Yokoi, T. [Building Research Institute, Tokyo (Japan); Sanchez-Sesma, F. [Universidad National Autonoma de Mexico, (Mexico). Institute de Ingenieria
1997-05-27
Formulation is introduced for discretizing a boundary integral equation into an indirect boundary element method for the solution of 3-dimensional topographic problems. Yokoi and Takenaka propose an analytical solution-capable reference solution (solution for the half space elastic body with flat free surface) to problems of topographic response to seismic motion in a 2-dimensional in-plane field. That is to say, they propose a boundary integral equation capable of effectively suppressing the non-physical waves that emerge in the result of computation in the wake of the truncation of the discretized ground surface making use of the wave field in a semi-infinite elastic body with flat free surface. They apply the proposed boundary integral equation discretized into the indirect boundary element method to solve some examples, and succeed in proving its validity. In this report, the equation is expanded to deal with 3-dimensional topographic problems. A problem of a P-wave vertically landing on a flat and free surface is solved by the conventional boundary integral equation and the proposed boundary integral equation, and the solutions are compared with each other. It is found that the new method, different from the conventional one, can delete non-physical waves from the analytical result. 4 figs.
Masuda, S.; Kasahara, Y.; Ashidate, I. [NKK Corp., Tokyo (Japan)
1996-12-31
In a high-speed boat of a type using hydrofoils, lifting force increases in proportion to square of its length, while displacement is proportional to the third power. Therefore, an idea has come up that speed of a large boat may be increased by combining the hydrofoils with a submerged body. In other words, the idea is to levitate a ship by using composite support consisting of buoyancy of the submerged body and lifting force caused by the hydrofoils. Insufficiency of the lifting force may be complemented by the buoyancy of the submerged body which increases in an equivalent rate as that in the displacement. However, combining a submerged body with hydrofoils render a problem that lifting force for hydrofoils decreases because of interactions among the submerged body, hydrofoils, and free surface. Therefore, assuming a model of a submerged body with a length of 85 m cruising at 40 kt, analysis was given on decrease in lifting force for hydrofoils due to interactions between the submerged and lifting body and free surface by using the boundary element method. As a result, it was verified that the lifting force for the hydrofoils decreases as a result of creation of a flow that decreases effective angle of attach of the hydrofoils. It was also made clear that making the submerging depth greater reduces the decrease in the lifting force. 9 refs., 14 figs., 1 tab.
Yokoi, T. [Akita University, Akita (Japan). Mining College
1996-05-01
As a method of computation of wave fields in irregularly stratified media by use of the indirect boundary element method, an induction formula was proposed in a previous report, utilizing the reference solution representing the wave field in corresponding horizontally stratified media. This algorithm applies to other types of vibration source. In computation of a wave field with the focus in presence on the ground or in the ground, the algorithm is incorporated into the computation as a vector including the reference solution as a variable. There exists no need to modify the algorithm. Once the reference solution is obtained, the wave field in the irregularly stratified media is automatically constructed by the proposed algorithm. The wave field to be the reference solution to a point source in the horizontally stratified media, is determined when the solution is obtained of the frequency/wavenumber domain by use of the reflection/transmission matrix of Kennet (1983) and converted into the solution of the spatial domain by use of the discrete wavenumber representation of Bouchon and Aki (1977). 8 refs., 2 figs.
Brewing characteristics of haploid strains isolated from sake yeast Kyokai No. 7.
Katou, Taku; Kitagaki, Hiroshi; Akao, Takeshi; Shimoi, Hitoshi
2008-11-01
Sake yeast exhibit various characteristics that make them more suitable for sake brewing compared to other yeast strains. Since sake yeast strains are Saccharomyces cerevisiae heterothallic diploid strains, it is likely that they have heterozygous alleles on homologous chromosomes (heterozygosity) due to spontaneous mutations. If this is the case, segregation of phenotypic traits in haploid strains after sporulation and concomitant meiosis of sake yeast strains would be expected to occur. To examine this hypothesis, we isolated 100 haploid strains from Kyokai No. 7 (K7), a typical sake yeast strain in Japan, and compared their brewing characteristics in small-scale sake-brewing tests. Analyses of the resultant sake samples showed a smooth and continuous distribution of analytical values for brewing characteristics, suggesting that K7 has multiple heterozygosities that affect brewing characteristics and that these heterozygous alleles do segregate after sporulation. Correlation and principal component analyses suggested that the analytical parameters could be classified into two groups, indicating fermentation ability and sake flavour.
quadratic spline finite element method
A. R. Bahadir
2002-01-01
Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.
RESEARCH METHODS OF LOCATIVE ELEMENT
SULAYMANOVA N.J.
2012-01-01
Full Text Available The article is devoted to the methods of investigation of locative elements. Sentence analysis with locative elements is taken according to the results of component analysis in the system of contradicting – opposition. More over the article is full of examples related to the description of various syntactic units.
Programming the finite element method
Smith, I M; Margetts, L
2013-01-01
Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c
Finite element methods for engineers
Fenner, Roger T
2013-01-01
This book is intended as a textbook providing a deliberately simple introduction to finite element methods in a way that should be readily understandable to engineers, both students and practising professionals. Only the very simplest elements are considered, mainly two dimensional three-noded “constant strain triangles”, with simple linear variation of the relevant variables. Chapters of the book deal with structural problems (beams), classification of a broad range of engineering into harmonic and biharmonic types, finite element analysis of harmonic problems, and finite element analysis of biharmonic problems (plane stress and plane strain). Full Fortran programs are listed and explained in detail, and a range of practical problems solved in the text. Despite being somewhat unfashionable for general programming purposes, the Fortran language remains very widely used in engineering. The programs listed, which were originally developed for use on mainframe computers, have been thoroughly updated for use ...
Finite elements methods in mechanics
Eslami, M Reza
2014-01-01
This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams, and elasticity with detailed derivations for the mass, stiffness, and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams, and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson’s equation. The second computer program handles the two dimensional elasticity problems, and the third one presents the three dimensional transient heat conducti...
Selective Smoothed Finite Element Method
无
2007-01-01
The paper examines three selective schemes for the smoothed finite element method (SFEM) which was formulated by incorporating a cell-wise strain smoothing operation into the standard compatible finite element method (FEM). These selective SFEM schemes were formulated based on three selective integration FEM schemes with similar properties found between the number of smoothing cells in the SFEM and the number of Gaussian integration points in the FEM. Both scheme 1 and scheme 2 are free of nearly incompressible locking, but scheme 2 is more general and gives better results than scheme 1. In addition, scheme 2 can be applied to anisotropic and nonlinear situations, while scheme 1 can only be applied to isotropic and linear situations. Scheme 3 is free of shear locking. This scheme can be applied to plate and shell problems. Results of the numerical study show that the selective SFEM schemes give more accurate results than the FEM schemes.
Peridynamic Multiscale Finite Element Methods
Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
Method of securing filter elements
Brown, Erik P.; Haslam, Jeffery L.; Mitchell, Mark A.
2016-10-04
A filter securing system including a filter unit body housing; at least one tubular filter element positioned in the filter unit body housing, the tubular filter element having a closed top and an open bottom; a dimple in either the filter unit body housing or the top of the tubular filter element; and a socket in either the filter unit body housing or the top of the tubular filter element that receives the dimple in either the filter unit body housing or the top of the tubular filter element to secure the tubular filter element to the filter unit body housing.
Continuous finite element methods for Hamiltonian systems
无
2007-01-01
By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudosymplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agreement with theory.
Automation of finite element methods
Korelc, Jože
2016-01-01
New finite elements are needed as well in research as in industry environments for the development of virtual prediction techniques. The design and implementation of novel finite elements for specific purposes is a tedious and time consuming task, especially for nonlinear formulations. The automation of this process can help to speed up this process considerably since the generation of the final computer code can be accelerated by order of several magnitudes. This book provides the reader with the required knowledge needed to employ modern automatic tools like AceGen within solid mechanics in a successful way. It covers the range from the theoretical background, algorithmic treatments to many different applications. The book is written for advanced students in the engineering field and for researchers in educational and industrial environments.
Domain decomposition methods for mortar finite elements
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
An element by element spectral element method for elastic wave modeling
LIN Weijun; WANG Xiuming; ZHANG Hailan
2006-01-01
The spectral element method which combines the advantages of spectral method with those of finite element method,provides an efficient tool in simulating elastic wave equation in complex medium. Based on weak form of elastodynamic equations, mathematical formulations for Legendre spectral element method are presented. The wave field on an element is discretized using high-order Lagrange interpolation, and integration over the element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. This results in a diagonal mass matrix which leads to a greatly simplified algorithm. In addition, the element by element technique is introduced in our method to reduce the memory sizes and improve the computation efficiency. Finally, some numerical examples are presented to demonstrate the spectral accuracy and the efficiency. Because of combinations of the finite element scheme and spectral algorithms, this method can be used for complex models, including free surface boundaries and strong heterogeneity.
An improved optimal elemental method for updating finite element models
Duan Zhongdong(段忠东); Spencer B.F.; Yan Guirong(闫桂荣); Ou Jinping(欧进萍)
2004-01-01
The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results. This situation occurs when the test modal model is incomplete, as is often the case in practice. An improved optimal elemental method is presented that defines a new objective function, and as a byproduct, circumvents the need for mass normalized modal shapes, which are also not readily available in practice. To solve the group of nonlinear equations created by the improved optimal method, the Lagrange multiplier method and Matlab function fmincon are employed. To deal with actual complex structures,the float-encoding genetic algorithm (FGA) is introduced to enhance the capability of the improved method. Two examples, a 7-degree of freedom (DOF) mass-spring system and a 53-DOF planar frame, respectively, are updated using the improved method.Thc example results demonstrate the advantages of the improved method over existing optimal methods, and show that the genetic algorithm is an effective way to update the models used for actual complex structures.
Advanced finite element method in structural engineering
Long, Yu-Qiu; Long, Zhi-Fei
2009-01-01
This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.
A survey of mixed finite element methods
Brezzi, F.
1987-01-01
This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.
The finite element method in electromagnetics
Jin, Jianming
2014-01-01
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The
On Hybrid and mixed finite element methods
Pian, T. H. H.
1981-01-01
Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.
Recent advances in boundary element methods
Manolis, GD
2009-01-01
Addresses the needs of the computational mechanics research community in terms of information on boundary integral equation-based methods and techniques applied to a variety of fields. This book collects both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the Mesh Reduction Methods (MRM).
Introducing the Boundary Element Method with MATLAB
Ang, Keng-Cheng
2008-01-01
The boundary element method provides an excellent platform for learning and teaching a computational method for solving problems in physical and engineering science. However, it is often left out in many undergraduate courses as its implementation is deemed to be difficult. This is partly due to the perception that coding the method requires…
Introducing the Boundary Element Method with MATLAB
Ang, Keng-Cheng
2008-01-01
The boundary element method provides an excellent platform for learning and teaching a computational method for solving problems in physical and engineering science. However, it is often left out in many undergraduate courses as its implementation is deemed to be difficult. This is partly due to the perception that coding the method requires…
Boundary element-free method for elastodynamics
CHENG; Yumin; PENG; Miaojuan
2005-01-01
The moving least-square approximation is discussed first. Sometimes the method can form an ill-conditioned equation system, and thus the solution cannot be obtained correctly. A Hilbert space is presented on which an orthogonal function system mixed a weight function is defined. Next the improved moving least-square approximation is discussed in detail. The improved method has higher computational efficiency and precision than the old method, and cannot form an ill-conditioned equation system. A boundary element-free method (BEFM) for elastodynamics problems is presented by combining the boundary integral equation method for elastodynamics and the improved moving least-square approximation. The boundary element-free method is a meshless method of boundary integral equation and is a direct numerical method compared with others, in which the basic unknowns are the real solutions of the nodal variables and the boundary conditions can be applied easily. The boundary element-free method has a higher computational efficiency and precision. In addition, the numerical procedure of the boundary element-free method for elastodynamics problems is presented in this paper. Finally, some numerical examples are given.
Finite element methods a practical guide
Whiteley, Jonathan
2017-01-01
This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.
Accelerated Matrix Element Method with Parallel Computing
Schouten, Doug; Stelzer, Bernd
2014-01-01
The matrix element method utilizes ab initio calculations of probability densities as powerful discriminants for processes of interest in experimental particle physics. The method has already been used successfully at previous and current collider experiments. However, the computational complexity of this method for final states with many particles and degrees of freedom sets it at a disadvantage compared to supervised classification methods such as decision trees, k nearest-neighbour, or neural networks. This note presents a concrete implementation of the matrix element technique using graphics processing units. Due to the intrinsic parallelizability of multidimensional integration, dramatic speedups can be readily achieved, which makes the matrix element technique viable for general usage at collider experiments.
Method of classification of integumentary landscape elements
Voloshyn, V. I.; Bushuyev, Ye. I.; Parshina, O. I.; Fedorov, O. P.
We develop the method for the determination of technology for creation of thematic map of landscape elements of the territory of Ukraine using remotely sensed data. The purpose of our investigation is maximum formalization and accessibility of the method for many users.
Spectral/hp element methods for CFD
Karniadakis, George Em
1999-01-01
Traditionally spectral methods in fluid dynamics were used in direct and large eddy simulations of turbulent flow in simply connected computational domains. The methods are now being applied to more complex geometries, and the spectral/hp element method, which incorporates both multi-domain spectral methods and high-order finite element methods, has been particularly successful. This book provides a comprehensive introduction to these methods. Written by leaders in the field, the book begins with a full explanation of fundamental concepts and implementation issues. It then illustrates how these methods can be applied to advection-diffusion and to incompressible and compressible Navier-Stokes equations. Drawing on both published and unpublished material, the book is an important resource for experienced researchers and for those new to the field.
Kriging-Based Finite Element Method: Element-By-Element Kriging Interpolation
W. Kanok-Nukulchai
2009-01-01
Full Text Available An enhancement of the finite element method with Kriging shape functions (K-FEM was recently proposed. In this method, the field variables of a boundary value problem are approximated using ‘element-by-element’ piecewise Kriging interpolation (el-KI. For each element, the interpolation function is constructed from a set of nodes within a prescribed domain of influence comprising the element and its several layers of neighbouring elements. This paper presents a numerical study on the accuracy and convergence of the el-KI in function fitting problems. Several examples of functions in two-dimensional space are employed in this study. The results show that very accurate function fittings and excellent convergence can be attained by the el-KI.
CASCADIC MULTIGRID METHOD FOR THE MORTAR ELEMENT METHOD FOR P1 NONCONFORMING ELEMENT
Chun-jia Bi; Dan-hui Hong
2005-01-01
In this paper, we consider the cascadic multigrid method for the mortar P1 nonconforming element which is used to solve the Poisson equation and prove that the cascadic conjugate gradient method is accurate with optimal complexity.
Finite element methods for incompressible flow problems
John, Volker
2016-01-01
This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations, and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.
Finite Element Methods and Their Applications
Chen, Zhangxin
2005-01-01
This book serves as a text for one- or two-semester courses for upper-level undergraduates and beginning graduate students and as a professional reference for people who want to solve partial differential equations (PDEs) using finite element methods. The author has attempted to introduce every concept in the simplest possible setting and maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Quite a lot of attention is given to discontinuous finite elements, characteristic finite elements, and to the applications in fluid and solid mechanics including applications to porous media flow, and applications to semiconductor modeling. An extensive set of exercises and references in each chapter are provided.
FINITE ELEMENT METHODS FOR SOBOLEV EQUATIONS
Tang Liu; Yan-ping Lin; Ming Rao; J. R. Cannon
2002-01-01
A new high-order time-stepping finite element method based upon the high-order numerical integration formula is formulated for Sobolev equations, whose computations consist of an iteration procedure coupled with a system of two elliptic equations. The optimal and superconvergence error estimates for this new method axe derived both in space and in time. Also, a class of new error estimates of convergence and superconvergence for the time-continuous finite element method is demonstrated in which there are no time derivatives of the exact solution involved, such that these estimates can be bounded by the norms of the known data. Moreover, some useful a-posteriori error estimators are given on the basis of the superconvergence estimates.
Finite Element Method in Machining Processes
Markopoulos, Angelos P
2013-01-01
Finite Element Method in Machining Processes provides a concise study on the way the Finite Element Method (FEM) is used in the case of manufacturing processes, primarily in machining. The basics of this kind of modeling are detailed to create a reference that will provide guidelines for those who start to study this method now, but also for scientists already involved in FEM and want to expand their research. A discussion on FEM, formulations and techniques currently in use is followed up by machining case studies. Orthogonal cutting, oblique cutting, 3D simulations for turning and milling, grinding, and state-of-the-art topics such as high speed machining and micromachining are explained with relevant examples. This is all supported by a literature review and a reference list for further study. As FEM is a key method for researchers in the manufacturing and especially in the machining sector, Finite Element Method in Machining Processes is a key reference for students studying manufacturing processes but al...
An inverse problem by boundary element method
Tran-Cong, T.; Nguyen-Thien, T. [University of Southern Queensland, Toowoomba, QLD (Australia); Graham, A.L. [Los Alamos National Lab., NM (United States)
1996-02-01
Boundary Element Methods (BEM) have been established as useful and powerful tools in a wide range of engineering applications, e.g. Brebbia et al. In this paper, we report a particular three dimensional implementation of a direct boundary integral equation (BIE) formulation and its application to numerical simulations of practical polymer processing operations. In particular, we will focus on the application of the present boundary element technology to simulate an inverse problem in plastics processing.by extrusion. The task is to design profile extrusion dies for plastics. The problem is highly non-linear due to material viscoelastic behaviours as well as unknown free surface conditions. As an example, the technique is shown to be effective in obtaining the die profiles corresponding to a square viscoelastic extrudate under different processing conditions. To further illustrate the capability of the method, examples of other non-trivial extrudate profiles and processing conditions are also given.
Multiphase Transformer Modelling using Finite Element Method
Nor Azizah Mohd Yusoff
2015-03-01
Full Text Available In the year of 1970 saw the starting invention of the five-phase motor as the milestone in advanced electric motor. Through the years, there are many researchers, which passionately worked towards developing for multiphase drive system. They developed a static transformation system to obtain a multiphase supply from the available three-phase supply. This idea gives an influence for further development in electric machines as an example; an efficient solution for bulk power transfer. This paper highlighted the detail descriptions that lead to five-phase supply with fixed voltage and frequency by using Finite-Element Method (FEM. Identifying of specification on a real transformer had been done before applied into software modeling. Therefore, Finite-Element Method provides clearly understandable in terms of visualize the geometry modeling, connection scheme and output waveform.
Boundary element method for internal axisymmetric flow
Gokhman Alexander
1999-01-01
Full Text Available We present an accurate fast method for the computation of potential internal axisymmetric flow based on the boundary element technique. We prove that the computed velocity field asymptotically satisfies reasonable boundary conditions at infinity for various types of inlet/exit. Computation of internal axisymmetric potential flow is an essential ingredient in the three-dimensional problem of computation of velocity fields in turbomachines. We include the results of a practical application of the method to the computation of flow in turbomachines of Kaplan and Francis types.
Boundary element methods for electrical engineers
POLJAK, D
2005-01-01
In the last couple of decades the Boundary Element Method (BEM) has become a well-established technique that is widely used for solving various problems in electrical engineering and electromagnetics. Although there are many excellent research papers published in the relevant literature that describe various BEM applications in electrical engineering and electromagnetics, there has been a lack of suitable textbooks and monographs on the subject. This book presents BEM in a simple fashion in order to help the beginner to understand the very basic principles of the method. It initially derives B
Iterative methods for mixed finite element equations
Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.
1985-01-01
Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.
Generalized multiscale finite element methods: Oversampling strategies
Efendiev, Yalchin R.
2014-01-01
In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local
Adaptive finite element methods for differential equations
Bangerth, Wolfgang
2003-01-01
These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...
Finite element modeling methods for photonics
Rahman, B M Azizur
2013-01-01
The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astron
Manzini, Gianmarco [Los Alamos National Laboratory
2012-07-13
We develop and analyze a new family of virtual element methods on unstructured polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular discrete spaces V{sub h} {contained_in} C{sup {alpha}} {element_of} N. The degrees of freedom are (a) solution and derivative values of various degree at suitable nodes and (b) solution moments inside polygons. The convergence of the method is proven theoretically and an optimal error estimate is derived. The connection with the Mimetic Finite Difference method is also discussed. Numerical experiments confirm the convergence rate that is expected from the theory.
Adaptive finite element method for shape optimization
Morin, Pedro
2012-01-16
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
Test Simulation using Finite Element Method
Ali, M B; Abdullah, S; Nuawi, M Z; Ariffin, A K, E-mail: abgbas@yahoo.com [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia)
2011-02-15
The dynamic responses of the standard Charpy impact machine are experimentally studied using the relevant data acquisition system, for the purpose of obtaining the impact response. For this reason, the numerical analysis by means of the finite element method has been used for experiment findings. Modelling of the charpy test was performed in order to obtain strain in the striker during the test. Two types of standard charpy specimens fabricated from different materials, i.e. aluminium 6061 and low carbon steel 1050, were used for the impact simulation testing. The related parameters on between different materials, energy absorbed, strain signal, power spectrum density (PSD) and the relationship between those parameters was finally correlated and discussed.
Application of finite-element-methods in food processing
Risum, Jørgen
2004-01-01
Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given.......Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given....
LIANG Xinhua; ZHU Ping; LIN Zhongqin; ZHANG Yan
2007-01-01
A lightweight automotive prototype using alter- native materials and gauge thickness is studied by a numeri- cal method. The noise, vibration, and harshness (NVH) performance is the main target of this study. In the range of 1-150 Hz, the frequency response function (FRF) of the body structure is calculated by a finite element method (FEM) to get the dynamic behavior of the auto-body structure. The pressure response of the interior acoustic domain is solved by a boundary element method (BEM). To find the most contrib- uting panel to the inner sound pressure, the panel acoustic contribution analysis (PACA) is performed. Finally, the most contributing panel is located and the resulting structural optimization is found to be more efficient.
Enhanced patch test of finite element methods
CHEN; Wanji
2006-01-01
Theoretically, the constant stress patch test is not rigorous. Also, either the patch test of non-zero constant shear for Mindlin plate problem or non-zero strain gradient curvature of the microstructures cannot be performed. To improve the theory of the patch test, in this paper, based on the variational principle with relaxed continuity requirement of nonconforming element for homogeneous differential equations, the author proposed the individual element condition for passing the patch test and the convergence condition of the element: besides passing the patch test, the element function should include the rigid body modes and constant strain modes and satisfy the weak continuity condition, and no extra zero energy modes occur. Moreover, the author further established a variational principle with relaxed continuity requirement of nonconforming element for inhomogeneous differential equations, the enhanced patch test condition and the individual element condition. To assure the convergence of the element that should pass the enhanced patch test, the element function should include the rigid body modes and non-zero strain modes which satisfied the equilibrium equations, and no spurious zero energy modes occur and should satisfy new weak continuity condition. The theory of the enhanced patch test proposed in this paper can be applied to both homogeneous and inhomogeneous differential equations. Based on this theory, the patch test of the non-zero constant shear stress for Mindlin plate and the C0-1 patch test of the non-zero constant curvature for the couple stress/strain gradient theory were established.
A method for making an alkaline element
Obi, F.; Takada, K.
1983-05-11
A mixture of asphalt with polybutene is applied to the contacting surfaces of the body top and the hermetically sealing stuffing. After assembly the element is heated to a temperature which exceeds the softening point of the mixture. The edge of the body is rolled in. The element has high reliability.
New numerical analysis method in computational mechanics: composite element method
无
2000-01-01
A new type of FEM, called CEM (composite element method), is proposed to solve the static and dynamic problems of engineering structures with high accuracy and efficiency. The core of this method is to define two sets of coordinate systems for DOF's description after discretizing the structure, i.e. the nodal coordinate system UFEM(ξ) for employing the conventional FEM, and the field coordinate system UCT(ξ) for utilizing classical theory. Then, coupling these two sets of functional expressions could obtain the composite displacement field U(ξ) of CEM. The computations of the stiffness and mass matrices can follow the conventional procedure of FEM. Since the CEM inherents some good properties of the conventional FEM and classical analytical method, it has the powerful versatility to various complex geometric shapes and excellent approximation. Many examples are presented to demonstrate the ability of CEM.
New numerical analysis method in computational mechanics: composite element method
曾攀
2000-01-01
A new type of FEM, called CEM (composite element method), is proposed to solve the static and dynamic problems of engineering structures with high accuracy and efficiency. The core of this method is to define two sets of coordinate systems for DOF’ s description after discretizing the structure, i.e. the nodal coordinate system UFEM(ζ) for employing the conventional FEM, and the field coordinate system UCT(ζ) for utilizing classical theory. Then, coupling these two sets of functional expressions could obtain the composite displacement field U(ζ) of CEM. The computations of the stiffness and mass matrices can follow the conventional procedure of FEM. Since the CEM inherents some good properties of the conventional FEM and classical analytical method, it has the powerful versatility to various complex geometric shapes and excellent approximation. Many examples are presented to demonstrate the ability of CEM.
Method and system for processing optical elements using magnetorheological finishing
Menapace, Joseph Arthur; Schaffers, Kathleen Irene; Bayramian, Andrew James; Molander, William A
2012-09-18
A method of finishing an optical element includes mounting the optical element in an optical mount having a plurality of fiducials overlapping with the optical element and obtaining a first metrology map for the optical element and the plurality of fiducials. The method also includes obtaining a second metrology map for the optical element without the plurality of fiducials, forming a difference map between the first metrology map and the second metrology map, and aligning the first metrology map and the second metrology map. The method further includes placing mathematical fiducials onto the second metrology map using the difference map to form a third metrology map and associating the third metrology map to the optical element. Moreover, the method includes mounting the optical element in the fixture in an MRF tool, positioning the optical element in the fixture; removing the plurality of fiducials, and finishing the optical element.
Xia, Yi-Ming
2015-01-01
A locking-free rectangular Mindlin plate element with a new multi-resolution analysis (MRA) is proposed and a multireolution finite element method is hence presented. The MRA framework is formulated out of a mutually nesting displacement subspace sequence. The MRA endows the proposed element with the resolution level (RL) to adjust the element node number, thus modulating structural analysis accuracy accordingly. As a result, the traditional 4-node rectangular Mindlin plate element and method is a mono-resolution one and also a special case of the proposed element and method. The meshing for the monoresolution plate element model is based on the empiricism while the RL adjusting for the multiresolution is laid on the rigorous mathematical basis. The accuracy of a structural analysis is actually determined by the RL, not by the mesh. The rational MRA enables the implementation of the multiresolution Mindlin plate element method to be more rational and efficient than that of the conventional monoresolution or o...
A method for making a dry element
Abe, T.; Isikhara, K.; Kimura, T.; Momose, K.; Sakata, Y.
1983-08-11
The agglomerate is coated along the lateral surface by a separator and is enclosed in a zinc cylinder which serves as the anode. A separating plate is installed in the upper part of the agglomerate between the agglomerate and the anode. A current outlead is attached to the anode. The element is inserted into a body, pressing the plate into the agglomerate with a punch which has a recess. A guide cylinder is used for precise installation of the element. The space between the plate and the body in the upper part of the element is filled with wax or another substance. Short circuiting (KZ) between the current outlead and the agglomerate is prevented in the element.
Novel high-performance element in the electromagnetic finite-element method--node-edge element
Sheng Xinqing; Peng Zhen
2008-01-01
It is known in the computational electromagnetics (CEM) that the node element has a relative well-conditioned matrix,but suffers from the spurious solution problem; whereas the edge element has no spurious solutions,but usually produces an ill-conditioned matrix.Particularly,when the mesh is over dense,the iterative solution of the matrix equation from edge element converges very slowly.Based on the node element and edge element,a node-edge element is presented,which has no spurious solutions and better-conditioned matrix.Numerical experiments demonstrate that the proposed node-edge element is more efficient than now-widely used edge element.
PRECONDITIONING HIGHER ORDER FINITE ELEMENT SYSTEMS BY ALGEBRAIC MULTIGRID METHOD OF LINEAR ELEMENTS
Yun-qing Huang; Shi Shu; Xi-jun Yu
2006-01-01
We present and analyze a robust preconditioned conjugate gradient method for the higher order Lagrangian finite element systems of a class of elliptic problems. An auxiliary linear element stiffness matrix is chosen to be the preconditioner for higher order finite elements. Then an algebraic multigrid method of linear finite element is applied for solving the preconditioner. The optimal condition number which is independent of the mesh size is obtained. Numerical experiments confirm the efficiency of the algorithm.
Adaptive finite element-element-free Galerkin coupling method for bulk metal forming processes
Lei-chao LIU; Xiang-huai DONG; Cong-xin LI
2009-01-01
An adaptive finite element-element-free Galerkin (FE-EFG) coupling method is proposed and developed for the numerical simulation of bulk metal forming processes. This approach is able to adaptively convert distorted FE elements to EFG domain in analysis. A new scheme to implement adaptive conversion and coupling is presented. The coupling method takes both advantages of finite element method (FEM) and meshless methods. It is capable of handling large deformations with no need of remeshing procedures, while it is computationally more efficient than those full meshless methods. The effectiveness of the proposed method is demonstrated with the numerical simulations of the bulk metal forming processes including forging and extrusion.
Adaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems
Zuliang Lu
2011-01-01
We will investigate the adaptive mixed finite element methods for parabolic optimal control problems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed finite element spaces, and the control is approximated by piecewise constant elements. We derive a posteriori error estimates of the mixed finite element solutions for optimal control problems. Such a posteriori error estimates can be used to construct more efficient and reliable adaptive mixed finite element ...
A method of quaternion typification of Clifford algebra elements
Shirokov, Dmitry
2008-01-01
We present a new classification of Clifford algebra elements. Our classification is based on the notion of quaternion type. Using this classification we develop a method of analysis of commutators and anticommutators of Clifford algebra elements. This method allows us to find out and prove a number of new properties of Clifford algebra elements.
The Matrix Element Method and Vector-Like Quark Searches
Morrison, Benjamin
2016-01-01
In my time at the CERN summer student program, I worked on applying the matrix element method to vector-like quark identification. I worked in the ATLAS University of Geneva group under Dr. Olaf Nackenhorst. I developed automated plotting tools with ROOT, a script for implementing and optimizing generated matrix element calculation code, and kinematic transforms for the matrix element method.
A new multiresolution finite element method based on a multiresolution quadrilateral plate element
Xia, YiMing
2014-01-01
A new multiresolution quadrilateral plate element is proposed and a multiresolution finite element method is hence presented. The multiresolution analysis (MRA) framework is formulated out of a mutually nesting displacement subspace sequence, whose basis functions are constructed of scaling and shifting on the element domain of basic node shape function. The basic node shape function is constructed by extending shape function around a specific node. The MRA endows the proposed element with the resolution level (RL) to adjust the element node number, thus modulating structural analysis accuracy accordingly. As a result, the traditional 4-node quadrilateral plate element and method is a monoresolution one and also a special case of the proposed element and method. The meshing for the monoresolution plate element model is based on the empiricism while the RL adjusting for the multiresolution is laid on the rigorous mathematical basis. The accuracy of a structural analysis is fully determined by the RL, not by th...
Vibration Analysis of Plates by MLS-Element Method
Zhou, L.; Xiang, Y.
2010-05-01
This paper presents a novel numerical method, the moving least square element (MLS-element) method for the free vibration analysis of plates based on the Mindlin shear deformable plate theory. In the MLS-element method, a plate can be first divided into multiple elements which are connected through selected nodal points on the interfaces of the elements. An element can be of any shape and the size of the element varies dependent on the problem at hand. The shape functions of the element for the transverse displacement and the rotations are derived based on the MLS interpolation technique. The convergence and accuracy of the method can be controlled by either increasing the number of elements or by increasing the number of MLS interpolation points within elements. Two selected examples for vibration of a simply supported square Mindlin plate and a clamped L-shaped Mindlin plate are studied to illustrate the versatility and accuracy of the proposed method. It shows that the proposed method is highly accurate and flexible for the vibration analysis of plate problems. The method can be further developed to bridge the existing meshless method and the powerful finite element method in dealing with various engineering computational problems, such as large deformation and crack propagation in solid mechanics.
A review of flexibility-based finite element method for beam-column elements
LI Shuang; ZHAI Changhai; XIE Lili
2009-01-01
For material nonlinear problem, elements derived with the flexibility-based method are more accurate than classical elements derived with the stiffness-based method. A review of the current state of the art of the flexibility-based finite element method is provided to enhance the robustness of structure analysis. The research on beam-column elements is the mainstream in the research on flexibility-based finite element method at present. The original development of flexibility-based finite element method is reviewed, and the further development of this method is then presented in several specific aspects, such as geometrically nonlinear analysis and dynamic analysis. The further research needed to be carried out in the future is finally discussed.
Hydraulic fracturing with distinct element method
Pruiksma, J.P.; Bezuijen, A.
2002-01-01
In this report, hydraulic fracturing is investigated using the distinct element code PFC2D from Itasca. Special routines were written to be able to model hydraulic fracturing. These include adding fluid flow to PFC2D and updating the fluid flow domains when fractures appear. A brief description of t
Parallel computation with the spectral element method
Ma, Hong
1995-12-01
Spectral element models for the shallow water equations and the Navier-Stokes equations have been successfully implemented on a data parallel supercomputer, the Connection Machine model CM-5. The nonstaggered grid formulations for both models are described, which are shown to be especially efficient in data parallel computing environment.
无
2006-01-01
In this paper, we study the semi-discrete mortar upwind finite volume element method with the Crouzeix-Raviart element for the parabolic convection diffusion problems.It is proved that the semi-discrete mortar upwind finite volume element approximations derived are convergent in the H1- and L2-norms.
Analysis of bender element test interpretation using the discrete element method
O’Donovan, J.; O’Sullivan, C.; Marketos, G.; Muir Wood, D.
2015-01-01
While bender element testing is now well-established as a laboratory technique to determine soil stiffness, a robust technique to interpret the data remains elusive. A discrete element method (DEM) model of a face-centred cubic packing of uniform spheres was created to simulate bender element tests
On Some Versions of the Element Agglomeration AMGe Method
Lashuk, I; Vassilevski, P
2007-08-09
The present paper deals with element-based AMG methods that target linear systems of equations coming from finite element discretizations of elliptic PDEs. The individual element information (element matrices and element topology) is the main input to construct the AMG hierarchy. We study a number of variants of the spectral agglomerate element based AMG method. The core of the algorithms relies on element agglomeration utilizing the element topology (built recursively from fine to coarse levels). The actual selection of the coarse degrees of freedom (dofs) is based on solving large number of local eigenvalue problems. Additionally, we investigate strategies for adaptive AMG as well as multigrid cycles that are more expensive than the V-cycle utilizing simple interpolation matrices and nested conjugate gradient (CG) based recursive calls between the levels. The presented algorithms are illustrated with an extensive set of experiments based on a matlab implementation of the methods.
NON SPURIOUS SPECTRAL-LIKE ELEMENT METHODS FOR MAXWELL'S EQUATIONS
Gary Cohen; Marc Duruflé
2007-01-01
In this paper, we give the state of the art for the so called "mixed spectral elements" for Maxwell's equations. Several families of elements, such as edge elements and discontinuous Galerkin methods (DGM) are presented and discussed. In particular, we show the need of introducing some numerical dissipation terms to avoid spurious modes in these methods. Such terms are classical for DGM but their use for edge element methods is a novel approach described in this paper. Finally, numerical experiments show the fast and low-cost character of these elements.
The Relation of Finite Element and Finite Difference Methods
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
GUZELBEY Ibrahim H.; KANBER Bahattin; AKPOLAT Abdullah
2004-01-01
In this study, the stress based finite element method is coupled with the boundary element method in two different ways. In the first one, the ordinary distribution matrix is used for coupling. In the second one, the stress traction equilibrium is used at the interface line of both regions as a new coupling process. This new coupling procedure is presented without a distribution matrix. Several case studies are solved for the validation of the developed coupling procedure. The results of case studies are compared with the distribution matrix coupling, displacement based finite element method, assumed stress finite element method, boundary element method, ANSYS and analytical results whenever possible. It is shown that the coupling of the stress traction equilibrium with assumed stress finite elements gives as accurate results as those by the distribution matrix coupling.
Analysis of Dynamic Modeling Method Based on Boundary Element
Xu-Sheng Gan
2013-07-01
Full Text Available The aim of this study was to study an improved dynamic modeling method based on a Boundary Element Method (BEM. The dynamic model was composed of the elements such as the beam element, plate element, joint element, lumped mass and spring element by the BEM. An improved dynamic model of a machine structure was established based on plate-beam element system mainly. As a result, the dynamic characteristics of a machine structure were analyzed and the comparison of computational results and experimental’s showed the modeling method was effective. The analyses indicate that the introduced method inaugurates a good way for analyzing dynamic characteristics of a machine structure efficiently.
Convergence of adaptive finite element methods for eigenvalue problems
Garau, Eduardo M.; Morin, Pedro; Zuppa, Carlos
2008-01-01
In this article we prove convergence of adaptive finite element methods for second order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.
Finite element method for thermal analysis of concentrating solar receivers
Shtrakov, Stanko; Stoilov, Anton
2006-01-01
Application of finite element method and heat conductivity transfer model for calculation of temperature distribution in receiver for dish-Stirling concentrating solar system is described. The method yields discretized equations that are entirely local to the elements and provides complete geometric flexibility. A computer program solving the finite element method problem is created and great number of numerical experiments is carried out. Illustrative numerical results are given for an array...
The finite element method its basis and fundamentals
Zienkiewicz, Olek C; Zhu, JZ
2013-01-01
The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field prob
NEW ALGORITHM OF COUPLING ELEMENT-FREE GALERKIN WITH FINITE ELEMENT METHOD
ZHAO Guang-ming; SONG Shun-cheng
2005-01-01
Through the construction of a new ramp function, the element-free Galerkin method and finite element coupling method were applied to the whole field, and was made fit for the structure of element nodes within the interface regions, both satisfying the essential boundary conditions and deploying meshless nodes and finite elements in a convenient and flexible way, which can meet the requirements of computation for complicated field. The comparison between the results of the present study and the corresponding analytical solutions shows this method is feasible and effective.
Hooper, Russell; Toose, E.M.; Macosko, Christopher W.; Derby, Jeffrey J.
2001-01-01
A modified boundary element method (BEM) and the DEVSS-G finite element method (FEM) are applied to model the deformation of a polymeric drop suspended in another fluid subjected to start-up uniaxial extensional flow. The effects of viscoelasticity, via the Oldroyd-B differential model, are
Finite element methods in resistivity logging
Lovell, J. R.
1993-09-01
Resistivity measurements are used in geophysical logging to help determine hydrocarbon reserves. The derivation of formation parameters from resistivity measurements is a complicated nonlinear procedure often requiring additional geological information. This requires an excellent understanding of tool physics, both to design new tools and interpret the measurements of existing tools. The Laterolog measurements in particular are difficult to interpret because the response is very nonlinear as a function of electrical conductivity, unlike Induction measurements. Forward modeling of the Laterolog is almost invariably done with finite element codes which require the inversion of large sparse matrices. Modern techniques can be used to accelerate this inversion. Moreover, an understanding of the tool physics can help refine these numerical techniques.
Ablative Thermal Response Analysis Using the Finite Element Method
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
Rotordynamic Analysis with Shell Elements for the Transfer Matrix Method
1989-08-01
jACCESSION NO. 11. TITLE (Include Security Classification) (UNCLASSIFIED) ROTORDYNAMIC ANALYSIS WITH SHELL ELEMENTS FOR THE TRANSFER MATRIX METHOD 12...SECURITY CLASSIFICATION OF THIS PAGE AFIT/CI "OVERPRINT" iii ABSTRACT Rotordynamic Analysis with Shell Elements for the Transfer Matrix Method. (August...analysts in indus- try . ’ . ," Accesiu:, For NTIS CR,4i Fi FilC TA,: [3 0. fi A-1 B I ., ,.................. ,., ROTORDYNAMIC ANALYSIS WITH SHELL ELEMENTS
Finite Element Method for Analysis of Material Properties
Rauhe, Jens Christian
description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...... and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using...
Efficient Finite Element Methods for Transient Analysis of Shells.
1985-04-01
Triangular Shell Element with Improved Membrane Interpolation," Communications in Applied Numerical Methods , in press 1985. Results of this work were...in Applied Numerical Methods , to appear. G.R. Cowper, G.M. Lindberg and M.D. Olson (1970), "A Shallow Shell Finite Element of Triangular Shape," Int. J
SPECTRAL FINITE ELEMENT METHOD FOR A UNSTEADY TRANSPORT EQUATION
MeiLiquan
1999-01-01
In this paper,a new numerical method,the coupling method of spherical harmonic function spectral and finite elements,for a unsteady transport equation is dlscussed,and the error analysis of this scheme is proved.
Comparison of boundary element and finite element methods in spur gear root stress analysis
Sun, H.; Mavriplis, D.; Huston, R. L.; Oswald, F. B.
1989-01-01
The boundary element method (BEM) is used to compute fillet stress concentration in spur gear teeth. The results are shown to compare favorably with analogous results obtained using the finite element method (FEM). A partially supported thin rim gear is studied. The loading is applied at the pitch point. A three-dimensional analysis is conducted using both the BEM and FEM (NASTRAN). The results are also compared with those of a two-dimensional finite element model. An advantage of the BEM over the FEM is that fewer elements are needed with the BEM. Indeed, in the current study the BEM used 92 elements and 270 nodes whereas the FEM used 320 elements and 2037 nodes. Moreover, since the BEM is especially useful in problems with high stress gradients it is potentially a very useful tool for fillet stress analyses.
Equivariant preconditioners for boundary element methods
Tausch, J. [Colorado State Univ., Fort Collins, CO (United States)
1994-12-31
In this paper the author proposes and discusses two preconditioners for boundary integral equations on domains which are nearly symmetric. The preconditioners under consideration are equivariant, that is, they commute with a group of permutation matrices. Numerical experiments demonstrate their efficiency for the GMRES method.
Transforming Mean and Osculating Elements Using Numerical Methods
Ely, Todd A.
2010-01-01
Mean element propagation of perturbed two body orbits has as its mathematical basis averaging theory of nonlinear dynamical systems. Averaged mean elements define the long-term evolution characteristics of an orbit. Using averaging theory, a near identity transformation can be found that transforms the mean elements back to the osculating elements that contain short period terms in addition to the secular and long period mean elements. The ability to perform the conversion is necessary so that orbit design conducted in mean elements can be converted back into osculating results. In the present work, this near identity transformation is found using the Fast Fourier Transform. An efficient method is found that is capable of recovering the osculating elements to first order
A multigrid solution method for mixed hybrid finite elements
Schmid, W. [Universitaet Augsburg (Germany)
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
Hydrothermal analysis in engineering using control volume finite element method
Sheikholeslami, Mohsen
2015-01-01
Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),
Element Free Lattice Boltzmann Method for Fluid-Flow Problems
Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kim, Hho Jhung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kwon, Young Kwon [US Naval Postgraduate School, New York (United States)
2007-10-15
The Lattice Boltzmann Method (LBM) has been developed for application to thermal-fluid problems. Most of the those studies considered a regular shape of lattice or mesh like square and cubic grids. In order to apply the LBM to more practical cases, it is necessary to be able to solve complex or irregular shapes of problem domains. Some techniques were based on the finite element method. Generally, the finite element method is very powerful for solving two or three-dimensional complex or irregular shapes of domains using the iso-parametric element formulation which is based on a mathematical mapping from a regular shape of element in an imaginary domain to a more general and irregular shape of element in the physical domain. In addition, the element free technique is also quite useful to analyze a complex shape of domain because there is no need to divide a domain by a compatible finite element mesh. This paper presents a new finite element and element free formulations for the lattice Boltzmann equation using the general weighted residual technique. Then, a series of validation examples are presented.
THE PRACTICAL ANALYSIS OF FINITE ELEMENTS METHOD ERRORS
Natalia Bakhova
2011-03-01
Full Text Available Abstract. The most important in the practical plan questions of reliable estimations of finite elementsmethod errors are considered. Definition rules of necessary calculations accuracy are developed. Methodsand ways of the calculations allowing receiving at economical expenditures of computing work the best finalresults are offered.Keywords: error, given the accuracy, finite element method, lagrangian and hermitian elements.
Axisymmetric nonconforming element method and its convergence analysis
陈万吉; 高岩
1997-01-01
By virtue of the weighted Sobolev space theory, three convergence tests of the axisymmetric non-conforming element method are established. They consist of the generalized patch test, the F-E-M test and a test which could be used conveniently, called the strong patch test (SPT). In the light of SPT, a class of axisymmetric nonconforming elements is established.
A COMBINED HYBRID FINITE ELEMENT METHOD FOR PLATE BENDING PROBLEMS
Tian-xiao Zhou; Xiao-ping Xie
2003-01-01
In this paper, a combined hybrid method is applied to finite element discretization ofplate bending problems. It is shown that the resultant schemes are stabilized, i.e., theconvergence of the schemes is independent of inf-sup conditions and any other patch test.Based on this, two new series of plate elements are proposed.
Forward seismic modeling with the use of boundary element method
Xuejun, L.
1991-01-01
Boundary element method for wave equation boundary value problem involves three steps: the boundary value problem of wave equations is converted into the boundary value problem of Helmholtz's equations by performing the one-dimensional Fourier transform of time variable, the new boundary value problem is converted into an integral equation by using Green's formula; and the integral equation is solved using boundary element method, and the required numerical solution is obtained by using inverse Fourier transform. This paper analyzes the theoretical formulas and application of the method. This method can be applied to forward and inverse seismic problems. In solving integral equation using boundary element method, the adoption of interval truncation division results in less element knots, less internal storage, faster operation and more accurate computation.
Thermal Analysis of Thin Plates Using the Finite Element Method
Er, G. K.; Iu, V. P.; Liu, X. L.
2010-05-01
The isotropic thermal plate is analyzed with finite element method. The solution procedure is presented. The elementary stiffness matrix and loading vector are derived rigorously with variation principle and the principle of minimum potential energy. Numerical results are obtained based on the derived equations and tested with available exact solutions. The problems in the finite element analysis are figured out. It is found that the finite element solutions can not converge as the number of elements increases around the corners of the plate. The derived equations presented in this paper are fundamental for our further study on more complicated thermal plate analysis.
Finite Element Method for Analysis of Material Properties
Rauhe, Jens Christian
The use of cellular and composite materials have in recent years become more and more common in all kinds of structural components and accurate knowledge of the effective properties is therefore essential. In this wok the effective properties are determined using the real material microstructure...... and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...
Finite Element Model Updating Using Response Surface Method
Marwala, Tshilidzi
2007-01-01
This paper proposes the response surface method for finite element model updating. The response surface method is implemented by approximating the finite element model surface response equation by a multi-layer perceptron. The updated parameters of the finite element model were calculated using genetic algorithm by optimizing the surface response equation. The proposed method was compared to the existing methods that use simulated annealing or genetic algorithm together with a full finite element model for finite element model updating. The proposed method was tested on an unsymmetri-cal H-shaped structure. It was observed that the proposed method gave the updated natural frequen-cies and mode shapes that were of the same order of accuracy as those given by simulated annealing and genetic algorithm. Furthermore, it was observed that the response surface method achieved these results at a computational speed that was more than 2.5 times as fast as the genetic algorithm and a full finite element model and 24 ti...
Generalized multiscale finite element method. Symmetric interior penalty coupling
Efendiev, Yalchin R.
2013-12-01
Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.
Comparison of different precondtioners for nonsymmtric finite volume element methods
Mishev, I.D.
1996-12-31
We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.
Least-squares finite-element lattice Boltzmann method.
Li, Yusong; LeBoeuf, Eugene J; Basu, P K
2004-06-01
A new numerical model of the lattice Boltzmann method utilizing least-squares finite element in space and Crank-Nicolson method in time is presented. The new method is able to solve problem domains that contain complex or irregular geometric boundaries by using finite-element method's geometric flexibility and numerical stability, while employing efficient and accurate least-squares optimization. For the pure advection equation on a uniform mesh, the proposed method provides for fourth-order accuracy in space and second-order accuracy in time, with unconditional stability in the time domain. Accurate numerical results are presented through two-dimensional incompressible Poiseuille flow and Couette flow.
Methods and devices for fabricating and assembling printable semiconductor elements
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao
2009-11-24
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
Methods and devices for fabricating and assembling printable semiconductor elements
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao
2017-09-19
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
Methods and devices for fabricating and assembling printable semiconductor elements
Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao
2013-05-14
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
Methods and devices for fabricating and assembling printable semiconductor elements
Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Durham, NC; Lee, Keon Jae [Daejeon, KR; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Champaign, IL; Meitl, Matthew [Raleigh, NC; Zhu, Zhengtao [Urbana, IL
2011-07-19
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
Methods and devices for fabricating and assembling printable semiconductor elements
Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Urbana, IL; Lee, Keon Jae [Savoy, IL; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Champaign, IL; Meitl, Matthew [Champaign, IL; Zhu, Zhengtao [Urbana, IL
2009-11-24
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
Methods and devices for fabricating and assembling printable semiconductor elements
Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao
2014-03-04
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
Research of Stamp Forming Simulation Based on Finite Element Method
SU Xaio-ping; XU Lian
2008-01-01
We point out that the finite element method offers a greta functional improvement for analyzing the stamp forming process of an automobile panel. Using the finite element theory and the simulation method of sheet stamping forming, the element model of sheet forming is built based on software HyperMesh,and the simulation of the product's sheet forming process is analyzed based on software Dynaform. A series of simulation results are obtained. It is clear that the simulation results from the theoretical basis for the product's die design and are useful for selecting process parameters.
Streamline upwind finite element method for conjugate heat transfer problems
Niphon Wansophark; Atipong Malatip; Pramote Dechaumphai; Yunming Chen
2005-01-01
This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components,the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method.
Sarakorn, Weerachai
2017-04-01
In this research, the finite element (FE) method incorporating quadrilateral elements for solving 2-D MT modeling was presented. The finite element software was developed, employing a paving algorithm to generate the unstructured quadrilateral mesh. The accuracy, efficiency, reliability, and flexibility of our FE forward modeling are presented, compared and discussed. The numerical results indicate that our FE codes using an unstructured quadrilateral mesh provide good accuracy when the local mesh refinement is applied around sites and in the area of interest, with superior results when compared to other FE methods. The reliability of the developed codes was also confirmed when comparing both analytical solutions and COMMEMI2D model. Furthermore, our developed FE codes incorporating an unstructured quadrilateral mesh showed useful and powerful features such as handling irregular and complex subregions and providing local refinement of the mesh for a 2-D domain as closely as unstructured triangular mesh but it requires less number of elements in a mesh.
The Matrix Element Method at Next-to-Leading Order
Campbell, John M.; Giele, Walter T.; Williams, Ciaran
2012-01-01
This paper presents an extension of the matrix element method to next-to-leading order in perturbation theory. To accomplish this we have developed a method to calculate next-to-leading order weights on an event-by-event basis. This allows for the definition of next-to-leading order likelihoods in exactly the same fashion as at leading order, thus extending the matrix element method to next-to-leading order. A welcome by-product of the method is the straightforward and efficient generation of...
The matrix element method at next-to-leading order
Campbell, John M.; Giele, Walter T.; Williams, Ciaran
2012-11-01
This paper presents an extension of the matrix element method to next-to-leading order in perturbation theory, for electro-weak final states. To accomplish this we have developed a method to calculate next-to-leading order weights on an event-by-event basis. This allows for the definition of next-to-leading order likelihoods in exactly the same fashion as at leading order, thus extending the matrix element method to next-to-leading order. A welcome by-product of the method is the straightforward and efficient generation of unweighted next-to-leading order events. As examples of the application of our next-to-leading order matrix element method we consider the measurement of the mass of the Z boson and also the search for the Higgs boson in the four lepton channel.
Modelling of Granular Materials Using the Discrete Element Method
Ullidtz, Per
1997-01-01
With the Discrete Element Method it is possible to model materials that consists of individual particles where a particle may role or slide on other particles. This is interesting because most of the deformation in granular materials is due to rolling or sliding rather that compression...... of the grains. This is true even of the resilient (or reversible) deformations. It is also interesting because the Discrete Element Method models resilient and plastic deformations as well as failure in a single process.The paper describes two types of calculations. One on a small sample of angular elements...... subjected to a pulsating (repeated) biaxial loading and another of a larger sample of circular element subjected to a plate load. Both cases are two dimensional, i.e. plane strain.The repeated biaxial loading showed a large increase in plastic strain for the first load pulse at a given load level...
Experimental validation of boundary element methods for noise prediction
Seybert, A. F.; Oswald, Fred B.
1992-01-01
Experimental validation of methods to predict radiated noise is presented. A combined finite element and boundary element model was used to predict the vibration and noise of a rectangular box excited by a mechanical shaker. The predicted noise was compared to sound power measured by the acoustic intensity method. Inaccuracies in the finite element model shifted the resonance frequencies by about 5 percent. The predicted and measured sound power levels agree within about 2.5 dB. In a second experiment, measured vibration data was used with a boundary element model to predict noise radiation from the top of an operating gearbox. The predicted and measured sound power for the gearbox agree within about 3 dB.
Structural analysis with the finite element method linear statics
Oñate, Eugenio
2013-01-01
STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elas...
ALTERNATING DIRECTION FINITE ELEMENT METHOD FOR SOME REACTION DIFFUSION MODELS
江成顺; 刘蕴贤; 沈永明
2004-01-01
This paper is concerned with some nonlinear reaction - diffusion models. To solve this kind of models, the modified Laplace finite element scheme and the alternating direction finite element scheme are established for the system of patrical differential equations. Besides, the finite difference method is utilized for the ordinary differential equation in the models. Moreover, by the theory and technique of prior estimates for the differential equations, the convergence analyses and the optimal L2- norm error estimates are demonstrated.
Engineering and Design: Geotechnical Analysis by the Finite Element Method
2007-11-02
used it to determine stresses and movements in embank- ments, and Reyes and Deer described its application to analysis of underground openings in rock...3-D steady-state seepage analysis of permeability of the cutoff walls was varied from 10 to Cerrillos Dam near Ponce , Puerto Rico, for the U.S.-6 10...36 Hughes, T. J. R. (1987). The Finite Element Reyes , S. F., and Deene, D. K. (1966). “Elastic Method, Linear Static and Dynamic Finite Element
The Mortar Element Method with Lagrange Multipliers for Stokes Problem
Yaqin Jiang
2007-01-01
In this paper, we propose a mortar element method with Lagrange multiplier for incompressible Stokes problem, i.e., the matching constraints of velocity on mortar edges are expressed in terms of Lagrange multipliers. We also present P1 nonconforming element attached to the subdomains. By proving inf-sup condition, we derive optimal error estimates for velocity and pressure. Moreover, we obtain satisfactory approximation for normal derivatives of the velocity across the interfaces.
Symmetric Matrix Fields in the Finite Element Method
Gerard Awanou
2010-07-01
Full Text Available The theory of elasticity is used to predict the response of a material body subject to applied forces. In the linear theory, where the displacement is small, the stress tensor which measures the internal forces is the variable of primal importance. However the symmetry of the stress tensor which expresses the conservation of angular momentum had been a challenge for finite element computations. We review in this paper approaches based on mixed finite element methods.
Finite element and discontinuous Galerkin methods for transient wave equations
Cohen, Gary
2017-01-01
This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...
Multimineral optimization processing method based on elemental capture spectroscopy logging
Feng Zhou; Li Xin-Tong; Wu Hong-Liang; Xia Shou-Ji; Liu Ying-Ming
2014-01-01
Calculating the mineral composition is a critical task in log interpretation. Elemental capture spectroscopy (ECS) log provides the weight percentages of twelve common elements, which lays the foundation for the accurate calculation of mineral compositions. Previous processing methods calculated the formation composition via the conversion relation between the formation chemistry and minerals. Thus, their applicability is limited and the method precision is relatively low. In this study, we present a multimineral optimization processing method based on the ECS log. We derived the ECS response equations for calculating the formation composition, then, determined the logging response values for the elements of common minerals using core data and theoretical calculations. Finally, a software module was developed. The results of the new method are consistent with core data and the mean absolute error is less than 10%.
INTERVAL ARITHMETIC AND STATIC INTERVAL FINITE ELEMENT METHOD
郭书祥; 吕震宙
2001-01-01
When the uncertainties of structures may be bounded in intervals, through some suitable discretization, interval finite element method can be constructed by combining the interval analysis with the traditional finite element method(FEM). The two parameters,median and deviation, were used to represent the uncertainties of interval variables. Based on the arithmetic rules of intervals, some properties and arithmetic rules of interval variables were demonstrated. Combining the procedure of interval analysis with FEM, a static linear interval finite element method was presented to solve the non-random uncertain structures. The solving of the characteristic parameters of n-freedom uncertain displacement field of the static governing equation was transformed into 2 n-order linear equations. It is shown by a numerical example that the proposed method is practical and effective.
NURBS-enhanced finite element method for Euler equations
Sevilla Cárdenas, Rubén; Fernandez Mendez, Sonia; Huerta, Antonio , coaut.
2008-01-01
This is the pre-peer reviewed version of the following article: Sevilla, R.; Fernandez, S.; Huerta, A. NURBS-enhanced finite element method for Euler equations. "International journal for numerical methods in fluids", Juliol 2008, vol. 57, núm. 9, p. 1051-1069., which has been published in final form at http://www3.interscience.wiley.com/journal/117905455/abstract In this work, the NURBS-enhanced finite element method (NEFEM) is combined with a discontinuous Galerkin (DG) formulation for t...
THE MORTAR ELEMENT METHOD FOR A NONLINEAR BIHARMONIC EQUATION
Zhong-ci Shi; Xue-jun Xu
2005-01-01
The mortar element method is a new domain decomposition method(DDM) with nonoverlapping subdomains. It can handle the situation where the mesh on different subdomains need not align across interfaces, and the matching of discretizations on adjacent subdomains is only enforced weakly. But until now there has been very little work for nonlinear PDEs. In this paper, we will present a mortar-type Morley element method for a nonlinear biharmonic equation which is related to the well-known Navier-Stokes equation. Optimal energy and H1-norm estimates are obtained under a reasonable elliptic regularity assumption.
Nucleon matrix elements using the variational method in lattice QCD
Dragos, Jack; Kamleh, Waseem; Leinweber, Derek B; Nakamura, Yoshifumi; Rakow, Paul E L; Schierholz, Gerrit; Young, Ross D; Zanotti, James M
2016-01-01
The extraction of hadron matrix elements in lattice QCD using the standard two- and three-point correlator functions demands careful attention to systematic uncertainties. One of the most commonly studied sources of systematic error is contamination from excited states. We apply the variational method to calculate the axial vector current $g_{A}$, the scalar current $g_{S}$ and the quark momentum fraction $\\left$ of the nucleon and we compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.
SPLITTING MODULUS FINITE ELEMENT METHOD FOR ORTHOGONAL ANISOTROPIC PLATE BENGING
党发宁; 荣廷玉; 孙训方
2001-01-01
Splitting modulus variational principle in linear theory of solid mechanics was introduced, the principle for thin plate was derived, and splitting modulus finite element method of thin plate was established too. The distinctive feature of the splitting model is that its functional contains one or more arbitrary additional parameters, called splitting factors,so stiffness of the model can be adjusted by properly selecting the splitting factors. Examples show that splitting modulus method has high precision and the ability to conquer some illconditioned problems in usual finite elements. The cause why the new method could transform the ill-conditioned problems into well-conditioned problem, is analyzed finally.
The Finite Element Method An Introduction with Partial Differential Equations
Davies, A J
2011-01-01
The finite element method is a technique for solving problems in applied science and engineering. The essence of this book is the application of the finite element method to the solution of boundary and initial-value problems posed in terms of partial differential equations. The method is developed for the solution of Poisson's equation, in a weighted-residual context, and then proceeds to time-dependent and nonlinear problems. The relationship with the variational approach is alsoexplained. This book is written at an introductory level, developing all the necessary concepts where required. Co
Identification of Molecular Laser Transitions Using the Finite Element Method
1995-12-01
Vibration Levels," Physical Review, Vol. 34, 1929 12 Arfken , George Mathematical Methods for Physicists. San Diego: Academic Press, Inc. 1985 13...unsolvable. Mathematical techniques such as the classical Rayleigh-Ritz method , variational calculus, and Galerkin’s weighted residuals method , much...AFIT/GAP/ENP/95D-14 IDENTIFICATION OF MOLECULAR LASER TRANSITIONS USING THE FINITE ELEMENT METHOD THESIS Matthew C. Smitham, Captain, USAF AFIT/GAP
MORTAR FINITE VOLUME METHOD WITH ADINI ELEMENT FOR BIHARMONIC PROBLEM
Chun-jia Bi; Li-kang Li
2004-01-01
In this paper, we construct and analyse a mortar finite volume method for the dis-cretization for the biharmonic problem in R2. This method is based on the mortar-type Adini nonconforming finite element spaces. The optimal order H2-seminorm error estimate between the exact solution and the mortar Adini finite volume solution of the biharmonic equation is established.
Instrumental methods for analysis of some elements in flour
Zagrodzki, P.; Dutkiewicz, E.M.; Malec, P. [Uniwersytet Jagiellonski, Cracow (Poland); Krosniak, M. [Akademia Medyczna, Cracow (Poland); Knap, W. [Akademia Gorniczo-Hutnicza, Cracow (Poland). Inst. Wiertniczo-Naftowy; Bichonski, A. [Instytut Hodowli i Aklimatyzacji Roslin, Radzikow (Poland)
1993-10-01
For ten various brands of flour contents of chosen (heavy) elements were determined by means of ICP, GF-AAS, PIXE and ASV/CSV methods. General performance of participating laboratories as well as pros and cons of different analytical methods were compared and discussed. (author). 6 refs, 6 figs, 7 tabs.
DISCONTINUOUS FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS
Abdellatif Agouzal
2000-01-01
A discontinuous finite element method for convection-diffusion equations is proposed and analyzed. This scheme is designed to produce an approximate solution which is completely discontinuous. Optimal order of convergence is obtained for model problem. This is the same convergence rate known for the classical methods.
Complex variable element-free Galerkin method for viscoelasticity problems
Cheng Yu-Min; Li Rong-Xin; Peng Miao-Juan
2012-01-01
Based on the complex variable moving least-square (CVMLS) approximation,the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper.The Galerkin weak form is employed to obtain the equation system,and the penalty method is used to apply the essential boundary conditions,then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method,with the same node distribution,the CVEFG method has higher precision,and to obtain the similar precision,the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method.
Certain Discrete Element Methods in Problems of Fracture Mechanics
P. P. Procházka
2002-01-01
Full Text Available In this paper two discrete element methods (DEM are discussed. The free hexagon element method is considered a powerful discrete element method, which is broadly used in mechanics of granular media. It substitutes the methods for solving continuum problems. The great disadvantage of classical DEM, such as the particle flow code (material properties are characterized by spring stiffness, is that they have to be fed with material properties provided from laboratory tests (Young's modulus, Poisson's ratio, etc.. The problem consists in the fact that the material properties of continuum methods (FEM, BEM are not mutually consistent with DEM. This is why we utilize the principal idea of DEM, but cover the continuum by hexagonal elastic, or elastic-plastic, elements. In order to complete the study, another one DEM is discussed. The second method starts with the classical particle flow code (PFC - which uses dynamic equilibrium, but applies static equilibrium. The second method is called the static particle flow code (SPFC. The numerical experience and comparison numerical with experimental results from scaled models are discussed in forthcoming paper by both authors.
Scalable fast multipole methods for vortex element methods
Hu, Qi
2012-11-01
We use a particle-based method to simulate incompressible flows, where the Fast Multipole Method (FMM) is used to accelerate the calculation of particle interactions. The most time-consuming kernelsâ\\'the Biot-Savart equation and stretching term of the vorticity equationâ\\'are mathematically reformulated so that only two Laplace scalar potentials are used instead of six, while automatically ensuring divergence-free far-field computation. Based on this formulation, and on our previous work for a scalar heterogeneous FMM algorithm, we develop a new FMM-based vortex method capable of simulating general flows including turbulence on heterogeneous architectures, which distributes the work between multi-core CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm also uses new data structures which can dynamically manage inter-node communication and load balance efficiently but with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s. © 2012 IEEE.
Fast Stiffness Matrix Calculation for Nonlinear Finite Element Method
Emir Gülümser
2014-01-01
Full Text Available We propose a fast stiffness matrix calculation technique for nonlinear finite element method (FEM. Nonlinear stiffness matrices are constructed using Green-Lagrange strains, which are derived from infinitesimal strains by adding the nonlinear terms discarded from small deformations. We implemented a linear and a nonlinear finite element method with the same material properties to examine the differences between them. We verified our nonlinear formulation with different applications and achieved considerable speedups in solving the system of equations using our nonlinear FEM compared to a state-of-the-art nonlinear FEM.
(Environmental and geophysical modeling, fracture mechanics, and boundary element methods)
Gray, L.J.
1990-11-09
Technical discussions at the various sites visited centered on application of boundary integral methods for environmental modeling, seismic analysis, and computational fracture mechanics in composite and smart'' materials. The traveler also attended the International Association for Boundary Element Methods Conference at Rome, Italy. While many aspects of boundary element theory and applications were discussed in the papers, the dominant topic was the analysis and application of hypersingular equations. This has been the focus of recent work by the author, and thus the conference was highly relevant to research at ORNL.
Matlab and C programming for Trefftz finite element methods
Qin, Qing-Hua
2008-01-01
Although the Trefftz finite element method (FEM) has become a powerful computational tool in the analysis of plane elasticity, thin and thick plate bending, Poisson's equation, heat conduction, and piezoelectric materials, there are few books that offer a comprehensive computer programming treatment of the subject. Collecting results scattered in the literature, MATLAB® and C Programming for Trefftz Finite Element Methods provides the detailed MATLAB® and C programming processes in applications of the Trefftz FEM to potential and elastic problems. The book begins with an introduction to th
Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits
Gong, J.; Volakis, John L.
1996-01-01
One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.
The spectral-element method, Beowulf computing, and global seismology.
Komatitsch, Dimitri; Ritsema, Jeroen; Tromp, Jeroen
2002-11-29
The propagation of seismic waves through Earth can now be modeled accurately with the recently developed spectral-element method. This method takes into account heterogeneity in Earth models, such as three-dimensional variations of seismic wave velocity, density, and crustal thickness. The method is implemented on relatively inexpensive clusters of personal computers, so-called Beowulf machines. This combination of hardware and software enables us to simulate broadband seismograms without intrinsic restrictions on the level of heterogeneity or the frequency content.
A stochastic method for computing hadronic matrix elements
Alexandrou, Constantia [University of Cyprus, Department of Physics, P.O. Box 20537, Nicosia (Cyprus); The Cyprus Institute, Computation-based Science and Technology Research Center, Nicosia (Cyprus); Constantinou, Martha; Hadjiyiannakou, Kyriakos [University of Cyprus, Department of Physics, P.O. Box 20537, Nicosia (Cyprus); Dinter, Simon; Drach, Vincent; Jansen, Karl [NIC, DESY Zeuthen, Zeuthen (Germany); Renner, Dru B. [NIC, DESY Zeuthen, Zeuthen (Germany); Jefferson Lab., Newport News (United States); Collaboration: ETM Collaboration
2014-01-15
We present a stochastic method for the calculation of baryon three-point functions that is more versatile than the typically used sequential method. We analyze the scaling of the error of the stochastically evaluated three-point function with the lattice volume, and we found a favorable signal-to-noise ratio suggesting that our stochastic method can be used efficiently at large volumes to compute hadronic matrix elements. (orig.)
Stress and Deformation Analysis in Base Isolation Elements Using the Finite Element Method
Claudiu Iavornic
2011-01-01
Full Text Available In Modern tools as Finite Element Method can be used to study the behavior of elastomeric isolation systems. The simulation results obtained in this way provide a large series of data about the behavior of elastomeric isolation bearings under different types of loads and help in taking right decisions regarding geometrical optimizations needed for improve such kind of devices.
Efficient partial element calculation and the extension to cylindrical elements for the PEEC method
Muesing, A.; Kolar, J. W.
2008-07-01
For various electrical interconnect and electromagnetic compatibility (EMC) problems, the Partial Element Equivalent Circuit (PEEC) method has proven to be a valid and fast solution method of the electrical field integral equation in the time as well as the frequency domain. Therefore, PEEC has become a multipurpose full-wave simulation method, especially suited for the solution of combined circuit and EM problems, as found on printed circuit board layouts, power electronics devices or EMC filters. Recent research introduced various extensions to the basic PEEC approach, for example a non-orthogonal cell geometry formulation. This work presents a fast, flexible and accurate computational method for determining the matrix entries of partial inductances and the coefficients of potential for general non-orthogonal PEEC cell geometries. The presented computation method utilizes analytical filament formulas to reduce the integration order and therefore to reduce computation time. The validity, accuracy and speed of the proposed method is compared with a standard integration routine on example cell geometries where the numeric results of the new method show improved accuracy, coming along with reduced computation time. Furthermore, this work shows an extension to cylindrical elements which is consistent with classical PEEC models, using the proposed integration routines for the partial element calculations. (author)
A multiscale mortar multipoint flux mixed finite element method
Wheeler, Mary Fanett
2012-02-03
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.
Habib Ammari; Gang Bao
2008-01-01
Consider a time-harmonic electromagnetic plane wave incident on a biperiodic structure in R3. The periodic structure separates two homogeneous regions. The medium inside the structure is chiral and nonhomogeneous. In this paper, variational formulations coupling finite element methods in the chiral medium with a method of integral equations on the periodic interfaces are studied. The well-posedness of the continuous and discretized problems is established. Uniform convergence for the coupling variational approximations of the model problem is obtained.
Engineering computation of structures the finite element method
Neto, Maria Augusta; Roseiro, Luis; Cirne, José; Leal, Rogério
2015-01-01
This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It us...
Application of least-squares spectral element solver methods to incompressible flow problems
Proot, M.M.J.; Gerritsma, M.I.; Nool, M.
2003-01-01
Least-squares spectral element methods are based on two important and successful numerical methods: spectral /hp element methods and least-squares finite element methods. In this respect, least-squares spectral element methods are very powerfull since they combine the generality of finite element me
ON FINITE ELEMENT METHODS FOR INHOMOGENEOUS DIELECTRIC WAVEGUIDES
Zhiming Chen; Jian-hua Yuan
2004-01-01
We investigate the problem of computing electromagnetic guided waves in a closed,inhomogeneous, pillared three-dimensional waveguide at a given frequency. The problem is formulated as a generalized eigenvalue problem. By modifying the sesquilinear form associated with the eigenvalue problem, we provide a new convergence analysis for the finite element approximations. Numerical results are reported to illustrate the performance of the method.
Surface processing methods for point sets using finite elements
Clarenz, Ulrich; Rumpf, Martin; Telea, Alexandru
2004-01-01
We present a framework for processing point-based surfaces via partial differential equations (PDEs). Our framework efficiently and effectively brings well-known PDE-based processing techniques to the field of point-based surfaces. At the core of our method is a finite element discretization of PDEs
Piezoelectric Accelerometers Modification Based on the Finite Element Method
Liu, Bin; Kriegbaum, B.
2000-01-01
The paper describes the modification of piezoelectric accelerometers using a Finite Element (FE) method. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between the measurement and FE simulation results...
A FINITE VOLUME ELEMENT METHOD FOR THERMAL CONVECTION PROBLEMS
芮洪兴
2004-01-01
Consider the finite volume element method for the thermal convection problem with the infinite Prandtl number. The author uses a conforming piecewise linear function on a fine triangulation for velocity and temperature, and a piecewise constant function on a coarse triangulation for pressure. For general triangulation the optimal order H1 norm error estimates are given.
On the Approaching Domain Obtained by Finite Element Method
邹青松; 李永海
2002-01-01
The use of finite element method leads to replacing the initial domain by an approaching domain,Under some appropriate assumptions,we prove that there exists a W1,+∞-diffeomorphism from the original domain to the approaching domain.
A Geometrical Approach to the Boundary Element Method
Auchmann, B; Rjasanow, S
2008-01-01
We introduce a geometric formulation of the boundary element method (BEM), using concepts of the discrete electromagnetic theory. Geometric BEM is closely related to Galerkin-BEM and to the generalized collocation scheme. It is easy to implement, accurate, and computationally efficient. We validate our approach with 2-D examples and give an outlook to 3-D results.
Nonconforming ℎ- Spectral Element Methods for Elliptic Problems
P K Dutt; N Kishore Kumar; C S Upadhyay
2007-02-01
In this paper we show that we can use a modified version of the ℎ- spectral element method proposed in [6,7,13,14] to solve elliptic problems with general boundary conditions to exponential accuracy on polygonal domains using nonconforming spectral element functions. A geometrical mesh is used in a neighbourhood of the corners. With this mesh we seek a solution which minimizes the sum of a weighted squared norm of the residuals in the partial differential equation and the squared norm of the residuals in the boundary conditions in fractional Sobolev spaces and enforce continuity by adding a term which measures the jump in the function and its derivatives at inter-element boundaries, in fractional Sobolev norms, to the functional being minimized. In the neighbourhood of the corners, modified polar coordinates are used and a global coordinate system elsewhere. A stability estimate is derived for the functional which is minimized based on the regularity estimate in [2]. We examine how to parallelize the method and show that the set of common boundary values consists of the values of the function at the corners of the polygonal domain. The method is faster than that proposed in [6,7,14] and the ℎ- finite element method and stronger error estimates are obtained.
Space-time discontinuous Galerkin finite element methods
Vegt, van der J.J.W.; Deconinck, H.; Ricchiuto, M.
2006-01-01
In these notes an introduction is given to space-time discontinuous Galerkin (DG) finite element methods for hyperbolic and parabolic conservation laws on time dependent domains. the space-time DG discretization is explained in detail, including the definition of the numerical fluxes and stabilizati
The use of discrete orthogonal projections in boundary element methods
Brandts, J.
2001-01-01
In recent papers by Sloan and Wendland Grigorie and Sloan and Grigorie Sloan and Brandts a formalismwas developed that serves many important and interesting applications in boundary element methods the commutator property for splines Based on superapproximation results this property is for exam
A new method for constructing analytic elements for groundwater flow.
Strack, O. D.
2007-12-01
The analytic element method is based upon the superposition of analytic functions that are defined throughout the infinite domain, and can be used to meet a variety of boundary conditions. Analytic elements have been use successfully for a number of problems, mainly dealing with the Poisson equation (see, e.g., Theory and Applications of the Analytic Element Method, Reviews of Geophysics, 41,2/1005 2003 by O.D.L. Strack). The majority of these analytic elements consists of functions that exhibit jumps along lines or curves. Such linear analytic elements have been developed also for other partial differential equations, e.g., the modified Helmholz equation and the heat equation, and were constructed by integrating elementary solutions, the point sink and the point doublet, along a line. This approach is limiting for two reasons. First, the existence is required of the elementary solutions, and, second, the integration tends to limit the range of solutions that can be obtained. We present a procedure for generating analytic elements that requires merely the existence of a harmonic function with the desired properties; such functions exist in abundance. The procedure to be presented is used to generalize this harmonic function in such a way that the resulting expression satisfies the applicable differential equation. The approach will be applied, along with numerical examples, for the modified Helmholz equation and for the heat equation, while it is noted that the method is in no way restricted to these equations. The procedure is carried out entirely in terms of complex variables, using Wirtinger calculus.
Convergence of a residual based artificial viscosity finite element method
Nazarov, Murtazo
2013-02-01
We present a residual based artificial viscosity finite element method to solve conservation laws. The Galerkin approximation is stabilized by only residual based artificial viscosity, without any least-squares, SUPG, or streamline diffusion terms. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.
PROGRAM-PATTERN MULTIPOLE BOUNDARY ELEMENT METHOD FOR FRICTIONAL CONTACT
Yu Chunxiao; Shen Guangxian; Liu Deyi
2005-01-01
A mathematical program is proposed for the highly nonlinear problem involving frictional contact. A program-pattern using the fast multipole boundary element method (FMBEM) is given for 3-D elastic contact with friction to replace the Monte Carlo method. A new optimized generalized minimal residual (GMRES) algorithm is presented. Numerical examples demonstrate the validity of the program-pattern optimization model for node-to-surface contact with friction. The GMRES algorithm greatly improves the computational efficiency.
Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications
Changyong Cao; Qing-Hua Qin
2015-01-01
An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM) and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field) are employed. The formulations for...
Numerical Simulation of Friction Stir Welding by Natural Element Methods
Alfaro, I.; Fratini, L.; CUETO, Elias; Chinesta, Francisco
2009-01-01
International audience; In this work we address the problem of numerically simulating the Friction Stir Welding process. Due to the special characteristics of this welding method (i.e., high speed of the rotating pin, very large deformations, etc.) finite element methods (FEM) encounter several difficulties. While Lagrangian simulations suffer from mesh distortion, Eulerian or Arbitrary Lagrangian Eulerian (ALE) ones still have difficulties due to the treatment of convective terms, the treatm...
THE SPACE-TIME FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS
李宏; 刘儒勋
2001-01-01
Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference techniques. The existence and uniqueness of the weak solution are proved without any assumptions on choice of the spacetime meshes. Basic error estimates in L∞ (L2) norm, that is maximum-norm in time, L2norm in space are obtained. The numerical results are given in the last part and the analysis between theoretic and experimental results are obtained.
Discontinuous Galerkin finite element methods for gradient plasticity.
Garikipati, Krishna. (University of Michigan, Ann Arbor, MI); Ostien, Jakob T.
2010-10-01
In this report we apply discontinuous Galerkin finite element methods to the equations of an incompatibility based formulation of gradient plasticity. The presentation is motivated with a brief overview of the description of dislocations within a crystal lattice. A tensor representing a measure of the incompatibility with the lattice is used in the formulation of a gradient plasticity model. This model is cast in a variational formulation, and discontinuous Galerkin machinery is employed to implement the formulation into a finite element code. Finally numerical examples of the model are shown.
Extended Finite Element Method for Fracture Analysis of Structures
Mohammadi, Soheil
2008-01-01
This important textbook provides an introduction to the concepts of the newly developed extended finite element method (XFEM) for fracture analysis of structures, as well as for other related engineering applications.One of the main advantages of the method is that it avoids any need for remeshing or geometric crack modelling in numerical simulation, while generating discontinuous fields along a crack and around its tip. The second major advantage of the method is that by a small increase in number of degrees of freedom, far more accurate solutions can be obtained. The method has recently been
CASCADIC MULTIGRID METHODS FOR MORTAR WILSON FINITE ELEMENT METHODS ON PLANAR LINEAR ELASTICITY
陈文斌; 汪艳秋
2003-01-01
Cascadic multigrid technique for mortar Wilson finite element method ofhomogeneous boundary value planar linear elasticity is described and analyzed. Firstthe mortar Wilson finite element method for planar linear elasticity will be analyzed,and the error estimate under L2 and H1 norm is optimal. Then a cascadic multigridmethod for the mortar finite element discrete problem is described. Suitable grid trans-fer operator and smoother are developed which lead to an optimal cascadic multigridmethod. Finally, the computational results are presented.
High-order finite element methods for cardiac monodomain simulations
Kevin P Vincent
2015-08-01
Full Text Available Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of high-order interpolation methods has previously been proposed for these simulations due to their theoretical convergence advantage. In this study, we compare the convergence behavior of linear Lagrange, cubic Hermite, and the newly proposed cubic Hermite-style serendipity interpolation methods for finite element simulations of the cardiac monodomain equation. The high-order methods reach converged solutions with fewer degrees of freedom and longer element edge lengths than traditional linear elements. Additionally, we propose a dimensionless number, the cell Thiele modulus, as a more useful metric for determining solution convergence than element size alone. Finally, we use the cell Thiele modulus to examine convergence criteria for obtaining clinically useful activation patterns for applications such as patient-specific modeling where the total activation time is known a priori.
A Finite Element Method for Cracked Components of Structures
刘立名; 段梦兰; 秦太验; 刘玉标; 柳春图; 余建星
2003-01-01
In this paper, a method is developed for determining the effective stiffness of the cracked component. The stiffness matrix of the cracked component is integrated into the global stiffness matrix of the finite element model of the global platform for the FE calculation of the structure in any environmental conditions. The stiffness matrix equation of the cracked component is derived by use of the finite variation principle and fracture mechanics. The equivalent parameters defining the element that simulates the cracked component are mathematically presented, and can be easily used for the FE calculation of large scale cracked structures together with any finite element program. The theories developed are validated by both lab tests and numerical calculations, and applied to the evaluation of crack effect on the strength of a fixed platform and a self-elevating drilling rig.
Toward Distinct Element Method Simulations of Carbon Nanotube Systems
Akatyeva, Evgeniya; Anderson, Tyler; Nikiforov, Ilia; Potyondy, David; Ballarini, Roberto; Dumitrica, Traian
2011-03-01
We propose distinct element method modeling of carbon nanotube systems. The atomic-level description of an individual nanotube is coarse-grained into a chain of spherical elements that interact by parallel bonds located at their contacts. The spherical elements can lump multiple translational unit cells of the carbon nanotube and have both translational and rotational degrees of freedom. The discrete long ranged interaction between nanotubes is included in a van der Waals contact of nonmechanical nature that acts simultaneously with the parallel bonds. The created mesoscopic model is put into service by simulating a realistic carbon nanotube ring. The ring morphology arises from the energy balance stored in both parallel and van der Waals bonds. We thank NSF CAREER under Grant No. CMMI-0747684, NSF under Grant No. CMMI 0800896.
An implicit finite element method for discrete dynamic fracture
Gerken, Jobie M. [Colorado State Univ., Fort Collins, CO (United States)
1999-12-01
A method for modeling the discrete fracture of two-dimensional linear elastic structures with a distribution of small cracks subject to dynamic conditions has been developed. The foundation for this numerical model is a plane element formulated from the Hu-Washizu energy principle. The distribution of small cracks is incorporated into the numerical model by including a small crack at each element interface. The additional strain field in an element adjacent to this crack is treated as an externally applied strain field in the Hu-Washizu energy principle. The resulting stiffness matrix is that of a standard plane element. The resulting load vector is that of a standard plane element with an additional term that includes the externally applied strain field. Except for the crack strain field equations, all terms of the stiffness matrix and load vector are integrated symbolically in Maple V so that fully integrated plane stress and plane strain elements are constructed. The crack strain field equations are integrated numerically. The modeling of dynamic behavior of simple structures was demonstrated within acceptable engineering accuracy. In the model of axial and transverse vibration of a beam and the breathing mode of vibration of a thin ring, the dynamic characteristics were shown to be within expected limits. The models dominated by tensile forces (the axially loaded beam and the pressurized ring) were within 0.5% of the theoretical values while the shear dominated model (the transversely loaded beam) is within 5% of the calculated theoretical value. The constant strain field of the tensile problems can be modeled exactly by the numerical model. The numerical results should therefore, be exact. The discrepancies can be accounted for by errors in the calculation of frequency from the numerical results. The linear strain field of the transverse model must be modeled by a series of constant strain elements. This is an approximation to the true strain field, so some
Foundations of the complex variable boundary element method
Hromadka, Theodore
2014-01-01
This book explains and examines the theoretical underpinnings of the Complex Variable Boundary Element Method (CVBEM) as applied to higher dimensions, providing the reader with the tools for extending and using the CVBEM in various applications. Relevant mathematics and principles are assembled and the reader is guided through the key topics necessary for an understanding of the development of the CVBEM in both the usual two- as well as three- or higher dimensions. In addition to this, problems are provided that build upon the material presented. The Complex Variable Boundary Element Method (CVBEM) is an approximation method useful for solving problems involving the Laplace equation in two dimensions. It has been shown to be a useful modelling technique for solving two-dimensional problems involving the Laplace or Poisson equations on arbitrary domains. The CVBEM has recently been extended to 3 or higher spatial dimensions, which enables the precision of the CVBEM in solving the Laplace equation to be now ava...
Nucleon matrix elements using the variational method in lattice QCD
Dragos, J.; Horsley, R.; Kamleh, W.; Leinweber, D. B.; Nakamura, Y.; Rakow, P. E. L.; Schierholz, G.; Young, R. D.; Zanotti, J. M.
2016-10-01
The extraction of hadron matrix elements in lattice QCD using the standard two- and three-point correlator functions demands careful attention to systematic uncertainties. One of the most commonly studied sources of systematic error is contamination from excited states. We apply the variational method to calculate the axial vector current gA, the scalar current gS, the scalar current gT and the quark momentum fraction ⟨x ⟩ of the nucleon and we compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.
Continuum damage growth analysis using element free Galerkin method
C O Arun; B N Rao; S M Srinivasan
2010-06-01
This paper presents an elasto-plastic element free Galerkin formulation based on Newton–Raphson algorithm for damage growth analysis. Isotropic ductile damage evolution law is used. A study has been carried out in this paper using the proposed element free Galerkin method to understand the effect of initial damage and its growth on structural response of single and bi-material problems. A simple method is adopted for enforcing EBCs by scaling the function approximation using a scaling matrix, when non-singular weight functions are used over the entire domain of the problem deﬁnition. Numerical examples comprising of one-and two-dimensional problems are presented to illustrate the effectiveness of the proposed method in analysis of uniform and non-uniform damage evolution problems. Effect of material discontinuity on damage growth analysis is also presented.
A Method of Assembling Wall or Floor Elements
2002-01-01
The invention relates to a method of constructing, at the site of use, a building wall (1) or a building floor (1) using a plurality of prefabricated concrete or lightweight concrete plate-shaped wall of floor elements (10), in particular cast elements, which have a front side and a rear side...... as well as longitudinal side edges faces (12), wherein the elements (10), in a first step, are arranged at the site of use in mutual extension and then, in a second step, are connected with each other by means of at least one force-transferring device to form a tight connection. The invention...... is characterized in that a circular ring-shaped depression (20) is provided on the front side and/or the rear side of two adjoining elements (10) after the first step, said circular ring-shaped depression extending in the one as well as the other element (10), that the force-transferring device is a pipe (25...
Wang, Xiao-Yen; Chow, Chuen-Yen; Chang, Sin-Chung
1996-01-01
The I-D, quasi I-D and 2-D Euler solvers based on the method of space-time conservation element and solution element are used to simulate various flow phenomena including shock waves, Mach stem, contact surface, expansion waves, and their intersections and reflections. Seven test problems are solved to demonstrate the capability of this method for handling unsteady compressible flows in various configurations. Numerical results so obtained are compared with exact solutions and/or numerical solutions obtained by schemes based on other established computational techniques. Comparisons show that the present Euler solvers can generate highly accurate numerical solutions to complex flow problems in a straightforward manner without using any ad hoc techniques in the scheme.
MULTIGRID FOR THE MORTAR ELEMENT METHOD WITH LOCALLY P1 NONCONFORMING ELEMENTS
毕春加; 李立康
2003-01-01
In this paper we study the theoretical properties of multigrid algorithm for discretization of the Poisson equation in 2D using a mortar element method under the assumption that the triangulations on every subdomain are uniform.We prove the convergence of the W-cycle with a sufficiently large number of smoothing steps.The variable V-cycle multigrid preconditioner are also available.
Implicit extrapolation methods for multilevel finite element computations
Jung, M.; Ruede, U. [Technische Universitaet Chemnitz-Zwickau (Germany)
1994-12-31
The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.
Generalization of mixed multiscale finite element methods with applications
Lee, C S [Texas A & M Univ., College Station, TX (United States)
2016-08-01
Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixed multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii
Improved fixed point iterative method for blade element momentum computations
Sun, Zhenye; Shen, Wen Zhong; Chen, Jin
2017-01-01
to the physical solution, especially for the locations near the blade tip and root where the failure rate of the iterative method is high. The stability and accuracy of aerodynamic calculations and optimizations are greatly reduced due to this problem. The intrinsic mechanisms leading to convergence problems......The blade element momentum (BEM) theory is widely used in aerodynamic performance calculations and optimization applications for wind turbines. The fixed point iterative method is the most commonly utilized technique to solve the BEM equations. However, this method sometimes does not converge...
The Iris biometric feature segmentation using finite element method
David Ibitayo LANLEGE
2015-05-01
Full Text Available This manuscript presents a method for segmentation of iris images based on a deformable contour (active contour paradigm. The deformable contour is a novel approach in image segmentation. A type of active contour is the Snake. Snake is a parametric curve defined within the domain of the image. Snake properties are specified through a function called energy functional. This means they consist of packets of energy which expressed as partial Differential Equations. The partial Differential Equation is the controlling engine of the active contour since this project, the Finite Element Method (Standard Galerkin Method implementation for deformable model is presented.
The Matrix Element Method in the LHC era
Wertz, Sébastien
2017-03-01
The Matrix Element Method (MEM) is a powerful multivariate method allowing to maximally exploit the experimental and theoretical information available to an analysis. The method is reviewed in depth, and several recent applications of the MEM at LHC experiments are discussed, such as searches for rare processes and measurements of Standard Model observables in Higgs and Top physics. Finally, a new implementation of the MEM is presented. This project builds on established phase-space parametrisations known to greatly improve the speed of the calculations, and aims at a much improved modularity and maintainability compared to previous software, easing the use of the MEM for high-statistics data analyses.
Dual Formulations of Mixed Finite Element Methods with Applications.
Gillette, Andrew; Bajaj, Chandrajit
2011-10-01
Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete Exterior Calculus explains why the degrees of freedom associated to the different variables should be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the numerical stability of the method. Additionally, we define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods. Examples from magnetostatics and Darcy flow are examined in detail.
A multi-mesh finite element method for Lagrange elements of arbitrary degree
Witkowski, Thomas
2010-01-01
We consider within a finite element approach the usage of different adaptively refined meshes for different variables in systems of nonlinear, time-depended PDEs. To resolve different solution behaviours of these variables, the meshes can be independently adapted. The resulting linear systems are usually much smaller, when compared to the usage of a single mesh, and the overall computational runtime can be more than halved in such cases. Our multi-mesh method works for Lagrange finite elements of arbitrary degree and is independent of the spatial dimension. The approach is well defined, and can be implemented in existing adaptive finite element codes with minimal effort. We show computational examples in 2D and 3D ranging from dendritic growth to solid-solid phase-transitions. A further application comes from fluid dynamics where we demonstrate the applicability of the approach for solving the incompressible Navier-Stokes equations with Lagrange finite elements of the same order for velocity and pressure. The...
Assembly of finite element methods on graphics processors
Cecka, Cris
2010-08-23
Recently, graphics processing units (GPUs) have had great success in accelerating many numerical computations. We present their application to computations on unstructured meshes such as those in finite element methods. Multiple approaches in assembling and solving sparse linear systems with NVIDIA GPUs and the Compute Unified Device Architecture (CUDA) are created and analyzed. Multiple strategies for efficient use of global, shared, and local memory, methods to achieve memory coalescing, and optimal choice of parameters are introduced. We find that with appropriate preprocessing and arrangement of support data, the GPU coprocessor using single-precision arithmetic achieves speedups of 30 or more in comparison to a well optimized double-precision single core implementation. We also find that the optimal assembly strategy depends on the order of polynomials used in the finite element discretization. © 2010 John Wiley & Sons, Ltd.
The finite element method and applications in engineering using ANSYS
Madenci, Erdogan
2015-01-01
This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS®, a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS® commands and ANSYS® screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS® through both the Graphics User Interface (GUI) and the ANSYS® Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: • An introduction to FEM • Fundamentals and analysis capabilities of ANSYS® • Fundamentals of discretization and approximation functions • Modeling techniq...
Method for measuring recovery of catalytic elements from fuel cells
Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley, NJ
2011-03-08
A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.
Multiscale finite-element method for linear elastic geomechanics
Castelletto, Nicola; Hajibeygi, Hadi; Tchelepi, Hamdi A.
2017-02-01
The demand for accurate and efficient simulation of geomechanical effects is widely increasing in the geoscience community. High resolution characterizations of the mechanical properties of subsurface formations are essential for improving modeling predictions. Such detailed descriptions impose severe computational challenges and motivate the development of multiscale solution strategies. We propose a multiscale solution framework for the geomechanical equilibrium problem of heterogeneous porous media based on the finite-element method. After imposing a coarse-scale grid on the given fine-scale problem, the coarse-scale basis functions are obtained by solving local equilibrium problems within coarse elements. These basis functions form the restriction and prolongation operators used to obtain the coarse-scale system for the displacement-vector. Then, a two-stage preconditioner that couples the multiscale system with a smoother is derived for the iterative solution of the fine-scale linear system. Various numerical experiments are presented to demonstrate accuracy and robustness of the method.
Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications
Changyong Cao
2015-01-01
Full Text Available An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified.
Piezoelectric Analysis of Saw Sensor Using Finite Element Method
Vladimír KUTIŠ; Gabriel GÁLIK; Ivan RÝGER; Murín, Justín; Juraj HRABOVSKÝ; Juraj PAULECH; Tibor LALINSKÝ
2013-01-01
In this contribution modeling and simulation of surface acoustic waves (SAW) sensor using finite element method will be presented. SAW sensor is made from piezoelectric GaN layer and SiC substrate. Two different analysis types are investigated - modal and transient. Both analyses are only 2D. The goal of modal analysis, is to determine the eigenfrequency of SAW, which is used in following transient analysis. In transient analysis, wave propagation in SAW sensor is investigated. Both analyses ...
Model refinements of transformers via a subproblem finite element method
Dular, Patrick; Kuo-Peng, Patrick; Ferreira Da Luz, Mauricio,; Krähenbühl, Laurent
2015-01-01
International audience; A progressive modeling of transformers is performed via a subproblem finite element method. A complete problem is split into subproblems with different adapted overlapping meshes. Model refinements are performed from ideal to real flux tubes, 1-D to 2-D to 3-D models, linear to nonlinear materials, perfect to real materials, single wire to volume conductor windings, and homogenized to fine models of cores and coils, with any coupling of these changes. The proposed unif...
Material nonlinear analysis via mixed-iterative finite element method
Sutjahjo, Edhi; Chamis, Christos C.
1992-01-01
The performance of elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors are tested using 4-node quadrilateral finite elements. The membrane result is excellent, which indicates the implementation of elastic-plastic mixed-iterative analysis is appropriate. On the other hand, further research to improve bending performance of the method seems to be warranted.
Finite Element Method for Stochastic Extended KdV Equations
Karczewska, Anna; Rozmej, Piotr; Boguniewicz, Bartosz
2016-01-01
The finite element method is applied to obtain numerical solutions to the recently derived nonlinear equation for shallow water wave problem for several cases of bottom shapes. Results for time evolution of KdV solitons and cnoidal waves under stochastic forces are presented. Though small effects originating from second order dynamics may be obscured by stochastic forces, the main waves, both cnoidal and solitary ones, remain very robust against any distortions.
Discontinuous finite element method for vector radiative transfer
Wang, Cun-Hai; Yi, Hong-Liang; Tan, He-Ping
2017-03-01
The discontinuous finite element method (DFEM) is applied to solve the vector radiative transfer in participating media. The derivation in a discrete form of the vector radiation governing equations is presented, in which the angular space is discretized by the discrete-ordinates approach with a local refined modification, and the spatial domain is discretized into finite non-overlapped discontinuous elements. The elements in the whole solution domain are connected by modelling the boundary numerical flux between adjacent elements, which makes the DFEM numerically stable for solving radiative transfer equations. Several various problems of vector radiative transfer are tested to verify the performance of the developed DFEM, including vector radiative transfer in a one-dimensional parallel slab containing a Mie/Rayleigh/strong forward scattering medium and a two-dimensional square medium. The fact that DFEM results agree very well with the benchmark solutions in published references shows that the developed DFEM in this paper is accurate and effective for solving vector radiative transfer problems.
Differential quadrature time element method for structural dynamics
Yu-Feng Xing; Jing Guo
2012-01-01
An accurate and efficient differential quadrature time element method (DQTEM) is proposed for solving ordinary differential equations (ODEs),the numerical dissipation and dispersion of DQTEM is much smaller than that of the direct integration method of single/multi steps.Two methods of imposing initial conditions are given,which avoids the tediousness when derivative initial conditions are imposed,and the numerical comparisons indicate that the first method,in which the analog equations of initial displacements and velocities are used to directly replace the differential quadrature (DQ) analog equations of ODEs at the first and the last sampling points,respectively,is much more accurate than the second method,in which the DQ analog equations of initial conditions are used to directly replace the DQ analog equations of ODEs at the first two sampling points.On the contrary to the conventional step-by-step direct integration schemes,the solutions at all sampling points can be obtained simultaneously by DQTEM,and generally,one differential quadrature time element may be enough for the whole time domain.Extensive numerical comparisons validate the efficiency and accuracy of the proposed method.
Space-Time Conservation Element and Solution Element Method Being Developed
Chang, Sin-Chung; Himansu, Ananda; Jorgenson, Philip C. E.; Loh, Ching-Yuen; Wang, Xiao-Yen; Yu, Sheng-Tao
1999-01-01
The engineering research and design requirements of today pose great computer-simulation challenges to engineers and scientists who are called on to analyze phenomena in continuum mechanics. The future will bring even more daunting challenges, when increasingly complex phenomena must be analyzed with increased accuracy. Traditionally used numerical simulation methods have evolved to their present state by repeated incremental extensions to broaden their scope. They are reaching the limits of their applicability and will need to be radically revised, at the very least, to meet future simulation challenges. At the NASA Lewis Research Center, researchers have been developing a new numerical framework for solving conservation laws in continuum mechanics, namely, the Space-Time Conservation Element and Solution Element Method, or the CE/SE method. This method has been built from fundamentals and is not a modification of any previously existing method. It has been designed with generality, simplicity, robustness, and accuracy as cornerstones. The CE/SE method has thus far been applied in the fields of computational fluid dynamics, computational aeroacoustics, and computational electromagnetics. Computer programs based on the CE/SE method have been developed for calculating flows in one, two, and three spatial dimensions. Results have been obtained for numerous problems and phenomena, including various shock-tube problems, ZND detonation waves, an implosion and explosion problem, shocks over a forward-facing step, a blast wave discharging from a nozzle, various acoustic waves, and shock/acoustic-wave interactions. The method can clearly resolve shock/acoustic-wave interactions, wherein the difference of the magnitude between the acoustic wave and shock could be up to six orders. In two-dimensional flows, the reflected shock is as crisp as the leading shock. CE/SE schemes are currently being used for advanced applications to jet and fan noise prediction and to chemically
Seybert, A. F.; Wu, T. W.; Wu, X. F.
1994-01-01
This research report is presented in three parts. In the first part, acoustical analyses were performed on modes of vibration of the housing of a transmission of a gear test rig developed by NASA. The modes of vibration of the transmission housing were measured using experimental modal analysis. The boundary element method (BEM) was used to calculate the sound pressure and sound intensity on the surface of the housing and the radiation efficiency of each mode. The radiation efficiency of each of the transmission housing modes was then compared to theoretical results for a finite baffled plate. In the second part, analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise level radiated from the box. The FEM was used to predict the vibration, while the BEM was used to predict the sound intensity and total radiated sound power using surface vibration as the input data. Vibration predicted by the FEM model was validated by experimental modal analysis; noise predicted by the BEM was validated by measurements of sound intensity. Three types of results are presented for the total radiated sound power: sound power predicted by the BEM model using vibration data measured on the surface of the box; sound power predicted by the FEM/BEM model; and sound power measured by an acoustic intensity scan. In the third part, the structure used in part two was modified. A rib was attached to the top plate of the structure. The FEM and BEM were then used to predict structural vibration and radiated noise respectively. The predicted vibration and radiated noise were then validated through experimentation.
Hybrid finite-element/boundary-element method to calculate Oersted fields
Hertel, Riccardo, E-mail: hertel@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, Strasbourg (France); Kákay, Attila [Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich GmbH, D-52428 Jülich (Germany)
2014-11-15
The article presents a general-purpose hybrid finite-element/boundary-element method (FEM/BEM) to calculate magnetostatic fields generated by stationary electric currents. The efficiency of this code lies in its ability to simulate Oersted fields in complex geometries with non-uniform current density distributions. As a precursor to the calculation of the Oersted field, an FEM algorithm is employed to calculate the electric current density distribution. The accuracy of the code is confirmed by comparison with analytic results. Two examples show how this method provides important numerical data that can be directly plugged into micromagnetic simulations: The current density distribution in a thin magnetic strip with a notch, and the Oersted field in a three-dimensional contact geometry; similar to the type commonly used in spin-torque driven nano-oscillators. It is argued that a precise calculation of both, the Oersted field and the current density distribution, is essential for a reliable simulation of current-driven micromagnetic processes. - Highlights: • We present a numerical method to calculate Oersted fields for arbitrary geometries. • Description of a FEM algorithm to calculate current density distributions. • It is argued that these methods are valuable for micromagnetic STT-simulations. • Several examples are shown, highlighting the methods’ importance and accuracy.
Displacement fields denoising and strains extraction by finite element method
无
2011-01-01
Optical full-field measurement methods are now widely applied in various domains. In general,the displacement fields can be directly obtained from the measurement,however in mechanical analysis strain fields are preferred.To extract strain fields from noisy displacement fields is always a challenging topic.In this study,a finite element method for smoothing displacement fields and calculating strain fields is proposed.An experimental test case on a holed aluminum specimen under tension is applied to vali...
Finite element method for extended KdV equations
Karczewska, Anna; Szczeciński, Maciej; Boguniewicz, Bartosz
2016-01-01
The finite element method (FEM) is applied to obtain numerical solutions to a recently derived nonlinear equation for the shallow water wave problem. A weak formulation and the Petrov-Galerkin method are used. It is shown that the FEM gives a reasonable description of the wave dynamics of soliton waves governed by extended KdV equations. Some new results for several cases of bottom shapes are presented. The numerical scheme presented here is suitable for taking into account stochastic effects, which will be discussed in a subsequent paper.
Scientific use of the finite element method in Orthodontics
Knop, Luegya; Gandini, Luiz Gonzaga; Shintcovsk, Ricardo Lima; Gandini, Marcia Regina Elisa Aparecida Schiavon
2015-01-01
INTRODUCTION: The finite element method (FEM) is an engineering resource applied to calculate the stress and deformation of complex structures, and has been widely used in orthodontic research. With the advantage of being a non-invasive and accurate method that provides quantitative and detailed data on the physiological reactions possible to occur in tissues, applying the FEM can anticipate the visualization of these tissue responses through the observation of areas of stress created from applied orthodontic mechanics. OBJECTIVE: This article aims at reviewing and discussing the stages of the finite element method application and its applicability in Orthodontics. RESULTS: FEM is able to evaluate the stress distribution at the interface between periodontal ligament and alveolar bone, and the shifting trend in various types of tooth movement when using different types of orthodontic devices. Therefore, it is necessary to know specific software for this purpose. CONCLUSIONS: FEM is an important experimental method to answer questions about tooth movement, overcoming the disadvantages of other experimental methods. PMID:25992996
YUAN Si; HE Xue-feng
2006-01-01
Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM),the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient.This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea,implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach.
8th International Conference on Boundary Element Methods
Brebbia, C
1986-01-01
The International Conference on Boundary Element Methods in Engineering was started in 1978 with the following objectives: i) To act as a focus for BE research at a time when the technique wasjust emerging as a powerful tool for engineering analysis. ii) To attract new as weIl as established researchers on Boundary Elements, in order to maintain its vitality and originality. iii) To try to relate the Boundary Element Method to other engineering techniques in an effort to help unify the field of engineering analysis, rather than to contribute to its fragmentation. These objectives were achieved during the last 7 conferences and this meeting - the eighth - has continued to be as innovative and dynamic as any ofthe previous conferences. Another important aim ofthe conference is to encourage the participation of researchers from as many different countries as possible and in this regard it is a policy of the organizers to hold the conference in different locations. It is easy to forget when working on scientific ...
Zeng, X.; Scovazzi, G.
2016-06-01
We present a monolithic arbitrary Lagrangian-Eulerian (ALE) finite element method for computing highly transient flows with strong shocks. We use a variational multiscale (VMS) approach to stabilize a piecewise-linear Galerkin formulation of the equations of compressible flows, and an entropy artificial viscosity to capture strong solution discontinuities. Our work demonstrates the feasibility of VMS methods for highly transient shock flows, an area of research for which the VMS literature is extremely scarce. In addition, the proposed monolithic ALE method is an alternative to the more commonly used Lagrangian+remap methods, in which, at each time step, a Lagrangian computation is followed by mesh smoothing and remap (conservative solution interpolation). Lagrangian+remap methods are the methods of choice in shock hydrodynamics computations because they provide nearly optimal mesh resolution in proximity of shock fronts. However, Lagrangian+remap methods are not well suited for imposing inflow and outflow boundary conditions. These issues offer an additional motivation for the proposed approach, in which we first perform the mesh motion, and then the flow computations using the monolithic ALE framework. The proposed method is second-order accurate and stable, as demonstrated by extensive numerical examples in two and three space dimensions.
Steibler, P.
2000-07-01
The unsteady, turbulent flow is to be calculated in a complex geometry. For this purpose a stabilized finite element formulation in which the same functions for velocity and pressure are used is developed. Thus the process remains independent of the type of elements. This simplifies the application. Above all, it is easier to deal with the boundary conditions. The independency from the elements is also achieved by the extended uzawa-algorithm which uses quadratic functions for velocity and an element-constant pressure. This method is also programmed. In order to produce the unstructured grids, an algorithm is implemented which produces meshes consisting of triangular and tetrahedral elements with flow-dependent adaptation. With standard geometries both calculation methods are compared with results. Finally the flow in a draft tube of a Kaplan turbine is calculated and compared with results from model tests. (orig.) [German] Die instationaere, turbulente Stroemung in einer komplexen Geometrie soll berechnet werden. Dazu wird eine Stabilisierte Finite Element Formulierung entwickelt, bei der die gleichen Ansatzfunktionen fuer Geschwindigkeiten und Druck verwendet werden. Das Verfahren wird damit unabhaengig von der Form der Elemente. Dies vereinfacht die Anwendung. Vor allem wird der Umgang mit den Randbedingungen erleichert. Die Elementunabhaengigkeit erreicht man auch mit dem erweiterten Uzawa-Algorithmus, welcher quadratische Ansatzfunktionen fuer die Geschwindigkeiten und elementweisen konstanten Druck verwendet. Dieses Verfahren wird ebenso implementiert. Zur Erstellung der unstrukturierten Gitter wird ein Algorithmus erzeugt, der Netze aus Dreiecks- und Tetraederelementen erstellt, welche stroemungsabhaengige Groessen besitzen koennen. Anhand einiger Standardgeometrien werden die beiden Berechnungsmethoden mit Ergebnissen aus der Literatur verglichen. Als praxisrelevantes Beispiel wird abschliessend die Stroemung in einem Saugrohr einer Kaplanturbine berechnet
3D mode discrete element method with the elastoplastic model
2012-01-01
The three-dimensional mode-deformable discrete element method (3MDEM) is an extended distinct element approach under the assumptions of small strain,finite displacement,and finite rotation of blocks.The deformation of blocks is expressed by the combination of the deformation modes in 3MDEM.In this paper,the elastoplastic constitutive relationship of blocks is implemented on the 3MDEM platform to simulate the integrated process from elasticity to plasticity and finally to fracture.To overcome the shortcomings of the conventional criterion for contact fracturing,a new criterion based on plastic strain is introduced.This approach is verified by two numerical examples.Finally,a cantilever beam is simulated as a comprehensive case study,which went through elastic,elastoplastic,and discontinuous fracture stages.
A weak Hamiltonian finite element method for optimal control problems
Hodges, Dewey H.; Bless, Robert R.
1990-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Weak Hamiltonian finite element method for optimal control problems
Hodges, Dewey H.; Bless, Robert R.
1991-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Novel boundary element method for resolving plate bending problems
陈颂英; 王乐勤; 焦磊
2003-01-01
This paper discusses the application of the boundary contour method for resolving plate bending problems. The exploitation of the integrand divergence free property of the plate bending boundary integral equation based on the Kirchhoff hypothesis and a very useful application of Stokes' Theorem are presented to convert surface integrals on boundary elements to the computation of bending potential functions on the discretized boundary points, even for curved surface elements of arbitrary shape. Singularity and treatment of the discontinued corner point are not needed at all. The evaluation of the physics variant at internal points is also shown in this article. Numerical results are presented for some plate bending problems and compared against analytical and previous solutions.
In Silico Methods to Identify Exapted Transposable Element Families.
Ramsay, LeeAnn; Bourque, Guillaume
2016-01-01
Transposable elements (TEs) have recently been shown to have many regulatory roles within the genome. In this chapter, we will examine two in silico methods for analyzing TEs and identifying families that may have acquired such functions. The first method will look at how the overrepresentation of a repeat family in a set of genomic features can be discovered. The example situation of OCT4 binding sites originating from LTR7 TE sequences will be used to show how this method could be applied. The second method will describe how to determine if a TE family exhibits a cell type-specific expression pattern. As an example, we will look at the expression of HERV-H, an endogenous retrovirus known to act as an lncRNA in embryonic stem cells. We will use this example to demonstrate how RNA-seq data can be used to compare cell type expression of repeats.
A robust shell element in meshfree SPH method
Fu-Ren Ming; A-Man Zhang; Xue-Yan Cao
2013-01-01
With the incorporation of total Lagrangian smoothed particle hydrodynamics (SPH) method equation and moving least square (MLS) function,the traditional SPH method is improved regarding the stability and consistency.Based on Mindlin-Ressiner plate theory,the SPH method simulating dynamic behavior via one layer of particles is applied to plate's mid-plane,i.e.,a SPH shell model is constructed.Finally,through comparative analyses on the dynamic response of square,stiffened shells and cylindrical shells under various strong impact loads with common finite element software,the feasibility,validity and numerical accuracy of the SPH shell method are verified.Consequently,further researches on SPH shell may well pave the way towards solving problems involving dynamic plastic damage,tearing or even crushing.
Finite element method for solving geodetic boundary value problems
Fašková, Zuzana; Čunderlík, Róbert; Mikula, Karol
2010-02-01
The goal of this paper is to present the finite element scheme for solving the Earth potential problems in 3D domains above the Earth surface. To that goal we formulate the boundary-value problem (BVP) consisting of the Laplace equation outside the Earth accompanied by the Neumann as well as the Dirichlet boundary conditions (BC). The 3D computational domain consists of the bottom boundary in the form of a spherical approximation or real triangulation of the Earth’s surface on which surface gravity disturbances are given. We introduce additional upper (spherical) and side (planar and conical) boundaries where the Dirichlet BC is given. Solution of such elliptic BVP is understood in a weak sense, it always exists and is unique and can be efficiently found by the finite element method (FEM). We briefly present derivation of FEM for such type of problems including main discretization ideas. This method leads to a solution of the sparse symmetric linear systems which give the Earth’s potential solution in every discrete node of the 3D computational domain. In this point our method differs from other numerical approaches, e.g. boundary element method (BEM) where the potential is sought on a hypersurface only. We apply and test FEM in various situations. First, we compare the FEM solution with the known exact solution in case of homogeneous sphere. Then, we solve the geodetic BVP in continental scale using the DNSC08 data. We compare the results with the EGM2008 geopotential model. Finally, we study the precision of our solution by the GPS/levelling test in Slovakia where we use terrestrial gravimetric measurements as input data. All tests show qualitative and quantitative agreement with the given solutions.
Architecting the Finite Element Method Pipeline for the GPU.
Fu, Zhisong; Lewis, T James; Kirby, Robert M; Whitaker, Ross T
2014-02-01
The finite element method (FEM) is a widely employed numerical technique for approximating the solution of partial differential equations (PDEs) in various science and engineering applications. Many of these applications benefit from fast execution of the FEM pipeline. One way to accelerate the FEM pipeline is by exploiting advances in modern computational hardware, such as the many-core streaming processors like the graphical processing unit (GPU). In this paper, we present the algorithms and data-structures necessary to move the entire FEM pipeline to the GPU. First we propose an efficient GPU-based algorithm to generate local element information and to assemble the global linear system associated with the FEM discretization of an elliptic PDE. To solve the corresponding linear system efficiently on the GPU, we implement a conjugate gradient method preconditioned with a geometry-informed algebraic multi-grid (AMG) method preconditioner. We propose a new fine-grained parallelism strategy, a corresponding multigrid cycling stage and efficient data mapping to the many-core architecture of GPU. Comparison of our on-GPU assembly versus a traditional serial implementation on the CPU achieves up to an 87 × speedup. Focusing on the linear system solver alone, we achieve a speedup of up to 51 × versus use of a comparable state-of-the-art serial CPU linear system solver. Furthermore, the method compares favorably with other GPU-based, sparse, linear solvers.
The mixed finite element multigrid method for stokes equations.
Muzhinji, K; Shateyi, S; Motsa, S S
2015-01-01
The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q2-Q1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results.
MULTIGRID METHODS FOR THE GENERALIZED STOKES EQUATIONS BASED ON MIXED FINITE ELEMENT METHODS
Qing-ping Deng; Xiao-ping Feng
2002-01-01
Multigrid methods are developed and analyzed for the generalized stationary Stokes equations which are discretized by various mixed finite element methods. In this paper, the multigrid algorithm, the criterion for prolongation operators and the convergence analysis are all established in an abstract and element-independent fashion. It is proven that the multigrid algorithm converges optimally if the prolongation operator satisfies the criterion.To utilize the abstract result, more than ten well-known mixed finite elements for the Stokes problems are discussed in detail and examples of prolongation operators are constructed explicitly. For nonconforming elements, it is shown that the usual local averaging technique for constructing prolongation operators can be replaced by a computationally cheaper alternative, random choice technique. Moreover, since the algorithm and analysis allows using of nonnested meshes, the abstract result also applies to low order mixed finite elements, which are usually stable only for some special mesh structures.
Applications of the discrete element method in mechanical engineering
Fleissner, Florian, E-mail: fleissner@itm.uni-stuttgart.de; Gaugele, Timo, E-mail: gaugele@itm.uni-stuttgart.de; Eberhard, Peter [University of Stuttgart, Institute of Engineering and Computational Mechanics (Germany)], E-mail: eberhard@itm.uni-stuttgart.de
2007-08-15
Compared to other fields of engineering, in mechanical engineering, the Discrete Element Method (DEM) is not yet a well known method. Nevertheless, there is a variety of simulation problems where the method has obvious advantages due to its meshless nature. For problems where several free bodies can collide and break after having been largely deformed, the DEM is the method of choice. Neighborhood search and collision detection between bodies as well as the separation of large solids into smaller particles are naturally incorporated in the method. The main DEM algorithm consists of a relatively simple loop that basically contains the three substeps contact detection, force computation and integration. However, there exists a large variety of different algorithms to choose the substeps to compose the optimal method for a given problem. In this contribution, we describe the dynamics of particle systems together with appropriate numerical integration schemes and give an overview over different types of particle interactions that can be composed to adapt the method to fit to a given simulation problem. Surface triangulations are used to model complicated, non-convex bodies in contact with particle systems. The capabilities of the method are finally demonstrated by means of application examples.
Generalized multiscale finite element methods. nonlinear elliptic equations
Efendiev, Yalchin R.
2013-01-01
In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples. © 2014 Global-Science Press.
7th International Conference on Discrete Element Methods
Feng, Yuntian; Mustoe, Graham
2017-01-01
This book presents the latest advances in Discrete Element Methods (DEM) and technology. It is the proceeding of 7th International Conference on DEM which was held at Dalian University of Technology on August 1 - 4, 2016. The subject of this book are the DEM and related computational techniques such as DDA, FEM/DEM, molecular dynamics, SPH, Meshless methods, etc., which are the main computational methods for modeling discontinua. In comparison to continua which have been already studied for a long time, the research of discontinua is relatively new, but increases dramatically in recent years and has already become an important field. This book will benefit researchers and scientists from the academic fields of physics, engineering and applied mathematics, as well as from industry and national laboratories who are interested in the DEM. .
Tangential stress analysis of myocardial wall by finite element method
Guan Qiu; Jiang Cao; Wang Xiaoyan; Chen Shengyong; Guan Fang
2011-01-01
A novel method is presented to build the triangular surface model and calculate the tangential stress and strain of myocardial wall ,which can be further used to reflect the left ventricle twisting-a sensitive index to assess the systolic and diastolic function of heart. Firstly, a point distribution model is used to obtain the feature points of the ventricular surface in medical images. Secondly, the surface model is constructed by triangular mesh, and then the subdivision strategy is introduced to refine the model. Thirdly, plane projection and finite element method ( FEM ) are applied to calculate the tangential stress and strain. Finally, the distribution of tangential modulus of elasticity is discussed. The stimulation results show that the proposed method can be used to compute the tangential stress and strain of myocardial wall effectively and the computing result is consistent with the results mentioned in the literatures.
A multilevel finite element method for Fredholm integral eigenvalue problems
Xie, Hehu; Zhou, Tao
2015-12-01
In this work, we proposed a multigrid finite element (MFE) method for solving the Fredholm integral eigenvalue problems. The main motivation for such studies is to compute the Karhunen-Loève expansions of random fields, which play an important role in the applications of uncertainty quantification. In our MFE framework, solving the eigenvalue problem is converted to doing a series of integral iterations and eigenvalue solving in the coarsest mesh. Then, any existing efficient integration scheme can be used for the associated integration process. The error estimates are provided, and the computational complexity is analyzed. It is noticed that the total computational work of our method is comparable with a single integration step in the finest mesh. Several numerical experiments are presented to validate the efficiency of the proposed numerical method.
A Finite Element Method for Simulation of Compressible Cavitating Flows
Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad
2016-11-01
This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.
Fuzzy and interval finite element method for heat conduction problem
Majumdar, Sarangam; Chakraverty, S
2012-01-01
Traditional finite element method is a well-established method to solve various problems of science and engineering. Different authors have used various methods to solve governing differential equation of heat conduction problem. In this study, heat conduction in a circular rod has been considered which is made up of two different materials viz. aluminum and copper. In earlier studies parameters in the differential equation have been taken as fixed (crisp) numbers which actually may not. Those parameters are found in general by some measurements or experiments. So the material properties are actually uncertain and may be considered to vary in an interval or as fuzzy and in that case complex interval arithmetic or fuzzy arithmetic has to be considered in the analysis. As such the problem is discretized into finite number of elements which depend on interval/fuzzy parameters. Representation of interval/fuzzy numbers may give the clear picture of uncertainty. Hence interval/fuzzy arithmetic is applied in the fin...
A Review of Discrete Element Method Research on Particulate Systems
Mahmood, A. A.; Elektorowicz, M.
2016-07-01
This paper summarizes research done using the Discrete Element Method (DEM) and explores new trends in its use on Particulate systems. The rationale for using DEM versus the traditional continuum-based approach is explained first. Then, DEM application is explored in terms of geotechnical engineering and mining engineering materials, since particulate media are mostly associated with these two disciplines. It is concluded that no research to date had addressed the issue of using the DEM to model the strength and weathering characteristics of peaty soil-slag-Portland cement-fly ash combinations.
Piezoelectric Analysis of Saw Sensor Using Finite Element Method
Vladimír KUTIŠ
2013-06-01
Full Text Available In this contribution modeling and simulation of surface acoustic waves (SAW sensor using finite element method will be presented. SAW sensor is made from piezoelectric GaN layer and SiC substrate. Two different analysis types are investigated - modal and transient. Both analyses are only 2D. The goal of modal analysis, is to determine the eigenfrequency of SAW, which is used in following transient analysis. In transient analysis, wave propagation in SAW sensor is investigated. Both analyses were performed using FEM code ANSYS.
The Research of Welding Residual Stress Based Finite Element Method
Qinghua Bai
2013-06-01
Full Text Available Welding residual stress was caused by local heating during the welding process, tensile residual stress reduce fatigue strength and corrosion resistance, Compressive residual stress decreases stability limit. So it will produce brittle fracture, reduce working life and strength of workpiece; Based on the simulation of welding process with finite element method, calculate the welding temperature field and residual stress, and then measure residual stress in experiments, So as to get the best welding technology and welding parameters, to reduce welding residual stress effective, it has very important significance.
The Distinct Element Method - Application to Structures in Jointed Rock
Morris, J.P.; Glen, L.; Blair, S.; Heuze, F.
2001-11-30
The Distinct Element Method (DEM) is a meshfree method with applications to rock mechanics, mining sciences, simulations of nuclear repositories, and the stability of underground structures. Continuum mesh-based methods have been applied successfully to many problems in geophysics. Even if the geology includes fractures and faults, when sufficiently large length scales are considered a continuum approximation may be sufficient. However, a large class of problems exist where individual rock joints must be taken into account. This includes problems where the structures of interest have sizes comparable with the block size. In addition, it is possible that while the structure may experience loads which do no measurable damage to individual blocks, some joints may fail. This may launch smaller blocks as dangerous projectiles or even cause total failure of a tunnel. Traditional grid-based continuum approaches are wholly unsuited to this class of problem. It is possible to introduce discontinuities or slide lines into existing grid-based methods, however, such limited approaches can break down when new contacts form between blocks. The distinct element method (DEM) is an alternative, meshfree approach. The DEM can directly approximate the block structure of the jointed rock using arbitrary polyhedra. Using this approach, preexisting joints are readily incorporated into the DEM model. In addition, the method detects all new contacts between blocks resulting from relative block motion. We will describe the background of the DEM and review previous application of the DEM to geophysical problems. Finally we present preliminary results from a investigation into the stability of underground structures subjected to dynamic loading.
Standard and Economical Cascadic Multigrid Methods for the Mortar Finite Element Methods
Xuejun Xu; Wenbin Chen
2009-01-01
In this paper, standard and economical cascadic multigrid methods are con-sidered for solving the algebraic systems resulting from the mortar finite element meth-ods. Both cascadic multigrid methods do not need full elliptic regularity, so they can be used to tackle more general elliptic problems. Numerical experiments are reported to support our theory.
Numerical Improvement of The Three-dimensional Boundary Element Method
Ortiz-Aleman, C.; Gil-Zepeda, A.; SÃ¡nchez-Sesma, F. J.; Luzon-Martinez, F.
2001-12-01
Boundary element methods have been applied to calculate the seismic response of various types of geological structures. Dimensionality reduction and a relatively easy fulfillment of radiation conditions at infinity are recognized advantages over domain approaches. Indirect Boundary Element Method (IBEM) formulations give rise to large systems of equations, and the considerable amount of operations required for solving them suggest the possibility of getting some benefit from exploitation of sparsity patterns. In this article, a brief study on the structure of the linear systems derived from the IBEM method is carried out. Applicability of a matrix static condensation algorithm to the inversion of the IBEM coefficient matrix is explored, in order to optimize the numerical burden of such method. Seismic response of a 3-D alluvial valley of irregular shape, as originally proposed by Sánchez-Sesma and Luzon (1995), was computed and comparisons on time consumption and memory allocation are established. An alternative way to deal with those linear systems is the use of threshold criteria for the truncation of the coefficient matrix, which implies the solution of sparse approximations instead of the original full IBEM systems (Ortiz-Aleman et al., 1998). Performance of this optimized approach is evaluated on its application to the case of a three-dimensional alluvial basin with irregular shape. Transfer functions were calculated for the frequency range from 0 to 1.25 Hz. Inversion of linear systems by using this algorithm lead to significant saving on computer time and memory allocation relative to the original IBEM formulation. Results represent an extension in the range of application of the IBEM method.
Mixed Generalized Multiscale Finite Element Methods and Applications
Chung, Eric T.
2015-03-03
In this paper, we present a mixed generalized multiscale finite element method (GMsFEM) for solving flow in heterogeneous media. Our approach constructs multiscale basis functions following a GMsFEM framework and couples these basis functions using a mixed finite element method, which allows us to obtain a mass conservative velocity field. To construct multiscale basis functions for each coarse edge, we design a snapshot space that consists of fine-scale velocity fields supported in a union of two coarse regions that share the common interface. The snapshot vectors have zero Neumann boundary conditions on the outer boundaries, and we prescribe their values on the common interface. We describe several spectral decompositions in the snapshot space motivated by the analysis. In the paper, we also study oversampling approaches that enhance the accuracy of mixed GMsFEM. A main idea of oversampling techniques is to introduce a small dimensional snapshot space. We present numerical results for two-phase flow and transport, without updating basis functions in time. Our numerical results show that one can achieve good accuracy with a few basis functions per coarse edge if one selects appropriate offline spaces. © 2015 Society for Industrial and Applied Mathematics.
Spectral Element Method for the Simulation of Unsteady Compressible Flows
Diosady, Laslo Tibor; Murman, Scott M.
2013-01-01
This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s.
Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients
Bonito, Andrea
2013-01-01
Elliptic PDEs with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electromagnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on the boundaries of the cells in the initial triangulation. However, this does not match applications where discontinuities occur on curves, surfaces, or manifolds, and could even be unknown beforehand. One of the obstacles to treating such discontinuity problems is that the usual perturbation theory for elliptic PDEs assumes bounds for the distortion of the coefficients in the L∞ norm and this in turn requires that the discontinuities are matched exactly when the coefficients are approximated. We present a new approach based on distortion of the coefficients in an Lq norm with q < ∞ which therefore does not require the exact matching of the discontinuities. We then use this new distortion theory to formulate new adaptive finite element methods (AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in the sense of distortion versus number of computations, and report insightful numerical results supporting our analysis. © 2013 Societ y for Industrial and Applied Mathematics.
A new simple multidomain fast multipole boundary element method
Huang, S.; Liu, Y. J.
2016-09-01
A simple multidomain fast multipole boundary element method (BEM) for solving potential problems is presented in this paper, which can be applied to solve a true multidomain problem or a large-scale single domain problem using the domain decomposition technique. In this multidomain BEM, the coefficient matrix is formed simply by assembling the coefficient matrices of each subdomain and the interface conditions between subdomains without eliminating any unknown variables on the interfaces. Compared with other conventional multidomain BEM approaches, this new approach is more efficient with the fast multipole method, regardless how the subdomains are connected. Instead of solving the linear system of equations directly, the entire coefficient matrix is partitioned and decomposed using Schur complement in this new approach. Numerical results show that the new multidomain fast multipole BEM uses fewer iterations in most cases with the iterative equation solver and less CPU time than the traditional fast multipole BEM in solving large-scale BEM models. A large-scale fuel cell model with more than 6 million elements was solved successfully on a cluster within 3 h using the new multidomain fast multipole BEM.
A new fast direct solver for the boundary element method
Huang, S.; Liu, Y. J.
2017-04-01
A new fast direct linear equation solver for the boundary element method (BEM) is presented in this paper. The idea of the new fast direct solver stems from the concept of the hierarchical off-diagonal low-rank matrix. The hierarchical off-diagonal low-rank matrix can be decomposed into the multiplication of several diagonal block matrices. The inverse of the hierarchical off-diagonal low-rank matrix can be calculated efficiently with the Sherman-Morrison-Woodbury formula. In this paper, a more general and efficient approach to approximate the coefficient matrix of the BEM with the hierarchical off-diagonal low-rank matrix is proposed. Compared to the current fast direct solver based on the hierarchical off-diagonal low-rank matrix, the proposed method is suitable for solving general 3-D boundary element models. Several numerical examples of 3-D potential problems with the total number of unknowns up to above 200,000 are presented. The results show that the new fast direct solver can be applied to solve large 3-D BEM models accurately and with better efficiency compared with the conventional BEM.
A Boundary Element Method for Simulation of Deformable Objects
徐美和; 唐泽圣
1996-01-01
In this paper,a boundary element method is first applied to real-tim animation of deformable objects and to simplify data preparation.Next,the visibleexternal surface of the object in deforming process is represented by B-spline surface,whose control points are embedded in dynamic equations of BEM.Fi-nally,the above method is applied to anatomical simulation.A pituitary model in human brain,which is reconstructed from a set of anatomical sections, is selected to be the deformable object under action of virtual tool such as scapel or probe.It produces fair graphic realism and high speed performance.The results show that BEM not only has less computational expense than FEM,but also is convenient to combine with the 3D reconstruction and surface modeling as it enables the reduction of the dimensionality of the problem by one.
Study on increasing calculation precision and convergence speed of streamline strip element method
彭艳; 刘宏民
2004-01-01
The calculation precision and convergence speed of streamline strip element method are increased by using the method whose initial value of the exit lateral displacement is determined with strip element variation method, and the accurate tension lateral distribution model is adopted based on the original third power spline function streamline strip element method. The basic theory of the strip element method is developed. The calculated results by the improved streamline strip element method and the original streamline strip element method are compared with the measured results, showing that the calculated results of the improved method are in good agreement with the measured results.
Galerkin ﬁnite element methods for wave problems
T K Sengupta; S B Talla; S C Pradhan
2005-10-01
We compare here the accuracy, stability and wave propagation properties of a few Galerkin methods. The basic Galerkin methods with piecewise linear basis functions (called G1FEM here) and quadratic basis functions (called G2FEM) have been compared with the streamwise-upwind Petrov Galerkin (SUPG) method for their ability to solve wave problems. It is shown here that when the piecewise linear basis functions are replaced by quadratic polynomials, the stencils become much larger (involving ﬁve overlapping elements), with only a very small increase in spectral accuracy. It is also shown that all the three Galerkin methods have restricted ranges of wave numbers and circular frequencies over which the numerical dispersion relation matches with the physical dispersion relation - a central requirement for wave problems. The model one-dimensional convection equation is solved with a very ﬁne uniform grid to show the above properties. With the help of discontinuous initial condition, we also investigate the Gibbs’ phenomenon for these methods.
Generalized multiscale finite element methods (GMsFEM)
Efendiev, Yalchin R.
2013-10-01
In this paper, we propose a general approach called Generalized Multiscale Finite Element Method (GMsFEM) for performing multiscale simulations for problems without scale separation over a complex input space. As in multiscale finite element methods (MsFEMs), the main idea of the proposed approach is to construct a small dimensional local solution space that can be used to generate an efficient and accurate approximation to the multiscale solution with a potentially high dimensional input parameter space. In the proposed approach, we present a general procedure to construct the offline space that is used for a systematic enrichment of the coarse solution space in the online stage. The enrichment in the online stage is performed based on a spectral decomposition of the offline space. In the online stage, for any input parameter, a multiscale space is constructed to solve the global problem on a coarse grid. The online space is constructed via a spectral decomposition of the offline space and by choosing the eigenvectors corresponding to the largest eigenvalues. The computational saving is due to the fact that the construction of the online multiscale space for any input parameter is fast and this space can be re-used for solving the forward problem with any forcing and boundary condition. Compared with the other approaches where global snapshots are used, the local approach that we present in this paper allows us to eliminate unnecessary degrees of freedom on a coarse-grid level. We present various examples in the paper and some numerical results to demonstrate the effectiveness of our method. © 2013 Elsevier Inc.
Multiscale Finite Element Methods for Flows on Rough Surfaces
Efendiev, Yalchin
2013-01-01
In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface. The main ingredients of MsFEM are (1) the construction of multiscale basis functions and (2) a global coupling of these basis functions. For the construction of multiscale basis functions, our approach uses the transformation of the reference surface to a deformed surface. On the deformed surface, multiscale basis functions are defined where reduced (1D) problems are solved along the edges of coarse-grid blocks to calculate nodalmultiscale basis functions. Furthermore, these basis functions are transformed back to the reference configuration. We discuss the use of appropriate transformation operators that improve the accuracy of the method. The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition. In this paper, we consider such transformations based on harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configuration. Numerical results are presented where we compare the MsFEM when two types of deformations are used formultiscale basis construction. The first deformation employs local information and the second deformation employs a global information. Our numerical results showthat one can improve the accuracy of the simulations when a global information is used. © 2013 Global-Science Press.
A Coupling Model of the Discontinuous Deformation Analysis Method and the Finite Element Method
ZHANG Ming; YANG Heqing; LI Zhongkui
2005-01-01
Neither the finite element method nor the discontinuous deformation analysis method can solve problems very well in rock mechanics and engineering due to their extreme complexities. A coupling method combining both of them should have wider applicability. Such a model coupling the discontinuous deformation analysis method and the finite element method is proposed in this paper. In the model, so-called line blocks are introduced to deal with the interaction via the common interfacial boundary of the discontinuous deformation analysis domain with the finite element domain. The interfacial conditions during the incremental iteration process are satisfied by means of the line blocks. The requirement of gradual small displacements in each incremental step of this coupling method is met through a displacement control procedure. The model is simple in concept and is easy in numerical implementation. A numerical example is given. The displacement obtained by the coupling method agrees well with those obtained by the finite element method, which shows the rationality of this model and the validity of the implementation scheme.
The finite element method for the global gravity field modelling
Kollár, Michal; Macák, Marek; Mikula, Karol; Minarechová, Zuzana
2014-05-01
We present a finite element approach for solving the fixed gravimetric boundary-value problem on a global level. To that goal, we have defined the computational domain bounded by the real topography and a chosen satellite level. The boundary-value problem consists of the Laplace equation for the disturbing potential and the Neumann boundary condition given by the gravity disturbances applied on the bottom boundary, and the Dirichlet boundary condition given by the disturbing potential applied on the upper boundary. Afterwards, the computational domain is meshed with several different meshes chosen to avoid the problem of simple spherical meshes that contain a singularity at poles. Our aim has been to show how the right mesh can improve results as well as significantly reduce the computational time. The practical implementation has been done in the FEM software ANSYS using 3D linear elements SOLID70 and for solving the linear system of equations, the preconditioned conjugate gradients method has been chosen. The obtained disturbing potential has been applied to calculate the geopotential value W0.
An approximate method to acoustic radiation problems: element radiation superposition method
wANG Bin; TANG weilin; FAN Jun
2008-01-01
An approximate method is brought forward to predict the acoustic pressure based on the surface velocity.It is named Element Radiation Superposition Method(ERSM).The study finds that each element in Acoustic Transfer Vector(ATV)equals the acoustic pressure radiated by the corresponding surface element vibrating in unit velocity and other surface elements keep still.that is the acoustic pressure radiated by the corresponding baffled pistonvibrating in unit velocity.So,it utilizes the acoustic pressure radiated by a baffled piston to establish the transfer relationship between the surfaEe velocity and the acoustic pressure.The total acoustic pressure is obtained through summing up the products of the surface velocity and the transfer quantity.It adopts the regular baffle to fit the actual baffle in order to calculate the acoustic pressure radiated by the baffled piston.This approximate method has larger advantage in calculating speed and memory space than Boundary Element Method.Numerical simulations show that this approximate method is reasonable and feasible.
谢小平; 周天孝
2003-01-01
The combined hybrid finite element method is of an intrinsic mechanism of enhancing coarse-mesh-accuracy of lower order displacement schemes. It was confirmed that the combined hybrid scheme without energy error leads to enhancement of accuracy at coarse meshes, and that the combination parameter plays an important role in the enhancement. As an improvement of conforming bilinear Q4-plane element, the combined hybrid method adopted the most convenient quadrilateral displacements-stress mode, i. e.,the mode of compatible isoparametric bilinear displacements and pure constant stresses. By adjusting the combined parameter, the optimized version of the combined hybrid element was obtained and numerical tests indicated that this parameter-adjusted version behaves much better than Q4-element and is of high accuracy at coarse meshes. Due to elimination of stress parameters at the elemental level, this combined hybrid version is of the same computational cost as that of Q4 -element.
A Teaching Experience: Aeroelasticity and the Finite Element Method
Mario Lázaro
2015-07-01
Full Text Available The aeroelastic modelling of aircraft structures is a fundamental area for the students of Aerospace Engineering Degree. This subject has a strongly multidisciplinary character and involves other several subjects like mechanics, vibrations, aerodynamics, structural analysis. Consequently, the students find stimulating the challenge of merging their knowledge at different areas. In this paper, a teaching experience on the solution of the aeroelastic problem of a 3D-wing through six different computer tasks is presented. The main objective is to attempt a relatively complex problem using a simple version of the Finite Element Method with only four degrees of freedom. The students begin creating the shape functions of the discrete model and finish solving the flutter instability problem.
A mixed finite element method for nonlinear diffusion equations
Burger, Martin
2010-01-01
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.
Die land optimization of section extrusion by finite element method
卫兴华; 田柱平
2001-01-01
In the extrusion of sections with flat-faced die, the proper design of die land is critically important in avoid ing geometry defects. A methodology for the design of die land, which consists of a simulation-adjustment iteration, isproposed. The metal flow in extrusion is simulated by the three dimensional finite element method and the die land is adjusted according to the simulation result. The simulation-adjustment iteration is conducted repeatedly until the uniform metal flow in die land exit is obtained. Both the formulae for adjustment of the die land and the criterion for the judgment of proper die land are suggested. The extrusion of a C-section is chosen as the computational example.
Viscous incompressible flow simulation using penalty finite element method
Sharma R.L.
2012-04-01
Full Text Available Numerical analysis of Navier–Stokes equations in velocity– pressure variables with traction boundary conditions for isothermal incompressible flow is presented. Specific to this study is formulation of boundary conditions on synthetic boundary characterized by traction due to friction and surface tension. The traction and open boundary conditions have been investigated in detail. Navier-Stokes equations are discretized in time using Crank-Nicolson scheme and in space using Galerkin finite element method. Pressure being unknown and is decoupled from the computations. It is determined as post processing of the velocity field. The justification to simulate this class of flow problems is presented through benchmark tests - classical lid-driven cavity flowwidely used by numerous authors due to its simple geometry and complicated flow behavior and squeezed flow between two parallel plates amenable to analytical solution. Results are presented for very low to high Reynolds numbers and compared with the benchmark results.
hp-finite element methods for singular perturbations
Melenk, Jens M
2002-01-01
Many partial differential equations arising in practice are parameter-dependent problems that are of singularly perturbed type. Prominent examples include plate and shell models for small thickness in solid mechanics, convection-diffusion problems in fluid mechanics, and equations arising in semi-conductor device modelling. Common features of these problems are layers and, in the case of non-smooth geometries, corner singularities. Mesh design principles for the efficient approximation of both features by the hp-version of the finite element method (hp-FEM) are proposed in this volume. For a class of singularly perturbed problems on polygonal domains, robust exponential convergence of the hp-FEM based on these mesh design principles is established rigorously.
Discrete Element Method Simulations for Complex Granular Flows
Guo, Yu; Curtis, Jennifer Sinclair
2015-01-01
This review article focuses on the modeling of complex granular flows employing the discrete element method (DEM) approach. The specific topic discussed is the application of DEM models for the study of the flow behavior of nonspherical, flexible, or cohesive particles, including particle breakage. The major sources of particle cohesion—liquid induced, electrostatics, van der Waals forces—and their implementation into DEM simulations are covered. These aspects of particle flow are of great importance in practical applications and hence are the significant foci of research at the forefront of current DEM modeling efforts. For example, DEM simulations of nonspherical grains can provide particle stress information needed to develop constitutive models for continuum-based simulations of large-scale industrial processes.
Submarine Magnetic Field Extrapolation Based on Boundary Element Method
GAO Jun-ji; LIU Da-ming; YAO Qiong-hui; ZHOU Guo-hua; YAN Hui
2007-01-01
In order to master the magnetic field distribution of submarines in the air completely and exactly and study the magnetic stealthy performance of submarine, a mathematic model of submarine magnetic field extrapolation is built based on the boundary element method (BEM). An experiment is designed to measure three components of magnetic field on the envelope surface surrounding a model submarine. The data in differentheights above the model submarine are obtained by use of tri-axial magnetometers. The results show that this extrapolation model has good stabilities and high accuracies compared the measured data with the extrapolated data. Moreover, the model can reflect the submarine magnetic field distribution in the air exactly, and is valuable in practical engineering.
Method of Bonding Optical Elements with Near-Zero Displacement
Robinson, David; McClelland, Ryan; Byron, Glenn; Evans, Tyler
2012-01-01
The International X-ray Project seeks to build an x-ray telescope using thousands of pieces of thin and flexible glass mirror segments. Each mirror segment must be bonded into a housing in nearly perfect optical alignment without distortion. Forces greater than 0.001 Newton, or displacements greater than 0.5 m of the glass, cause unacceptable optical distortion. All known epoxies shrink as they cure. Even the epoxies with the least amount of shrinkage (<0.01%) cause unacceptable optical distortion and misalignment by pulling the mirror segments towards the housing as it cures. A related problem is that the shrinkage is not consistent or predictable so that it cannot be accounted for in the setup (i.e., if all of the bonds shrunk an equal amount, there would be no problem). A method has been developed that allows two components to be joined with epoxy in such a way that reduces the displacement caused by epoxy shrinking as it cures to less than 200 nm. The method involves using ultraviolet-cured epoxy with a displacement sensor and a nanoactuator in a control loop. The epoxy is cured by short-duration exposures to UV light. In between each exposure, the nano-actuator zeroes out the displacement caused by epoxy shrinkage and thermal expansion. After a few exposures, the epoxy has cured sufficiently to prevent further displacement of the two components. Bonding of optical elements has been done for many years, but most optics are thick and rigid elements that resist micro-Newton-level forces without causing distortion. When bonding thin glass optics such as the 0.40-mm thick IXO X-ray mirrors, forces in the micro- and milli-Newton levels cause unacceptable optical figure error. This innovation can now repeatedly and reliably bond a thin glass mirror to a metal housing with less than 0.2 m of displacement (<200 nm). This is an enabling technology that allows the installation of virtually stress-free, undistorted thin optics onto structures. This innovation is
Jara-Almonte, J.; Mitchell, L. D.
1988-01-01
The paper covers two distinct parts: theory and application. The goal of this work was the reduction of model size with an increase in eigenvalue/vector accuracy. This method is ideal for the condensation of large truss- or beam-type structures. The theoretical approach involves the conversion of a continuum transfer matrix beam element into an 'Exact' dynamic stiffness element. This formulation is implemented in a finite element environment. This results in the need to solve a transcendental eigenvalue problem. Once the eigenvalue is determined the eigenvectors can be reconstructed with any desired spatial precision. No discretization limitations are imposed on the reconstruction. The results of such a combined finite element and transfer matrix formulation is a much smaller FEM eigenvalue problem. This formulation has the ability to extract higher eigenvalues as easily and as accurately as lower eigenvalues. Moreover, one can extract many more eigenvalues/vectors from the model than the number of degrees of freedom in the FEM formulation. Typically, the number of eigenvalues accurately extractable via the 'Exact' element method are at least 8 times the number of degrees of freedom. In contrast, the FEM usually extracts one accurate (within 5 percent) eigenvalue for each 3-4 degrees of freedom. The 'Exact' element results in a 20-30 improvement in the number of accurately extractable eigenvalues and eigenvectors.
Jara-Almonte, J.; Mitchell, L. D.
1988-01-01
The paper covers two distinct parts: theory and application. The goal of this work was the reduction of model size with an increase in eigenvalue/vector accuracy. This method is ideal for the condensation of large truss- or beam-type structures. The theoretical approach involves the conversion of a continuum transfer matrix beam element into an 'Exact' dynamic stiffness element. This formulation is implemented in a finite element environment. This results in the need to solve a transcendental eigenvalue problem. Once the eigenvalue is determined the eigenvectors can be reconstructed with any desired spatial precision. No discretization limitations are imposed on the reconstruction. The results of such a combined finite element and transfer matrix formulation is a much smaller FEM eigenvalue problem. This formulation has the ability to extract higher eigenvalues as easily and as accurately as lower eigenvalues. Moreover, one can extract many more eigenvalues/vectors from the model than the number of degrees of freedom in the FEM formulation. Typically, the number of eigenvalues accurately extractable via the 'Exact' element method are at least 8 times the number of degrees of freedom. In contrast, the FEM usually extracts one accurate (within 5 percent) eigenvalue for each 3-4 degrees of freedom. The 'Exact' element results in a 20-30 improvement in the number of accurately extractable eigenvalues and eigenvectors.
Novel TMS coils designed using an inverse boundary element method
Cobos Sánchez, Clemente; María Guerrero Rodriguez, Jose; Quirós Olozábal, Ángel; Blanco-Navarro, David
2017-01-01
In this work, a new method to design TMS coils is presented. It is based on the inclusion of the concept of stream function of a quasi-static electric current into a boundary element method. The proposed TMS coil design approach is a powerful technique to produce stimulators of arbitrary shape, and remarkably versatile as it permits the prototyping of many different performance requirements and constraints. To illustrate the power of this approach, it has been used for the design of TMS coils wound on rectangular flat, spherical and hemispherical surfaces, subjected to different constraints, such as minimum stored magnetic energy or power dissipation. The performances of such coils have been additionally described; and the torque experienced by each stimulator in the presence of a main magnetic static field have theoretically found in order to study the prospect of using them to perform TMS and fMRI concurrently. The obtained results show that described method is an efficient tool for the design of TMS stimulators, which can be applied to a wide range of coil geometries and performance requirements.
Advanced boundary element methods in aeroacoustics and elastodynamics
Lee, Li
In the first part of this dissertation, advanced boundary element methods (BEM) are developed for acoustic radiation in the presence of subsonic flows. A direct boundary integral formulation is first introduced for acoustic radiation in a uniform flow. This new formulation uses the Green's function derived from the adjoint operator of the governing differential equation. Therefore, it requires no coordinate transformation. This direct BEM formulation is then extended to acoustic radiation in a nonuniform-flow field. All the terms due to the nonuniform-flow effect are taken to the right-hand side and treated as source terms. The source terms result in a domain integral in the standard boundary integral formulation. The dual reciprocity method is then used to convert the domain integral into a number of boundary integrals. The second part of this dissertation is devoted to the development of advanced BEM algorithms to overcome the multi-frequency and nonuniqueness difficulties in steady-state elastodynamics. For the multi-frequency difficulty, two different interpolation schemes, borrowed from recent developments in acoustics, are first extended to elastodynamics to accelerate the process of matrix re-formation. Then, a hybrid scheme that retains only the merits of the two different interpolation schemes is suggested. To overcome the nonuniqueness difficulty, an enhanced CHIEF (Combined Helmholtz Integral Equation Formulation) method using a linear combination of the displacement and the traction boundary integral equations on the surface of a small interior volume is proposed. Numerical examples are given to demonstrate all the advanced BEM formulations.
Dohrmann, C.R.; Heinstein, M.W.; Jung, J.; Key, S.W.
1999-01-01
This report documents a collection of papers on a family of uniform strain tetrahedral finite elements and their connection to different element types. Also included in the report are two papers which address the general problem of connecting dissimilar meshes in two and three dimensions. Much of the work presented here was motivated by the development of the tetrahedral element described in the report "A Suitable Low-Order, Eight-Node Tetrahedral Finite Element For Solids," by S. W. Key {ital et al.}, SAND98-0756, March 1998. Two basic issues addressed by the papers are: (1) the performance of alternative tetrahedral elements with uniform strain and enhanced uniform strain formulations, and (2) the proper connection of tetrahedral and other element types when two meshes are "tied" together to represent a single continuous domain.
Three-dimensional nanoelectronic device simulation using spectral element methods
Cheng, Candong
The purpose of this thesis is to develop an efficient 3-Dimensional (3-D) nanoelectronic device simulator. Specifically, the self-consistent Schrodinger-Poisson model was implemented in this simulator to simulate band structures and quantum transport properties. Also, an efficient fast algorithm, spectral element method (SEM), was used in this simulator to achieve spectral accuracy where the error decreases exponentially with the increase of sampling densities and the basis order of the polynomial functions, thus significantly reducing the CPU time and memory usage. Moreover, within this simulator, a perfectly matched layer (PML) boundary condition method was used for the Schrodinger solver, which significantly simplifies the problem and reduces the computational time. Furthermore, the effective mass in semiconductor devices was treated as a full anisotropic mass tensor, which provides an excellent tool to study the anisotropy characteristics along arbitrary orientation of the device. Nanoelectronic devices usually involve the simulations of energy band and quantum transport properties. One of the models to perform these simulations is by solving a self-consistent Schrodinger-Poisson system. Two efficient fast algorithms, spectral grid method (SGM) and SEM, are investigated and implemented in this thesis. The spectral accuracy is achieved in both algorithms, whose errors decrease exponentially with the increase of the sampling density and basis orders. The spectral grid method is a pseudospectral method to achieve a high-accuracy result by choosing special nonuniform grid set and high-order Lagrange interpolants for a partial differential equation. Spectral element method is a high-order finite element method which uses the Gauss-Lobatto-Legendre (GLL) polynomials to represent the field variables in the Schrodinger-Poisson system and, therefore, to achieve spectral accuracy. We have implemented the SGM in the Schrodinger equation to solve the energy band structures
Deng, Yongbo; Korvink, Jan G.
2016-05-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.
Deng, Yongbo; Korvink, Jan G
2016-05-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.
Korvink, Jan G.
2016-01-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766
Stability Estimates for ℎ- Spectral Element Methods for Elliptic Problems
Pravir Dutt; Satyendra Tomar; B V Rathish Kumar
2002-11-01
In a series of papers of which this is the first we study how to solve elliptic problems on polygonal domains using spectral methods on parallel computers. To overcome the singularities that arise in a neighborhood of the corners we use a geometrical mesh. With this mesh we seek a solution which minimizes a weighted squared norm of the residuals in the partial differential equation and a fractional Sobolev norm of the residuals in the boundary conditions and enforce continuity by adding a term which measures the jump in the function and its derivatives at inter-element boundaries, in an appropriate fractional Sobolev norm, to the functional being minimized. Since the second derivatives of the actual solution are not square integrable in a neighborhood of the corners we have to multiply the residuals in the partial differential equation by an appropriate power of $r_k$, where $r_k$ measures the distance between the point and the vertex $A_k$ in a sectoral neighborhood of each of these vertices. In each of these sectoral neighborhoods we use a local coordinate system $(_k, _k)$ where $_k = ln r_k$ and $(r_k, _k)$ are polar coordinates with origin at $A_k$, as first proposed by Kondratiev. We then derive differentiability estimates with respect to these new variables and a stability estimate for the functional we minimize. In [6] we will show that we can use the stability estimate to obtain parallel preconditioners and error estimates for the solution of the minimization problem which are nearly optimal as the condition number of the preconditioned system is polylogarithmic in , the number of processors and the number of degrees of freedom in each variable on each element. Moreover if the data is analytic then the error is exponentially small in .
Matrix element method for high performance computing platforms
Grasseau, G.; Chamont, D.; Beaudette, F.; Bianchini, L.; Davignon, O.; Mastrolorenzo, L.; Ochando, C.; Paganini, P.; Strebler, T.
2015-12-01
Lot of efforts have been devoted by ATLAS and CMS teams to improve the quality of LHC events analysis with the Matrix Element Method (MEM). Up to now, very few implementations try to face up the huge computing resources required by this method. We propose here a highly parallel version, combining MPI and OpenCL, which makes the MEM exploitation reachable for the whole CMS datasets with a moderate cost. In the article, we describe the status of two software projects under development, one focused on physics and one focused on computing. We also showcase their preliminary performance obtained with classical multi-core processors, CUDA accelerators and MIC co-processors. This let us extrapolate that with the help of 6 high-end accelerators, we should be able to reprocess the whole LHC run 1 within 10 days, and that we have a satisfying metric for the upcoming run 2. The future work will consist in finalizing a single merged system including all the physics and all the parallelism infrastructure, thus optimizing implementation for best hardware platforms.
Generalized multiscale finite element method for elasticity equations
Chung, Eric T.
2014-10-05
In this paper, we discuss the application of generalized multiscale finite element method (GMsFEM) to elasticity equation in heterogeneous media. We consider steady state elasticity equations though some of our applications are motivated by elastic wave propagation in subsurface where the subsurface properties can be highly heterogeneous and have high contrast. We present the construction of main ingredients for GMsFEM such as the snapshot space and offline spaces. The latter is constructed using local spectral decomposition in the snapshot space. The spectral decomposition is based on the analysis which is provided in the paper. We consider both continuous Galerkin and discontinuous Galerkin coupling of basis functions. Both approaches have their cons and pros. Continuous Galerkin methods allow avoiding penalty parameters though they involve partition of unity functions which can alter the properties of multiscale basis functions. On the other hand, discontinuous Galerkin techniques allow gluing multiscale basis functions without any modifications. Because basis functions are constructed independently from each other, this approach provides an advantage. We discuss the use of oversampling techniques that use snapshots in larger regions to construct the offline space. We provide numerical results to show that one can accurately approximate the solution using reduced number of degrees of freedom.
A Successive Selection Method for finite element model updating
Gou, Baiyong; Zhang, Weijie; Lu, Qiuhai; Wang, Bo
2016-03-01
Finite Element (FE) model can be updated effectively and efficiently by using the Response Surface Method (RSM). However, it often involves performance trade-offs such as high computational cost for better accuracy or loss of efficiency for lots of design parameter updates. This paper proposes a Successive Selection Method (SSM), which is based on the linear Response Surface (RS) function and orthogonal design. SSM rewrites the linear RS function into a number of linear equations to adjust the Design of Experiment (DOE) after every FE calculation. SSM aims to interpret the implicit information provided by the FE analysis, to locate the Design of Experiment (DOE) points more quickly and accurately, and thereby to alleviate the computational burden. This paper introduces the SSM and its application, describes the solution steps of point selection for DOE in detail, and analyzes SSM's high efficiency and accuracy in the FE model updating. A numerical example of a simply supported beam and a practical example of a vehicle brake disc show that the SSM can provide higher speed and precision in FE model updating for engineering problems than traditional RSM.
Randomized Oversampling for Generalized Multiscale Finite Element Methods
Calo, Victor M.
2016-03-23
In this paper, we develop efficient multiscale methods for flows in heterogeneous media. We use the generalized multiscale finite element (GMsFEM) framework. GMsFEM approximates the solution space locally using a few multiscale basis functions. This approximation selects an appropriate snapshot space and a local spectral decomposition, e.g., the use of oversampled regions, in order to achieve an efficient model reduction. However, the successful construction of snapshot spaces may be costly if too many local problems need to be solved in order to obtain these spaces. We use a moderate quantity of local solutions (or snapshot vectors) with random boundary conditions on oversampled regions with zero forcing to deliver an efficient methodology. Motivated by the randomized algorithm presented in [P. G. Martinsson, V. Rokhlin, and M. Tygert, A Randomized Algorithm for the approximation of Matrices, YALEU/DCS/TR-1361, Yale University, 2006], we consider a snapshot space which consists of harmonic extensions of random boundary conditions defined in a domain larger than the target region. Furthermore, we perform an eigenvalue decomposition in this small space. We study the application of randomized sampling for GMsFEM in conjunction with adaptivity, where local multiscale spaces are adaptively enriched. Convergence analysis is provided. We present representative numerical results to validate the method proposed.
FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS BY H(div) ELEMENTS
Junping Wang; Xiaoshen Wang; Xiu Ye
2008-01-01
We derived and analyzed a new numerical scheme for the Navier-Stokes equations by using H(div) conforming finite elements. A great deal of effort was given to an establishment of some Sobolev-type inequalities for piecewise smooth functions. In particular, the newly derived Sobolev inequalities were employed to provide a mathematical theory for the H(div) finite element scheme. For example, it was proved that the new finite element scheme has solutions which admit a certain boundedness in terms of the input data. A solution uniqueness was also possible when the input data satisfies a certain smallness condition. Optimal-order error estimates for the corresponding finite element solutions were established in various Sobolev norms. The finite element solutions from the new scheme feature a full satisfaction of the continuity equation which is highly demanded in scientific computing.
[Comparison of spatial interpolation methods for daily meteorological elements].
Jiang, Xiao-Jian; Liu, Xiao-Jun; Huang, Fen; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan
2010-03-01
A comparative study was made to evaluate the methods of inverse distance weighting (IDW), co-kriging (CK), and thin plate spline (TPS) in interpolating the average meteorological elements (including maximum air temperature, minimum air temperature, sunshine hours, and precipitation) of the 15th day per month from the 1951-2005 comprehensive observation data of 559 meteorological stations in China. The results showed that the RMSEs for the maximum and minimum air temperature in a year interpolated by TPS were the smallest (1.02 degrees C and 1.12 degrees C, respectively), and the R2 between the observed and predicted values were the highest (0.9916 and 0.9913, respectively), compared with those interpolated by IDW and CK. In four seasons, the smallest RMSEs for the maximum and minimum air temperature interpolated by TPS were observed in autumn (0.83 degrees C) and summer (0.86 degrees C), respectively, and the R2 between the observed and predicted values interpolated by TPS were higher in autumn than in other seasons. The RMSEs for the sunshine hours and precipitation in a year interpolated by TPS were the smallest (0.59 h and 1.01 mm, respectively), and the R2 between the observed and predicted values were the highest (0.9118 and 0.8135, respectively), compared with those interpolated by IDW and CK. In four seasons, the RMSE for the sunshine hours in winter interpolated by TPS was the smallest (0.49 h), and the R2 between the observed and predicted sunshine hours was the smallest (0.9293). The RMSE for the precipitation in winter interpolated by TPS was the smallest (0.33 mm), while the RMSE for the precipitation in summer interpolated by IDW was the smallest (2.01 mm). The R2 between the observed and predicted precipitation in winter interpolated by CK was the highest (0.8781). It was suggested that TPS could be the optimal spatial interpolation method in interpolating and rasterizing the daily meteorological elements in China.
Efficiency of High Order Spectral Element Methods on Petascale Architectures
Hutchinson, Maxwell
2016-06-14
High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.
The Blended Finite Element Method for Multi-fluid Plasma Modeling
2016-07-01
Briefing Charts 3. DATES COVERED (From - To) 07 June 2016 - 01 July 2016 4. TITLE AND SUBTITLE The Blended Finite Element Method for Multi-fluid Plasma ...BLENDED FINITE ELEMENT METHOD FOR MULTI-FLUID PLASMA MODELING Éder M. Sousa1, Uri Shumlak2 1ERC INC., IN-SPACE PROPULSION BRANCH (RQRS) AIR FORCE RESEARCH...MULTI-FLUID PLASMA MODEL 2 BLENDED FINITE ELEMENT METHOD Blended Finite Element Method Nodal Continuous Galerkin Modal Discontinuous Galerkin Model
Niphon Wansophark; Pramote Dechaumphai
2008-01-01
A streamline upwind finite element method using 6-node triangular element is presented.The method is applied to the convection term of the governing transport equation directly along local streamlines.Several convective-diffusion examples are used to evaluate efficiency of the method.Results show that the method is monotonic and does not produce any oscillation.In addition,an adaptive meshing technique is combined with the method to further increase accuracy of the solution,and at the same time,to minimize computational time and computer memory requirement.
陈蔚
2003-01-01
The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density.The electric potential equation is discretized by a mixed finite element method.The electron and hole density equations are treated by implicit-explicit multistep finite element methods.The schemes are very efficient.The optimal order error estimates both in time and space are derived.
Tsai, C.; Szabo, B. A.
1973-01-01
An approch to the finite element method which utilizes families of conforming finite elements based on complete polynomials is presented. Finite element approximations based on this method converge with respect to progressively reduced element sizes as well as with respect to progressively increasing orders of approximation. Numerical results of static and dynamic applications of plates are presented to demonstrate the efficiency of the method. Comparisons are made with plate elements in NASTRAN and the high-precision plate element developed by Cowper and his co-workers. Some considerations are given to implementation of the constraint method into general purpose computer programs such as NASTRAN.
Analysis of a non-standard mixed finite element method with applications to superconvergence
Brandts, J.H.
2009-01-01
We show that a non-standard mixed finite element method proposed by Barrios and Gatica in 2007, is a higher order perturbation of the least-squares mixed finite element method. Therefore, it is also superconvergent whenever the least-squares mixed finite element method is superconvergent. Superconve
Jui-Chang Lin; Kingsun Lee
2015-01-01
The three-dimensional tube (or pipe) is manufactured by CNC tube bending machine. The key techniques are determined by tube diameter, wall thickness, material, and bending radius. The obtained technique through experience and the trial and error method is unreliable. Finite element method (FEM) simulation for the tube bending process before production can avoid wasting manpower and raw materials. The computer-aided engineering (CAE) software ABAQUS 6.12 is applied to simulate bending characte...
A METHOD FOR STIFFNESS MATRIX OF TRIANGULAR TORUS ELEMENT
Durmuş GÜNAY
1996-01-01
Full Text Available The matrices of constants for the stiffness matrices of triangular torus elements family are generated on computer by using the expression given in literature. After the matrices are generated once, it is easy to obtain the stiffness matrices for all member of family of triangular torus elements without need for numerical integration.
New detection method for rolling element and bearing defects
Burchill, R. F.; Frarey, J. L.
1972-01-01
Instrument for detecting defects in rolling elements of bearings is described. Detection depends on rate at which rolling elements impact defect and establishes envelope amplitude of ball resonant frequency. Block diagram of instrument is provided and results obtained in conducting tests are reported.
Mechanics of a crushable pebble assembly using discrete element method
Annabattula, R.K., E-mail: ratna.annabattula@kit.edu [Institute for Applied Materials (IAM-WBM), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Gan, Y., E-mail: yixiang.gan@sydney.edu.au [School of Civil Engineering, University of Sydney, 2006 NSW, Sydney (Australia); Zhao, S. [College of Mechanical and Electronics Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 (China); Kamlah, M., E-mail: marc.kamlah@kit.edu [Institute for Applied Materials (IAM-WBM), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany)
2012-11-15
The influence of crushing of individual pebbles on the overall strength of a pebble assembly is investigated using discrete element method. An assembly comprising of 5000 spherical pebbles is assigned with random critical failure energies with a Weibull distribution in accordance with the experimental observation. Then, the pebble assembly is subjected to uni-axial compression ({epsilon}{sub 33}=1.5%) with periodic boundary conditions. The crushable pebble assembly shows a significant difference in stress-strain response in comparison to a non-crushable pebble assembly. The analysis shows that a ideal plasticity like behaviour (constant stress with increase in strain) is the characteristic of a crushable pebble assembly with sudden damage. The damage accumulation law plays a critical role in determining the critical stress while the critical number of completely failed pebbles at the onset of critical stress is independent of such a damage law. Furthermore, a loosely packed pebble assembly shows a higher crush resistance while the critical stress is insensitive to the packing factor ({eta}) of the assembly.
Optimization design of thumbspica splint using finite element method.
Huang, Tz-How; Feng, Chi-Kung; Gung, Yih-Wen; Tsai, Mei-Wun; Chen, Chen-Sheng; Liu, Chien-Lin
2006-12-01
De Quervain's tenosynovitis is often observed on repetitive flexion of the thumb. In the clinical setting, the conservative treatment is usually an applied thumbspica splint to immobilize the thumb. However, the traditional thumbspica splint is bulky and heavy. Thus, this study used the finite element (FE) method to remove redundant material in order to reduce the splint's weight and increase ventilation. An FE model of a thumbspica splint was constructed using ANSYS9.0 software. A maximum lateral thumb pinch force of 98 N was used as the input loading condition for the FE model. This study implemented topology optimization and design optimization to seek the optimal thickness and shape of the splint. This new design was manufactured and compared with the traditional thumbspica splint. Ten thumbspica splints were tested in a materials testing system, and statistically analyzed using an independent t test. The optimal thickness of the thumbspica splint was 3.2 mm. The new design is not significantly different from the traditional splint in the immobilization effect. However, the volume of this new design has been reduced by about 35%. This study produced a new thumbspica splint shape with less volume, but had a similar immobilization effect compared to the traditional shape. In a clinical setting, this result can be used by the occupational therapist as a reference for manufacturing lighter thumbspica splints for patients with de Quervain's tenosynovitis.
A top quark mass measurement using a matrix element method
Linacre, Jacob Thomas [St. John' s College, Annapolis, MD (United States)
2009-01-01
A measurement of the mass of the top quark is presented, using top-antitop pair (t$\\bar{t}$) candidate events for the lepton+jets decay channel. The measurement makes use of Tevatron p$\\bar{p}$ collision data at centre-of-mass energy √s = 1.96 TeV, collected at the CDF detector. The top quark mass is measured by employing an unbinned maximum likelihood method where the event probability density functions are calculated using signal (t$\\bar{t}$) and background (W+jets) matrix elements, as well as a set of parameterised jet-to-parton mapping functions. The likelihood function is maximised with respect to the top quark mass, the fraction of signal events, and a correction to the jet energy scale (JES) of the calorimeter jets. The simultaneous measurement of the JES correction (Δ_{JES}) provides an in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using 578 lepton+jets candidate events corresponding to 3.2 fb ^{-1} of integrated luminosity, the top quark mass is measured to be m_{t} = 172.4± 1.4 (stat+Δ_{JES}) ±1.3 (syst) GeV=c^{2}, one of the most precise single measurements to date.
A top quark mass measurement using a matrix element method
Linacre, Jacob Thomas [St. John' s College, Annapolis, MD (United States)
2009-01-01
A measurement of the mass of the top quark is presented, using top-antitop pair (t$\\bar{t}$) candidate events for the lepton+jets decay channel. The measurement makes use of Tevatron p$\\bar{p}$ collision data at centre-of-mass energy √s = 1.96 TeV, collected at the CDF detector. The top quark mass is measured by employing an unbinned maximum likelihood method where the event probability density functions are calculated using signal (t$\\bar{t}$) and background (W+jets) matrix elements, as well as a set of parameterised jet-to-parton mapping functions. The likelihood function is maximised with respect to the top quark mass, the fraction of signal events, and a correction to the jet energy scale (JES) of the calorimeter jets. The simultaneous measurement of the JES correction (Δ_{JES}) provides an in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using 578 lepton+jets candidate events corresponding to 3.2 fb ^{-1} of integrated luminosity, the top quark mass is measured to be m_{t} = 172.4± 1.4 (stat+Δ_{JES}) ±1.3 (syst) GeV=c^{2}, one of the most precise single measurements to date.
Lubrication approximation in completed double layer boundary element method
Nasseri, S.; Phan-Thien, N.; Fan, X.-J.
This paper reports on the results of the numerical simulation of the motion of solid spherical particles in shear Stokes flows. Using the completed double layer boundary element method (CDLBEM) via distributed computing under Parallel Virtual Machine (PVM), the effective viscosity of suspension has been calculated for a finite number of spheres in a cubic array, or in a random configuration. In the simulation presented here, the short range interactions via lubrication forces are also taken into account, via the range completer in the formulation, whenever the gap between two neighbouring particles is closer than a critical gap. The results for particles in a simple cubic array agree with the results of Nunan and Keller (1984) and Stoksian Dynamics of Brady etal. (1988). To evaluate the lubrication forces between particles in a random configuration, a critical gap of 0.2 of particle's radius is suggested and the results are tested against the experimental data of Thomas (1965) and empirical equation of Krieger-Dougherty (Krieger, 1972). Finally, the quasi-steady trajectories are obtained for time-varying configuration of 125 particles.
A local level set method based on a finite element method for unstructured meshes
Ngo, Long Cu; Choi, Hyoung Gwon [School of Mechanical Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)
2016-12-15
A local level set method for unstructured meshes has been implemented by using a finite element method. A least-square weighted residual method was employed for implicit discretization to solve the level set advection equation. By contrast, a direct re-initialization method, which is directly applicable to the local level set method for unstructured meshes, was adopted to re-correct the level set function to become a signed distance function after advection. The proposed algorithm was constructed such that the advection and direct reinitialization steps were conducted only for nodes inside the narrow band around the interface. Therefore, in the advection step, the Gauss–Seidel method was used to update the level set function using a node-by-node solution method. Some benchmark problems were solved by using the present local level set method. Numerical results have shown that the proposed algorithm is accurate and efficient in terms of computational time.
Wang, Wansheng; Chen, Long; Zhou, Jie
2016-05-01
A postprocessing technique for mixed finite element methods for the Cahn-Hilliard equation is developed and analyzed. Once the mixed finite element approximations have been computed at a fixed time on the coarser mesh, the approximations are postprocessed by solving two decoupled Poisson equations in an enriched finite element space (either on a finer grid or a higher-order space) for which many fast Poisson solvers can be applied. The nonlinear iteration is only applied to a much smaller size problem and the computational cost using Newton and direct solvers is negligible compared with the cost of the linear problem. The analysis presented here shows that this technique remains the optimal rate of convergence for both the concentration and the chemical potential approximations. The corresponding error estimate obtained in our paper, especially the negative norm error estimates, are non-trivial and different with the existing results in the literatures.
Hosseini, Seyed Abolfaz [Dept. of Energy Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2017-02-15
The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with the corresponding eigenvalue are obtained. The results are then validated against the valid results for IAEA-2D and BIBLIS-2D benchmark problems. To investigate the dependency of the results to the type and number of the elements, and shape function order, a sensitivity analysis of the calculations to the mentioned parameters is performed. It is shown that the triangular elements and second order of the shape function in each element give the best results in comparison to the other states.
Application of the space-time conservation element and solution element method to shock-tube problem
Wang, Xiao-Yen; Chow, Chuen-Yen; Chang, Sin-Chung
1994-01-01
An Euler solver based on the method of space-time conservation element and solution element is in this paper to simulate shock-tube flows involving shock waves, contact discontinuities, expansion waves and their intersections. Seven test problems are considered to examine the capability of this method. The numerical results, when compared with exact solutions and/or numerical solutions by other methods, indicate that the present method can accurately resolve strong shock and contact discontinuities without using any ad hoc techniques which are used only at the neighborhood of a discontinuity.
Yoon, Gil Ho; Park, Y.K.; Kim, Y.Y.
2007-01-01
A new topology optimization scheme, called the element stacking method, is developed to better handle design optimization involving material-dependent boundary conditions and selection of elements of different types. If these problems are solved by existing standard approaches, complicated finite...... element models or topology optimization reformulation may be necessary. The key idea of the proposed method is to stack multiple elements on the same discretization pixel and select a single or no element. In this method, stacked elements on the same pixel have the same coordinates but may have...
THE DOMAIN DECOMPOSITION TECHNIQUES FOR THE FINITE ELEMENT PROBABILITY COMPUTATIONAL METHODS
LIU Xiaoqi
2000-01-01
In this paper, we shall study the domain decomposition techniques for the finite element probability computational methods. These techniques provide a theoretical basis for parallel probability computational methods.
Prediction of residual stress using explicit finite element method
W.A. Siswanto
2015-12-01
Full Text Available This paper presents the residual stress behaviour under various values of friction coefficients and scratching displacement amplitudes. The investigation is based on numerical solution using explicit finite element method in quasi-static condition. Two different aeroengine materials, i.e. Super CMV (Cr-Mo-V and Titanium alloys (Ti-6Al-4V, are examined. The usage of FEM analysis in plate under normal contact is validated with Hertzian theoretical solution in terms of contact pressure distributions. The residual stress distributions along with normal and shear stresses on elastic and plastic regimes of the materials are studied for a simple cylinder-on-flat contact configuration model subjected to normal loading, scratching and followed by unloading. The investigated friction coefficients are 0.3, 0.6 and 0.9, while scratching displacement amplitudes are 0.05 mm, 0.10 mm and 0.20 mm respectively. It is found that friction coefficient of 0.6 results in higher residual stress for both materials. Meanwhile, the predicted residual stress is proportional to the scratching displacement amplitude, higher displacement amplitude, resulting in higher residual stress. It is found that less residual stress is predicted on Super CMV material compared to Ti-6Al-4V material because of its high yield stress and ultimate strength. Super CMV material with friction coefficient of 0.3 and scratching displacement amplitude of 0.10 mm is recommended to be used in contact engineering applications due to its minimum possibility of fatigue.
Residual-driven online generalized multiscale finite element methods
Chung, Eric T.
2015-09-08
The construction of local reduced-order models via multiscale basis functions has been an area of active research. In this paper, we propose online multiscale basis functions which are constructed using the offline space and the current residual. Online multiscale basis functions are constructed adaptively in some selected regions based on our error indicators. We derive an error estimator which shows that one needs to have an offline space with certain properties to guarantee that additional online multiscale basis function will decrease the error. This error decrease is independent of physical parameters, such as the contrast and multiple scales in the problem. The offline spaces are constructed using Generalized Multiscale Finite Element Methods (GMsFEM). We show that if one chooses a sufficient number of offline basis functions, one can guarantee that additional online multiscale basis functions will reduce the error independent of contrast. We note that the construction of online basis functions is motivated by the fact that the offline space construction does not take into account distant effects. Using the residual information, we can incorporate the distant information provided the offline approximation satisfies certain properties. In the paper, theoretical and numerical results are presented. Our numerical results show that if the offline space is sufficiently large (in terms of the dimension) such that the coarse space contains all multiscale spectral basis functions that correspond to small eigenvalues, then the error reduction by adding online multiscale basis function is independent of the contrast. We discuss various ways computing online multiscale basis functions which include a use of small dimensional offline spaces.
Deformation analysis of optical flat surface with finite element method
Fu, Pengqiang; Ren, Boyuan; Wang, Yiwen; Zhang, Dewei; Zhang, Longjiang; Su, Xing
2016-10-01
Proposing a new method for testing the ultra-precision aerostatic spindle motion accuracy based on analyzing the online real-time dynamic interference image. Optical flat crystal as the testing standard will be installed at the end of the ultra precision aerostatic spindle and will motion along with the spindle. On the other end of the spindle, the tool will be installed for online processing. The image data of optical flat crystal collected by the high-precision dynamic interferometer will be processed for analyzing the spindle error. For collecting higher accuracy image data, the installation way of optical flat crystal is one of the key technologies. Base on this, the effects of the clamping means on the surface accuracy of optical flat crystal is studied. At first, the finite element model of the optical flat crystal`s clamping structure were established. Secondly, the influence of the material of the supporting annulus, preload lateral clamping and spindle speed on the surface accuracy of optical flat crystal had been analyzed. At last, the improved and optimized structure of the optical flat crystal has been presented. As the analysis results shown, the RMS value of reference surface is 9.47nm and the deformation values of the central region is 0.17nm which satisfies the requirement of surface accuracy and installation of optical flat crystal. It has a very important theoretical and practical significance to establish spindle online testing system and research rotary error generating mechanism of ultra-precision spindle to improve surface accuracy of ultra-precision machining.
Kim, H.; Ryue, J.; Thompson, D. J.; Müller, A. D.
2016-09-01
Recently, complex shaped aluminium panels have been adopted in many structures to make them lighter and stronger. The vibro-acoustic behaviour of these complex panels has been of interest for many years but conventional finite element and boundary element methods are not efficient to predict their performance at higher frequencies. Where the cross-sectional properties of the panels are constant in one direction, wavenumber domain numerical analysis can be applied and this becomes more suitable for panels with complex cross-sectional geometries. In this paper, a coupled wavenumber domain finite element and boundary element method is applied to predict the sound radiation from and sound transmission through a double-layered aluminium extruded panel, having a typical shape used in railway carriages. The predicted results are compared with measured ones carried out on a finite length panel and good agreement is found.
A method for limitation of probability of accumulation of fuel elements claddings damage in WWER
Sergey N. Pelykh; Mark V. Nikolsky; S. D. Ryabchikov
2014-01-01
The aim is to reduce the probability of accumulation of fuel elements claddings damage by developing a method to control the properties of the fuel elements on stages of design and operation of WWER. An averaged over the fuel assembly WWER-1000 fuel element is considered. The probability of depressurization of fuel elements claddings is found. The ability to predict the reliability of claddings by controlling the factors that determine the properties of the fuel elements is proved. The expedi...
Gong, Jian; Volakis, John L.; Nurnberger, Michael W.
1995-01-01
This semi-annual report describes progress up to mid-January 1995. The report contains five sections all dealing with the modeling of spiral and patch antennas recessed in metallic platforms. Of significance is the development of decomposition schemes which separate the different regions of the antenna volume. Substantial effort was devoted to improving the feed model in the context of the finite element method (FEM). Finally, an innovative scheme for truncating finite element meshes is presented.
Modeling rammed earth wall using discrete element method
Bui, T.-T.; Bui, Q.-B.; Limam, A.; Morel, J.-C.
2016-03-01
Rammed earth is attracting renewed interest throughout the world thanks to its "green" characteristics in the context of sustainable development. Several research studies have thus recently been carried out to investigate this material. Some of them attempted to simulate the rammed earth's mechanical behavior by using analytical or numerical models. Most of these studies assumed that there was a perfect cohesion at the interface between earthen layers. This hypothesis proved to be acceptable for the case of vertical loading, but it could be questionable for horizontal loading. To address this problem, discrete element modeling seems to be relevant to simulate a rammed earth wall. To our knowledge, no research has been conducted thus far using discrete element modeling to study a rammed earth wall. This paper presents an assessment of the discrete element modeling's robustness for rammed earth walls. Firstly, a brief description of the discrete element modeling is presented. Then the parameters necessary for discrete element modeling of the material law of the earthen layers and their interfaces law following the Mohr-Coulomb model with a tension cut-off and post-peak softening were given. The relevance of the model and the material parameters were assessed by comparing them with experimental results from the literature. The results showed that, in the case of vertical loading, interfaces did not have an important effect. In the case of diagonal loading, model with interfaces produced better results. Interface characteristics can vary from 85 to 100% of the corresponding earthen layer's characteristics.
GLOBAL SUPERCONVERGENCE OF THE MIXED FINITE ELEMENT METHODS FOR 2-D MAXWELL EQUATIONS
Jia-fu Lin; Qun Lin
2003-01-01
Superconvergence of the mixed finite element methods for 2-d Maxwell equations isstudied in this paper. Two order of superconvergent factor can be obtained for the k-thNedelec elements on the rectangular meshes.
Sergiu Ciprian Catinas
2015-07-01
Full Text Available A detailed theoretical and practical investigation of the reinforced concrete elements is due to recent techniques and method that are implemented in the construction market. More over a theoretical study is a demand for a better and faster approach nowadays due to rapid development of the calculus technique. The paper above will present a study for implementing in a static calculus the direct stiffness matrix method in order capable to address phenomena related to different stages of loading, rapid change of cross section area and physical properties. The method is a demand due to the fact that in our days the FEM (Finite Element Method is the only alternative to such a calculus and FEM are considered as expensive methods from the time and calculus resources point of view. The main goal in such a method is to create the moment-curvature diagram in the cross section that is analyzed. The paper above will express some of the most important techniques and new ideas as well in order to create the moment curvature graphic in the cross sections considered.
Progress on hybrid finite element methods for scattering by bodies of revolution
Collins, Jeffery D.; Volakis, John L.
1992-01-01
Progress on the development and implementation of hybrid finite element methods for scattering by bodies of revolution are described. It was found that earlier finite element-boundary integral formulations suffered from convergence difficulties when applied to large and thin bodies of revolution. An alternative implementation is described where the finite element method is terminated with an absorbing termination boundary. In addition, an alternative finite element-boundary integral implementation is discussed for improving the convergence of the original code.
Finite element and finite difference methods in electromagnetic scattering
Morgan, MA
2013-01-01
This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca
THE NONCONFORMING FINITE ELEMENT METHOD FOR SIGNORINI PROBLEM
Dongying Hua; Lieheng Wang
2007-01-01
We present the Crouzeix-Raviart linear nonconforming finite element approximation of the variational inequality resulting from Signorini problem. We show if the displacement field is of H2 regularity, then the convergence rate can be improved from (O)(h3/4) to quasi-optimal (O)(h|log h|1/4) with respect to the energy norm as that of the continuous linear finite element approximation. If stronger but reasonable regularity is available,the convergence rate can be improved to the optimal (O)(h) as expected by the linear approximation.
A method for making an element with an organic electrolyte
Iidzima, K.; Fudzii, T.
1984-03-30
A mass, which contains a fluorinated electrode, an electricity conducting additive and a fluorine bearing resin as a binder, is extruded in the form of a cylinder and is cut into rods of specific length. The rod is inserted as an anode into a cylindrical sleeve which serves as the body of the element. A hollow cylinder is formed inside the body which is tightly adjoined to the walls from this mass using a die. After drying a separator and a rod shaped anode of lithium or aluminum are inserted into the cylinder. An organic electrolyte is added to the element and it is hermetically sealed.
Geodynamic simulations using the fast multipole boundary element method
Drombosky, Tyler W.
Interaction between viscous fluids models two important phenomena in geophysics: (i) the evolution of partially molten rocks, and (ii) the dynamics of Ultralow-Velocity Zones. Previous attempts to numerically model these behaviors have been plagued either by poor resolution at the fluid interfaces or high computational costs. We employ the Fast Multipole Boundary Element Method, which tracks the evolution of the fluid interfaces explicitly and is scalable to large problems, to model these systems. The microstructure of partially molten rocks strongly influences the macroscopic physical properties. The fractional area of intergranular contact, contiguity, is a key parameter that controls the elastic strength of the grain network in the partially molten aggregate. We study the influence of matrix deformation on the contiguity of an aggregate by carrying out pure shear and simple shear deformations of an aggregate. We observe that the differential shortening, the normalized difference between the major and minor axes of grains is inversely related to the ratio between the principal components of the contiguity tensor. From the numerical results, we calculate the seismic anisotropy resulting from melt redistribution during pure and simple shear deformation. During deformation, the melt is expelled from tubules along three grain corners to films along grain edges. The initially isotropic fractional area of intergranular contact, contiguity, becomes anisotropic due to deformation. Consequently, the component of contiguity evaluated on the plane parallel to the axis of maximum compressive stress decreases. We demonstrate that the observed global shear wave anisotropy and shear wave speed reduction of the Lithosphere-Asthenosphere Boundary are best explained by 0.1 vol% partial melt distributed in horizontal films created by deformation. We use our microsimulation in conjunction with a large scale mantle deep Earth simulation to gain insight into the formation of
Membrane finite element method for simulating fluid flow in porous medium
Mei-li ZHAN; Wen-jie ZHANG; Jin-chang SHENG; Jian-hui LI; Shu-yuan HE
2009-01-01
A new membrane finite element method for modeling fluid flow in a porous medium is presented in order to quickly and accurately simulate the geo-membrane fabric used in civil engineering. It is based on discontinuous finite element theory, and can be easily coupled with the normal Galerkin finite element method. Based on the saturated seepage equation, the element coefficient matrix of the membrane element method is derived, and a geometric transform relation for the membrane element between a global coordinate system and a local coordinate system is obtained. A method for the determination of the fluid flux conductivity of the membrane element is presented. This method provides a basis for determining discontinuous parameters in discontinuous finite element theory. An anti-seepage problem regarding the foundation of a building is analyzed by coupling the membrane finite element method with the normal Galerkin finite element method. The analysis results demonstrate the utility and superiority of the membrane finite element method in fluid flow analysis of a porous medium.
A method for making a hermetically sealed element
Oti, F.; Khattori, K.; Takada, K.
1983-07-13
The connection between the body and the top is hermetically sealed and a lining is placed between them. Polyisobutylene is first applied in the liquid state to the surface of this lining, along with a filler (asphalt pitch) which hardens during drying. The top and the lining are installed in the body of the element and the edge of the body is rolled out.
Chen, Li-Chieh; Huang, Mei-Jiau
2017-02-01
A 2D simulation method for a rigid body moving in an incompressible viscous fluid is proposed. It combines one of the immersed-boundary methods, the DFFD (direct forcing fictitious domain) method with the spectral element method; the former is employed for efficiently capturing the two-way FSI (fluid-structure interaction) and the geometric flexibility of the latter is utilized for any possibly co-existing stationary and complicated solid or flow boundary. A pseudo body force is imposed within the solid domain to enforce the rigid body motion and a Lagrangian mesh composed of triangular elements is employed for tracing the rigid body. In particular, a so called sub-cell scheme is proposed to smooth the discontinuity at the fluid-solid interface and to execute integrations involving Eulerian variables over the moving-solid domain. The accuracy of the proposed method is verified through an observed agreement of the simulation results of some typical flows with analytical solutions or existing literatures.
Z. Long
2017-09-01
Full Text Available Considering the lack of quantitative criteria for the selection of elements in cartographic generalization, this study divided the hotspot areas of passengers into parts at three levels, gave them different weights, and then classified the elements from the different hotspots. On this basis, a method was proposed to quantify the priority of elements selection. Subsequently, the quantitative priority of different cartographic elements was summarized based on this method. In cartographic generalization, the method can be preferred to select the significant elements and discard those that are relatively non-significant.
Astionenko, I. O.; Litvinenko, O. I.; Osipova, N. V.; Tuluchenko, G. Ya.; Khomchenko, A. N.
2016-10-01
Recently the interpolation bases of the hierarchical type have been used for the problem solving of the approximation of multiple arguments functions (such as in the finite-element method). In this work the cognitive graphical method of constructing of the hierarchical form bases on the serendipity finite elements is suggested, which allowed to get the alternative bases on a biquadratic finite element from the serendipity family without internal knots' inclusion. The cognitive-graphic method allowed to improve the known interpolation procedure of Taylor and to get the modified elements with irregular arrangement of knots. The proposed procedures are universal and are spread in the area of finite-elements.
Liu, Bin; Tang, Jingshi; Hou, Xiyun; Liu, Lin
2016-07-01
The eccentricity and the inclination of the satellite in geosynchronous orbit are both small, under this condition, perturbations from the Earth's non-spherical gravitational field result in orbit resonances due to incommensurable small denominators, that is, the problem of small eccentricity, small inclination and commensurability small incommensurable denominator exist simultaneously. Usually we adopt the classic Kepler orbital elements to describe an orbit, However, in the case of small eccentricities and small inclinations, the geometric meaning of the perigee and ascending node of an GEO is no longer clear, and the equations of motion have small denominators which results in the failure of the usual mean orbit element perturbation solution. This phenomenon of singularity is caused by the inappropriate choice of independent variables and has nothing to do with the dynamics. Such singularities can be avoided by choosing the appropriate independent variables (called non-singularity orbital elements). Incommensurable singularity appears in the process of solving the perturbation equations by the mean element methodology. The quasi-average element methodology retains the main advantages of the mean element method and reasonably revises its definition. Quasi-average orbits, without short periodic terms, while including the long-term items are taken as the reference orbit. The reference orbit in this transformation has long-term variations which are similar to the long periodic terms within a short-time duration. So we can avoid the failure of the perturbation solution caused by the periodic terms when using the classical perturbation method or the mean element method. From the perspective of mechanics, it can eliminate the incommensurable singularity, and the perturbation solution will remain valid. This paper aims at introducing the calculation method to eliminate the singularity problem of e=0,i=0 and commensurability singularity by using the quasi-average element
A finite element method for growth in biological development.
Murea, Cornel M; Hentschel, H G E
2007-04-01
We describe finite element simulations of limb growth based on Stokes flow models with a nonzero divergence representing growth due to nutrients in the early stages of limb bud development. We introduce a "tissue pressure" whose spatial derivatives yield the growth velocity in the limb and our explicit time advancing algorithm for such tissue flows is described in de tail. The limb boundary is approached by spline functions to compute the curvature and the unit outward normal vector. At each time step, a mixed hybrid finite element problem is solved, where the condition that the velocity is strictly normal to the limb boundary is treated by a Lagrange multiplier technique. Numerical results are presented.
Neural network method for solving elastoplastic finite element problems
无
2006-01-01
A basic optimization principle of Artificial Neural Network-the Lagrange Programming Neural Network (LPNN) model for solving elastoplastic finite element problems is presented. The nonlinear problems of mechanics are represented as a neural network based optimization problem by adopting the nonlinear function as nerve cell transfer function. Finally, two simple elastoplastic problems are numerically simulated. LPNN optimization results for elastoplastic problem are found to be comparable to traditional Hopfield neural network optimization model.
METHOD AND APPARATUS FOR EXAMINING FUEL ELEMENTS FOR LEAKAGE
Smith, R.R.; Echo, M.W.; Doe, C.B.
1963-12-31
A process and a device for the continuous monitoring of fuel elements while in use in a liquid-metal-cooled, argonblanketed nuclear reactor are presented. A fraction of the argon gas is withdrawn, contacted with a negative electrical charge for attraction of any alkali metal formed from argon by neutron reaction, and recycled into the reactor. The electrical charge is introduced into water, and the water is examined for radioactive alkali metals. (AEC)
GLOBAL FINITE ELEMENT NONLINEAR GALERKIN METHOD FOR THE PENALIZED NAVIER-STOKES EQUATIONS
Yin-nian He; Yan-ren Hou; Li-quan Mei
2001-01-01
A global finite element nonlinear Galerkin method for the penalized Navier-Stokes equations is presented. This method is based on two finite element spaces XH and Xh,defined respectively on one coarse grid with grid size H and one fine grid with grid size h ＜＜ H. Comparison is also made with the finite element Galerkin method. If we choose H = O(ε-1/4h1/2), ε＞ 0 being the penalty parameter, then two methods are of the same order of approximation. However, the global finite element nonlinear Galerkin method is much cheaper than the standard finite element Galerkin method. In fact, in the finite element Galerkin method the nonlinearity is treated on the fine grid finite element space Xh and while in the global finite element nonlinear Galerkin method the similar nonlinearity is treated on the coarse grid finite element space XH and only the linearity needs to be treated on the fine grid increment finite element space Wh. Finally, we provide numerical test which shows above results stated.
Simulation of a soil loosening process by means of the modified distinct element method
Momuzu, M.; Oida, A.; Yamazaki, M.; Koolen, A.J.
2002-01-01
We apply the Distinct Element Method (DEM) to analyze the dynamic behavior of soil. However, the conventional DEM model for calculation of contact forces between elements has some problems; for example, the movement of elements is too discrete to simulate real soil particle movement. Therefore, we m
Stochastic structural model of rock and soil aggregates by continuum-based discrete element method
WANG; Yuannian; ZHAO; Manhong; LI; Shihai; J.G.; Wang
2005-01-01
This paper first presents a stochastic structural model to describe the random geometrical features of rock and soil aggregates. The stochastic structural model uses mixture ratio, rock size and rock shape to construct the microstructures of aggregates,and introduces two types of structural elements (block element and jointed element) and three types of material elements (rock element, soil element, and weaker jointed element)for this microstructure. Then, continuum-based discrete element method is used to study the deformation and failure mechanism of rock and soil aggregate through a series of loading tests. It is found that the stress-strain curve of rock and soil aggregates is nonlinear, and the failure is usually initialized from weaker jointed elements. Finally, some factors such as mixture ratio, rock size and rock shape are studied in detail. The numerical results are in good agreement with in situ test. Therefore, current model is effective for simulating the mechanical behaviors of rock and soil aggregates.
Marek Krynke
2013-02-01
Full Text Available In slewing bearings, a great number of contact pairs are present on the contact surfaces between the rolling elements and raceways of the bearing. Computations to determine the load of the individual rolling elements, taking into account the flexibility of the bearing ring, are most often carried out using the finite element method. Construction of a FEM full model of the bearing, taking into account the shape of the rolling elements and the determination of the contact problem for every rolling element, leads to a singularity of stiffness matrix, which in turn makes the problem impossible to solve. In FEM models the rolling elements are replaced by one-dimensional finite elements (linear elements to simplify the computation procedure and to obtain an optimal time for computations. replaced by truss elements with a material non-linear characteristic located between the raceway centres of the curvatures in their axial section, are presented in the paper
Mixed time discontinuous space-time finite element method for convection diffusion equations
无
2008-01-01
A mixed time discontinuous space-time finite element scheme for second-order convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.
SPACE-TIME FINITE ELEMENT METHOD FOR SCHR(O)DINGER EQUATION AND ITS CONSERVATION
无
2006-01-01
Energy conservation of nonlinear Schr(o)dinger ordinary differential equation was proved through using continuous finite element methods of ordinary differential equation; Energy integration conservation was proved through using space-time continuous fully discrete finite element methods and the electron nearly conservation with higher order error was obtained through using time discontinuous only space continuous finite element methods of nonlinear Schrodinger partial equation. The numerical results are in accordance with the theory.
Element-Partition-Based Methods for Visualization of 3D Unstructured Grid Data
无
1998-01-01
Element-partition-based methods for visualization of 3D unstructured grid data are presented.First,partition schemes for common elements,including curvilinear tetrahedra,pentahedra,hexahedra,etc.,are given,so that complex elements can be divided into several rectilinear tetrahedra,and the visualization processes can be simplified.Then,a slice method for cloud map and an iso-surface method based on the partition schemes are described.
SOLVING CONTACT PROBLEM WITH FRICTION BY A NEW FAST BOUNDARY ELEMENT METHOD
1998-01-01
The formulation of boundary element method for handling contact problems with friction and the technique for high-speed contact analysis are presented. This formulation is based on the idea of modifying the length of contact elements without altering the total number of elements. The high precision of solution and high-speed analysis are verified according to the results of conventional method and analysis method.
Jui-Chang Lin
2015-01-01
Full Text Available The three-dimensional tube (or pipe is manufactured by CNC tube bending machine. The key techniques are determined by tube diameter, wall thickness, material, and bending radius. The obtained technique through experience and the trial and error method is unreliable. Finite element method (FEM simulation for the tube bending process before production can avoid wasting manpower and raw materials. The computer-aided engineering (CAE software ABAQUS 6.12 is applied to simulate bending characteristics and to explore the maximum stress and strain conditions. The Taguchi method is used to find the optimal parameters of bending. The confirmation experiment is performed according to optimal parameters. Results indicate that the strain error between CAE simulation and bending experiments is within 6.39%.
hpGEM -- A software framework for discontinuous Galerkin finite element methods
Pesch, L.; Bell, A.; Sollie, W.E.H.; Ambati, V.R.; Bokhove, O.; Vegt, van der J.J.W.
2006-01-01
hpGEM, a novel framework for the implementation of discontinuous Galerkin finite element methods, is described. We present structures and methods that are common for many (discontinuous) finite element methods and show how we have implemented the components as an object-oriented framework. This fra
Cutanda Henríquez, Vicente; Juhl, Peter Møller
2008-01-01
of the integrand or the whole method. On the other hand, it is also possible to refine or improve the numerical integration, and maintain the standard BEM formulation. In this paper a numerical technique based on element subdivision, previously proposed by the authors, is made more general to cover most cases...
Method for recovering catalytic elements from fuel cell membrane electrode assemblies
Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ; Heinz, Robert [Ludwigshafen, DE
2012-06-26
A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.
APPLICATION OF PENALTY FUNCTION METHOD IN ISOPARAMETRIC HYBRID FINITE ELEMENT ANALYSIS
CHEN Dao-zheng; JIAO Zhao-ping
2005-01-01
By the aid of the penalty function method, the equilibrium restriction conditions were introduced to the isoparametric hybrid finite element analysis, and the concrete application course of the penalty function method in three-dimensional isoparametric hybrid finite element was discussed. The separated penalty parameters method and the optimal hybrid element model with penalty balance were also presented.The penalty balance method can effectively refrain the parasitical stress on the premise of no additional degrees of freedom. The numeric experiment shows that the presented element not only is effective in improving greatly the numeric calculation precision of distorted grids but also has the universality.
Experimental Optimization Methods for Multi-Element Airfoils
Landman, Drew; Britcher, Colin P.
1996-01-01
A modern three element airfoil model with a remotely activated flap was used to investigate optimum flap testing position using an automated optimization algorithm in wind tunnel tests. Detailed results for lift coefficient versus flap vertical and horizontal position are presented for two angles of attack: 8 and 14 degrees. An on-line first order optimizer is demonstrated which automatically seeks the optimum lift as a function of flap position. Future work with off-line optimization techniques is introduced and aerodynamic hysteresis effects due to flap movement with flow on are discussed.
Determination of diametral error using finite elements and experimental method
A. Karabulut
2010-01-01
Full Text Available This study concerns experimental and numerical analysis on a one-sided bound workpiece on the lathe machine. Cutting force creates deflection on workpiece while turning process is on. Deflection quantity is estimated utilizing Laser Distance Sensor (LDS with no contact achieved. Also diametral values are detected from different sides of workpiece after each turning operation. It is observed that diametral error differs due to the quantity of the deflection. Diametral error reached a peak where deflection reached a peak. Model which constituted finite elements is verified by experimental results. And also, facts which caused diametral error are determined.
On modelling three-dimensional piezoelectric smart structures with boundary spectral element method
Zou, Fangxin; Aliabadi, M. H.
2017-05-01
The computational efficiency of the boundary element method in elastodynamic analysis can be significantly improved by employing high-order spectral elements for boundary discretisation. In this work, for the first time, the so-called boundary spectral element method is utilised to formulate the piezoelectric smart structures that are widely used in structural health monitoring (SHM) applications. The resultant boundary spectral element formulation has been validated by the finite element method (FEM) and physical experiments. The new formulation has demonstrated a lower demand on computational resources and a higher numerical stability than commercial FEM packages. Comparing to the conventional boundary element formulation, a significant reduction in computational expenses has been achieved. In summary, the boundary spectral element formulation presented in this paper provides a highly efficient and stable mathematical tool for the development of SHM applications.
LIU Li-min(刘立民); LIU Han-long(刘汉龙); LIAN Chuan-jie(连传杰)
2003-01-01
The application of the finite layer & triangular prism element method to the 3D ground subsidence and stress analysis caused by mining is presented. The layer elements and the triangular prism elements have been alternatively used in the numerical simulation system, the displacement pattern, strain matrix, elastic matrix, stiffness matrix, load matrix and the stress matrix of the layer element and triangular prism element have been presented. By means of the Fortran90 programming language, a numerical simulation system based on finite layer & triangular prism element have been built up, and this system is suitable for subsidence prediction and stress analysis of all mining condition and mining methods. Comparing with the infinite element method, this approach dramatically reduces the size of the set of equations that need to be solved, and greatly reduces the amount of data preparation required. It not only saves the internal storage, and the computation time, but also decreases the cost.
Nye, Ben; Kulchitsky, Anton V; Johnson, Jerome B
2014-01-01
This paper describes a new method for representing concave polyhedral particles in a discrete element method as unions of convex dilated polyhedra. This method offers an efficient way to simulate systems with a large number of (generally concave) polyhedral particles. The method also allows spheres, capsules, and dilated triangles to be combined with polyhedra using the same approach. The computational efficiency of the method is tested in two different simulation setups using different efficiency metrics for seven particle types: spheres, clusters of three spheres, clusters of four spheres, tetrahedra, cubes, unions of two octahedra (concave), and a model of a computer tomography scan of a lunar simulant GRC-3 particle. It is shown that the computational efficiency of the simulations degrades much slower than the increase in complexity of the particles in the system. The efficiency of the method is based on the time coherence of the system, and an efficient and robust distance computation method between polyhedra as particles never intersect for dilated particles. PMID:26300584
Someshwar S. Pandey
2013-10-01
Full Text Available Numerical simulation using computers has increasingly become a very important approach for solving problems in engineering and science. It plays a valuable role in providing tests and examinations for theories, offering insights to complex physics, and assisting in the interpretation and even the discovery of new phenomena. Grid or mesh based numerical methods such as FDM, CFD, FEM despite of great success, suffer from difficulties in some aspects, which limit their applications in many complex problems. The major difficulties are inherited from the use of grid or mesh. A recent strong interest is focused on the next generation computational methods — meshfree methods, which are expected to be superior to conventional grid-based FDM and FEM in many applications. The Element Free Galerkin (EFG method is a meshless method because only a set of nodes and a description of model’s boundary are required to generate the discrete equations. In this paper the EFG method is applied to 2-D beam problem and results are compared with the analytical solution by using Timoshenko Beam Theory. The step by step algorithm for EFG MATLAB program is also provided inside.
Elgeti, Stefanie
2015-01-01
Fluid flow applications can involve a number of coupled problems. One is the simulation of free-surface flows, which require the solution of a free-boundary problem. Within this problem, the governing equations of fluid flow are coupled with a domain deformation approach. This work reviews five of those approaches: interface tracking using a boundary-conforming mesh and, in the interface capturing context, the level-set method, the volume-of-fluid method, particle methods, as well as the phase-field method. The history of each method is presented in combination with the most recent developments in the field. Particularly, the topics of extended finite elements (XFEM) and NURBS-based methods, such as Isogeometric Analysis (IGA), are addressed. For illustration purposes, two applications have been chosen: two-phase flow involving drops or bubbles and sloshing tanks. The challenges of these applications, such as the geometrically correct representation of the free surface or the incorporation of surface tension ...
A simulation method of combinding boundary element method with generalized Langevin dynamics
无
2000-01-01
A new simulation approach to incorporate hydration force into generalized Langevin dynamics (GLD) is developed in this note. The hydration force determined by the boundary element method (BEM) is taken into account as the mean force terms of solvent including Coulombic interactions with the induced surface charge and the surface pressure of solvent. The exponential model is taken for the friction kernel. A simulation study has been performed on the cyclic undecapeptide cyclosporin A (CPA). The results obtained from the new method (GLDBEM) have been analyzed and compared with that obtained from the molecular dynamics (MD) simulation and the conventional stochastic dynamics (SD) simulation. We have found that the results obtained from GLDBEM show the obvious improvement over the SD simulation technique in the study of molecular structure and dynamic properties.
Studying apple bruise using a finite element method analysis
Pascoal-Faria, P.; Alves, N.
2017-07-01
Apple bruise damage from harvesting, handling, transporting and sorting is considered to be the major source of reduced fruit quality, resulting in a loss of profits for the entire fruit industry. Bruising is defined as damage and discoloration of fruit flesh, usually with no breach of the skin. The three factors which can physically cause fruit bruising are vibration, compression load and impact. The last one is the main source of bruise damage. Therefore, prediction of the level of damage, stress distribution and deformation of the fruits under external force has become a very important task. To address these problems a finite element analysis has been developed for studying Portuguese Royal Gala apple bruise. The results obtained will be suitable to apple distributors and sellers and will allow a reduction of the impact caused by bruise damage in apple annual production.
FINITE ELEMENT METHOD AND ANALYSIS FOR CHEMICAL-FLOODING SIMULATION
YUAN Yirang
2000-01-01
This article discusses the enhanced oil recovery numerical simulation of the chemical-flooding (such as surfactants, alcohol, polymers) composed of three-dimensional multicomponent, multiphase and incompressible mixed fluids. The mathematical model can be described as a coupled system of nonlinear partial differential equations with initialboundary value problems. From the actual conditions such as the effect of cross interference and the three-dimensional characteristic of large-scale science-engineering computation, this article puts forward a kind of characteristic finite element fractional step schemes and obtain the optimal order error estimates in L2 norm. Thus we have thoroughly solved the well-known theoretical problem proposed by a famous scientist, R. E. Ewing.
Strong Superconvergence of Finite Element Methods for Linear Parabolic Problems
Kening Wang
2009-01-01
Full Text Available We study the strong superconvergence of a semidiscrete finite element scheme for linear parabolic problems on =Ω×(0,], where Ω is a bounded domain in ℛ(≤4 with piecewise smooth boundary. We establish the global two order superconvergence results for the error between the approximate solution and the Ritz projection of the exact solution of our model problem in 1,(Ω and ( with 2≤<∞ and the almost two order superconvergence in 1,∞(Ω and ∞(. Results of the =∞ case are also included in two space dimensions (=1 or 2. By applying the interpolated postprocessing technique, similar results are also obtained on the error between the interpolation of the approximate solution and the exact solution.
On Round-off Error for Adaptive Finite Element Methods
Alvarez-Aramberri, J.
2012-06-02
Round-off error analysis has been historically studied by analyzing the condition number of the associated matrix. By controlling the size of the condition number, it is possible to guarantee a prescribed round-off error tolerance. However, the opposite is not true, since it is possible to have a system of linear equations with an arbitrarily large condition number that still delivers a small round-off error. In this paper, we perform a round-off error analysis in context of 1D and 2D hp-adaptive Finite Element simulations for the case of Poisson equation. We conclude that boundary conditions play a fundamental role on the round-off error analysis, specially for the so-called ‘radical meshes’. Moreover, we illustrate the importance of the right-hand side when analyzing the round-off error, which is independent of the condition number of the matrix.
Pengzhan Huang
2011-01-01
Full Text Available Several stabilized finite element methods for the Stokes eigenvalue problem based on the lowest equal-order finite element pair are numerically investigated. They are penalty, regular, multiscale enrichment, and local Gauss integration method. Comparisons between them are carried out, which show that the local Gauss integration method has good stability, efficiency, and accuracy properties, and it is a favorite method among these methods for the Stokes eigenvalue problem.
A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations
Hu, Changqing; Shu, Chi-Wang
1998-01-01
In this paper, we present a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method.
CALCULATION OF MILL RIGIDITY BY THREE DIMENSION CONTACT BOUNDARY ELEMENT METHOD
无
2001-01-01
Vertical rigidity of the space self-adaptive 530 high rigidity mill is calculated by applying the boundary element method (BEM) of three-dimension elastic contact problem,which can update the existed deforming separation calculating theory and corresponding methods of material mechanics,elastic mechanics and finite element method.The method has less hypotheses and stronger synthesis in contact-type calculating model.The advantages of the method are high calculating rate,high calculating accuracy,etc..
Feng, Xiaobing [Univ. of Tennessee, Knoxville, TN (United States)
1996-12-31
A non-overlapping domain decomposition iterative method is proposed and analyzed for mixed finite element methods for a sequence of noncoercive elliptic systems with radiation boundary conditions. These differential systems describe the motion of a nearly elastic solid in the frequency domain. The convergence of the iterative procedure is demonstrated and the rate of convergence is derived for the case when the domain is decomposed into subdomains in which each subdomain consists of an individual element associated with the mixed finite elements. The hybridization of mixed finite element methods plays a important role in the construction of the discrete procedure.
LUO Zhen-dong; MAO Yun-kui; ZHU Jiang
2007-01-01
The Galerkin-Petrov least squares method is combined with the mixed finite element method to deal with the stationary, incompressible magnetohydrodynamics system of equations with viscosity. A Galerkin-Petrov least squares mixed finite element format for the stationary incompressible magnetohydrodynamics equations is presented.And the existence and error estimates of its solution are derived. Through this method,the combination among the mixed finite element spaces does not demand the discrete Babu(s)ka-Brezzi stability conditions so that the mixed finite element spaces could be chosen arbitrartily and the error estimates with optimal order could be obtained.
ADAPTIVE FINITE ELEMENT METHOD FOR HIGH-SPEED FLOW-STRUCTURE INTERACTION
Wiroj LIMTRAKARN; Pramote DECHAUMPHAI
2004-01-01
An adaptive finite element method for high-speed flow-structure interaction is presented. The cell-centered finite element method is combined with an adaptive meshing technique to solve the Navier-Stokes equations for high-speed compressible flow behavior. The energy equation and the quasi-static structural equations for aerodynamically heated structures are solved by applying the Galerkin finite element method. The finite element formulation and computational procedure are described. Interactions between the high-speed flow, structural heat transfer, and deformation are studied by two applications of Mach 10 flow over an inclined plate, and Mach 4 flow in a channel.
Vibration analysis of composite pipes using the finite element method with B-spline wavelets
Oke, Wasiu A.; Khulief, Yehia A. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)
2016-02-15
A finite element formulation using the B-spline wavelets on the interval is developed for modeling the free vibrations of composite pipes. The composite FRP pipe element is treated as a beam element. The finite pipe element is constructed in the wavelet space and then transformed to the physical space. Detailed expressions of the mass and stiffness matrices are derived for the composite pipe using the Bspline scaling and wavelet functions. Both Euler-Bernoulli and Timoshenko beam theories are considered. The generalized eigenvalue problem is formulated and solved to obtain the modal characteristics of the composite pipe. The developed wavelet-based finite element discretization scheme utilizes significantly less elements compared to the conventional finite element method for modeling composite pipes. Numerical solutions are obtained to demonstrate the accuracy of the developed element, which is verified by comparisons with some available results in the literature.
SEMI-ANALYTICAL FINITE ELEMENT METHOD FOR FICTITIOUS CRACK MODEL IN FRACTURE MECHANICS OF CONCRETE
王承强; 郑长良
2004-01-01
Based on the Hamiltonian governing equations of plane elasticity for sectorial domain, the variable separation and eigenfunction expansion techniques were employed to develop a novel analytical finite element for the fictitious crack model in fracture mechanics of concrete. The new analytical element can be implemented into FEM program systems to solve fictitious crack propagation problems for concrete cracked plates with arbitrary shapes and loads. Numerical results indicate that the method is more efficient and accurate than ordinary finite element method.
Error estimates of H1-Galerkin mixed finite element method for Schr(o)dinger equation
LIU Yang; LI Hong; WANG Jin-feng
2009-01-01
An H1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
PARTITION OF UNITY FINITE ELEMENT METHOD FOR SHORT WAVE PROPAGATION IN SOLIDS
LI Xi-kui; ZHOU Hao-yang
2005-01-01
A partition of unity finite element method for numerical simulation of short wave propagation in solids is presented. The finite element spaces were constructed by multiplying the standard isoparametric finite element shape functions, which form a partition of unity, with the local subspaces defined on the corresponding shape functions, which include a priori knowledge about the wave motion equation in trial spaces and approximately reproduce the highly oscillatory properties within a single element. Numerical examples demonstrate the performance of the proposed partition of unity finite element in both computational accuracy and efficiency.
RELIABILITY OF ELASTO-PLASTIC STRUCTURE USING FINITE ELEMENT METHOD
刘宁; 邓汉忠; 卓家寿
2002-01-01
A solution of probabilistic FEM for elastic-plastic materials is pre-sented based on the incremental theory of plasticity and a modified initial stressmethod. The formulations are deduced through a direct differentiation scheme. Par-tial differentiation of displacement, stress and the performance function can be it-eratively performed with the computation of the mean values of displacement andstress. The presented method enjoys the efficiency of both the perturbation methodand the finite difference method, but avoids the approximation during the partial dif-ferentiation calculation. In order to improve the efficiency, the adjoint vector methodis introduced to calculate the differentiation of stress and displacement with respectto random variables. In addition, a time-saving computational method for reliabilityindex of elastic-plastic materials is suggested based upon the advanced First OrderSecond Moment (FOSM) and by the usage of Taylor expansion for displacement. Thesuggested method is also applicable to 3-D cases.
CHEBYSHEV SPECTRAL-FINITE ELEMENT METHOD FOR TWO-DIMENSIONAL UNSTEADY NAVIER-STOKES EQUATION
Benyu Guo; Songnian He; Heping Ma
2002-01-01
A mixed Chebyshev spectral-finite element method is proposed for solving two-dimensionalunsteady Navier-Stokes equation. The generalized stability and convergence are proved.The numerical results show the advantages of this method.
An Adaptive Finite Element Method Based on Optimal Error Estimates for Linear Elliptic Problems
汤雁
2004-01-01
The subject of the work is to propose a series of papers about adaptive finite element methods based on optimal error control estimate. This paper is the third part in a series of papers on adaptive finite element methods based on optimal error estimates for linear elliptic problems on the concave corner domains. In the preceding two papers (part 1:Adaptive finite element method based on optimal error estimate for linear elliptic problems on concave corner domain; part 2:Adaptive finite element method based on optimal error estimate for linear elliptic problems on nonconvex polygonal domains), we presented adaptive finite element methods based on the energy norm and the maximum norm. In this paper, an important result is presented and analyzed. The algorithm for error control in the energy norm and maximum norm in part 1 and part 2 in this series of papers is based on this result.
A finite element method for analysis of vibration induced by maglev trains
Ju, S. H.; Ho, Y. S.; Leong, C. C.
2012-07-01
This paper developed a finite element method to perform the maglev train-bridge-soil interaction analysis with rail irregularities. An efficient proportional integral (PI) scheme with only a simple equation is used to control the force of the maglev wheel, which is modeled as a contact node moving along a number of target nodes. The moving maglev vehicles are modeled as a combination of spring-damper elements, lumped mass and rigid links. The Newmark method with the Newton-Raphson method is then used to solve the nonlinear dynamic equation. The major advantage is that all the proposed procedures are standard in the finite element method. The analytic solution of maglev vehicles passing a Timoshenko beam was used to validate the current finite element method with good agreements. Moreover, a very large-scale finite element analysis using the proposed scheme was also tested in this paper.
Bluff Body Flow Simulation Using a Vortex Element Method
Anthony Leonard; Phillippe Chatelain; Michael Rebel
2004-09-30
Heavy ground vehicles, especially those involved in long-haul freight transportation, consume a significant part of our nation's energy supply. it is therefore of utmost importance to improve their efficiency, both to reduce emissions and to decrease reliance on imported oil. At highway speeds, more than half of the power consumed by a typical semi truck goes into overcoming aerodynamic drag, a fraction which increases with speed and crosswind. Thanks to better tools and increased awareness, recent years have seen substantial aerodynamic improvements by the truck industry, such as tractor/trailer height matching, radiator area reduction, and swept fairings. However, there remains substantial room for improvement as understanding of turbulent fluid dynamics grows. The group's research effort focused on vortex particle methods, a novel approach for computational fluid dynamics (CFD). Where common CFD methods solve or model the Navier-Stokes equations on a grid which stretches from the truck surface outward, vortex particle methods solve the vorticity equation on a Lagrangian basis of smooth particles and do not require a grid. They worked to advance the state of the art in vortex particle methods, improving their ability to handle the complicated, high Reynolds number flow around heavy vehicles. Specific challenges that they have addressed include finding strategies to accurate capture vorticity generation and resultant forces at the truck wall, handling the aerodynamics of spinning bodies such as tires, application of the method to the GTS model, computation time reduction through improved integration methods, a closest point transform for particle method in complex geometrics, and work on large eddy simulation (LES) turbulence modeling.
A Spectral Element Method for Nonlinear and Dispersive Water Waves
Engsig-Karup, Allan Peter; Bigoni, Daniele; Eskilsson, Claes
The use of flexible mesh discretisation methods are important for simulation of nonlinear wave-structure interactions in offshore and marine settings such as harbour and coastal areas. For real applications, development of efficient models for wave propagation based on unstructured discretisation...... methods is of key interest. We present a high-order general-purpose three-dimensional numerical model solving fully nonlinear and dispersive potential flow equations with a free surface.......The use of flexible mesh discretisation methods are important for simulation of nonlinear wave-structure interactions in offshore and marine settings such as harbour and coastal areas. For real applications, development of efficient models for wave propagation based on unstructured discretisation...
Reliability-Based Shape Optimization using Stochastic Finite Element Methods
Enevoldsen, Ib; Sørensen, John Dalsgaard; Sigurdsson, G.
1991-01-01
Application of first-order reliability methods FORM (see Madsen, Krenk & Lind [8)) in structural design problems has attracted growing interest in recent years, see e.g. Frangopol [4), Murotsu, Kishi, Okada, Yonezawa & Taguchi [9) and Sørensen [14). In probabilistically based optimal design...
Application of Discrete Element Methods to the Problem of Rock Bumps
P. P. Procházka
2002-01-01
Full Text Available This paper is a continuation of a previous paper by the authors. Applications of two discrete element methods (DEM to several fields of geotechnics are discussed. The free hexagon element method is considered a powerful discrete element method, and is widely used in mechanics of granular media. It substitutes the methods for solving continuum problems. In order to complete the study, other discrete element methods are discussed. The second method starts with the classical particle flow code (PFC, which uses dynamic equilibrium, but we apply static equilibrium in our case. The second method is called the static particle flow code (SPFC. The numerical experiences and comparison with experimental results from scaled models are discussed.
无
2000-01-01
The present study aims at developing a new method-Random M icrostructure Finite Element Method (RMFEM)for the effective properties of composite materials . In this method, a random microstructure model is used to simulate the microstructure of the real composite materials. The physical fields in such a randm microstructure model under specified boundary and initial conditions are analyzed by finite element method. The effective properties of composite materials can be obtained from the analysis results. As verification, some effective properties of composite materials, such as elastic module,thermal expansion coefficient, thermal conductivity and elastoplastic properties, are investigated by random microstructure finite element method. The numerical results are given together with the experimental data. It i- revealed that the random microstructure finite element method is a very valid method for the determination of the effective properties of composite materials.
Xian-Qian Wu; Xi Wang; Yan-Peng Wei; Hong-Wei Song; Chen-Guang Huang
2012-01-01
Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and resistance to corrosion fatigue,cracking,etc.Compressive residual stress and dent profile are important factors to evaluate the effectiveness of shot peening process.In this paper,the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated.Firstly,dimensionless relations of processing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were deduced by dimensional analysis method.Secondly,the influence of each dimensionless parameter on dimensionless variables was investigated by the finite element method.Furthermore,related empirical formulas were given for each dimensionless parameter based on the simulation results.Finally,comparison was made and good agreement was found between the simulation results and the empirical formula,which shows that a useful approach is provided in this paper for analyzing the influence of each individual parameter.
A stabilised nodal spectral element method for fully nonlinear water waves
Engsig-Karup, Allan Peter; Eskilsson, C.; Bigoni, Daniele
2016-01-01
We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although...... the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions...
Nonconforming stabilized combined finite element method for Reissner-Mindlin plate
Min-fu FENG; Yan YANG; Tian-xiao ZHOU
2009-01-01
Based on combination of two variational principles, a nonconforming sta-bilized finite element method is presented for the Reissner-Mindlin plates. The method is convergent when the finite element space is energy-compatible. Error estimates are derived. In particular, three finite element spaces are applied in the computation. Nu-merical results show that the method is insensitive to the mesh distortion and has better performence than the MITC4 and DKQ methods. With properly chosen parameters, high accuracy can be obtained at coarse meshes.
Petrov-Galerkin Spectral Element Method for Mixed Inhomogeneous Boundary Value Problems on Polygons
Hongli JIA; Benyu GUO
2010-01-01
The authors investigate Petrov-Galerkin spectral element method.Some results on Legendre irrational quasi-orthogonal approximations are established,which play important roles in Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems of partial differential equations defined on polygons.As examples of applications,spectral element methods for two model problems,with the spectral accuracy in certain Jacobi weighted Sobolev spaces,are proposed.The techniques developed in this paper are also applicable to other higher order methods.
Lautard, J.J.
1994-05-01
This paper presents new extension for the mixed dual finite element approximation of the diffusion equation in rectangular geometry. The mixed dual formulation has been extended in order to take into account discontinuity conditions. The iterative method is based on an alternating direction method which uses the current as unknown. This method is fully ``parallelizable`` and has very quick convergence properties. Some results for a 3D calculation on the CRAY computer are presented. (author). 6 refs., 8 figs., 4 tabs.
The Lower Bounds for Eigenvalues of Elliptic Operators --By Nonconforming Finite Element Methods
Hu, Jun; Lin, Qun
2011-01-01
Finding eigenvalues of partial differential operators is important in the mathematical science. Since the exact eigenvalues are almost impossible, many papers and books investigate their bounds from above and below. It is well known that the variational principle (including the conforming finite element methods) provides the upper bounds, while there are no general theories to provide the lower bounds. The aim of our paper is to introduce a new systematic method that can produce the lower bounds for eigenvalues. The main idea is to use the nonconforming finite element methods. However, the numerics from the literature demonstrate that some nonconforming elements produce upper bounds of eigenvalues though some other nonconforming elements yield lower bounds. The general herein conclusion is that if the local approximation property of the nonconforming finite element space $V_h$ is better than the global continuity property of $V_h$, the corresponding method of the eigenvalue problem will produce the lower boun...
Advanced Finite Element Method for Nano-Resonators
Zschiedrich, L; Kettner, B; Schmidt, F
2006-01-01
Miniaturized optical resonators with spatial dimensions of the order of the wavelength of the trapped light offer prospects for a variety of new applications like quantum processing or construction of meta-materials. Light propagation in these structures is modelled by Maxwell's equations. For a deeper numerical analysis one may compute the scattered field when the structure is illuminated or one may compute the resonances of the structure. We therefore address in this paper the electromagnetic scattering problem as well as the computation of resonances in an open system. For the simulation efficient and reliable numerical methods are required which cope with the infinite domain. We use transparent boundary conditions based on the Perfectly Matched Layer Method (PML) combined with a novel adaptive strategy to determine optimal discretization parameters like the thickness of the sponge layer or the mesh width. Further a novel iterative solver for time-harmonic Maxwell's equations is presented.
Four Classical Methods for Determining Planetary Elliptic Elements: A Comparison
Celletti, Alessandra; Pinzari, Gabriella
2005-09-01
The discovery of the asteroid Ceres by Piazzi in 1801 motivated the development of a mathematical technique proposed by Gauss, (Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections, 1963) which allows to recover the orbit of a celestial body starting from a minimum of three observations. Here we compare the method proposed by Gauss (Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections, New York, 1963) with the techniques (based on three observations) developed by Laplace (Collected Works 10, 93 146, 1780) and by Mossotti (Memoria Postuma, 1866). We also consider another method developed by Mossotti (Nuova analisi del problema di determinare le orbite dei corpi celesti, 1816 1818), based on four observations. We provide a theoretical and numerical comparison among the different procedures. As an application, we consider the computation of the orbit of the asteroid Juno.
Carpenter, D.C.
1998-01-01
This bibliography provides a list of references on finite element and related methods analysis in reactor physics computations. These references have been published in scientific journals, conference proceedings, technical reports, thesis/dissertations and as chapters in reference books from 1971 to the present. Both English and non-English references are included. All references contained in the bibliography are sorted alphabetically by the first author`s name and a subsort by date of publication. The majority of the references relate to reactor physics analysis using the finite element method. Related topics include the boundary element method, the boundary integral method, and the global element method. All aspects of reactor physics computations relating to these methods are included: diffusion theory, deterministic radiation and neutron transport theory, kinetics, fusion research, particle tracking in finite element grids, and applications. For user convenience, many of the listed references have been categorized. The list of references is not all inclusive. In general, nodal methods were purposely excluded, although a few references do demonstrate characteristics of finite element methodology using nodal methods (usually as a non-conforming element basis). This area could be expanded. The author is aware of several other references (conferences, thesis/dissertations, etc.) that were not able to be independently tracked using available resources and thus were not included in this listing.
Visualization of High-Order Finite Element Methods
2013-03-27
Peters , Valerio Pascucci, Robert M. Kirby and Claudio T. Silva, "Topology Verification for Isosurface Extraction", IEEE Transactions on Visualization...Visualization of High-Order Methods Professor Robert M. Kirby , Mr. Robert Haimes University of Utah Office of Sponsored Programs University of Utah Salt Lake...ORGANIZATION REPORT NUMBER 19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Robert Kirby 801-585-3421 3. DATES COVERED (From - To) 26-Sep-2008
Interval Analysis of the Finite Element Method for Stochastic Structures
刘长虹; 刘筱玲; 陈虬
2004-01-01
A random parameter can be transformed into an interval number in the structural analysis with the concept of the confidence interval. Hence, analyses of uncertain structural systems can be used in the traditional FEM software. In some cases, the amount of solutions in stochastic structures is nearly as many as that in the traditional structural problems. In addition, a new method to evaluate the failure probability of structures is presented for the needs of the modern engineering design.
Wave Scattering in Heterogeneous Media using the Finite Element Method
2016-10-21
impose absorbing boundary conditions. A Rayleigh-Ritz approximation has been developed to obtain the depth eigensolution. The depth modes have a...several absorbing or nonreflecting boundary condition have been developed . In the present study, following Fix and Marin (1978) and Vendhan et. al...propagation. The two well-known methods that have been developed to study acoustic waves in depth dependent waveguides are the fast-field technique and the
Developments in variational methods for high performance plate and shell elements
Felippa, Carlos A.; Militello, Carmelo
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational foundations of high-performance elements, with emphasis on plate and shell elements constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parameterized variational principles are studied that provide a common foundation for the FF and ANS methods, as well as for a combination of both. From this unified formulation a variant of the ANS formulation, called the assumed natural deviatoric strain (ANDES) formulation, emerges as an important special case. The first ANDES element, a high-performance 9 degrees of freedom triangular Kirchhoff plate bending element, is briefly described to illustrate the use of the new formulation.
Some theoretical aspects of elastic wave modeling with a recently developed spectral element method
WANG XiuMing; SERIANI Geza; LIN WeiJun
2007-01-01
A spectral element method has been recently developed for solving elastodynamic problems. The numerical solutions are obtained by using the weak formulation of the elastodynamic equation for heterogeneous media, based on the Galerkin approach applied to a partition, in small subdomains, of the original physical domain. In this work, some mathematical aspects of the method and the associated algorithm implementation are systematically investigated. Two kinds of orthogonal basis functions, constructed with Legendre and Chebyshev polynomials, and their related Gauss-Lobatto collocation points are introduced. The related integration formulas are obtained. The standard error estimations and expansion convergence are discussed. An element-by-element pre-conditioned conjugate gradient linear solver in the space domain and a staggered predictor/multi-corrector algorithm in the time integration are used for strong heterogeneous elastic media. As a consequence, neither the global matrices nor the effective force vector is assembled. When analytical formulas are used for the element quadrature, there is even no need for forming element matrix in order to further save memory without losing much in computational efficiency. The element-by-element algorithm uses an optimal tensor product scheme which makes this method much more efficient than finite-element methods from the point of view of both memory storage and computational time requirements. This work is divided into two parts. The first part mainly focuses on theoretical studies with a simple numerical result for the Chebyshev spectral element, and the second part, mainly with the Legendre spectral element, will give the algorithm implementation, numerical accuracy and efficiency analyses, and then the detailed modeling example comparisons of the proposed spectral element method with a pseudo-spectral method, which will be seen in another work by Lin, Wang and Zhang.
Some theoretical aspects of elastic wave modeling with a recently developed spectral element method
SERIANI; Geza
2007-01-01
A spectral element method has been recently developed for solving elastodynamic problems. The numerical solutions are obtained by using the weak formulation of the elastodynamic equation for heterogeneous media, based on the Galerkin approach applied to a partition, in small subdomains, of the original physical domain. In this work, some mathematical aspects of the method and the associated algorithm implementation are systematically investigated. Two kinds of orthogonal basis functions, constructed with Legendre and Chebyshev polynomials, and their related Gauss-Lobatto collocation points are introduced. The related integration formulas are obtained. The standard error estimations and expansion convergence are discussed. An element-by-element pre-conditioned conjugate gradient linear solver in the space domain and a staggered predictor/multi-corrector algorithm in the time integration are used for strong heterogeneous elastic media. As a consequence, neither the global matrices nor the effective force vector is assembled. When analytical formulas are used for the element quadrature, there is even no need for forming element matrix in order to further save memory without losing much in computational efficiency. The element-by-element algorithm uses an optimal tensor product scheme which makes this method much more efficient than finite-element methods from the point of view of both memory storage and computational time requirements. This work is divided into two parts. The first part mainly focuses on theoretical studies with a simple numerical result for the Che-byshev spectral element, and the second part, mainly with the Legendre spectral element, will give the algorithm implementation, numerical accuracy and efficiency analyses, and then the detailed modeling example comparisons of the proposed spectral element method with a pseudo-spectral method, which will be seen in another work by Lin, Wang and Zhang.
Tang, Yuelong; Hua, Yuchun
2017-01-01
In this paper, a semidiscrete finite element method for solving bilinear parabolic optimal control problems is considered. Firstly, we present a finite element approximation of the model problem. Secondly, we bring in some important intermediate variables and their error estimates. Thirdly, we derive a priori error estimates of the approximation scheme. Finally, we obtain the superconvergence between the semidiscrete finite element solutions and projections of the exact solutions. A numerical example is presented to verify our theoretical results.
Development of the method of quaternion typification of Clifford algebra elements
Shirokov, Dmitry
2009-01-01
In this paper we further develop the method of quaternion typification of Clifford algebra elements suggested by the author in the previous paper. On the basis of new classification of Clifford algebra elements it is possible to reveal and prove a number of new properties of Clifford algebra. We use k-fold commutators and anticommutators. In this paper we consider Clifford and exterior degrees and elementary functions of Clifford algebra elements.
Finite element method based on combination of "saddle point" variational formulations
周天孝
1997-01-01
A modified mixed/hybrid finite element method, which is no longer required to satisfy the Babuska-Brezzi condition, is referred to as a stabilized method Based on the duality of vanational principles in solid mechanics, a new type of stabilized method, called the combinatorially stabilized mixed/hybrid finite element method, is presented by weight-averaging both the primal and the dual "saddle-point" schemes. Through a general analysis of stability and convergence under an abstract framework, it is shown that for the methods only an inf-sup inequality much weaker than Babuska-Brezzi condition needs to be satisfied. As a concrete application, it is concluded that the combinatorially stabilized Raviart and Thomas mixed methods permit the C -elements to replace the H(div; Ω)-elements.
Electromagnetic Method for Exogenetic Geodynamic Elements Mapping in Permafrost Environment
Gordeev, V. F.; Malyshkov, S. Y.; Polyvach, V. I.
2017-04-01
Taking into account the global warming, there is a pressing need to detect thermokarsts and to monitor permafrosts during the design and construction of industry infrastructure in Northern regions. The paper suggests a permafrost probing method based on the Earth’s natural pulsed electromagnetic field parameters recording. Authors describe the architecture and algorithms for the recording hardware. Examples of thermokarst detecting in poleward region are demonstrated. Pulsed electromagnetic fields intensity over thermokarst funnels is 30 times higher than the background levels. Authors substantiate the method’s eligibility to monitor geocryologial processes.
Marek Krynke
2013-03-01
Full Text Available In slewing bearings, a great number of contact pairs are present on the contact surfaces between the rolling elements and raceways of the bearing. Computations to determine the load of the individual rolling elements, taking into account the flexibility of the bearing ring, are most often carried out using the finite element method. Construction of a FEM full model of the bearing, taking into account the shape of the rolling elements and the determination of the contact problem for every rolling element, leads to a singularity of stiffness matrix, which in turn makes the problem impossible to solve. In FEM models the rolling elements are replaced by one-dimensional finite elements (linear elements to simplify the computation procedure and to obtain an optimal time for computations. The methods of modelling the rolling elements in the slewing bearing, in which balls have been replaced by truss elements with a material non-linear characteristic located between the raceway centres of the curvatures in their axial section, are presented in the paper.
无
2000-01-01
An elemental composition method for computation and analysis of simultaneous chemical and phase equilibrium (CPE) of non-ideal mixtures is proposed. The concept of element is defined, the relationship between component composition and elemental composition is derived, and the concept of elemental potential and its physical meaning are further cleared from the view point of thermodynamics. The relationship between chemical potential and elemental potential is derived in the thermodynamic principles, and the computation equations for CPE problem are obtained based on elemental potential. A simple form of necessary and sufficient condition in terms of elemental composition for reactive azeotropes is derived, which takes the same functional form as the condition for azeotropes in non-reactive systems. The element in this note may be atoms, molecules or group radicals. The presented method is applicable to CPE problem of non-ideal mixtures, and the computation can be simplified by the dimension reducing method. The presented method was supplied to compute and analyze CPE problem of several examples and it is found that it is a robust and efficient method.
GPU Accelerated Spectral Element Methods: 3D Euler equations
Abdi, D. S.; Wilcox, L.; Giraldo, F.; Warburton, T.
2015-12-01
A GPU accelerated nodal discontinuous Galerkin method for the solution of three dimensional Euler equations is presented. The Euler equations are nonlinear hyperbolic equations that are widely used in Numerical Weather Prediction (NWP). Therefore, acceleration of the method plays an important practical role in not only getting daily forecasts faster but also in obtaining more accurate (high resolution) results. The equation sets used in our atomospheric model NUMA (non-hydrostatic unified model of the atmosphere) take into consideration non-hydrostatic effects that become more important with high resolution. We use algorithms suitable for the single instruction multiple thread (SIMT) architecture of GPUs to accelerate solution by an order of magnitude (20x) relative to CPU implementation. For portability to heterogeneous computing environment, we use a new programming language OCCA, which can be cross-compiled to either OpenCL, CUDA or OpenMP at runtime. Finally, the accuracy and performance of our GPU implementations are veried using several benchmark problems representative of different scales of atmospheric dynamics.
Dongyang Shi; Haihong Wang; Yuepeng Du
2009-01-01
An anisotropic nonconforming finite element method is presented for a class of nonlinear Sobolev equations. The optimal error estimates and supercloseness are obtained for both semi-discrete and fully-discrete approximate schemes, which are the same as the traditional finite element methods. In addition, the global superconvergence is derived through the postprocessing technique. Numerical experiments are included to illustrate the feasibility of the proposed method.
Kim, S. [Purdue Univ., West Lafayette, IN (United States)
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Discrete-element method simulations: from micro to macro scales.
Heyes, D M; Baxter, J; Tüzün, U; Qin, R S
2004-09-15
Many liquid systems encountered in environmental science are often complex mixtures of many components which place severe demands on traditional computational modelling techniques. A meso scale description is required to account adequately for their flow behaviour on the meso and macro scales. Traditional techniques of computational fluid dynamics and molecular simulation are not well suited to tackling these systems, and researchers are increasingly turning to a range of relatively new computational techniques that offer the prospect of addressing the factors relevant to multicomponent multiphase liquids on length- and time-scales between the molecular level and the macro scale. In this category, we discuss the off-lattice techniques of 'smooth particle hydrodynamics' (SPH) and 'dissipative particle dynamics' (DPD), and the grid-based techniques of 'lattice gas' and 'lattice Boltzmann' (LB). We highlight the main conceptual and technical features underpinning these methods, their strengths and weaknesses, and provide a few examples of the applications of these techniques that illustrate their utility.
A spectral element method for fluid dynamics - Laminar flow in a channel expansion
Patera, A. T.
1984-01-01
A spectral element method that combines the generality of the finite element method with the accuracy of spectral techniques is proposed for the numerical solution of the incompressible Navier-Stokes equations. In the spectral element discretization, the computational domain is broken into a series of elements, and the velocity in each element is represented as a high-order Lagrangian interpolant through Chebyshev collocation points. The hyperbolic piece of the governing equations is then treated with an explicit collocation scheme, while the pressure and viscous contributions are treated implicitly with a projection operator derived from a variational principle. The implementation of the technique is demonstrated on a one-dimensional inflow-outflow advection-diffusion equation, and the method is then applied to laminar two-dimensional (separated) flow in a channel expansion. Comparisons are made with experiment and previous numerical work.
Application of the control volume mixed finite element method to a triangular discretization
Naff, R.L.
2012-01-01
A two-dimensional control volume mixed finite element method is applied to the elliptic equation. Discretization of the computational domain is based in triangular elements. Shape functions and test functions are formulated on the basis of an equilateral reference triangle with unit edges. A pressure support based on the linear interpolation of elemental edge pressures is used in this formulation. Comparisons are made between results from the standard mixed finite element method and this control volume mixed finite element method. Published 2011. This article is a US Government work and is in the public domain in the USA. ?? 2012 John Wiley & Sons, Ltd. This article is a US Government work and is in the public domain in the USA.
Stelt, van der A.A.; Bor, T.C.; Geijselaers, H.J.M.; Quak, W.; Akkerman, R.; Huetink, J.; Menary, G.
2011-01-01
In this paper, the material flow around the pin during friction stir welding (FSW) is simulated using a 2D plane strain model. A pin rotates without translation in a disc with elasto-viscoplastic material properties and the outer boundary of the disc is clamped. Two numerical methods are used to sol
Chen, Jiefu; Zeng, Shubin; Dong, Qiuzhao; Huang, Yueqin
2017-02-01
An axisymmetric semianalytical finite element method is proposed and employed for rapid simulations of electromagnetic telemetry in layered underground formation. In this method, the layered media is decomposed into several subdomains and the interfaces between subdomains are discretized by conventional finite elements. Then a Riccati equation based high precision integration scheme is applied to exploit the homogeneity along the vertical direction in each layer. This semianalytical finite element scheme is very efficient in modeling electromagnetic telemetry in layered formation. Numerical examples as well as a field case with water based mud as drilling fluid are given to demonstrate the validity and effectiveness of this method.
Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics
Wu, Shen R
2012-01-01
A systematic introduction to the theories and formulations of the explicit finite element method As numerical technology continues to grow and evolve with industrial applications, understanding the explicit finite element method has become increasingly important, particularly in the areas of crashworthiness, metal forming, and impact engineering. Introduction to the Explicit FiniteElement Method for Nonlinear Transient Dynamics is the first book to address specifically what is now accepted as the most successful numerical tool for nonlinear transient dynamics. The book aids readers in master
NUMERICAL SIMULATION OF 2D FIBER-REINFORCED COMPOSITES USING BOUNDARY ELEMENT METHOD
KONG Fan-zhong; ZHENG Xiao-ping; YAO Zhen-han
2005-01-01
The boundary element method was improved for the 2D elastic composites with randomly distributed inclusions. This problem can be reduced to a boundary integral equation for a multi-connected domain. Further, considering the matrices of the tractions and displacements for each group of the identical inclusion were the same, an effective computational scheme was designed, since the orders of the resulting matrix equations can be greatly reduced. Numerical examples indicate that this boundary element method scheme is more effective than the conventional multi-domain boundary element method for such a problem. The present scheme can be used to investigate the effective mechanical properties of the fiber-reinforced composites.
Base force element method of complementary energy principle for large rotation problems
Yijiang Peng; Yinghua Liu
2009-01-01
Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacements and large rotations. First, the complementary energy of an element is described by taking the base forces as state variables, and is then separated into deformation and rotation parts for the case of large deformation. Second, the control equations of the BFEM based on the complementary energy principle are derived using the Lagrange multiplier method. Nonlinear procedure of the BFEM is then developed. Finally, several examples are analyzed to illustrate the reliability and accuracy of the BFEM.
Steady-state solution of the PTC thermistor problem using a quadratic spline finite element method
Bahadir A. R.
2002-01-01
Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.
Solution of the Boussinesq equations by means of the finite element method
Steeg, van J.G.; Wesseling, P.
1978-01-01
A finite element method is presented for the computation of flows that are influenced by buoyancy forces. The accuracy of several finite elements is studied by solving the Bénard problem and determining the critical Rayleigh number. It is found that the accuracy is greatly enhanced if the shape func
Hong-ying Man; Zhong-ci Shi
2006-01-01
In this paper, we discuss the finite volume element method of P1-nonconforming quadrilateral element for elliptic problems and obtain optimal error estimates for general quadrilateral partition. An optimal cascadic multigrid algorithm is proposed to solve the nonsymmetric large-scale system resulting from such discretization. Numerical experiments are reported to support our theoretical results.
Multisymplectic Structure-Preserving in Simple Finite Element Method in High Dimensional Case
BAI Yong-Qiang; LIU Zhen; PEI Ming; ZHENG Zhu-Jun
2003-01-01
In this paper, we study a finite element scheme of some semi-linear elliptic boundary value problems inhigh-dimensional space. With uniform mesh, we find that, the numerical scheme derived from finite element method cankeep a preserved multisymplectic structure.
LEAST-SQUARES MIXED FINITE ELEMENT METHOD FOR SADDLE-POINT PROBLEM
Lie-heng Wang; Huo-yuan Duan
2000-01-01
In this paper, a least-squares mixed finite element method for the solution of the primal saddle-point problem is developed. It is proved that the approximate problem is consistent ellipticity in the conforming finite element spaces with only the discrete BB-condition needed for a smaller auxiliary problem. The abstract error estimate is derived.
H-VERSION ADAPTIVE FINITE ELEMENT METHOD FOR THREE-DIMENSIONAL SEEPAGE PROBLEM
Feng Xue-min; Chen Sheng-hong
2003-01-01
The h-version adaptive finite element method for 3-D seepage problem is presented in this paper.The adaptive system includes 4 modules: 3-D mesh generation, finite element analysis for 3-D seepage, mesh error estimation and post-process.The effectiveness of this system is verified by the given example.
The application of finite element method to forward and inverse seismic problems in frequency domain
Shaoyou, J.; Xiangheng, J.; Shizhe, X.
1987-04-01
Unstable result is obtained when the boundary problem of wave equation is solved using finite element method in time domain. However, when the boundary problem of wave equation is solved by finite element method in frequency domain, not only the unstablity can be avoided but also computation is speeded up because of using FFT. The procedure for solving the boundary problem using finite element method in frequency domain is as follows: 1. the wave equation is transformed into Helmholtz equation by making one-dimensional Fourier transform with respect to time; 2. Helmholtz equation is solved using finite element method in frequency domain; 3. the obtained result is returned to time domain by making inverse Fourier transform. Both forward and inverse seismic problems can be solved by this method.
An equivalent finite element method to kinetics analysis of complex mechanism
CHE Ren-wei; LU Nian-li
2005-01-01
The Finite Element Method was combined with the results from considerable analysis, producing a new kinetics analysis method of EFEM for a mechanism in truss, geared system, and assembled system. The equivalent principle and the motive differential equation of the system were derived by using an equivalent element, a virtual inertia matrix, and a systematic force matrix. The element' s mass matrix expression in the two dimensional and three dimensional mechanisms of the equivalent element was determined. The equivalent mass matrixes fashion of the Jacobin matrix, generalized coordinate matrix, and equivalent forces matrix were also determined. It was validated by two examples that the new method was normal, simple and direct, and had a higher efficiency than alternative methods; this is regardless of whether traditional methods are used with differential equations and calculated by using a computer.
A Spectral Element/Laguerre Coupled Method to the Elliptic Helmholtz Problem on the Half Line
Qingqu Zhuang; Chuanju Xu
2006-01-01
A Legendre spectral element/Laguerre coupled method is proposed to numerically solve the elliptic Helmholtz problem on the half line. Rigorous analysis is carried out to establish the convergence of the method. Several numerical examples are provided to confirm the theoretical results. The advantage of this method is demonstrated by a numerical comparison with the pure Laguerre method.
Frontal Crash Analysis of a Fully Detailed Car Model Based on Finite Element Method
Han Shan-Ling; Zhu Ping; Lin Zhong-Qin; Shi Yu-Liang
2004-01-01
This paper sets up a highly detailed finite element model of a car for frontal crashworthiness applications, and then explains the characteristics of it. The geometry model is preprocessed by Hypermesh software. The finite element method solver program selected for the simulation is LS-DYNA. After the crash simulation is carefully analyzed, the frontal crash experiment is aimed to validate the finite element model. The simulation results are basically in agreement with the experimental results. The validation of the finite element model is crucial for the further research in optimization of the automotive structure or lightweighting of the vehicle.
NEW BOUNDARY ELEMENT METHOD FOR TORSION PROBLEMS OF CYLINDER WITH CURVILINEAR CRACKS
WANG Yin-bang; LU Zi-zi
2005-01-01
The Saint-Venant torsion problems of a cylinder with curvilinear cracks were considered and reduced to solving the boundary integral equations only on cracks. Using the interpolation models for both singular crack tip elements and other crack linear elements, the boundary element formulas of the torsion rigidity and stress intensity factors were given. Some typical torsion problems of a cylinder involving a straight,kinked or curvilinear crack were calculated. The obtained results for the case of straight crack agree well with those given by using the Gauss-Chebyshev integration formulas,which demonstrates the validity and applicability of the present boundary element method.
Error analysis of finite element method for Poisson-Nernst-Planck equations
Sun, Yuzhou; Sun, Pengtao; Zheng, Bin; Lin, Guang
2016-08-01
A priori error estimates of finite element method for time-dependent Poisson-Nernst-Planck equations are studied in this work. We obtain the optimal error estimates in L∞(H1) and L2(H1) norms, and suboptimal error estimates in L∞(L2) norm, with linear element, and optimal error estimates in L∞(L2) norm with quadratic or higher-order element, for both semi- and fully discrete finite element approximations. Numerical experiments are also given to validate the theoretical results.
On conforming mixed finite element methods for incompressible viscous flow problems
Gunzburger, M. D; Nicolaides, R. A.; Peterson, J. S.
1982-01-01
The application of conforming mixed finite element methods to obtain approximate solutions of linearized Navier-Stokes equations is examined. Attention is given to the convergence rates of various finite element approximations of the pressure and the velocity field. The optimality of the convergence rates are addressed in terms of comparisons of the approximation convergence to a smooth solution in relation to the best approximation available for the finite element space used. Consideration is also devoted to techniques for efficient use of a Gaussian elimination algorithm to obtain a solution to a system of linear algebraic equations derived by finite element discretizations of linear partial differential equations.
Evaluation model of venture investment based on fuzzy matter-element method of combined weight
无
2008-01-01
An evaluation model of an international venture investment project on the basis of fuzzy matter-element and combined weight methods is introduced. First, the compound fuzzy matter-element of optimal subordinate degree is constructed on the principle of the bigger-more-optimal or the less-more-optimal depending on the actual evaluation indicators, and combined with standard fuzzy matter-element to form a difference-square fuzzy matter-element. Secondly, a combined weight is calculated by both information ent...
Merton, S.R. [Computational Physics Group, AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom)], E-mail: simon.merton@awe.co.uk; Pain, C.C. [Computational Physics and Geophysics Group, Department of Earth Science and Engineering, Imperial College London, London SW7 2A7 (United Kingdom); Smedley-Stevenson, R.P. [Computational Physics Group, AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Buchan, A.G.; Eaton, M.D. [Computational Physics and Geophysics Group, Department of Earth Science and Engineering, Imperial College London, London SW7 2A7 (United Kingdom)
2008-09-15
This paper describes the development of two optimal discontinuous finite element (FE) Riemann methods and their application to the one-speed Boltzmann transport equation in the steady-state. The proposed methods optimise the amount of dissipation applied in the streamline direction. This dissipation is applied within an element using a novel Riemann FE method, which is based on an analogy between control volume discretisation methods and finite element methods when integration by parts is applied to the transport terms. In one-dimension the optimal finite element solutions match the analytical solution exactly at each outlet node. Both schemes couple elements in space via a Riemann approach. The first of the two schemes is a Petrov-Galerkin (PG) method which introduces dissipation via the equation residual. The second scheme uses a streamline diffusion stabilisation term in the discretisation. These two methods provide a discontinuous Petrov-Galerkin (DPG) scheme that can stabilise an element across the full range of radiation regimes, obtaining robust solutions with suppressed oscillation. Three basis functions in angle of particle travel have been implemented in an optimal DPG Riemann solver, which include the P{sub N} (spherical harmonic), S{sub N} (discrete ordinate) and LW{sub N} (linear octahedral wavelet) angular expansions. These methods are applied to a series of demanding two-dimensional radiation transport problems.
A parallel implementation of an EBE solver for the finite element method
Silva, R.P.; Las Casas, E.B.; Carvalho, M.L.B. [Federal Univ. of Minas Gerais, Belo Horizonte (Brazil)
1994-12-31
A parallel implementation using PVM on a cluster of workstations of an Element By Element (EBE) solver using the Preconditioned Conjugate Gradient (PCG) method is described, along with an application in the solution of the linear systems generated from finite element analysis of a problem in three dimensional linear elasticity. The PVM (Parallel Virtual Machine) system, developed at the Oak Ridge Laboratory, allows the construction of a parallel MIMD machine by connecting heterogeneous computers linked through a network. In this implementation, version 3.1 of PVM is used, and 11 SLC Sun workstations and a Sun SPARC-2 model are connected through Ethernet. The finite element program is based on SDP, System for Finite Element Based Software Development, developed at the Brazilian National Laboratory for Scientific Computation (LNCC). SDP provides the basic routines for a finite element application program, as well as a standard for programming and documentation, intended to allow exchanges between research groups in different centers.
A mixed element based on Lagrange multiplier method for modified couple stress theory
Kwon, Young-Rok; Lee, Byung-Chai
2017-01-01
A 2D mixed element is proposed for the modified couple stress theory. The C1 continuity for the displacement field is required because of the second derivatives of displacement in the energy form of the theory. The C1 continuity is satisfied in a weak sense with the Lagrange multiplier method. A supplementary rotation is introduced as an independent variable and the kinematic relation between the physical rotation and the supplementary rotation is constrained with Lagrange multipliers. Convergence criteria and a stability condition are derived, and the number and the positions of nodes for each independent variable are determined. Internal degrees of freedom are condensed out, so the element has only 21 degrees of freedom. The proposed element passes the C^{0-1} patch test. Numerical results show that the principle of limitation is applied to the element and the element is robust to mesh distortion. Furthermore, the size effects are captured well with the element.
UNIFORMLY-STABLE FINITE ELEMENT METHODS FOR DARCY-STOKES-BRINKMAN MODELS
Xiaoping Xie; Jinchao Xu; Guangri Xue
2008-01-01
In this paper, we consider 2D and 3D Darcy-Stokes interface problems. These equations are related to Brinkman model that treats both Darcy's law and Stokes equations in a single form of PDE but with strongly discontinuous viscosity coefficient and zerothorder term coefficient. We present three different methods to construct uniformly stable finite element approximations. The first two methods are based on the original weak formulations of Darcy-Stokes-Brinkman equations. In the first method we consider the existing Stokes elements. We show that a stable Stokes element is also uniformly stable with respect to the coefficients and the jumps of Darcy-Stokes-Brinkman equations if and only if the discretely divergence-free velocity implies almost everywhere divergence-free one. In the second method we construct uniformly stable elements by modifying some well-known H(div)-conforming elements. We give some new 2D and 3D elements in a unified way. In the last method we modify the original weak formulation of Darcy-Stokes-Brinkman equations with a stabilization term. We show that all traditional stable Stokes elements are uniformly stable with respect to the coefficients and their jumps under this new formulation.
An element-free Galerkin method for ground penetrating radar numerical simulation
冯德山; 郭荣文; 王洪华
2015-01-01
An element-free Galerkin method (EFGM) is used to solve the two-dimensional (2D) ground penetrating radar (GPR) modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different from element-based numerical methods, this approach makes nodes free from the elemental restraint and avoids the explicit mesh discretization. First, we derived the boundary value problem for the 2D GPR simulation problems. Second, a penalty function approach and a boundary condition truncated method were used to enforce the essential and the absorbing boundary conditions, respectively. A three-layered GPR model was used to verify our element-free approach. The numerical solutions show that our solutions have an excellent agreement with solutions of a finite element method (FEM). Then, we used the EFGM to simulate one more complex model to show its capability and limitations. Simulation results show that one obvious advantage of EFGM is the absence of element mesh, which makes the method very flexible. Due to the use of MLS fitting, a key feature of EFM, is that both the dependent variable and its gradient are continuous and have high precision.
Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2012-09-20
The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered
Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems
Cerro, J. A.; Scotti, S. J.
1991-01-01
Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.
Wang Lipeng; Yan Ying; Wu Dafang; Wu Hao
2008-01-01
On the basis of a 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented,which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account,the analytical results ate consistent with those of the experimental data.
The Innovative Bike Conceptual Design by Using Modified Functional Element Design Method
Nien-Te Liu
2016-11-01
Full Text Available The purpose of the study is to propose a new design process by modifying functional element design approach which can commence a large amount of innovative concepts within a short period of time. Firstly, the original creative functional elements design method is analyzed and the drawbacks are discussed. Then, the modified is proposed and is divided into 6 steps. The creative functional element representations, generalization, specialization, and particularization are used in this method. Every step is described clearly, and users could design by following the process easily. In this paper, a clear and accurate design process is proposed based on the creative functional element design method. By following this method, a lot of innovative bicycles will be created quickly.
A Stochastic Wavelet Finite Element Method for 1D and 2D Structures Analysis
Xingwu Zhang
2014-01-01
Full Text Available A stochastic finite element method based on B-spline wavelet on the interval (BSWI-SFEM is presented for static analysis of 1D and 2D structures in this paper. Instead of conventional polynomial interpolation, the scaling functions of BSWI are employed to construct the displacement field. By means of virtual work principle and BSWI, the wavelet finite elements of beam, plate, and plane rigid frame are obtained. Combining the Monte Carlo method and the constructed BSWI elements together, the BSWI-SFEM is formulated. The constructed BSWI-SFEM can deal with the problems of structural response uncertainty caused by the variability of the material properties, static load amplitudes, and so on. Taking the widely used Timoshenko beam, the Mindlin plate, and the plane rigid frame as examples, numerical results have demonstrated that the proposed method can give a higher accuracy and a better constringency than the conventional stochastic finite element methods.
Fix, G. J.; Rose, M. E.
1983-01-01
A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.
ZHANG Hong-wu; WANG Hui
2006-01-01
The Voronoi cell finite element method (VCFEM) is adopted to overcome the limitations of the classic displacement based finite element method in the numerical simulation of heterogeneous materials. The parametric variational principle and quadratic programming method are developed for elastic-plastic Voronoi finite element analysis of two-dimensional problems. Finite element formulations are derived and a standard quadratic programming model is deduced from the elastic-plastic equations. Influence of microscopic heterogeneities on the overall mechanical response of heterogeneous materials is studied in detail. The overall properties of heterogeneous materials depend mostly on the size, shape and distribution of the material phases of the microstructure. Numerical examples are presented to demonstrate the validity and effectiveness of the method developed.
COMPUTATION OF SUPER-CONVERGENT NODAL STRESSES OF TIMOSHENKO BEAM ELEMENTS BY EEP METHOD
王枚; 袁驷
2004-01-01
The newly proposed element energy projection (EEP) method has been applied to the computation of super-convergent nodal stresses of Timoshenko beam elements. General formulas based on element projection theorem were derived and illustrative numerical examples using two typical elements were given. Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions. The EEP method gives super-convergent nodal stresses, which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude. And in addition, it can overcome the "shear locking" difficulty for stresses even when the displacements are badly affected. This research paves the way for application of the EEP method to general onedimensional systems of ordinary differential equations.
Azaryan N. A.
2007-06-01
Full Text Available It is suggested a modification of tetragonal finite - element method, where the tasks of plate bending with taking into accountancy uninterrupted normal efforts or displacements are reduced to quadratic programming ones.
V. E. Strizhius
2015-01-01
Full Text Available Methods of the approximate estimations of fatigue durability of composite airframe component typical elements which can be recommended for application at the stage of outline designing of the airplane are generated and presented.
Description of selected structural elements of composite foams using statistical methods
K. Gawdzińska
2011-04-01
Full Text Available This article makes use of images from a computer tomograph for the description of selected structure elements of metal and compositefoams by means of statistical methods. Besides, compression stress of the tested materials has been determined.
A finite element method for netting application to fish cages and fishing gear
Priour, Daniel
2014-01-01
This book describes a finite element method for netting that describes the relation between forces and deformation of the netting and takes into account forces due to the twine elasticity, the hydrodynamic forces, the catch effect, the mesh opening stiffness.
A new expanded mixed element method for convection-dominated Sobolev equation.
Wang, Jinfeng; Liu, Yang; Li, Hong; Fang, Zhichao
2014-01-01
We propose and analyze a new expanded mixed element method, whose gradient belongs to the simple square integrable space instead of the classical H(div; Ω) space of Chen's expanded mixed element method. We study the new expanded mixed element method for convection-dominated Sobolev equation, prove the existence and uniqueness for finite element solution, and introduce a new expanded mixed projection. We derive the optimal a priori error estimates in L (2)-norm for the scalar unknown u and a priori error estimates in (L (2))(2)-norm for its gradient λ and its flux σ . Moreover, we obtain the optimal a priori error estimates in H (1)-norm for the scalar unknown u. Finally, we obtained some numerical results to illustrate efficiency of the new method.
The Full—Discrete Mixed Finite Element Methods for Nonlinear Hyperbolic Equations
YanpingCHEN; YunqingHUANG
1998-01-01
This article treats mixed finite element methods for second order nonlinear hyperbolic equations.A fully discrete scheme is presented and improved L2-error estimates are established.The convergence of both the function value andthe flux is demonstrated.
An efficient wavelet finite element method in fault prognosis of incipient crack
无
2006-01-01
The method of constructing any scale wavelet finite element (WFE) based on the one-dimensional or two-dimensional Daubechies scaling functions was presented, and the corresponding WFE adaptive lifting algorithm was given. In order to obtain the nested increasing approximate subspaces of multiscale finite element, the Daubechies scaling functions with the properties of multi-resolution analysis were employed as the finite element interpolating functions. Thus, the WFE could adaptively mesh the singularity domain caused by local cracks, which resulted in better approximate solutions than the traditional finite element methods. The calculations of natural frequencies of cracked beam were used to check the accuracy of given methods. In addition, the results of cracked cantilever beam and engineering application were satisfied. So, the current methods can provide effective tools in the numerical modeling of the fault prognosis of incipient crack.
Fatigue life prediction of casing welded pipes by using the extended finite element method
Ljubica Lazi; Aleksandar Raji; Aleksandar Grbovi; Aleksandar Sedmak; e Sarko
2016-01-01
The extended finite element (XFEM) method has been used to simulate fatigue crack growth in casing pipe, made of API J55 steel by high-frequency welding, in order estimate its structural integrity and life...
A Stabilised Nodal Spectral Element Method for Fully Nonlinear Water Waves
Engsig-Karup, Allan Peter; Bigoni, Daniele
2015-01-01
We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al (1998) \\cite{CaiEtAl1998}, although the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global $L^2$ projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively removes any aliasing driven instabilities while retaining the high-order accuracy of the numerical...
Finite volume element method for analysis of unsteady reaction-diffusion problems
Sutthisak Phongthanapanich; Pramote Dechaumphai
2009-01-01
A finite volume element method is developed for analyzing unsteady scalar reaction--diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element method together. The finite volume method is used to discretize the unsteady reaction--diffusion equation, while the finite element method is applied to estimate the gradient quantities at cell faces. Robustness and efficiency of the combined method have been evaluated on uniform rectangular grids by using available numerical solutions of the two-dimensional reaction-diffusion problems. The numerical solutions demonstrate that the combined method is stable and can provide accurate solution without spurious oscillation along the highgradient boundary layers.
A MPI PARALLEL PRECONDITIONED SPECTRAL ELEMENT METHOD FOR THE HELMHOLTZ EQUATION
Hong Taoli; Xu Chuanju
2005-01-01
Spectral element method is well known as high-order method, and has potential better parallel feature as compared with low order methods. In this paper, a parallel preconditioned conjugate gradient iterative method is proposed to solving the spectral element approximation of the Helmholtz equation. The parallel algorithm is shown to have good performance as compared to non parallel cases, especially when the stiffness matrix is not memorized. A series of numerical experiments in one dimensional case is carried out to demonstrate the efficiency of the proposed method.
E. Majchrzak
2008-12-01
Full Text Available The dual reciprocity boundary element method is applied for numerical modelling of solidification process. This variant of the BEM is connected with the transformation of the domain integral to the boundary integrals. In the paper the details of the dual reciprocity boundary element method are presented and the usefulness of this approach to solidification process modelling is demonstrated. In the final part of the paper the examples of computations are shown.
FINITE ELEMENT METHOD AS A BASIS FOR THE MODELING OF ROAD SURFACE STRESS-STRAIN STATE
2011-01-01
Problem statement. Despite the fact that rigid roads with asphalt concrete pavement widespread,their design and calculation provide for approximate data with some number of hidden factors. Thepresent paper proposes to use finite element method to model stress-strain state of rigid roads withasphalt concrete pavement.Results. The use of the finite element method enables one to construct the precise model ofstress-strain state of road pavement. The calculations performed on the basis of the mod...
Solving forward and inverse seismic problems by boundary-element method in frequency domain
Xianxi, J.
1988-01-01
Solving the boundary value problem of wave equation by boundary element method in frequency domain involves these steps: 1. ID Fourier transform of time variable is made to convert the wave equation into Helmholtz equation; 2. this equation is then solved using boundary-element method in frequency domain; 3. the result is returned to time domain by making inverse Fourier transform. Compared with other formulas, the formula in this paper brings higher accuracy but less computation.
Use of a finite element method to calculate roll profiles for broad-strip mills
Garber, E. A.; Bolobanova, N. L.; Traino, A. I.
2012-05-01
A model is proposed to calculate the polishing profiling of rolls in broad-strip mills using a finite element method, and it is applied to develop new roll profiles. The finite element method is used to determine the polishing profiling of a roll with a complex shape, which substantially decreases the nonuniformity of reduction and drawing over the strip width. This profiling can be executed on numerical control roll grinders.
罗振东; 朱江; 谢正辉; 张桂芳
2003-01-01
The non-stationary natural convection problem is studied. A lowest order finite difference scheme based on mixed finite element method for non-stationary natural convection problem, by the spatial variations discreted with finite element method and time with finite difference scheme was derived, where the numerical solution of velocity, pressure, and temperature can be found together, and a numerical example to simulate the close square cavity is given, which is of practical importance.
Determination of rare-earth elements in Luna 16 regolith sample by chemical spectral method
Stroganova, N. S.; Ryabukhin, V. A.; Laktinova, N. V.; Ageyeva, L. V.; Galkina, I. P.; Gatinskaya, N. G.; Yermakov, A. N.; Karyakin, A. V.
1974-01-01
An analysis was made of regolith from layer A of the Luna 16 sample for rare earth elements, by a chemical spectral method. Chemical and ion exchange concentrations were used to determine the content of 12 elements and Y at the level 0.001 to 0.0001 percent with 10 to 15 percent reproducibility of the emission determination. Results within the limits of reproducibility agree with data obtained by mass spectra, activation, and X-ray fluorescent methods.
2014-01-01
In production of soft capsules, natural and semi-synthetic vegetative analogues for pharmaceutical gelatin are used. This work is devoted to defining elemental composition of vegetative analogs for pharmaceutical gelatin using the electron probe microanalysis method. The electron probe microanalysis is one of the most popular methods of quantitative and semi-quantitative nondestructive elemental analysis. Spectrometric profiles are described for defining the composition of carboxymethylcellul...
Simulation of 3D tumor cell growth using nonlinear finite element method.
Dong, Shoubing; Yan, Yannan; Tang, Liqun; Meng, Junping; Jiang, Yi
2016-01-01
We propose a novel parallel computing framework for a nonlinear finite element method (FEM)-based cell model and apply it to simulate avascular tumor growth. We derive computation formulas to simplify the simulation and design the basic algorithms. With the increment of the proliferation generations of tumor cells, the FEM elements may become larger and more distorted. Then, we describe a remesh and refinement processing of the distorted or over large finite elements and the parallel implementation based on Message Passing Interface to improve the accuracy and efficiency of the simulation. We demonstrate the feasibility and effectiveness of the FEM model and the parallelization methods in simulations of early tumor growth.
Hybrid Finite Element and Volume Integral Methods for Scattering Using Parametric Geometry
Volakis, John L.; Sertel, Kubilay; Jørgensen, Erik
2004-01-01
n this paper we address several topics relating to the development and implementation of volume integral and hybrid finite element methods for electromagnetic modeling. Comparisons of volume integral equation formulations with the finite element-boundary integral method are given in terms of accu...... of vanishing divergence within the element but non-zero curl. In addition, a new domain decomposition is introduced for solving array problems involving several million degrees of freedom. Three orders of magnitude CPU reduction is demonstrated for such applications....
Stability Analysis of Anchored Soil Slope Based on Finite Element Limit Equilibrium Method
Rui Zhang
2016-01-01
Full Text Available Under the condition of the plane strain, finite element limit equilibrium method is used to study some key problems of stability analysis for anchored slope. The definition of safe factor in slices method is generalized into FEM. The “true” stress field in the whole structure can be obtained by elastic-plastic finite element analysis. Then, the optimal search for the most dangerous sliding surface with Hooke-Jeeves optimized searching method is introduced. Three cases of stability analysis of natural slope, anchored slope with seepage, and excavation anchored slope are conducted. The differences in safety factor quantity, shape and location of slip surface, anchoring effect among slices method, finite element strength reduction method (SRM, and finite element limit equilibrium method are comparatively analyzed. The results show that the safety factor given by the FEM is greater and the unfavorable slip surface is deeper than that by the slice method. The finite element limit equilibrium method has high calculation accuracy, and to some extent the slice method underestimates the effect of anchor, and the effect of anchor is overrated in the SRM.
Vibration band gaps for elastic metamaterial rods using wave finite element method
Nobrega, E. D.; Gautier, F.; Pelat, A.; Dos Santos, J. M. C.
2016-10-01
Band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators are investigated. New techniques to analyze metamaterial systems are using a combination of analytical or numerical method with wave propagation. One of them, called here wave spectral element method (WSEM), consists of combining the spectral element method (SEM) with Floquet-Bloch's theorem. A modern methodology called wave finite element method (WFEM), developed to calculate dynamic behavior in periodic acoustic and structural systems, utilizes a similar approach where SEM is substituted by the conventional finite element method (FEM). In this paper, it is proposed to use WFEM to calculate band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators of multi-degree-of-freedom (M-DOF). Simulated examples with band gaps generated by Bragg scattering and local resonators are calculated by WFEM and verified with WSEM, which is used as a reference method. Results are presented in the form of attenuation constant, vibration transmittance and frequency response function (FRF). For all cases, WFEM and WSEM results are in agreement, provided that the number of elements used in WFEM is sufficient to convergence. An experimental test was conducted with a real elastic metamaterial rod, manufactured with plastic in a 3D printer, without local resonance-type effect. The experimental results for the metamaterial rod with band gaps generated by Bragg scattering are compared with the simulated ones. Both numerical methods (WSEM and WFEM) can localize the band gap position and width very close to the experimental results. A hybrid approach combining WFEM with the commercial finite element software ANSYS is proposed to model complex metamaterial systems. Two examples illustrating its efficiency and accuracy to model an elastic metamaterial rod unit-cell using 1D simple rod element and 3D solid element are
Rigid Finite Element Method in Analysis of Dynamics of Offshore Structures
Wittbrodt, Edmund; Maczyński, Andrzej; Wojciech, Stanisław
2013-01-01
This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of...
无
2000-01-01
Some theoretical methods have been reported to deal with nonlinear problems of composite materials but the accuracy is not so good. In the meantime, a lot of nonlinear problems are difficult to be managed by the theoretical methods. The present study aims to use the developed method, the random microstructure finite element method, to deal with these nonlinear problems. In this paper, the random microstructure finite element method is used to deal with all three kinds of nonlinear property problems of composite materials. The analyzed results suggest that the influences of the nonlinear phenomena on the effective properties of composite materials are significant and the random microstructure finite element method is an efficient tool to investigate the nonlinear problems.
A class of hybrid finite element methods for electromagnetics: A review
Volakis, J. L.; Chatterjee, A.; Gong, J.
1993-01-01
Integral equation methods have generally been the workhorse for antenna and scattering computations. In the case of antennas, they continue to be the prominent computational approach, but for scattering applications the requirement for large-scale computations has turned researchers' attention to near neighbor methods such as the finite element method, which has low O(N) storage requirements and is readily adaptable in modeling complex geometrical features and material inhomogeneities. In this paper, we review three hybrid finite element methods for simulating composite scatterers, conformal microstrip antennas, and finite periodic arrays. Specifically, we discuss the finite element method and its application to electromagnetic problems when combined with the boundary integral, absorbing boundary conditions, and artificial absorbers for terminating the mesh. Particular attention is given to large-scale simulations, methods, and solvers for achieving low memory requirements and code performance on parallel computing architectures.
Hydro-mechanical modeling of impermeable discontinuity in rock by extended finite element method
郑安兴; 罗先启
2015-01-01
The extended finite element method(XFEM) is a numerical method for modeling discontinuities within the classical finite element framework. The computation mesh in XFEM is independent of the discontinuities, such that remeshing for moving discontinuities can be overcome. The extended finite element method is presented for hydro-mechanical modeling of impermeable discontinuities in rock. The governing equation of XFEM for hydraulic fracture modeling is derived by the virtual work principle of the fracture problem considering the water pressure on crack surface. The coupling relationship between water pressure gradient on crack surface and fracture opening width is obtained by semi-analytical and semi-numerical method. This method simplifies coupling analysis iteration and improves computational precision. Finally, the efficiency of the proposed method for modeling hydraulic fracture problems is verified by two examples and the advantages of the XFEM for hydraulic fracturing analysis are displayed.
Looking-Free Mixed hp Finite Element Methods for Linear and Geometrically Nonlinear Elasticity
1997-06-09
hp mixed methods has been addressed by Stenberg and Suri[20]. They identify sufficient conditions for selecting mixed method spaces on parallelogram...spaces of piecewise polynomials. Math. Modeling Num. Anal., 19:111-143, 1985. [20] R. Stenberg and M. Suri. Mixed hp finite element methods for
Asymptotic Behavior of the Finite Difference and the Finite Element Methods for Parabolic Equations
LIU Yang; FENG Hui
2005-01-01
The asymptotic convergence of the solution of the parabolic equation is proved. By the eigenvalues estimation, we obtain that the approximate solutions by the finite difference method and the finite element method are asymptotically convergent. Both methods are considered in continuous time.
A level-set based topology optimization using the element connectivity parameterization method
Van Dijk, N.P.; Yoon, G.H.; Van Keulen, F.; Langelaar, M.
2010-01-01
This contribution presents a novel and versatile approach to geometrically nonlinear topology optimization by combining the level-set method with the element connectivity parameterization method or ECP. The combined advantages of both methods open up the possibility to treat a wide range of optimiza
van der Vegt, Jacobus J.W.; van der Ven, H.
1998-01-01
A new discretization method for the three-dimensional Euler equations of gas dynamics is presented, which is based on the discontinuous Galerkin finite element method. Special attention is paid to an efficient implementation of the discontinuous Galerkin method that minimizes the number of flux
Water quality evaluation based on improved fuzzy matter-element method
Dongjun Liu; Zhihong Zou
2012-01-01
For natural water,method of water quality evaluation based on improved fuzzy matter-element evaluation method is presented.Two important parts are improved,the weights determining and fuzzy membership functions.The coefficient of variation of each indicator is used to determine the weight instead of traditional calculating superscales method.On the other hand,fuzzy matter-elements are constructed,and normal membership degrees are used instead of traditional trapezoidal ones.The composite fuzzy matter-elements with associated coefficient are constructed through associated transformation.The levels of natural water quality are determined according to the principle of maximum correlation.The improved fuzzy matter-element evaluation method is applied to evaluate water quality of the Luokou mainstream estuary at the first ten weeks in 2011 with the coefficient of variation method determining the weights.Water quality of Luokou mainstream estuary is dropping from level Ⅰ to level Ⅱ.The results of the improved evaluation method are basically the same as the official water quality.The variation coefficient method can reduce the workload,and overcome the adverse effects from abnormal values,compared with the traditional calculating superscales method.The results of improved fuzzy matterelement evaluation method are more credible than the ones of the traditional evaluation method.The improved evaluation method can use information of monitoring data more scientifically and comprehensively,and broaden a new evaluation method for water quality assessment.
Analysis of thin plates by the weak form quadrature element method
ZHONG HongZhi; YUE ZhiGuang
2012-01-01
The recently proposed weak form quadrature element method (QEM) is applied to flexural and vibrational analysis of thin plates.The integrals involved in the variational description of a thin plate are evaluated by an efficient numerical scheme and the partial derivatives at the integration sampling points are then approximated using differential quadrature analogs.Neither the grid pattern nor the number of nodes is fixed,being adjustable according to convergence need.The C1 continuity conditions characterizing the thin plate theory are discussed and the robustness of the weak form quadrature element for thin plates against shape distortion is examined.Examples are presented and comparisons with analytical solutions and the results of the finite element method are made to demonstrate the convergence and computational efficiency of the weak form quadrature element method.It is shown that the present formulation is applicable to thin plates with varying thickness as well as uniform plates.
FUZZY ARITHMETIC AND SOLVING OF THE STATIC GOVERNING EQUATIONS OF FUZZY FINITE ELEMENT METHOD
郭书祥; 吕震宙; 冯立富
2002-01-01
The key component of finite element analysis of structures with fuzzy parameters,which is associated with handling of some fuzzy information and arithmetic relation of fuzzy variables, was the solving of the governing equations of fuzzy finite element method. Based on a given interval representation of fuzzy numbers, some arithmetic rules of fuzzy numbers and fuzzy variables were developed in terms of the properties of interval arithmetic.According to the rules and by the theory of interval finite element method, procedures for solving the static governing equations of fuzzy finite element method of structures were presented. By the proposed procedure, the possibility distributions of responses of fuzzy structures can be generated in terms of the membership functions of the input fuzzy numbers.It is shown by a numerical example that the computational burden of the presented procedures is low and easy to implement. The effectiveness and usefulness of the presented procedures are also illustrated.
A lumped mass finite element method for vibration analysis of elastic plate-plate structures
无
2010-01-01
The fully discrete lumped mass finite element method is proposed for vibration analysis of elastic plate-plate structures.In the space directions,the longitudinal displacements on plates are discretized by conforming linear elements,and the transverse displacements are discretized by the Morley element.By means of the second order central difference for discretizing the time derivative and the technique of lumped masses,a fully discrete lumped mass finite element method is obtained,and two approaches to choosing the initial functions are also introduced.The error analysis for the method in the energy norm is established,and some numerical examples are included to validate the theoretical analysis.
Song Cen; Xiangrong Fu; Yuqiu Long; Hongguang Li; Zhenhan Yao
2007-01-01
Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new models are less sensitive to mesh distortion. In this paper, a new displacement-based, 4-node 20-DOF (5-DOF per node)quadrilateral bending element based on the first-order shear deformation theory for analysis of arbitrary laminated composite plates is presented. Its bending part is based on the element AC-MQ4, a recent-developed high-performance Mindlin-Reissner plate element formulated by QAC method and the generalized conforming condition method; and its in-plane displacement fields are interpolated by bilinear shape functions in isoparametric coordinates. Furthermore,the hybrid post-processing procedure, which was firstly proposed by the authors, is employed again to improve the stress solutions, especially for the transverse shear stresses. The resulting element, denoted as AC-MQ4-LC, exhibits excellent performance in all linear static and dynamic numerical examples. It demonstrates again that the QAC method, the generalized conforming condition method, and the hybrid post-processing procedure are efficient tools for developing simple, effective and reliable finite element models.
A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements
Makmal, T.; Aviv, O.; Gilad, E.
2016-10-01
A simple method for the evaluation of the burnup of a materials testing reactor (MTR) fuel element by gamma spectrometry is presented. The method was applied to a highly enriched uranium MTR nuclear fuel element that was irradiated in a 5 MW pool-type research reactor for a total period of 34 years. The experimental approach is based on in-situ measurements of the MTR fuel element in the reactor pool by a portable high-purity germanium detector located in a gamma cell. To corroborate the method, analytical calculations (based on the irradiation history of the fuel element) and computer simulations using a dedicated fuel cycle burnup code ORIGEN2 were performed. The burnup of the MTR fuel element was found to be 52.4±8.8%, which is in good agreement with the analytical calculations and the computer simulations. The method presented here is suitable for research reactors with either a regular or an irregular irradiation regime and for reactors with limited infrastructure and/or resources. In addition, its simplicity and the enhanced safety it confers may render this method suitable for IAEA inspectors in fuel element burnup assessments during on-site inspections.
A prediction method for aerodynamic sound produced by multiple elements in air ducts
Mak, C. M.
2005-10-01
A prediction method for aerodynamic sound produced by the interaction of multiple elements in a low speed flow duct has been developed. Same as the previous works of Mak and Yang for two in-duct elements, the concept of partially coherent sound fields is adopted to formulate the sound powers produced by interaction of multiple in-duct elements at frequencies below and above the cut-on frequency of the lowest transverse duct mode. An interaction factor is finally defined as a result of a simple relationship between the sound power due to the interaction of multiple in-duct elements and that due to a single in-duct element. The present study suggests that it is possible to predict the level and spectral distribution of the additional acoustic energy produced by the interaction of multiple in-duct elements. The proposed method therefore can form a basis of a generalized prediction method for aerodynamic sound produced by multiple in-duct elements in a ventilation system.
Jilian Wu
2013-01-01
Full Text Available We discuss several stabilized finite element methods, which are penalty, regular, multiscale enrichment, and local Gauss integration method, for the steady incompressible flow problem with damping based on the lowest equal-order finite element space pair. Then we give the numerical comparisons between them in three numerical examples which show that the local Gauss integration method has good stability, efficiency, and accuracy properties and it is better than the others for the steady incompressible flow problem with damping on the whole. However, to our surprise, the regular method spends less CPU-time and has better accuracy properties by using Crout solver.
A two-dimensional adaptive spectral element method for the direct simulation of incompressible flow
Hsu, Li-Chieh
The spectral element method is a high order discretization scheme for the solution of nonlinear partial differential equations. The method draws its strengths from the finite element method for geometrical flexibility and spectral methods for high accuracy. Although the method is, in theory, very powerful for complex phenomena such as transitional flows, its practical implementation is limited by the arbitrary choice of domain discretization. For instance, it is hard to estimate the appropriate number of elements for a specific case. Selection of regions to be refined or coarsened is difficult especially as the flow becomes more complex and memory limits of the computer are stressed. We present an adaptive spectral element method in which the grid is automatically refined or coarsened in order to capture underresolved regions of the domain and to follow regions requiring high resolution as they develop in time. The objective is to provide the best and most efficient solution to a time-dependent nonlinear problem by continually optimizing resource allocation. The adaptivity is based on an error estimator which determines which regions need more resolution. The solution strategy is as follows: compute an initial solution with a suitable initial mesh, estimate errors in the solution locally in each element, modify the mesh according to the error estimators, interpolate old mesh solutions onto the new elements, and resume the numerical solution process. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flows has been developed. The adaptive algorithm effectively diagnoses and refines regions of the flow where complexity of the solution requires increased resolution. The method has been demonstrated on two-dimensional examples in heat conduction, Stokes and Navier-Stokes flows.
SYNTHESIS METHODOLOGY FOR ACTIVE ELEMENT USING IMPEDANCES –BASED BOND GRAPH METHODS
Nasta TANASESCU
2004-12-01
Full Text Available This paper introduces a synthesis methodology for active elements within systems that uses frequency response function as a basis for describing required behavior. The method is applicable in the design of a new system or in the retrofit of an existing system in which an active element is required or desired. The two basis principles of bond graph modeling are the “reticulation principle” which decomposes a physical into elemental physical laws represented as network elements interacting through ports and the “power postulate” which assembles the complete model through a network of power flows representing the exchange of energy between the elements. Moreover the bond graph model leads to a rigorous definitions of the structure of the associated dynamical equations.
ICP-MS: Analytical Method for Identification and Detection of Elemental Impurities.
Mittal, Mohini; Kumar, Kapil; Anghore, Durgadas; Rawal, Ravindra K
2017-01-01
Aim of this article is to review and discuss the currently used quantitative analytical method ICP-MS, which is used for quality control of pharmaceutical products. ICP-MS technique has several applications such as determination of single elements, multi element analysis in synthetic drugs, heavy metals in environmental water, trace element content of selected fertilizers and dairy manures. ICP-MS is also used for determination of toxic and essential elements in different varieties of food samples and metal pollutant present in the environment. The pharmaceuticals may generate impurities at various stages of development, transportation and storage which make them risky to be administered. Thus, it is essential that these impurities must be detected and quantified. ICP-MS plays an important function in the recognition and revealing of elemental impurities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Generating Initial Data in General Relativity using Adaptive Finite Element Methods
Aksoylu, Burak; Bond, Stephen; Holst, Michael
2008-01-01
The conformal formulation of the Einstein constraint equations is first reviewed, and we then consider the design, analysis, and implementation of adaptive multilevel finite element-type numerical methods for the resulting coupled nonlinear elliptic system. We derive weak formulations of the coupled constraints, and review some new developments in the solution theory for the constraints in the cases of constant mean extrinsic curvature (CMC) data, near-CMC data, and arbitrarily prescribed mean extrinsic curvature data. We then outline some recent results on a priori and a posteriori error estimates for a broad class of Galerkin-type approximation methods for this system which includes techniques such as finite element, wavelet, and spectral methods. We then use these estimates to construct an adaptive finite element method (AFEM) for solving this system numerically, and outline some new convergence and optimality results. We then describe in some detail an implementation of the methods using the FETK software...
Finite element simulation of stretch forging using a mesh condensation method
无
2010-01-01
In order to reduce the computation time of finite element simulations of stretch forging process,a mesh condensation method is presented and applied to a three-dimensional rigid-viscoplastic finite element program.In this method,a conventional mesh for the whole zone of a workpiece is condensed to a computational mesh for the active deformation zone.Two vital problems are solved,which are automatic construction of the computational mesh and treatment of interfaces between the deformation zone and the rigid zone.The mesh condensation method is compared with conventional finite element method by simulations of a six-bite stretch forging process.Some simulation results including forging load,temperature distribution and effective strain distribution are illustrated.The efficiency and accuracy of this method are verified.
LI Xikui; YAO Dongmei
2004-01-01
A time-discontinuous Galerkin finite element method for dynamic analyses in saturated poro-elasto-plastic medium is proposed. As compared with the existing discontinuous Galerkin finite element methods, the distinct feature of the proposed method is that the continuity of the displacement vector at each discrete time instant is automatically ensured, whereas the discontinuity of the velocity vector at the discrete time levels still remains. The computational cost is then obviously reduced,particularly, for material non-linear problems. Both the implicit and explicit algorithms to solve the derived formulations for material non-linear problems are developed. Numerical results show a good performance of the present method in eliminating spurious numerical oscillations and providing with much more accurate solutions over the traditional Galerkin finite element method using the Newmark algorithm in the time domain.
AN EXPANDED CHARACTERISTIC-MIXED FINITE ELEMENT METHOD FOR A CONVECTION-DOMINATED TRANSPORT PROBLEM
Ling Guo; Huan-zhen Chen
2005-01-01
In this paper, we propose an Expanded Characteristic-mixed Finite Element Method for approximating the solution to a convection dominated transport problem. The method is a combination of characteristic approximation to handle the convection part in time and an expanded mixed finite element spatial approximation to deal with the diffusion part.The scheme is stable since fluid is transported along the approximate characteristics on the discrete level. At the same time it expands the standard mixed finite element method in the sense that three variables are explicitly treated: the scalar unknown, its gradient, and its flux. Our analysis shows the method approximates the scalar unknown, its gradient,and its flux optimally and simultaneously. We also show this scheme has much smaller time-truncation errors than those of standard methods. A numerical example is presented to show that the scheme is of high performance.
Reichmann T. [Siemens AG, Erlangen (Germany). Transportation Systems
2005-02-01
When developing overhead contact line systems and assessing their conformity simulation of the interaction with pantographs is not anymore dispensable today. The tools used for simulation must model flexibly and precisely all parameters of the contact line and deliver findings, which correspond reliably to measurements of the current collection quality. Simulations adopting the finite element method comply with these requirements and, due to the high capacity of computers available today, can be used advantageously to study the interaction and other features. (orig.)
An interpolating boundary element-free method (IBEFM) for elasticity problems
无
2010-01-01
The paper begins by discussing the interpolating moving least-squares (IMLS) method. Then the formulae of the IMLS method obtained by Lancaster are revised. On the basis of the boundary element-free method (BEFM), combining the boundary integral equation method with the IMLS method improved in this paper, the interpolating boundary element-free method (IBEFM) for two-dimensional elasticity problems is presented, and the corresponding formulae of the IBEFM for two-dimensional elasticity problems are obtained. In the IMLS method in this paper, the shape function satisfies the property of Kronecker δ function, and then in the IBEFM the boundary conditions can be applied directly and easily. The IBEFM is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution to the nodal variables. Thus it gives a greater computational precision. Numerical examples are presented to demonstrate the method.
V. I. Freyman
2015-11-01
Full Text Available Subject of Research.Representation features of education results for competence-based educational programs are analyzed. Solution importance of decoding and proficiency estimation for elements and components of discipline parts of competences is shown. The purpose and objectives of research are formulated. Methods. The paper deals with methods of mathematical logic, Boolean algebra, and parametrical analysis of complex diagnostic test results, that controls proficiency of some discipline competence elements. Results. The method of logical conditions analysis is created. It will give the possibility to formulate logical conditions for proficiency determination of each discipline competence element, controlled by complex diagnostic test. Normalized test result is divided into noncrossing zones; a logical condition about controlled elements proficiency is formulated for each of them. Summarized characteristics for test result zones are imposed. An example of logical conditions forming for diagnostic test with preset features is provided. Practical Relevance. The proposed method of logical conditions analysis is applied in the decoding algorithm of proficiency test diagnosis for discipline competence elements. It will give the possibility to automate the search procedure for elements with insufficient proficiency, and is also usable for estimation of education results of a discipline or a component of competence-based educational program.
Finite Element Method Application in Areal Rainfall Estimation Case Study; Mashhad Plain Basin
M. Irani
2016-10-01
Full Text Available Introduction: The hydrological models are very important tools for planning and management of water resources. These models can be used for identifying basin and nature problems and choosing various managements. Precipitation is based on these models. Calculations of rainfall would be affected by displacement and region factor such as topography, etc. Estimating areal rainfall is one of the basic needs in meteorological, water resources and others studies. There are various methods for the estimation of rainfall, which can be evaluated by using statistical data and mathematical terms. In hydrological analysis, areal rainfall is so important because of displacement of precipitation. Estimating areal rainfall is divided to three methods: 1- graphical. 2-topographical. 3-numerical. This paper represented calculating mean precipitation (daily, monthly and annual using Galerkin’s method (numerical method and it was compared with other methods such as kriging, IDW, Thiessen and arithmetic mean. In this study, there were 42 actual gauges and thirteen dummies in Mashhad plain basin which is calculated by Galerkin’s method. The method included the use of interpolation functions, allowing an accurate representation of shape and relief of catchment with numerical integration performed by Gaussian quadrature and represented the allocation of weights to stations. Materials and Methods:The estimation of areal rainfall (daily, monthly,… is the basic need for meteorological project. In this field ,there are various methods that one of them is finite element method. Present study aimed to estimate areal rainfall with a 16-year period (1997-2012 by using Galerkin method ( finite element in Mashhad plain basin for 42 station. Therefore, it was compared with other usual methods such as arithmetic mean, Thiessen, Kriging and IDW. The analysis of Thiessen, Kriging and IDW were in ArcGIS10.0 software environment and finite element analysis did by using of Matlab
Failure analysis of pebble bed reactors during earthquake by discrete element method
Keppler, Istvan, E-mail: keppler.istvan@gek.szie.hu [Department of Mechanics and Engineering Design, Szent István University, Páter K.u.1., Gödöllő H-2103 (Hungary)
2013-05-15
Highlights: ► We evaluated the load acting on the central reflector beam of a pebble bed reactor. ► The load acting on the reflector beam highly depends on fuel element distribution. ► The contact force values do not show high dependence on fuel element distribution. ► Earthquake increases the load of the reflector, not the contact forces. -- Abstract: Pebble bed reactors (PBR) are graphite-moderated, gas-cooled nuclear reactors. PBR reactors use a large number of spherical fuel elements called pebbles. From mechanical point of view, the arrangement of “small” spherical fuel elements in a container poses the same problem, as the so-called silo problem in powder technology and agricultural engineering. To get more exact information about the contact forces arising between the fuel elements in static and dynamic case, we simulated the static case and the effects of an earthquake on a model reactor by using discrete element method. We determined the maximal contact forces acting between the individual fuel elements. We found that the value of the maximal bending moment in the central reflector beam has a high deviation from the average value even in static case, and it can significantly increase in case of an earthquake. Our results can help the engineers working on the design of such types of reactors to get information about the contact forces, to determine the dust production and the crush probability of fuel elements within the reactor, and to model different accident scenarios.
AN EFFECTIVE BOUNDARY ELEMENT METHOD FOR ANALYSIS OF CRACK PROBLEMS IN A PLANE ELASTIC PLATE
YAN Xiang-qiao
2005-01-01
A simple and effective boundary element method for stress intensity factor calculation for crack problems in a plane elastic plate is presented. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements proposed by YAN Xiangqiao. In the boundary element implementation the left or the right crack-tip displacement discontinuity element was placed locally at the corresponding left or right each crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Test examples ( i. e. , a center crack in an infinite plate under tension, a circular hole and a crack in an infinite plate under tension) are included to illustrate that the numerical approach is very simple and accurate for stress intensity factor calculation of plane elasticity crack problems. In addition, specifically, the stress intensity factors of branching cracks emanating from a square hole in a rectangular plate under biaxial loads were analysed. These numerical results indicate the present numerical approach is very effective for calculating stress intensity factors of complex cracks in a 2-D finite body, and are used to reveal the effect of the biaxial loads and the cracked body geometry on stress intensity factors.
Mixed finite element methods for linear elasticity with weakly imposed symmetry
Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar
2007-12-01
In this paper, we construct new finite element methods for the approximation of the equations of linear elasticity in three space dimensions that produce direct approximations to both stresses and displacements. The methods are based on a modified form of the Hellinger-Reissner variational principle that only weakly imposes the symmetry condition on the stresses. Although this approach has been previously used by a number of authors, a key new ingredient here is a constructive derivation of the elasticity complex starting from the de Rham complex. By mimicking this construction in the discrete case, we derive new mixed finite elements for elasticity in a systematic manner from known discretizations of the de Rham complex. These elements appear to be simpler than the ones previously derived. For example, we construct stable discretizations which use only piecewise linear elements to approximate the stress field and piecewise constant functions to approximate the displacement field.
Jinhua Xie
2012-01-01
Full Text Available Based on the transmission and equilibrium relationship of vibration energy in beam-like structures, the Galerkin weighted residual method was applied to equation discretization. An equivalent transformation of feedback element was suggested to develop the Energy Finite Element model of a composite piezoelectric cantilever beam driven by harmonic excitation on lateral direction, with both systems with and without time delay being studied and the power input estimation of harmonic excitation was discussed for the resolution of Energy Finite Element function. Then the energy density solutions of the piezoelectric coupling beam through Energy Finite Element Method (EFEM and classical wave theory were compared to verify the EFEM model, which presented a good accordance. Further investigation was undertaken about the influence of control parameters including the feedback gain and arrangement of piezoelectric patches on characteristics of system energy density distribution.
Iso, Shuichi; Meguro, Yoshihiro; Yoshida, Yoshiyuki
1996-08-30
In a method of separating by extraction of coolants uranium and rare earth elements by using supercritical fluid in a supercritical state and a hydrophobic organic chelating agent, a plurality of extraction steps having different extraction efficiencies are provided. As the fluid in the supercritical state, carbon dioxide, carbon monoxide, ammonia, sulfur tetrafluoride and nitrogen are mentioned. A hydrophobic organic chelating agent can form a chelating compound with uranium and rare earth elements, and the formed complex compounds are easily dissolved into the supercritical fluid thereby enabling to provide an excellent extraction effect. A suitable hydrophobic organic chelating agent includes organic phosphor compounds, {beta}-diketone compounds and microcyclic compounds. Then, there can be provided an extraction method using a supercritical liquid as an extraction medium capable of successively separating uranium and rare earth elements selectively having high safety and performed safely and also performed in a case where a plurality of rare earth elements exist together. (N.H.)
Apparatus comprising trace element dosage and method for treating raw water in biofilter
2015-01-01
: - the filter comprises a filter material (4) including a porous filter material and a microbial biomass, the filter material is either stationary relative to the volume or comprises a particulate material, the filter material (4) is inserted in a fluid flow path generated by water flowing in direction from...... the inlet (2) to the outlet (3) or in the reverse direction, - the trace element dosage device (13) is positioned upstream of the porous filter material and microbial biomass and is configured to dose trace element(s) to the water flowing through the filter. A method for treating raw water by microbial...
NONCONFORMING STABILIZED FINITE ELEMENT METHODS BASED ON RIESZ-REPRESENTING OPERATORS
DuanHuoyuan
1999-01-01
Following the framework of the finite element methods based on Riesz-representingoperators developed by Duan Huoyuan in 1997,through discrete Rieszonsome virtual(non-) conforming finite-dimensional subspaces,a stabilization formulation is presented for the Stokes problem by employing nonconforming elements. This formulation is uni-tormly coercive and not subject to the Babus Ka-Brezzi condition,and the resulted linearalgebraic system is positive definite with the spectral condition number O(h-2).Quasi-optimal error bounds are obtained,which is consistent with the interpolation properties of the finite elements used.
Natarajan, S; Bordas, S; Rabczuk, T; Kerfriden, P
2011-01-01
In this paper, the linear free flexural vibration of cracked functionally graded material plates is studied using the extended finite element method. A 4-noded quadrilateral plate bending element based on field and edge consistency requirement with 20 degrees of freedom per element is used for this study. The natural frequencies and mode shapes of simply supported and clamped square and rectangular plates are computed as a function of gradient index, crack length, crack orientation and crack location. The effect of thickness and influence of multiple cracks is also studied.
DYNAMIC MODELLING OF BAR-GEAR MIXED MULTIBODY SYSTEMS USING A SPECIFIC FINITE ELEMENT METHOD
无
1999-01-01
A new dynamic model for mixed, flexible bar and gear multibody systems is developed based on a specific finite element method, and a new gear-element is proposed. The gear-element can take into account the time variant stiffness, the gear errors and mass unbalance. The model for geared multibody systems can couple the gear meshing and the flexibility of all contained components. The kinematic and dynamic analyses of the geared multibody systems are expounded and illustrated on an example composed of three gears, two bars and one slider.
Domain decomposition based iterative methods for nonlinear elliptic finite element problems
Cai, X.C. [Univ. of Colorado, Boulder, CO (United States)
1994-12-31
The class of overlapping Schwarz algorithms has been extensively studied for linear elliptic finite element problems. In this presentation, the author considers the solution of systems of nonlinear algebraic equations arising from the finite element discretization of some nonlinear elliptic equations. Several overlapping Schwarz algorithms, including the additive and multiplicative versions, with inexact Newton acceleration will be discussed. The author shows that the convergence rate of the Newton`s method is independent of the mesh size used in the finite element discretization, and also independent of the number of subdomains into which the original domain in decomposed. Numerical examples will be presented.
A practical guide to boundary element methods with the software library BEMLIB
Pozrikidis, C
2002-01-01
LAPLACE'S EQUATION IN ONE DIMENSIONGreen's First and Second Identities and the Reciprocal Relation Green's FunctionsBoundary-Value Representation Boundary-Value EquationLAPLACE'S EQUATION IN TWO DIMENSIONS Green's First and Second Identities and the Reciprocal RelationGreen's Functions Integral Representation Integral Equations Hypersingular Integrals Irrotational FlowGeneralized Single- and Double-Layer Representations BOUNDARY-ELEMENT METHODS FOR LAPLACE'S EQUATION IN TWO DIMENSIONSBoundary Element Discretization .Discretization of
LOW ORDER NONCONFORMING RECTANGULAR FINITE ELEMENT METHODS FOR DARCY-STOKES PROBLEMS
Shiquan Zhang; Xiaoping Xie; Yumei Chen
2009-01-01
In this paper, we consider lower order rectangular finite element methods for the singularly perturbed Stokes problem. The model problem reduces to a linear Stokes problem when the perturbation parameter is large and degenerates to a mixed formulation of Poisson's equation as the perturbation parameter tends to zero. We propose two 2D and two 3D nonconforming rectangular finite elements, and derive robust discretization error estimates. Numerical experiments are carried out to verify the theoretical results.
A new approach in cascade flow analysis using the finite element method
Baskharone, E.; Hamed, A.
1980-01-01
A new approach in analyzing the potential flow past cascades and single airfoils using the finite element method is developed. In this analysis the circulation around the airfoil is not externally imposed but is directly computed in the numerical solution. Different finite element discretization patterns, orders of piecewise approximation, and grid sizes are used in the solution. The results obtained are compared with existing experimental measurements and exact solutions in cascades and single airfoils.
Schipper, H.R.
2015-01-01
The production of precast, concrete elements with complex, double-curved geometry is expensive due to the high costcosts of the necessary moulds and the limited possibilities for mould reuse. Currently, CNC-milled foam moulds are the solution applied mostly in projects, offering good aesthetic performance, but also resulting in waste of material, relatively low production speed and fairly high costs per element. The flexible mould method aims to offer an economic alternative for this state of...
Yang Liu
2012-01-01
Full Text Available A new positive definite expanded mixed finite element method is proposed for parabolic partial integrodifferential equations. Compared to expanded mixed scheme, the new expanded mixed element system is symmetric positive definite and both the gradient equation and the flux equation are separated from its scalar unknown equation. The existence and uniqueness for semidiscrete scheme are proved and error estimates are derived for both semidiscrete and fully discrete schemes. Finally, some numerical results are provided to confirm our theoretical analysis.
Starishko Ivan Nikolaevich
2014-03-01
Full Text Available The proposed calculation method is specific in terms of determining the carrying capacity of eccentrically compressed concrete elements, in contrast to the calculation by error method, as in the existing regulations, where in the result of the calculation is not known what is the limit load the eccentric compression element can withstand. The proposed calculation method, the publication of which is expected in the next issue of the "Vestnik MGSU" the above mentioned shortcomings of the existing calculation methods, as well as the shortcomings listed in this article are eliminated, which results in the higher convergence of theoretical and experimental results of eccentrically compressed concrete elements strength and hence a high reliability of their operation.
A new method of heart sound signal analysis based on independent function element
Cheng Xie-feng
2014-09-01
Full Text Available In this paper, a new method is presented for heart sound signal processing in statistical domain. The multiple components obtained from the conventional linear transformation are possibly irrelevant, but usually do not possess the characteristics of statistical independence. First, the definition and obtaining method of independent function element are discussed; the method of signal decomposition and reconstruction based on the independent function element, not only inherits the advantages of linear transformation, but also has the capability of signal representation in the statistical domain. After that, the application of independent function element in heart sound signal analysis is analyzed in detail. The validity and practicability of the method are demonstrated through two experiments.
A least-squares finite element method for 3D incompressible Navier-Stokes equations
Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.
A Floating Node Method for the Modelling of Discontinuities Within a Finite Element
Pinho, Silvestre T.; Chen, B. Y.; DeCarvalho, Nelson V.; Baiz, P. M.; Tay, T. E.
2013-01-01
This paper focuses on the accurate numerical representation of complex networks of evolving discontinuities in solids, with particular emphasis on cracks. The limitation of the standard finite element method (FEM) in approximating discontinuous solutions has motivated the development of re-meshing, smeared crack models, the eXtended Finite Element Method (XFEM) and the Phantom Node Method (PNM). We propose a new method which has some similarities to the PNM, but crucially: (i) does not introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not require numerical integration over only part of a domain; (iii) can incorporate weak discontinuities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is conceptually simpler than the PNM.
E-coil: an inverse boundary element method for a quasi-static problem
Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez [Depto. Electromagnetismo y F. de la Materia Facultad de Ciencias University of Granada Avda. Fuentenueva E-18071 (Spain); Power, Henry, E-mail: ccobos@ugr.e [School of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, Nottingham Park, Nottingham NG7 2RD (United Kingdom)
2010-06-07
Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.
A new method for true quantitative elemental imaging using PIXE and the proton microprobe
Ryan, C.G. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Churms, C.L.; Pilcher, J.V. [National Accelerator Centre, Faure (South Africa)
1993-12-31
Traditional methods for X-ray imaging using PIXE and the Proton Microprobe have used a simple gate set on an X-ray peak in a spectrum from a Si(Li) detector to provide an image of the distribution of an element. This method can produce artefacts in images, due to overlapping X-ray lines from interfering elements, charge collection tails on peaks, background variation, Si escape peaks and pileup, all of which can render images misleading or qualitative at best. To address this problem, a matrix transform method has been developed at the CSIRO which not only eliminates most artefacts, but can be implemented on-line. The method has been applied to study trace gold distribution in a complex gold bearing ore from Fiji , and more recently has been installed for direct on-line elemental imaging at the NAC in South Africa. 4 refs., 2 figs.
Huetink, J.; Vanderlugt, J.
1988-08-01
A mixed Eulerian-Lagrangian finite element method is developed by which nodal point locations can be adapted independently from the actual material displacements. Numerical difficulties due to large element distortions, as many occur when the updated Lagrange method is applied, can be avoided by this method. Movement of (free) surfaces can be taken into account by adapting nodal surface points in a way that they remain on the surface. Hardening and other deformation path dependent properties are determined by incremental treatment of convective terms. A local and a weighed global smoothing procedure is introduced in order to avoid numerical instabilities. The method has been applied to simulations of an upsetting process, a wire drawing process and a cold rolling process. In the simulation of the rolling process, both workpiece and roll are simultaneously analyzed in order to predict the flattening of the roll. Special contact-slip elements are developed for the tool-workpiece interface.
Yang Yong'an; Zhang Hongwei; Feng Zuren; Luo Yongjin
2006-01-01
The fuzzy integration evaluation method (FIEM) is studied in order to select the best orbital elements from the multi-group initial orbits determined by a satellite TT&C (Tracking, Telemetry and Control) center with all kinds of data sources. By employing FIEM together with the experience of TT&C experts, the index system to evaluate the selection of the best initial orbits is established after the data sources and orbit determination theories are studied. Besides, the concrete steps in employing the method are presented. Moreover, by taking the objects to be evaluated as evaluation experts, the problem of how to generate evaluation matrices is solved. Through practical application, the method to select the best initial orbital elements has been proved to be flexible and effective. The originality of the method is to find a new evaluation criterion (comparing the actually tracked orbits) replacing the traditional one (comparing the nominal orbits) for selecting the best orbital elements.
Interval finite element method and its application on anti-slide stability analysis
SHAO Guo-jian; SU Jing-bo
2007-01-01
The problem of interval correlation results in interval extension is discussed by the relationship of interval-valued functions and real-valued functions. The methods of reducing interval extension are given. Based on the ideas of the paper, the formulas of sub-interval perturbed finite element method based on the elements are given. The sub-interval amount is discussed and the approximate computation formula is given. At the same time, the computational precision is discussed and some measures of improving computational efficiency are given. Finally, based on sub-interval perturbed finite element method and anti-slide stability analysis method, the formula for computing the bounds of stability factor is given. It provides a basis for estimating and evaluating reasonably anti-slide stability of structures.
Zhao, Xuzhe
High efficiency hydrogen storage method is significant in development of fuel cell vehicle. Seeking for a high energy density material as the fuel becomes the key of wide spreading fuel cell vehicle. LiBH4 + MgH 2 system is a strong candidate due to their high hydrogen storage density and the reaction between them is reversible. However, LiBH4 + MgH 2 system usually requires the high temperature and hydrogen pressure for hydrogen release and uptake reaction. In order to reduce the requirements of this system, nanoengineering is the simple and efficient method to improve the thermodynamic properties and reduce kinetic barrier of reaction between LiBH4 and MgH2. Based on ab initio density functional theory (DFT) calculations, the previous study has indicated that the reaction between LiBH4 and MgH2 can take place at temperature near 200°C or below. However, the predictions have been shown to be inconsistent with many experiments. Therefore, it is the first time that our experiment using ball milling with aerosol spraying (BMAS) to prove the reaction between LiBH4 and MgH2 can happen during high energy ball milling at room temperature. Through this BMAS process we have found undoubtedly the formation of MgB 2 and LiH during ball milling of MgH2 while aerosol spraying of the LiBH4/THF solution. Aerosol nanoparticles from LiBH 4/THF solution leads to form Li2B12H12 during BMAS process. The Li2B12H12 formed then reacts with MgH2 in situ during ball milling to form MgB 2 and LiH. Discrete element modeling (DEM) is a useful tool to describe operation of various ball milling processes. EDEM is software based on DEM to predict power consumption, liner and media wear and mill output. In order to further improve the milling efficiency of BMAS process, EDEM is conducted to make analysis for complicated ball milling process. Milling speed and ball's filling ratio inside the canister as the variables are considered to determine the milling efficiency. The average and maximum
Janssen, Bärbel
2011-01-01
A multilevel method on adaptive meshes with hanging nodes is presented, and the additional matrices appearing in the implementation are derived. Smoothers of overlapping Schwarz type are discussed; smoothing is restricted to the interior of the subdomains refined to the current level; thus it has optimal computational complexity. When applied to conforming finite element discretizations of elliptic problems and Maxwell equations, the method\\'s convergence rates are very close to those for the nonadaptive version. Furthermore, the smoothers remain efficient for high order finite elements. We discuss the implementation in a general finite element code using the example of the deal.II library. © 2011 Societ y for Industrial and Applied Mathematics.
Wheeler, Mary
2013-11-16
We study the numerical approximation on irregular domains with general grids of the system of poroelasticity, which describes fluid flow in deformable porous media. The flow equation is discretized by a multipoint flux mixed finite element method and the displacements are approximated by a continuous Galerkin finite element method. First-order convergence in space and time is established in appropriate norms for the pressure, velocity, and displacement. Numerical results are presented that illustrate the behavior of the method. © Springer Science+Business Media Dordrecht 2013.
Mode analysis of structures using the Fourier p-element method
吴国荣; 钟伟芳
2003-01-01
The Fourier p-element method is an improvement to the finite element method, and is particularly suitable for vibration analysis due to the well-behaved Fourier series. In this paper, an iteration procedure is presented for solving the resulting nonlinear eigenvalue problem. Three types of Fourier version shape functions are constructed for analyzing the circular shaft torsional vibration, the plate in-plane vibration and annular plate flexural vibration modes, respectively.The numerical results show that this method can achieve higher accuracy and converge much faster than the FEM based on polynomial interpolation, especially for higher mode analysis.
Level set discrete element method for three-dimensional computations with triaxial case study
Kawamoto, Reid; Andò, Edward; Viggiani, Gioacchino; Andrade, José E.
2016-06-01
In this paper, we outline the level set discrete element method (LS-DEM) which is a discrete element method variant able to simulate systems of particles with arbitrary shape using level set functions as a geometric basis. This unique formulation allows seamless interfacing with level set-based characterization methods as well as computational ease in contact calculations. We then apply LS-DEM to simulate two virtual triaxial specimens generated from XRCT images of experiments and demonstrate LS-DEM's ability to quantitatively capture and predict stress-strain and volume-strain behavior observed in the experiments.
YIN Hong-jun; HE Ying-fu; FU Chun-quan
2005-01-01
The transient flow mathematical model of arbitrary shaped heterogeneous reservoirs with impermeability barrier is proposed in this paper. In order to establish this model, the perturbation method is employed and the solution of model is expanded into a series in powers of perturbation parameter. By using the Boundary Element Method (BEM) and Duhamel principle, wellbore pressure with effects of skins and wellbore storage is obtained. The type curves are plotted and analyzed considering effects of heterogeneity, arbitrary shape and impermeable barriers. Finally, the results obtained by perturbation boundary element method is compared with the analytical solution and is available for the transient pressure analysis of arbitrary shaped reservoirs.
ADAPTIVE FINITE ELEMENT METHOD FOR ANALYSIS OF POLLUTANT DISPERSION IN SHALLOW WATER
Somboon Otarawanna; Pramote Dechaumphai
2005-01-01
A finite element method for analysis of pollutant dispersion in shallow water is presented. The analysis is divided into two parts: ( 1 ) computation of the velocity flow field and water surface elevation, and (2) computation of the pollutant concentration field from the dispersion model. The method was combined with an adaptive meshing technique to increase the solution accuracy ,as well as to reduce the computational time and computer memory. The finite element formulation and the computer programs were validated by several examples that have known solutions. In addition, the capability of the combined method was demonstrated by analyzing pollutant dispersion in Chao Phraya River near the gulf of Thailand.
Application of the Finite Element Method in the Glass Fiber Bushing Research
CHEN Song; LU Jiansheng; GUAN Weiming; ZHANG Kunhua; PAN Yong; TAN Zhilong; XIA Lu
2012-01-01
Design and optimization of bushing at present mainly use the traditional experience method.The relevant research that adopts computer simulation to carry on the operation behavior of the bushing has appeared in recent years.How to use the finite element method to research bushing was introduced in the article.Physics fields and many relevant parameters of one real bushing were calculated.Through the results of calculation,it indicate that the finite element method is very useful in bushing research of designing and optimizing.
A new mixed element method for a class of time-fractional partial differential equations.
Liu, Yang; Li, Hong; Gao, Wei; He, Siriguleng; Fang, Zhichao
2014-01-01
A kind of new mixed element method for time-fractional partial differential equations is studied. The Caputo-fractional derivative of time direction is approximated by two-step difference method and the spatial direction is discretized by a new mixed element method, whose gradient belongs to the simple (L (2)(Ω)(2)) space replacing the complex H(div; Ω) space. Some a priori error estimates in L (2)-norm for the scalar unknown u and in (L (2))(2)-norm for its gradient σ. Moreover, we also discuss a priori error estimates in H (1)-norm for the scalar unknown u.
A New Mixed Element Method for a Class of Time-Fractional Partial Differential Equations
Yang Liu
2014-01-01
Full Text Available A kind of new mixed element method for time-fractional partial differential equations is studied. The Caputo-fractional derivative of time direction is approximated by two-step difference method and the spatial direction is discretized by a new mixed element method, whose gradient belongs to the simple L2Ω2 space replacing the complex H(div;Ω space. Some a priori error estimates in L2-norm for the scalar unknown u and in L22-norm for its gradient σ. Moreover, we also discuss a priori error estimates in H1-norm for the scalar unknown u.
A MIXED FINITE ELEMENT METHOD ON A STAGGERED MESH FOR NAVIER-STOKES EQUATIONS
Houde Han; Ming Yan
2008-01-01
In this paper, we introduce a mixed finite element method on a staggered mesh for the numerical solution of the steady state Navier-Stokes equations in which the two components of the velocity and the pressure are defined on three different meshes. This method is a conforming quadrilateral Q1 × Q1 - P0 element approximation for the Navier-Stokes equations. First-order error estimates are obtained for both the velocity and the pressure.Numerical examples are presented to illustrate the effectiveness of the proposed method.
Kou, Jisheng
2014-01-01
The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton\\'s method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.
Five-point Element Scheme of Finite Analytic Method for Unsteady Groundwater Flow
Xiang Bo; Mi Xiao; Ji Changming; Luo Qingsong
2007-01-01
In order to improve the finite analytic method's adaptability for irregular unit, by using coordinates rotation technique this paper establishes a five-point element scheme of finite analytic method. It not only solves unsteady groundwater flow equation but also gives the boundary condition. This method can be used to calculate the three typical questions of groundwater. By compared with predecessor's computed result, the result of this method is more satisfactory.
A Jacobian Separable 2-D Finite-Element Method for Electromagnetic Waveguide Problems
Khodapanah, Ehsan
2016-01-01
We propose an efficient finite-element analysis of the vector wave equation in a class of relatively general curved polygons. The proposed method is suitable for an accurate and efficient calculation of the propagation constants of waveguides filled with pieces of homogeneous materials. To apply the method, we first decompose the 2-D problem domain into a set of curved polygons of a specific characteristic. Then we divide every polygon into a set of triangular elements with two straight edges. Finally, we introduce a set of hierarchical mixed-order curl-conforming vector basis functions inside every triangular element to discretize the vector wave equation. The advantages of the method are as follows. The curved boundaries of the elements are modeled exactly and hence there is no approximation in the geometrical modeling. 2-D integrals of the matrix elements are reduced to 1-D integrals. Therefore, the matrix filling can be performed very fast. Total number of elements due to the discretization of a given dom...
Research on a special scarifier mechanism with Finite Element Analysis method.
Jiandong Jian,; Hoogmoed, W.B.; GuoXing Tao,; Jie Gao,; Xian Zhang,
2012-01-01
A scarifier mechanism with rotary tillage and anti-rotary grubbing is proposed for inducing the power of tillage in hardens soil. MAT147 material modal is amended by experimental method and soil high-speed cutting finite element modal is build through SPH method, further, the tools parameter of prop
Long Shuyao; Zhang Qin
2000-01-01
In this paper the dual reciprocity boundary element method is employed to solve nonlinear differential equation 2 u + u + εu3 = b. Results obtained in an example have a good agreement with those by FEM and show the applicability and simplicity of dual reciprocity method(DRM) in solving nonlinear dif ferential equations.
hpGEM -- A software framework for discontinuous Galerkin finite element methods
Pesch, L.; Bell, A.; Sollie, W.E.H.; Ambati, V.R.; Bokhove, O.; Vegt, van der J.J.W.
2007-01-01
hpGEM, a novel framework for the implementation of discontinuous Galerkin finite element methods (FEMs), is described. We present data structures and methods that are common for many (discontinuous) FEMs and show how we have implemented the components as an object-oriented framework. This framework
Least-squares spectral element method applied to the Euler equations
Gerritsma, M.I.; Bas, R. van der; De Maerschalck, B.; Koren, B.; Deconinck, H.
2008-01-01
This paper describes the application of the least-squares spectral element method to compressible flow problems. Special attention is paid to the imposition of the weak boundary conditions along curved walls and the influence of the time step on the position and resolution of shocks. The method is d
Zhang, Jie
2014-01-01
Based on the plenty method, this paper describes a numerical method for 2D non-smooth contact problems with Coulomb friction and bilateral constraints and its application to the simulation of statics and dynamics for a frictional translational joint. Comparison is made with results obtained using a finite element program, ANSYS.