CDF. They have been assigned the responsibility of determining the collider beam luminosity at CDF and they will also be an active participant in the design and operation of the muon detectors for the intermediate rapidity region. In addition they expect to continue their strong participation in the present and future physics analysis of the CDF data

  17. [A research program in neutrino physics, cosmic rays and elementary particles: Tasks A, B, C, D

    International Nuclear Information System (INIS)

    Sobel, H.W.

    1991-01-01

    A Summary of the DOE Supported High Energy Physics Research at The University of California, Irvine. Physics interests of the group are focused primarily on tests of conservation laws and studies of fundamental interactions between particles. There is also a significant interest in astrophysics and cosmic rays. The DOE support has been divided into four tasks briefly describes in this paper

  18. Progress report on research program in elementary particle theory, 1979-1980. [Univ. of Texas at Austin

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E.C.G.; Ne' eman, Y.

    1980-01-01

    A qualitative description is given of research in the following areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics and quark-parton physics; quantum mechanics, quantum field theory, and fundamental problems; and groups, gauges, and grand unified theories. Reports on this work have already been published, or will be, when it is completed. (RWR)

  19. Particle physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  20. Particle physics and the LEP project

    International Nuclear Information System (INIS)

    Roussarie, A.

    1985-01-01

    A very didactic chronological account of the last 20 years of elementary particle physics is presented. After some recall on matter constituents and interactions between these constituents, some details are given on researches which will be made in LEP, the e + -e - collider [fr

  1. Software tool for representation and processing of experimental data on high energy interactions of elementary particles

    International Nuclear Information System (INIS)

    Cherepanov, E.O.; Skachkov, N.B.

    2002-01-01

    The software tool is developed for detailed and evident displaying of information about energy and space distribution of secondary particles produced in the processes of elementary particles collisions. As input information the data on the components of 4-momenta of secondary particles is used. As for these data the information obtained from different parts of physical detector (for example, from the calorimeter or tracker) as well as the information obtained with the help of event generator is taken. The tool is intended for use in Windows operation system and is developed on the basis of Borland Delphi. Mathematical architecture of the software tool allows user to receive complete information without making additional calculations. The program automatically performs analysis of structure and distributions of signals and displays the results in a transparent form which allows their quick analysis. To display the information the three-dimensional graphic methods as well as colour decisions based on intuitive associations are also used. (author)

  2. Elementary Mathematics Specialists: Ensuring the Intersection of Research and Practice

    Science.gov (United States)

    McGatha, Maggie B.

    2017-01-01

    This paper provides a historical overview of the role and impact of elementary mathematics specialists as well as current implications and opportunities for the field. Furthermore, suggestions are offered for the mathematics education field for ensuring the intersection of practice and research. [For complete proceedings, see ED581294.

  3. Is the Field of Numbers a Real Physical Field? On the Frequent Distribution and Masses of the Elementary Particles

    Directory of Open Access Journals (Sweden)

    Belyakov A. V.

    2010-04-01

    Full Text Available Frequent distributions of the databases of the numerical values obtained by resolving algorithms, which describe physical and other processes, give a possibility for bonding the probability of that results the algorithms get. In the frequent distribution of the fractions of integers (rational numbers, local maxima which meet the ratios of masses of the elementary particles have been found.

  4. Fundamental research with polarized slow neutrons

    International Nuclear Information System (INIS)

    Krupchitsky, P.A.

    1987-01-01

    In the last twenty years polarized beams of slow neutrons have been used effectively in fundamental research in nuclear physics. This book gives a thorough introduction to these experimental methods including the most recent techniques of generating and analyzing polarized neutron beams. It clearly shows the close relationship between elementary particle physics and nuclear physics. The book not only addresses specialists but also those interested in the foundations of elementary particle and nuclear physics. With 42 figs

  5. Elementary particle physics---Experimental

    International Nuclear Information System (INIS)

    Lord, J.J.; Burnett, T.H.; Wilkes, R.J.

    1990-01-01

    We are continuing a research program in high energy experimental particle physics and particle astrophysics. Studies of high energy hadronic interactions were performed using several techniques, in addition, a high energy leptoproduction experiment was continued at the Fermi National Accelerator Laboratory. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators. The data are being collected with ballon-borne emulsion chambers. The properties of nuclear interactions at these high energies will reveal whether new production mechanisms come into play due to the high nuclear densities and temperatures obtained. We carried out closely related studies of hadronic interactions in emulsions exposed to high energy accelerator beams. We are members of a large international collaboration which has exposed emulsion chamber detectors to beams of 32 S and 16 O with energy 60 and 200 GeV/n at CERN and 15 GeV/n at Brookhaven National Laboratory. The primary objectives of this program are to determine the existence and properties of the hypothesized quark-gluon phase of matter, and its possible relation to a variety of anomalous observations. Studies of leptoproduction processes at high energies involve two separate experiments, one using the Tevatron 500 GeV muon beam and the other exploring the >TeV regime. We are participants in Fermilab experiment E665 employing a comprehensive counter/streamer chamber detector system. During the past year we joined the DUMAND Collaboration, and have been assigned responsibility for development and construction of critical components for the deep undersea neutrino detector facility, to be deployed in 1991. In addition, we are making significant contributions to the design of the triggering system to be used

  6. Scintillation Detectors for Charged Particles and Photons

    CERN Document Server

    Lecoq, P

    2011-01-01

    Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scint...

  7. CERN and the Hunt for Elementary Particles and Forces

    CERN Document Server

    AUTHOR|(CDS)2051276

    2008-01-01

    CERN is the European Laboratory for Particle Physics, the world's largest particle physics research centre. Founded in 1954, the Laboratory was one of Europe's first joint ventures and has become a premier example of international collaboration. CERN's subject of study is pure science and is concentrated on exploring the Universe's most fundamental questions, such as What is it made of? and How did it come to be the way it is? The Laboratory's tools, the particle accelerators and particle detectors, are amongst the world's largest and most complex scientific instruments. The Laboratory's primary aims will be presented and a look at past achievements and present endeavours, particularly the Large Hadron Collider (LHC), will be reviewed. A brief look into the future will also be given.

  8. Beyond Mathematics, a Standard Elementary Particle, and the Unified Field of Energy

    International Nuclear Information System (INIS)

    Sourial, A.S.

    2008-01-01

    Teaching methods are presented based on a theoretical logical thesis of: A Standard Elementary Particle, i nstead of the current 200 odd different subatomic particles, and their plausible derivation from such a standard particle, similar to the derivation of our body cells from a multi potential S tem Cell, T he thesis reintroduces the theory of A Material Ether a s a necessary medium for the transmission of the Electro-Magnetic-Gravitational Waves. It solves and demystifies the following riddles: 1. The A ether Vacuum, by offering a plausible composition of A n elastic solid medium, t hat meets the specific physical requirements needed for the transmission of the electro magnetic gravitational waves, Explains the vast amount of Potential Energy that such an A ether can carry, That there is No Action at a Distance, 2. It explains Q uantum Mechanics, o n simple Newtonian principles, It nullifies the H eisenberg Uncertainty Principle, s howing that there is no uncertainty whatsoever, for individual particle interactions, and the existence of F unctional Barriers f or the disc like aggregates of contiguous particles representing I ntra-atomic Electrons, a nd A full P hysical e xplanation of the their quantum numbers, their electronic shells, as well as: The Pauli Exclusion Principle. 3. The possible explanation of Hubbell's Law without an expansion of the Universe, that the C osmic Red Shift g ives the illusion of an expanding Universe similar to that of the B ent Stick i n the water due to refraction. 4. That the Big Bang I nflation Theory, f or the origin of the Universe is: a Figment of Imagination similar to Aladdin's D jinni out of the bottle. a nd a Fantasy of Mathematics with complete lack of touch with reality. The thesis suggests a plausible explanation - Modus Operandi - for, and composition of: i) Gravity, II) The structure of nucleons, III) The nature of the strong force, IV) The structure of the string of The String Theory

  9. Higgs Particle: The Origin of Mass

    OpenAIRE

    Okada, Yasuhiro

    2007-01-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments, LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generat...

  10. Contribution to a study of real time information systems for elementary particle physics

    International Nuclear Information System (INIS)

    Meyer, J.-M.

    1977-01-01

    The structure of data acquisition systems used in elementary particle physics experiments is formulated. The experiments and the equipment used from a data processing point of view are characterized and the acquisition system is modeled to obtain an optimal architecture. Practical compromises are implemented, leading to a system with a new structure, now being used at the CERN SPS in a hyperon experiment. The realization of this system (FAS) is described using three computers: a NORD-10, a DDP and GESPRO. The latter is an original device built using INTEL-3000 integrated circuits. GESPRO can be microprogramed with instructions specialized for use with CAMAC. Finally, the software for the entire FAS system is given. This includes the assembler, test programs for CAMAC, management programs for the memory, etc [fr

  11. Esoteric elementary particle phenomena in undergraduate physics: spontaneous symmetry breaking and scale invariance

    International Nuclear Information System (INIS)

    Greenberger, D.M.

    1978-01-01

    We take two rather abstract concepts from elementary particle physics, and show that there actually exist analogs to both of them in undergraduate physics. In the case of spontaneous symmetry breaking, we provide an example where the most symmetrical state of a simple system suddenly becomes unstable, while a less symmetrical state develops lower energy and becomes stable. In the case of scale invariance, we consider an example with no natural scale determined, and show that a straightforward dimensional analysis of the problem leads to incorrect results, because of the occurrence of infinities, even though they would appear to be irrelevant infinities that might not be expected to affect the dimensions of the answer. We then show how a simple use of the scale invariance of the problem leads to the correct answer

  12. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Srednicki, M.

    1990-01-01

    At least eighty percent of the mass of the universe consists of some material which, unlike ordinary matter, neither emits nor absorbs light. This book collects key papers related to the discovery of this astonishing fact and its profound implications for astrophysics, cosmology, and the physics of elementary particles. The book focusses on the likely possibility that the dark matter is composed of an as yet undiscovered elementary particle, and examines the boundaries of our present knowledge of the properties such a particle must possess. (author). refs.; figs.; tabs

  13. Higgs Particle: The Origin of Mass

    Science.gov (United States)

    Okada, Yasuhiro

    2007-11-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments, LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generation mechanism, which could lead to a deeper understanding of particle physics.

  14. Higgs particle. The origin of mass

    International Nuclear Information System (INIS)

    Okada, Yasuhiro

    2007-01-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments. LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generation mechanism, which could lead to a deeper understanding of particle physics. (author)

  15. High-energy nuclear optics of polarized particles

    CERN Document Server

    Baryshevsky, Vladimir G

    2012-01-01

    The various phenomena caused by refraction and diffraction of polarized elementary particles in matter have opened up a new research area in the particle physics: nuclear optics of polarized particles. Effects similar to the well-known optical phenomena such as birefringence and Faraday effects, exist also in particle physics, though the particle wavelength is much less than the distance between atoms of matter. Current knowledge of the quasi-optical effects, which exist for all particles in any wavelength range (and energies from low to extremely high), will enable us to investigate different properties of interacting particles (nuclei) in a new aspect. This pioneering book will provide detailed accounts of quasi-optical phenomena in the particle polarization, and will interest physicists and professionals in experimental particle physics.

  16. The relations of particles

    International Nuclear Information System (INIS)

    Okun, L.B.

    1991-01-01

    This book presents papers on elementary particle physics, relations between various particles, and the connections between particle physics with other branches of physics. The papers include: Contemporary status and prospects of high-energy physics; Particle physics prospects; and High energy physics

  17. Karlsruhe Nuclear Research Center. Research and development program 1991

    International Nuclear Information System (INIS)

    1990-01-01

    The R and D activities of the KfK are classified in 8 main research activities: 1) project nuclear fusion; 2) project pollutant mitigation in the environment; 3) solid state and materials research; 4) nuclear and elementary particle physics; 5) microtechnics e.g. X-ray lithography; 6) materials handling; 7) project nuclear safety research; 8) radioactive waste management. (orig.) [de

  18. Topics in elementary particle physics

    Science.gov (United States)

    Jin, Xiang

    The author of this thesis discusses two topics in elementary particle physics: n-ary algebras and their applications to M-theory (Part I), and functional evolution and Renormalization Group flows (Part II). In part I, Lie algebra is extended to four different n-ary algebraic structure: generalized Lie algebra, Filippov algebra, Nambu algebra and Nambu-Poisson tensor; though there are still many other n-ary algebras. A natural property of Generalized Lie algebras — the Bremner identity, is studied, and proved with a totally different method from its original version. We extend Bremner identity to n-bracket cases, where n is an arbitrary odd integer. Filippov algebras do not focus on associativity, and are defined by the Fundamental identity. We add associativity to Filippov algebras, and give examples of how to construct Filippov algebras from su(2), bosonic oscillator, Virasoro algebra. We try to include fermionic charges into the ternary Virasoro-Witt algebra, but the attempt fails because fermionic charges keep generating new charges that make the algebra not closed. We also study the Bremner identity restriction on Nambu algebras and Nambu-Poisson tensors. So far, the only example 3-algebra being used in physics is the BLG model with 3-algebra A4, describing two M2-branes interactions. Its extension with Nambu algebra, BLG-NB model, is believed to describe infinite M2-branes condensation. Also, there is another propose for M2-brane interactions, the ABJM model, which is constructed by ordinary Lie algebra. We compare the symmetry properties between them, and discuss the possible approaches to include these three models into a grand unification theory. In Part II, we give an approximate solution for Schroeder's equations, based on series and conjugation methods. We use the logistic map as an example, and demonstrate that this approximate solution converges to known analytical solutions around the fixed point, around which the approximate solution is constructed

  19. The dynamical groups SO0(3.2) and SO0(4.2) as space-time groups of elementary particles

    International Nuclear Information System (INIS)

    Heidenreich, W.

    1981-01-01

    Elementary particles are described by representations of SO 0 (4.2) and SO 0 (3.2). An S-matrix invariant under the corresponding group constrains the possible scattering channels. The simptest used representations have each one gauge freedom, the physical significance of which is discussed. 'Higher' representations can be constructed from the simplest by means of the tensor product; the same is true for the corresponding particles. The simplest objects of the SO 0 (3.2) theory, the SO 0 (3.2) theory, the Dirac singletons correspond to the states of a 2-dimensional harmonic oscillator. The basic states of this are interpreted as urs in the sense of von Weizsaecker. (orig./HSI) [de

  20. Elementary School Children Contribute to Environmental Research as Citizen Scientists

    OpenAIRE

    Miczajka, Victoria L.; Klein, Alexandra-Maria; Pufal, Gesine

    2015-01-01

    Research benefits increasingly from valuable contributions by citizen scientists. Mostly, participating adults investigate specific species, ecosystems or phenology to address conservation issues, but ecosystem functions supporting ecosystem health are rarely addressed and other demographic groups rarely involved. As part of a project investigating seed predation and dispersal as ecosystem functions along an urban-rural gradient, we tested whether elementary school children can contribute to ...

  1. [Research in elementary particle physics]: Progress report covering the period from August 1, 1986 to July 31, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    In this document the High Energy Physics Group reviews its accomplishments and progress during the past year and presents plans for continuing research during the next several years. Reviewed are the experimental programs such as the collider experiments, the particle theory programs such as vector boson production in supersymmetric QCD and miscellaneous program projects

  2. Evaluation of the Program Effectiveness of Research Competence Development in Prospective Elementary School Teachers

    Science.gov (United States)

    Khan, Natalya N.; Kolumbayeva, Sholpan Zh.; Karsybayeva, Raissa K.; Nabuova, Roza A.; Kurmanbekova, Manshuk B.; Syzdykbayeva, Aigul Dzh.

    2016-01-01

    To develop research competence in prospective teachers, a system of methods for diagnostics and formation of this competence in prospective elementary school teachers in the training process is designed. To diagnose the research competence, a series of techniques were used that allow subtle evaluation of each competence research component:…

  3. Elementary particles, the concept of mass, and emergent spacetime

    Science.gov (United States)

    Żenczykowski, Piotr

    2015-07-01

    It is argued that the problem of space quantization should be considered in close connection with the problem of mass quantization. First, the nonlocality of quantum physics suggests that if spacetime emerges from the underlying quantum layer, this emergence should occur simultaneously at all distance and momentum scales, and not just at the Planck scale. Second, the spectrum of elementary particles provides us with a lot of important information, experimentally inaccessible at the Planck scale, that could be crucial in unravelling the mechanism of emergence. Accordingly, we start with a brief review of some fundamental issues appearing both in the spectroscopy of excited baryons and in connection with the concept of quark mass. It is pointed out that experiment suggests the inadequacy of the description of baryonic interior in terms of ordinary spacetime background. Thus, it is argued that one should be able to learn about the emergence of space from the studies of the quark/hadron transition. The problem of mass is then discussed from the point of view of nonrelativistic phase space and its Clifford algebra, which proved promising in the past. Connection with the Harari-Shupe explanation of the pattern of a single Standard Model generation is briefly reviewed and a proposal for the reintroduction of relativistic covariance into the phase-space scheme is presented.

  4. Research on historical environments in elementary schools’ social sciences textbooks taught in Northern Cyprus

    OpenAIRE

    Nazım Kaşot; Mete Özsezer

    2015-01-01

    A comprehensive study has yet to be carried out depending on the historical environment particular to the Elementary Schools in Northern Cyprus. The aim of this study is hence to determine whether the coverage of historical environment subjects in elementary school social sciences textbooks is absorbed or not by the 4th and 5th Grades in the context of both content and visuals. The method of study analysed has been organised in accordance with the qualitative research. The population was not ...

  5. Research in elementary particle physics. Annual report, January 1--October 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    Experimental and theoretical work on high energy physics is reviewed. Included are preparations to study high-energy electron-proton interactions at HERA, light-cone QCD, decays of charm and beauty particles, neutrino oscillation, electron-positron interactions at CLEO II, detector development, and astrophysics and cosmology.

  6. Gravity, particles and astrophysics

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1980-01-01

    The author deals with the relationship between gravitation and elementary particle physics, and the implications of these subjects for astrophysics. The text is split up into two parts. The first part represents a relatively non-technical overview of the subject, while the second part represents a technical examination of the most important aspects of non-Einsteinian gravitational theory and its relation to astrophysics. Relevant references from the fields of gravitation, elementary particle theory and astrophysics are included. (Auth.)

  7. [Studies of elementary particles and high energy phenomena: [Progress report

    International Nuclear Information System (INIS)

    Cumalat, J.P.

    1989-01-01

    The scope of work under this contract is unclassified and shall consist of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles at the Fermi National Accelerator Laboratory, the Stanford Linear Accelerator Center, the Los Alamos National Laboratory, the SSC laboratory, and the University of Colorado with emphasis on photon beam experiments, electron-positron interactions, charmed particles, production of new vector bosons, advanced data acquisition systems, two photon physics, particle lifetimes, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions, lattice gauge theory, anomaly-free theories, gravity and instrumentation development. These topics are covered in this report

  8. Proceedings of the workshop on elementary process in hydrogen recycling

    International Nuclear Information System (INIS)

    Itikawa, Yukikazu.

    1982-03-01

    On September 7 and 8, 1981, a workshop was held at the Institute of Plasma Physics to review the state of the art of the study of elementary processes in hydrogen recycling in fusion reactors. The processes considered are reflection, adsorption, trapping, particle-induced emission, chemical sputtering, and diffusion in metals. The present report is the proceedings of the workshop and contains rather comprehensive reviews each on the processes considered. The workshop was held as part of the joint research program of data compilation at the Research Information Center, Institute of Plasma Physics. (author)

  9. Search for charged massive long-lived particles with the D0 detector

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Abolins, M.; Kupčo, Alexander; Lokajíček, Miloš

    2009-01-01

    Roč. 102, č. 16 (2009), 161802/1-161802/7 ISSN 0031-9007 R&D Projects: GA MŠk LC527; GA MŠk LA08047 Institutional research plan: CEZ:AV0Z10100502 Keywords : D0 * Tevatron * long-lived particles Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.328, year: 2009

  10. RESEARCH IN PARTICLE PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, Edward [Boston Universiy

    2013-07-12

    This is the final report for the Department of Energy Grant to Principal Investigators in Experimental and Theoretical Particle Physics at Boston University. The research performed was in the Energy Frontier at the LHC, the Intensity Frontier at Super-Kamiokande and T2K, the Cosmic Frontier and detector R&D in dark matter detector development, and in particle theory.

  11. Proceedings of International Symposium TEPA 2015: Thunderstorms and Elementary Particle Acceleration

    International Nuclear Information System (INIS)

    Chilingarian, A.

    2016-03-01

    The problem of how lightning is initiated inside thunderclouds is probably one of the biggest mysteries in the atmospheric sciences. Recently established high energy processes in the atmosphere, i.e. Terrestrial Gamma Flashes (TGF) – brief bursts of gamma rays observed by orbiting gamma ray observatories and Thunderstorm Ground Enhancements (TGEs) – sizable long-lasting fluxes of electrons, gamma rays and neutrons detected on Earth’s surface are correlated with thunderstorms. However, the relationship among thundercloud electrification, lightning activity, and wideband radio emission and enhanced particle fluxes have not been yet unambiguously established. One of the most intriguing opportunities opened by the observation of the high-energy processes in the atmosphere is their relation to lightning initiation and propagation. Lightning discharges and TGEs are alternative mechanisms for the discharging of the atmospheric “electric engine” and synchronized observations of both phenomena help to understand them better. With the objective to discuss these high-energy phenomena, the conference on Thunderstorms and Elementary Particle Acceleration was held at the Nor Amberd International Conference Center of the Yerevan Physics Institute (YerPhI) in Armenia. The Cosmic Ray Division of the YerPhI and Skobeltsyn Institute of Nuclear Physics of Moscow State University organized the workshop; YerPhI and the Armenian State Committee of Science sponsored it. Thirty scientists and students from the United States, Japan, France, Germany, Israel, Russia, and Armenia attended. Presentations focused on observations and models of high-energy emissions in thunderclouds; on the termination of particle fluxes by lightning; multivariate observations of thunderstorms from the Earth’s surface and from space; radio emissions produced by atmospheric discharges and particle fluxes; the influence of the Extensive Air Showers (EASes) on lightning initiation and others. Discussions

  12. Interaction of relativistic elementary atoms with matter. I. General formulas

    International Nuclear Information System (INIS)

    Mrowczyn'ski, S.

    1987-01-01

    The problem of the interaction of relativistic elementary atoms (Coulomb bound states of elementary particles such as positronium, pionium, etc.) with matter is studied in the reference frame where the atom is initially at rest. An atom of matter is treated as a spinless structureless fast particle. The amplitudes of elementary-atom interaction are derived in the Born approximation under the assumption that a momentum transfer to the atom does not significantly exceed an inverse Bohr radius of the atom. The elementary-atom excitation and ionization processes are considered. The transitions where the spin projection of the atom component is reversed are also studied. In particular the matrix elements for para-ortho and ortho-para transitions are given. The spin structure of the amplitudes is discussed in detail. The sum rules, which allow the calculation of the cross sections summed over atom final states are found. Finally the formulas of the atom interaction cross sections are presented

  13. On a connection between the VAK, knot theory and El Naschie's theory of the mass spectrum of the high energy elementary particles

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2004-01-01

    In the present work we give an introduction to the ε (∞) Cantorian space-time theory. In this theory every particle can be interpreted as a scaling of another particle. Some particles are a scaling of the proton and are expressed in terms of phi and α-bar 0 . Following the VAK suggestion of El Naschie, the limit sets of Kleinian groups are Cantor sets with Hausdorff dimension phi or a derivative of phi such as 1/phi, 1/phi 2 , 1/phi 3 , etc. Consequently and using ε (∞) theory, the mass spectrum of elementary particles may be found from the limit set of the Moebius-Klein geometry of quantum space-time as a function of the golden mean phi=(}5-1)/2=0.618033989 as discussed recently by Datta (see Chaos, Solitons and Fractals 17 (2003) 621-630)

  14. Modern Elementary Particle Physics

    Science.gov (United States)

    Kane, Gordon

    2017-02-01

    1. Introduction; 2. Relativistic notation, Lagrangians, and interactions; 3. Gauge invariance; 4. Non-abelian gauge theories; 5. Dirac notation for spin; 6. The Standard Model Lagrangian; 7. The electroweak theory and quantum chromodynamics; 8. Masses and the Higgs mechanism; 9. Cross sections, decay widths, and lifetimes: W and Z decays; 10. Production and properties of W± and Zᴼ; 11. Measurement of electroweak and QCD parameters: the muon lifetime; 12. Accelerators - present and future; 13. Experiments and detectors; 14. Low energy and non-accelerator experiments; 15. Observation of the Higgs boson at the CERN LHC: is it the Higgs boson?; 16. Colliders and tests of the Standard Model: particles are pointlike; 17. Quarks and gluons, confinement and jets; 18. Hadrons, heavy quarks, and strong isospin invariance; 19. Coupling strengths depend on momentum transfer and on virtual particles; 20. Quark (and lepton) mixing angles; 21. CP violation; 22. Overview of physics beyond the Standard Model; 23. Grand unification; 24. Neutrino masses; 25. Dark matter; 26. Supersymmetry.

  15. Research program in elementary particle theory: Progress report, January 1, 1988-December 1988

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Dicus, D.A.

    1988-08-01

    This report discusses progress in the following areas: Mathematical Physics, Strings and Gauge Theories; Quantum Optics; High Energy Phenomenology; Angular Momentum, QCD Sum Rules; and Application of Particle Physics to Astrophysics

  16. Exploring Mindfulness and Meditation for the Elementary Classroom: Intersections across Current Multidisciplinary Research

    Science.gov (United States)

    Routhier-Martin, Kayli; Roberts, Sherron Killingsworth; Blanch, Norine

    2017-01-01

    Mindfulness and meditation programs, and their associated benefits for education, can be examined within three related disciplines: psychology, elementary education, and exceptional education. A review of psychology research provides evidence that meditation and mindfulness work to balance the often negative effects of students' social-emotional…

  17. Karlsruhe Nuclear Research Center. Research and development programme 1989

    International Nuclear Information System (INIS)

    1988-01-01

    The R and D activities of the KfK are classified in 10 main research activities: 1) Project fast breeder; 2) separation nozzle method; 3) project nuclear fusion; 4) project reprocessing and waste processing; 5) ultimate storage; 6) environment and safety; 7) solid-state and materials research; 8) nuclear and elementary particle physics; 9) microtechnics e.g. X-ray lithography; 10) materials handling. (HP) [de

  18. Landmarks in particle physics at Brookhaven National Laboratory: Brookhaven Lecture Series, Number 238

    International Nuclear Information System (INIS)

    Adair, R.K.

    1987-01-01

    Robert Adair's lecture on Landmarks in Particle Physics at Brookhaven National Laboratory (BNL) is a commemoration of the 40th Anniversary of Brookhaven National Laboratory. Adair describes ten researches in elementary particle physics at Brookhaven that had a revolutionary impact on the understanding of elementary particles. Two of the discoveries were made in 1952 and 1956 at the Cosmotron, BNL's first proton accelerator. Four were made in 1962 and 1964 at the Alternating Gradient Synchrotron, the Cosmotron's replacement. Two other discoveries in 1954 and 1956 were theoretical, and strong focusing (1952) is the only technical discovery. One discovery (1958) happened in an old barrack. Four of the discoveries were awarded the Nobel prize in Physics. Adair believes that all of the discoveries are worthy of the Nobel prize. 14 figs

  19. Research in elementary particle physics. Progress report, March 1, 1994--February 28, 1995

    International Nuclear Information System (INIS)

    Chan, Lai-Him; Haymaker, R.; Imlay, R.; McNeil, R.; Metcalf, W.; Svoboda, R.

    1994-01-01

    This report discusses the following topics: Low-energy particle dynamics; QCD dynamics on the lattice; lattice QCD Vacuum; phenomenology ampersand cosmology; the ZEUS Experiment at HERA; neutrino physics at LAMPF; non-accelerator physics; and SSC activity

  20. Hyperon and negative particle production at central rapidity in proton-beryllium interactions at 158 GeV/c

    Czech Academy of Sciences Publication Activity Database

    Antinori, F.; Bakke, H.; Beusch, W.; Staroba, Pavel; Závada, Petr

    1999-01-01

    Roč. 661, - (1999), 476c-480c ISSN 0375-9474 Institutional research plan: CEZ:AV0Z1010920 Keywords : CERN SPS * WA97 * proton-beryllium collisions * hyperon * negaive particle production Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 2.088, year: 1999

  1. Making Teacher Change Visible: Developing an Action Research Protocol for Elementary Mathematics Instruction

    Science.gov (United States)

    Rice, Linda J.; McKeny, Timothy S.

    2012-01-01

    Professional development is a well-established component of teacher change, and action research can make that change visible. In this study, quantitative and qualitative data were collected from 237 elementary teachers and intervention specialists from 33 federally-designated Appalachian counties of Southeastern Ohio who participated in the…

  2. The Relative Effectiveness of the Use of Static and Dynamic Mechanical Models in Teaching Elementary School Children the Theoretical Concept--The Particle Nature of Matter.

    Science.gov (United States)

    Ziegler, Robert Edward

    This study is concerned with determining the relative effectiveness of a static and dynamic theoretical model in teaching elementary school students to use the particle idea of matter when explaining certain physical phenomena. A clinical method of personal individual interview-testing, teaching, and retesting of a random sample population from…

  3. Research program in elementary particle theory. Progress report, 1974--1975

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1975-01-01

    Research on field theory models, phenomenological applications of field theory, strong interaction phenomenology, algebraic approaches to weak interactions, superdense matter, and a few related areas is summarized. Abstracts of AEC reports on this research are included. (U.S.)

  4. Research in particle physics

    International Nuclear Information System (INIS)

    1993-08-01

    This proposal presents the research accomplishments and ongoing activities of Boston University researchers in high energy physics. Some changes have been made in the structure of the program from the previous arrangement of tasks. Task B, Accelerator Design Physics, is being submitted as a separate proposal for an independent grant; this will be consistent with the nature of the research and the source of funding. We are active in seven principal areas which will be discussed in this report: Colliding Beams - physics of e + e - and bar pp collisions; MACRO Experiment - search for magnetic monopoles and study of cosmic rays; Proton Decay - search for nucleon instability and study of neutrino interactions; Particle Theory - theoretical high energy particle physics, including two Outstanding Junior Investigator awards; Muon G-2 - measurement of the anomalous magnetic moment of the muon; SSCintcal - calorimetry for the GEM Experiment; and Muon detectors for the GEM Experiment

  5. Particles colliders at the Large High Energy Laboratories

    International Nuclear Information System (INIS)

    Aguilar, M.

    1996-01-01

    In this work we present an elementary introduction to particle accelerators, a basic guide of existing colliders and a description of the large european laboratories devoted to Elementary Particle Physics. This work is a large, corrected and updated version of an article published in: Ciencia-Tecnologia-Medio Ambiente Annual report 1996 Edition el Pais (Author)

  6. Elementary analysis of interferometers for wave—particle duality test and the prospect of going beyond the complementarity principle

    International Nuclear Information System (INIS)

    Li Zhi-Yuan

    2014-01-01

    A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young's two-slit interferometer and the Mach—Zehnder two-arm interferometer with the focus placed on how to measure the interference pattern (wave nature) and the which-way information (particle nature) of quantum objects. We design several schemes to simultaneously acquire the which-way information for an individual quantum object and the high-contrast interference pattern for an ensemble of these quantum objects by placing two sets of measurement instruments that are well separated in space and whose perturbation of each other is negligibly small within the interferometer at the same time. Yet, improper arrangement and cooperation of these two sets of measurement instruments in the interferometer would lead to failure of simultaneous observation of wave and particle behaviors. The internal freedoms of quantum objects could be harnessed to probe both the which-way information and the interference pattern for the center-of-mass motion. That quantum objects can behave beyond the wave—particle duality and the complementarity principle would stimulate new conceptual examination and exploration of quantum theory at a deeper level. (general)

  7. Particle-type dependence of azimuthal anisotropy and nuclear modification of particle production in Au plus Au collisions at root s(NN)=200 GeV

    Czech Academy of Sciences Publication Activity Database

    Adams, J.; Adler, C.; Chaloupka, Petr; Filip, P.; Šumbera, Michal; Zborovský, Imrich

    2004-01-01

    Roč. 92, č. 5 (2004), 052302 ISSN 0031-9007 R&D Pro jects: GA ČR GA202/04/0793 Institutional research plan: CEZ:AV0Z1048901 Keywords : large transverse-momentum * elliptic flow * QCD Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.218, year: 2004

  8. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Chan, Lai-Him; Haymaker, R.; Imlay, R.; McNeil, R.; Metcalf, W.

    1991-01-01

    We describe theoretical work on effective action expansion of an effective low energy theory of hadrons, dynamical symmetry breaking, and lattice gauge theories. The high energy experimental group at Louisiana State University finished taking data on a neutrino oscillation experiment at LAMPF in 1989 and expects to complete the data analysis soon. LSU is also participating on an electron-positron experiment, AMY, that is running at TRISTAN in Japan. We plan to leave as of March 1, 1990 to concentrate on ZEUS and SSC activities. For ZEUS we are presently building the EMC waveshifters for the barrel calorimeter and participating on the calorimeter beam tests at Fermilab

  9. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Chan, L.H.; Haymaker, R.; Imlay, R.; McNeil, R.; Metcalf, W.; Svoboda, R.

    1992-01-01

    Theoretical work on effective action expansion on an effective low; energy theory of hadron, dynamical symmetry breaking, and lattice gauge theories is described. The high-energy experimental group at Louisiana State University has analyzed data on a neutrino oscillation experiment at LAMPF. Preparations for the LSND neutrino experiment have stated. IMB data have also been analyzed. On the ZEUS electron n-proton colliding bean experiment, the production of the barrel calorimeter has been completed. Several modules of the calorimeter have been tested at Fermilab, and preparations for data taking are underway

  10. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Abbott, L.F.; Bensinger, J.R.; Blocker, C.A.

    1990-01-01

    This paper discusses: CDF analysis; CDF system support; SSC laboratory development; solenoidal detector collaboration program; meson spectroscopy; conformal field theory; wormholes in quantum gravity; neural networks. (FI)

  11. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Chan, Lai-Him; Haymaker, R.; Imlay, R.; McNeil, R.; Metcalf, W.; Svoboda, R.

    1993-01-01

    Theoretical work on effective action expansion, low-energy models of hadrons and lattice gauge theories is reported. The progress on the electron-proton experiment ZEUS in Germany, LSND neutrino experiment at LAMPF, the Dumand experiment in Hawaii, and the Super Kamiokande experiment in Japan is described. Results from IMB are described

  12. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Abbott, L.F.; Bensinger, J.R.; Blocker, C.A.

    1991-01-01

    This report discusses the following topics: Z neutral boson decay asymmetry; B-anti-B mixing; top quark search; measurement of the inclusive central jet cross section; search for pair produced leptoquarks at cdf; direct photon production; calibration of cdf; hadronic energy scale for the cdf central calorimeters; skyrme model; two and three dimensional field theory; the path integral on a branched manifold; and mean-field theory of neural networks

  13. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Chan, Lai-Him; Haymaker, R.; Imlay, R.; McNeil, R.; Metcalf, W.; Svoboda, R.

    1992-01-01

    We describe theoretical work on effective action expansion on an effective low energy theory of hadrons and lattice gauge theories. The high energy experimental group at Louisiana State University has analyzed data on a neutrino oscillation experiment at LAMPF. The LSND neutrino experiment is preparing to take data in 1993. IMB data has been analyzed. Preparations for a beam test at KEK for IMB are in progress. Dumand is preparing to test one string of the detector early next summer. The ZEUS electron proton colliding beam experiment has started to take data. Early results have been reported

  14. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Chan, Lai-Him; Haymaker, R.; Imlay, R.; McNeil, R.; Metcalf, W.

    1990-01-01

    We describe theoretical work on effective action expansion of an effective low energy theory of hadrons, dynamical symmetry breaking, and lattice gauge theories. The high energy experimental group at Louisiana State University has finished taking data on a neutrino oscillation experiment at LAMPF. Results for the 1987 data have been published. Analysis of 1988 and 1989 data is in progress. LSU is also participating in an electron-positron experiment, AMY, that is running at TRISTAN in Japan. LSU is responsible for the muon detector for AMY. Many results have been published. We have recently joined an electron-proton experiment, ZEUS

  15. Research on elementary particle physics

    International Nuclear Information System (INIS)

    Holloway, L.E.; O'Halloran, T.A.

    1992-05-01

    This report describes the activities of the University of Illinois Experimental High Energy Physics Group. The physicists in the University of Illinois High Energy Physics Group are engaged in a wide variety of experiments at current and future accelerator laboratories. These include: (1) The CDF experiment at the Fermilab Tevetron p bar p collider. (2) Design and developmental work for the SDC group at SSCL. (3) Experiments at the wide band photon beam at Fermilab. (4) The SLD experiment at SLAC and design studies for a τ-charm factor. (5) CP violation experiments at Fermilab. (6) The HiRes cosmic ray experiment at Dugway Proving Grounds, Utah. (7) Computational facilities. (8) Electronics systems development

  16. The Higgs--physical and number theoretical arguments for the necessity of a triple elementary particle in super symmetric spacetime

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2004-01-01

    A careful counting routine of all experimentally confirmed elementary particles plus the theoretically conjectured ones needed for a sound formulation of a mathematically consistent field theory is undertaken within a minimal N=1 super symmetric extension of the standard model of high energy physics. The number arrived at is subsequently linked to certain massless on shell representations connected to the quantized gravity interaction. Finally with the help of number theoretical arguments arising from a rigorous application of the formalism of transfinite Heterotic super string and E-infinity theory, we show that the proposed scheme would lack mathematical consistency and elegant simplicity unless we retain a postulated triplet which is logically identified as the H + , H - and H 0 Higgs particles. Connections to the 11 dimensional M theory and Harari's extended 'sub-quarks' theory is also discussed

  17. Electron cooling and elementary particle physics

    International Nuclear Information System (INIS)

    Budker, G.I.; Skrinskij, A.N.

    1978-01-01

    This review is devoted to a new method in experimental physics - the electron cooling. This method opens possibilities in storing the intense and highly monochromatic beams of heavy particles and allows to carry out a wide series of experiments of a high luminocity and resolution. The method is based on the beam cooling by an accompanying flux of electrons. The cooling is due to Coulomb collisions of the beam particles with electrons. In the first part the theoretical aspects of the method are considered shortly. The layout of the NAP-M installation with electron cooling and results of successful experiments on cooling the proton beam are given. In the second part the new possibilities are discussed which appear due to application of electron cooling: storing the intense antiproton beams and realization of the proton - antiproton colliding beams, carrying out experiments with the super fine targets in storage rings, experiments with particles and antiparticles at ultimately low energies, storing the polarized antiprotons and other particles, production of antiatoms, antideuton storing, experiments with ion beams

  18. Research in elementary particle physics. Technical progress report, June 1, 1993--May 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Bensinger, J.R.; Blocker, C.A.; Kirsch, L.E.; Schnitzer, H.J.

    1995-02-01

    The Brandeis experimental particle physics group has for many years pursued an understanding of physical interactions at the highest available energies. To this end they have been active in the development of the Collider Detector at Fermilab (CDF) and in the development of detectors that were planned for the SSC. They have also had an active program of analysis to understand the data and its implications from these detectors. Brandeis remains fully engaged in the understanding of physical interactions at the highest available energies. While pursuing physics analysis, detector support activities and detector upgrades at CDF, they are also exploring the physics potential of the LHC. Pending overall agreements between the Department of Energy and CERN, the authors have joined the ATLAS experiment at CERN. The expertise gained in planning SSC detectors is directly applicable there. During the past year, the theoretical physics group pursued research in quantum field theory, with the 1/N expansion and other non-perturbative methods providing a unifying theme of much of this work. Activities centered on large N limit in scalar field theories, and two-dimensional Yang-Mills theories.

  19. Research in elementary particle physics. Technical progress report, June 1, 1993--May 31, 1994

    International Nuclear Information System (INIS)

    Bensinger, J.R.; Blocker, C.A.; Kirsch, L.E.; Schnitzer, H.J.

    1995-01-01

    The Brandeis experimental particle physics group has for many years pursued an understanding of physical interactions at the highest available energies. To this end they have been active in the development of the Collider Detector at Fermilab (CDF) and in the development of detectors that were planned for the SSC. They have also had an active program of analysis to understand the data and its implications from these detectors. Brandeis remains fully engaged in the understanding of physical interactions at the highest available energies. While pursuing physics analysis, detector support activities and detector upgrades at CDF, they are also exploring the physics potential of the LHC. Pending overall agreements between the Department of Energy and CERN, the authors have joined the ATLAS experiment at CERN. The expertise gained in planning SSC detectors is directly applicable there. During the past year, the theoretical physics group pursued research in quantum field theory, with the 1/N expansion and other non-perturbative methods providing a unifying theme of much of this work. Activities centered on large N limit in scalar field theories, and two-dimensional Yang-Mills theories

  20. The mass spectrum of high energy elementary particles via El Naschie's E(∞) golden mean nested oscillators, the Dunkerly-Southwell eigenvalue theorems and KAM

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2003-01-01

    In the present work we give a classical nested mechanical model and corresponding expressions for the theoretical masses of elementary particles, including the masses of quarks as being the joint eigenvalues of combined vibrating sets using the Southwell and the Dunkerly theorems. The role played by the golden mean in KAM theory and consequently our present model is also discussed

  1. The Higgs and the expectation value of the number of elementary particles in a supersymmetric extensions of the standard model of high energy physics

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2005-01-01

    Supersymmetry, colours and chirality are utilized to develop three minimally extended versions of the standard model. Based on these models, it is possible to predict that few new elementary particles are likely to be found experimentally at an energy scale which is very modestly above that of the electroweak. Connections to the 8064 massless states of Heterotic string theory are also discussed

  2. On the origin of particle fluxes from thunderclouds

    International Nuclear Information System (INIS)

    Chilingarian, A.; Chilingaryan, S.; Karapetyan, T.; Khanikyants, Y.; Pokhsraryan, D.; Soghomonyan, S.

    2017-01-01

    We present the observational data on registration of atmospheric discharges simultaneously with the detection of elementary particles performed during thunderstorms at 3200m altitudes above sea level on Mt. Aragats in Armenia. Throughout the 2016 summer campaign on Aragats we monitored lightning occurrences and signals from NaI spectrometers, plastic scintillators, and Neutron Monitor proportional counters, and analyzed the shape of registered pulses. Particle detector signals were synchronized with lightning occurrences on microsecond time scale. Our measurements prove that all signals registered by particle detectors simultaneously with lightning were Electromagnetic interferences (EMI) and not typical responses of particle detectors on the passage of neutral or charged elementary particles. (author)

  3. Elementary particles and high energy phenomena: Progress report

    International Nuclear Information System (INIS)

    Cumalat, J.P.

    1988-01-01

    This paper reviews the research being done at the University of Colorado in High Energy Physics. Topics discussed in this paper are: Charmed Photoproduction; Hadronic Production of Charm Particles; Photoproduction of States Containing Heavy Quarks; Electron-Positron Physics with the MAC Detector at PEP; Electron-Positron Physics with the Upgraded Mark II Detector at SLC; The SLD Detector at SLC; Nonperturbative Studies of QCD; Hadron Phenomenology - Application to Experiment; Perturbative QCD and Weak Matrix Elements; Quarkonium Physics; Supersymmetry, Supergravity, and Superstrings; and Experimental Gravity. 50 refs., 13 figs

  4. Chapter 8. Elementary notions on the quantum theory of potential scattering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Elementary notions in quantum theory of potential scattering are exposed: stationary states of scattering, calculus of cross section, scattering by central potential, phase shift method. In complement, these questions are studied: free particle (stationary states of well defined kinetic momentum); phenomenological description of collisions with absorption; elementary examples of application of the scattering theory [fr

  5. When is a particle

    International Nuclear Information System (INIS)

    Drell, S.D.

    1978-01-01

    The concept of elementary constituents or ultimate building blocks of nature in recent years is reviewed. The quark hypothesis, neutrinos, color, hard collisions, psi and other recent resonances, flavor, quantum chromodynamics, the tau particle, and particle structure are among the ideas considered. 22 references

  6. An introduction to particle dark matter

    CERN Document Server

    Profumo, Stefano

    2017-01-01

    What is the dark matter that fills the Universe and binds together galaxies? How was it produced? What are its interactions and particle properties?The paradigm of dark matter is one of the key developments at the interface of cosmology and elementary particle physics. It is also one of the foundations of the standard cosmological model. This book presents the state of the art in building and testing particle models for dark matter. Each chapter gives an analysis of questions, research directions, and methods within the field. More than 200 problems are included to challenge and stimulate the reader's knowledge and provide guidance in the practical implementation of the numerous 'tools of the trade' presented. Appendices summarize the basics of cosmology and particle physics needed for any quantitative understanding of particle models for dark matter.This interdisciplinary textbook is essential reading for anyone interested in the microscopic nature of dark matter as it manifests itself in particle physics ex...

  7. Public Lecture | Philipe Lebrun | "Particle accelerators" | 2 September

    CERN Multimedia

    2014-01-01

    "Les accélérateurs de particules : vecteurs de découvertes, moteurs de développement", by Dr. Philippe Lebrun.   2 September 2014 - 7:30 p.m. Globe of Science and Innovation Particle accelerators have been used in fundamental research for over a century, allowing physicists to discover elementary particles and study them at increasingly smaller scales. Making use of emerging technologies whose progress they helped to stimulate, they developed exponentially throughout the 20th century to become major tools for research today, not only in particle physics but also – as powerful radiation sources for probing matter – in atomic and molecular physics, condensed matter physics and materials science. They have also found applications in society, where they are increasingly used in a wide range of fields including applied sciences, medicine (research and clinical applications) and industry. The lecture will cover examples ...

  8. Pre-Service Elementary Mathematics Teachers' Metaphors on Scientific Research and Foundations of Their Perceptions

    Science.gov (United States)

    Bas, Fatih

    2016-01-01

    In this study, it is aimed to investigate pre-service elementary mathematics teachers' perceptions about scientific research with metaphor analysis and determine the foundations of these perceptions. This phenomenological study was conducted with 182 participants. The data were collected with two open-ended survey forms formed for investigating…

  9. Cross-Cultural Research on the Creativity of Elementary School Students in Korea and Australia

    Science.gov (United States)

    Kyunghwa, Lee; Hyejin, Yang

    2016-01-01

    The purpose of this study was to understand cultural differences and similarities in children's creative characteristics in Korea and Australia. In this cross-cultural research, the Integrative Creativity Test (K-ICT, [13]) with identified validity and reliability for measuring elementary school students' creative ability and creative personality,…

  10. Research in elementary particle physics. Progress report, May 1, 1983-February 29, 1984

    International Nuclear Information System (INIS)

    Chan, L.H.; Haymaker, R.; Imlay, R.; Metcalf, W.

    1984-01-01

    Theoretical work on an effective low energy theory of hadrons, dynamical symmetry breaking, supersymmetry and the phenomenology of Higgs Particles is described. Also, the high energy experimental group at Louisiana State University is collaborating with Columbia, Stony Brook, and the Max Planck Institute on an experiment in progress at the North Area of CESR. This experiment is the study of electron-positron annihilations in the region of the new upsilon family of particles with an apparatus optimized for detecting leptons and photons. The UPSILON''' has been observed with properties consistent with its being above threshold for B meson production and several decay modes have been studied in detail. The ππ decays of the UPSILON' and UPSILON'' have also been measured as well as electronmagnetic transition among the b anti b bound states. LSU has contributed the muon detector for the experiment. We expect to conclude our participation in this experiment by May 1984. The LSU group has joined a collaboration to measure neutrino oscillations at Los Alamos. We are now building the equipment for this experiment and should be taking data by the end of 1984. Publications are listed

  11. On a connection between the VAK, knot theory and El Naschie's theory of the mass spectrum of the high energy elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Marek-Crnjac, L

    2004-02-01

    In the present work we give an introduction to the {epsilon}{sup ({infinity}}{sup )} Cantorian space-time theory. In this theory every particle can be interpreted as a scaling of another particle. Some particles are a scaling of the proton and are expressed in terms of phi and {alpha}-bar{sub 0}. Following the VAK suggestion of El Naschie, the limit sets of Kleinian groups are Cantor sets with Hausdorff dimension phi or a derivative of phi such as 1/phi, 1/phi{sup 2}, 1/phi{sup 3}, etc. Consequently and using {epsilon}{sup ({infinity}}{sup )} theory, the mass spectrum of elementary particles may be found from the limit set of the Moebius-Klein geometry of quantum space-time as a function of the golden mean phi=({r_brace}5-1)/2=0.618033989 as discussed recently by Datta (see Chaos, Solitons and Fractals 17 (2003) 621-630)

  12. Elementary particle interactions. Progress report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.

    1992-10-01

    Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out.

  13. Beyond the God particle

    CERN Document Server

    Lederman, Leon M

    2013-01-01

    On July 4, 2012, the long-sought Higgs Boson--aka "the God Particle"--was discovered at the world's largest particle accelerator, the LHC, in Geneva, Switzerland. On March 14, 2013, physicists at CERN confirmed it. This elusive subatomic particle forms a field that permeates the entire universe, creating the masses of the elementary particles that are the basic building blocks of everything in the known world--from viruses to elephants, from atoms to quasars.

  14. Elementary particle physics

    International Nuclear Information System (INIS)

    Kenyon, I.R.

    1987-01-01

    Intended for undergraduate and postgraduate students the book concentrates on the 'standard model' and the gauge symmetries. Leptons, quarks and forces are introduced at the beginning, followed by experimental techniques which have found them. Gauge theories are dealt with in order of increasing complexity - quantum electrodynamics and the gauge principle, symmetries and conservation laws, colour and quantum chromodynamics, the V - A theory of weak interactions and electroweak unification. Attention is then focussed on the hadrons. Deep inelastic scattering of hadrons is explained first, then hadron spectroscopy and then hadron interactions. Current developments beyond the Standard model - grand unification, supersymmetry, cosmology and gravitation -are discussed in the final chapter. The appendices cover kinematic, cross-section and decay-rate formulae, Breit-Wigner resonances, some Clebsch-Gordan coefficient tables, a table of particle properties, exercises and answers, and the Dirac equation. There is also an appendix on calculating scattering amplitudes for fermion + fermion going to fermion + fermion. A list of references is given. (U.K.)

  15. Social aspects of Japanese particle physics in the 1950s

    International Nuclear Information System (INIS)

    Konuma, Michiji

    1989-01-01

    Military and social restrictions imposed on Japanese scientific research following the second world war made nuclear or particle physics experiments almost impossible. However, the (Japanese) theoretical achievements of the 1940s considerably buoyed this group, namely two-meson theory, super-many-time theory and covariant renormalization theory. Economic conditions were also difficult with high inflation throughout the 1950s. Printing and distribution problems and paper shortages reduced the circulation of scientific journals, but theoretical work progressed well even in isolation. Within Japan, a circular called Soyrushiron Kenkyu (elementary particle theory research) became a valuable medium for exchange of new ideas and information. A Research Institute for Fundamental Physics, the first of several Japanese research institutes, was opened at Kyoto University in 1953, when a major international conference was held there. The second half of the 1950s was a time of expansion and consolidation for particle physics in Japan. (UK)

  16. Search for massive long-lived highly ionising particles with the ATLAS detector at the LHC

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Chudoba, Jiří; Gallus, Petr; Gunther, Jaroslav; Havránek, Miroslav; Hruška, I.; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Kvasnička, Jiří; Lipinský, L.; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Panušková, M.; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Staroba, Pavel; Taševský, Marek; Tic, Tomáš; Valenta, J.; Vrba, Václav

    2011-01-01

    Roč. 698, č. 5 (2011), s. 353-370 ISSN 0370-2693 R&D Projects: GA MŠk LA08015; GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : charged particle: long-lived * charge: electric * ionization: energy loss * calorimeter : electromagnetic * ATLAS * CERN LHC * p p: interaction Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.955, year: 2011

  17. Elementary operators - still not elementary?

    Directory of Open Access Journals (Sweden)

    Martin Mathieu

    2016-01-01

    Full Text Available Properties of elementary operators, that is, finite sums of two-sided multiplications on a Banach algebra, have been studied under a vast variety of aspects by numerous authors. In this paper we review recent advances in a new direction that seems not to have been explored before: the question when an elementary operator is spectrally bounded or spectrally isometric. As with other investigations, a number of subtleties occur which show that elementary operators are still not elementary to handle.

  18. LAPP - Annecy le Vieux Particle Physics Laboratory. Activity report 1996-1997

    International Nuclear Information System (INIS)

    Colas, Jacques; Minard, Marie-Noelle; Decamp, Daniel; Marion, Frederique; Drancourt, Cyril; Riva, Vanessa; Berger, Nicole; Bombar, Claudine; Dromby, Gerard

    2004-01-01

    LAPP is a high energy physics laboratory founded in 1976 and is one of the 19 laboratories of IN2P3 (National Institute of Nuclear and particle physics), institute of CNRS (National Centre for Scientific Research). LAPP is joint research facility of the University Savoie Mont Blanc (USMB) and the CNRS. Research carried out at LAPP aims at understanding the elementary particles and the fundamental interactions between them as well as exploring the connections between the infinitesimally small and the unbelievably big. Among other subjects LAPP teams try to understand the origin of the mass of the particles, the mystery of dark matter and what happened to the anti-matter that was present in the early universe. LAPP researchers work in close contact with phenomenologist teams from LAPTh, a theory laboratory hosted in the same building. LAPP teams also work since several decades at understanding the neutrinos, those elementary almost massless particles with amazing transformation properties. They took part in the design and realization of several experiments. Other LAPP teams collaborate in experiments studying signals from the cosmos. This document presents the activities of the laboratory during the years 1996-1997: 1 - Presentation of LAPP; 2 - Data acquisition experiments: e"+e"- annihilations at LEP (standard model and beyond the standard model - ALEPH, Study of hadronic final state events and Search for supersymmetric particles at L3 detector); Neutrino experiments (neutrino oscillation search at 1 km of the Chooz reactors, search for neutrino oscillations at the CERN Wide Band neutrino beam - NOMAD); Quarks-Gluons plasma; Hadronic spectroscopy; 3 - Experiments under preparation (CP violation study - BABAR, Anti Matter Spectrometer in Space - AMS, Search for gravitational waves - VIRGO, Search for the Higgs boson - ATLAS and CMS); 4 - Technical departments; 5 - Theoretical physics; 6 - Other activities

  19. The search for fractional charge elemental particles and very massive particles in bulk matter

    International Nuclear Information System (INIS)

    Perl, M.

    2000-01-01

    The authors describe their ongoing work on, and future plans for, searches in bulk matter for fractional charge elementary particles and very massive elementary particles. Their primary interest is in searching for such particles that may have been produced in the early universe and may be found in the more primeval matter available in the solar system: meteorites, material from the moon's surface, and certain types of ancient terrestrial rocks. In the future the authors are interested in examining material brought back by sample return probes from asteroids. The authors will describe their experimental methods that are based on new modifications of the Millikan liquid drop technique and modern technology: micromachining, CCD cameras, and desktop computers. Extensions of the experimental methods and technology allow searches for very massive charged particles in primeval matter; particles with masses greater than 1,013 GeV. In the first such searches carried out on earth there will be uncertainties in the mass search range. Therefore the authors will also discuss the advantages of eventually carrying out such searches directly on an asteroid

  20. The mass spectrum of high energy elementary particles via El Naschie's E sup ( supinfinity sup ) golden mean nested oscillators, the Dunkerly-Southwell eigenvalue theorems and KAM

    CERN Document Server

    Marek-Crnjac, L

    2003-01-01

    In the present work we give a classical nested mechanical model and corresponding expressions for the theoretical masses of elementary particles, including the masses of quarks as being the joint eigenvalues of combined vibrating sets using the Southwell and the Dunkerly theorems. The role played by the golden mean in KAM theory and consequently our present model is also discussed.

  1. Teacher collaboration and elementary science teaching: Using action research as a tool for instructional leadership

    Science.gov (United States)

    Roberts, Sara Hayes

    The primary purpose of this action research study was to explore an elementary science program and find ways to support science education as an administrator of an elementary school. The study took place in a large suburban school system in the southeastern United States. Seven teachers at a small rural school volunteered to participate in the study. Each participant became an active member of the research by determining what changes needed to take place and implementing the lessons in science. The study was also focused on teacher collaboration and how it influenced the science instruction. The data collected included two interviews, ten observations of science lessons, the implementation of four science units, and informal notes from planning sessions over a five month period. The questions that guided this study focused on how teachers prepare to teach science through active learning and how instruction shifts due to teacher collaboration. Teachers were interviewed at the beginning of the study to gain the perceptions of the participants in the areas of (a) planning, (b) active learning, (c) collaboration, and (d) teaching science lessons. The teachers and principal then formed a research team that determined the barriers to teaching science according to the Standards, designed units of study using active learning strategies, and worked collaboratively to implement the units of study. The action research project reviewed the National Science Education Standards, the theory of constructivism, active learning and teacher collaboration as they relate to the actions taken by a group of teachers in an elementary school. The evidence from this study showed that by working together collaboratively and overcoming the barriers to teaching science actively, teachers feel more confident and knowledgeable about teaching the concepts.

  2. Interference of two-particle states in elementary particle physics and in astronomy

    International Nuclear Information System (INIS)

    Kopylov, G.I.; Podgoretskij, M.I.

    1975-01-01

    Comparison is given of two versions of an experiment for observing of the interference of two-particle states of identical particles: time - space and momentum - energy versions. Both versions are considered in detail and make it possible to measure dimensions of particle souces. An interesting symmetry has been found. Expressions for the phase of interfering states in both versions of the experiment are obtained by mutual replacement of particle sources on their detector. An imaginary experiment is suggested which makes it possible to follow how these mutually exclusive versions of the experiment turn one into another

  3. Engineering at the Elementary Level

    Science.gov (United States)

    McGrew, Cheryl

    2012-01-01

    Can engineering technology be taught at the elementary level? Designing and building trebuchets, catapults, solar cars, and mousetrap vehicles in a west central Florida elementary class was considered very unusual in recent years. After a review of current research on failing schools and poor curriculum, the author wondered what her school could…

  4. 12th DESY Workshop on Elementary Particle Physics: Loops and Legs in Quantum Field Theory

    CERN Document Server

    LL2014

    2014-01-01

    The bi-annual international conference “Loops and Legs in Quantum Field Theory” has been held at Weimar, Germany, from April 27 to May 02, 2014. It has been the 12th conference of this series, started in 1992. The main focus of the conference are precision calculations of multi- loop and multi-leg processes in elementary particle physics for processes at present and future high-energy facilities within and beyond the Standard Model. At present many physics questions studied deal with processes at the LHC and future facilities like the ILC. A growing number of contributions deals with important developments in the field of computational technologies and algorithmic methods, including large-scale computer algebra, efficient methods to compute large numbers of Feynman diagrams, analytic summation and integration methods of various kinds, new related function spaces, precise numerical methods and Monte Carlo simulations. The present conference has been attended by more than 110 participants from all over the ...

  5. Heidelberg physicists report. Vol. 1. Reviews of research in physics and astronomy. Ways to the modern physics; Heidelberger Physiker berichten. Bd. 1. Rueckblicke auf Forschung in der Physik und Astronomie. Wege zur modernen Physik

    Energy Technology Data Exchange (ETDEWEB)

    Appenzeller, Immo; Dubbers, Dirk; Siebig, Hans-Georg; Winnacker, Albrecht (eds.)

    2017-07-01

    The following topics are dealt with: Memories of the physics from 1945 until 1970, from the atomic nucleus until the fission of uranium, the emergence of the physics of the atomic nuclei, 43 years of elementary-particle physics, 60 years of research, elementary particles and forces of physics. (HSI)

  6. Research in elementary particle physics. Progress report, March 1, 1985-February 28, 1986

    International Nuclear Information System (INIS)

    Chan, L.H.; Haymaker, R.; Imlay, R.; Metcalf, W.

    1985-01-01

    We describe theoretical work on an effective low energy theory of hadrons, dynamical symmetry breaking, anomalies, supersymmetry and the phenomenology of Higgs particles. The high energy experimental group at Louisiana State University is participating on a neutrino oscillation experiment at LAMPF. The apparatus is built and almost ready to take test data. LSU is also participating on an electron-positron experiment, AMY, that will run at TRISTAN in Japan. LSU is working on the muon detector for AMY. Data taking may begin by the end of 1986

  7. Introduction to particle physics

    International Nuclear Information System (INIS)

    Zitoun, R.

    2000-01-01

    This book proposes an introduction to particle physics that requires only a high-school level mathematical knowledge. Elementary particles (leptons, quarks, bosons) are presented according to a modern view taking into account of their symmetries and interactions. The author shows how physicists have elaborated the standard model and what are its implications in cosmology. (J.S.)

  8. Concepts of particle physics

    International Nuclear Information System (INIS)

    Gottfried, K.; Weisskopf, V.F.

    1984-01-01

    This volume elucidates basic and well-established concepts of particle physics for the autodidact who is curious about recent developments in fundamental physics. Elementary quantum mechanics is a background must. Contents, abridged: The evolution of the particle concept before the advent of quantum mechanics. Nonrelativistic quantum mechanics and atomic physics. Relativistic quantum theory. Nuclear phenomena. Subnuclear phenomena. Index

  9. Gauge theory and elementary particles

    International Nuclear Information System (INIS)

    Zwirn, H.

    1982-01-01

    The present orientation of particle physics, founded on local gauge invariance theories and spontaneous symmetry breaking is described in a simple formalism. The application of these ideas to the latest theories describing electromagnetic and weak interactions (Glashow, Weinberg, Salam models) and strong interactions, quantum chromodynamics, is presented so as to give a general picture of the mechanisms subtending these theories [fr

  10. CrossRef Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Aguilar, M; Alpat, B; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeǧmez-du Pree, S; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M  J; Bourquin, M; Bueno, E  F; Burger, J; Cadoux, F; Cai, X  D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cernuda, I; Cervelli, F; Chae, M  J; Chang, Y  H; Chen, A  I; Chen, G  M; Chen, H  S; Cheng, L; Chou, H  Y; Choumilov, E; Choutko, V; Chung, C  H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y  M; Delgado, C; Della Torre, S; Demirköz, M  B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R  J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D  M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guerri, I; Guo, K  H; Habiby, M; Haino, S; Han, K  C; He, Z  H; Heil, M; Hoffman, J; Hsieh, T  H; Huang, H; Huang, Z  C; Huh, C; Incagli, M; Ionica, M; Jang, W  Y; Jinchi, H; Kang, S  C; Kanishev, K; Kim, G  N; Kim, K  S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M  S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H  T; Lee, S  C; Leluc, C; Li, H  S; Li, J  Q; Li, Q; Li, T  X; Li, W; Li, Z  H; Li, Z  Y; Lim, S; Lin, C  H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lu, S  Q; Lu, Y  S; Luebelsmeyer, K; Luo, F; Luo, J  Z; Lv, S  S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D  C; Morescalchi, L; Mott, P; Nelson, T; Ni, J  Q; Nikonov, N; Nozzoli, F; Nunes, P; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X  M; Qin, X; Qu, Z  Y; Räihä, T; Rancoita, P  G; Rapin, D; Ricol, J  S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S  M; Schulz von Dratzig, A; Schwering, G; Seo, E  S; Shan, B  S; Shi, J  Y; Siedenburg, T; Son, D; Song, J  W; Sun, W  H; Tacconi, M; Tang, X  W; Tang, Z  C; Tao, L; Tescaro, D; Ting, Samuel C  C; Ting, S  M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J  P; Vitale, V; Vitillo, S; Wang, L  Q; Wang, N  H; Wang, Q  L; Wang, X; Wang, X  Q; Wang, Z  X; Wei, C  C; Weng, Z  L; Whitman, K; Wienkenhöver, J; Willenbrock, M; Wu, H; Wu, X; Xia, X; Xiong, R  Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y  J; Yu, Z  Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J  H; Zhang, S  D; Zhang, S  W; Zhang, Z; Zheng, Z  M; Zhu, Z  Q; Zhuang, H  L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P

    2016-01-01

    A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×105 antiproton events and 2.42×109 proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500  GV, the antiproton p¯, proton p, and positron e+ fluxes are found to have nearly identical rigidity dependence and the electron e− flux exhibits a different rigidity dependence. Below 60 GV, the (p¯/p), (p¯/e+), and (p/e+) flux ratios each reaches a maximum. From ∼60 to ∼500  GV, the (p¯/p), (p¯/e+), and (p/e+) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.

  11. Preparing Elementary Prospective Teachers to Teach Early Algebra

    Science.gov (United States)

    Hohensee, Charles

    2017-01-01

    Researchers have argued that integrating early algebra into elementary grades will better prepare students for algebra. However, currently little research exists to guide teacher preparation programs on how to prepare prospective elementary teachers to teach early algebra. This study examines the insights and challenges that prospective teachers…

  12. Karlsruhe Nuclear Research Centre. Report on the results of research and development 1985

    International Nuclear Information System (INIS)

    1986-01-01

    The report contains a description of the research projects, a list of the institutes and departments of the scientific-technical range with short articles concerning the results of the institutional work, and a bibliography of all publications of 1985. The main aspects of the projects and research programs are fast breeder, separation nozzle process, nuclear fusion, waste recycling and reprocessing, final storage, nuclear safety, the range of technique-man-environment, solid state and materials research, nuclear and elementary particle physics, and research programs of different institutes. (HK)

  13. [Research programs on elementary particle and field theories and superconductivity

    International Nuclear Information System (INIS)

    Khuri, N.N.

    1992-01-01

    Research of staff members in theoretical physics is presented in the following areas: super string theory, a new approach to path integrals, new ideas on the renormalization group, nonperturbative chiral gauge theories, the standard model, K meson decays, and the CP problem. Work on high-T c superconductivity and protein folding is also related

  14. Accelerator Technology: Geodesy and Alignment for Particle Accelerators

    CERN Document Server

    Missiaen, D

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.9 Geodesy and Alignment for Particle Accelerators' of the Chapter '8 Accelerator Technology' with the content: 8.9 Geodesy and Alignment for Particle Accelerators 8.9.1 Introduction 8.9.2 Reference and Co-ordinate Systems 8.9.3 Definition of the Beam Line on the Accelerator Site 8.9.4 Geodetic Network 8.9.5 Tunnel Preliminary Works 8.9.6 The Alignment References 8.9.7 Alignment of Accelerator Components 8.9.8 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles 8.9.9 Alignment of Detector Components

  15. Duality and 'particle' democracy

    Science.gov (United States)

    Castellani, Elena

    2017-08-01

    Weak/strong duality is usually accompanied by what seems a puzzling ontological feature: the fact that under this kind of duality what is viewed as 'elementary' in one description gets mapped to what is viewed as 'composite' in the dual description. This paper investigates the meaning of this apparent 'particle democracy', as it has been called, by adopting an historical approach. The aim is to clarify the nature of the correspondence between 'dual particles' in the light of a historical analysis of the developments of the idea of weak/strong duality, starting with Dirac's electric-magnetic duality and its successive generalizations in the context of (Abelian and non-Abelian) field theory, to arrive at its first extension to string theory. This analysis is then used as evidential basis for discussing the 'elementary/composite' divide and, after taking another historical detour by analyzing an instructive analogy case (DHS duality and related nuclear democracy), drawing some conclusions on the particle-democracy issue.

  16. TransPlanckian Particles and the Quantization of Time

    NARCIS (Netherlands)

    Hooft, G. 't

    1999-01-01

    Trans-Planckian particles are elementary particles accelerated such that their energies surpass the Planck value. There are several reasons to believe that trans-Planckian particles do not represent independent degrees of freedom in Hilbert space, but they are controlled by the cis-Planckian

  17. Fostering Student Sense Making in Elementary Science Learning Environments: Elementary Teachers' Use of Science Curriculum Materials to Promote Explanation Construction

    Science.gov (United States)

    Zangori, Laura; Forbes, Cory T.; Biggers, Mandy

    2013-01-01

    While research has shown that elementary (K-5) students are capable of engaging in the scientific practice of explanation construction, commonly-used elementary science curriculum materials may not always afford them opportunities to do so. As a result, elementary teachers must often adapt their science curriculum materials to better support…

  18. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1989-01-01

    Study of muon catalysis of nuclear fusion and phenomena commonly referred to as cold fusion has been central to our effort. Muon catalyzed fusion research concentrated primarily on the identification of energy efficient production of muons, and the understanding and control of the density dependence of auto-poisoning (sticking) of the catalyst. We have also developed the in-flight fusion description of the tμ-d reaction, and work in progress shows promise in explaining the fusion cycle anomalies and smallness of sticking as a consequence of the dominant role of such reactions. Our cold fusion work involved the exploration of numerous environments for cold fusion reactions in materials used in the heavy water electrolysis, with emphasis on reactions consistent with the conventional knowledge of nuclear physics reactions. We then considered the possibility that a previously unobserved ultra-heavy particle X - is a catalyst of dd fusion, explaining the low intensity neutrons observed by Jones et. al. 29 refs

  19. Accelerating research into the Higgs boson particle

    CERN Multimedia

    Nikolaidou, Rosy

    "The only Standard Model particle yet to be observed, the search for the Higgs Boson - the so-called 'God Particle' - demands advanced facilities and physics expertise. At the Cern laboratory in Switzerland, the ARTEMIS project is well-placed to pursue research in this area" (2 pages)

  20. Conferenza internazionale di Siena sulle particelle elementari

    CERN Multimedia

    1964-01-01

    Last year the editor of CERN Courier was privileged to be able to attend the Sienna international conference on elementary particles, held in the historic Italian city at the beginning of October. The following article is a personal recollection of the conference activities, both formal and informal, and of the physics that was discussed there.

  1. Research program in elementary particle theory

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Rosenzweig, C.; Schechter, J.; Wali, K.C.

    1992-01-01

    In this paper we give a brief account of the work of the group during the past year. The topics covered here include (1) Effective Lagrangians and Solitons; (2) Chern-Simons and Conformal Field Theories; (3) Spin and Statistics; (4) The Standard Model and Beyond; (5) Non-Abelian Monopoles; (6) The Inflationary Universe; (7) The Hubbard Model, and (8) Miscellaneous

  2. Elementary particles. From the atoms via the Standard Model until the Higgs boson. 2. ed.; Elementare Teilchen. Von den Atomen ueber das Standard-Modell bis zum Higgs-Boson

    Energy Technology Data Exchange (ETDEWEB)

    Bleck-Neuhaus, Joern [Bremen Univ. (Germany)

    2013-07-01

    The current state of knowledge of nuclear and elementary-particle physics has a checkered history, often characterized by shocking new concept formations, which also opens up to the present day students of physics only with difficulty. This book uses those controversial yet educational development in order to enable learners to improve access to the new concepts. It helps to understand how the physical picture of the smallest particles is today, and why it is so and not otherwise originated: Beginning in the detection of the atoms up to the current standard model of elementary-particle physics and the Higgs boson. So readers gain an impression of that great field, which is originated in the constant interplay between established theoretical models, confirmatory or contradictory findings, sometimes controversial new concept formations, and improved experiments - a process, that surely continues in the future. Guideline of the presentation is a comprehensible also in detail as possible reasoning argumentation. Students of physics before their B.Sc. degree will thus be able to acquire knowledge of the subatomic physics relating to general knowledge in their field. Also for physics teachers at schools or colleges, this new representation should be interesting. The second edition has been updated to the newest state of knowledge, in particular first results of the LHC have been incorporated.

  3. Measurements of underlying-event properties using neutral and charged particles in pp collisions at 900 GeV and 7 TeV with the ATLAS detector at the LHC

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Chudoba, Jiří; Gallus, Petr; Gunther, Jaroslav; Hruška, I.; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Kvasnička, Jiří; Lipinský, L.; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Panušková, M.; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Staroba, Pavel; Taševský, Marek; Tic, Tomáš; Valenta, J.; Vrba, Václav

    2011-01-01

    Roč. 71, č. 5 (2011), 1-24 ISSN 1434-6044 R&D Projects: GA MŠk LA08015; GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : underlying event * charged particle: particle flow * neutral particle: particle flow * correlation * Monte Carlo * calorimeter : cluster * ATLAS * CERN Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.631, year: 2011

  4. Topics in elementary scattering theory

    International Nuclear Information System (INIS)

    Imrie, D.C.

    1980-01-01

    In these lectures a summary is given of some of the fundamental ideas and formalism used to describe and understand the interactions of elementary particles. A brief review of relativistic kinematics is followed by a discussion of Lorentz-invariant variables for describing two-body processes, phase space and plots, such as the Dalitz plot, which can be used to study some aspects of the dynamics of an interaction, relatively free from kinematic complications. A general description of scattering and decay is given and then, more specifically, some aspects of two-body interactions in the absence of spin are discussed. Finally, complications that arise when particle spin has to be taken into account are considered. (U.K.)

  5. Elementary School Organization: Self-Contained and Departmentalized Classroom Structures.

    Science.gov (United States)

    Des Moines Public Schools, IA.

    Surveys were conducted to investigate contemporary thought regarding organizational practices at the elementary level, with particular attention to identifying the extent to which departmentalization was supported by research and actually employed in 24 elementary schools in the Midwest and in 41 Des Moines elementary schools. Four committees…

  6. The Particle Theory of Matter

    Science.gov (United States)

    Widick, Paul R.

    1969-01-01

    Described are activities that are designed to help elementary children understand the possibility of the particle theory of matter. Children work with beads, marbles, B-B shot and sand; by mixing these materials and others they are led to see that it is highly possible for the existence of particles which are not visible. (BR)

  7. Dark matter and particle physics

    International Nuclear Information System (INIS)

    Peskin, Michael E.

    2007-01-01

    Astrophysicists now know that 80% of the matter in the universe is 'dark matter', composed of neutral and weakly interacting elementary particles that are not part of the Standard Model of particle physics. I will summarize the evidence for dark matter. I will explain why I expect dark matter particles to be produced at the CERN LHC. We will then need to characterize the new weakly interacting particles and demonstrate that they the same particles that are found in the cosmos. I will describe how this might be done. (author)

  8. Perceptions of Elementary Teachers on the Instructional Leadership Role of School Principals

    Science.gov (United States)

    Yavuz, Mustafa; Bas, Gokhan

    2010-01-01

    In this research, elementary school principals' instructional leadership behavior was evaluated based on the perceptions of elementary school teachers. The research is believed to contribute to the development of instructional leadership behavior of elementary school principals for the development of school organization. A "semi-structured…

  9. Research in Particle Physics at the Santa Cruz Institute for Particle Physics, 2000-2003

    International Nuclear Information System (INIS)

    Abraham Seiden

    2003-01-01

    The Santa Cruz Institute for Particle Physics is an Organized Research Unit within the University of California system. This is a special structure allowing a focused emphasis on research and includes special commitments for space and personnel from the Santa Cruz campus. The Institute serves to consolidate the research in experimental and theoretical particle physics on campus. This report covers four separate experimental projects. The projects are the BaBar experiment, the ATLAS experiment, the GLAST space satellite, and work toward a Linear Collider and its detector. Research in High Energy Physics (last final report for period 1996-2000)

  10. Research at the Paul Scherrer Institut

    International Nuclear Information System (INIS)

    Walter, H.K.

    1996-01-01

    The Paul Scherrer Institut (PSI) is a multidisciplinary research institute for natural sciences and technology. In national and international collaboration with universities, other research institutes and industry, PSI is active in elementary particle physics, life sciences, solid-state physics, material sciences, nuclear and non-nuclear energy research, and energy-related ecology. PSI's priorities lie in research fields which are relevant to sustainable development, serve educational needs and are beyond the possibilities of a single university department. PSI develops and operates complex research installations open of the world's most powerful cyclotron, allowing to operate high intensity secondary pion and muon beams, a neutron spallation source and various applications in medicine and materials research. A short review on research at PSI is presented, with special concentration on particle physics experiments. (author)

  11. Tests of a Particle Flow Algorithm with CALICE test beam data

    Czech Academy of Sciences Publication Activity Database

    Adloff, C.; Blaha, J.; Blaising, J.J.; Cvach, Jaroslav; Gallus, Petr; Havránek, Miroslav; Janata, Milan; Kvasnička, Jiří; Lednický, Denis; Marčišovský, Michal; Polák, Ivo; Popule, Jiří; Tomášek, Lukáš; Tomášek, Michal; Růžička, Pavel; Šícho, Petr; Smolík, Jan; Vrba, Václav; Zálešák, Jaroslav

    2011-01-01

    Roč. 6, č. 7 (2011), s. 1-15 ISSN 1748-0221 R&D Projects: GA MŠk LA09042; GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : calorimeters * PFA * CALICE * calorimeter methods Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.869, year: 2011 http://iopscience.iop.org/1748-0221/6/07/P07005

  12. Research in high energy physics. Annual technical progress report, December 1, 1993--November 30, 1998

    International Nuclear Information System (INIS)

    Olsen, S.L.; Tata, X.

    1996-01-01

    The high energy physics research program at the University of Hawaii is directed toward the study of the properties of the elementary particles and the application of the results of these studies to the understanding of the physical world. Experiments using high energy accelerators are aimed at searching for new particles, testing current theories, and measuring properties of the known particles. Experiments using cosmic rays address particle physics and astrophysical issues. Theoretical physics research evaluates experimental results in the context of existing theories and projects the experimental consequences of proposed new theories

  13. Upper Elementary Students' Motivation to Read Fiction and Nonfiction

    Science.gov (United States)

    Parsons, Allison Ward; Parsons, Seth A.; Malloy, Jacquelynn A.; Gambrell, Linda B.; Marinak, Barbara A.; Reutzel, D. Ray; Applegate, Mary D.; Applegate, Anthony J.; Fawson, Parker C.

    2018-01-01

    This research explores upper elementary students' motivation to read fiction and nonfiction. Using expectancy-value theory, the researchers developed separate surveys to measure motivation to read fiction and nonfiction. Researchers administered surveys to 1,104 upper elementary students (grades 3-6) in multiple locations across the United States…

  14. Current Experiments in Particle Physics (September 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H.; Lehar, F.; Klyukhin, V.I.; Ryabov, Yu.G.; Bilak, S.V.; Illarionova, N.S.; Khachaturov, B.A.; Strokovsky, E.A.; Hoffman, C.M.; Kettle, P.-R.; Olin, A.; Armstrong, F.E.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries. This report contains full summaries of 180 approved current and recent experiments in elementary particle physics. The focus of the report is on selected experiments which directly contribute to our better understanding of elementary particles and their properties such as masses, widths or lifetimes, and branching fractions.

  15. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abajyan, T.; Abbott, B.; Böhm, Jan; Chudoba, Jiří; Gallus, Petr; Gunther, Jaroslav; Jakoubek, Tomáš; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Tic, Tomáš; Valenta, J.; Vrba, Václav; Zeman, Martin

    2012-01-01

    Roč. 716, č. 1 (2012), s. 1-29 ISSN 0370-2693 R&D Projects: GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : Higgs particle * diphoton final state * gauge boson * ATLAS Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.569, year: 2012 http://arxiv.org/abs/arXiv:1207.7214

  16. Charting the Course for Elementary Particle Physics

    Science.gov (United States)

    Richter, B.

    2007-02-16

    "It was the best of times; it was the worst of times" is the way Dickens begins the Tale of Two Cities. The line is appropriate to our time in particle physics. It is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. It is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. My task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. It is a time when we cannot afford the merely good, but must give first priority to the really important. The defining theme of particle physics is to learn what the universe is made of and how it all works. This definition spans the full range of size from the largest things to the smallest things. This particle physics revolution has its origins in experiments that look at both.

  17. Charting the Course for Elementary Particle Physics

    International Nuclear Information System (INIS)

    Richter, Burton

    2007-01-01

    ''It was the best of times; it was the worst of times'' is the way Dickens begins the Tale of Two Cities. The line is appropriate to our time in particle physics. It is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. It is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. My task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. It is a time when we cannot afford the merely good, but must give first priority to the really important. The defining theme of particle physics is to learn what the universe is made of and how it all works. This definition spans the full range of size from the largest things to the smallest things. This particle physics revolution has its origins in experiments that look at both

  18. Identified particle distributions in pp and Au+Au collisions at root s(NN)=200 GeV

    Czech Academy of Sciences Publication Activity Database

    Adams, J.; Adler, C.; Aggarwal, M. M.; Chaloupka, Petr; Filip, Pavel; Lednický, Richard; Šumbera, Michal; Zborovský, Imrich

    2004-01-01

    Roč. 92, č. 11 (2004), s. 112301 ISSN 0031-9007 R&D Projects: GA MŠk ME 475 Institutional research plan: CEZ:AV0Z1048901 Keywords : proton-antiproton collisions * plus Au reactions * excitation-function Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.218, year: 2004

  19. Aspects of experimental particle physics

    International Nuclear Information System (INIS)

    McCubbin, N.A.

    1986-11-01

    The paper contains three lectures on Experimental Particle Physics which were given at the 16th British Universities Summer School for Theoretical and Elementary Particle Physics, Durham, 1986. The first lecture briefly reviews the physics which underpins all particle detectors, and the second lecture describes how this physics influences a modern detector. The last lecture is concerned with the topics of beams and computers, and includes the physics of stochastic cooling and the Halting theorem. (U.K.)

  20. Elementary particle interactions. [Dept. of Physics and Astronomy, Univ. of Tennessee, Knoxville, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.

    1992-10-01

    Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out.

  1. Decommissioning of the research reactors at the Russian Research Centre Kurchatov Institute

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoy, N.N.; Ryantsev, E.P.; Kolyadin, V.I.; Kucharkin, N.E.; Melkov, E.S.; Gorlinsky, Yu.E.; Kyznetsova, T.I.; Bulkin, B.K.

    2002-01-01

    The Kurchatov Institute is the largest research center of Russia in the field of nuclear science and engineering. It comprises more than 10 research institutes and scientific-technological complexes carrying out research work in the field of safe development of atomic engineering, controlled thermonuclear fusion, and plasma physics, nuclear physics and elementary particle physics, research reactors, radiation materials technology, solid state physics and superconductivity, molecular and chemical physics, and also perspective know-how's, information science and ecology. This report is basically devoted to the decommissioning of the research reactor installations, in particular to the reactor MR because of the volume and complexity of actions involved. (author)

  2. Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Chudoba, Jiří; Gallus, Petr; Gunther, Jaroslav; Hruška, I.; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lipinský, L.; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Panušková, M.; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Tic, Tomáš; Valenta, J.; Vrba, Václav; Zeman, Martin

    2012-01-01

    Roč. 707, č. 5 (2012), s. 478-496 ISSN 0370-2693 R&D Projects: GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : massive postulated particle * neutralino * ATLAS * CERN LHC Coll * squark pair production * squark: decay * p p interacion Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.569, year: 2012 http://www. science direct.com/ science /article/pii/S0370269311015255

  3. LAPP - Annecy le Vieux Particle Physics Laboratory. Activity report 2002-2003

    International Nuclear Information System (INIS)

    Colas, Jacques; Minard, Marie-Noelle; Decamp, Daniel; Marion, Frederique; Drancourt, Cyril; Riva, Vanessa; Berger, Nicole; Bombar, Claudine; Dromby, Gerard

    2004-01-01

    LAPP is a high energy physics laboratory founded in 1976 and is one of the 19 laboratories of IN2P3 (National Institute of Nuclear and particle physics), institute of CNRS (National Centre for Scientific Research). LAPP is joint research facility of the University Savoie Mont Blanc (USMB) and the CNRS. Research carried out at LAPP aims at understanding the elementary particles and the fundamental interactions between them as well as exploring the connections between the infinitesimally small and the unbelievably big. Among other subjects LAPP teams try to understand the origin of the mass of the particles, the mystery of dark matter and what happened to the anti-matter that was present in the early universe. LAPP researchers work in close contact with phenomenologist teams from LAPTh, a theory laboratory hosted in the same building. LAPP teams also work since several decades at understanding the neutrinos, those elementary almost massless particles with amazing transformation properties. They took part in the design and realization of several experiments. Other LAPP teams collaborate in experiments studying signals from the cosmos. This document presents the activities of the laboratory during the years 2002-2003: 1 - Presentation of LAPP; 2 - Experimental programs: Standard model and its extensions (accurate measurements and search for new particles, The end of ALEPH and L3 LEP experiments, ATLAS experiment at LHC, CMS experiment at LHC); CP violation (BaBar experiment on PEPII collider at SLAC, LHCb experiment); Neutrino physics (OPERA experiment on CERN's CNGS neutrino beam); Astro-particles (AMS experiment, EUSO project on the Columbus module of the International Space Station); Search for gravitational waves - Virgo experiment; 3 - Laboratory's know-how: Skills, Technical departments (Electronics, Computers, Mechanics); R and D - CLIC and Positrons; Valorisation and industrial relations; 4 - Laboratory operation: Administration and general services; Laboratory

  4. Being a Scientist While Teaching Science: Implementing Undergraduate Research Opportunities for Elementary Educators

    Science.gov (United States)

    Hock, Emily; Sharp, Zoe

    2016-03-01

    Aspiring teachers and current teachers can gain insight about the scientific community through hands-on experience. As America's standards for elementary school and middle school become more advanced, future and current teachers must gain hands-on experience in the scientific community. For a teacher to be fully capable of teaching all subjects, they must be comfortable in the content areas, equipped to answer questions, and able to pass on their knowledge. Hands-on research experiences, like the Summer Astronomy Research Experience at California Polytechnic University, pair liberal studies students with a cooperative group of science students and instructors with the goal of doing research that benefits the scientific community and deepens the team members' perception of the scientific community. Teachers are then able to apply the basic research process in their classrooms, inspire students to do real life science, and understand the processes scientists' undergo in their workplace.

  5. [High energy particle physics at Purdue, 1990--1991

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1991-05-01

    Progress made in the experimental and theoretical high energy physics program is reviewed. The CLEO experiment, particle astrophysics, dynamical symmetry breaking in gauge theories, the Collider Detector at Fermilab, the TOPAZ Experiment, and elementary particle physics beyond the standard model are included

  6. The ideas of particle physics. 2. ed.

    International Nuclear Information System (INIS)

    Coughlan, G.D.; Dodd, J.E.

    1991-01-01

    Our main concern in writing this book has been to communicate the central ideas and concepts of elementary particle physics. We have attempted to present a comprehensive overview of the subject at a level which carries the reader beyond the simplifications and generalisations necessary in popular science books. Matter consists of just two types of elementary particles: quarks and leptons. These are the fundamental building blocks of the material world. The theory describing the microscopic behaviour of these particles has, over the past decade or so, become known as the 'standard model', providing as it does an accurate account of the force of electromagnetism, the weak nuclear force (responsible for radioactive decay), and the strong nuclear force (which holds atomic nuclei together). The standard model has been remarkably successful; all experimental tests have verified the detailed predictions of the theory. (author)

  7. Locus of Control as It Relates to the Teaching Style of Elementary Teachers

    Science.gov (United States)

    Ture, Abidemi

    2013-01-01

    This research explored the relationship between elementary teachers' locus of control and teaching style. This research observed elementary teachers in their classrooms coupled with data gathered from information sheets, surveys, and interviews to determine if a relationship exists between the locus of control of the elementary teachers and…

  8. When cosmology and particle physics met

    International Nuclear Information System (INIS)

    Kaiser, D.

    2007-01-01

    Primordial cosmology describes the first moments of the universe when the interactions of elementary particles with one another determined its evolution. The mutual ignorance between the community of cosmologists with that of elementary physicists is well illustrated by the fact that both communities conceived distinct concepts of mass that 10 years later were found similar: Brans-Dicke gravitation and Higgs field. Now the collaboration between cosmology and particle physics appears necessary since the great unification theory that imposes the 3 basic forces: weak interaction, electromagnetic interaction and strong interaction to merge in a unique force at an energy scale of 10 24 eV, is supposed to have occurred just after the big-bang when the universe was dense and hot. (A.C.)

  9. Elementary School Psychologists and Response to Intervention (RTI)

    Science.gov (United States)

    Little, Suzanne; Marrs, Heath; Bogue, Heidi

    2017-01-01

    The implementation of Response to Intervention (RTI) in elementary schools may have important implications for school psychologists. Therefore, it is important to better understand how elementary school psychologists perceive RTI and what barriers to successful RTI implementation they identify. Although previous research has investigated the…

  10. Training Elementary Teachers to Prepare Students for High School Authentic Scientific Research

    Science.gov (United States)

    Danch, J. M.

    2017-12-01

    The Woodbridge Township New Jersey School District has a 4-year high school Science Research program that depends on the enrollment of students with the prerequisite skills to conduct authentic scientific research at the high school level. A multifaceted approach to training elementary teachers in the methods of scientific investigation, data collection and analysis and communication of results was undertaken in 2017. Teachers of predominately grades 4 and 5 participated in hands on workshops at a Summer Tech Academy, an EdCamp, a District Inservice Day and a series of in-class workshops for teachers and students together. Aspects of the instruction for each of these activities was facilitated by high school students currently enrolled in the High School Science Research Program. Much of the training activities centered around a "Learning With Students" model where teachers and their students simultaneously learn to perform inquiry activities and conduct scientific research fostering inquiry as it is meant to be: where participants produce original data are not merely working to obtain previously determined results.

  11. Magnetic particles in medical research - a review

    International Nuclear Information System (INIS)

    Sajid, K.M.

    2001-01-01

    Magnetic (or magnetizable) particles have assumed increasing importance in medical and biological research since 1966 when the effect of a magnetic field on the movement of suspended particles was initially studied. In fields like haematology, cell biology, microbiology, biochemistry and immunoassays, they currently provide the basis for separation techniques, which previously relied on gravitational forces. The body cells (e.g., blood cells) can be made magnetic by incubating them in a medium containing several Fe/sub 3/O/sub 4/ particles, which are adsorbed to the membrane surfaces. Some bacteria (also called magnetostatic bacteria) respond to externally applied magnetic lines of force due to their intracellular magnetic particles. These properties are useful in the isolation of these cells/bacteria. In biochemistry magnetic particles are used to immobilize enzymes without any loss of enzyme activity. The immobilized enzymes can facilitate the separation of end products without extensive instrumentation. In immunoassays the antibodies are covalently linked to polymer coated iron oxide particles. An electromagnet is used to sediment these particles after reaction. This excludes the use of centrifuge to separate antigen-antibody complexes. In pharmacy and pharmacology the magnetic particles are important in drug transport. In techniques like ferrography, nuclear magnetic resonance imaging (NMRI), spectroscopic studies and magnetic resonance imaging (MRI) the magnetic particles serve as contrast agents and give clinically important spatial resolution. Magnetic particles also find extensive applications in cancer therapy, genetic engineering, pneumology, nuclear medicine, radiology and many other fields. This article reviews these applications. (author)

  12. Measurement of the centrality dependence of the charged particle pseudorapidity distribution in lead-lead collisions at √ s.sub.NN./sub. = 2.76 TeV with the ATLAS detector

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Chudoba, Jiří; Gallus, Petr; Gunther, Jaroslav; Hruška, I.; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Kvasnička, O.; Lipinský, L.; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Panušková, M.; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Tic, Tomáš; Valenta, J.; Vrba, Václav

    2012-01-01

    Roč. 710, č. 3 (2012), s. 363-382 ISSN 0370-2693 R&D Projects: GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : charged particle multiplicity * charged particle density * charged particle yield * semiconductor detector * pixel * CERN LHC Coll * ATLAS Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.569, year: 2012 http://www.sciencedirect.com/science/article/pii/S0370269312001864

  13. Research in particle physics

    International Nuclear Information System (INIS)

    1992-09-01

    Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron endash positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the ''electrostatic muon kicker''; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider

  14. Princeton University High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Marlow, Daniel R. [Princeton Univ., NJ (United States)

    2015-06-30

    This is the Final Report on research conducted by the Princeton Elementary Particles group over the approximately three-year period from May 1, 2012 to April 30, 2015. The goal of our research is to investigate the fundamental constituents of matter, their fields, and their interactions; to understand the properties of space and time; and to study the profound relationships between cosmology and particle physics. During the funding period covered by this report, the group has been organized into a subgroup concentrating on the theory of particles, strings, and cosmology; and four subgroups performing major experiments at laboratories around the world: CERN, Daya Bay, Gran Sasso as well as detector R\\&D on the Princeton campus. Highlights in of this research include the discovery of the Higgs Boson at CERN and the measurement of $\\sin^22\\theta_{13}$ by the Daya Bay experiment. In both cases, Princeton researchers supported by this grant played key roles.

  15. From the top-quark to the Higgs-Boson: the search for the heaviest particles of nature

    International Nuclear Information System (INIS)

    Mueller, T.

    2001-01-01

    According to our present knowledge the fundamental constituents of matter are quarks and leptons ordered by their mass into three particle families. With the discovery of the top quark about six years age our periodic table of elementary particles has been completed but the origin of its unusually high mass and, more general, of the mass of all particles, still needs to be established. The Institut fuer Experimentelle Kernphysik in Karlsruhe, who researches on the top quark and its properties, also takes part in the world-wide race for the discovery of the widely believed mediator of mass, the Higgs boson. (orig.)

  16. A pedagogical derivation of the matrix element method in particle physics data analysis

    Science.gov (United States)

    Sumowidagdo, Suharyo

    2018-03-01

    The matrix element method provides a direct connection between the underlying theory of particle physics processes and detector-level physical observables. I am presenting a pedagogically-oriented derivation of the matrix element method, drawing from elementary concepts in probability theory, statistics, and the process of experimental measurements. The level of treatment should be suitable for beginning research student in phenomenology and experimental high energy physics.

  17. Proposal for inclusion of topics of particle physics integrated electric charge through a potentially meaningful teaching units

    Directory of Open Access Journals (Sweden)

    Lisiane Barcellos Calheiro

    2014-03-01

    Full Text Available In this article the results of the analysis of free and concept maps produced are presented from the application and evaluation of a Potentially Meaningful Teaching Units – PMTU, which is a teaching sequence based on various learning theories and seeks to promote meaningful student learning. Presents, in this work, part of a research Masters in Science Education which deals with the inclusion of topics of particle physics integrated with traditional content of the third year of high school. It was implemented in a third grade high school class of a State School in Santa Maria, Rio Grande do Sul, and Brazil. The PMTU aimed to address in an integrated manner threads for Particle Physics and Electronics. A didactic sequence that integrated the topics of electric charge, atomic models, elementary particles, quantization and process electrification was applied. Such integration aimed at stimulating the interest on topics related to Modern and Contemporary Physics. It was developed using PMTU activities that aimed at promoting meaningful learning and knowledge construction in the classroom, Since the topics involved were quite complex, this made their integration a real challenge to the high school teachers, and resulted in changes in their teaching practices. Research showed that the inclusion of topics on physics of elementary particles the and electricity, through Potentially Meaningful Teaching Units, show satisfactory results in the students’ learning.

  18. Elliptic flow from two- and four-particle correlations in Au+Au collisions at root s(NN)=130 GeV

    Czech Academy of Sciences Publication Activity Database

    Adler, C.; Ahammed, Z.; Allgower, C.; Amonett, J.; Anderson, B. D.; Anderson, M.; Šumbera, Michal; Zborovský, Imrich

    2002-01-01

    Roč. 66, č. 3 (2002), s. 034904 ISSN 0556-2813 R&D Projects: GA MŠk ME 475 Institutional research plan: CEZ:AV0Z1048901 Keywords : heavy-ion collisions * phase-transition Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 2.848, year: 2002

  19. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.

    2016-01-01

    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  20. CMB and the elementary particles structure deduced from QFT of non-dot model

    Science.gov (United States)

    Chen, Shao-Guang

    = ± ( h c / 2 r (3) ) r cos thetaθ for r not equal to 0 and f = 0 for r = 0, f as the magnetic force makes the photons, rest mass and charge quanta automatically come into being and stabilize. CMB photon can be produced from many spin 1 unit photons by its statistical attraction. In the quantized inconsecutive time-space-spin using momentum and turn-quantity as the coordinates drawing the momentum-turn graphics are some points with certain distance. The rest mass m _{0} is the lowest energy state advance-back neutrinos pair nuυ _{0}nuυ (0) , when j direction have 2n nuυ_{0} the i , k directions must have (2n-1), (2n+1) nuυ_{0} for i, j, k three directions all matching into pair to eliminate the external interaction of electric quantity q(0) in nuυ_{0}. The spatial rest mass is quanta (n) m _{0} = (2n - 1) 2n (2n +1) m (0) = 6, 60, 210, 504, 990, 1716 m (0) , m (0) is the rest mass of nuυ_{0} (also anti-mass (n) \\underline{m}_{0} and \\underline{m}(0) ). According to the uncertainty principle n large rest mass layer is more little and at the inside layer of particle. The spatial unit charge quanta e or \\underline{e} is constituted by nine one-dimensional unit charge quanta nuυ_{0}(0) nuυ or _{0}nuυnuυ (0) because of the vertical polarization at each spatial direction there is only three states: the left, the right and the middle of left-right balance. Via photons, rest mass and charge quanta all elementary particles come from _{0}nuυ, nuυ_{0}, (0) nuυ, nuυ (0) . The particle’s momentum is constituted by the photons _{0}nuυnuυ _{0} or (0) nuυnuυ (0) and a few nuυ _{0} or _{0}nuυ. The particle’s charge is constituted by one e or \\underline{e} and one nuυ _{0} or _{0}nuυ. The particle’s rest mass is constituted by one or several (n) m _{0} or (n) \\underline{m} _{0}. According to the uncertainty principle n large rest mass layer is more little and at the inside layer of particle. The left spin 1/2 nu υ _{mu}: 1 _{0}nuυ + 1 (n

  1. Summer Workshop on Particle Physics

    CERN Document Server

    Chamseddine, A H; Nath, Pran

    1984-01-01

    These lectures give an elementary introduction to the important recent developments of the applications of N=1 supergravity to the construction of unified models of elementary particle interactions. Topics covered include couplings of supergravity with matter, spontaneous symmetry breaking and the super-higgs effect, construction of supergravity unified models, and the phenomenon of SU(2) x U(1) electroweak-symmetry breaking by supergravity. Experimental consequences of N-1 supergravity unified theory, in particular, the possible supersymmetric decays of the W ± and Z 0 bosons, are also discus

  2. Symmetry and the Standard Model mathematics and particle physics

    CERN Document Server

    Robinson, Matthew

    2011-01-01

    While elementary particle physics is an extraordinarily fascinating field, the huge amount of knowledge necessary to perform cutting-edge research poses a formidable challenge for students. The leap from the material contained in the standard graduate course sequence to the frontiers of M-theory, for example, is tremendous. To make substantial contributions to the field, students must first confront a long reading list of texts on quantum field theory, general relativity, gauge theory, particle interactions, conformal field theory, and string theory. Moreover, waves of new mathematics are required at each stage, spanning a broad set of topics including algebra, geometry, topology, and analysis. Symmetry and the Standard Model: Mathematics and Particle Physics, by Matthew Robinson, is the first volume of a series intended to teach math in a way that is catered to physicists. Following a brief review of classical physics at the undergraduate level and a preview of particle physics from an experimentalist's per...

  3. Incorporating Remote Robotic Telescopes into an Elementary Classroom Setting

    Science.gov (United States)

    Sharp, Zoe; Hock, Emily

    2016-03-01

    As Next Generation Science Standards (NGSS) are implemented across the nation, engaging and content-specific lessons are becoming an important addition to elementary classrooms. This paper demonstrate how effective hands-on teaching tactics, authentic learning, scientifically significant data, and research in the elementary realm can aid students in selfdiscovery about astronomy and uncover what it is to be a researcher and scientist. It also outlines an effective, engaging, and integrated classroom unit that is usable in both the scientific community and elementary schools. The lesson unit consists of NGSS science and engineering practices and performance expectations as well as California Common Core Standards (CCSS).

  4. Particles and forces

    International Nuclear Information System (INIS)

    Peierls, R.

    1981-01-01

    The particles and forces of matter, found in the Universe, are discussed with especial reference to some of the laws which govern behaviour in the sub-atomic world and which determine the way forces work to give matter its various characteristics. The recent history of the search for elementary constituents of matter in this century is outlined and the replacement of the simplicity anticipated in the 1930s by the proliferation of particle states uncovered in the 1950s and 1960s which led to the quark model is examined. (U.K.)

  5. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1987-01-01

    This document presents a report of the research accomplishments of Boston University researchers in six projects in high energy physics research: Study of high energy electron-positron annihilation, using the ASP and SLD detectors at SLAC; Search for proton decay and neutrinos from point astrophysical sources, as well as the study of cosmic ray muons and neutrinos in the IMB detector; Development of a new underground detector facility in the Gran Sasso Laboratory in Italy for magnetic monopoles and to study astrophysical muons and neutrinos; Preparation of an experiment to measure the anomalous magnetic moment of the muon in a new superconducting storage ring and detector system at BNL; Development of new concepts for particle accelerator components, including design and prototyping of high-precision electrostatic and magnetic elements; and Study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics

  6. Correlation energy for elementary bosons: Physics of the singularity

    International Nuclear Information System (INIS)

    Shiau, Shiue-Yuan; Combescot, Monique; Chang, Yia-Chung

    2016-01-01

    We propose a compact perturbative approach that reveals the physical origin of the singularity occurring in the density dependence of correlation energy: like fermions, elementary bosons have a singular correlation energy which comes from the accumulation, through Feynman “bubble” diagrams, of the same non-zero momentum transfer excitations from the free particle ground state, that is, the Fermi sea for fermions and the Bose–Einstein condensate for bosons. This understanding paves the way toward deriving the correlation energy of composite bosons like atomic dimers and semiconductor excitons, by suggesting Shiva diagrams that have similarity with Feynman “bubble” diagrams, the previous elementary boson approaches, which hide this physics, being inappropriate to do so.

  7. Correlation energy for elementary bosons: Physics of the singularity

    Energy Technology Data Exchange (ETDEWEB)

    Shiau, Shiue-Yuan, E-mail: syshiau@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan (China); Combescot, Monique [Institut des NanoSciences de Paris, Université Pierre et Marie Curie, CNRS, 4 place Jussieu, 75005 Paris (France); Chang, Yia-Chung, E-mail: yiachang@gate.sinica.edu.tw [Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan (China); Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan (China)

    2016-04-15

    We propose a compact perturbative approach that reveals the physical origin of the singularity occurring in the density dependence of correlation energy: like fermions, elementary bosons have a singular correlation energy which comes from the accumulation, through Feynman “bubble” diagrams, of the same non-zero momentum transfer excitations from the free particle ground state, that is, the Fermi sea for fermions and the Bose–Einstein condensate for bosons. This understanding paves the way toward deriving the correlation energy of composite bosons like atomic dimers and semiconductor excitons, by suggesting Shiva diagrams that have similarity with Feynman “bubble” diagrams, the previous elementary boson approaches, which hide this physics, being inappropriate to do so.

  8. Introduction to Particle Physics course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    These lectures are an introduction to the ideas of particle physics, aimed at students and teachers with little or on knowledge of the subject. They form a broad basis that will be developed in more detail by the subsequent lecturers in the school. These four lectures are meant to present an overview of particle physics based on its historical evolution over the past century. It will be shown how concepts have evolved following progress in instrumentation and in theoretical ideas, from atoms to the elementary particles and their interactions, as they are known today.

  9. Spectroscopy after the new particles

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1975-06-01

    Conventional spectroscopy was reexamined, and the puzzles and paradoxes which have arisen in attempting to describe the properties of the known particles are sought. It is noted that these may offer clues to the missing elements necessary for the description of the new particles. The minimum number of elementary building blocks, charm and color, the colored quark model for saturation, spin splittings in the meson spectrum, three kinds of quarks, the Melosh transformation and the Jackson frame, the Zweig rule mystery, new particles and old symmetries, f--A2 interference, and nonleptonic decay. (U.S.)

  10. The Review-of-Particle-Properties system

    International Nuclear Information System (INIS)

    Trippe, T.G.

    1984-01-01

    The Berkeley Particle Data Group is engaged in a major modernization of its primary project, the Review of Particle Properties, a compilation of experimental data on elementary particles. The goal of this modernization is to develop an integrated system for data storage, manipulation, interactive access and publication using modern technqiues for database management, text processing and phototypesetting. The existing system and the plans for modernization are described. The group's other projects and the computer systems used are also discussed. (orig.)

  11. Elementary Goldstone Higgs Boson and Dark Matter

    DEFF Research Database (Denmark)

    Alanne, Tommi; Gertov, Helene; Sannino, Francesco

    2015-01-01

    We investigate a perturbative extension of the Standard Model featuring elementary pseudo-Goldstone Higgs and dark matter particles. These are two of the five Goldstone bosons parametrising the SU(4)/Sp(4) coset space. They acquire masses, and therefore become pseudo-Goldstone bosons, due...... of the theory, the quantum corrections are precisely calculable. The remaining pseudo-Goldstone boson is identified with the dark matter candidate because it is neutral with respect to the Standard Model and stable. By a direct comparison with the Large Hadron Collider experiments, the model is found...... to be phenomenologically viable. Furthermore the dark matter particle leads to the observed thermal relic density while respecting the most stringent current experimental constraints....

  12. On the scattering of composite particles

    International Nuclear Information System (INIS)

    Garsevanishvili, V.R.

    1975-01-01

    The ''light front'' form of the quasipotential approach is applied to the study of interactions of relativistic composite objects. The expression for the scattering amplitude of the composite particle on the elementary one is obtained and analysed

  13. Information retrieval in particle physics

    International Nuclear Information System (INIS)

    Oyanagi, Yoshio

    1983-01-01

    Various information retrieval systems for elementary particle physics are introduced. Scientific information has been distributed in the form of books, periodicals or preprints. Some periodicals include the abstracts of information only. Recently, computer systems, by which the information retrieval can be easily done, have been developed. The construction of networks connecting various computer systems is in progress. It is possible to call the data base of Rutherford Laboratory from a telephone terminal of Laurence Berkeley Laboratory. The access to the Network by British Science Research Council can be made from DESY or CERN. The examples of on-line information retrieval in Japan are presented. Some of the periodicals of secondary information and data books are also introduced. (Kato, T.)

  14. ON THE STRUCTURE OF ELEMENTARY PARTICLES IN CLASSICAL ELECTRODYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Prigogine, I.; Henin, F.

    1963-06-15

    For particles that can be characterized by three scalars bare mass, electromagnetic mass, and electric charge), it is noted that there can be constructed a theory that is finite, relativistic, strictly causal, and that permits the definition of an energy tensor for the particle. (T.F.H.)

  15. Integrating E-Books into Science Teaching by Preservice Elementary School Teachers

    Science.gov (United States)

    Lai, Ching-San

    2016-01-01

    This study aims to discuss the issues of integrating e-books into science teaching by preservice elementary school teachers. The study adopts both qualitative and quantitative research methods. In total, 24 preservice elementary school teachers participated in this study. The main sources of research data included e-books produced by preservice…

  16. The Vulnerability of Urban Elementary School Arts Programs: A Case Study

    Science.gov (United States)

    Shaw, Ryan D.

    2018-01-01

    With the intent of improving understanding of cuts to elementary arts programs, the purpose of this research was to investigate how one urban school district (Lansing School District in Lansing, Michigan) eliminated its elementary arts specialists. Research questions were (1) What policy conditions enabled the Lansing School District's decision to…

  17. Search for long-lived particles decaying into electron or photon pairs with the D0 detector

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Abolins, M.; Kupčo, Alexander; Lokajíček, Miloš

    2008-01-01

    Roč. 101, č. 11 (2008), 111802/1-111802/6 ISSN 0031-9007 R&D Projects: GA MŠk LC527; GA MŠk LA08047; GA MŠk 1P05LA257 Institutional research plan: CEZ:AV0Z10100502 Keywords : D0 * supersymmetry * quark Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.180, year: 2008

  18. Introduction to particle and astroparticle physics questions to the Universe

    CERN Document Server

    De Angelis, Alessandro

    2015-01-01

    This book, written by researchers who had been professionals in accelerator physics before becoming leaders of groups in astroparticle physics, introduces both fields in a balanced and elementary way, requiring only a basic knowledge of quantum mechanics on the part of the reader. The early history of particle physics cannot be distinguished from the history of cosmic rays. With the advent of accelerators, however, the importance of cosmic rays in particle physics was lost. This situation persisted until the 1990s, when novel techniques allowed breakthrough discoveries, and exploration of new physics scales now requires returning to cosmic rays. The new profile of scientists in fundamental physics ideally involves the merging of knowledge in astroparticle and particle physics, but the duration of modern experiments is such that people cannot simultaneously be practitioners in both. Introduction to Particle and Astroparticle Physics is designed to bridge the gap between the fields. It can be used...

  19. Research on elementary particle physics: Part 2

    International Nuclear Information System (INIS)

    Holloway, L.E.

    1993-05-01

    This report describes the activities of the University of Illinois Experimental High Energy Physics Group. The physicists in the University of Illinois High Energy Physics Group are engaged in a wide variety of experiments at current and future accelerator laboratories. These include: (1) The CDF experiment at the Fermilab Tevetron p bar p collider. (2) Design and developmental work for the SDC group at SSCL. (3) Experiments at the wide band photon beam at Fermilab. (4) e + e - experiments, the Mark III and SLD at SLAC and CLEO at Cornell. (5) CP violation experiments at Fermilab. (6) The HiRes cosmic ray experiment at Dugway Proving Grounds, Utah. (7) Computational facilities. (8) Electronics systems development

  20. Instructional Strategies for Teaching Algebra in Elementary School: Findings from a Research-Practice Collaboration

    Science.gov (United States)

    Earnest, Darrell; Balti, Aadina A.

    2008-01-01

    Incorporating algebra into the elementary grades has become a focus for teachers, principals, and administrators across the country. The Dinner Tables problem described in this article is a lesson commonly used in elementary grades for its algebraic potential. Instructional strategies for supporting algebra instruction use an example from a…

  1. Balancing Teacher and Student Roles in Elementary Classrooms: Preservice Elementary Teachers' Learning about the Inquiry Continuum

    Science.gov (United States)

    Biggers, Mandy; Forbes, Cory T.

    2012-01-01

    Using the National Research Council's inquiry continuum framework, we use a multiple-case study research design to investigate the teacher- and student-directedness of elementary preservice teachers' planned and enacted science lessons and their pedagogical reasoning about science instruction during a semester-long science methods course. Our…

  2. General many-body formalism for composite quantum particles.

    Science.gov (United States)

    Combescot, M; Betbeder-Matibet, O

    2010-05-21

    This Letter provides a formalism capable of exactly treating Pauli blocking between n-fermion particles. This formalism is based on an operator algebra made of commutators and anticommutators which contrasts with the usual scalar formalism of Green functions developed half a century ago for elementary quantum particles. We also provide the diagrams which visualize the very specific many-body physics induced by fermion exchanges between composite quantum particles.

  3. Dynamics of particles and fields. Final report

    International Nuclear Information System (INIS)

    Cahill, K.E.

    1985-01-01

    The principal objective of the proposed work is a better understanding of the internal and coordinate symmetries that characterize the interactions of the elementary particles. Their interactions - gravitational, weak, electromagnetic, and strong - seem to be well described by gauge theories, i.e., ones whose equations of motion are invariant under symmetry transformations that vary independently from point to point. The principal subject of the proposed research is the development of techniques for the numerical evaluation of path integrals, particularly those that occur in gauge theories. Other subjects of the proposed research are: quark confinement and other nonperturbative phenomena in field theory, gauge theories of compact and noncompact symmetry groups, supersymmetry, grand unification, the unification of the gravitational and electronuclear forces, and various topics in computer physics

  4. Sandia's recent results in particle beam research

    International Nuclear Information System (INIS)

    Yonas, G.

    1977-01-01

    Recent results in the Sandia particle beam fusion research program are briefly discussed. Ignition of pellet fusion targets by both electron and ion beams are under study. Power concentration, dielectric breakdown, diode optimization, and beam-target interaction experiments are briefly described. Magnetic insulation considerations are discussed. Efforts to utilize higher impedance diode sources and reduce minimum power pulse widths are described. Analyses indicate that particle beam ignition systems might yield pellet gains greater than 10 in hybrid and approximately 100 in pure fusion reactors. A bibliography of 23 references is included

  5. Particle accelerators test cosmological theory

    International Nuclear Information System (INIS)

    Schramm, D.N.; Steigman, G.

    1988-01-01

    Over the past decade two subfields of science, cosmology and elementary-particle physics, have become married in a symbiotic relationship that has produced a number of exciting offspring. These offspring are beginning to yield insights on the creation of spacetime and matter at epochs as early as 10 to the minus 43 to 10 to the minus 35 second after the birth of the universe in the primordial explosion known as the big bang. Important clues to the nature of the big bang itself may even come from a theory currently under development, known as the ultimate theory of everything (T.E.O.). A T.E.O. would describe all the interactions among the fundamental particles in a single bold stroke. Now that cosmology ahs begun to make predictions about elementary-particle physics, it has become conceivable that those cosmological predictions could be checked with carefully controlled accelerator experiments. It has taken more than 10 years for accelerators to reach the point where they can do the appropriate experiments, but the experiments are now in fact in progress. The preliminary results confirm the predictions of cosmology. The cosmological prediction the authors have been concerned with pertains to setting limits on the number of fundamental particles of matter. It appears that there are 12 fundamental particles, as well as their corresponding antiparticles. Six of the fundamental particles are quarks. The other six are leptons. The 12 particles are grouped in three families, each family consisting of four members. Cosmology suggests there must be a finite number of families and, further limits the possible range of to small values: only three or at most four families exist. 7 figs

  6. Dark matter reflection of particle symmetry

    Science.gov (United States)

    Khlopov, Maxim Yu.

    2017-05-01

    In the context of the relationship between physics of cosmological dark matter and symmetry of elementary particles, a wide list of dark matter candidates is possible. New symmetries provide stability of different new particles and their combination can lead to a multicomponent dark matter. The pattern of symmetry breaking involves phase transitions in the very early Universe, extending the list of candidates by topological defects and even primordial nonlinear structures.

  7. A Case Study on Mathematical Literacy of Prospective Elementary School Teachers

    Science.gov (United States)

    Suharta, I. Gusti Putu; Suarjana, I. Made

    2018-01-01

    The purpose of this study is to describe Mathematical Literacy (ML) of Prospective Elementary School Teachers with attention to aspects of mathematical skills and gender. The type of research is qualitative with the research design of Case Study. Respondents are assigned 12 Prospective Elementary School Teachers, consisting of 6 men and 6 women.…

  8. Weak decays of stable particles

    International Nuclear Information System (INIS)

    Brown, R.M.

    1988-09-01

    In this article we review recent advances in the field of weak decays and consider their implications for quantum chromodynamics (the theory of strong interactions) and electroweak theory (the combined theory of electromagnetic and weak interactions), which together form the ''Standard Model'' of elementary particles. (author)

  9. Upper Elementary Teachers' Self-Efficacy and Spelling Instruction: A Qualitative Study

    Science.gov (United States)

    Fernandes, Brian E.

    2017-01-01

    A great deal of research has been conducted regarding spelling instruction at the early childhood and lower elementary levels, but not at the upper elementary level. This qualitative study explored the perceptions and experiences of upper elementary teachers to gain a better understanding of how they instruct spelling and their related…

  10. Elementary Students' Metaphors for Democracy

    Science.gov (United States)

    Dundar, Hakan

    2012-01-01

    The purpose of the research was to reveal elementary 8th grade students' opinions concerning democracy with the aid of metaphors. The students were asked to produce metaphors about the concept of democracy. 140 students from 3 public schools in Ankara (Turkey) participated in the research. 55% of the students were females and 45% were males. The…

  11. "Elementary, My Dear Shakespeare." Producing a Shakespearean Festival in the Elementary Schools.

    Science.gov (United States)

    Engen, Barbara; Campbell, Joy

    Intended to give teachers usable information and prepared materials that are ready-to-reproduce for students, this book compiles research, tips, and teaching ideas into a sourcebook on teaching and producing William Shakespeare's plays in the elementary classroom. It is designed to bring the student into an awareness of Shakespeare's art and…

  12. Elementary school on the move– moving in elementary school

    Directory of Open Access Journals (Sweden)

    Reiner Hildebrandt-Stramann

    2008-06-01

    Full Text Available Elementary school in Germany has changed during the last five years because, among other reasons, movement has entered it. The title's pun calls attention for two lines of work that characterize school pedagogy contemporary discussion. One of these lines is related to the last 15 years changing process at elementary school: it states that elementary school must be a learning and living place for children. The other line is related to movement pedagogy processes, which has been achieving higher and higher dimensions. Elementary school must be seen from movement point of view and must be transformed in a place for movement.

  13. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1991-12-01

    This report presents the research accomplishments and ongoing activities of Boston University researchers in high energy physics. We are active in eight principal areas which are discussed in this report: Colliding Beams - physics of electron-positron annihilation; Accelerator Design Physics - advanced accelerator design; Monopole/ Neutrino - searchers for magnetic monopoles and for neutrino oscillations; Proton Decay - search for nucleon instability and study of nonaccelarator physics; Particle Theory - theoretical high energy particles physics; Muon G-2 - an experiment to measure the anomalous magnetic moment of the muon with a factor of 20 better precision than currently achieved; SSSintcal - scintillating fiber calorimetry for the SSC; and SSC Muon Detectors - development of muon detectors for the GEM Experiment at the SSC

  14. Preservice elementary teachers learning of astronomy

    Science.gov (United States)

    Fidler, Chuck Gary

    The dissertation presents a new approach for the study of preservice elementary teacher astronomy education. The approach suggests that learning astronomical concepts are facilitated by greater sophistication in scale perception and spatial-aptitude. This dissertation is underscored by the national call for elementary science education reform efforts and suggests certain strategies shown more effective for the development of accurate astronomical comprehension. The present research study describes how preservice elementary teachers conceptualize and communicate ideas about Space. Instead of assuming a universal mental conception of cosmic orientations and relationships, the dissertation claims that the perception of Space related dimensions vary among preservice elementary teachers. Furthermore, the dissertation suggests individual perceptions of the scale sizes and orientations of celestial systems have direct influences on mental models used to organize and communicate astronomical information. The development of inaccurate mental models of the scaled dimensions of Space may perpetuate the teacher-student cycle of misconception and naive-theory generation among children in elementary education settings. The ability to conceptualize the vast cosmos is facilitated by the minds ability to think about vast scales and orientations of celestial objects. The Earth-based perspective of astronomy education compels the learner to think about astronomical principles within imaginary frames of reference and across unfamiliar scaled dimensions. Therefore, mental astronomical model building is underscored by the perception of scale and cosmic spatiality. This study suggests these cognitive skill sets are interconnected and facilitate the learning of accurate astronomy principles; as well as play an important role when designing an astronomy education program for preservice elementary teachers. This research study is comprised of three separate standalone articles designed and

  15. Developing Elementary Science PCK for Teacher Education: Lessons Learned from a Second Grade Partnership

    Science.gov (United States)

    Bradbury, Leslie U.; Wilson, Rachel E.; Brookshire, Laura E.

    2017-06-01

    In this self-study, two science educators partnered with two elementary teachers to plan, implement, and reflect on a unit taught in second grade classrooms that integrated science and language arts. The researchers hoped to increase their pedagogical content knowledge (PCK) for elementary science teaching so that they might use their experiences working in an elementary context to modify their practices in their elementary science method instruction. The research question guiding the study was: What aspects of our PCK for elementary science teaching do we as science educators develop by co-planning, co-teaching, and reflecting with second grade teachers? Data include transcripts of planning meetings, oral reflections about the experience, and videos of the unit being enacted. Findings indicate that managing resources for science teaching, organizing students for science learning, and reflecting on science teaching were themes prevalent in the data. These themes were linked to the model of PCK developed by Park and Oliver (Research in Science Education, 38, 261-284, 2008) and demonstrate that we developed PCK for elementary science teaching in several areas. In our discussion, we include several proposed changes for our elementary science methods course based on the outcomes of the study.

  16. Multiplicity of particles per primary reaction at 1500 MeV for the nuclei used on the accelerator-driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Demirkol, Iskender, E-mail: idemirkol@bingol.edu.tr [Faculty of Art and Science, Bingoel University, Bingoel (Turkey); Tel, Eyyup [Faculty of Art and Science, Osmaniye Korkut Ata University, Osmaniye (Turkey)

    2011-05-15

    Research highlights: > We estimated multiplicities of particles in collision of 1500 MeV proton. > We used the CEM model, INC model and Evaporation model. > The particle multiplicities are nearly constant as the mass number-A increases. > Particle-particle interactions are dominant in the high-energy particles. > Conversion to the stabil state by gamma emitting is more probable. - Abstract: Multiplicities of neutron and other particles per incident proton in collision of 1500 MeV energetic proton beam with Bi, Au, Pb, W, Th, Hg, U, Fe and Cu thin targets have been estimated with the Cascade-Exciton Model (CEM), intranuclear cascade (INC) and Evaporation model. The calculations have been made using simulation codes based on specific models which describe elementary production of particles in nuclear reactions. The obtained results have been compared with the available data.

  17. The Future of Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, James

    2000-06-15

    After a very brief review of twentieth century elementary particle physics, prospects for the next century are discussed. First and most important are technological limits of opportunities; next, the future experimental program, and finally the status of the theory, in particular its limitations as well as its opportunities.

  18. Finding the Hook: Computer Science Education in Elementary Contexts

    Science.gov (United States)

    Ozturk, Zehra; Dooley, Caitlin McMunn; Welch, Meghan

    2018-01-01

    The purpose of this study was to investigate how elementary teachers with little knowledge of computer science (CS) and project-based learning (PBL) experienced integrating CS through PBL as a part of a standards-based elementary curriculum in Grades 3-5. The researchers used qualitative constant comparison methods on field notes and reflections…

  19. The strange story of god particle

    International Nuclear Information System (INIS)

    Sengupta, Soumitra

    2015-01-01

    Discoveries of new fundamental particles are not new in the history of search of elementary structures of the material world around us. However the discovery of Higgs boson created sensation in the entire science community and is considered as a rare milestone among all scientific achievements. In this talk I shall try to explain why the moment of this discovery is so special in our understanding of this Universe and what is the God-like power associated with this very special particle Higgs boson - which popularly became famous as God Particle. I shall also describe the spectacular technological marvel which finally helped to discover this particle. (author)

  20. Exploiting Elementary Landscapes for TSP, Vehicle Routing and Scheduling

    Science.gov (United States)

    2015-09-03

    similar mathematical foundation to enable gradient descent methods for discrete combinatorial optimization problems. We are also generalizing our prior...research has exploited statistical and mathematical properties of elementary landscapes to develop new gradient methods for combinatorial optimization... mathematically methods to more automatically identify elementary landscapes. If a combinatorial optimization problem is a superposition of elemen

  1. Elementary Mathematics Leaders

    Science.gov (United States)

    Fennell, Francis; Kobett, Beth McCord; Wray, Jonathan A.

    2013-01-01

    Elementary school mathematics leaders often come to the realization that their position, however titled and determined, although dedicated to addressing needs in math teaching and learning, also entails and directly involves leadership. Elementary school math specialists/instructional leaders (referenced here as elementary mathematics leaders, or…

  2. The notions of mass in gravitational and particle physics

    Science.gov (United States)

    Castellani, Gianluca

    It is presently thought that the mass of all of the elementary particles is determined by the Higgs field. This scalar field couples directly into the trace of the energy momentum tensor of the elementary particles. The attraction between two or more masses arises from the exchange of gravitational quantum particles of spin 2, called gravitons. The gravitational field couples directly into the energy momentum tensor. Then there is a close connection between the Higgs field, that originates the mass, and the gravitational field that dictates how the masses interact. Our purpose in this thesis is to discuss this close connection in terms of fundamental definitions of inertial and gravitational masses. On a practical level we explore two properties of mass from the viewpoint of coupling into the Higgs field: (i) The coupling of the both the Higgs and gravity to the energy-pressure tensor allows for the decay of the Higgs particle into two gravitons. We use the self energy part of the Higgs propagator to calculate the electromagnetic, weak, fermionic and gravitational decay rate of the Higgs particle. We show that the former process appears to dominate the other decay modes. Since the gravitons are detectable with virtually zero probability, the number of Higgs particles with observable decay products will be much less than previously expected. (ii) Some new experimental results seem to indicate that the mass of the heavy elementary particles like the Z,W+,W- and especially the top quark, depends on the particle environment in which these particles are produced. The presence of a Higgs field due to neighboring particles could be responsible for induced mass shifts. Further measurements of mass shift effects might give an indirect proof of the Higgs particle. Such can be in principle done by re-analyzing some of the production data e +e- → ZZ (or W+W-) already collected at the LEP experiment. About the physical property of the top quark, it is too early to arrive at

  3. Particles colliders at the Large High Energy Laboratories; Colisionadores de particulas en los grandes laboratorios de Fisica de Altas Energias

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, M

    1996-09-01

    In this work we present an elementary introduction to particle accelerators, a basic guide of existing colliders and a description of the large european laboratories devoted to Elementary Particle Physics. This work is a large, corrected and updated version of an article published in: Ciencia-Tecnologia-Medio Ambiente Annual report 1996 Edition el Pais (Author)

  4. Elementary School Mathematics Priorities

    Science.gov (United States)

    Wilson, W. Stephen

    2009-01-01

    This article first describes some of the basic skills and knowledge that a solid elementary school mathematics foundation requires. It then elaborates on several points germane to these practices. These are then followed with a discussion and conclude with final comments and suggestions for future research. The article sets out the five…

  5. Soviet exoatmospheric neutral particle beam research

    International Nuclear Information System (INIS)

    Leiss, J.E.; Abrams, R.H.; Ehlers, K.W.; Farrell, J.A.; Gillespie, G.H.; Jameson, R.A.; Keefe, D.; Parker, R.K.

    1988-02-01

    This technical assessment was performed by a panel of eight U.S. scientists and engineers who are familiar with Soviet research through their own research experience, their knowledge of the published scientific literature and conference proceedings, and personal contacts with Soviet scientists and other foreign colleagues. Most of the technical components of a neutral particle beam generating system including the ion source, the accelerator, the accelerator radio frequency power supply, the beam conditioning and aiming system, and the beam neutralizer system are addressed. It does not address a number of other areas important to an exoatmospheric neutral beam system

  6. Perceptions of Elementary School Students: Experiences and Dreams about the Life Studies Course

    Science.gov (United States)

    Baysal, Z. Nurdan; Tezcan, Özlem Apak; Araç, Kamil Ersin

    2018-01-01

    This study seeks to identify elementary school students' views and perceptions of the Life Studies course through verbal and visual instruments. It employs a descriptive phenomenological research design. The study surveyed second- and third-grade students attending one private elementary school and two state elementary schools. The data was…

  7. High energy physics research

    International Nuclear Information System (INIS)

    Piroue, P.A.

    1992-10-01

    The goal of this research is to understand the fundamental constituents of matter and their interactions. At this time, the following activities are underway: e + e - interactions and Z 0 physics at CERN; studies to upgrade the L3 detector at LHC; very high statistics charm physics at Fermilab; search for the H particle at BNL; search for the fifth force; rare kaon decay experiments at BNL; study of B-meson physics at hadron colliders; e + e - pair creation by light at SLAC; R ampersand D related to SSC experiments and the GEM detector; and theoretical research in elementary particle physics and cosmology. The main additions to the activities described in detail in the original grant proposal are (1) an experiment at SLAC (E-144) to study strong-field QED effects in e-laser and γ-laser collisions, and (2) a search for the H particle at BNL (E-188). The R ampersand D efforts for the GEM detector have also considerably expanded. In this paper we give a brief status report for each activity currently under way

  8. Spectroscopy after the new particles

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1975-01-01

    Conventional spectroscopy is reexamined in a search for puzzles and paradoxes which have arisen in attempting to describe the properties of the known particles. These may offer clues to the missing elements necessary for the description of the new particles. The minimum number of elementary building blocks, charm and color, the colored quark model for saturation, spin splittings in the meson spectrum, three kinds of quarks, the Melosh transformation and the Jackson frame, beyond the single-quark transition--the Zweig rule mystery, new particles and old symmetries, the f--A2 interference, and tests of the Zweig rule by rho--ω and f--A2--f' interference are considered

  9. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    Whitaker, J.S.

    1990-01-01

    This document presents our proposal to continue the activities of Boston University researchers in eight projects in high energy physics research: Colliding Beams Physics; Accelerator Design Physics; MACRO Project; Proton Decay Project; Theoretical Particle Physics; Muon G-2 Project; and Hadron Collider Physics. The scope of each of these projects is presented in detail in this paper

  10. A Phenomenological Narrative Study: Elementary Charter School Principals' Managerial Roles

    Science.gov (United States)

    Cetinkaya, Ahmet

    2016-01-01

    This study was a phenomenological narrative research investigating the managerial roles of elementary charter school principals. Managerial leadership practices were investigated under three categories personnel management, student management, and finance management. Elementary charter school principals provided positive feedback for having small…

  11. Reg geology: An elementary introduction

    International Nuclear Information System (INIS)

    Carreras, B.; Fernandez, E.

    1973-01-01

    The purpose of these notes is to given an elementary introduction to the ideas underlying the Regge-type models. In lectures 1 and 2 the connection between the exchange models and the Regge form of the amplitude is shown. In lecture 3 the analytic continuation of the amplitude from the t-channel to the s-schanel is considered, leading to the Regge-type expression, and then (lecture 4), some phenomenological applications are discussed. Lectures 5 and 6 are a generalization of 3 and 4 to the scattering of non-zero spin particles. finally (lectures 7,8 and 9) Regge cuts are introduced and new phenomenological applications are discussed. (Author)

  12. And then there were particles

    CERN Multimedia

    Landua, Rolf

    2007-01-01

    "The appearance of particles dates back to a period physicists find embarrassing, one when the amount of energy active in the Universe was so enormous that they simply cannot descrit it. It is, however, possible to imagine the birth of the elementary building blocks that make up matter and energy."(1 page)

  13. From elementary particles to stars

    International Nuclear Information System (INIS)

    Besliu, C.; Jipa, Al.

    1999-01-01

    The 50th anniversary of National Institute of Physics and Nuclear Engineering (IFIN-HH) coincides with half a century from the discovery of relativistic heavy ions in the primary cosmic radiation. Therefore, an analysis of connections between Particle Physics and Cosmology seems to be indicated at this anniversary. The Relativistic Nuclear Physics could be a bridge between the two fields. Important information on the Universe evolution after Big-Bang, can be obtained in ultrarelativistic nuclear collisions. To compare the processes following the Big Bang with those of quark-gluon plasma formation, expected at collider energies, it is necessary to know the thermodynamic conditions for each stage as well as the time evolution of the systems. In this work, some comparisons of the experimental results and simulations on thermodynamic parameters obtained in relativistic and ultrarelativistic nuclear collisions are discussed and compared with some recent cosmological observations. The existence of similar values of the thermodynamic parameters for equivalent moments in the evolutions of the two systems could be an important tool in a deeper understanding of the Universe. (authors)

  14. The discovery of the J particle; a personal recollection

    International Nuclear Information System (INIS)

    Ting, S.C.C.

    1978-01-01

    A translation is presented of the speech given by S.C.C. Ting at the awarding ceremony for the Nobel Prize for physics in 1975. The history is described of the experiment which led to the discovery of the new elementary particle (J particle). The parts and characteristics of the instrument used are described in detail. (Z.J.)

  15. An introduction to particle physics and the standard model

    CERN Document Server

    Mann, Robert

    2010-01-01

    … thoroughly recommended for a final-year specialist or first-year postgraduate study level especially for those engaged in experimental high energy physics research. The author has performed an excellent service in making accessible the language and results of field theory applied to elementary particle physics.-John J. Quenby, Contemporary Physics, 52, 2011The first chapter shows how clearly the author can write and even though the subject matter gets more complex through the book, the clarity continues. … giv[es] readers greater insights into how the maths and the reality match (or don't ma

  16. Research on historical environments in elementary schools’ social sciences textbooks taught in Northern Cyprus

    Directory of Open Access Journals (Sweden)

    Nazım Kaşot

    2015-12-01

    Full Text Available A comprehensive study has yet to be carried out depending on the historical environment particular to the Elementary Schools in Northern Cyprus. The aim of this study is hence to determine whether the coverage of historical environment subjects in elementary school social sciences textbooks is absorbed or not by the 4th and 5th Grades in the context of both content and visuals. The method of study analysed has been organised in accordance with the qualitative research. The population was not indicated pursuant to qualitative research and so purposive sampling was implemented. The textbooks used were mainly selected from the afore-mentioned grades and classes. All the data collected were based on the textbooks used during the assessment process. The data was gathered in accordance with the document analysis technique and everything was analysed in detail. The categories used were generated after the authors performed analysis by utilising textbooks. To ensure the validity of the categories, literature scanning was undertaken and expert opinion was taken. The category definitions were written for public access. Moreover, units, titles and sub-titles were chosen as registration units and studied accordingly. Thus, the texts in the textbooks were guaranteed to cover the sufficient coverage and dimension for teaching the subject. The frequency of categories used under the text in historical environment was given and the number of words for the scope was also indicated. The size of visuals used in textbooks was given in accordance with the categories. As a result of the study, while 5th Grade textbooks cover historical environment subjects, there was no indication for the 4th Grade textbooks.

  17. The penta-quark: a new kind of elementary particle?

    International Nuclear Information System (INIS)

    Goeke, K.; Praszatowicz, M.

    2005-01-01

    The discovery of the exotic Θ + with minimal quark structure uudds-bar may provide a sensation since, if confirmed, it is the first baryonic particle that cannot be composed of three quarks. The chiral quark soliton description of baryons has predicted the mass and an upper limit for the decay width of this particle prior to the experiments and in agreement with the present data. The model corresponds to a relativistic mean field description of the nucleon, where the quarks move in a self-consistent mean field of pionic and kaonic character. It uses an effective chiral Lagrangian based on spontaneously broken chiral symmetry of the QCD. In a natural way the chiral quark soliton model describes the well known lowest two multiplets (8, 1 + /2), (10, 3 + /2) and it predicts two more exotic particles being members of an anti-decuplet (10-bar, 1 + /2) consisting of penta-quarks. The very narrow width of the Θ + can be explained by the small overlap of the 5-quark light cone wave function of the Θ + with the small 5-quark light cone component of the wave function of the nucleon. If confirmed, Θ + will not only be a new kind of subatomic particle but will seriously influence our understanding of the structure of ordinary nucleons. (authors)

  18. God particle and origin of mass

    International Nuclear Information System (INIS)

    He Hongjian; Kuang Yuping

    2014-01-01

    The new Higgs boson discovered at the CERN LHC could be the God particle expected from the standard model. This revolutionary discovery opens up a new era of exploring the origin of masses for all elementary particles in the universe. It becomes a turning point of the particle physics in 21 th century. This article presents the following: (1) Scientific importance of searching and testing the God particle(s); (2) The history of studying the origin of mass, and why Newton mechanics and Einstein relativity could not resolve the origin of mass; (3) The mysterious vacuum and the mechanism of spontaneous symmetry breaking; (4) How the God particle was invented and how the LHC might have discovered it; (5) The perspective of seeking the origin of mass and new physics laws. (authors)

  19. A Synthesis of Research on Informational Text Reading Interventions for Elementary Students With Learning Disabilities.

    Science.gov (United States)

    Ciullo, Stephen; Lo, Yu-Ling Sabrina; Wanzek, Jeanne; Reed, Deborah K

    2016-01-01

    This research synthesis was conducted to understand the effectiveness of interventions designed to improve learning from informational text for students with learning disabilities in elementary school (K-5). The authors identified 18 studies through a comprehensive search. The interventions were evaluated to determine treatment effects and to understand implementation and methodological variables that influenced outcomes. Moderate to large effect sizes on researcher-developed measures for cognitive strategy interventions were reported. Interventions that utilized graphic organizers as study guides to support social studies learning were also associated with improved outcomes. The findings are considered within the context of limited implementation of standardized measures. The authors extend findings from previous research by reporting a paucity of interventions to enhance higher-level cognitive and comprehension skills. The majority of reviewed studies targeted fact acquisition and main idea identification, and overall encouraging findings were noted for these skills. Implications for future research are discussed. © Hammill Institute on Disabilities 2014.

  20. The elementary school musical as an authentic, integrated performing arts experience

    OpenAIRE

    Bespflug, Kevin Sean

    2009-01-01

    While musicals are often common arts activities in high schools in North America, little has been written about their place in elementary schools. This is surprising when many elementary schools, particularly independent schools, are starting to include them in their fine arts programming. This thesis looks carefully at the elementary school musical by first undertaking a review of literature connected to the staging of musicals. The research and writings of various theorists and educators ar...

  1. Theoretical and experimental studies of elementary particles

    International Nuclear Information System (INIS)

    Bodek, A.; Ferbel, T.; Melissinos, A.C.; Olsen, S.L.; Slattery, P.; Tipton, P.; Das, A.; Hagen, C.R.; Rajeev, S.G.; Okubo, S.

    1991-01-01

    This report discusses: Fixed target experimentation at Fermilab; the D-zero collider experiment at Fermilab; deep inelastic lepton nucleon scattering; non-accelerator experiments and non-linear QED; the AMY experiment at TRISTAN and other activities at KEK; the collider detector at Fermilab; laser switched linac; preparations for experiments at the SSC; search for massive stable particles; and the Advanced Study Institute on techniques and concepts of high energy physics

  2. Do Elementary Science Methods Textbooks Promote Understanding of Shadows?

    Directory of Open Access Journals (Sweden)

    Lloyd H. Barrow

    2016-02-01

    Full Text Available Elementary science methods textbooks can be an important resource for future elementary teachers of science. Since shadows are a common topic in elementary school and Next Generation Science Standards (NGSS Lead States, 2013. A series of ten shadows concepts were formed into a learning progression by Wizman and Fortus (2007. For this research, ten science methods textbook were read and analyzed about how each of the shadow concepts were addressed. These methods textbooks focused on a limited number of shadow concepts. Consequently, as a future reference, they are very limited in addressing all ten shadow concepts.

  3. Particles and Nuclei an introduction to the physical concepts

    CERN Document Server

    Povh, B; Scholz, C; Zetsche, F

    2008-01-01

    This well-established textbook gives a uniform and unique presentation of both nuclear and particle physics. Analysis, Part 1, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being built out of a small number of elementary building blocks and a small number of fundamental interactions. Synthesis, Part 2, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions responsible for the forces in all systems become less and less evident in increasingly complex systems. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modern astrophysics and cosmology". The new edition incorporates a large amount of new experimental results on deep inelastic scattering (obtained at the Electron-Proton Collider HERA at...

  4. Particles and Nuclei An Introduction to the Physical Concepts

    CERN Document Server

    Povh, Bogdan; Scholz, Christoph; Zetsche, Frank

    2006-01-01

    This well-known introductory textbook gives a uniform presentation of nuclear and particle physics from an experimental point of view. The new edition has been extensively revised and updated. The first part, Analysis, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being constructed from a small number of elementary building blocks and a small number of fundamental interactions. The second part, Synthesis, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions, which are responsible for the forces in all systems, become less and less evident in increasingly complex systems. Such systems are in fact dominated by many-body phenomena. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modern ast...

  5. Correlations between polarisation states of W particles in the reaction e- e+ ---> W- W+ at LEP2 energies 189-209 GeV

    Czech Academy of Sciences Publication Activity Database

    Abdallah, J.; Abreu, P.; Adam, W.; Chudoba, Jiří; Mašík, Jiří; Rameš, Jiří; Řídký, Jan; Todorovová, Šárka; Trávníček, Petr; Vrba, Václav

    2009-01-01

    Roč. 63, č. 4 (2009), s. 611-623 ISSN 1434-6044 R&D Projects: GA MŠk LC527 Institutional research plan: CEZ:AV0Z10100502 Keywords : Delphi * polarisation * W boson Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 2.746, year: 2009 http://arxiv.org/pdf/0908.1023

  6. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1989-01-01

    This document reports the past year's achievements and the present directions of the activities of Boston University researchers in seven projects in high energy physics research: study of high energy electron-positron annihilation, using the SLD detector at SLAC; search for proton decay and neutrinos from point astrophysical sources, as well as the study of cosmic ray muons and neutrinos in the IMB detector; development of a new underground detector facility in the Gran Sasso Laboratory in Italy for magnetic monopoles and to study astrophysical muons and neutrinos; preparation of an experiment to measure the anomalous magnetic moment of the muon in a new superconducting storage ring detector system at BNL; development of new concepts for particle accelerator components, including design and prototyping of high-precision electrostatic and magnetic elements; study of proton-antiproton collisions using the UA1 detector at CERN; and study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics

  7. Research in High Energy Physics at Duke University

    Energy Technology Data Exchange (ETDEWEB)

    Kotwal, Ashutosh V. [PI; Goshaw, Al [Co-PI; Kruse, Mark [Co-PI; Oh, Seog [Co-PI; Scholberg, Kate [Co-PI; Walter, Chris [Co-PI

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, ve postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the ! e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detec- tor. This water- lled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  8. Research in High Energy Physics at Duke University

    Energy Technology Data Exchange (ETDEWEB)

    Goshaw, Alfred; Kotwal, Ashutosh; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, five postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the {mu} {yields} e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detector. This water-filled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  9. Big research in new dimensions. Thinkers of our time about the actual elementary-particle physics at CERN; Grossforschung in neuen Dimensionen. Denker unserer Zeit ueber die aktuelle Elementarteilchenphysik am CERN

    Energy Technology Data Exchange (ETDEWEB)

    Kommer, Christoph (ed.) [Heidelberg Univ. (Germany); DKFZ, Heidelberg (Germany); Satz, Helmut [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Blanchard, Philippe [Bielefeld Univ. (Germany). Abt. Theoretische Physik

    2016-07-01

    The following topics are dealt with: Research from the highest energies to the smallest particles at CERN, the laborious way to the Large Hadronic Collider, CERN as accelerator of techniques, culture, and society, a philosophical and sociological perspective of questions concerning CERN, quark matter research at CERN, the FAIR facility for antiproton and ion research. (HSI)

  10. Single-particle Glauber matrix elements

    International Nuclear Information System (INIS)

    Oset, E.; Strottman, D.

    1983-01-01

    The single-particle matrix elements of the Glauber profile function are tabulated for harmonic oscillator single-particle wave functions. The tables are presented in such a manner as to be applicable if the hadron--nucleon elementary scattering amplitude is specified by either a partial wave expansion or a Gaussian in momentum transfer squared. The table is complete through the 1 g/sub 9/2/ orbital and contains entries for the 3s/sub 1/2/ orbital for use if realistic wave functions are expanded in terms of harmonic oscillator functions

  11. Content knowledge of prospective elementary school teacher for fractional concepts

    Science.gov (United States)

    Pattimukay, N.; Juniati, D.; Budiarto, M. T.

    2018-03-01

    The aim of this study was to describe the content knowledge especially the concept of fraction of prospective elementary school teacher. The purpose of this study is to describe the content knowledge, especially the concept of fraction of prospective elementary school teacher. The subject of the study was one of prospective elementary school teacher of Pattimura University. This research is qualitative research. Data were collected through the provision of tests to explore the knowledge content of primary school teacher candidates about fractional concepts. Then continued with qualitative data analysis. The results of this study are as follows: that the prospective primary school teacher defines fractions as part of the whole if an object is divided into equal parts, so that the part that has been divided is part of the whole. Furthermore, the prospective elementary school teacher understood the fractions as division shown in two ways, namely the prospective elementary school teacher understood the fraction as a division operation, the primary school teacher candidate interpreted the fraction as a division when an object is divided be part of the same. Meanwhile, the fraction as a ratio is interpreted as the relationship between a pair of numbers. Then, the denominations are interpreted as a ratio between the numerator and the denominator of the same value. The prospective elementary school teacher also understands fractions of value when simplifying fractions. Primary school teacher candidates understand the concept of fractional operations.

  12. Research in the theory of condensed matter and elementary particles. [Progress report

    International Nuclear Information System (INIS)

    1985-01-01

    The proposed research is concerned with problems occupying the common ground between quantum field theory and statistical mechanics. The topics under investigation include: superconformal field theory in two dimensions, its relationship to two dimensional critical phenomena and its applications in string theory; the covariant formulation of the superstring theory; formation of large-scale structures and spatial chaos in dynamical systems; fermion-boson mass relations in BCS type theories; and properties of quantum field theories defined over galois fields. 37 refs

  13. Using Group Counseling to Improve the Attendance of Elementary School Students with High Rates of Absenteeism: An Action Research Study

    Science.gov (United States)

    Webb-Landman, Eleanor

    2012-01-01

    The foundations of academic and social learning are laid in the early years of school, and attendance is critical to school success. However, research suggests that chronic absenteeism is a significant problem at the elementary school level (Chang & Romero, 2008; Romero & Lee, 2007). This paper presents the results of an action research…

  14. Prospective Elementary School Teachers’ Views about Socioscientific Issues: A Concurrent Parallel Design Study

    OpenAIRE

    Muhammet ÖZDEN

    2015-01-01

    The purpose of this research is to examine the prospective elementary school teachers’ perceptions on socioscientific issues. The research was conducted on prospective elementary school teachers studying at a university located in western Turkey. The researcher first taught the subjects of global warming and nuclear power plants from a perspective of socioscientific issues in the science and technology education course and then conducted the research. Concurrent parallel design, one of the mi...

  15. Clustering of low-valence particles: structure and kinetics.

    Science.gov (United States)

    Markova, Olga; Alberts, Jonathan; Munro, Edwin; Lenne, Pierre-François

    2014-08-01

    We compute the structure and kinetics of two systems of low-valence particles with three or six freely oriented bonds in two dimensions. The structure of clusters formed by trivalent particles is complex with loops and holes, while hexavalent particles self-organize into regular and compact structures. We identify the elementary structures which compose the clusters of trivalent particles. At initial stages of clustering, the clusters of trivalent particles grow with a power-law time dependence. Yet at longer times fusion and fission of clusters equilibrates and clusters form a heterogeneous phase with polydispersed sizes. These results emphasize the role of valence in the kinetics and stability of finite-size clusters.

  16. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1990-01-01

    This document presents our proposal to continue the activities of Boston University researchers in eight projects in high energy physics research: study of high energy electron-positron annihilation, using SLD detector at SLAC. Development of integrated transition radiation detection and tracking for an SSC detector; Development of new concepts for particle accelerator components, including design and prototyping of high-precision electrostatic and magnetic elements; Development of a new underground detector facility in the Gran Saso Laboratory in Italy to search for magnetic monopoles and to study astrophysical muons and neutrinos; Search for proton decay and neutrinos from point astrophysical sources, and the study of cosmic ray muons and neutrinos in the IMB detector; Study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics; Preparation of an experiment to measure the anomalous magnetic moment of the muon in a new superconducting storage ring and detector system at BNL; Fabrication (with M.I.T. and Princeton) of the BGO endcaps and associated tracking chambers for the L3 detector at LEP. Development of a central tracker for the SSC; and This new tasks requests support for research, development, and beam testing of a prototype SSC calorimeter featuring a tower geometry and composed of lead alloy and scintillating fibers

  17. Universe, stars, nuclei and particles: recent discoveries and new questions

    International Nuclear Information System (INIS)

    2002-01-01

    The scientific community aims to reduce the apparent complexity of the Universe to some elementary physical laws. Our Universe Physics is described at any observation scale by a theoretical framework called ''standard model''. This document deals with the great questions of the today Physics trough the following standard models: the cosmos standard model, the stars standard model, the atomic nuclei standard model and the elementary particles Physics standard model. (A.L.B)

  18. Meson facility. Powerful new research tool

    International Nuclear Information System (INIS)

    Lobashev, V.M.; Tavkhelidze, A.N.

    A meson facility is being built at the Institute of Nuclear Research, USSR Academy of Sciences, in Troitsk, where the Scientific Center, USSR Academy of Sciences is located. The facility will include a linear accelerator for protons and negative hydrogen ions with 600 MeV energy and 0.5-1 mA beam current. Some fundamental studies that can be studied at a meson facility are described in the areas of elementary particles, neutron physics, solid state physics, and applied research. The characteristics of the linear accelerator are given and the meson facility's experimental complex is described

  19. Professional Learning for Cultural Mathematics in Papua New Guinea's Elementary Schools

    Science.gov (United States)

    Owens, Kay; Edmonds-Wathen, Cris; Kravia, Geori; Sakopa, Priscilla

    2014-01-01

    A design of principles for teacher professional learning was developed to improve the teaching of "Cultural Mathematics" in elementary schools in Papua New Guinea. The design's appropriateness for PNG elementary schools is the focus of the research implemented through week-long workshops using technology enhancement. Implementation has…

  20. Spaceship neutrino. History of an elementary particle

    International Nuclear Information System (INIS)

    Sutton, C.

    1994-01-01

    The author tells the story of the neutrino that was postulated as early as the 30s by W. Pauli but could only be proved in the 50s. She tells of the expensive experiments by means of the complicated detectors on the earth to record the particles streaming out of the sun in the billions. Discussed also is the cosmological theory which holds that the neutrinos could provide the missing mass in the universe. figs., tabs., refs

  1. Enriching Elementary Quantum Mechanics with the Computer: Self-Consistent Field Problems in One Dimension

    Science.gov (United States)

    Bolemon, Jay S.; Etzold, David J.

    1974-01-01

    Discusses the use of a small computer to solve self-consistent field problems of one-dimensional systems of two or more interacting particles in an elementary quantum mechanics course. Indicates that the calculation can serve as a useful introduction to the iterative technique. (CC)

  2. Charged particle traps II applications

    CERN Document Server

    Werth, Günther; Major, Fouad G

    2009-01-01

    This, the second volume of Charged Particle Traps, is devoted to applications, complementing the first volume’s comprehensive treatment of the theory and practice of charged particle traps, their many variants and refinements. In recent years, applications of far reaching importance have emerged ranging from the ultra-precise mass determinations of elementary particles and their antiparticles and short-lived isotopes, to high-resolution Zeeman spectroscopy on multiply-charged ions, to microwave and optical spectroscopy, some involving "forbidden" transitions from metastable states of such high resolution that optical frequency standards are realized by locking lasers to them. Further the potential application of trapped ions to quantum computing is explored, based on the extraordinary quantum state coherence made possible by the particle isolation. Consideration is given to the Paul and Penning traps as potential quantum information processors.

  3. The Complexity integrated-Instruments components media of IPA at Elementary School

    Directory of Open Access Journals (Sweden)

    Angreni Siska

    2018-01-01

    Full Text Available This research aims at describing the complexity of Integrated Instrument Components media (CII in learning of science at Elementary schools in District Siulak Mukai and at Elementary schools in District Siulak. The research applied a descriptive method which included survey forms. Instruments used were observation sheets. The result of the research showed Integrated Instrument Components media (CII natural science that complexity at primary school district Siulak was more complex compared with that at primary school district Siulak Mukai. is better than from primary school district Mukai

  4. UCLA Particle and Nuclear Physics Research Group, 1993 progress report

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.; Clajus, M.; Price, J.W.; Tippens, W.B.; White, D.B.

    1993-09-01

    The research programs of the UCLA Particle and Nuclear Physics Research Group, the research objectives, results of experiments, the continuing activities and new initiatives are presented. The primary goal of the research is to test the symmetries and invariances of particle/nuclear physics with special emphasis on investigating charge symmetry, isospin invariance, charge conjugation, and CP. Another important part of our work is baryon spectroscopy, which is the determination of the properties (mass, width, decay modes, etc.) of particles and resonances. We also measure some basic properties of light nuclei, for example the hadronic radii of 3 H and 3 He. Special attention is given to the eta meson, its production using photons, electrons, π ± , and protons, and its rare and not-so-rare decays. In Section 1, the physics motivation of our research is outlined. Section 2 provides a summary of the research projects. The status of each program is given in Section 3. We discuss the various experimental techniques used, the results obtained, and we outline the plans for the continuing and the new research. Details are presented of new research that is made possible by the use of the Crystal Ball Detector, a highly segmented NaI calorimeter and spectrometer with nearly 4π acceptance (it was built and used at SLAC and is to be moved to BNL). The appendix contains an update of the bibliography, conference participation, and group memos; it also indicates our share in the organization of conferences, and gives a listing of the colloquia and seminars presented by us

  5. Math Is Like a Lion Hunting a Sleeping Gazelle: Preservice Elementary Teachers' Metaphors of Mathematics

    Science.gov (United States)

    Latterell, Carmen M.; Wilson, Janelle L.

    2016-01-01

    Preservice elementary teachers hold a variety of beliefs about mathematics and mathematics learning, which influence their teaching. Previous research has shown that preservice elementary teachers believe that mathematics is doing arithmetic. However, it is unclear if preservice elementary teachers truly believe that mathematics is only…

  6. Progress report 1986-1987 Basic Research Department

    International Nuclear Information System (INIS)

    1988-01-01

    A report is presented of the activities performed by the Basic Research Department of the Bariloche Atomic Center during the period 1986-1987. In this report, works on different subjects related to physics are grouped: atomic collisions, low temperatures, magnetic resonance, metals, neutrons and reactors and theoretical physics (computational, elementary particles, nuclear physics and solid states). In addition, Appendix I and II regarding the staff and visiting scientists, respectively, and publications and conferences are included [es

  7. Mathematics, Language, and Learning: A Longitudinal Study of Elementary Teachers and Their Mathematics Teaching Practices

    OpenAIRE

    Yeh, Cathery

    2016-01-01

    Elementary school mathematics has gained increased attention in the last few decades. A growing field of research has studied the programmatic design and development of elementary mathematics teaching in teacher education, however, few studies have examined longitudinally the mathematics teaching of novice elementary teachers. Existing longitudinal studies on elementary mathematics teaching have generally focused on the effects of teacher preparation on their beginning practices and have exam...

  8. Einstein model for elementary particles

    International Nuclear Information System (INIS)

    Sharma, N.K.

    1975-01-01

    A group theoretical model unifying a space-time group (E) and an internal symmetry group (I) for strongly interacting particles is worked out. The space-time group is the one that pertains to the group of motions of static Einstein cosmological model implying the symmetry of the group E = O 4 logical operation of multiplication R. With the use of Gueret and Vigier prescription, the left coset R logical operation of multiplication O 4 is identified with the internal symmetry group I = U 1 β logical operation of multiplication (SU(2) logical operation of multiplication SU(2)) contains SU(4). The complete dynamical group (D) is then found to be D = E logical operation of multiplication I = (O logical operation of multiplication R) logical operation of multiplication U 1 β logical operation of multiplication (SU(2) logical operation of multiplication SU(2) contains SO(4,2). Physically useful representations of the space-time group (E) are worked out by solving the eigenvalue problem of Laplace-Beltmi operator. The internal quantum numbers are prescribed in accordance with the SU(2) logical operation of multiplication SU(2) model of Nakamura and Sato. A general mass formula is derived and its use for known baryons and mesons is discussed. (author)

  9. Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at root s=7 TeV

    Czech Academy of Sciences Publication Activity Database

    Adam, J.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Brož, M.; Contreras, J. G.; Ferencei, Jozef; Hladký, Jan; Horák, D.; Křížek, Filip; Kučera, Vít; Kushpil, Svetlana; Lavička, R.; Mareš, Jiří A.; Petráček, V.; Pospíšil, Jan; Šumbera, Michal; Vaňát, Tomáš; Závada, Petr

    2017-01-01

    Roč. 77, č. 8 (2017), č. článku 569. ISSN 1434-6044 R&D Projects: GA MŠk(CZ) LG15052 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ALICE collaboration * heavy ion collisions * LHC Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BF - Elementary Particles and High Energy Physics (FZU-D) OBOR OECD: 1.3 Physical sciences; Particles and field physics (FZU-D) Impact factor: 5.331, year: 2016

  10. Educational models in academic research on the teaching practices in science education in elementary school

    Directory of Open Access Journals (Sweden)

    Rebeca Chiacchio Azevedo Fernandes

    2013-02-01

    Full Text Available We intended to identify the features and pedagogical trends of the school practices proposed and implemented in thesis and dissertations directed to science education at elementary school level from 1972 to 2005. Thirty studies were analysed regarding the teaching methodology, instructional resources, teacher-student relationships, evaluation, theoretical framework, and educational model (traditional, rediscovery, constructivist, technicist, STS, socio-cultural. We found that the constructivist model was dominant (63%, followed by the socio-cultural (20% and the rediscovery one (10%, and that the pedagogical practices were elaborated by researchers, applied by teachers and performed by students, showing a vertical hierarchy between university and school. However, the implemented practices (actual level usually were quite distant from the researchers discourse (proposed level. We also observed that the researchers didn’t find many difficulties in designing and applying a pedagogical proposal with innovative features, but to make changes in the school and social relations, as well as in the evaluation practices, is a barrier difficult to overcome.

  11. Examining LGBTQ-Based Literature Intended for Primary and Intermediate Elementary Students

    Science.gov (United States)

    Bickford, John H., III

    2018-01-01

    This content analysis research examined how lesbian, gay, bisexual, transsexual, transgender, and queer (LGBTQ) individuals and issues are represented in elementary-level trade books. The data pool included every LGBTQ-based trade book with intended audiences of primary (grades K-2) and intermediate (grades 3-5) elementary students. Trade books…

  12. A Phenomenological Examination of Antisocial Behaviors in the Elementary School Workplace

    Science.gov (United States)

    Morton, Cynthia

    2010-01-01

    Antisocial behavior has a direct impact on the public elementary school setting. While considerable research has been conducted on collegiality in postsecondary schools, this study addressed the gap in practice concerning the lack of attention in regard to the impact of antisocial behavior on collegial relationships in the elementary school…

  13. Using Citizen Science to Engage Preservice Elementary Educators in Scientific Fieldwork

    Science.gov (United States)

    Scott, Catherine M.

    2016-01-01

    Preservice elementary teachers' lack of confidence in teaching science is an ongoing concern. Only 29% of elementary teachers in the field felt "very well prepared to teach life science," according to the National Survey of Science and Mathematics Education. Research has suggested that bridging informal and formal science education can…

  14. The Predictors of Internet Addiction Behaviours for Taiwanese Elementary School Students

    Science.gov (United States)

    Lan, Chu M.; Lee, Yu H.

    2013-01-01

    Although there has been considerable research which has explored factors related to internet addiction, few studies have investigated elementary school students' involvement in this behaviour pattern. Participants in the present study were 1045 children in grades 3 to 6 from elementary schools in Taiwan. Students completed surveys on their use of…

  15. Pre-service Elementary Teachers Understanding on Force and Motion

    Science.gov (United States)

    Anggoro, S.; Widodo, A.; Suhandi, A.

    2017-09-01

    The research is done to investigate the understanding on the subtopic of Force and Motion that exists among the pre-services elementary teachers. The participants were 71 Elementary Teachers Study Program students in 6th and 77 one in 2nd semester at private university. Research instrument consisted of background information of respondents, belief of preconception and 8 questions that relates to Force and Motion with four alternative answers and their explained. Descriptive statistics such as percentage and bar chart were used for analyzing the data collected. Research findings have shown many participants have some misunderstand or misconception conception especially in free fall object, rest object, buoyant force and gravitation. This research recommends learning progression pre-services teachers to be exposed with conflict cognitive strategy for science conceptual change.

  16. Radiation education in elementary school

    International Nuclear Information System (INIS)

    Harima, Yoshiko; Matsuda, Teruo; Ootake, Shigehiro; Ikeda, Masamichi

    1999-01-01

    Lessons to measure natural radiation have been given at the fourth elementary school of Hikari-gaoka, Nerima-ku, Tokyo, for three years. The Method of Lessons: After hearing a brief explanation about natural radiation and usage of a simple instrument of gamma ray named 'Hakaru-kun' by a lecturer (Fig. 1), every child participates to measure dose rate at several measured points within the range of school campus (Figs. 5 - 14). They calculate the average value of measured dose rate (Fig. 2) and affix tags written the average value (Fig. 3). In addition, by looking at the photographs, through the imaging plate, of radiations released from vegetables and pork, they are surprised at the fact that all the food have such activities. Finally, they watch marks of alpha particles released from the ore of samarskite in a cloud chamber. The alpha particles fly in alcohol vapor over saturated cooled with dry ice (Fig. 15). They express their impression of lesson for finding out the existence of natural radiation in their reports. (Table 1 and Fig. 4). (author)

  17. Features and states of microscopic particles in nonlinear quantum-mechanics systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,we present the elementary principles of nonlinear quantum mechanics(NLQM),which is based on some problems in quantum mechanics.We investigate in detail the motion laws and some main properties of microscopic particles in nonlinear quantum systems using these elementary principles.Concretely speaking,we study in this paper the wave-particle duality of the solution of the nonlinear Schr6dinger equation,the stability of microscopic particles described by NLQM,invariances and conservation laws of motion of particles,the Hamiltonian principle of particle motion and corresponding Lagrangian and Hamilton equations,the classical rule of microscopic particle motion,the mechanism and rules of particle collision,the features of reflection and the transmission of particles at interfaces,and the uncertainty relation of particle motion as well as the eigenvalue and eigenequations of particles,and so on.We obtained the invariance and conservation laws of mass,energy and momentum and angular momenturn for the microscopic particles,which are also some elementary and universal laws of matter in the NLQM and give further the methods and ways of solving the above questions.We also find that the laws of motion of microscopic particles in such a case are completely different from that in the linear quantum mechanics(LQM).They have a lot of new properties;for example,the particles possess the real wave-corpuscle duality,obey the classical rule of motion and conservation laws of energy,momentum and mass,satisfy minimum uncertainty relation,can be localized due to the nonlinear interaction,and its position and momentum can also be determined,etc.From these studies,we see clearly that rules and features of microscopic particle motion in NLQM is different from that in LQM.Therefore,the NLQM is a new physical theory,and a necessary result of the development of quantum mechanics and has a correct representation of describing microscopic particles in nonlinear systems,which can

  18. The Implementation Of Character Education Values In Integrated Physical Education Subject In Elementary School

    Directory of Open Access Journals (Sweden)

    Suherman Ayi

    2018-01-01

    Full Text Available The issue of this research emphasizes on the implementation of character building values through physical education learning in elementary school. The effort in developing this character building practice is essential to be done in order to tackle moral and character crises, which already occur in both individual and collective levels reflected in educational institution from elementary school to higher education. Hence, to form culture and national character, educational program and process are inseparable from environmental factor including the values of society, culture, and humanity. Physical education subject that is based on 2013 Curriculum has significant difference compared to the previous physical education subject. This is due to the fact that integrated physical education has its own uniqueness in terms of planning, systematic implementation, and instructional medium. This research aims at producing guidance in implementing character values integrated in physical education in elementary school. The method used in this research is research and development (R&D method, which includes preliminary research, model designing, limited trial, and extensive trial, as well as validation and dissemination. The findings of the research show that character values can be implemented in physical education in elementary schools in Sumedang Regency.

  19. Teaching science as argument: Prospective elementary teachers' knowledge

    Science.gov (United States)

    Barreto-Espino, Reizelie

    For the past two decades there has been increasing emphasis on argumentation in school science. In 2007, the National Research Council published a synthesis report that emphasizes the centrality of constructing, evaluating, and using scientific explanations. Participating in argumentation is seen as fundamental to children's science learning experiences. These new expectations increase challenges for elementary teachers since their understanding of and experiences with science are overwhelmingly inconsistent with teaching science as argument. These challenges are further amplified when dealing with prospective elementary teachers. The current study was guided by the following research questions: (1) What are the ways in which preservice elementary teachers appropriate components of "teaching science as argument" during their student teaching experience? (2) To what extent do components from prospective elementary teachers' reflections influence planning for science teaching? (3) What elements from the context influence preservice elementary teachers' attention to teaching science as argument? This study followed a multi-participant case study approach and analyses were informed by grounded theory. Three participants were selected from a larger cohort of prospective elementary teachers enrolled in an innovative Elementary Professional Development School (PDS) partnership at a large Northeast University. Cross-case analysis allowed for the development of five key assertions: (1) The presence of opportunities for interacting with phenomena and collecting first hand data helped participants increase their emphasis on evidence-based explanations. (2) Participants viewed science talks as an essential mechanism for engaging students in the construction of evidence-based explanations and as being fundamental to meaning-making. (3) Participants demonstrated attention to scientific subject matter during instruction rather than merely focusing on activities and/or inquiry

  20. A map of the invisible journeys into particle physics

    CERN Document Server

    Butterworth, Jon

    2017-01-01

    What is the universe really made of? How do we know? Follow the map of the invisible to find out... Over the last sixty years, scientists around the world have worked together to explore the fundamental constituents of matter, and the forces that govern their behaviour. The result, so far, is the ‘Standard Model’ of elementary particles: a theoretical map of the basic building blocks of the universe. With the discovery of the Higgs boson in 2012, the map as we know it was completed, but also extended into strange new territory. A Map of the Invisible is an explorer’s guide to the Standard Model and the extraordinary realms of particle physics. After shrinking us down to the size of a sub-atomic particle, pioneering physicist Jon Butterworth takes us on board his research vessel for a journey in search of atoms and quarks, electrons and neutrinos, and the forces that shape the universe. Step by step, discovery by discovery, we journey into the world of the unseen, from the atom to black holes and dark ...

  1. Investigating the Self-Perceived Science Teaching Needs of Local Elementary Educators

    Science.gov (United States)

    Carver, Cynthia G.

    Elementary teachers in one school system have expressed low self-efficacy teaching science and desire more support teaching science. However, little research has been conducted on how best to meet these teachers' needs. The theories of perceived self-efficacy, social cognition, and behaviorism make up the conceptual framework of this study. The focus of this qualitative project study was on the needs of local elementary educators. These teachers were asked what they felt they needed most to be more effective science educators. The methodology of phenomenology was used in this study in which local elementary teachers were questioned in focus groups regarding their own science teaching efficacy and perceived needs. Using inductive analysis, data were coded for links to discussion questions as well as any additional patterns that emerged. Findings indicated that local elementary teachers desire improved communication among administrators and teachers as well as better science content support and training. Focus group participants agreed that teacher self-efficacy affects the time spent, effort toward, and quality of elementary science education. Using the results of the study, a science mentor program was developed to support the needs of elementary teachers and increase teacher self-efficacy, thus improving local elementary science education. Implications for positive social change include the development and support of elementary science programs in other school systems with the goal of improving science education for elementary students.

  2. The 1st symposium of Research Center for Charged Particle Therapy on fundamental development of the charged particle therapy

    International Nuclear Information System (INIS)

    Soga, Fuminori

    2002-06-01

    This issue is the collection of the paper presented at the 1st Symposium of Research Center for Charged Particle Therapy on fundamental development of the charged particle therapy. The 31 of the presented papers are indexed individually. (J.P.N.)

  3. The neutrino as problem particle

    International Nuclear Information System (INIS)

    Cribier, M.; Spiro, M.; Vignaud, D.

    1997-01-01

    Every second, more than 60 billion of neutrinos coming from sky cross each squared centimeter of our body... and continue indifferently their way at the lights speed. These elementary particles, to which matter is casi-totally transparent, are one of the universe future pivots. They bear witness to what is happening inside stars during their life and death. Pursued since more than 25 years, neutrinos emitted by the sun, seem less than predicated, that presents an important puzzle. Furthermore, through neutrinos, the standard model of particle physics might be put at fault. (author). 7 Refs., 2 Figs

  4. A narrative study of novice elementary teachers' perceptions of science instruction

    Science.gov (United States)

    Harrell, Roberta

    It is hoped that, once implemented, the Next Generation Science Standards (NGSS) will engage students more deeply in science learning and build science knowledge sequentially beginning in Kindergarten (NRC, 2013). Early instruction is encouraged but must be delivered by qualified elementary teachers who have both the science content knowledge and the necessary instructional skills to teach science effectively to young children (Ejiwale, 2012, Spencer, Vogel, 2009, Walker, 2011). The purpose of this research study is to gain insight into novice elementary teachers' perceptions of science instruction. This research suggests that infusion of constructivist teaching in the elementary classroom is beneficial to the teacher's instruction of science concepts to elementary students. Constructivism is theory that learning is centered on the learner constructing new ideas or concepts built upon their current/past knowledge (Bruner, 1966). Based on this theory, it is recommended that the instructor should try to encourage students to discover principles independently; essentially the instructor presents the problem and lets students go (Good & Brophy, 2004). Discovery learning, hands-on, experimental, collaborative, and project-based learning are all approaches that use constructivist principles. The NGSS are based on constructivist principles. This narrative study provides insight into novice elementary teachers' perceptions of science instruction considered through the lens of Constructivist Theory (Bruner, 1960).

  5. Particle Mechanics

    CERN Document Server

    Collinson, Chris

    1995-01-01

    * Assumes no prior knowledge* Adopts a modelling approach* Numerous tutorial problems, worked examples and exercises included* Elementary topics augmented by planetary motion and rotating framesThis text provides an invaluable introduction to mechanicsm confining attention to the motion of a particle. It begins with a full discussion of the foundations of the subject within the context of mathematical modelling before covering more advanced topics including the theory of planetary orbits and the use of rotating frames of reference. Truly introductory , the style adoped is perfect for those u

  6. Collaborative research on fluidization employing computer-aided particle tracking

    International Nuclear Information System (INIS)

    Chen, M.M.

    1990-01-01

    The objective of this work is to obtain unique, fundamental information on fluidization dynamics over a wide range of flow regimes using a Transportable Computer-Aided Particle Tracking Apparatus (TCAPTA). The contractor will design and fabricate a transportable version of the Computer-Aided Particle Tracking Facility (CAPTF) he has previously developed. The contractor will install and operate the (TCAPTA) at the METC fluidization research facilities. Quantitative data on particle motion will be obtained and reduced. The data will be used to provide needed information for modeling of bed dynamics, and prediction of bed performance, including erosion. A radioactive tracer particle, identical in size shape and mass to the bed particles under study, is mixed in the bed. The radiation emitted by the tracer particle, monitored continuously by 16 scintillation detectors, allows its position to be determined as a function of time. Stochastic mixing processes intrinsic to fluidization further cause the particle to travel to all active regions of the bed, thus sampling the motion in these regions. After a long test run to insure that a sufficient sampling have been acquired, time-differentiation and other statistical processing will then yield the mean velocity distribution, the fluctuating velocity distribution, many types of auto- and cross correlations, as well as mean fluxes, including the mean momentum fluxes due to random motion, which represent the kinetic contributions to the mean stress tensor

  7. Research in particle theory

    International Nuclear Information System (INIS)

    Mansouri, F.; Suranyi, P; Wijewardhana, L.C.R.

    1991-10-01

    In the test particle approximation, the scattering amplitude for two-particle scattering in (2+1)-dimensional Chern-Simons-Witten gravity and supergravity was computed and compared to the corresponding metric solutions. The formalism was then extended to the exact gauge theoretic treatment of the two-particle scattering problem and compared to 't Hooft's results from the metric approach. We have studied dynamical symmetry breaking in 2+1 dimensional field theories. We have analyzed strong Extended Technicolor (ETC) models where the ETC coupling is close to a critical value. There are effective scalar fields in each of the theories. We have worked our how such scalar particles can be produced and how they decay. The φ 4 field theory was investigated in the Schrodinger representation. The critical behavior was extracted in an arbitrary number of dimensions in second order of a systematic truncation approximation. The correlation exponent agrees with known values within a few percent

  8. On the possible types of elementary particles compatible with the canonical formulation

    International Nuclear Information System (INIS)

    Cheng Kaijia

    1988-12-01

    In a paper D erivation of Dirac's Equation for a Free Particle , it was shown by the author that Dirac's equation can be deduced from a canonical formulation on the ground of relativity and quantum mechanics only. This idea will be further developed to a criterion on the possible forms of particles compatible with these formalism. It is shown in the text that only two types can exist in conformity with the criterion, namely fermions with spin 1/2 and scalars with spin zero. An example is given for a particle with spin unity to show that they do not fall into the present category. Particles that play roles in vector fields belong to different categories. Discussions are made for particles coupled with an external electronmagnetic field, preliminary results show that the essential features for the free particles still retain

  9. Jet reconstruction and performance using particle flow with the ATLAS Detector

    Czech Academy of Sciences Publication Activity Database

    Aaboud, M.; Aad, G.; Abbott, B.; Chudoba, Jiří; Hejbal, Jiří; Hladík, Ondřej; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Penc, Ondřej; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek

    2017-01-01

    Roč. 77, č. 7 (2017), s. 1-47, č. článku 466. ISSN 1434-6044 Institutional support: RVO:68378271 Keywords : ATLAS * CERN LHC Coll * resolution * stability * pile-up * experimental results * 8000 GeV-cms Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 5.331, year: 2016

  10. Elementary Preservice Teachers' and Elementary Inservice Teachers' Knowledge of Mathematical Modeling

    Science.gov (United States)

    Schwerdtfeger, Sara

    2017-01-01

    This study examined the differences in knowledge of mathematical modeling between a group of elementary preservice teachers and a group of elementary inservice teachers. Mathematical modeling has recently come to the forefront of elementary mathematics classrooms because of the call to add mathematical modeling tasks in mathematics classes through…

  11. Achievements and challenges in particle beam fusion research

    International Nuclear Information System (INIS)

    Yonas, G.

    1978-01-01

    Recent developments in particle beam fusion research, as well as critical issues which remain to be solved are summarized. Until now primary emphasis has been on driver development, but as sources have increased in energy output and intensity and diagnostic techniques have improved, implosion studies have been initiated

  12. Proposed activity - Budget for research in high energy physics

    International Nuclear Information System (INIS)

    Barger, V.; Camerini, U.; Carlsmith, D.

    1989-01-01

    This paper contains task reports on the following topics: Hadron physics at Fermilab; Lepton hadron scattering; Electroweak and weak interactions at the Stanford Linear Accelerator Center; Hyperon beam program/hadroproduction of heavy flavors at Fermilab; High energy physics colliding beam detector facility at Fermilab; Data analysis facility; Institute for Elementary Particle Physics research; Study of weak and electromagnetic interactions at Desy and Cern; Theoretical high energy physics; Dumand; and Ultra high energy gamma rays

  13. The Delaware Bay Estuary as a Classroom: A Research Experience for Future Elementary Grade-Level Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Shipman, H.; Ford, D.; Dagher, Z.; Brickhouse, N.

    2004-05-01

    With supplemental funding from the National Science Foundation (NSF), students from the University of Delaware's Science Semester course took part in a two-day research cruise in the Delaware Bay Estuary. The Science Semester, an NSF-funded project, is an integrated 15-credit sequence that encompasses the entire course work for the spring semester for approximately 60 sophomore-level elementary education majors. The semester includes the earth, life, and physical science content courses and the education science methods course integrated into one curriculum. In this curriculum, problem-based learning and other inquiry-based approaches are applied to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. The research cruise was conducted as part of one of the four major investigations during the course. The investigation focused on Delaware's state marine animal, Limulus polyphemus. It is one of the four remaining species of horseshoe crabs; the largest spawning population of Limulus is found in Delaware Bay. Within the problem- and inquiry-based learning approaches of the Science Semester course, the students became aware that very little data exists on the benthic habitat of Limulus polyphemus. In order to learn more about this habitat, a cohort of seven students from the course was recruited as part of the scientific party to take part in the research cruise to collect data on the floor of Delaware Bay. The data included: multibeam bathymetry/backscatter data, grab samples of bay bottom sediments, and CTD profiles. Prior to the cruise, all students in the course took part in laboratory exercises to learn about topographic maps and navigation charts using the Delaware Bay area as the region of study. While "at-sea", the cruise participants sent the ship's latitude and longitude positions as a function of time. The positions were used by the on-land students to

  14. Concepts and models in particle physics

    International Nuclear Information System (INIS)

    Paty, M.

    1977-01-01

    The knowledge of Elementary Particle Physics is characterized by an object and a purpose which are both highly theoretical. This assessment is shown and analysed by some examples taken in recent achievements in the field. It is also tried to attempt an enonciation of some criteria of the reality for concepts and objects in this matter [fr

  15. Paul Scherrer Institute Scientific Report 1999. Volume I: Particles and Matter

    International Nuclear Information System (INIS)

    Gobrecht, J.; Gaeggeler, H.; Herlach, D.; Junker, K.; Kettle, P.-R.; Kubik, P.; Zehnder, A.

    2000-01-01

    Although originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. The highlight of research this year was the first-ever determination of the chemical properties of the superheavy element 107 Bohrium. This was undertaken, by an international team led by H. Gaeggeler of PSI's Laboratory for Radiochemistry. Bohrium was produced by bombarding a Berkelium target with Neon ions from the Injector I cyclotron and six atoms were detected after having passed through an online gas chromatography device. At the Laboratory for Particle Physics the focus has shifted from nuclear physics to elementary particle physics with about a fifty-fifty split between investigations of rare processes or particle decays using the high intensity muon, pion and recently also polarized neutron beams of PSI, and research at the highest energy frontier at CERN (Geneva) and DESY (Hamburg). Important space instrumentation has been contributed by the Laboratory for Astrophysics to the European Space Agency and NASA satellite programmes. The Laboratory for Micro and Nanotechnology continued to focus on research into molecular nanotechnology and SiGeC nanostructures, the latter with the aim of producing silicon based optoelectronics. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided

  16. Paul Scherrer Institute Scientific Report 1999. Volume I: Particles and Matter

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, J.; Gaeggeler, H.; Herlach, D.; Junker, K.; Kettle, P.-R.; Kubik, P.; Zehnder, A. [eds.

    2000-07-01

    lthough originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. The highlight of research this year was the first-ever determination of the chemical properties of the superheavy element {sup 107} Bohrium. This was undertaken, by an international team led by H. Gaeggeler of PSI's Laboratory for Radiochemistry. Bohrium was produced by bombarding a Berkelium target with Neon ions from the Injector I cyclotron and six atoms were detected after having passed through an online gas chromatography device. At the Laboratory for Particle Physics the focus has shifted from nuclear physics to elementary particle physics with about a fifty-fifty split between investigations of rare processes or particle decays using the high intensity muon, pion and recently also polarized neutron beams of PSI, and research at the highest energy frontier at CERN (Geneva) and DESY (Hamburg). Important space instrumentation has been contributed by the Laboratory for Astrophysics to the European Space Agency and NASA satellite programmes. The Laboratory for Micro and Nanotechnology continued to focus on research into molecular nanotechnology and SiGeC nanostructures, the latter with the aim of producing silicon based optoelectronics. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided.

  17. Paul Scherrer Institute Scientific Report 1999. Volume I: Particles and Matter

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, J; Gaeggeler, H; Herlach, D; Junker, K; Kettle, P -R; Kubik, P; Zehnder, A [eds.

    2000-07-01

    lthough originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. The highlight of research this year was the first-ever determination of the chemical properties of the superheavy element {sup 107} Bohrium. This was undertaken, by an international team led by H. Gaeggeler of PSI's Laboratory for Radiochemistry. Bohrium was produced by bombarding a Berkelium target with Neon ions from the Injector I cyclotron and six atoms were detected after having passed through an online gas chromatography device. At the Laboratory for Particle Physics the focus has shifted from nuclear physics to elementary particle physics with about a fifty-fifty split between investigations of rare processes or particle decays using the high intensity muon, pion and recently also polarized neutron beams of PSI, and research at the highest energy frontier at CERN (Geneva) and DESY (Hamburg). Important space instrumentation has been contributed by the Laboratory for Astrophysics to the European Space Agency and NASA satellite programmes. The Laboratory for Micro and Nanotechnology continued to focus on research into molecular nanotechnology and SiGeC nanostructures, the latter with the aim of producing silicon based optoelectronics. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided.

  18. Elementary Teachers' Experiences of Departmentalized Instruction and Its Impact on Student Affect

    Science.gov (United States)

    Minott, Robert Charles

    2016-01-01

    The purpose of this qualitative dissertation was to explore the lived experiences of departmentalized elementary teachers, Grades 1-3, and how they addressed their students' affective needs. The main research question of the study was how do elementary school teachers perceive departmentalized instruction and describe their experiences of this…

  19. Preparing perservice teachers to teach elementary school science

    Science.gov (United States)

    Lewis, Amy D.

    The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in providing both the content knowledge and pedagogical content knowledge necessary to teach science effectively (Baumgartner, 2010; Bodzin & Beerer, 2003; Bulunuz & Jarrett 2009). This mixed methods study examined what happened when a science methods course was interactively co-taught by an expert in elementary teaching methods and a physics expert. This study also aimed to discover what aspects of the curriculum pre-service teachers (PSTs) said helped them in developing their understanding of science content and scientific reasoning, and how to implement inquiry practices to teach science. A nested case study of three PSTs provided descriptive portraits of student experiences in the class. A whole class case analysis was used to examine what PSTs learned in terms of science, scientific reasoning skills, and pedagogical content knowledge (PCK) from their experiences in the course. It was found that students often conflated science content with the experiences they had in learning the content. Although PSTs felt the interactive co-teaching model effectively created a balance between theory and practice, it was their experiences doing science--conducting physical experiments, developing and discussing scientific models, and the use of inquiry-based instruction--that they credited for their learning. Even with careful curriculum planning, and a course purposely designed to bridge the theory to practice gap, this study found one semester-long methods course to be insufficient in providing the vast content knowledge and PCK elementary school science teachers need.

  20. The cosmology/particle physics interface

    International Nuclear Information System (INIS)

    Olive, K.A.; Schramm, D.N.

    1985-01-01

    The paper reviews the interface between elementary particle physics and cosmology; and concentrates on inflation and the dark matter problem. Inflationary models of the Universe are examined, including phase transitions and supergravity. The three classes of dark matter problems discussed are: dynamical halos, galaxy formation and clustering, and the Ω=1 of inflation. Possible solutions to the cosmological dark matter problems are considered. (U.K.)