WorldWideScience

Sample records for element cohesive fracture

  1. A cohesive finite element formulation for modelling fracture and ...

    Indian Academy of Sciences (India)

    cohesive elements experience material softening and lose their stress carrying capacity. A few simple ..... In the present work, a Lagrangian finite element procedure is employed. In this formu clation ...... o, is related to 'c o by,. 't o='c o ¼ 1 ہ. 1.

  2. Finite element analysis of an atomistically derived cohesive model for brittle fracture

    International Nuclear Information System (INIS)

    Lloyd, J T; McDowell, D L; Zimmerman, J A; Jones, R E; Zhou, X W

    2011-01-01

    In order to apply information from molecular dynamics (MD) simulations in problems governed by engineering length and time scales, a coarse graining methodology must be used. In previous work by Zhou et al (2009 Acta Mater. 57 4671–86), a traction-separation cohesive model was developed using results from MD simulations with atomistic-to-continuum measures of stress and displacement. Here, we implement this cohesive model within a combined finite element/cohesive surface element framework (referred to as a finite element approach or FEA), and examine the ability for the atomistically informed FEA to directly reproduce results from MD. We find that FEA shows close agreement of both stress and crack opening displacement profiles at the cohesive interface, although some differences do exist that can be attributed to the stochastic nature of finite temperature MD. The FEA methodology is then used to study slower loading rates that are computationally expensive for MD. We find that the crack growth process initially exhibits a rate-independent relationship between crack length and boundary displacement, followed by a rate-dependent regime where, at a given amount of boundary displacement, a lower applied strain rate produces a longer crack length. Our method is also extended to larger length scales by simulating a compact tension fracture-mechanics specimen with sub-micrometer dimensions. Such a simulation shows a computational speedup of approximately four orders of magnitude over conventional atomistic simulation, while exhibiting the expected fracture-mechanics response. Finally, differences between FEA and MD are explored with respect to ensemble and temperature effects in MD, and their impact on the cohesive model and crack growth behavior. These results enable us to make several recommendations to improve the methodology used to derive cohesive laws from MD simulations. In light of this work, which has critical implications for efforts to derive continuum laws

  3. A partly and fully cracked triangular XFEM element for modeling cohesive fracture

    DEFF Research Database (Denmark)

    Mougaard, Jens Falkenskov; Poulsen, Peter Noe; Nielsen, Leif Otto

    2011-01-01

    This paper discusses the build‐up of a partly cracked cohesive crack tip element. The crack tip element is based on the principles of the eXtended Finite Element Method (XFEM) and is of Linear Strain Triangle (LST) type. The composition of the enrichment has been in focus to achieve as complete...... as a fully cracked element with a few restrictions in the displacement field. The performance of the developed element has been tested in three examples. One example is an infinite sheet with an initial flaw in pure tension, where a semianalytical solution exists. The two other examples are the two benchmark...

  4. A Study on the Effect of Cohesive Laws on Finite Element Analysis of Crack Propagation Using Cohesive Elements

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyeongseok; Baek, Hyungchan; Kim, Hyungyu [Seoul Nat' l Univ. of Sci. and Tech., Seoul (Korea, Republic of)

    2014-04-15

    In this paper, the effect of cohesive laws on the finite element analysis of crack propagation using cohesive elements is investigated through three-point bending and double cantilever beam problems. The cohesive elements are implemented into ABAQUS/Standard user subroutines(UEL), and the shape of cohesive law is varied by changing parameters in polynomial functions of cohesive traction-separation relations. In particular, crack propagation behaviors are studied by comparing load-displacement curves of the analysis models which have different shapes of cohesive laws with the same values of fracture energy and cohesive strength. Furthermore, the influence of the element size on crack propagation is discussed in this study.

  5. Investigating Some Technical Issues on Cohesive Zone Modeling of Fracture

    Science.gov (United States)

    Wang, John T.

    2011-01-01

    This study investigates some technical issues related to the use of cohesive zone models (CZMs) in modeling fracture processes. These issues include: why cohesive laws of different shapes can produce similar fracture predictions; under what conditions CZM predictions have a high degree of agreement with linear elastic fracture mechanics (LEFM) analysis results; when the shape of cohesive laws becomes important in the fracture predictions; and why the opening profile along the cohesive zone length needs to be accurately predicted. Two cohesive models were used in this study to address these technical issues. They are the linear softening cohesive model and the Dugdale perfectly plastic cohesive model. Each cohesive model constitutes five cohesive laws of different maximum tractions. All cohesive laws have the same cohesive work rate (CWR) which is defined by the area under the traction-separation curve. The effects of the maximum traction on the cohesive zone length and the critical remote applied stress are investigated for both models. For a CZM to predict a fracture load similar to that obtained by an LEFM analysis, the cohesive zone length needs to be much smaller than the crack length, which reflects the small scale yielding condition requirement for LEFM analysis to be valid. For large-scale cohesive zone cases, the predicted critical remote applied stresses depend on the shape of cohesive models used and can significantly deviate from LEFM results. Furthermore, this study also reveals the importance of accurately predicting the cohesive zone profile in determining the critical remote applied load.

  6. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid; van Oort, Eric; Patzek, Tadeusz

    2018-01-01

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  7. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid

    2018-05-17

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  8. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    Science.gov (United States)

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  9. Time dependent fracture and cohesive zones

    Science.gov (United States)

    Knauss, W. G.

    1993-01-01

    This presentation is concerned with the fracture response of materials which develop cohesive or bridging zones at crack tips. Of special interest are concerns regarding crack stability as a function of the law which governs the interrelation between the displacement(s) or strain across these zones and the corresponding holding tractions. It is found that for some materials unstable crack growth can occur, even before the crack tip has experienced a critical COD or strain across the crack, while for others a critical COD will guarantee the onset of fracture. Also shown are results for a rate dependent nonlinear material model for the region inside of a craze for exploring time dependent crack propagation of rate sensitive materials.

  10. Effect of softening function on the cohesive crack fracture ...

    Indian Academy of Sciences (India)

    The cohesive crack model with linear softening yields the fracture process zones lower by ..... ignored during numerical simulation. In the crack band ..... performed with developed computer program using MATLAB for the following numerical.

  11. Cohesive fracture model for functionally graded fiber reinforced concrete

    International Nuclear Information System (INIS)

    Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery

    2010-01-01

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.

  12. Elongational rheology and cohesive fracture of photo-oxidated LDPE

    Energy Technology Data Exchange (ETDEWEB)

    Rolón-Garrido, Víctor H., E-mail: victor.h.rolongarrido@tu-berlin.de; Wagner, Manfred H. [Chair of Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Fasanenstrasse 90, D-10623 Berlin (Germany)

    2014-01-15

    It was found recently that low-density polyethylene (LDPE) samples with different degrees of photo-oxidation represent an interesting system to study the transition from ductile to cohesive fracture and the aspects of the cohesive rupture in elongational flow. Sheets of LDPE were subjected to photo-oxidation in the presence of air using a xenon lamp to irradiate the samples for times between 1 day and 6 weeks. Characterisation methods included Fourier transform infrared spectroscopy, solvent extraction method, and rheology in shear and uniaxial extensional flows. Linear viscoelasticity was increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by the carbonyl index, acid and aldehydes groups, and gel fraction. The molecular stress function model was used to quantify the experimental data, and the nonlinear model parameter β was found to be correlated with the gel content. The uniaxial data showed that the transition from ductile to cohesive fracture was shifted to lower elongational rates, the higher the gel content was. From 2 weeks photo-oxidation onwards, cohesive rupture occurred at every strain rate investigated. The true strain and true stress at cohesive fracture as well as the energy density applied to the sample up to fracture were analyzed. At low gel content, rupture was mainly determined by the melt fraction while at high gel content, rupture occurred predominantly in the gel structure. The strain at break was found to be independent of strain rate, contrary to the stress at break and the energy density. Thus, the true strain and not the stress at break or the energy density was found to be the relevant physical quantity to describe cohesive fracture behavior of photo-oxidated LDPE. The equilibrium modulus of the gel structures was correlated with the true strain at rupture. The stiffer the gel structure, the lower was the deformation tolerated before the sample breaks.

  13. Utilization of Large Cohesive Interface Elements for Delamination Simulation

    DEFF Research Database (Denmark)

    Bak, Brian Lau Verndal; Lund, Erik

    2012-01-01

    This paper describes the difficulties of utilizing large interface elements in delamination simulation. Solutions to increase the size of applicable interface elements are described and cover numerical integration of the element and modifications of the cohesive law....

  14. Derivation of Path Independent Coupled Mix Mode Cohesive Laws from Fracture Resistance Curves

    DEFF Research Database (Denmark)

    Goutianos, Stergios

    2016-01-01

    A generalised approach is presented to derive coupled mixed mode cohesive laws described with physical parameters such as peak traction, critical opening, fracture energy and cohesive shape. The approach is based on deriving mix mode fracture resistance curves from an effective mix mode cohesive...... law at different mode mixities. From the fracture resistance curves, the normal and shear stresses of the cohesive laws can be obtained by differentiation. Since, the mixed mode cohesive laws are obtained from a fracture resistance curve (potential function), path independence is automatically...

  15. Molecular-dynamics Simulation-based Cohesive Zone Representation of Intergranular Fracture Processes in Aluminum

    Science.gov (United States)

    Yamakov, Vesselin I.; Saether, Erik; Phillips, Dawn R.; Glaessgen, Edward H.

    2006-01-01

    A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics simulations. A molecular-dynamics model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat 99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element an atomistic analog to a continuum cohesive zone model element - the results from the molecular-dynamics simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion. Keywords: Crack-tip plasticity; Cohesive zone model; Grain boundary decohesion; Intergranular fracture; Molecular-dynamics simulation

  16. A consistent partly cracked XFEM element for cohesive crack growth

    DEFF Research Database (Denmark)

    Asferg, Jesper L.; Poulsen, Peter Noe; Nielsen, Leif Otto

    2007-01-01

    Present extended finite element method (XFEM) elements for cohesive crack growth may often not be able to model equal stresses on both sides of the discontinuity when acting as a crack-tip element. The authors have developed a new partly cracked XFEM element for cohesive crack growth with extra...... enrichments to the cracked elements. The extra enrichments are element side local and were developed by superposition of the standard nodal shape functions for the element and standard nodal shape functions for a sub-triangle of the cracked element. With the extra enrichments, the crack-tip element becomes...... capable of modelling variations in the discontinuous displacement field on both sides of the crack and hence also capable of modelling the case where equal stresses are present on each side of the crack. The enrichment was implemented for the 3-node constant strain triangle (CST) and a standard algorithm...

  17. Development of an evaluation method for fracture mechanical tests on small samples based on a cohesive zone model

    International Nuclear Information System (INIS)

    Mahler, Michael

    2016-01-01

    The safety and reliability of nuclear power plants of the fourth generation is an important issue. It is based on a reliable interpretation of the components for which, among other fracture mechanical material properties are required. The existing irradiation in the power plants significantly affects the material properties which therefore need to be determined on irradiated material. Often only small amounts of irradiated material are available for characterization. In that case it is not possible to manufacture sufficiently large specimens, which are necessary for fracture mechanical testing in agreement with the standard. Small specimens must be used. From this follows the idea of this study, in which the fracture toughness can be predicted with the developed method based on tests of small specimens. For this purpose, the fracture process including the crack growth is described with a continuum mechanical approach using the finite element method and the cohesive zone model. The experiments on small specimens are used for parameter identification of the cohesive zone model. The two parameters of the cohesive zone model are determined by tensile tests on notched specimens (cohesive stress) and by parameter fitting to the fracture behavior of smalls specimens (cohesive energy). To account the different triaxialities of the specimens, the cohesive stress is used depending on the triaxiality. After parameter identification a large specimen can be simulated with the cohesive zone parameters derived from small specimens. The predicted fracture toughness of this big specimen fulfills the size requirements in the standard (ASTM E1820 or ASTM E399) in contrast to the small specimen. This method can be used for ductile and brittle material behavior and was validated in this work. In summary, this method offers the possibility to determine the fracture toughness indirectly based on small specimen testing. Main advantage is the low required specimen volume. Thereby massively

  18. Simulating Dynamic Fracture in Oxide Fuel Pellets Using Cohesive Zone Models

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Williamson

    2009-08-01

    It is well known that oxide fuels crack during the first rise to power, with continued fracture occurring during steady operation and especially during power ramps or accidental transients. Fractures have a very strong influence on the stress state in the fuel which, in turn, drives critical phenomena such as fission gas release, fuel creep, and eventual fuel/clad mechanical interaction. Recently, interest has been expressed in discrete fracture methods, such as the cohesive zone approach. Such models are attractive from a mechanistic and physical standpoint, since they reflect the localized nature of cracking. The precise locations where fractures initiate, as well as the crack evolution characteristics, are determined as part of the solution. This paper explores the use of finite element cohesive zone concepts to predict dynamic crack behavior in oxide fuel pellets during power-up, steady operation, and power ramping. The aim of this work is first to provide an assessment of cohesive zone models for application to fuel cracking and explore important numerical issues associated with this fracture approach. A further objective is to provide basic insight into where and when cracks form, how they interact, and how cracking effects the stress field in a fuel pellet. The ABAQUS commercial finite element code, which includes powerful cohesive zone capabilities, was used for this study. Fully-coupled thermo-mechanical behavior is employed, including the effects of thermal expansion, swelling due to solid and gaseous fission products, and thermal creep. Crack initiation is determined by a temperature-dependent maximum stress criterion, based on measured fracture strengths for UO2. Damage evolution is governed by a traction-separation relation, calibrated to data from temperature and burn-up dependent fracture toughness measurements. Numerical models are first developed in 2D based on both axisymmetric (to explore axial cracking) and plane strain (to explore radial

  19. Long Fibre Composite Modelling Using Cohesive User's Element

    International Nuclear Information System (INIS)

    Kozak, Vladislav; Chlup, Zdenek

    2010-01-01

    The development glass matrix composites reinforced by unidirectional long ceramic fibre has resulted in a family of very perspective structural materials. The only disadvantage of such materials is relatively high brittleness at room temperature. The main micromechanisms acting as toughening mechanism are the pull out, crack bridging, matrix cracking. There are other mechanisms as crack deflection etc. but the primer mechanism is mentioned pull out which is governed by interface between fibre and matrix. The contribution shows a way how to predict and/or optimise mechanical behaviour of composite by application of cohesive zone method and write user's cohesive element into the FEM numerical package Abaqus. The presented results from numerical calculations are compared with experimental data. Crack extension is simulated by means of element extinction algorithms. The principal effort is concentrated on the application of the cohesive zone model with the special traction separation (bridging) law and on the cohesive zone modelling. Determination of micro-mechanical parameters is based on the combination of static tests, microscopic observations and numerical calibration procedures.

  20. Probabilistic fracture finite elements

    Science.gov (United States)

    Liu, W. K.; Belytschko, T.; Lua, Y. J.

    1991-05-01

    The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.

  1. Calculation of adhesive and cohesive fracture toughness of a thin brittle coating on a polymer substrate

    International Nuclear Information System (INIS)

    Jansson, N.E.; Leterrier, Y.; Medico, L.; Manson, J.-A.E.

    2006-01-01

    Determination of fracture parameters for brittle coatings with a sub-micron thickness is not a straightforward task. Since direct evaluation through testing with for instance a double cantilever beam or compact tension tests is hardly applicable due to the extreme thinness of the coating, methods such as the fragmentation test are used. When a structure with a brittle coating on a soft substrate is strained, the coating develops a crack pattern with parallel cracks perpendicular to the loading direction. The crack density (number of cracks per unit length) increases with strain up to a saturation value. Analytical formulas to model the fragmentation process exist but are limited to elastic materials. In this work finite element simulations are applied in order to deduce the adhesive and cohesive fracture properties of the interface and coating respectively from experimental data. The simulations include both the plastic behaviour of the substrate and debonding of the coating from the substrate, the latter achieved by application of a cohesive zone model. The main conclusion is that the plastic dissipation within the substrate must be correctly accounted for to get realistic interfacial and coating fracture toughness values

  2. Stress-compatible embedded cohesive crack in CST element

    DEFF Research Database (Denmark)

    Olesen, John Forbes; Poulsen, Peter Noe

    2010-01-01

    A simple element with an embedded strong discontinuity for modeling cohesive cracking of concrete is presented. The element differs from previous elements of the embedded type, in that a consistent stress field is obtained by direct enforcement of stress continuity across the crack....... The displacement discontinuity is modeled in an XFEM fashion; however, the discontinuous displacement field is special, allowing for the direct enforcement of stress continuity. This in turn allows for elimination of extra degrees of freedom necessary for describing the crack deformations, thus the element has...... the same number of freedoms as its continuous basis: CST. The good performance of the element is demonstrated by its ability to simulate threepoint bending of a notched concrete beam. The advantage of the element is its simplicity and the straightforward implementation of it. Handling situations...

  3. Cohesive phase-field fracture and a PDE constrained optimization approach to fracture inverse problems

    Energy Technology Data Exchange (ETDEWEB)

    Tupek, Michael R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-30

    In recent years there has been a proliferation of modeling techniques for forward predictions of crack propagation in brittle materials, including: phase-field/gradient damage models, peridynamics, cohesive-zone models, and G/XFEM enrichment techniques. However, progress on the corresponding inverse problems has been relatively lacking. Taking advantage of key features of existing modeling approaches, we propose a parabolic regularization of Barenblatt cohesive models which borrows extensively from previous phase-field and gradient damage formulations. An efficient explicit time integration strategy for this type of nonlocal fracture model is then proposed and justified. In addition, we present a C++ computational framework for computing in- put parameter sensitivities efficiently for explicit dynamic problems using the adjoint method. This capability allows for solving inverse problems involving crack propagation to answer interesting engineering questions such as: 1) what is the optimal design topology and material placement for a heterogeneous structure to maximize fracture resistance, 2) what loads must have been applied to a structure for it to have failed in an observed way, 3) what are the existing cracks in a structure given various experimental observations, etc. In this work, we focus on the first of these engineering questions and demonstrate a capability to automatically and efficiently compute optimal designs intended to minimize crack propagation in structures.

  4. Cohesive zone modelling and the fracture process of structural tape

    DEFF Research Database (Denmark)

    Stigh, Ulf; Biel, Anders; Svensson, Daniel

    2016-01-01

    and the separation is measured experimentally using methods based on the path independence of the J-integral. Repeated experiments are performed at quasi-static loading. A mixed mode cohesive law is adapted to the experimental data. The law is implemented as a UMAT in Abaqus. Simulations show minor thermal...

  5. Study of the brickwork masonry cracking with a cohesive fracture model

    Directory of Open Access Journals (Sweden)

    Reyes, E.

    2011-09-01

    Full Text Available This paper presents a numerical procedure to simulate the cracking process of the brickwork masonry under tensile/shear loading. The model is an extension of the cohesive model prepared by the authors for concrete, and takes into account the anisotropy of the material. The numerical procedure includes two steps: 1 calculation of the crack path with a linear elastic fracture model, 2 after the crack path is obtained, an interface finite element (using the cohesive fracture model is incorporated into the trajectory. Such a model is then implemented into a commercial code by means of a user subroutine, consequently being contrasted with experimental results. Fracture properties of masonry are independently measured for two directions on the composed masonry, and then input in the numerical model. This numerical procedure accurately predicts the experimental mixed mode fracture records for different orientations of the brick layers on masonry panels.

    Este artículo presenta un modelo de cálculo que permite simular el comportamiento en rotura de la fábrica de ladrillo bajo solicitaciones de tracción y cortante. El modelo extiende el modelo cohesivo formulado por los autores para hormigón, considerando la anisotropía del material. El procedimiento de cálculo consta de dos fases: 1 obtención de la trayectoria de grieta mediante un cálculo elástico lineal, 2 incorporación del modelo cohesivo en la misma mediante elementos de intercara. El modelo se ha implementado en un programa de elementos finitos comercial con una subrutina de usuario y se ha contrastado con los resultados experimentales de los ensayos a escala. Las propiedades mecánicas de la fábrica, en especial las de fractura, se miden con ensayos de caracterización en dos direcciones. Éstas se incorporan al modelo de cálculo para simular los ensayos de fractura en modo mixto, prediciendo los resultados adecuadamente para distintas orientaciones de los tendeles.

  6. Investigation of translaminar fracture in fibrereinforced composite laminates---applicability of linear elastic fracture mechanics and cohesive-zone model

    Science.gov (United States)

    Hou, Fang

    With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters

  7. A Molecular-Scale Understanding of Cohesion and Fracture in P3HT:Fullerene Blends

    KAUST Repository

    Tummala, Naga Rajesh

    2015-04-21

    Quantifying cohesion and understanding fracture phenomena in thin-film electronic devices are necessary for improved materials design and processing criteria. For organic photovoltaics (OPVs), the cohesion of the photoactive layer portends its mechanical flexibility, reliability, and lifetime. Here, the molecular mechanism for the initiation of cohesive failure in bulk heterojunction (BHJ) OPV active layers derived from the semiconducting polymer poly-(3-hexylthiophene) [P3HT] and two mono-substituted fullerenes is examined experimentally and through molecular-dynamics simulations. The results detail how, under identical conditions, cohesion significantly changes due to minor variations in the fullerene adduct functionality, an important materials consideration that needs to be taken into account across fields where soluble fullerene derivatives are used.

  8. Transverse posterior element fractures associated with torsion

    International Nuclear Information System (INIS)

    Abel, M.S.

    1989-01-01

    Six examples of a previously undescribed class of transverse vertebral element fractures are presented. These fractures differ from Chance and Smith fractures and their variants in the following respects: (1) the etiology is torsion and not flexion; (2) there is neither distraction of posterior ring fragments nor posterior ligament tears; (3) in contrast to Chance and Smith fractures, extension of the fracture into the vertebral body is absent or minimal; (4) the transverse process of the lumbar vertebra is avulsed at its base with a vertical fracture, not split horizontally. These fractures occur in cervical, lumbar, and sacral vertebrae in normal or compromised areas of the spine. (orig.)

  9. An Atomistic Modeling Study of Alloying Element Impurity Element, and Transmutation Products on the cohesion of A Nickel E5 {001} Twist Grain Boundary

    International Nuclear Information System (INIS)

    Young, G.A. Jr.; Najafabadi, R.; Strohmayer, W.; Baldrey, D.G.; Hamm, B.; Harris, J.; Sticht, J.; Wimmer, E.

    2003-01-01

    Atomistic modeling methods were employed to investigate the effects of impurity elements on the metallurgy, irradiation embrittlement, and environmentally assisted cracking of nickel-base alloys exposed to nuclear environments. Calculations were performed via ab initio atomistic modeling methods to ensure the accuracy and reliability of the results. A Griffith-type fracture criterion was used to quantitatively assess the effect of elements or element pairs on the grain boundary cohesive strength. In order of most embrittling to most strengthening, the elements are ranked as: He, Li, S, H, C, Zr, P, Fe, Mn, Nb, Cr, and B. Helium is strongly embrittling (-2.04 eV/atom lowering of the Griffith energy), phosphorus has little effect on the grain boundary (0.1 eV/atom), and boron offers appreciable strengthening (1.03 eV/atom increase in the Griffith energy). Calculations for pairs of elements (H-Li, H-B, H-C, H-P, and H-S) show little interaction on the grain boundary cohesive energy, so that for the conditions studied, linear superposition of elemental effects is a good approximation. These calculations help explain metallurgical effects (e.g. why boron can strengthen grain boundaries), irradiation embrittlement (e.g. how boron transmutation results in grain boundary embrittlement), as well as how grain boundary impurity elements can affect environmentally assisted cracking (i.e. low temperature crack propagation and stress corrosion cracking) of nickel-base alloys

  10. Probabilistic finite elements for fracture mechanics

    Science.gov (United States)

    Besterfield, Glen

    1988-01-01

    The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.

  11. Avalanche weak layer shear fracture parameters from the cohesive crack model

    Science.gov (United States)

    McClung, David

    2014-05-01

    Dry slab avalanches release by mode II shear fracture within thin weak layers under cohesive snow slabs. The important fracture parameters include: nominal shear strength, mode II fracture toughness and mode II fracture energy. Alpine snow is not an elastic material unless the rate of deformation is very high. For natural avalanche release, it would not be possible that the fracture parameters can be considered as from classical fracture mechanics from an elastic framework. The strong rate dependence of alpine snow implies that it is a quasi-brittle material (Bažant et al., 2003) with an important size effect on nominal shear strength. Further, the rate of deformation for release of an avalanche is unknown, so it is not possible to calculate the fracture parameters for avalanche release from any model which requires the effective elastic modulus. The cohesive crack model does not require the modulus to be known to estimate the fracture energy. In this paper, the cohesive crack model was used to calculate the mode II fracture energy as a function of a brittleness number and nominal shear strength values calculated from slab avalanche fracture line data (60 with natural triggers; 191 with a mix of triggers). The brittleness number models the ratio of the approximate peak value of shear strength to nominal shear strength. A high brittleness number (> 10) represents large size relative to fracture process zone (FPZ) size and the implications of LEFM (Linear Elastic Fracture Mechanics). A low brittleness number (e.g. 0.1) represents small sample size and primarily plastic response. An intermediate value (e.g. 5) implies non-linear fracture mechanics with intermediate relative size. The calculations also implied effective values for the modulus and the critical shear fracture toughness as functions of the brittleness number. The results showed that the effective mode II fracture energy may vary by two orders of magnitude for alpine snow with median values ranging from 0

  12. Modeling grain boundaries in polycrystals using cohesive elements: Qualitative and quantitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    El Shawish, Samir, E-mail: Samir.ElShawish@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Simonovski, Igor [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands)

    2013-08-15

    Highlights: ► We estimate the performance of cohesive elements for modeling grain boundaries. ► We compare the computed stresses in ABAQUS finite element solver. ► Tests are performed in analytical and realistic models of polycrystals. ► Most severe issue is found within the plastic grain response. ► Other identified issues are related to topological constraints in modeling space. -- Abstract: We propose and demonstrate several tests to estimate the performance of the cohesive elements in ABAQUS for modeling grain boundaries in complex spatial structures such as polycrystalline aggregates. The performance of the cohesive elements is checked by comparing the computed stresses with the theoretically predicted values for a homogeneous material under uniaxial tensile loading. Statistical analyses are performed under different loading conditions for two elasto-plastic models of the grains: isotropic elasticity with isotropic hardening plasticity and anisotropic elasticity with crystal plasticity. Tests are conducted on an analytical finite element model generated from Voronoi tessellation as well as on a realistic finite element model of a stainless steel wire. The results of the analyses highlight several issues related to the computation of normal and shear stresses. The most severe issue is found within the plastic grain response where the computed normal stresses on a particularly oriented cohesive elements are significantly underestimated. Other issues are found to be related to topological constraints in the modeling space and result in the increased scatter of the computed stresses.

  13. Development of an evaluation method for fracture mechanical tests on small samples based on a cohesive zone model; Entwicklung einer Auswertemethode fuer bruchmechanische Versuche an kleinen Proben auf der Basis eines Kohaesivzonenmodells

    Energy Technology Data Exchange (ETDEWEB)

    Mahler, Michael

    2016-07-01

    The safety and reliability of nuclear power plants of the fourth generation is an important issue. It is based on a reliable interpretation of the components for which, among other fracture mechanical material properties are required. The existing irradiation in the power plants significantly affects the material properties which therefore need to be determined on irradiated material. Often only small amounts of irradiated material are available for characterization. In that case it is not possible to manufacture sufficiently large specimens, which are necessary for fracture mechanical testing in agreement with the standard. Small specimens must be used. From this follows the idea of this study, in which the fracture toughness can be predicted with the developed method based on tests of small specimens. For this purpose, the fracture process including the crack growth is described with a continuum mechanical approach using the finite element method and the cohesive zone model. The experiments on small specimens are used for parameter identification of the cohesive zone model. The two parameters of the cohesive zone model are determined by tensile tests on notched specimens (cohesive stress) and by parameter fitting to the fracture behavior of smalls specimens (cohesive energy). To account the different triaxialities of the specimens, the cohesive stress is used depending on the triaxiality. After parameter identification a large specimen can be simulated with the cohesive zone parameters derived from small specimens. The predicted fracture toughness of this big specimen fulfills the size requirements in the standard (ASTM E1820 or ASTM E399) in contrast to the small specimen. This method can be used for ductile and brittle material behavior and was validated in this work. In summary, this method offers the possibility to determine the fracture toughness indirectly based on small specimen testing. Main advantage is the low required specimen volume. Thereby massively

  14. Cohesive zone modelling of wafer bonding and fracture: effect of patterning and toughness variations

    Science.gov (United States)

    Kubair, D. V.; Spearing, S. M.

    2006-03-01

    Direct wafer bonding has increasingly become popular in the manufacture of microelectromechanical systems and semiconductor microelectronics components. The success of the bonding process is controlled by variables such as wafer flatness and surface preparation. In order to understand the effects of these variables, spontaneous planar crack propagation simulations were performed using the spectral scheme in conjunction with a cohesive zone model. The fracture-toughness on the bond interface is varied to simulate the effect of surface roughness (nanotopography) and patterning. Our analysis indicated that the energetics of crack propagation is sensitive to the local surface property variations. The patterned wafers are tougher (well bonded) than the unpatterned ones of the same average fracture-toughness.

  15. Super heavy element Copernicium: Cohesive and electronic properties revisited

    Science.gov (United States)

    Gyanchandani, Jyoti; Mishra, Vinayak; Dey, G. K.; Sikka, S. K.

    2018-01-01

    First principles scalar relativistic (SR) calculations with and without including the spin orbit (SO) interactions have been performed for solid Copernicium (Cn) to determine its ground state equilibrium structure, volume, bulk modulus, pressure derivative of the bulk modulus, density of states and band structure. Both SR and SR+SO calculations have been performed with 6p levels treated as part of core electrons and also as part of valence electrons. These calculations have been performed for the rhombohedral, BCT, FCC, HCP, BCC and SC structures. Results have been compared with the results for Hg which is lighter homologue of Cn in the periodic table. We find hcp to be the stable crystal structure at SR level of theory and also at SR+SO level of theory when the 6p electrons are treated as part of core electrons. With 6p as part of valence electrons, SR+SO level of computations, however, yield bcc structure to be the most stable structure. Equilibrium volume (V0) of the most stable crystal structure at SR level of theory viz. hcp structure is 188.66 a.u.3whereas its value for the bcc structure, the equilibrium ground state structure at SR+SO level of theory is 165.71 a.u.3 i.e a large change due to relativistic effects is seen. The density of states at Fermi level is much smaller in Cn than in Hg, making it a poorer metal than mercury. In addition the cohesive energy of Cn is computed to be almost two times that of Hg for SR+SO case.

  16. Experiments and discrete element simulation of the dosing of cohesive powders in a simplified geometry

    NARCIS (Netherlands)

    Imole, Olukayode Isaiah; Krijgsman, Dinant; Weinhart, Thomas; Magnanimo, Vanessa; Chavez Montes, Bruno E.; Ramaioli, Marco; Luding, Stefan

    2016-01-01

    We perform experiments and discrete element simulations on the dosing of cohesive granular materials in a simplified geometry. The setup is a canister box where the powder is dosed out through the action of a constant-pitch coil feeder connected to a motor. A dosing step consists of a rotation

  17. Identification of parameters of cohesive elements for modeling of adhesively bonded joints of epoxy composites

    Directory of Open Access Journals (Sweden)

    Kottner R.

    2013-12-01

    Full Text Available Adhesively bonded joints can be numerically simulated using the cohesive crack model. The critical strain energy release rate and the critical opening displacement are the parameters which must be known when cohesive elements in MSC.Marc software are used. In this work, the parameters of two industrial adhesives Hunstman Araldite 2021 and Gurit Spabond 345 for bonding of epoxy composites are identified. Double Cantilever Beam (DCB and End Notched Flexure (ENF test data were used for the identification. The critical opening displacements were identified using an optimization algorithm where the tests and their numerical simulations were compared.

  18. Finite element analysis of tibial fractures

    DEFF Research Database (Denmark)

    Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner

    2010-01-01

    Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant...

  19. 3-D cohesive finite element model for application in structural analysis of heavy duty composite pavements

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe

    2015-01-01

    The problem of stiffness degradation in composite pavement systems from localised fracture damage in the quasibrittle cement bound granular mixture are today taken into account only by empirical formulas. These formulas deals with a limited number of materials in a restricted range of design...... this paper presents a numerical analysis of the fracture behaviour of cement bound granular mixtures in composite concrete block pavement systems applying a cohesive model. The functionality of the proposed model is compared to experimental investigations of beam bending tests. The pavement is modelled......, it can be shown that adequately good prediction of the structural response of composite pavements is obtained for monotonic loading without significant computational cost, making the model applicable for engineering design purpose. It is envisaged that the methodology implemented in this study can...

  20. Finite Element Simulation of Fracture Toughness Test

    International Nuclear Information System (INIS)

    Chu, Seok Jae; Liu, Cong Hao

    2013-01-01

    Finite element simulations of tensile tests were performed to determine the equivalent stress - equivalent plastic strain curves, critical equivalent stresses, and critical equivalent plastic strains. Then, the curves were used as inputs to finite element simulations of fracture toughness tests to determine the plane strain fracture toughness. The critical COD was taken as the COD when the equivalent plastic strain at the crack tip reached a critical value, and it was used as a crack growth criterion. The relationship between the critical COD and the critical equivalent plastic strain or the reduction of area was found. The relationship between the plane strain fracture toughness and the product of the critical equivalent stress and the critical equivalent plastic strain was also found

  1. Discrete Element Simulations and Experiments on the Deformation of Cohesive Powders in a Bi-Axial Box

    NARCIS (Netherlands)

    Imole, Olukayode Isaiah; Kumar, Nishant; Magnanimo, Vanessa; Luding, Stefan

    2012-01-01

    We compare element test experiments and simulations on the deformation of frictional, cohesive particles in a bi-axial box. We show that computer simulations with the Discrete Element Method qualitatively reproduce a uniaxial compression element test in the true bi-axial tester. We highlight the

  2. Finite Element Multibody Simulation of a Breathing Crack in a Rotor with a Cohesive Zone Model

    OpenAIRE

    Liong, Rugerri Toni; Proppe, Carsten

    2013-01-01

    The breathing mechanism of a transversely cracked shaft and its influence on a rotor system that appears due to shaft weight and inertia forces is studied. The presence of a crack reduces the stiffness of the rotor system and introduces a stiffness variation during the revolution of the shaft. Here, 3D finite element (FE) model and multibody simulation (MBS) are introduced to predict and to analyse the breathing mechanism on a transverse cracked shaft. It is based on a cohesive zone model (CZ...

  3. Cohesive Modeling of Transverse Cracking in Laminates with a Single Layer of Elements per Ply

    Science.gov (United States)

    VanDerMeer, Frans P.; Davila, Carlos G.

    2013-01-01

    This study aims to bridge the gap between classical understanding of transverse cracking in cross-ply laminates and recent computational methods for the modeling of progressive laminate failure. Specifically, the study investigates under what conditions a finite element model with cohesive X-FEM cracks can reproduce the in situ effect for the ply strength. It is shown that it is possible to do so with a single element across the thickness of the ply, provided that the interface stiffness is properly selected. The optimal value for this interface stiffness is derived with an analytical shear lag model. It is also shown that, when the appropriate statistical variation of properties has been applied, models with a single element through the thickness of a ply can predict the density of transverse matrix cracks

  4. A self-adaptive finite element approach for simulation of mixed-mode delamination using cohesive zone models

    NARCIS (Netherlands)

    Samimi, M.; Dommelen, van J.A.W.; Geers, M.G.D.

    2011-01-01

    Oscillations observed in the load–displacement response of brittle interfaces modeled by cohesive zone elements in a quasi-static finite element framework are artifacts of the discretization. The typical limit points in this oscillatory path can be traced by application of path-following techniques,

  5. A Molecular-Scale Understanding of Cohesion and Fracture in P3HT:Fullerene Blends

    KAUST Repository

    Tummala, Naga Rajesh; Bruner, Christopher; Risko, Chad; Bredas, Jean-Luc; Dauskardt, Reinhold H.

    2015-01-01

    mechanical flexibility, reliability, and lifetime. Here, the molecular mechanism for the initiation of cohesive failure in bulk heterojunction (BHJ) OPV active layers derived from the semiconducting polymer poly-(3-hexylthiophene) [P3HT] and two mono

  6. Mode-I Fracture Toughness Testing and Coupled Cohesive Zone Modeling at In Situ P, T, and Chemical (H2O-CO2-NaCl) Conditions

    Science.gov (United States)

    Dewers, T. A.; Choens, R. C., II; Regueiro, R. A.; Eichhubl, P.; Bryan, C. R.; Rinehart, A. J.; Su, J. C.; Heath, J. E.

    2017-12-01

    Propagation of mode I cracks is fundamental to subsurface engineering endeavors, but the majority of fracture toughness measurements are performed at ambient conditions. A novel testing apparatus was used to quantify the relationship between supercritical carbon dioxide (scCO2), water vapor, and fracture toughness in analogs for reservoir rock and caprock lithologies at temperature and pressure conditions relevant to geologic carbon storage. Samples of Boise Sandstone and Marcellus Shale were subject to fracture propagation via a novel short rod fracture toughness tester composed of titanium and Hastelloy® and designed to fit inside a pressure vessel. The tester is controlled by a hydraulically-driven ram and instrumented with a LVDT to monitor displacement. We measure fracture toughness under conditions of dry supercritical CO2 (scCO2), scCO2-saturated brine, and scCO2 with varying water content ( 25%, 90%, and 100% humidity) at 13.8 MPa and 70oC. Water film development as a function of humidity is determined in situ during the experiments with a quartz crystal microbalance. Two orientations of the Marcellus are included in the testing matrix. Dry CO2 has a negligible to slightly strengthening effect compared to a control, however hydrous scCO2 can decrease the fracture toughness, and the effect increases with increasing humidity, which likely is due to capillary condensation of reactive water films at nascent crack tips and associated subcritical weakening. A 2D poromechanical finite element model with cohesive surface elements (CSEs) and a chemo-plasticity phenomenology is being used to describe the chemical weakening/softening effects observed in the testing. The reductions in fracture toughness seen in this study could be important in considerations of borehole stability, in situ stress measurements, changes in fracture gradient, and reservoir caprock integrity during CO2 injection and storage. Sandia National Laboratories is a multimission laboratory managed

  7. Cohesive cracked-hinge model for simulation of fracture in one-way slabs on grade

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe; Olesen, John Forbes

    2017-01-01

    Numerical analysis of slab on grade structures subjected to mechanical loads is a complex matter often requiring computationally expensive models. In order to develop a simplified and general concept for non-linear analysis of slab on grade structures, this paper presents a cohesive cracked-hinge...

  8. Application of trilinear softening functions based on a cohesive crack approach to the simulation of the fracture behaviour of fibre reinforced cementitious materials.

    Science.gov (United States)

    Enfedaque, A.; Alberti, M. G.; Gálvez, J. C.

    2017-09-01

    The relevance of fibre reinforced cementitious materials (FRC) has increased due to the appearance of regulations that establish the requirements needed to take into account the contribution of the fibres in the structural design. However, in order to exploit the properties of such materials it is a key aspect being able to simulate their behaviour under fracture conditions. Considering a cohesive crack approach, several authors have studied the suitability of using several softening functions. However, none of these functions can be directly applied to FRC. The present contribution analyses the suitability of multilinear softening functions in order to obtain simulation results of fracture tests of a wide variety of FRC. The implementation of multilinear softening functions has been successfully performed by means of a material user subroutine in a commercial finite element code obtaining accurate results in a wide variety of FRC. Such softening functions were capable of simulating a ductile unloading behaviour as well as a rapid unloading followed by a reloading and afterwards a slow unloading. Moreover, the implementation performed has been proven as versatile, robust and efficient from a numerical point of view.

  9. Effect of Processing Conditions on Fracture Resistance and Cohesive Laws of Binderfree All-Cellulose Composites

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Arévalo, R.; Sørensen, Bent F.

    2014-01-01

    molecules during the drying process. Defibrilation of the raw cellulose material is done in wet medium in a paper-like process. Panels with different refining time were tested and it was found than an increase in fibre fibrillation results in a lower fracture resistance. © 2014 Springer Science......The fracture properties of all-cellulose composites without matrix were studied using Double Cantilever Beam (DCB) sandwich specimens loaded with pure monotonically increasing bending moments, which give stable crack growth. The experiments were conducted in an environmental scanning electron...... microscope to a) perform accurate measurements of both the fracture energy for crack initiation and the fracture resistance and b) observe the microscale failure mechanisms especially in the the wake of the crack tip. Since the mechanical behaviour of the all-cellulose composites was non-linear, a general...

  10. Fracture and Fragmentation of Simplicial Finite Elements Meshes using Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Mota, A; Knap, J; Ortiz, M

    2006-10-18

    An approach for the topological representation of simplicial finite element meshes as graphs is presented. It is shown that by using a graph, the topological changes induced by fracture reduce to a few, local kernel operations. The performance of the graph representation is demonstrated and analyzed, using as reference the 3D fracture algorithm by Pandolfi and Ortiz [22]. It is shown that the graph representation initializes in O(N{sub E}{sup 1.1}) time and fractures in O(N{sub I}{sup 1.0}) time, while the reference implementation requires O(N{sub E}{sup 2.1}) time to initialize and O(N{sub I}{sup 1.9}) time to fracture, where NE is the number of elements in the mesh and N{sub I} is the number of interfaces to fracture.

  11. Predictions of mixed mode interface crack growth using a cohesive zone model for ductile fracture

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2004-01-01

    Special interface elements that account for ductile failure by the nucleation and growth of voids to coalescence are used to analyse crack growth. In these elements the stress component tangential to the interface is accounted for, as determined by the requirement of compatibility with the surrou......Special interface elements that account for ductile failure by the nucleation and growth of voids to coalescence are used to analyse crack growth. In these elements the stress component tangential to the interface is accounted for, as determined by the requirement of compatibility...

  12. Extended Finite Element Method XFEM for ductile tearing: Large crack growth modelization based on the transition from a continuous medium to the crack via a cohesive zone model

    International Nuclear Information System (INIS)

    Simatos, A.

    2010-01-01

    This work extends the applicability of local models for ductile fracture to large crack growth modelization for ductile tearing. This is done inserting a cohesive zone model whose constitutive law is identified in order to be consistent with the local model. The consistency is obtained through the cohesive law incremental construction which ensures the equivalence of the energy and of the mechanical response of the models. The extension of the applicability domain of the local modelization is enabled via the XFEM framework which allows for maintaining the mechanical energy during the crack extension step. This method permits also to introduce the cohesive zone model during the calculation without regards to the mesh of the structure for its maximal tensile stress. To apply the XFEM to ductile tearing, this method is extended to non linear problems (Updated Lagrangian Formulation, large scale yield plasticity). The cohesive zone model grows when the criterion defined in term of porosity, tested at the front of the cohesive crack front, is verified. The cohesive zone growth criterion is determined in order to model most of the damaging phase with the local model to ensure that the modelization takes into account the triaxiality ratio history accurately. The proposed method is applied to the Rousselier local model for ductile fracture in the XFEM framework of Cast3M, the FE software of the CEA. (author) [fr

  13. Finite-element analysis of dynamic fracture

    Science.gov (United States)

    Aberson, J. A.; Anderson, J. M.; King, W. W.

    1976-01-01

    Applications of the finite element method to the two dimensional elastodynamics of cracked structures are presented. Stress intensity factors are computed for two problems involving stationary cracks. The first serves as a vehicle for discussing lumped-mass and consistent-mass characterizations of inertia. In the second problem, the behavior of a photoelastic dynamic tear test specimen is determined for the time prior to crack propagation. Some results of a finite element simulation of rapid crack propagation in an infinite body are discussed.

  14. Fracture assessment of laser welde joints using numerical crack propagation simulation with a cohesive zone model; Bruchmechanische Bewertung von Laserschweissverbindungen durch numerische Rissfortschrittsimulation mit dem Kohaesivzonenmodell

    Energy Technology Data Exchange (ETDEWEB)

    Scheider, I.

    2001-07-01

    This thesis introduces a concept for fracture mechanical assessment of structures with heterogenuous material properties like weldments. It is based on the cohesive zone model for numerical crack propagation analysis. With that model the failure of examined structures due to fracture can be determined. One part of the thesis contains the extension of the capabilities of the cohesive zone model regarding modelling threedimensional problems, shear fracture and unloading. In a second part new methods are developed for determination of elastic-plastic and fracture mechanical material properties, resp., which are based on optical determination of the specimen deformation. The whole concept has been used successfully for the numerical simulation of small laser welded specimens. (orig.) [German] In der vorliegenden Arbeit wird ein Konzept vorgestellt, mit dem es moeglich ist, Bauteile mit heterogenen Materialeigenschaften, wie z.B. Schweissverbindungen, bruchmechanisch zu bewerten. Es basiert auf einem Modell zur numerischen Rissfortschrittsimulation, dem Kohaesivzonenmodell, um das Versagen des zu untersuchenden Bauteils infolge von Bruch zu bestimmen. Ein Teil der Arbeit umfasst die Weiterentwicklung des Kohaesivzonenmodells zur Vorhersage des Bauteilversagens in Bezug auf die Behandlung dreidimensionaler Probleme, Scherbuch und Entlastung. In einem zweiten Teil werden Methoden zur Bestimmung sowohl der elastischplastischen als auch der bruchmechanischen Materialparameter entwickelt, die zum grossen Teil auf optischen Auswertungsmethoden der Deformationen beruhen. Das geschlossene Konzept wird erfolgreich auf lasergeschweisste Kleinproben angewendet. (orig.)

  15. Network cohesion

    OpenAIRE

    Cavalcanti, Tiago Vanderlei; Giannitsarou, Chrysi; Johnson, CR

    2017-01-01

    We define a measure of network cohesion and show how it arises naturally in a broad class of dynamic models of endogenous perpetual growth with network externalities. Via a standard growth model, we show why network cohesion is crucial for conditional convergence and explain that as cohesion increases, convergence is faster. We prove properties of network cohesion and define a network aggregator that preserves network cohesion.

  16. Simulation of debonding in Al/epoxy T-peel joints using a potential-based cohesive zone model

    KAUST Repository

    Alfano, Marco; Furgiuele, Franco; Lubineau, Gilles; Paulino, Glaucio H.

    2011-01-01

    In this work, a cohesive zone model of fracture is employed to study debonding in plastically deforming Al/epoxy T-peel joints. In order to model the adhesion between the bonded metal strips, the Park-Paulino-Roesler (PPR) potential based cohesive model (J Mech Phys Solids, 2009;57:891-908) is employed, and interface elements are implemented in a finite element com-mercial code. A study on the influence of the cohesive properties (i.e. cohesive strength, fracture energy, shape parameter and slope indicator) on the predicted peel-force versus displacement plots reveals that the numerical results are mostly sensitive to cohesive strength and fracture energy. In turn, these parameters are tuned until a match between experimental and simulated load displacement curves is achieved.

  17. Simulation of debonding in Al/epoxy T-peel joints using a potential-based cohesive zone model

    KAUST Repository

    Alfano, Marco

    2011-06-10

    In this work, a cohesive zone model of fracture is employed to study debonding in plastically deforming Al/epoxy T-peel joints. In order to model the adhesion between the bonded metal strips, the Park-Paulino-Roesler (PPR) potential based cohesive model (J Mech Phys Solids, 2009;57:891-908) is employed, and interface elements are implemented in a finite element com-mercial code. A study on the influence of the cohesive properties (i.e. cohesive strength, fracture energy, shape parameter and slope indicator) on the predicted peel-force versus displacement plots reveals that the numerical results are mostly sensitive to cohesive strength and fracture energy. In turn, these parameters are tuned until a match between experimental and simulated load displacement curves is achieved.

  18. Boundary element simulation of petroleum reservoirs with hydraulically fractured wells

    Science.gov (United States)

    Pecher, Radek

    The boundary element method is applied to solve the linear pressure-diffusion equation of fluid-flow in porous media. The governing parabolic partial differential equation is transformed into the Laplace space to obtain the elliptic modified-Helmholtz equation including the homogeneous initial condition. The free- space Green's functions, satisfying this equation for anisotropic media in two and three dimensions, are combined with the generalized form of the Green's second identity. The resulting boundary integral equation is solved by following the collocation technique and applying the given time-dependent boundary conditions of the Dirichlet or Neumann type. The boundary integrals are approximated by the Gaussian quadrature along each element of the discretized domain boundary. Heterogeneous regions are represented by the sectionally-homogeneous zones of different rock and fluid properties. The final values of the interior pressure and velocity fields and of their time-derivatives are found by numerically inverting the solutions from the Laplace space by using the Stehfest's algorithm. The main extension of the mostly standard BEM-procedure is achieved in the modelling of the production and injection wells represented by internal sources and sinks. They are treated as part of the boundary by means of special single-node and both-sided elements, corresponding to the line and plane sources respectively. The wellbore skin and storage effects are considered for the line and cylindrical sources. Hydraulically fractured wells of infinite conductivity are handled directly according to the specified constraint type, out of the four alternatives. Fractures of finite conductivity are simulated by coupling the finite element model of their 1D-interior with the boundary element model of their 2D- exterior. Variable fracture width, fractures crossing zone boundaries, ``networking'' of fractures, fracture-tip singularity handling, or the 3D-description are additional advanced

  19. Finite elements in fracture mechanics theory, numerics, applications

    CERN Document Server

    Kuna, Meinhard

    2013-01-01

    Fracture mechanics has established itself as an important discipline of growing interest to those working to assess the safety, reliability and service life of engineering structures and materials. In order to calculate the loading situation at cracks and defects, nowadays numerical techniques like finite element method (FEM) have become indispensable tools for a broad range of applications. The present monograph provides an introduction to the essential concepts of fracture mechanics, its main goal being to procure the special techniques for FEM analysis of crack problems, which have to date only been mastered by experts. All kinds of static, dynamic and fatigue fracture problems are treated in two- and three-dimensional elastic and plastic structural components. The usage of the various solution techniques is demonstrated by means of sample problems selected from practical engineering case studies. The primary target group includes graduate students, researchers in academia and engineers in practice.

  20. Probabilistic finite elements for fatigue and fracture analysis

    Science.gov (United States)

    Belytschko, Ted; Liu, Wing Kam

    1993-04-01

    An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.

  1. (Environmental and geophysical modeling, fracture mechanics, and boundary element methods)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L.J.

    1990-11-09

    Technical discussions at the various sites visited centered on application of boundary integral methods for environmental modeling, seismic analysis, and computational fracture mechanics in composite and smart'' materials. The traveler also attended the International Association for Boundary Element Methods Conference at Rome, Italy. While many aspects of boundary element theory and applications were discussed in the papers, the dominant topic was the analysis and application of hypersingular equations. This has been the focus of recent work by the author, and thus the conference was highly relevant to research at ORNL.

  2. Development of a user element in ABAQUS for modelling of cohesive laws in composite structures

    DEFF Research Database (Denmark)

    Feih, S.

    2006-01-01

    forward, and most existing publications consider theoretical and therefore simpler softening shapes. In this article, bridging laws were implemented intoan interface element in the UEL user subroutine in the finite element code ABAQUS. Comparison with different experimental data points for crack opening...... measurements of the crack growth resistance and the end opening of the notch. The advantage of this method is that these bridging laws represent material laws independent of the specimen geometry. However, theadaption of the experimentally determined shape to a numerically valid model shape is not straight...

  3. Modelling cohesive laws in finite element simulations via an adapted contact procedure in ABAQUS

    DEFF Research Database (Denmark)

    Feih, S.

    2004-01-01

    is not straightforward, and most existing publications consider theoretical and therefore simpler softening shapes. Two possible methods of bridging law approximation areexplained and compared in this report. The bridging laws were implemented in a numerical user subroutine in the finite element code ABAQUS. The main...

  4. Probabilistic finite elements for fracture and fatigue analysis

    Science.gov (United States)

    Liu, W. K.; Belytschko, T.; Lawrence, M.; Besterfield, G. H.

    1989-01-01

    The fusion of the probabilistic finite element method (PFEM) and reliability analysis for probabilistic fracture mechanics (PFM) is presented. A comprehensive method for determining the probability of fatigue failure for curved crack growth was developed. The criterion for failure or performance function is stated as: the fatigue life of a component must exceed the service life of the component; otherwise failure will occur. An enriched element that has the near-crack-tip singular strain field embedded in the element is used to formulate the equilibrium equation and solve for the stress intensity factors at the crack-tip. Performance and accuracy of the method is demonstrated on a classical mode 1 fatigue problem.

  5. Behavior of rare earth elements in fractured aquifers: an application to geological disposal criteria for radioactive waste

    International Nuclear Information System (INIS)

    Lee, Seung Gu; Kim, Yong Je; Lee, Kil Yong; Kim, Kun Han

    2003-01-01

    An understanding of the geochemistry of potential host rocks is very important in the site evaluation for construction of an underground geologic repository for radioactive waste. Because of similar valence and ionic radii and high similarity in electronic structure with trivalent actinides (such as Am 3+ and Cm 3+ ), the rare earth elements (REEs) have been used to predict the behavior of actinide-series elements in solution (Runde et al., 1992). For Am and Cm, which occur only in the trivalent states in most waste-disposal repository environments, the analogy with the REEs is particularly relevant. In order to discuss the behavior of REEs in geological media and to deduce the behavior of actinides in geological environments based on the REE abundance, and to provide an useful tool in deciding an optimum geological condition for radioactive disposal, we estimated the REE abundance from various kinds of fractured rock type. In fractured granitic aquifer, chondrite-normalized REE pattern show Eu positive anomaly due to fracture-filling calcite precipitation. However, in fractured meta-basaltic and volcanic tuffaceous aquifer, REE pattern do not show the change of Eu anomaly due to fracture-filling calcite precipitation. Eu shows very similar properties such as cohesive energy, ionic radii with coordination number compared to Am. Therefore, if we consider the Eu behavior in fractured rocks and the similar physical/chemical properties of Eu and Am, together, our results strongly suggest that Eu is a very useful analogue for predicting the behavior of Am in geological environment

  6. A fully coupled finite element framework for thermal fracturing simulation in subsurface cold CO2 injection

    Directory of Open Access Journals (Sweden)

    Shunde Yin

    2018-03-01

    Simulation of thermal fracturing during cold CO2 injection involves the coupled processes of heat transfer, mass transport, rock deforming as well as fracture propagation. To model such a complex coupled system, a fully coupled finite element framework for thermal fracturing simulation is presented. This framework is based on the theory of non-isothermal multiphase flow in fracturing porous media. It takes advantage of recent advances in stabilized finite element and extended finite element methods. The stabilized finite element method overcomes the numerical instability encountered when the traditional finite element method is used to solve the convection dominated heat transfer equation, while the extended finite element method overcomes the limitation with traditional finite element method that a model has to be remeshed when a fracture is initiated or propagating and fracturing paths have to be aligned with element boundaries.

  7. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling

    Science.gov (United States)

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li

    2017-09-01

    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  8. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  9. Network cohesion

    OpenAIRE

    Cavalcanti, Tiago V. V.; Giannitsarou, Chryssi; Johnson, Charles R.

    2016-01-01

    This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00199-016-0992-1 We define a measure of network cohesion and show how it arises naturally in a broad class of dynamic models of endogenous perpetual growth with network externalities. Via a standard growth model, we show why network cohesion is crucial for conditional convergence and explain that as cohesion increases, convergence is faster. We prove properties of network cohesion and d...

  10. Representative elements: A step to large-scale fracture system simulation

    International Nuclear Information System (INIS)

    Clemo, T.M.

    1987-01-01

    Large-scale simulation of flow and transport in fractured media requires the development of a technique to represent the effect of a large number of fractures. Representative elements are used as a tool to model a subset of a fracture system as a single distributed entity. Representative elements are part of a modeling concept called dual permeability. Dual permeability modeling combines discrete fracture simulation of the most important fractures with the distributed modeling of the less important fracture of a fracture system. This study investigates the use of stochastic analysis to determine properties of representative elements. Given an assumption of fully developed laminar flow, the net fracture conductivities and hence flow velocities can be determined from descriptive statistics of fracture spacing, orientation, aperture, and extent. The distribution of physical characteristics about their mean leads to a distribution of the associated conductivities. The variance of hydraulic conductivity induces dispersion into the transport process. Simple fracture systems are treated to demonstrate the usefulness of stochastic analysis. Explicit equations for conductivity of an element are developed and the dispersion characteristics are shown. Explicit formulation of the hydraulic conductivity and transport dispersion reveals the dependence of these important characteristics on the parameters used to describe the fracture system. Understanding these dependencies will help to focus efforts to identify the characteristics of fracture systems. Simulations of stochastically generated fracture sets do not provide this explicit functional dependence on the fracture system parameters. 12 refs., 6 figs

  11. An implicit finite element method for discrete dynamic fracture

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, Jobie M. [Colorado State Univ., Fort Collins, CO (United States)

    1999-12-01

    A method for modeling the discrete fracture of two-dimensional linear elastic structures with a distribution of small cracks subject to dynamic conditions has been developed. The foundation for this numerical model is a plane element formulated from the Hu-Washizu energy principle. The distribution of small cracks is incorporated into the numerical model by including a small crack at each element interface. The additional strain field in an element adjacent to this crack is treated as an externally applied strain field in the Hu-Washizu energy principle. The resulting stiffness matrix is that of a standard plane element. The resulting load vector is that of a standard plane element with an additional term that includes the externally applied strain field. Except for the crack strain field equations, all terms of the stiffness matrix and load vector are integrated symbolically in Maple V so that fully integrated plane stress and plane strain elements are constructed. The crack strain field equations are integrated numerically. The modeling of dynamic behavior of simple structures was demonstrated within acceptable engineering accuracy. In the model of axial and transverse vibration of a beam and the breathing mode of vibration of a thin ring, the dynamic characteristics were shown to be within expected limits. The models dominated by tensile forces (the axially loaded beam and the pressurized ring) were within 0.5% of the theoretical values while the shear dominated model (the transversely loaded beam) is within 5% of the calculated theoretical value. The constant strain field of the tensile problems can be modeled exactly by the numerical model. The numerical results should therefore, be exact. The discrepancies can be accounted for by errors in the calculation of frequency from the numerical results. The linear strain field of the transverse model must be modeled by a series of constant strain elements. This is an approximation to the true strain field, so some

  12. Finite element assisted prediction of ductile fracture in sheet bulging

    Science.gov (United States)

    Donald, Bryan J. Mac; Lorza, Ruben Lostado; Yoshihara, Shoichiro

    2017-10-01

    With growing demand for energy efficiency, there is much focus on reducing oil consumption rates and utilising alternative fuels. A contributor to the solution in this area is to produce lighter vehicles that are more fuel efficient and/or allow for the use of alternative fuel sources (e.g. electric powered automobiles). Near-net-shape manufacturing processes such as hydroforming have great potential to reduce structural weight while still maintaining structural strength and performance. Finite element analysis techniques have proved invaluable in optimizing such hydroforming processes, however, the majority of such studies have used simple predictors of failure which are usually yield criteria such as von Mises stress. There is clearly potential to obtain more optimal solutions using more advanced predictors of failure. This paper compared the Von Mises stress failure criteria and the Oyane's ductile fracture criteria in the sheet hydroforming of magnesium alloys. It was found that the results obtained from the models which used Oyane's ductile fracture criteria were more realistic than those obtained from those that used Von Mises stress as a failure criteria.

  13. Numerical simulation of cracks and interfaces with cohesive zone models in the extended finite element method, with EDF R and D software Code Aster

    International Nuclear Information System (INIS)

    Ferte, Guilhem

    2014-01-01

    In order to assess the harmfulness of detected defects in some nuclear power plants, EDF Group is led to develop advanced simulation tools. Among the targeted mechanisms are 3D non-planar quasi-static crack propagation, but also dynamic transients during unstable phases. In the present thesis, quasi-brittle crack growth is simulated based on the combination of the XFEM and cohesive zone models. These are inserted over large potential crack surfaces, so that the cohesive law will naturally separate adherent and de-bonding zones, resulting in an implicit update of the crack front, which makes the originality of the approach. This requires a robust insertion of non-smooth interface laws in the XFEM, which is achieved in quasi-statics with the use of XFEM-suited multiplier spaces in a consistent formulation, block-wise diagonal interface operators and an augmented Lagrangian formalism to write the cohesive law. Based on this concept and a novel directional criterion appealing to cohesive integrals, a propagation procedure over non-planar crack paths is proposed and compared with literature benchmarks. As for dynamics, an initially perfectly adherent cohesive law is implicitly treated within an explicit time-stepping scheme, resulting in an analytical determination of interface tractions if appropriate discrete spaces are used. Implementation is validated on a tapered DCB test. Extension to quadratic elements is then investigated. For stress-free cracks, it was found that a subdivision into quadratic sub-cells is needed for optimality. Theory expects enriched quadrature to be necessary for distorted sub-cells, but this could not be observed in practice. For adherent interfaces, a novel discrete multiplier space was proposed which has both numerical stability and produces quadratic convergence if used along with quadratic sub-cells. (author)

  14. SIAM CM 09 - The SIAM method for applying cohesive models to the damage behaviour of engineering materials and structures

    International Nuclear Information System (INIS)

    Scheider, Ingo; Cornec, Alfred; Schwalbe, Karl-Heinz

    2009-01-01

    This document provides guidance on the determination of damage and fracture of ductile metallic materials and structures made thereof, based mainly on experience obtained at GKSS. The method used for the fracture prediction is the cohesive model, in which material separation is represented by interface elements and their constitutive behaviour, the so-called traction-separation law, in the framework of finite elements. Several traction-separation laws are discussed, some of which are already implemented in commercial finite element codes and therefore easy applicable. Methods are described for the determination of the cohesive parameters, using a hybrid experimental/numerical approach. (orig.)

  15. SIAM CM 09 - The SIAM method for applying cohesive models to the damage behaviour of engineering materials and structures

    Energy Technology Data Exchange (ETDEWEB)

    Scheider, Ingo; Cornec, Alfred [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung; Schwalbe, Karl-Heinz

    2009-12-19

    This document provides guidance on the determination of damage and fracture of ductile metallic materials and structures made thereof, based mainly on experience obtained at GKSS. The method used for the fracture prediction is the cohesive model, in which material separation is represented by interface elements and their constitutive behaviour, the so-called traction-separation law, in the framework of finite elements. Several traction-separation laws are discussed, some of which are already implemented in commercial finite element codes and therefore easy applicable. Methods are described for the determination of the cohesive parameters, using a hybrid experimental/numerical approach. (orig.)

  16. Adaptive mixed finite element methods for Darcy flow in fractured porous media

    KAUST Repository

    Chen, Huangxin; Salama, Amgad; Sun, Shuyu

    2016-01-01

    In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

  17. Adaptive mixed finite element methods for Darcy flow in fractured porous media

    KAUST Repository

    Chen, Huangxin

    2016-09-21

    In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

  18. Probalistic Finite Elements (PFEM) structural dynamics and fracture mechanics

    Science.gov (United States)

    Liu, Wing-Kam; Belytschko, Ted; Mani, A.; Besterfield, G.

    1989-01-01

    The purpose of this work is to develop computationally efficient methodologies for assessing the effects of randomness in loads, material properties, and other aspects of a problem by a finite element analysis. The resulting group of methods is called probabilistic finite elements (PFEM). The overall objective of this work is to develop methodologies whereby the lifetime of a component can be predicted, accounting for the variability in the material and geometry of the component, the loads, and other aspects of the environment; and the range of response expected in a particular scenario can be presented to the analyst in addition to the response itself. Emphasis has been placed on methods which are not statistical in character; that is, they do not involve Monte Carlo simulations. The reason for this choice of direction is that Monte Carlo simulations of complex nonlinear response require a tremendous amount of computation. The focus of efforts so far has been on nonlinear structural dynamics. However, in the continuation of this project, emphasis will be shifted to probabilistic fracture mechanics so that the effect of randomness in crack geometry and material properties can be studied interactively with the effect of random load and environment.

  19. Adaptive Finite Element-Discrete Element Analysis for Microseismic Modelling of Hydraulic Fracture Propagation of Perforation in Horizontal Well considering Pre-Existing Fractures

    Directory of Open Access Journals (Sweden)

    Yongliang Wang

    2018-01-01

    Full Text Available Hydrofracturing technology of perforated horizontal well has been widely used to stimulate the tight hydrocarbon reservoirs for gas production. To predict the hydraulic fracture propagation, the microseismicity can be used to infer hydraulic fractures state; by the effective numerical methods, microseismic events can be addressed from changes of the computed stresses. In numerical models, due to the challenges in accurately representing the complex structure of naturally fractured reservoir, the interaction between hydraulic and pre-existing fractures has not yet been considered and handled satisfactorily. To overcome these challenges, the adaptive finite element-discrete element method is used to refine mesh, effectively identify the fractures propagation, and investigate microseismic modelling. Numerical models are composed of hydraulic fractures, pre-existing fractures, and microscale pores, and the seepage analysis based on the Darcy’s law is used to determine fluid flow; then moment tensors in microseismicity are computed based on the computed stresses. Unfractured and naturally fractured models are compared to assess the influences of pre-existing fractures on hydrofracturing. The damaged and contact slip events were detected by the magnitudes, B-values, Hudson source type plots, and focal spheres.

  20. An element-based finite-volume method approach for naturally fractured compositional reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Marcondes, Francisco [Federal University of Ceara, Fortaleza (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br; Varavei, Abdoljalil; Sepehrnoori, Kamy [The University of Texas at Austin (United States). Petroleum and Geosystems Engineering Dept.], e-mails: varavei@mail.utexas.edu, kamys@mail.utexas.edu

    2010-07-01

    An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix equation, each element is divided into three sub-elements and then the mass balance equations for each component are integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the method. (author)

  1. Brittle Fracture Mechanics of Snow : In Situ Testing and Distinct Element Modeling

    Science.gov (United States)

    Faillettaz, J.; Daudon, D.; Louchet, F.

    development. The experimental cam- paign carried out in the Alps during the 2000-2001 winter on homogeneous sintered snow with a density of 200 kg/m3 (typical of a snow slab) gave results of the same or- der of magnitude as Michot's. A numerical modeling of these toughness experiments was performed using a distinct element code, considering snow as a cohesive granu- lar material. Both crack propagation and rupture patterns are in close agreement with experiments. References: Kirchner, Michot, Suzuki 2000 Fracture thoughness of snow in tension 1 Philisophical Magazine A, vol 80,N5, p1265-1272. Louchet 2001,A transition in dry snow slab avalanche triggering modes, Annales de glaciologie, vol 32,Symphosium on Snow, Avalanches and Impact of the Frest Cover, Innsbruck,Austria,22-26 may 2000, p2285-289 2

  2. Cohesive traction-separation relations for plate tearing under mixed mode loading

    DEFF Research Database (Denmark)

    Andersen, R. G.; Woelke, P. B.; Nielsen, K. L.

    2018-01-01

    The present study investigates a sequence of failure events related to steady-state tearing of large-scale ductile plates by employing the micro-mechanics based Gurson-Tvergaard-Needleman (GTN) model. The fracture process in front of an advancing crack is approximated by a series of 2D plane strain...... finite element models to facilitate a comprehensive study of mixed mode fracture behavior as well as a parameter study of the cohesive energy and tractions involved in the process. The results from the conducted GTN model simulations are used to define cohesive zone models suitable for plate tearing...

  3. Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method

    KAUST Repository

    Efendiev, Yalchin R.

    2015-06-05

    In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.

  4. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.

    2017-06-09

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  5. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.; Chen, Huangxin; Sun, Shuyu

    2017-01-01

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  6. Incorporating in vivo fall assessments in the simulation of femoral fractures with finite element models

    NARCIS (Netherlands)

    Zijden, A.M. van der; Janssen, D.W.; Verdonschot, N.J.J.; Groen, B.E.; Nienhuis, B.; Weerdesteijn, V.G.M.; Tanck, E.J.M.

    2015-01-01

    Femoral fractures are a major health issue. Most experimental and finite element (FE) fracture studies use polymethylmethacrylate cups on the greater trochanter (GT) to simulate fall impact loads. However, in vivo fall studies showed that the femur is loaded distally from the GT. Our objective was

  7. Study on interaction between induced and natural fractures by extended finite element method

    Science.gov (United States)

    Xu, DanDan; Liu, ZhanLi; Zhuang, Zhuo; Zeng, QingLei; Wang, Tao

    2017-02-01

    Fracking is one of the kernel technologies in the remarkable shale gas revolution. The extended finite element method is used in this paper to numerically investigate the interaction between hydraulic and natural fractures, which is an important issue of the enigmatic fracture network formation in fracking. The criteria which control the opening of natural fracture and crossing of hydraulic fracture are tentatively presented. Influence factors on the interaction process are systematically analyzed, which include the approach angle, anisotropy of in-situ stress and fluid pressure profile.

  8. Determination of a cohesive law for delamination modelling - Accounting for variation in crack opening and stress state across the test specimen width

    DEFF Research Database (Denmark)

    Joki, R. K.; Grytten, F.; Hayman, Brian

    2016-01-01

    by differentiating the fracture resistance with respect to opening displacement at the initial location of the crack tip, measured at the specimen edge. 2) Extend the bridging law to a cohesive law by accounting for crack tip fracture energy. 3) Fine-tune the cohesive law through an iterative modelling approach so......The cohesive law for Mode I delamination in glass fibre Non-Crimped Fabric reinforced vinylester is determined for use in finite element models. The cohesive law is derived from a delamination test based on DCB specimens loaded with pure bending moments taking into account the presence of large...... that the changing state of stress and deformation across the width of the test specimen is taken into account. The changing state of stress and deformation across the specimen width is shown to be significant for small openings (small fracture process zone size). This will also be important for the initial part...

  9. Experimental and finite element analysis of fracture criterion in ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Birla Institute of Technology and Science, Pilani 333 031, India. 2 Research and ... The prevention of failure in stressed structural components currently ..... propagates. In the present work, a similar principle is extended to predict fracture limits using ... ASTM 1991 American Society for Testing and Materials (ASTM). E399-91 ...

  10. Development of a Fatigue Model for Low Alloy Steels Using a Cycle-Dependent Cohesive Zone Law

    Directory of Open Access Journals (Sweden)

    Kyungmok Kim

    2014-03-01

    Full Text Available A fatigue model for SAE 4130 steels is developed using a cycle-dependent cohesive zone law. Reduction of fracture energy and degradation of stiffness are considered to describe failure resistance after certain number of cycles. The reduction rate of fracture energy is determined with experimental stress (S- number of cycles to failure (N scatter found in the literature. Three-dimensional finite element models containing a cohesive zone are generated with commercial software (ABAQUS. Calculated fatigue lives at different stress ratios are in good agreement with experimental ones. In addition, fatigue behavior of hardened SAE 4130 steels is predicted with that of normalized material.

  11. Grain boundary segregation of elements of groups 14 and 15 and its consequences for intergranular cohesion of ferritic iron

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Šandera, P.; Horníková, J.; Řehák, Petr; Pokluda, J.

    2017-01-01

    Roč. 52, č. 10 (2017), s. 5822-5834 ISSN 0022-2461 R&D Projects: GA ČR GAP108/12/0144; GA MŠk(CZ) LQ1601 Institutional support: RVO:68378271 ; RVO:68081723 Keywords : grain boundary segregation * segregation enthalpy * intergranular fracture * strengthening/embrittling energy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.599, year: 2016

  12. Interactions of trace elements with fracture filling minerals from the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Landstroem, O.; Tullborg, E.L.

    1995-06-01

    This report focuses on the distribution of stable elements and natural radionuclides (e.g. REEs, Th, Ra, Sr and Cs) in natural fracture systems. They have been redistributed by natural processes in the past; mobilization, transport and deposition of which the latter is manifested as 'enrichments' of the elements in fracture fillings. Fillings dominated by Fe-oxyhydroxide, calcite and clay minerals show the highest concentrations. Precipitates from different fractures show large variations in concentration levels of trace elements, REE patterns, and activity and activity ratios of natural radionuclides, reflecting variations in physical, chemical and hydrological properties of the fractures. The incorporation of REEs, Sr, Th and U in calcite is significant. The precipitation rate influences the amount of Sr incorporated and probably other elements as well. Clay minerals have high sorption capacity and are important in the retention of Cs and Sr as well as of REEs, Th, U and Ra. The importance of clay minerals in radionuclide retention is emphasized by the results from this study, even small amounts of clay minerals in fractures and fracture zones can significantly influence the radionuclide migration. Accurate determination of quantities and types of clay minerals is therefore very important for radionuclide migration modelling. 58 refs, 14 figs, 12 tabs

  13. Interactions of trace elements with fracture filling minerals from the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Landstroem, O [Studsvik Eco and Safety AB, Nykoeping (Sweden); Tullborg, E L [Terralogica AB (Sweden)

    1995-06-01

    This report focuses on the distribution of stable elements and natural radionuclides (e.g. REEs, Th, Ra, Sr and Cs) in natural fracture systems. They have been redistributed by natural processes in the past; mobilization, transport and deposition of which the latter is manifested as `enrichments` of the elements in fracture fillings. Fillings dominated by Fe-oxyhydroxide, calcite and clay minerals show the highest concentrations. Precipitates from different fractures show large variations in concentration levels of trace elements, REE patterns, and activity and activity ratios of natural radionuclides, reflecting variations in physical, chemical and hydrological properties of the fractures. The incorporation of REEs, Sr, Th and U in calcite is significant. The precipitation rate influences the amount of Sr incorporated and probably other elements as well. Clay minerals have high sorption capacity and are important in the retention of Cs and Sr as well as of REEs, Th, U and Ra. The importance of clay minerals in radionuclide retention is emphasized by the results from this study, even small amounts of clay minerals in fractures and fracture zones can significantly influence the radionuclide migration. Accurate determination of quantities and types of clay minerals is therefore very important for radionuclide migration modelling. 58 refs, 14 figs, 12 tabs.

  14. A generalized multiscale finite element method for elastic wave propagation in fractured media

    KAUST Repository

    Chung, Eric T.

    2016-02-26

    In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.

  15. A generalized multiscale finite element method for elastic wave propagation in fractured media

    KAUST Repository

    Chung, Eric T.; Efendiev, Yalchin R.; Gibson, Richard L.; Vasilyeva, Maria

    2016-01-01

    In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.

  16. Towards a Cohesive Theory of Cohesion

    Directory of Open Access Journals (Sweden)

    Janet McLeod

    2013-12-01

    Full Text Available Conventional wisdom suggests that group cohesion is strongly related to performance. This may be based on the notion that better cohesion leads to the sharing of group goals. However, empirical and meta-analytic studies have been unable to consistently demonstrate a relationship between cohesion and performance. Partially, this problem could be attributed to the disagreement on the precise definition of cohesion and its components. Further, when the cohesion construct is evaluated under Cohen’s Cumulative Research Program (CRP, it is surprisingly found to belong to the category of early-to-intermediate stage of theory development. Therefore, a thorough re-examination of the cohesion construct is essential to advance our understanding of the cohesion-productivity relationship. We propose a qualitative approach because it will help establish the definitions, enable us to better test our theories about cohesion and its moderators, and provide insights into how best to enlist cohesion to improve team performance.

  17. Distinct Element Method modelling of fold-related fractures in a multilayer sequence

    Science.gov (United States)

    Kaserer, Klemens; Schöpfer, Martin P. J.; Grasemann, Bernhard

    2017-04-01

    Natural fractures have a significant impact on the performance of hydrocarbon systems/reservoirs. In a multilayer sequence, both the fracture density within the individual layers and the type of fracture intersection with bedding contacts are key parameters controlling fluid pathways. In the present study the influence of layer stacking and interlayer friction on fracture density and connectivity within a folded sequence is systematically investigated using 2D Distinct Element Method modelling. Our numerical approach permits forward modelling of both fracture nucleation/propagation/arrest and (contemporaneous) frictional slip along bedding planes in a robust and mechanically sound manner. Folding of the multilayer sequence is achieved by enforcing constant curvature folding by means of a velocity boundary condition at the model base, while a constant overburden pressure is maintained at the model top. The modelling reveals that with high bedding plane friction the multilayer stack behaves mechanically as a single layer so that the neutral surface develops in centre of the sequence and fracture spacing is controlled by the total thickness of the folded sequence. In contrast, low bedding plane friction leads to decoupling of the individual layers (flexural slip folding) so that a neutral surface develops in the centre of each layer and fracture spacing is controlled by the thickness of the individual layers. The low interfacial friction models illustrate that stepping of fractures across bedding planes is a common process, which can however have two contrasting origins: The mechanical properties of the interface cause fracture stepping during fracture propagation. Originally through-going fractures are later offset by interfacial slip during folding. A combination of these two different origins may lead to (apparently) inconsistent fracture offsets across bedding planes within a flexural slip fold.

  18. HYFRAC3D, 3-D Hydraulic Rock Fracture Propagation by Finite Element Method

    International Nuclear Information System (INIS)

    Advani, S.H.; Lee, J.K.; Lee, T.S.

    2001-01-01

    1 - Description of program or function: HYFRAC3D is a finite element program for simulation of three-dimensional fracture geometries with a two-dimensional planar solution. The model predicts the height, width and wing length over time for a hydraulic fracture propagating in a multi-layered system of rock with variable fluid flow and rock mechanics properties. 2 - Method of solution: The program uses the finite element Method of solution. A backward difference scheme is used by taking the weight functions on the time axis. This implicit time matching scheme requires iteration since the fracture configuration at time t+dt is not known. 3 - Restrictions on the complexity of the problem: Graphics output is not available and program is limited to fracture propagation in a single plane without proppant transport

  19. Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models

    Science.gov (United States)

    Katsaga, T.; Young, P.

    2009-05-01

    The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the

  20. Fracture resistance enhancement of layered structures by multiple cracks

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Sørensen, Bent F.

    2016-01-01

    A theoretical model is developed to test if the fracture resistance of a layered structure can be increased by introducing weak layers changing the cracking mechanism. An analytical model, based on the J integral, predicts a linear dependency between the number of cracks and the steady state...... fracture resistance. A finite element cohesive zone model, containing two cracking planes for simplicity, is used to check the theoretical model and its predictions. It is shown that for a wide range of cohesive law parameters, the numerical predictions agree well quantitatively with the theoretical model....... Thus, it is possible to enhance considerably the fracture resistance of a structure by adding weak layers....

  1. Prediction on fracture risk of femur with Osteogenesis Imperfecta using finite element models: Preliminary study

    Science.gov (United States)

    Wanna, S. B. C.; Basaruddin, K. S.; Mat Som, M. H.; Mohamad Hashim, M. S.; Daud, R.; Majid, M. S. Abdul; Sulaiman, A. R.

    2017-10-01

    Osteogenesis imperfecta (OI) is a genetic disease which affecting the bone geometry. In a severe case, this disease can cause death to patients. The main issue of this disease is the prediction on bone fracture by the orthopaedic surgeons. The resistance of the bone to withstand the force before the bones fracture often become the main concern. Therefore, the objective of the present preliminary study was to investigate the fracture risk associated with OI bone, particularly in femur, when subjected to the self-weight. Finite element (FEA) was employed to reconstruct the OI bone model and analyse the mechanical stress response of femur before it fractures. Ten deformed models with different severity of OI bones were developed and the force that represents patient self-weight was applied to the reconstructed models in static analysis. Stress and fracture risk were observed and analysed throughout the simulation. None of the deformed model were observed experienced fracture. The fracture risk increased with increased severity of the deformed bone. The results showed that all deformed femur models were able to bear the force without experienced fracture when subjected to only the self-weight.

  2. Drosophila TDP-43 RNA-Binding Protein Facilitates Association of Sister Chromatid Cohesion Proteins with Genes, Enhancers and Polycomb Response Elements.

    Directory of Open Access Journals (Sweden)

    Amanda Swain

    2016-09-01

    Full Text Available The cohesin protein complex mediates sister chromatid cohesion and participates in transcriptional control of genes that regulate growth and development. Substantial reduction of cohesin activity alters transcription of many genes without disrupting chromosome segregation. Drosophila Nipped-B protein loads cohesin onto chromosomes, and together Nipped-B and cohesin occupy essentially all active transcriptional enhancers and a large fraction of active genes. It is unknown why some active genes bind high levels of cohesin and some do not. Here we show that the TBPH and Lark RNA-binding proteins influence association of Nipped-B and cohesin with genes and gene regulatory sequences. In vitro, TBPH and Lark proteins specifically bind RNAs produced by genes occupied by Nipped-B and cohesin. By genomic chromatin immunoprecipitation these RNA-binding proteins also bind to chromosomes at cohesin-binding genes, enhancers, and Polycomb response elements (PREs. RNAi depletion reveals that TBPH facilitates association of Nipped-B and cohesin with genes and regulatory sequences. Lark reduces binding of Nipped-B and cohesin at many promoters and aids their association with several large enhancers. Conversely, Nipped-B facilitates TBPH and Lark association with genes and regulatory sequences, and interacts with TBPH and Lark in affinity chromatography and immunoprecipitation experiments. Blocking transcription does not ablate binding of Nipped-B and the RNA-binding proteins to chromosomes, indicating transcription is not required to maintain binding once established. These findings demonstrate that RNA-binding proteins help govern association of sister chromatid cohesion proteins with genes and enhancers.

  3. Finite element analysis of cutting tools prior to fracture in hard turning operations

    International Nuclear Information System (INIS)

    Cakir, M. Cemal; I Sik, Yahya

    2005-01-01

    In this work cutting FEA of cutting tools prior to fracture is investigated. Fracture is the catastrophic end of the cutting edge that should be avoided for the cutting tool in order to have a longer tool life. This paper presents finite element modelling of a cutting tool just before its fracture. The data used in FEA are gathered from a tool breakage system that detects the fracture according to the variations of the cutting forces measured by a three-dimensional force dynamometer. The workpiece material used in the experiments is cold work tool steel, AISI O1 (60 HRC) and the cutting tool material is uncoated tungsten carbide (DNMG 150608). In order to investigate the cutting tool conditions in longitudinal external turning operations prior to fracture, static and dynamic finite element analyses are conducted. After the static finite element analysis, the modal and harmonic response analyses are carried on and the dynamic behaviours of the cutting tool structure are investigated. All FE analyses were performed using a commercial finite element package ANSYS

  4. Mechanism of distal radius fracture as analyzed by 3D finite element model

    International Nuclear Information System (INIS)

    Tomizawa, Kazuo

    2007-01-01

    The purpose of this study is to see the difference of distal radius fracture between normal and osteoporotic bones and in its patterns due to limb position at injury through simulation and analysis of the biomechanics using three-dimensional (3D) finite element model. CT images were taken with SIEMENS machine, of right wrist joints of 32 and 76 years old, normal healthy man and osteoporotic woman, respectively. The wrist joint angles at CT were 70 degrees both at dorsiflexion and at palmerflexion for simulating fracture at tumbling down. The 3D bone model reconstructed from CT images with Forge software (Studio PON) was trimmed to remain the distal radial-ulnar portion and proximal carpal bones to make simulation easer, and the simplified 3D model was divided to 56,622 elements and 13,274 nodal points (normal bone) or 51,760 and 12,940 (osteoporosis), respectively, in 3 areas of different bone densities calculated with Scion Image processor. This 3D finite element model was analyzed with the software ANSYS LS-DYNA 10.0 for simulating the fracture (the defined yield stress attained) by impacting the elements of carpal bones to the radial bone joint surface with a measure of Mises stress. In osteoporotic bone, fracture was found to occur at dorsal cortex closer to the joint surface. Fracture occurred at dorsal and palmer cortex at dorsiflexion and palmerflexion, respectively. (R.T.)

  5. The Effect of Loading Rate on Hydraulic Fracturing in Synthetic Granite - a Discrete Element Study

    Science.gov (United States)

    Tomac, I.; Gutierrez, M.

    2015-12-01

    Hydraulic fracture initiation and propagation from a borehole in hard synthetic rock is modeled using the two dimensional Discrete Element Method (DEM). DEM uses previously established procedure for modeling the strength and deformation parameters of quasi-brittle rocks with the Bonded Particle Model (Itasca, 2004). A series of simulations of laboratory tests on granite in DEM serve as a reference for synthetic rock behavior. Fracturing is enabled by breaking parallel bonds between DEM particles as a result of the local stress state. Subsequent bond breakage induces fracture propagation during a time-stepping procedure. Hydraulic fracturing occurs when pressurized fluid induces hoop stresses around the wellbore which cause rock fracturing and serves for geo-reservoir permeability enhancement in oil, gas and geothermal industries. In DEM, a network of fluid pipes and reservoirs is used for mathematical calculation of fluid flow through narrow channels between DEM particles, where the hydro-mechanical coupling is fully enabled. The fluid flow calculation is superimposed with DEM stress-strain calculation at each time step. As a result, the fluid pressures during borehole pressurization in hydraulic fracturing, as well as, during the fracture propagation from the borehole, can be simulated. The objective of this study is to investigate numerically a hypothesis that fluid pressurization rate, or the fluid flow rate, influences upon character, shape and velocity of fracture propagation in rock. The second objective is to better understand and define constraints which are important for successful fracture propagation in quasi-brittle rock from the perspective of flow rate, fluid density, viscosity and compressibility relative to the rock physical properties. Results from this study indicate that not only too high fluid flow rates cause fracture arrest and multiple fracture branching from the borehole, but also that the relative compressibility of fracturing fluid and

  6. Application of the boundary elements method for modeling of the fracture of cylindrical bodies by hydraulic fracturing

    Science.gov (United States)

    Legan, M. A.; Blinov, V. A.; Larichkin, A. Yu; Novoselov, A. N.

    2017-10-01

    Experimental study of hydraulic fracturing of thick-walled cylinders with a central circular hole was carried out using the machine that creates a high oil pressure. Experiments on the compression fracture of the solid cylinders by diameter and rectangular parallelepipeds perpendicular to the ends were carried out with a multipurpose test machine Zwick / Roell Z100. Samples were made of GF-177 material based on cement. Ultimate stresses in the material under study were determined for three types of stress state: under compression, with a pure shear on the surface of the hole under frecking conditions and under a compound stress state under conditions of diametral compression of a solid cylinder. The value of the critical stress intensity factor of GF-177 material was obtained. The modeling of the fracturing process taking into account the inhomogeneity of the stress state near the hole was carried out using the boundary elements method (in the variant of the fictitious load method) and the gradient fracture criterion. Calculation results of the ultimate pressure were compared with values obtained analytically on the basis of the Lame solution and with experimental data.

  7. Micro- and macromechanics of fracture of structural elements

    Science.gov (United States)

    Zavoychinskaya, E. B.

    2012-05-01

    A mathematical model for the description of bulk microfracture processes in metals, which are understood as nucleation and coalescence of submicrocracks, microcracks, and short nonpropagating microcracks, and of brittle macrofracture processes in metals is presented. This model takes into account the laws of formation and propagation of short propagating, medium, and significant microcracks. The basic notions of this model are the reduced length of cracks and the probability of micro- and macrofracture. The model is based on the mechanical parameters of metal strength and fracture, which are studied experimentally. The expressions for determining the probability in the case of one-dimensional symmetric loading are given. The formulas for determining the threshold number of cycles at the beginning of crack formation are obtained for cracks of each type. For the first time, the data on standard parameters of fatigue strength were used to construct the fatigue curve of metals and alloys for macrocracks.

  8. Finite element modelling for mode-I fracture behaviour of CFRP

    Science.gov (United States)

    Chetan, H. C.; Kattimani, Subhaschandra; Murigendrappa, S. M.

    2018-04-01

    Debonding is a major failure mechanism in Carbon Fiber Reinforced Polymer (CFRP) due to presence of many adhesion joins, in between many layers. In the current study a finite element simulation is carried out using Virtual Crack Closure Technique (VCCT) and Cohesive Zone Modelling (CZM) using Abaqus as analysis tool. A comparative study is performed in to order analyze convergence of results from CZM and VCCT. It was noted that CZM results matched well with published literature. The results from VCCT were also in good comparison with experimental data of published literature, but were seen to be overestimated. Parametric study is performed to evaluate the variation of input parameters like initial stiffness, element size, peak stress and energy release rate `G'. From the numerical evaluation, it was noted that CZM simulation relies largely on element size and peak stress.

  9. Fracture Capabilities in Grizzly with the extended Finite Element Method (X-FEM)

    Energy Technology Data Exchange (ETDEWEB)

    Dolbow, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Ziyu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, Wen [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Efforts are underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). A capability was previously developed to calculate three-dimensional interaction- integrals to extract mixed-mode stress-intensity factors. This capability requires the use of a finite element mesh that conforms to the crack geometry. The eXtended Finite Element Method (X-FEM) provides a means to represent a crack geometry without explicitly fitting the finite element mesh to it. This is effected by enhancing the element kinematics to represent jump discontinuities at arbitrary locations inside of the element, as well as the incorporation of asymptotic near-tip fields to better capture crack singularities. In this work, use of only the discontinuous enrichment functions was examined to see how accurate stress intensity factors could still be calculated. This report documents the following work to enhance Grizzly’s engineering fracture capabilities by introducing arbitrary jump discontinuities for prescribed crack geometries; X-FEM Mesh Cutting in 3D: to enhance the kinematics of elements that are intersected by arbitrary crack geometries, a mesh cutting algorithm was implemented in Grizzly. The algorithm introduces new virtual nodes and creates partial elements, and then creates a new mesh connectivity; Interaction Integral Modifications: the existing code for evaluating the interaction integral in Grizzly was based on the assumption of a mesh that was fitted to the crack geometry. Modifications were made to allow for the possibility of a crack front that passes arbitrarily through the mesh; and Benchmarking for 3D Fracture: the new capabilities were benchmarked against mixed-mode three-dimensional fracture problems with known analytical solutions.

  10. Finite element analysis and fracture resistance testing of a new intraradicular post

    Directory of Open Access Journals (Sweden)

    Eron Toshio Colauto Yamamoto

    2012-08-01

    Full Text Available OBJECTIVES: The objective of the present study was to evaluate a prefabricated intraradicular threaded pure titanium post, designed and developed at the São José dos Campos School of Dentistry - UNESP, Brazil. This new post was designed to minimize stresses observed with prefabricated post systems and to improve cost-benefits. MATERIAL AND METHODS: Fracture resistance testing of the post/core/root complex, fracture analysis by microscopy and stress analysis by the finite element method were used for post evaluation. The following four prefabricated metal post systems were analyzed: group 1, experimental post; group 2, modification of the experimental post; group 3, Flexi Post, and group 4, Para Post. For the analysis of fracture resistance, 40 bovine teeth were randomly assigned to the four groups (n=10 and used for the fabrication of test specimens simulating the situation in the mouth. The test specimens were subjected to compressive strength testing until fracture in an EMIC universal testing machine. After fracture of the test specimens, their roots were sectioned and analyzed by microscopy. For the finite element method, specimens of the fracture resistance test were simulated by computer modeling to determine the stress distribution pattern in the post systems studied. RESULTS: The fracture test presented the following averages and standard deviation: G1 (45.63±8.77, G2 (49.98±7.08, G3 (43.84±5.52, G4 (47.61±7.23. Stress was homogenously distributed along the body of the intraradicular post in group 1, whereas high stress concentrations in certain regions were observed in the other groups. These stress concentrations in the body of the post induced the same stress concentration in root dentin. CONCLUSIONS: The experimental post (original and modified versions presented similar fracture resistance and better results in the stress analysis when compared with the commercial post systems tested (08/2008-PA/CEP.

  11. Biomechanical Evaluations of Hip Fracture Using Finite Element Model that Models Individual Differences of Femur

    OpenAIRE

    田中, 英一; TANAKA, Eiichi; 山本, 創太; YAMAMOTO, Sota; 坂本, 誠二; SAKAMOTO, Seiji; 中西, 孝文; NAKANISHI, Takafumi; 原田, 敦; HARADA, Atsushi; 水野, 雅士; MIZUNO, Masashi

    2004-01-01

    This paper is concerned with an individual finite element modeling system for femur and biomechanical evaluations of the influences of loading conditions, bone shape and bone density on risks of hip fracture. Firstly, a method to construct an individual finite element model by morphological parameters that represent femoral shapes was developed. Using the models with different shapes constructed by this method, the effects of fall direction, posture of upper body, femur shape and bone density...

  12. Finite element simulations of interactions between multiple hydraulic fractures in a poroelastic rock

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Usui, Tomoya; Paluszny, Adriana

    2017-01-01

    A fully coupled three-dimensional finite-element model for hydraulic fractures in permeable rocks is presented, and used to investigate the ranges of applicability of the classical analytical solutions that are known to be valid in limiting cases. This model simultaneously accounts for fluid flow...

  13. Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils - Large Deformation Analysis Via Finite Element Method

    Science.gov (United States)

    Konkol, Jakub; Bałachowski, Lech

    2017-03-01

    In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL) and Updated Lagrangian (UL). Numerical study consists of installation process, consolidation phase and following pile static load test (SLT). The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12). The results of numerical analysis are compared with corresponding field tests and with so-called "wish-in-place" numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.

  14. Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils – Large Deformation Analysis Via Finite Element Method

    Directory of Open Access Journals (Sweden)

    Konkol Jakub

    2017-03-01

    Full Text Available In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL and Updated Lagrangian (UL. Numerical study consists of installation process, consolidation phase and following pile static load test (SLT. The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12. The results of numerical analysis are compared with corresponding field tests and with so-called “wish-in-place” numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.

  15. Finite element analysis of three patterns of internal fixation of fractures of the mandibular condyle.

    Science.gov (United States)

    Aquilina, Peter; Chamoli, Uphar; Parr, William C H; Clausen, Philip D; Wroe, Stephen

    2013-06-01

    The most stable pattern of internal fixation for fractures of the mandibular condyle is a matter for ongoing discussion. In this study we investigated the stability of three commonly used patterns of plate fixation, and constructed finite element models of a simulated mandibular condylar fracture. The completed models were heterogeneous in the distribution of bony material properties, contained about 1.2 million elements, and incorporated simulated jaw-adducting musculature. Models were run assuming linear elasticity and isotropic material properties for bone. This model was considerably larger and more complex than previous finite element models that have been used to analyse the biomechanical behaviour of differing plating techniques. The use of two parallel 2.0 titanium miniplates gave a more stable configuration with lower mean element stresses and displacements over the use of a single miniplate. In addition, a parallel orientation of two miniplates resulted in lower stresses and displacements than did the use of two miniplates in an offset pattern. The use of two parallel titanium plates resulted in a superior biomechanical result as defined by mean element stresses and relative movement between the fractured fragments in these finite element models. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Tooth Fracture Detection in Spiral Bevel Gears System by Harmonic Response Based on Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yuan Chen

    2017-01-01

    Full Text Available Spiral bevel gears occupy several advantages such as high contact ratio, strong carrying capacity, and smooth operation, which become one of the most widely used components in high-speed stage of the aeronautical transmission system. Its dynamic characteristics are addressed by many scholars. However, spiral bevel gears, especially tooth fracture occurrence and monitoring, are not to be investigated, according to the limited published issues. Therefore, this paper establishes a three-dimensional model and finite element model of the Gleason spiral bevel gear pair. The model considers the effect of tooth root fracture on the system due to fatigue. Finite element method is used to compute the mesh generation, set the boundary condition, and carry out the dynamic load. The harmonic response spectra of the base under tooth fracture are calculated and the influence of main parameters on monitoring failure is investigated as well. The results show that the change of torque affects insignificantly the determination of whether or not the system has tooth fracture. The intermediate frequency interval (200 Hz–1000 Hz is the best interval to judge tooth fracture occurrence. The best fault test region is located in the working area where the system is going through meshing. The simulation calculation provides a theoretical reference for spiral bevel gear system test and fault diagnosis.

  17. Shale Fracture Analysis using the Combined Finite-Discrete Element Method

    Science.gov (United States)

    Carey, J. W.; Lei, Z.; Rougier, E.; Knight, E. E.; Viswanathan, H.

    2014-12-01

    Hydraulic fracturing (hydrofrac) is a successful method used to extract oil and gas from highly carbonate rocks like shale. However, challenges exist for industry experts estimate that for a single $10 million dollar lateral wellbore fracking operation, only 10% of the hydrocarbons contained in the rock are extracted. To better understand how to improve hydrofrac recovery efficiencies and to lower its costs, LANL recently funded the Laboratory Directed Research and Development (LDRD) project: "Discovery Science of Hydraulic Fracturing: Innovative Working Fluids and Their Interactions with Rocks, Fractures, and Hydrocarbons". Under the support of this project, the LDRD modeling team is working with the experimental team to understand fracture initiation and propagation in shale rocks. LANL's hybrid hydro-mechanical (HM) tool, the Hybrid Optimization Software Suite (HOSS), is being used to simulate the complex fracture and fragment processes under a variety of different boundary conditions. HOSS is based on the combined finite-discrete element method (FDEM) and has been proven to be a superior computational tool for multi-fracturing problems. In this work, the comparison of HOSS simulation results to triaxial core flooding experiments will be presented.

  18. A discrete-element model for viscoelastic deformation and fracture of glacial ice

    Science.gov (United States)

    Riikilä, T. I.; Tallinen, T.; Åström, J.; Timonen, J.

    2015-10-01

    A discrete-element model was developed to study the behavior of viscoelastic materials that are allowed to fracture. Applicable to many materials, the main objective of this analysis was to develop a model specifically for ice dynamics. A realistic model of glacial ice must include elasticity, brittle fracture and slow viscous deformations. Here the model is described in detail and tested with several benchmark simulations. The model was used to simulate various ice-specific applications with resulting flow rates that were compatible with Glen's law, and produced under fragmentation fragment-size distributions that agreed with the known analytical and experimental results.

  19. Combined finite element and multibody musculoskeletal investigation of a fractured clavicle with reconstruction plate

    DEFF Research Database (Denmark)

    Cronskar, Marie; Rasmussen, John; Tinnsten, Mats

    2015-01-01

    This paper addresses the various treatment options for clavicle fractures by means of computational models, more precisely cases with a need for internal fixation: non-unions and certain complex fractures. The motivation for the work is that treatment can be enhanced by a better understanding...... of the loading of the clavicle and fixation device. This study aimed to develop a method for realistic simulation of stresses in the bone and fixation device in the case of a fractured clavicle. A finite element (FE) mesh of the clavicle geometry was created from computer tomography (CT) data and imported...... into the FE solver where the model was subjected to muscle forces and other boundary conditions from a multibody musculoskeletal model performing a typical activity of daily life. A reconstruction plate and screws were also imported into the model. The combination models returned stresses and displacements...

  20. A discrete element model for damage and fracture of geomaterials under fatigue loading

    Science.gov (United States)

    Gao, Xiaofeng; Koval, Georg; Chazallon, Cyrille

    2017-06-01

    Failure processes in geomaterials (concrete, asphalt concrete, masonry, etc.) under fatigue loading (repeated moving loads, cycles of temperature, etc.) are responsible for most of the dysfunctions in pavements, brick structures, etc. In the beginning of the lifetime of a structure, the material presents only inner defects (micro cracks, voids, etc.). Due to the effect of the cyclic loading, these small defects tend to grow in size and quantity which damage the material, reducing its stiffness. With a relatively high number of cycles, these growing micro cracks become large cracks, which characterizes the fracture behavior. From a theoretical point of view, both mechanisms are treated differently. Fracture is usually described locally, with the propagation of cracks defined by the energy release rate at the crack tip; damage is usually associated to non-local approaches. In the present work, damage and fracture mechanics are combined in a local discrete element approach.

  1. Challenges in Continuum Modelling of Intergranular Fracture

    DEFF Research Database (Denmark)

    Coffman, Valerie; Sethna, James P.; Ingraffea, A. R.

    2011-01-01

    of grain boundaries, but also in crucial ways on edges, corners and triple junctions of even greater geometrical complexity. To address the first two challenges, we explore the physical underpinnings for creating functional forms to capture the hierarchical commensurability structure in the grain boundary......Intergranular fracture in polycrystals is often simulated by finite elements coupled to a cohesive zone model for the interfaces, requiring cohesive laws for grain boundaries as a function of their geometry. We discuss three challenges in understanding intergranular fracture in polycrystals. First...... properties. To address the last challenge, we demonstrate a method for atomistically extracting the fracture properties of geometrically complex local regions on the fly from within a finite element simulation....

  2. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study.

    Science.gov (United States)

    Li, Zuoping; Kindig, Matthew W; Kerrigan, Jason R; Untaroiu, Costin D; Subit, Damien; Crandall, Jeff R; Kent, Richard W

    2010-01-19

    The purpose of this study was to investigate whether using a finite-element (FE) mesh composed entirely of hexahedral elements to model cortical and trabecular bone (all-hex model) would provide more accurate simulations than those with variable thickness shell elements for cortical bone and hexahedral elements for trabecular bone (hex-shell model) in the modeling human ribs. First, quasi-static non-injurious and dynamic injurious experiments were performed using the second, fourth, and tenth human thoracic ribs to record the structural behavior and fracture tolerance of individual ribs under anterior-posterior bending loads. Then, all-hex and hex-shell FE models for the three ribs were developed using an octree-based and multi-block hex meshing approach, respectively. Material properties of cortical bone were optimized using dynamic experimental data and the hex-shell model of the fourth rib and trabecular bone properties were taken from the literature. Overall, the reaction force-displacement relationship predicted by both all-hex and hex-shell models with nodes in the offset middle-cortical surfaces compared well with those measured experimentally for all the three ribs. With the exception of fracture locations, the predictions from all-hex and offset hex-shell models of the second and fourth ribs agreed better with experimental data than those from the tenth rib models in terms of reaction force at fracture (difference rib responses and bone fractures for the loading conditions considered, but coarse hex-shell models with constant or variable shell thickness were more computationally efficient and therefore preferred. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Assessing Software Quality Through Visualised Cohesion Metrics

    Directory of Open Access Journals (Sweden)

    Timothy Shih

    2001-05-01

    Full Text Available Cohesion is one of the most important factors for software quality as well as maintainability, reliability and reusability. Module cohesion is defined as a quality attribute that seeks for measuring the singleness of the purpose of a module. The module of poor quality can be a serious obstacle to the system quality. In order to design a good software quality, software managers and engineers need to introduce cohesion metrics to measure and produce desirable software. A highly cohesion software is thought to be a desirable constructing. In this paper, we propose a function-oriented cohesion metrics based on the analysis of live variables, live span and the visualization of processing element dependency graph. We give six typical cohesion examples to be measured as our experiments and justification. Therefore, a well-defined, well-normalized, well-visualized and well-experimented cohesion metrics is proposed to indicate and thus enhance software cohesion strength. Furthermore, this cohesion metrics can be easily incorporated with software CASE tool to help software engineers to improve software quality.

  4. Hydro-mechanical coupled simulation of hydraulic fracturing using the eXtended Finite Element Method (XFEM)

    Science.gov (United States)

    Youn, Dong Joon

    This thesis presents the development and validation of an advanced hydro-mechanical coupled finite element program analyzing hydraulic fracture propagation within unconventional hydrocarbon formations under various conditions. The realistic modeling of hydraulic fracturing is necessarily required to improve the understanding and efficiency of the stimulation technique. Such modeling remains highly challenging, however, due to factors including the complexity of fracture propagation mechanisms, the coupled behavior of fracture displacement and fluid pressure, the interactions between pre-existing natural and initiated hydraulic fractures and the formation heterogeneity of the target reservoir. In this research, an eXtended Finite Element Method (XFEM) scheme is developed allowing for representation of single or multiple fracture propagations without any need for re-meshing. Also, the coupled flows through the fracture are considered in the program to account for their influence on stresses and deformations along the hydraulic fracture. In this research, a sequential coupling scheme is applied to estimate fracture aperture and fluid pressure with the XFEM. Later, the coupled XFEM program is used to estimate wellbore bottomhole pressure during fracture propagation, and the pressure variations are analyzed to determine the geometry and performance of the hydraulic fracturing as pressure leak-off test. Finally, material heterogeneity is included into the XFEM program to check the effect of random formation property distributions to the hydraulic fracture geometry. Random field theory is used to create the random realization of the material heterogeneity with the consideration of mean, standard deviation, and property correlation length. These analyses lead to probabilistic information on the response of unconventional reservoirs and offer a more scientific approach regarding risk management for the unconventional reservoir stimulation. The new stochastic approach

  5. Use of adjoint methods in the probabilistic finite element approach to fracture mechanics

    Science.gov (United States)

    Liu, Wing Kam; Besterfield, Glen; Lawrence, Mark; Belytschko, Ted

    1988-01-01

    The adjoint method approach to probabilistic finite element methods (PFEM) is presented. When the number of objective functions is small compared to the number of random variables, the adjoint method is far superior to the direct method in evaluating the objective function derivatives with respect to the random variables. The PFEM is extended to probabilistic fracture mechanics (PFM) using an element which has the near crack-tip singular strain field embedded. Since only two objective functions (i.e., mode I and II stress intensity factors) are needed for PFM, the adjoint method is well suited.

  6. Fracture Failure of Reinforced Concrete Slabs Subjected to Blast Loading Using the Combined Finite-Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Z. M. Jaini

    Full Text Available Abstract Numerical modeling of fracture failure is challenging due to various issues in the constitutive law and the transition of continuum to discrete bodies. Therefore, this study presents the application of the combined finite-discrete element method to investigate the fracture failure of reinforced concrete slabs subjected to blast loading. In numerical modeling, the interaction of non-uniform blast loading on the concrete slab was modeled using the incorporation of the finite element method with a crack rotating approach and the discrete element method to model crack, fracture onset and its post-failures. A time varying pressure-time history based on the mapping method was adopted to define blast loading. The Mohr-Coulomb with Rankine cut-off and von-Mises criteria were applied for concrete and steel reinforcement respectively. The results of scabbing, spalling and fracture show a reliable prediction of damage and fracture.

  7. A new Eulerian-Lagrangian finite element simulator for solute transport in discrete fracture-matrix systems

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.; Karasaki, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1996-07-01

    Fracture network simulators have extensively been used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful fracture network simulator with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The fracture network simulator used in TRIPOLY features a mixed Lagrangian-Eulerian solution scheme for the transport in fractures, combined with an adaptive gridding technique to account for sharp concentration fronts. The fracture-matrix interaction is calculated with an efficient method which has been successfully used in the past for dual-porosity models. Discrete fractures and matrix blocks are treated as two different systems, and the interaction is modeled by introducing sink/source terms in both systems. It is assumed that diffusive transport in the matrix can be approximated as a one-dimensional process, perpendicular to the adjacent fracture surfaces. A direct solution scheme is employed to solve the coupled fracture and matrix equations. The newly developed combination of the fracture network simulator and the fracture-matrix interaction module allows for detailed studies of spreading processes in fractured porous rock. The authors present a sample application which demonstrate the codes ability of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size and shape.

  8. Global sensitivity analysis in the identification of cohesive models using full-field kinematic data

    KAUST Repository

    Alfano, Marco; Lubineau, Gilles; Paulino, Glá ucio Hermogenes

    2015-01-01

    Failure of adhesive bonded structures often occurs concurrent with the formation of a non-negligible fracture process zone in front of a macroscopic crack. For this reason, the analysis of damage and fracture is effectively carried out using the cohesive zone model (CZM). The crucial aspect of the CZM approach is the precise determination of the traction-separation relation. Yet it is usually determined empirically, by using calibration procedures combining experimental data, such as load-displacement or crack length data, with finite element simulation of fracture. Thanks to the recent progress in image processing, and the availability of low-cost CCD cameras, it is nowadays relatively easy to access surface displacements across the fracture process zone using for instance Digital Image Correlation (DIC). The rich information provided by correlation techniques prompted the development of versatile inverse parameter identification procedures combining finite element (FE) simulations and full field kinematic data. The focus of the present paper is to assess the effectiveness of these methods in the identification of cohesive zone models. In particular, the analysis is developed in the framework of the variance based global sensitivity analysis. The sensitivity of kinematic data to the sought cohesive properties is explored through the computation of the so-called Sobol sensitivity indexes. The results show that the global sensitivity analysis can help to ascertain the most influential cohesive parameters which need to be incorporated in the identification process. In addition, it is shown that suitable displacement sampling in time and space can lead to optimized measurements for identification purposes.

  9. Global sensitivity analysis in the identification of cohesive models using full-field kinematic data

    KAUST Repository

    Alfano, Marco

    2015-03-01

    Failure of adhesive bonded structures often occurs concurrent with the formation of a non-negligible fracture process zone in front of a macroscopic crack. For this reason, the analysis of damage and fracture is effectively carried out using the cohesive zone model (CZM). The crucial aspect of the CZM approach is the precise determination of the traction-separation relation. Yet it is usually determined empirically, by using calibration procedures combining experimental data, such as load-displacement or crack length data, with finite element simulation of fracture. Thanks to the recent progress in image processing, and the availability of low-cost CCD cameras, it is nowadays relatively easy to access surface displacements across the fracture process zone using for instance Digital Image Correlation (DIC). The rich information provided by correlation techniques prompted the development of versatile inverse parameter identification procedures combining finite element (FE) simulations and full field kinematic data. The focus of the present paper is to assess the effectiveness of these methods in the identification of cohesive zone models. In particular, the analysis is developed in the framework of the variance based global sensitivity analysis. The sensitivity of kinematic data to the sought cohesive properties is explored through the computation of the so-called Sobol sensitivity indexes. The results show that the global sensitivity analysis can help to ascertain the most influential cohesive parameters which need to be incorporated in the identification process. In addition, it is shown that suitable displacement sampling in time and space can lead to optimized measurements for identification purposes.

  10. Numerical modeling of contaminant transport in fractured porous media using mixed finite-element and finitevolume methods

    KAUST Repository

    Dong, Chen; Sun, Shuyu; Taylor, Glenn A.

    2011-01-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods; i.e., the mixed finite-element (MFE) method and the finite-volume method. Adaptive

  11. A concise methodology for the estimation of elemental concentration effects on mesoscale cohesion of non-ferrous covalent glasses: The case of Se(80−xGe(20−xInx=0,5,10,15

    Directory of Open Access Journals (Sweden)

    Georgios S.E. Antipas

    2015-09-01

    Full Text Available The link between the electronic state and the mesoscale of covalent glasses is not settled. A functional means of addressing the mesoscale is via generalizing glass properties (e.g. such as cohesion on the basis of atomic clusters. Derivation of the most representative such cluster formations is not streamlined, however. Here, numerical pair correlation and ab initio energetic datasets are presented for the case of amorphous Selenium-rich covalent glasses, which were obtained via a new, concise methodology, relating mesoscopic cohesion to local atomic order and to the system׳s electronic structure. The methodology consisted of selecting clusters on the basis of the variation of atomic environment statistics of total coordination, partial coordination by the matrix element and cluster number density along the radial direction of a Reverse Monte Carlo supercell, the latter attained by fitting total scattering data.

  12. Contrastive Analyses of Organizational Structures and Cohesive Elements in English, Spanish (ESL) and Chinese (ESL) Students' Writing in Narrative and Expository Modes.

    Science.gov (United States)

    Norment, Nathaniel, Jr.

    A study examined the differences and similarities in the relationship between the organization of written English produced by native Chinese, English, and Spanish speaking adult college students when they wrote in the narrative and expository modes. Specifically, the study explored the kinds of cohesive devices that operated in the English text…

  13. Simulación numérica del proceso de fractura en modo I de vigas de concreto con trayectoria de fisuración conocida mediante un modelo discreto de fisura cohesiva Numerical modeling of the fracture process in mode I of concrete beams with known cracking path by means of a discrete model of cohesive crack

    Directory of Open Access Journals (Sweden)

    Rubén Graffe

    2010-01-01

    Full Text Available Este trabajo describe la formulación, implementación y aplicación de un modelo discreto de fisura cohesiva el cual permite simular el proceso de fractura en modo I de vigas de concreto simple cuya trayectoria de fisuración está definida. En el proceso de fractura se establece una relación entre el esfuerzo normal de cohesión y la apertura de una fisura, donde el material ubicado fuera de la zona de fractura conserva un comportamiento elástico lineal en carga o descarga, mientras que el material en el interior de la zona de fractura tiene un comportamiento inelástico con ablandamiento por deformación. En la malla se ubican parejas de nudos en la misma posición espacial sobre la trayectoria de la fisura, las cuales desligan a los elementos bidimensionales contiguos. Estos nudos duplicados están conectados entre sí por resortes elasto - plásticos que representan el proceso de fractura. Se simulan numéricamente tres vigas de concreto de diferentes dimensiones que soportan una carga en el centro de la luz. Cada simulación es un análisis no lineal estático con elementos finitos en condición plana de esfuerzos, considerando deformaciones infinitesimales y aplicando un desplazamiento vertical incremental sobre la cara superior de la mitad de la luz de la viga. Se obtuvieron resultados satisfactorios de la respuesta estructural de las vigas, en comparación con los ensayos experimentales y modelaciones numéricas desarrolladas por otros autores.This work describes the formulation, implementation and application of a cohesive crack discrete model, which can simulate the fracture process in mode I of simple concrete beams with defined cracking pattern. In the fracture process, a relationship between the cohesive normal stress and crack opening is established, where the material outside the fracture zone has a lineal elastic behavior in loading and unloading, whereas the material inside the fracture zone has an inelastic behavior with

  14. Finite element analysis of functionally graded bone plate at femur bone fracture site

    Science.gov (United States)

    Satapathy, Pravat Kumar; Sahoo, Bamadev; Panda, L. N.; Das, S.

    2018-03-01

    This paper focuses on the analysis of fractured Femur bone with functionally graded bone plate. The Femur bone is modeled by using the data from the CT (Computerized Tomography) scan and the material properties are assigned using Mimics software. The fracture fixation plate used here is composed of Functionally Graded Material (FGM). The functionally graded bone plate is considered to be composed of different layers of homogeneous materials. Finite element method approach is adopted for analysis. The volume fraction of the material is calculated by considering its variation along the thickness direction (z) according to a power law and the effective properties of the homogeneous layers are estimated. The model developed is validated by comparing numerical results available in the literature. Static analysis has been performed for the bone plate system by considering both axial compressive load and torsional load. The investigation shows that by introducing FG bone plate instead of titanium, the stress at the fracture site increases by 63 percentage and the deformation decreases by 15 percentage, especially when torsional load is taken into consideration. The present model yields better results in comparison with the commercially available bone plates.

  15. Early diagnostics of temporomandibular joint structural elements injures caused by traumatic mandibular bone fractures.

    Science.gov (United States)

    Pohranychna, Kh R; Stasyshyn, A R; Matolych, U D

    2017-06-30

    A rapidly increasing number of mandibular condylar fractures and some complications related to injuries of temporomandibular elements make this study important. Intra-articular disorders lead to secondary pathological findings such as osteoarthritis, deforming osteoarthrosis, and temporomandibular joint ankylosis that limits mouth opening, mastication, swallowing, breathing, and decreased/lost working capacity or disability. Early diagnosis of intra-articular disorders can prevent from long-lasting functional complications caused by temporomandibular joint injuries. This study was performed for the purpose of early detection and investigation of organic pathological changes in the cartilaginous and osseous tissues of the temporomandibular joint caused by traumatic fractures of the mandibular condyle. Twenty patients underwent a general clinical examination, magnetic resonance imaging (MRI), and immune-enzyme testing for biochemical markers of connective tissue injury (pyridinoline and deoxypyridinoline) in urine. Disk dislocation, deformation, adhesion, perforation or squeeze, tension or disruption of ligaments, and injury of articular surfaces are among complications of mandibular fractures that can be revealed on MRI. As regards biochemical findings, we revealed a sharp rise in the levels of pyridinoline and deoxypyridinoline before treatment and a lack of stabilization within 21 days of treatment.

  16. Comparison of Internal Fixations for Distal Clavicular Fractures Based on Loading Tests and Finite Element Analyses

    Directory of Open Access Journals (Sweden)

    Rina Sakai

    2014-01-01

    Full Text Available It is difficult to apply strong and stable internal fixation to a fracture of the distal end of the clavicle because it is unstable, the distal clavicle fragment is small, and the fractured region is near the acromioclavicular joint. In this study, to identify a superior internal fixation method for unstable distal clavicular fracture, we compared three types of internal fixation (tension band wiring, scorpion, and LCP clavicle hook plate. Firstly, loading tests were performed, in which fixations were evaluated using bending stiffness and torsional stiffness as indices, followed by finite element analysis to evaluate fixability using the stress and strain as indices. The bending and torsional stiffness were significantly higher in the artificial clavicles fixed with the two types of plate than in that fixed by tension band wiring (P<0.05. No marked stress concentration on the clavicle was noted in the scorpion because the arm plate did not interfere with the acromioclavicular joint, suggesting that favorable shoulder joint function can be achieved. The stability of fixation with the LCP clavicle hook plate and the scorpion was similar, and plate fixations were stronger than fixation by tension band wiring.

  17. Characterizing the influence of stress-induced microcracks on the laboratory strength and fracture development in brittle rocks using a finite-discrete element method-micro discrete fracture network FDEM-μDFN approach

    Directory of Open Access Journals (Sweden)

    Pooya Hamdi

    2015-12-01

    Full Text Available Heterogeneity is an inherent component of rock and may be present in different forms including mineral heterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks are usually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stress-induced microcracking increases with depth and in-situ stress. Laboratory results indicate that the physical properties of rocks such as strength, deformability, P-wave velocity and permeability are influenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks using the proposed micro discrete fracture network (μDFN approach. The characteristics of the microcracks required to create μDFN models are obtained through image analyses of thin sections of Lac du Bonnet granite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial, triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data. The FDEM-μDFN models indicate that micro-heterogeneity has a profound influence on both the mechanical behavior and resultant fracture pattern. An increase in the microcrack intensity leads to a reduction in the strength of the sample and changes the character of the rock strength envelope. Spalling and axial splitting dominate the failure mode at low confinement while shear failure is the dominant failure mode at high confinement. Numerical results from simulated compression tests show that microcracking reduces the cohesive component of strength alone, and the frictional strength component remains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced by the presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. The importance of microcrack heterogeneity in

  18. Moving finite element method aided by computerized symbolic manipulation and its application to dynamic fracture simulation

    International Nuclear Information System (INIS)

    Nishioka, Toshihisa; Takemoto, Yutaka

    1988-01-01

    Recently, the authors have shown that the combined method of the path-independent J' integral (dynamic J integral) and a moving isoparametric element procedure is an effective tool for the calculation of dynamic stress intensity factors. In the moving element procedure, the nodal pattern of the elements near a crack tip moves according to the motion of the crack-tip. An iterative numerical technique was used in the previous procedure to find the natural coordinates (ξ, η) at the newly created nodes. This technique requires additional computing time because of the nature of iteration. In the present paper, algebraic expressions for the transformation of the global coordinates (x, y) to the natural coordinates (ξ, η) were obtained by using a computerized symbolic manipulation system (REDUCE 3.2). These algebraic expressions are also very useful for remeshing or zooming techniques often used in finite element analysis. The present moving finite element method demonstrates its effectiveness for the simulation of a fast fracture. (author)

  19. Mixed Mode cohesive law with interface dilatation

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Goutianos, Stergios

    2014-01-01

    displacements. As the crack faces displace relatively to each other, the roughness asperities ride on top of each other and result in an opening (dilatation) in the normal direction. Furthermore, the interaction of the crack surfaces in the contact zone gives rise to compressive normal stresses and frictional...... shear stresses opposing the crack face displacements. A phenomenological Mixed Mode cohesive zone law, derived from a potential function, is developed to describe the above mentioned fracture behaviour under monotonic opening. The interface dilatation introduces two new lengths. The cohesive law...

  20. IDENTIFYING FRACTURE ORIGIN IN CERAMICS BY COMBINATION OF NONDESTRUCTIVE TESTING AND DISCRETE ELEMENT ANALYSIS

    International Nuclear Information System (INIS)

    Senapati, Rajeev; Zhang Jianmei

    2010-01-01

    Advanced ceramic materials have been extensively applied in aerospace, automobile and other industries. However, the reliability of the advanced ceramics is a major concern because of the brittle nature of the materials. In this paper, combination of nondestructive testing and numerical modeling Discrete Element Method is proposed to identify the fracture origin in ceramics. The nondestructive testing--laser scattering technology is first performed on the ceramic components to reveal the machining-induced damage such as cracks and the material-inherent flaws such as voids, then followed by the four point bending test. Discrete Element software package PFC 2D is used to simulate the four point bending test and try to identify where the fractures start. The numerical representation of the ceramic materials is done by generating a densely packed particle system using the specimen genesis procedure and then applying the suitable microparameters to the particle system. Simulation of four point bending test is performed on materials having no defects, materials having manufacturing-induced defects like cracks, and materials having material-inherent flaws like voids. The initiation and propagation of defects is modeled and the mean contact force on the loading ball is also plotted. The simulation prediction results are well in accordance with the nondestructive testing results.

  1. Numerical modeling of contaminant transport in fractured porous media using mixed finite-element and finitevolume methods

    KAUST Repository

    Dong, Chen

    2011-01-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods; i.e., the mixed finite-element (MFE) method and the finite-volume method. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocity fields for both the fractures and matrix, which are crucial to the convection part of the transport equation. The finite-volume method and the standard MFE method are used to approximate the convection and dispersion terms, respectively. The temporary evolution for the pressure distributions, streamline fields, and concentration profiles are obtained for six different arrangements of fractures. The results clearly show the distorted concentration effects caused by the ordered and disordered (random) patterns of the fractures and illustrate the robustness and efficiency of the proposed numerical model. © 2011 by Begell House Inc.

  2. Micromechanical modeling and inverse identification of damage using cohesive approaches

    International Nuclear Information System (INIS)

    Blal, Nawfal

    2013-01-01

    In this study a micromechanical model is proposed for a collection of cohesive zone models embedded between two each elements of a standard cohesive-volumetric finite element method. An equivalent 'matrix-inclusions' composite is proposed as a representation of the cohesive-volumetric discretization. The overall behaviour is obtained using homogenization approaches (Hashin Shtrikman scheme and the P. Ponte Castaneda approach). The derived model deals with elastic, brittle and ductile materials. It is available whatever the triaxiality loading rate and the shape of the cohesive law, and leads to direct relationships between the overall material properties and the local cohesive parameters and the mesh density. First, rigorous bounds on the normal and tangential cohesive stiffnesses are obtained leading to a suitable control of the inherent artificial elastic loss induced by intrinsic cohesive models. Second, theoretical criteria on damageable and ductile cohesive parameters are established (cohesive peak stress, critical separation, cohesive failure energy,... ). These criteria allow a practical calibration of the cohesive zone parameters as function of the overall material properties and the mesh length. The main interest of such calibration is its promising capacity to lead to a mesh-insensitive overall response in surface damage. (author) [fr

  3. Scour in cohesive soils

    Science.gov (United States)

    2015-05-01

    This study of scour in cohesive soils had two objectives. The first was to introduce and demonstrate a new ex situ erosion testing device (ESTD) that can mimic the near-bed flow of open channels to erode cohesive soils within a specified range of she...

  4. Dynamics of Cohesive Sediments

    DEFF Research Database (Denmark)

    Johansen, Claus

    The present thesis considers the transport processes of cohesive sediments. The cohesive sediment used in the laboratory experiments was kaolinite, a clay mineral, in order to be able to reproduce the individual experiments. In the first part of the thesis, the theoretical considerations regarding...

  5. Maxillofacial fractures and craniocerebral injuries - stress propagation from face to neurocranium in a finite element analysis.

    Science.gov (United States)

    Huempfner-Hierl, Heike; Schaller, Andreas; Hierl, Thomas

    2015-04-21

    Severe facial trauma is often associated with intracerebral injuries. So it seemed to be of interest to study stress propagation from face to neurocranium after a fistlike impact on the facial skull in a finite element analysis. A finite element model of the human skull without mandible consisting of nearly 740,000 tetrahedrons was built. Fistlike impacts on the infraorbital rim, the nasoorbitoethmoid region, and the supraorbital arch were simulated and stress propagations were depicted in a time-dependent display. Finite element simulation revealed von Mises stresses beyond the yield criterion of facial bone at the site of impacts and propagation of stresses in considerable amount towards skull base in the scenario of the fistlike impact on the infraorbital rim and on the nasoorbitoethmoid region. When impact was given on the supraorbital arch stresses seemed to be absorbed. As patients presenting with facial fractures have a risk for craniocerebral injuries attention should be paid to this and the indication for a CT-scan should be put widely. Efforts have to be made to generate more precise finite element models for a better comprehension of craniofacial and brain injury.

  6. Layered Manufacturing of Dental Ceramics: Fracture Mechanics, Microstructure, and Elemental Composition of Lithography-Sintered Ceramic.

    Science.gov (United States)

    Uçar, Yurdanur; Aysan Meriç, İpek; Ekren, Orhun

    2018-02-11

    To compare the fracture mechanics, microstructure, and elemental composition of lithography-based ceramic manufacturing with pressing and CAD/CAM. Disc-shaped specimens (16 mm diameter, 1.2 mm thick) were used for mechanical testing (n = 10/group). Biaxial flexural strength of three groups (In-Ceram alumina [ICA], lithography-based alumina, ZirkonZahn) were determined using the "piston on 3-ball" technique as suggested in test Standard ISO-6872. Vickers hardness test was performed. Fracture toughness was calculated using fractography. Results were statistically analyzed using Kruskal-Wallis test followed by Dunnett T3 (α = 0.05). Weibull analysis was conducted. Polished and fracture surface characterization was made using scanning electron microscope (SEM). Energy dispersive spectroscopy (EDS) was used for elemental analysis. Biaxial flexural strength of ICA, LCM alumina (LCMA), and ZirkonZahn were 147 ± 43 MPa, 490 ± 44 MPa, and 709 ± 94 MPa, respectively, and were statistically different (P ≤ 0.05). The Vickers hardness number of ICA was 850 ± 41, whereas hardness values for LCMA and ZirkonZahn were 1581 ± 144 and 1249 ± 57, respectively, and were statistically different (P ≤ 0.05). A statistically significant difference was found between fracture toughness of ICA (2 ± 0.4 MPa⋅m 1/2 ), LCMA (6.5 ± 1.5 MPa⋅m 1/2 ), and ZirkonZahn (7.7 ± 1 MPa⋅m 1/2 ) (P ≤ 0.05). Weibull modulus was highest for LCMA (m = 11.43) followed by ZirkonZahn (m = 8.16) and ICA (m = 5.21). Unlike LCMA and ZirkonZahn groups, a homogeneous microstructure was not observed for ICA. EDS results supported the SEM images. Within the limitations of this in vitro study, it can be concluded that LCM seems to be a promising technique for final ceramic object manufacturing in dental applications. Both the manufacturing method and the material used should be improved. © 2018 by the American College of Prosthodontists.

  7. Experimental Investigation and Discrete Element Modelling of Composite Hollow Spheres Subjected to Dynamic Fracture

    Directory of Open Access Journals (Sweden)

    Arthur Coré

    2017-01-01

    Full Text Available This paper deals with the characterization and the numerical modelling of the collapse of composite hollow spherical structures developed to absorb energy during high velocity impacts. The structure is composed of hollow spheres (ϕ=2–30 mm made of epoxy resin and mineral powder. First of all, quasi-static and dynamic (v=5 mm·min−1 to v=2 m·s−1 compression tests are conducted at room temperature on a single sphere to study energy dissipation mechanisms. Fracture of the material appears to be predominant. A numerical model based on the discrete element method is investigated to simulate the single sphere crushing. The stress-strain-time relationship of the material based on the Ree-Eyring law is numerically implemented. The DEM modelling takes naturally into account the dynamic fracture and the crack path computed is close to the one observed experimentally in uniaxial compression. Eventually, high velocity impacts (v>100 m·s−1 of a hollow sphere on a rigid surface are conducted with an air cannon. The numerical results are in good agreement with the experimental data and demonstrate the ability of the present model to correctly describe the mechanical behavior of brittle materials at high strain rate.

  8. Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method

    Directory of Open Access Journals (Sweden)

    Qi Zhao

    2014-12-01

    Full Text Available Hydraulic fracturing (HF technique has been extensively used for the exploitation of unconventional oil and gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formations by fluid injection, which creates an interconnected fracture network and increases the hydrocarbon production. Meanwhile, microseismic (MS monitoring is one of the most effective approaches to evaluate such stimulation process. In this paper, the combined finite-discrete element method (FDEM is adopted to numerically simulate HF and associated MS. Several post-processing tools, including frequency-magnitude distribution (b-value, fractal dimension (D-value, and seismic events clustering, are utilized to interpret numerical results. A non-parametric clustering algorithm designed specifically for FDEM is used to reduce the mesh dependency and extract more realistic seismic information. Simulation results indicated that at the local scale, the HF process tends to propagate following the rock mass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to the maximum in-situ stress.

  9. Study on fracture of fuel element cladding for naval reactor during typical accidents

    International Nuclear Information System (INIS)

    Zhang Fan; Shang Xueli; Zheng Zhongliang; Yu Lei

    2011-01-01

    Aiming at defining the grade of nuclear emergency response, the best estimate model has been adopted; the simulation of large break loss of coolant accident (LBLOCA) has been carried out by the radioactive analysis software coupled with relap5/mod 3.2 and core physics model. First, the peak clad temperature of the critical failure channel is calculated in relap5 code, and simultaneously its power factor is obtained. Second, pin power distribution of the fuel assemblies has been calculated in coarse-mesh nodal method. According to the pin power distribution in the whole core and the result gained above, the fraction of fuel element fracture is calculated. Finally, the radioactive analysis has been carried out and the reasonable source term is gotten, which can offer reference for the nuclear emergency decision making. (authors)

  10. Thermo-mechanically coupled fracture analysis of shape memory alloys using the extended finite element method

    Science.gov (United States)

    Hatefi Ardakani, S.; Ahmadian, H.; Mohammadi, S.

    2015-04-01

    In this paper, the extended finite element method is used for fracture analysis of shape memory alloys for both cases of super elastic and shape memory effects. Heat generation during the forward and reverse phase transformations can lead to temperature variation in the material because of strong thermo-mechanical coupling, which significantly influences the SMA mechanical behavior. First, the stationary crack mode is studied and the effects of loading rate on material behavior in the crack tip are examined. Then, the crack propagation analysis is performed in the presence of an initial crack by adopting a weighted averaging criterion, where the direction of crack propagation is determined by weighted averaging of effective stresses at all the integration points in the vicinity of the crack tip. Finally, several numerical examples are analyzed and the obtained results are compared with the available reference results.

  11. Distinct element method modeling of fracture behavior in near field rock

    International Nuclear Information System (INIS)

    Hoekmark, H.

    1990-12-01

    This report concerns the numerical calculations of the behavior of the near field of a nuclear waste repository. The calculations were performed using the two-dimensional distinct element code UDEC. The distinct element method accounts specifically for discontinuities, e.g. fractures that intersect the model region. It is shown that, if an appropriate joint constitutive relation is applied, the calculated joint behavior can be brought in close agreement with empirically derived stress-strain relations. Three basic geometries are studied, namely a vertical tunnel section, a horizontal borehole section and a combination, i.e. a vertical section of tunnel and deposition hole. The effects of different processes and activities are investigated, e.g. effects of excavations, of thermal loads, of internal tunnel pressures and of pore pressures and fracture flow resulting from the hydraulic ground water pressure. The interpretation of the results concerns in particular joint behavior, especially joint openings, in the nearest surroundings of excavations and of thermally affected regions. The calculations show that joint shear and joint normal displacements induced by excavation and by thermal processes may be considerable, and that thermal cycles may result in residual joint aperture changes, especially in systems with loosely bound rock blocks. It is concluded that the UDEC code, when applied to problems that have a two-dimensional character, gives results that are probably quantitatively correct. The results appear to be strongly dependant on the detailed joint structure close to free boundaries such as tunnel walls, which indicated that the 3-D situation regarding joint orientation might have to be considered. It is recommended that 3-D calculations should be performed to verify and quantitatively interpret the 2-D results and to analyze situations that are actually three-dimensional. (au)

  12. Written cohesion in children with and without language learning disabilities.

    Science.gov (United States)

    Koutsoftas, Anthony D; Petersen, Victoria

    2017-09-01

    Cohesion refers to the linguistic elements of discourse that contribute to its continuity and is an important element to consider as part of written language intervention, especially in children with language learning disabilities (LLD). There is substantial evidence that children with LLD perform more poorly than typically developing (TD) peers on measures of cohesion in spoken language and on written transcription measures; however, there is far less research comparing groups on cohesion as a measure of written language across genres. The current study addresses this gap through the following two aims. First, to describe and compare cohesion in narrative and expository writing samples of children with and without language learning disabilities. Second, to relate measures of cohesion to written transcription and translation measures, oral language, and writing quality. Fifty intermediate-grade children produced one narrative and one expository writing sample from which measures of written cohesion were obtained. These included the frequency, adequacy and complexity of referential and conjunctive ties. Expository samples resulted in more complex cohesive ties and children with TD used more complex ties than peers with LLD. Different relationships among cohesion measures and writing were observed for narrative verse expository samples. Findings from this study demonstrate cohesion as a discourse-level measure of written transcription and how the use of cohesion can vary by genre and group (LLD, TD). Clinical implications for assessment, intervention, and future research are provided. © 2016 Royal College of Speech and Language Therapists.

  13. Cohesive Laws and Progressive Damage Analysis of Composite Bonded Joints, a Combined Numerical/Experimental Approach

    Science.gov (United States)

    Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung

    2015-01-01

    The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations, in agreement with experimental tests, indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.

  14. Mechanical comparison between lengthened and short sacroiliac screws in sacral fracture fixation: a finite element analysis.

    Science.gov (United States)

    Zhao, Y; Zhang, S; Sun, T; Wang, D; Lian, W; Tan, J; Zou, D; Zhao, Y

    2013-09-01

    To compare the stability of lengthened sacroiliac screw and standard sacroiliac screw for the treatment of unilateral vertical sacral fractures; to provide reference for clinical applications. A finite element model of Tile type C pelvic ring injury (unilateral Denis type II fracture of the sacrum) was produced. The unilateral sacral fractures were fixed with lengthened sacroiliac screw and sacroiliac screw in six different types of models respectively. The translation and angle displacement of the superior surface of the sacrum (in standing position on both feet) were measured and compared. The stability of one lengthened sacroiliac screw fixation in S1 or S2 segment is superior to that of one sacroiliac screw fixation in the same sacral segment. The stability of one lengthened sacroiliac screw fixation in S1 and S2 segments respectively is superior to that of one sacroiliac screw fixation in S1 and S2 segments respectively. The stability of one lengthened sacroiliac screw fixation in S1 and S2 segments respectively is superior to that of one lengthened sacroiliac screw fixation in S1 or S2 segment. The stability of one sacroiliac screw fixation in S1 and S2 segments respectively is markedly superior to that of one sacroiliac screw fixation in S1 or S2 segment. The vertical and rotational stability of lengthened sacroiliac screw fixation and sacroiliac screw fixation in S2 is superior to that of S1. In a finite element model of type C pelvic ring disruption, S1 and S2 lengthened sacroiliac screws should be utilized for the fixation as regularly as possible and the most stable fixation is the combination of the lengthened sacroiliac screws of S1 and S2 segments. Even if lengthened sacroiliac screws cannot be systematically used due to specific conditions, one sacroiliac screw fixation in S1 and S2 segments respectively is recommended. No matter which kind of sacroiliac screw is used, if only one screw can be implanted, the fixation in S2 segment is more recommended

  15. An embedded crack in a constant strain triangle utilizing extended finite element concepts

    DEFF Research Database (Denmark)

    Olesen, J.F.; Poulsen, P.N.

    2013-01-01

    This paper revisits the formulation of the CST element with an embedded discrete crack taking advantage of the direct formulations developed within the framework of the extended finite element method, XFEM. The result is a simple element for modeling cohesive fracture processes in quasi-brittle m......This paper revisits the formulation of the CST element with an embedded discrete crack taking advantage of the direct formulations developed within the framework of the extended finite element method, XFEM. The result is a simple element for modeling cohesive fracture processes in quasi......-element discontinuity of displacements. The formulation is based on a variational principle of virtual work involving only the interpolation of displacements. The good performance of the element is demonstrated through the comparison with three benchmark tests in which a single crack is propagated: The center cracked...

  16. The Structure of Group Cohesion.

    Science.gov (United States)

    Cota, Albert A.; And Others

    1995-01-01

    Reviews the literature on unidimensional and multidimensional models of cohesion and describes cohesion as a multidimensional construct with primary and secondary dimensions. Found that primary dimensions described the cohesiveness of all or most types of groups, whereas secondary dimensions only described the cohesiveness of specific types of…

  17. Non-linear finite element analyses of wide plate fracture mechanics experiments

    International Nuclear Information System (INIS)

    Harrop, L.P.; Gibson, S.

    1988-06-01

    A series of centre-cracked, wide plate fracture mechanics tests is being conducted with plates made from 0.36% carbon steel. This report gives an account of post-test finite element analyses performed to compare with the results of one of these tests (designated CSTP4) and a pre-test analysis of the next test which has a slightly different geometry (CSTP5). The plates are relatively thick (75mm) and have a width of 1.62m. The finite element analyses use a two-dimensional plane stress mesh. The work shows good agreement between the post-test analysis results and the overall experimental results for CSTP4. It is not expected that the analysis results will be accurate within the dimensions of the process zone ahead of the crack tip; the mesh is not sufficient for this. A vital ingredient in attaining the good overall agreement is the representation of the actual stress-strain curve of the material. The predicted response of test CSTP5 is markedly different from that of CSTP4 even though the only change is the increase in the height of the plate. In particular the shape and size of the plastic zone ahead of the crack tip is quite different in the two tests at the same nominal remote applied load. (author)

  18. Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

    Science.gov (United States)

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to u...

  19. Mode I Cohesive Law Characterization of Through-Crack Propagation in a Multidirectional Laminate

    Science.gov (United States)

    Bergan, Andrew C.; Davila, Carlos G.; Leone, Frank A.; Awerbuch, Jonathan; Tan, Tein-Min

    2014-01-01

    A method is proposed and assessed for the experimental characterization of through-the-thickness crack propagation in multidirectional composite laminates with a cohesive law. The fracture toughness and crack opening displacement are measured and used to determine a cohesive law. Two methods of computing fracture toughness are assessed and compared. While previously proposed cohesive characterizations based on the R-curve exhibit size effects, the proposed approach results in a cohesive law that is a material property. The compact tension specimen configuration is used to propagate damage while load and full-field displacements are recorded. These measurements are used to compute the fracture toughness and crack opening displacement from which the cohesive law is characterized. The experimental results show that a steady-state fracture toughness is not reached. However, the proposed method extrapolates to steady-state and is demonstrated capable of predicting the structural behavior of geometrically-scaled specimens.

  20. Trace Elements in Basalts From the Siqueiros Fracture Zone: Implications for Melt Migration Models

    Science.gov (United States)

    Pickle, R. C.; Forsyth, D. W.; Saal, A. E.; Nagle, A. N.; Perfit, M. R.

    2008-12-01

    Incompatible trace element (ITE) ratios in MORB from a variety of locations may provide insights into the melt migration process by constraining aggregated melt compositions predicted by mantle melting and flow models. By using actual plate geometries to create a 3-D thermodynamic mantle model, melt volumes and compositions at all depths and locations may be calculated and binned into cubes using the pHMELTS algorithm [Asimow et al., 2004]. These melts can be traced from each cube to the surface assuming several migration models, including a simplified pressure gradient model and one in which melt is guided upwards by a low permeability compacted layer. The ITE ratios of all melts arriving at the surface are summed, averaged, and compared to those of the actual sample compositions from the various MOR locales. The Siqueiros fracture zone at 8° 20' N on the East Pacific Rise (EPR) comprises 4 intra-transform spreading centers (ITSCs) across 140 km of offset between two longer spreading ridges, and is an excellent study region for several reasons. First, an abundance of MORB data is readily available, and the samples retrieved from ITSCs are unlikely to be aggregated in a long-lived magma chamber or affected by along-axis transport, so they represent melts extracted locally from the mantle. Additionally, samples at Siqueiros span a compositional range from depleted to normal MORB within the fracture zone yet have similar isotopic compositions to samples collected from the 9-10° EPR. This minimizes the effect of assuming a uniform source composition in our melting model despite a heterogeneous mantle, allowing us to consistently compare the actual lava composition with that predicted by our model. Finally, it has been demonstrated with preliminary migration models that incipient melts generated directly below an ITSC may not necessarily erupt at that ITSC but migrate laterally towards a nearby ridge due to enhanced pressure gradients. The close proximity of the

  1. Newly designed anterolateral and posterolateral locking anatomic plates for lateral tibial plateau fractures: a finite element study.

    Science.gov (United States)

    Chen, Pengbo; Lu, Hua; Shen, Hao; Wang, Wei; Ni, Binbin; Chen, Jishizhan

    2017-02-23

    Lateral column tibial plateau fracture fixation with a locking screw plate has higher mechanical stability than other fixation methods. The objectives of the present study were to introduce two newly designed locking anatomic plates for lateral tibial plateau fracture and to demonstrate their characteristics of the fixation complexes under the axial loads. Three different 3D finite element models of the lateral tibial plateau fracture with the bone plates were created. Various axial forces (100, 500, 1000, and 1500 N) were applied to simulate the axial compressive load on an adult knee during daily life. The equivalent maps of displacement and stress were output, and relative displacement was calculated along the fracture lines. The displacement and stresses in the fixation complexes increased with the axial force. The equivalent displacement or stress map of each fixation under different axial forces showed similar distributing characteristics. The motion characteristics of the three models differed, and the max-shear stress of trabecula increased with the axial load. These two novel plates could fix lateral tibial plateau fractures involving anterolateral and posterolateral fragments. Motions after open reduction and stable internal fixation should be advised to decrease the risk of trabecular microfracture. The relative displacement of the posterolateral fragments is different when using anterolateral plate and posterolateral plate, which should be considered in choosing the implants for different posterolateral plateau fractures.

  2. Evaluation of Different Restoration Combinations Used in the Reattachment of Fractured Teeth: A Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Nagihan Guven

    2018-01-01

    Full Text Available Objective. The purpose of this study was to test different restoration combinations used for constructing fractured endodontically treated incisors by reattaching their fractured fragments. Methods. Seven types of 3-D FEM mathematical root canal-filled models were generated, simulating cases of (OB reattaching fractured fragments; (CrPL reattaching fractured fragments + ceramic palatinal laminate; (CmPL reattaching fractured fragments + composite palatinal laminate; (CM reattaching fractured fragments + coronal 1/3 of the root was filled using core material; (BP reattaching fractured fragments + glass fiber post; (CP composite resin restoration + glass fiber post; and (OC composite resin restoration. A 100-N static oblique force was applied to the simulated teeth with 135° on the node at 2 mm above the cingulum to analyze the stress distribution at the tooth. Results. For enamel tissue, the highest stress values were observed in model BP, and the lowest stress values were observed in model CmPL. For dentine tissue, the highest stress concentrations were observed around the fracture line for all models. Conclusions. Reattachment of fractured fragments by bonding may be preferred as a restoration option for endodontically treated incisors; also, palatinal laminate decreases the stress values at tooth tissues, especially at the enamel and the fracture line.

  3. Round-robin activities on finite element analyses of elastic-plastic fracture in Japan

    International Nuclear Information System (INIS)

    Shimakawa, T.; Takahashi, Y.; Yagawa, G.

    1989-01-01

    The establishment of the leak-before-break (LBB) concept requires a method to evaluate the fracture characteristics. The finite element method can be used for this purpose but the solution is more or less influenced by the method employed. In this study, two round-robin analyses are performed for three-dimensional crack problems. The first problem is for surface crack growth in a carbon steel plate subjected to tension loading. Ten solutions are obtained by ten participants, and calculated results are compared with each other as to the applied load, displacement and J-integral. Though the relation between applied load and displacement is affected by modeling of the stress-strain curve, fairly good agreement is obtained between the solutions. The second problem is for a circumferential part-through crack in a carbon steel pipe subjected to a bending moment. Nine solutions are obtained by eight participants. The difference between the solutions is relatively significant as to the relation between J-integral and load-point displacement. A discussion is made about the sources of difference between each solution. (orig.)

  4. 3D finite element modelling of force transmission and particle fracture of sand

    Energy Technology Data Exchange (ETDEWEB)

    Imseeh, Wadi H.; Alshibli, Khalid A. (Tennessee-K)

    2018-02-01

    Global compressive loading of granular media causes rearrangements of particles into a denser configuration. Under 1D compression, researchers observed that particles initially translate and rotate which lead to more contacts between particles and the development of force chains to resist applied loads. Particles within force chains resist most of the applied loads while neighbor particles provide lateral support to prevent particles within force chains from buckling. Several experimental and numerical models have been proposed in the literature to characterize force chains within granular materials. This paper presents a 3D finite element (FE) model that simulates 1D compression experiment on F-75 Ottawa sand. The FE mesh of particles closely matched 3D physical shape of sand particles that were acquired using 3D synchrotron micro-computed tomography (SMT) technique. The paper presents a quantitative assessment of the model, in which evolution of force chains, fracture modes, and stress-strain relationships showed an excellent agreement with experimental measurements reported by Cil et al. Alshibli (2017).

  5. The finite element part of the LAMCAL program. Elastic-plastic fracture mechanics applications

    International Nuclear Information System (INIS)

    Lamain, L.G.; Blanckenburg, J.F.G.

    1982-01-01

    The elastic-plastic FEM code described in this report is the third part of the Lamcal program of which the two other parts for mesh generating and plotting were presented previously. Also this part uses the dynamic core storage. All variables and problem defining data are stored in one common array-SPACE. If all three parts are used together, the same common-SPACE is reused in each part. The lay-out of the complete program is given. J-integral evaluation and plotting can be done immediately in the FE run or afterwards in a post processing run. Post processing is done within the FEM part with a reduced core space. Originally developed as a general code, the use of the present version is mainly focussed on research in the field of the fracture mechanics. Several J-integral routines are available as well as crack growth modelling by node release or stiffness reduction, energy calculations, crack tip elements, etc. In this report the theory is discussed and some sample problems are given. The theory is presented in two parts, the general FEM and the more specific EPFM theory. For the sample problems, a choice has been made to show the accuracy of the program under more or less severe loading conditions

  6. A cohesive zone model to simulate the hydrogen embrittlement effect on a high-strength steel

    Directory of Open Access Journals (Sweden)

    G. Gobbi

    2016-01-01

    Full Text Available The present work aims to model the fracture mechanical behavior of a high-strength low carbon steel, AISI 4130 operating in hydrogen contaminated environment. The study deals with the development of 2D finite element cohesive zone model (CZM reproducing a toughness test. Along the symmetry plane over the crack path of a C(T specimen a zero thickness layer of cohesive elements are implemented in order to simulate the crack propagation. The main feature of this kind of model is the definition of a traction-separation law (TSL that reproduces the constitutive response of the material inside to the cohesive elements. Starting from a TSL calibrated on hydrogen non-contaminated material, the embrittlement effect is simulated by reducing the cohesive energy according to the total hydrogen content including the lattice sites (NILS and the trapped amount. In this perspective, the proposed model consists of three steps of simulations. First step evaluates the hydrostatic pressure. It drives the initial hydrogen concentration assigned in the second step, a mass diffusion analysis, defining in this way the contribution of hydrogen moving across the interstitial lattice sites. The final stress analysis, allows getting the total hydrogen content, including the trapped amount, and evaluating the new crack initiation and propagation due to the hydrogen presence. The model is implemented in both plane strain and plane stress configurations; results are compared in the discussion. From the analyses, it resulted that hydrogen is located only into lattice sites and not in traps, and that the considered steel experiences a high hydrogen susceptibility. By the proposed procedure, the developed numerical model seems a reliable and quick tool able to estimate the mechanical behavior of steels in presence of hydrogen.

  7. The hydraulic properties of fracture zones and tracer tests with non-reactive elements in Studsvik

    International Nuclear Information System (INIS)

    Klockars, C.-E.; Persson, O.; Landstroem, O.

    1982-04-01

    Tracer technique was applied in a rock formation within the Studsvik Energiteknik area in order to study hydrodynamic properties of discrete fracture zones between boreholes. The two hole method was applied in these studies; a nonreactive tracer is injected in one hole into a fracture zone which is in hydraulic contact with a central pump hole (observation hole). Hydraulic tests and TV inspection were carried out in the fracture zones. Chemical composition of the groundwater was determined. In summary, the following hydraulic properties were found for the fracture zones between the boreholes B1N-B6N and B5N-B6N respectively, under the prevailing conditions: 1) The fracture zones studied consists of a number of transport pathways with different mean transit times, varying from 100 to 1200 hours. 2) The fracture zone between boreholes B1N and B6N has a mean hydraulic conductivity of 6-7 x 10 -5 m/s and the fracture zone between boreholes B5N and B6N, 2 x 10 -4 m/s. 3) The kinematic porosity of the fracture zones studied, calculated as the ratio between the hydraulic conductivity of the rock mass and that of the fracture zone, is 2 x 10 -3 and 5 x 10 -3 , respectively. 4) The roughness factor β, which expresses the ratio between measured and theoretically calculated (plane-parallel) fracture conductivity for the fracture zones studied, is approximately 0.04 and 0.06, respectively. 5) Dispersivity for the flow channels within the fracture zones is of the order of 0.3-0.8 m. 6) The groundwater encountered is a nearly neutral, probably reducing, Na-Ca-HCO 3 water. The results of the tracer tests reveal the following: I-131 is a suitable nonreactive tracer for the test area. A test with simultaneous injection of I-131 and T (tritium) gave comparable breakthrough curves. (Author)

  8. Experimental and finite element analysis of tibial stress fractures using a rabbit model.

    Science.gov (United States)

    Franklyn, Melanie; Field, Bruce

    2013-01-01

    To determine if rabbit models can be used to quantify the mechanical behaviour involved in tibial stress fracture (TSF) development. Fresh rabbit tibiae were loaded under compression using a specifically-designed test apparatus. Weights were incrementally added up to a load of 30 kg and the mechanical behaviour of the tibia was analysed using tests for buckling, bone strain and hysteresis. Structural mechanics equations were subsequently employed to verify that the results were within the range of values predicted by theory. A finite element (FE) model was developed using cross-sectional computer tomography (CT) images scanned from one of the rabbit bones, and a static load of 6 kg (1.5 times the rabbit's body weight) was applied to represent running. The model was validated using the experimental strain gauge data, then geometric and elemental convergence tests were performed in order to find the minimum number of cross-sectional scans and elements respectively required for convergence. The analysis was then performed using both the model and the experimental results to investigate the mechanical behaviour of the rabbit tibia under compressive load and to examine crack initiation. The experimental tests showed that under a compressive load of up to 12 kg, the rabbit tibia demonstrates linear behaviour with little hysteresis. Up to 30 kg, the bone does not fail by elastic buckling; however, there are low levels of tensile stress which predominately occur at and adjacent to the anterior border of the tibial midshaft: this suggests that fatigue failure occurs in these regions, since bone under cyclic loading initially fails in tension. The FE model predictions were consistent with both mechanics theory and the strain gauge results. The model was highly sensitive to small changes in the position of the applied load due to the high slenderness ratio of the rabbit's tibia. The modelling technique used in the current study could have applications in the development of

  9. Utility of cement injection to stabilize split-depression tibial plateau fracture by minimally invasive methods: A finite element analysis.

    Science.gov (United States)

    Belaid, D; Vendeuvre, T; Bouchoucha, A; Brémand, F; Brèque, C; Rigoard, P; Germaneau, A

    2018-05-08

    Treatment for fractures of the tibial plateau is in most cases carried out by stable fixation in order to allow early mobilization. Minimally invasive technologies such as tibioplasty or stabilization by locking plate, bone augmentation and cement filling (CF) have recently been used to treat this type of fracture. The aim of this paper was to determine the mechanical behavior of the tibial plateau by numerically modeling and by quantifying the mechanical effects on the tibia mechanical properties from injury healing. A personalized Finite Element (FE) model of the tibial plateau from a clinical case has been developed to analyze stress distribution in the tibial plateau stabilized by balloon osteoplasty and to determine the influence of the cement injected. Stress analysis was performed for different stages after surgery. Just after surgery, the maximum von Mises stresses obtained for the fractured tibia treated with and without CF were 134.9 MPa and 289.9 MPa respectively on the plate. Stress distribution showed an increase of values in the trabecular bone in the treated model with locking plate and CF and stress reduction in the cortical bone in the model treated with locking plate only. The computed results of stresses or displacements of the fractured models show that the cement filling of the tibial depression fracture may increase implant stability, and decrease the loss of depression reduction, while the presence of the cement in the healed model renders the load distribution uniform. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Finite element analysis of intramedullary nailing and double locking plate for treating extra-articular proximal tibial fractures.

    Science.gov (United States)

    Chen, Fancheng; Huang, Xiaowei; Ya, Yingsun; Ma, Fenfen; Qian, Zhi; Shi, Jifei; Guo, Shuolei; Yu, Baoqing

    2018-01-16

    Proximal tibia fractures are one of the most familiar fractures. Surgical approaches are usually needed for anatomical reduction. However, no single treatment method has been widely established as the standard care. Our present study aims to compare the stress and stability of intramedullary nails (IMN) fixation and double locking plate (DLP) fixation in the treatment of extra-articular proximal tibial fractures. A three-dimensional (3D) finite element model of the extra-articular proximal tibial fracture, whose 2-cm bone gap began 7 cm from the tibial plateau articular surface, was created fixed by different fixation implants. The axial compressive load on an adult knee during single-limb stance was imitated by an axial force of 2500 N with a distribution of 60% to the medial compartment, while the distal end was fixed effectively. The equivalent von Mises stress and displacement of the model was used as the output measures for analysis. The maximal equivalent von Mises stress value of the system in the IMN model was 293.23 MPa, which was higher comparing against that in the DLP fixation model (147.04 MPa). And the mean stress of the model in the IMN model (9.25 MPa) was higher than that of the DLP fixation system in terms of equivalent von Mises stress (EVMS) (P tibial fractures of young patients.

  11. Geometry reconstruction method for patient-specific finite element models for the assessment of tibia fracture risk in osteogenesis imperfecta.

    Science.gov (United States)

    Caouette, Christiane; Ikin, Nicole; Villemure, Isabelle; Arnoux, Pierre-Jean; Rauch, Frank; Aubin, Carl-Éric

    2017-04-01

    Lower limb deformation in children with osteogenesis imperfecta (OI) impairs ambulation and may lead to fracture. Corrective surgery is based on empirical assessment criteria. The objective was to develop a reconstruction method of the tibia for OI patients that could be used as input of a comprehensive finite element model to assess fracture risks. Data were obtained from three children with OI and tibia deformities. Four pQCT scans were registered to biplanar radiographs, and a template mesh was deformed to fit the bone outline. Cortical bone thickness was computed. Sensitivity of the model to missing slices of pQCT was assessed by calculating maximal von Mises stress for a vertical hopping load case. Sensitivity of the model to ±5 % of cortical thickness measurements was assessed by calculating loads at fracture. Difference between the mesh contour and bone outline on the radiographs was below 1 mm. Removal of one pQCT slice increased maximal von Mises stress by up to 10 %. Simulated ±5 % variation of cortical bone thickness leads to variations of up to 4.1 % on predicted fracture loads. Using clinically available tibia imaging from children with OI, the developed reconstruction method allowed the building of patient-specific finite element models.

  12. Development of carbon/carbon composite control rod for HTTR. 1. Preparation of elements and their fracture tests

    International Nuclear Information System (INIS)

    Eto, Motokuni; Ishiyama, Shintaro; Ugachi, Hirokazu

    1996-08-01

    For the High Temperature Engineering Test Reactor(HTTR) the control rod sleeve is made of Alloy 800H for which a particular process is imposed when the reactor needs to be scrammed. The less restricted operation of the reactor would be attained if there would be the control rod more resistant to high temperature and neutron irradiation. This report summarizes the results which have been obtained as of March 1996 in the course of the development of the C/C composite control rod. Materials used were pitch- or PAN-based fiber-reinforced 2-dimensional carbon composites, from which preforms of the elements of a control rod were fabricated. The preforms were carbonized at 1000degC after being impregnated with pitch. Then they were graphitized at 3000degC, followed by a purification treatment with halogen. The elements included the pellet holder, lace truck and pin. The pin was fabricated by the fiber laminating technique. A control rod is to consist of pellet holders which are connected by the lace trucks with pins. Various strength tests were carried out on these elements. An irradiation of the elements made of PAN-based material was performed in JRR-3 at 900±50degC to a neutron fluence of 1x10 25 n/m 2 (E>29fJ). As for the strength tests on the elements, there were some differences between PAN- and pitch-based composites: In general, elements made of PAN-based composite showed the more plastic behavior before they fractured, whereas those of pitch-based material behaved in the more brittle manner. Fracture tests of the irradiated elements showed that fracture load and fracture displacement enough for assuring the integrity of the control rod structure were maintained even after the irradiation. It was also found that if the applied load was parallel to the fiber felt plane both fracture load and strain increased, whereas the load increase and strain decrease were observed for the applied load against the plane. (J.P.N.)

  13. Development of carbon/carbon composite control rod for HTTR. 1. Preparation of elements and their fracture tests

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Motokuni; Ishiyama, Shintaro; Ugachi, Hirokazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-08-01

    For the High Temperature Engineering Test Reactor(HTTR) the control rod sleeve is made of Alloy 800H for which a particular process is imposed when the reactor needs to be scrammed. The less restricted operation of the reactor would be attained if there would be the control rod more resistant to high temperature and neutron irradiation. This report summarizes the results which have been obtained as of March 1996 in the course of the development of the C/C composite control rod. Materials used were pitch- or PAN-based fiber-reinforced 2-dimensional carbon composites, from which preforms of the elements of a control rod were fabricated. The preforms were carbonized at 1000degC after being impregnated with pitch. Then they were graphitized at 3000degC, followed by a purification treatment with halogen. The elements included the pellet holder, lace truck and pin. The pin was fabricated by the fiber laminating technique. A control rod is to consist of pellet holders which are connected by the lace trucks with pins. Various strength tests were carried out on these elements. An irradiation of the elements made of PAN-based material was performed in JRR-3 at 900{+-}50degC to a neutron fluence of 1x10{sup 25} n/m{sup 2} (E>29fJ). As for the strength tests on the elements, there were some differences between PAN- and pitch-based composites: In general, elements made of PAN-based composite showed the more plastic behavior before they fractured, whereas those of pitch-based material behaved in the more brittle manner. Fracture tests of the irradiated elements showed that fracture load and fracture displacement enough for assuring the integrity of the control rod structure were maintained even after the irradiation. It was also found that if the applied load was parallel to the fiber felt plane both fracture load and strain increased, whereas the load increase and strain decrease were observed for the applied load against the plane. (J.P.N.)

  14. Finite element simulation of pressure-loaded phase-field fractures

    NARCIS (Netherlands)

    Singh, N.; Verhoosel, C.V.; van Brummelen, E.H.

    2018-01-01

    A non-standard aspect of phase-field fracture formulations for pressurized cracks is the application of the pressure loading, due to the fact that a direct notion of the fracture surfaces is absent. In this work we study the possibility to apply the pressure loading through a traction boundary

  15. Calculation of stress intensity factors using the UNCLE finite element system and their application in fracture mechanics

    International Nuclear Information System (INIS)

    Pearce, J.H.B.

    1978-02-01

    The behaviour of crack-like defects in loaded structures is in many cases characterised by the stress intensity factor, K, which describes the spatial distribution around the crack tip. Analytical evaluation of K for generalised loading and geometry would be extremely complex. A finite element approach is described which utilises the existing UNCLE system of the UKAEA. The interpretation of the results for a fracture mechanics analysis is briefly reviewed. (author)

  16. Finite element analysis of the three different posterior malleolus fixation strategies in relation to different fracture sizes.

    Science.gov (United States)

    Anwar, Adeel; Lv, Decheng; Zhao, Zhi; Zhang, Zhen; Lu, Ming; Nazir, Muhammad Umar; Qasim, Wasim

    2017-04-01

    Appropriate fixation method for the posterior malleolar fractures (PMF) according to the fracture size is still not clear. Aim of this study was to evaluate the outcomes of the different fixation methods used for fixation of PMF by finite element analysis (FEA) and to compare the effect of fixation constructs on the size of the fracture computationally. Three dimensional model of the tibia was reconstructed from computed tomography (CT) images. PMF of 30%, 40% and 50% fragment sizes were simulated through computational processing. Two antero-posterior (AP) lag screws, two postero-anterior (PA) lag screws and posterior buttress plate were analysed for three different fracture volumes. The simulated loads of 350N and 700N were applied to the proximal tibial end. Models were fixed distally in all degrees of freedom. In single limb standing condition, the posterior plate group produced the lowest relative displacement (RD) among all the groups (0.01, 0.03 and 0.06mm). Further nodal analysis of the highest RD fracture group showed a higher mean displacement of 4.77mm and 4.23mm in AP and PA lag screws model (p=0.000). The amounts of stress subjected to these implants, 134.36MPa and 140.75MPa were also significantly lower (p=0.000). There was a negative correlation (p=0.021) between implant stress and the displacement which signifies a less stable fixation using AP and PA lag screws. Progressively increasing fracture size demands more stable fixation construct because RD increases significantly. Posterior buttress plate produces superior stability and lowest RD in PMF models irrespective of the fragment size. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. An XFEM Model for Hydraulic Fracturing in Partially Saturated Rocks

    Directory of Open Access Journals (Sweden)

    Salimzadeh Saeed

    2016-01-01

    Full Text Available Hydraulic fracturing is a complex multi-physics phenomenon. Numerous analytical and numerical models of hydraulic fracturing processes have been proposed. Analytical solutions commonly are able to model the growth of a single hydraulic fracture into an initially intact, homogeneous rock mass. Numerical models are able to analyse complex problems such as multiple hydraulic fractures and fracturing in heterogeneous media. However, majority of available models are restricted to single-phase flow through fracture and permeable porous rock. This is not compatible with actual field conditions where the injected fluid does not have similar properties as the host fluid. In this study we present a fully coupled hydro-poroelastic model which incorporates two fluids i.e. fracturing fluid and host fluid. Flow through fracture is defined based on lubrication assumption, while flow through matrix is defined as Darcy flow. The fracture discontinuity in the mechanical model is captured using eXtended Finite Element Method (XFEM while the fracture propagation criterion is defined through cohesive fracture model. The discontinuous matrix fluid velocity across fracture is modelled using leak-off loading which couples fracture flow and matrix flow. The proposed model has been discretised using standard Galerkin method, implemented in Matlab and verified against several published solutions. Multiple hydraulic fracturing simulations are performed to show the model robustness and to illustrate how problem parameters such as injection rate and rock permeability affect the hydraulic fracturing variables i.e. injection pressure, fracture aperture and fracture length. The results show the impact of partial saturation on leak-off and the fact that single-phase models may underestimate the leak-off.

  18. Finite element simulations and experimental investigations on ductile fracture in cold forging of aluminum alloy

    Science.gov (United States)

    Amiri, Amir; Nikpour, Amin; Saraeian, Payam

    2018-05-01

    Forging is one of the manufacturing processes of aluminium parts which has two major categories: called hot and cold forging. In the cold forging, the dimensional and geometrical accuracy of final part is high. However, fracture may occur in some aluminium alloys during the process because of less workability. Fracture in cold forging can be in the form of ductile, brittle or combination of both depending on the alloy type. There are several criteria for predicting fracture in cold forging. In this study, cold forging process of 6063 aluminium alloy for three different parts is simulated in order to predict fracture. The results of numerical simulations of Freudenthal criterion is in conformity with experimental tests.

  19. FEFLOW finite element modeling of flow, mass and heat transport in porous and fractured media

    CERN Document Server

    Diersch, Hans-Jörg G

    2013-01-01

    Placing advanced theoretical and numerical methods in the hands of modeling practitioners and scientists, this book explores the FEFLOW system for solving flow, mass and heat transport processes in porous and fractured media. Offers applications and exercises.

  20. Determining mode I cohesive law of Pinus pinaster by coupling double cantilever beam test with digital image correlation

    Directory of Open Access Journals (Sweden)

    J. Xavier

    2015-01-01

    Full Text Available The direct identification of the cohesive law in pure mode I of Pinus pinaster is addressed. The approach couples the double cantilever beam (DCB test with digital image correlation (DIC. Wooden beam specimens loaded in the radial-longitudinal (RL fracture propagation system are used. The strain energy release rate in mode I ( is uniquely determined from the load-displacement ( curve by means of the compliance-based beam method (CBBM. This method relies on the concept of equivalent elastic crack length ( and therefore does not require the monitoring of crack propagation during test. The crack tip opening displacement in mode I is determined from the displacement field at the initial crack tip. The cohesive law in mode I is then identified by numerical differentiation of the relationship. Moreover, the proposed procedure is validated by finite element analyses including cohesive zone modelling. It is concluded that the proposed data reduction scheme is adequate for assessing the cohesive law in pure mode I of P. pinaster

  1. A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone

    KAUST Repository

    Leise, Tanya L.; Walton, Jay R.; Gorb, Yuliya

    2009-01-01

    interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation

  2. Finite element analysis of pedestrian lower limb fractures by direct force: the result of being run over or impact?

    Science.gov (United States)

    Li, Zhengdong; Zou, Donghua; Liu, Ningguo; Zhong, Liangwei; Shao, Yu; Wan, Lei; Huang, Ping; Chen, Yijiu

    2013-06-10

    The elucidation and prediction of the biomechanics of lower limb fractures could serve as a useful tool in forensic practices. Finite element (FE) analysis could potentially help in the understanding of the fracture mechanisms of lower limb fractures frequently caused by car-pedestrian accidents. Our aim was (1) to develop and validate a FE model of the human lower limb, (2) to assess the biomechanics of specific injuries concerning run-over and impact loading conditions, and (3) to reconstruct one real car-pedestrian collision case using the model created in this study. We developed a novel lower limb FE model and simulated three different loading scenarios. The geometry of the model was reconstructed using Mimics 13.0 based on computed tomography (CT) scans from an actual traffic accident. The material properties were based upon a synthesis of data found in published literature. The FE model validation and injury reconstruction were conducted using the LS-DYNA code. The FE model was validated by a comparison of the simulation results of three-point bending, overall lateral impact tests and published postmortem human surrogate (PMHS) results. Simulated loading scenarios of running-over the thigh with a wheel, the impact on the upper leg, and impact on the lower thigh were conducted with velocities of 10 m/s, 20 m/s, and 40 m/s, respectively. We compared the injuries resulting from one actual case with the simulated results in order to explore the possible fracture bio-mechanism. The peak fracture forces, maximum bending moments, and energy lost ratio exhibited no significant differences between the FE simulations and the literature data. Under simulated run-over conditions, the segmental fracture pattern was formed and the femur fracture patterns and mechanisms were consistent with the actual injury features of the case. Our study demonstrated that this simulation method could potentially be effective in identifying forensic cases and exploring of the injury

  3. Effect of interfragmentary gap on the mechanical behavior of mandibular angle fracture with three fixation designs: A finite element analysis.

    Science.gov (United States)

    Wang, Russell; Liu, Yunfeng; Wang, Joanne Helen; Baur, Dale Allen

    2017-03-01

    The aim of this study was to simulate stress and strain distribution numerically on a normal mandible under physiological occlusal loadings. The results were compared with those of mandibles that had an angle fracture stabilized with different fixation designs under the same loadings. The amount of displacement at two interfragmentary gaps was also studied. A three-dimensional (3D) virtual mandible was reconstructed with an angle fracture that had a fracture gap of either 0.1 or 1 mm. Three types of plate fixation designs were used: Type I, a miniplate was placed across the fracture line following the Champy technique; Type II, two miniplates were used; and Type III, a reconstruction plate was used on the inferior border of the mandible. Loads of 100 and 500 N were applied to the models. The maximum von Mises stress, strain, and displacement were computed using finite element analysis. The results from the control and experimental groups were analyzed and compared. The results demonstrated that high stresses and strains were distributed to the condylar and angular areas regardless of the loading position. The ratio of the plate/bone average stress ranged from 215% (Type II design) to 848% (Type I design) irrespective of the interfragmentary gap size. With a 1-mm fracture gap, the ratio of the plate/bone stress ranged from 204% (Type II design) to 1130% (Type I design). All strains were well below critical bone strain thresholds. Displacement on the cross-sectional mapping at fracture interface indicated that uneven movement occurred in x, y, and z directions. Interfragmentary gaps between 0.1 and 1 mm did not have a substantial effect on the average stress distribution to the fractured bony segments; however, they had a greater effect on the stress distribution to the plates and screws. Type II fixation was the best mechanical design under bite loads. Type I design was the least stable system and had the highest stress distribution and the largest displacement

  4. Analysis of Dynamic Fracture Parameters in Functionally Graded Material Plates with Cracks by Graded Finite Element Method and Virtual Crack Closure Technique

    Directory of Open Access Journals (Sweden)

    Li Ming Zhou

    2016-01-01

    Full Text Available Based on the finite element software ABAQUS and graded element method, we developed a dummy node fracture element, wrote the user subroutines UMAT and UEL, and solved the energy release rate component of functionally graded material (FGM plates with cracks. An interface element tailored for the virtual crack closure technique (VCCT was applied. Fixed cracks and moving cracks under dynamic loads were simulated. The results were compared to other VCCT-based analyses. With the implementation of a crack speed function within the element, it can be easily expanded to the cases of varying crack velocities, without convergence difficulty for all cases. Neither singular element nor collapsed element was required. Therefore, due to its simplicity, the VCCT interface element is a potential tool for engineers to conduct dynamic fracture analysis in conjunction with commercial finite element analysis codes.

  5. Comparison of Neck Screw and Conventional Fixation Techniques in Mandibular Condyle Fractures Using 3-Dimensional Finite Element Analysis.

    Science.gov (United States)

    Conci, Ricardo Augusto; Tomazi, Flavio Henrique Silveira; Noritomi, Pedro Yoshito; da Silva, Jorge Vicente Lopes; Fritscher, Guilherme Genehr; Heitz, Claiton

    2015-07-01

    To compare the mechanical stress on the mandibular condyle after the reduction and fixation of mandibular condylar fractures using the neck screw and 2 other conventional techniques according to 3-dimensional finite element analysis. A 3-dimensional finite element model of a mandible was created and graphically simulated on a computer screen. The model was fixed with 3 different techniques: a 2.0-mm plate with 4 screws, 2 plates (1 1.5-mm plate and 1 2.0-mm plate) with 4 screws, and a neck screw. Loads were applied that simulated muscular action, with restrictions of the upper movements of the mandible, differentiation of the cortical and medullary bone, and the virtual "folds" of the plates and screws so that they could adjust to the condylar surface. Afterward, the data were exported for graphic visualization of the results and quantitative analysis was performed. The 2-plate technique exhibited better stability in regard to displacement of fractures, deformity of the synthesis materials, and minimum and maximum tension values. The results with the neck screw were satisfactory and were similar to those found when a miniplate was used. Although the study shows that 2 isolated plates yielded better results compared with the other groups using other fixation systems and methods, the neck screw could be an option for condylar fracture reduction. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Finite element analysis to determine the stress distribution, displacement and safety factor on a microplate for the fractured jaw case

    Science.gov (United States)

    Pratama, Juan; Mahardika, Muslim

    2018-03-01

    Microplate is a connecting plate that can be used for jaw bone fixation. In the last two decades, microplate has been used so many times to help reconstruction of fractured jaw bone which is called mandibular bone or mandible bone. The plate is used to provide stable fixation of the fractured bone tissue during healing and reconstruction process. In this study Finite Element Analysis was used to predict the stress concentration and distribution on a microplate, displacement on the microplate and also to determine the safety factor of the microplate based on maximum allowable stress value, and finally to ascertain whether microplate is safe to use or not. The microplate was produced from punching process using titanium grade 1 (pure titanium) as material with a thickness of 500 µm. The results of the research indicated that the microplate was safe to use according to the maximum stress around the hole, displacement around the hole and also the safety factor of the microplate.

  7. Analysis of Thermo-Elastic Fracture Problem during Aluminium Alloy MIG Welding Using the Extended Finite Element Method

    Directory of Open Access Journals (Sweden)

    Kuanfang He

    2017-01-01

    Full Text Available The thermo-elastic fracture problem and equations are established for aluminium alloy Metal Inert Gas (MIG welding, which include a moving heat source and a thermoelasticity equation with the initial and boundary conditions for a plate structure with a crack. The extended finite element method (XFEM is implemented to solve the thermo-elastic fracture problem of a plate structure with a crack under the effect of a moving heat source. The combination of the experimental measurement and simulation of the welding temperature field is done to verify the model and solution method. The numerical cases of the thermomechanical parameters and stress intensity factors (SIFs of the plate structure in the welding heating and cooling processes are investigated. The research results provide reference data and an approach for the analysis of the thermomechanical characteristics of the welding process.

  8. COHESIVE STRENGTH OF DENTIN RESISTÊNCIA COESIVA DA DENTINA

    Directory of Open Access Journals (Sweden)

    Flávio Fernando DEMARCO

    1997-07-01

    Full Text Available The bond strength of dentin adhesives to dentin has increased after each generation. Although dentin substratum is part of the bonding process, little importance has been given to measure dentin cohesive strength. The aim of this study was to evaluate the cohesive strength of dentin in human canines. Seventeen non carious canines were selected. All of them had been extracted for more than one year. The teeth were ground until dentin square samples with approximately 2 X 2 mm were obtained. They were embedded in acrylic resin and subjected to shear stress, in a Wolpert Machine, at a crosshead speed of 0.5 mm/min. The mean cohesive strength of dentin in shear mode was 33.95 (+-9.72 MPa. The fracture surfaces were observed under a X40 magnification. A finite element analysis was performed to observe the stress distribution as related to the shear test. The failure pattern was compatible with the shear test and also with the stress distribution in the finite element analysisA resistência de união dos adesivos dentinários tem sido aumentada com o desenvolvimento de cada nova geração. Pouca importância tem sido dada à resistência coesiva da dentina. A proposta deste estudo foi avaliar a resistência coesiva da dentina. Dezessete caninos humanos hígidos, os quais tinham sido extraídos há mais de um ano, foram usados. Os dentes foram desgastados até a obtenção de corpos-de-prova em dentina, de formato quadrangular, com tamanho aproximado de 2 X 2 mm. Os dentes foram incluídos em resina acrílica e, então, submetidos ao teste de cisalhamento em uma máquina de ensaios universais Wolpert, com uma velocidade de 0,5 mm/min. A resistência coesiva média da dentina no teste de cisalhamento foi de 33,95 (+- 9,72 MPa. O tipo de fratura foi analisado com um aumento de 40X. Foi realizada uma análise com elemento finito, para observar a distribuição do estresse relacionada com o teste de cisalhamento. O padrão de fratura encontrado foi compat

  9. Predicting Rib Fracture Risk With Whole-Body Finite Element Models: Development and Preliminary Evaluation of a Probabilistic Analytical Framework

    Science.gov (United States)

    Forman, Jason L.; Kent, Richard W.; Mroz, Krystoffer; Pipkorn, Bengt; Bostrom, Ola; Segui-Gomez, Maria

    2012-01-01

    This study sought to develop a strain-based probabilistic method to predict rib fracture risk with whole-body finite element (FE) models, and to describe a method to combine the results with collision exposure information to predict injury risk and potential intervention effectiveness in the field. An age-adjusted ultimate strain distribution was used to estimate local rib fracture probabilities within an FE model. These local probabilities were combined to predict injury risk and severity within the whole ribcage. The ultimate strain distribution was developed from a literature dataset of 133 tests. Frontal collision simulations were performed with the THUMS (Total HUman Model for Safety) model with four levels of delta-V and two restraints: a standard 3-point belt and a progressive 3.5–7 kN force-limited, pretensioned (FL+PT) belt. The results of three simulations (29 km/h standard, 48 km/h standard, and 48 km/h FL+PT) were compared to matched cadaver sled tests. The numbers of fractures predicted for the comparison cases were consistent with those observed experimentally. Combining these results with field exposure informantion (ΔV, NASS-CDS 1992–2002) suggests a 8.9% probability of incurring AIS3+ rib fractures for a 60 year-old restrained by a standard belt in a tow-away frontal collision with this restraint, vehicle, and occupant configuration, compared to 4.6% for the FL+PT belt. This is the first study to describe a probabilistic framework to predict rib fracture risk based on strains observed in human-body FE models. Using this analytical framework, future efforts may incorporate additional subject or collision factors for multi-variable probabilistic injury prediction. PMID:23169122

  10. Discrete element analysis is a valid method for computing joint contact stress in the hip before and after acetabular fracture.

    Science.gov (United States)

    Townsend, Kevin C; Thomas-Aitken, Holly D; Rudert, M James; Kern, Andrew M; Willey, Michael C; Anderson, Donald D; Goetz, Jessica E

    2018-01-23

    Evaluation of abnormalities in joint contact stress that develop after inaccurate reduction of an acetabular fracture may provide a potential means for predicting the risk of developing post-traumatic osteoarthritis. Discrete element analysis (DEA) is a computational technique for calculating intra-articular contact stress distributions in a fraction of the time required to obtain the same information using the more commonly employed finite element analysis technique. The goal of this work was to validate the accuracy of DEA-computed contact stress against physical measurements of contact stress made in cadaveric hips using Tekscan sensors. Four static loading tests in a variety of poses from heel-strike to toe-off were performed in two different cadaveric hip specimens with the acetabulum intact and again with an intentionally malreduced posterior wall acetabular fracture. DEA-computed contact stress was compared on a point-by-point basis to stress measured from the physical experiments. There was good agreement between computed and measured contact stress over the entire contact area (correlation coefficients ranged from 0.88 to 0.99). DEA-computed peak contact stress was within an average of 0.5 MPa (range 0.2-0.8 MPa) of the Tekscan peak stress for intact hips, and within an average of 0.6 MPa (range 0-1.6 MPa) for fractured cases. DEA-computed contact areas were within an average of 33% of the Tekscan-measured areas (range: 1.4-60%). These results indicate that the DEA methodology is a valid method for accurately estimating contact stress in both intact and fractured hips. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Fracture Mechanics Assessment for Different Notch Sizes Using Finite Element Analysis Based on Ductile Failure Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Keun Hyung; Jeon, Jun Young; Han, Jae Jun; Nam, Hyun Suk; Lee, Dae Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of)

    2016-08-15

    In this study, notch defects are evaluated using fracture mechanics. To understand the effects of notch defects, FE analysis is conducted to predict the limit load and J-integral for middle-cracked and single-edge cracked plates with various sizes of notch under tension and bending. As the radius of the notch increases, the energy release rate also increases, although the limit load remains constant. The values of fracture toughness(J{sub IC}) of SM490A are determined for various notch radii through FE simulation instead of conducting an experiment. As the radius of the notch increases, the energy release rate also increases, together with a more significant increase in fracture toughness. To conclude, as the notch radius increases, the resistance to crack propagation also increases.

  12. Competition and social cohesion

    Directory of Open Access Journals (Sweden)

    Mario Libertini

    2014-03-01

    Full Text Available "Competition" and "social cohesion" are both protected by E.U. and Italian laws. The author moves from the analysis of the meaning of these two concepts, in order to reflect on their compatibility and the way to conciliate them. The central problem - in the opinion of the Author - is to abandon the myth of spontaneous markets' order and to rebuild a political order able to maintain and support, as far as possible, the competitive market economy, but also to govern economic processes in critical moments and situations.

  13. Finite element modeling and experimental study of brittle fracture in tempered martensitic steels for thermonuclear fusion applications

    International Nuclear Information System (INIS)

    Mueller, P. F.

    2009-10-01

    The present report studies the brittle fracture in high-chromium reduced activation tempered martensitic steels foreseen as structural materials for thermonuclear fusion reactors. Developing the adequate materials that can withstand the severe irradiation conditions of the burning plasma in a fusion reactor is one of the major challenges to be solved in order to make profit from the great advantages of thermonuclear fusion as an energy source. High-chromium tempered martensitic steels such as F82H and the most advanced version Eurofer97 are among the main candidate materials for structural applications in future fusion power plants due to low irradiation-induced swelling, good mechanical and thermal properties, and reasonably fast radioactive decay. Drawback of this kind of steels is irradiation embrittlement, which is manifested by a ductile-to-brittle transition temperature shift to higher temperatures after irradiation. The laboratory specimen fracture data has to be transferred to real components in order to assess the performance of these steels in the different operating and transient conditions they could find during the operation life of a fusion reactor. The specimen geometry effects and specimen size effects on measured fracture toughness need to be properly understood, taken into account and predicted with an appropriate model. The microstructure of Eurofer97 and F82H has been characterized and compared by means of optical microscopy, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy in order to identify microstructural features that could play a role in the measured fracture toughness. Both steels have similar but slightly different chemical composition and final heat treatments but the prior austenitic grain size measured in F82H is approximately 8 times larger than in Eurofer97. The alloying element tantalum is added to stabilize the austenite grain size. In Eurofer97 it forms carbides of an

  14. Prediction of fracture toughness based on experiments with sub-size specimens in the brittle and ductile regimes

    Energy Technology Data Exchange (ETDEWEB)

    Mahler, Michael, E-mail: Michael.Mahler@kit.edu; Aktaa, Jarir

    2016-04-15

    For determination of fracture toughness in the brittle regime or ductile fracture in the upper shelf region, special standard specifications are in use e.g. ASTM E399 or ASTM E1820. Due to the rigorous size requirements for specimen testing, it is necessary to use big specimens. To circumvent this problem an approach based on finite element (FE) simulations using the cohesive zone model (CZM) is used. The parameters of the cohesive zone model have been determined using sub-size specimens. With the identified parameters, simulations of standard-size specimens have been performed to successfully predict fracture toughness of standard-size specimens in the brittle and ductile regimes. The objective is to establish small size testing technology for the determination of fracture toughness. - Highlights: • Prediction of fracture toughness on standard-size specimens. • Valid fracture toughness based on sub-size specimens. • Triaxiality dependent cohesive zone model. • Approach works independent on fracture appearance (brittle, ductile).

  15. Sensitivity analysis of hydraulic fracturing Using an extended finite element method for the PKN model

    NARCIS (Netherlands)

    Garikapati, Hasini; Verhoosel, Clemens V.; van Brummelen, Harald; Diez, Pedro; Papadrakakis, M.; Papadopoulos, V.; Stefanou, G.; Plevris, V.

    2016-01-01

    Hydraulic fracturing is a process that is surrounded by uncertainty, as available data on e.g. rock formations is scant and available models are still rudimentary. In this contribution sensitivity analysis is carried out as first step in studying the uncertainties in the model. This is done to

  16. Leadership, cohesion and groupthink

    Directory of Open Access Journals (Sweden)

    Iurchevici Iulia

    2016-09-01

    Full Text Available The Groupthink Phenomenon refers to the tendency of the members of a group to reach solidarity and cohesion, the trend that makes to bypass any questions which would lead to disputes. In such cases, if the members expect counter-arguments regarding a certain issue, they avoid to raise the matter. If it is believed that a question cannot be answered – it isn’t asked. Originally, Janis the author of the term, explains this process through the environment that has been established within groups that are in the leading position, but later, puts a strong emphasis towards the tendency to maintain the unanimity of the decision of the group. As preceding conditions of this decision-making process are listed the following: the high cohesion of the group, its isolation from other external sources of information, the lack of an impartial leadership, lack of appropriate legal framework and procedures in the decision - making process, and also “homogeneity of members, background and their ideology”. The Groupthink is manifested by: Illusion of Invulnerability, Collective Rationalization, Illusion of morality, Out – Group Stereotypes, Strong pressures towards conformism, Self – Censorship, Illusions of unanimity, and the presence of “Mind Guards”. In order to understand the decisions of a group, it is important that some analysis of Groupthink to be done, because in this way, can be controlled or eliminated the communicational distortion that occurs at a time among members forming these groups.

  17. A customized fixation plate with novel structure designed by topological optimization for mandibular angle fracture based on finite element analysis.

    Science.gov (United States)

    Liu, Yun-Feng; Fan, Ying-Ying; Jiang, Xian-Feng; Baur, Dale A

    2017-11-15

    The purpose of this study was to design a customized fixation plate for mandibular angle fracture using topological optimization based on the biomechanical properties of the two conventional fixation systems, and compare the results of stress, strain and displacement distributions calculated by finite element analysis (FEA). A three-dimensional (3D) virtual mandible was reconstructed from CT images with a mimic angle fracture and a 1 mm gap between two bone segments, and then a FEA model, including volume mesh with inhomogeneous bone material properties, three loading conditions and constraints (muscles and condyles), was created to design a customized plate using topological optimization method, then the shape of the plate was referenced from the stress concentrated area on an initial part created from thickened bone surface for optimal calculation, and then the plate was formulated as "V" pattern according to dimensions of standard mini-plate finally. To compare the biomechanical behavior of the "V" plate and other conventional mini-plates for angle fracture fixation, two conventional fixation systems were used: type A, one standard mini-plate, and type B, two standard mini-plates, and the stress, strain and displacement distributions within the three fixation systems were compared and discussed. The stress, strain and displacement distributions to the angle fractured mandible with three different fixation modalities were collected, respectively, and the maximum stress for each model emerged at the mandibular ramus or screw holes. Under the same loading conditions, the maximum stress on the customized fixation system decreased 74.3, 75.6 and 70.6% compared to type A, and 34.9, 34.1, and 39.6% compared to type B. All maximum von Mises stresses of mandible were well below the allowable stress of human bone, as well as maximum principal strain. And the displacement diagram of bony segments indicated the effect of treatment with different fixation systems. The

  18. Using the discrete element method to simulate brittle fracture in the indentation of a silica glass with a blunt indenter

    International Nuclear Information System (INIS)

    Andre, Damien; Iordanoff, Ivan; Charles, Jean-luc; Jebahi, Mohamed; Neauport, Jerome

    2013-01-01

    The mechanical behavior of materials is usually simulated by a continuous mechanics approach. However, non-continuous phenomena such as multi-fracturing cannot be accurately simulated using a continuous description. The discrete element method (DEM) naturally accounts for discontinuities and is therefore a good alternative to the continuum approach. This work uses a discrete element model based on interaction given by 3D beam model. This model has proved to correctly simulate the elastic properties at the macroscopic scale. The simulation of brittle cracks is now tackled. This goal is attained by computing a failure criterion based on an equivalent hydrostatic stress. This microscopic criterion is then calibrated to fit experimental values of the macroscopic failure stress. Then, the simulation results are compared to experimental results of indentation tests in which a spherical indenter is used to load a silica glass, which is considered to be a perfectly brittle elastic material. (authors)

  19. Assesment risk of fracture in thin-walled fiber reinforced and regular High Performance Concretes sandwich elements

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2013-01-01

    load. Due to structural restraints, autogenous shrinkage may lead to high self-induced stresses. Therefore autogenous shrinkage plays important role in design of HPCSE. The present paper assesses risk of fracture due to autogenous shrinkage-induced stresses in three fiber reinforced and regular High....... Finally the paper describes the modeling work with HPCSE predicting structural cracking provoked by autogenous shrinkage. It was observed that risk of cracking due to autogenous shrinkage rapidly rises after 3 days in case of regular HPC and after 7 days in case of fiber reinforced HPC.......High Performance Concrete Sandwich Elements (HPCSE) are an interesting option for future low or plus energy building construction. Recent research and development work, however, indicate that such elements are prone to structural cracking due to the combined effect of shrinkage and high temperature...

  20. Tooth Fracture Detection in Spiral Bevel Gears System by Harmonic Response Based on Finite Element Method

    OpenAIRE

    Chen, Yuan; Zhu, Rupeng; Jin, Guanghu; Xiong, Yeping

    2017-01-01

    Spiral bevel gears occupy several advantages such as high contact ratio, strong carrying capacity, and smooth operation, which become one of the most widely used components in high-speed stage of the aeronautical transmission system. Its dynamic characteristics are addressed by many scholars. However, spiral bevel gears, especially tooth fracture occurrence and monitoring, are not to be investigated, according to the limited published issues. Therefore, this paper establishes a three-dimensio...

  1. External fixation using locking plate in distal tibial fracture: a finite element analysis.

    Science.gov (United States)

    Zhang, Jingwei; Ebraheim, Nabil; Li, Ming; He, Xianfeng; Schwind, Joshua; Liu, Jiayong; Zhu, Limei

    2015-08-01

    External fixation of tibial fractures using a locking plate has been reported with favorable results in some selected patients. However, the stability of external plate fixation in this fracture pattern has not been previously demonstrated. We investigated the stability of external plate fixation with different plate-bone distances. In this study, the computational processing model of external fixation of a distal tibial metaphyseal fracture utilizing the contralateral femoral less invasive stabilization system plate was analyzed. The plate was placed on the anteromedial aspect of tibia with different plate-bone distances: 1, 10, 20, and 30 mm. Under axial load, the stiffness of construct in all groups was higher than intact tibia. Under axial load with an internal rotational force, the stiffness of construct with 1 and 10 mm plate-bone distances was similar to that of an intact tibia and the stiffness of the construct with 20 and 30 mm distances was lower than that of an intact tibia. Under axial load with an external rotational force, the stiffness of the construct in all groups was lower than that of an intact tibia. The maximum plate stresses were concentrated at the two most distal screws and were highest in the construct with the 10 mm plate-bone distance, and least in the construct with a 1 mm plate-bone distance. To guarantee a stable external plate fixation in distal tibial fracture, the plate-bone distance should be less than 30 mm.

  2. Modeling interfacial fracture in Sierra.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang; Nelson, Stacy A. C.; Foulk, James W.,; Reedy, Earl David,; Austin, Kevin N.; Margolis, Stephen B.

    2013-09-01

    This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.

  3. Cohesion, the Human Element in Combat

    Science.gov (United States)

    1985-02-01

    on the Persian heritage and Islamic religion. Leadership, too, is an extremely important nationalistic factor. It is essential that the nation is the... Taoism , Buddhism, and Christianity. While the values im- ported by these religions are generally compatible with Vietnamese nationalism, they have...Soviet borders (such as the Pan-Turkish and Arab- Islamic movements). Soviet attempts to make Russian the primary language within the Soviet Union have

  4. Modeling of Hydraulic Fracture Propagation at the kISMET Site Using a Fully Coupled 3D Network-Flow and Quasi- Static Discrete Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mattson, Earl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Herb F. [Univ. of Wisconsin, Madison, WI (United States); Haimson, Bezalel C. [Univ. of Wisconsin, Madison, WI (United States); Doe, Thomas W. [Golder Associates Inc., Redmond, VA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, Patrick F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-02-01

    Aimed at supporting the design of hydraulic fracturing experiments at the kISMET site, ~1500 m below ground in a deep mine, we performed pre-experimental hydraulic fracturing simulations in order to estimate the breakdown pressure, propagation pressure, fracture geometry, and the magnitude of induced seismicity using a newly developed fully coupled three-dimensional (3D) network flow and quasi-static discrete element model (DEM). The quasi-static DEM model, which is constructed by Delaunay tessellation of the rock volume, considers rock fabric heterogeneities by using the “disordered” DEM mesh and adding random perturbations to the stiffness and tensile/shear strengths of individual DEM elements and the elastic beams between them. A conjugate 3D flow network based on the DEM lattice is constructed to calculate the fluid flow in both the fracture and porous matrix. One distinctive advantage of the model is that fracturing is naturally described by the breakage of elastic beams between DEM elements. It is also extremely convenient to introduce mechanical anisotropy into the model by simply assigning orientation-dependent tensile/shear strengths to the elastic beams. In this paper, the 3D hydraulic fracturing model was verified against the analytic solution for a penny-shaped crack model. We applied the model to simulate fracture propagation from a vertical open borehole based on initial estimates of rock mechanical properties and in-situ stress conditions. The breakdown pressure and propagation pressure are directly obtained from the simulation. In addition, the released elastic strain energies of individual fracturing events were calculated and used as a conservative estimate for the magnitudes of the potential induced seismic activities associated with fracturing. The comparisons between model predictions and experimental results are still ongoing.

  5. Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State.

    Science.gov (United States)

    Wang, Ji-Peng

    2017-08-31

    This paper investigates the force transmission modes, mainly described by probability density distributions, in non-cohesive dry and cohesive wet granular materials by discrete element modeling. The critical state force transmission patterns are focused on with the contact model effect being analyzed. By shearing relatively dense and loose dry specimens to the critical state in the conventional triaxial loading path, it is observed that there is a unique critical state force transmission mode. There is a universe critical state force distribution pattern for both the normal contact forces and tangential contact forces. Furthermore, it is found that using either the linear Hooke or the non-linear Hertz model does not affect the universe force transmission mode, and it is only related to the grain size distribution. Wet granular materials are also simulated by incorporating a water bridge model. Dense and loose wet granular materials are tested, and the critical state behavior for the wet material is also observed. The critical state strength and void ratio of wet granular materials are higher than those of a non-cohesive material. The critical state inter-particle distribution is altered from that of a non-cohesive material with higher probability in relatively weak forces. Grains in non-cohesive materials are under compressive stresses, and their principal directions are mainly in the axial loading direction. However, for cohesive wet granular materials, some particles are in tension, and the tensile stresses are in the horizontal direction on which the confinement is applied. The additional confinement by the tensile stress explains the macro strength and dilatancy increase in wet samples.

  6. Transient Fluid Flow Modeling in Fractured Aquifer of Sechahoon Iron Mine Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Mojtaba Darabi

    2016-06-01

    Full Text Available Considering the fact that a large volume of iron reserve in the Sechahoon Iron Mine in Yazd Province has located under the water table, it is necessary to conduct a comprehensive study on water flow within the pit and its surroundings. The conceptual model of the aquifer was created using surface and underground geological information compared with water table data of the area of interest. In the data preparation stages, in order to create the numerical model, Logan and Lufran tests were studied to determine the hydrodynamic coefficients of the layers, precipitation and evaporation were investigated, and fractures and faults of the region, as a medium for flow channels in the hard formation, were also studied. The model was created in a transient state between 2000 and 2014. To validate its results, the water table was measured 4 times in the last 4 months of 2014. Considering the complexities in the heterogeneous fractured aquifer of the study area, numerical modeling results for the basin in a transient state present 90 percent correlation with field studies. Having investigated the water balance in the region, the boundary condition of the model was determined as the input water from the eastern south and the runoff water in the western north of the region. Since the general trend of faults in the area is north-south, variation in the water table is slight on north-south and intense on the east-west direction. On the other hand, due to the fact that the maximum flow is along the faults and fractures, the water table contour lines in different locations over the region are closed.

  7. A Process and Environment Aware Sierra/SolidMechanics Cohesive Zone Modeling Capability for Polymer/Solid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reedy, E. D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chambers, Robert S. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hughes, Lindsey Gloe [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kropka, Jamie Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stevens, Mark J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance and reliability of many mechanical and electrical components depend on the integrity of po lymer - to - solid interfaces . Such interfaces are found in adhesively bonded joints, encapsulated or underfilled electronic modules, protective coatings, and laminates. The work described herein was aimed at improving Sandia's finite element - based capability to predict interfacial crack growth by 1) using a high fidelity nonlinear viscoelastic material model for the adhesive in fracture simulations, and 2) developing and implementing a novel cohesive zone fracture model that generates a mode - mixity dependent toughness as a natural consequence of its formulation (i.e., generates the observed increase in interfacial toughness wi th increasing crack - tip interfacial shear). Furthermore, molecular dynamics simulations were used to study fundamental material/interfa cial physics so as to develop a fuller understanding of the connection between molecular structure and failure . Also reported are test results that quantify how joint strength and interfacial toughness vary with temperature.

  8. Three-dimensional linear fracture mechanics analysis by a displacement-hybrid finite-element model

    International Nuclear Information System (INIS)

    Atluri, S.N.; Kathiresan, K.; Kobayashi, A.S.

    1975-01-01

    This paper deals with a finite-element procedures for the calculation of modes I, II and III stress intensity factors, which vary, along an arbitrarily curved three-dimensional crack front in a structural component. The finite-element model is based on a modified variational principle of potential energy with relaxed continuity requirements for displacements at the inter-element boundary. The variational principle is a three-field principle, with the arbitrary interior displacements for the element, interelement boundary displacements, and element boundary tractions as variables. The unknowns in the final algebraic system of equations, in the present displacement hybrid finite element model, are the nodal displacements and the three elastic stress intensity factors. Special elements, which contain proper square root and inverse square root crack front variations in displacements and stresses, respectively, are used in a fixed region near the crack front. Interelement displacement compatibility is satisfied by assuming an independent interelement boundary displacement field, and using a Lagrange multiplier technique to enforce such interelement compatibility. These Lagrangean multipliers, which are physically the boundary tractions, are assumed from an equilibrated stress field derived from three-dimensional Beltrami (or Maxwell-Morera) stress functions that are complete. However, considerable care should be exercised in the use of these stress functions such that the stresses produced by any of these stress function components are not linearly dependent

  9. Substitution as a Device of Grammatical Cohesion in English Contexts

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Hasannejad

    2012-05-01

    Full Text Available The present study set out to investigate the effect of teaching substitution as a kind of grammatical cohesion on the true identification of confusing substitution elements with cohesive or non-cohesive roles in different contexts and also the production of modal, reporting and conditional contexts through clausal substitution acquaintance. To this end, the following procedures were taken. First 120 male and female EFL students were selected from Iranshahr Azad University. Having administered the language proficiency test, researchers selected 80 students as intermediate subjects according to their TOEFL band scores. First, pretests of cohesion identification (substitution and production of modal, reporting and conditional environments were administered to both control and experimental groups. Then, the experimental group was exposed to the teaching of the above-said above-mentioned cohesive device. Finally, post-tests of substitution elements’ identification and modal, reporting and conditional contexts’ production through clausal substitution familiarity were administered. The results showed that cohesive device treatment helped students on the true identification of substitution elements. Another finding proved that EFL students might have no difficulty in learning certain rules or classification of rules and application of their clausal substitution knowledge in creating modal, reporting and conditional contexts. Our findings can have implications for the field of language learning and teaching.

  10. Experimental Characterization and Cohesive Laws for Delamination of Off-Axis GFRP Laminates

    DEFF Research Database (Denmark)

    Lindgaard, Esben; Bak, Brian Lau Verndal

    2015-01-01

    This work experimentally characterizes mixed mode delamination in glass fibre reinforced polymer laminates taking into account the influence of the off-axis angle between the lamina orientation and the crack growth direction on the fracture properties. Thus, providing a cohesive law that enables...... analysis of 3D models in which mixed mode crack growth within laminates having anisotropic fracture properties takes place....

  11. Hybrid-finite-element analysis of some nonlinear and 3-dimensional problems of engineering fracture mechanics

    Science.gov (United States)

    Atluri, S. N.; Nakagaki, M.; Kathiresan, K.

    1980-01-01

    In this paper, efficient numerical methods for the analysis of crack-closure effects on fatigue-crack-growth-rates, in plane stress situations, and for the solution of stress-intensity factors for arbitrary shaped surface flaws in pressure vessels, are presented. For the former problem, an elastic-plastic finite element procedure valid for the case of finite deformation gradients is developed and crack growth is simulated by the translation of near-crack-tip elements with embedded plastic singularities. For the latter problem, an embedded-elastic-singularity hybrid finite element method, which leads to a direct evaluation of K-factors, is employed.

  12. Trace elements geochemistry of fractured basement aquifer in southern Malawi: A case of Blantyre rural

    Science.gov (United States)

    Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Nyirenda, Mathews Tananga; Zhang, Liping; Kaonga, Chikumbusko Chiziwa; Mbewe, Rex

    2017-07-01

    In this study, twenty one (21) trace elements in the basement complex groundwater of Blantyre district, Malawi were analyzed. The majority of the analyzed trace elements in the water were within the standards set by World Health Organization (WHO) and Malawi Standards Board (MSB). But, iron (Fe) (BH16 and 21), manganese (Mn) (BH01) and selenium (Se) (BH02, 13, 18, 19 and 20) were higher than the WHO and MSB standards. Factor analysis (FA) revealed up to five significant factors which accounted for 87.4% of the variance. Factor 1, 2 and 3 suggest evaporite dissolution and silicate weathering processes while the fourth factor may explain carbonate dissolution and pH influence on trace element geochemistry of the studied groundwater samples. According to PHREEQC computed saturation indices, dissolution, precipitation and rock-water-interaction control the levels of trace elements in this aquifer. Elevated concentrations of Fe, Mn and Se in certain boreholes are due to the geology of the aquifer and probable redox status of groundwater. From PHREEQC speciation results, variations in trace element species were observed. Based on this study, boreholes need constant monitoring and assessment for human consumption to avoid health related issues.

  13. Cohesion and device reliability in organic bulk heterojunction photovoltaic cells

    KAUST Repository

    Brand, Vitali

    2012-04-01

    The fracture resistance of P3HT:PC 60BM-based photovoltaic devices are characterized using quantitative adhesion and cohesion metrologies that allow identification of the weakest layer or interface in the device structure. We demonstrate that the phase separated bulk heterojunction layer is the weakest layer and report quantitative cohesion values which ranged from ∼1 to 20 J m -2. The effects of layer thickness, composition, and annealing treatments on layer cohesion are investigated. Using depth profiling and X-ray photoelectron spectroscopy on the resulting fracture surfaces, we examine the gradient of molecular components through the thickness of the bulk heterojunction layer. Finally, using atomic force microscopy we show how the topography of the failure path is related to buckling of the metal electrode and how it develops with annealing. The research provides new insights on how the molecular design, structure and composition affect the cohesive properties of organic photovoltaics. © 2011 Elsevier B.V. All rights reserved.

  14. Immigration, social cohesion, and naturalization

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2010-01-01

    social trust do not connect with issues of naturalization at all. Other conceptions of social cohesion are either politically controversial, problematic as part of the justification of stricter naturalization requirements, or in fact justify less demanding naturalization requirements....

  15. Developing Indicators of Territorial Cohesion

    DEFF Research Database (Denmark)

    Gallina, Andrea; Farrugia, Nadia

    setting. The concept of territorial cohesion attaches importance to the diversity of the European territory which is seen as a key competitive advantage, the preservation of the European social model, and the ability of the citizens of Europe's nations and regions to be able to continue to live within...... (EU). The objective of territorial cohesion, which builds on the European Spatial Development Perspective (ESDP), is to help achieve a more balanced development by reducing existing disparities, avoiding territorial imbalances and by making sectoral policies, which have a spatial impact and regional...... policy more coherent. It also aims to improve territorial integration and encourage cooperation between regions. Territorial cohesion complements the notions of economic and social cohesion by translating the fundamental EU goal of a balanced competitiveness and sustainable development into a territorial...

  16. Br-rich tips of calcified crab claws are less hard but more fracture resistant: a comparison of mineralized and heavy-element biological materials.

    Science.gov (United States)

    Schofield, Robert M S; Niedbala, Jack C; Nesson, Michael H; Tao, Ye; Shokes, Jacob E; Scott, Robert A; Latimer, Matthew J

    2009-06-01

    We find that the spoon-like tips of the chelipeds (large claws) of the crab Pachygrapsus crassipes differ from the rest of the claw in that they are not calcified, but instead contain about 1% bromine--thus they represent a new example of a class of structural biological materials that contain heavy elements such as Zn, Mn, Fe, Cu, and Br bound in an organic matrix. X-ray absorption spectroscopy data suggest that the bromine is bound to phenyl rings, possibly in tyrosine. We measure a broad array of mechanical properties of a heavy-element biological material for the first time (abrasion resistance, coefficient of kinetic friction, energy of fracture, hardness, modulus of elasticity and dynamic mechanical properties), and we make a direct comparison with a mineralized tissue. Our results suggest that the greatest advantage of bromine-rich cuticle over calcified cuticle is resistance to fracture (the energy of fracture is about an order of magnitude greater than for calcified cuticle). The greatest advantage relative to unenriched cuticle, represented by ant mandible cuticle, is a factor of about 1.5 greater hardness and modulus of elasticity.The spoon-like tips gain additional fracture resistance from the orientation of the constituent laminae and from the viscoelasticity of the material. We suggest that fracture resistance is of greater importance in smaller organisms, and we speculate that one function of heavy elements in structural biological materials is to reduce molecular resonant frequencies and thereby increase absorption of energy from impacts.

  17. In-vivo assessment of femoral bone strength using Finite Element Analysis (FEA based on routine MDCT imaging: a preliminary study on patients with vertebral fractures.

    Directory of Open Access Journals (Sweden)

    Hans Liebl

    Full Text Available To experimentally validate a non-linear finite element analysis (FEA modeling approach assessing in-vitro fracture risk at the proximal femur and to transfer the method to standard in-vivo multi-detector computed tomography (MDCT data of the hip aiming to predict additional hip fracture risk in subjects with and without osteoporosis associated vertebral fractures using bone mineral density (BMD measurements as gold standard.One fresh-frozen human femur specimen was mechanically tested and fractured simulating stance and clinically relevant fall loading configurations to the hip. After experimental in-vitro validation, the FEA simulation protocol was transferred to standard contrast-enhanced in-vivo MDCT images to calculate individual hip fracture risk each for 4 subjects with and without a history of osteoporotic vertebral fractures matched by age and gender. In addition, FEA based risk factor calculations were compared to manual femoral BMD measurements of all subjects.In-vitro simulations showed good correlation with the experimentally measured strains both in stance (R2 = 0.963 and fall configuration (R2 = 0.976. The simulated maximum stress overestimated the experimental failure load (4743 N by 14.7% (5440 N while the simulated maximum strain overestimated by 4.7% (4968 N. The simulated failed elements coincided precisely with the experimentally determined fracture locations. BMD measurements in subjects with a history of osteoporotic vertebral fractures did not differ significantly from subjects without fragility fractures (femoral head: p = 0.989; femoral neck: p = 0.366, but showed higher FEA based risk factors for additional incident hip fractures (p = 0.028.FEA simulations were successfully validated by elastic and destructive in-vitro experiments. In the subsequent in-vivo analyses, MDCT based FEA based risk factor differences for additional hip fractures were not mirrored by according BMD measurements. Our data suggests, that MDCT

  18. Development of a computer code 'CRACK' for elastic and elastoplastic fracture mechanics analysis of 2-D structures by finite element technique

    International Nuclear Information System (INIS)

    Dutta, B.K.; Kakodkar, A.; Maiti, S.K.

    1986-01-01

    The fracture mechanics analysis of nuclear components is required to ensure prevention of sudden failure due to dynamic loadings. The linear elastic analysis near to a crack tip shows presence of stress singularity at the crack tip. The simulation of this singularity in numerical methods enhance covergence capability. In finite element technique this can be achieved by placing mid nodes of 8 noded or 6 noded isoparametric elements, at one fourth ditance from crack tip. Present report details this characteristic of finite element, implementation of this element in a code 'CRACK', implementation of J-integral to compute stress intensity factor and solution of number of cases for elastic and elastoplastic fracture mechanics analysis. 6 refs., 6 figures. (author)

  19. Fundamental solutions and dual boundary element methods for fracture in plane Cosserat elasticity.

    Science.gov (United States)

    Atroshchenko, Elena; Bordas, Stéphane P A

    2015-07-08

    In this paper, both singular and hypersingular fundamental solutions of plane Cosserat elasticity are derived and given in a ready-to-use form. The hypersingular fundamental solutions allow to formulate the analogue of Somigliana stress identity, which can be used to obtain the stress and couple-stress fields inside the domain from the boundary values of the displacements, microrotation and stress and couple-stress tractions. Using these newly derived fundamental solutions, the boundary integral equations of both types are formulated and solved by the boundary element method. Simultaneous use of both types of equations (approach known as the dual boundary element method (BEM)) allows problems where parts of the boundary are overlapping, such as crack problems, to be treated and to do this for general geometry and loading conditions. The high accuracy of the boundary element method for both types of equations is demonstrated for a number of benchmark problems, including a Griffith crack problem and a plate with an edge crack. The detailed comparison of the BEM results and the analytical solution for a Griffith crack and an edge crack is given, particularly in terms of stress and couple-stress intensity factors, as well as the crack opening displacements and microrotations on the crack faces and the angular distributions of stresses and couple-stresses around the crack tip.

  20. Cohesion and Trauma: An Examination of a Collegiate Women's Volleyball Team

    Science.gov (United States)

    Fletcher, Teresa B.; Meyer, Barbara B.

    2009-01-01

    This study examined the effects of Adventure Based Counseling (i.e., a low-element challenge program) on the cohesion of a collegiate women's volleyball team. Results suggest postintervention improvements in team cohesion. The support created in the challenge experience also transferred to the players helping one another to grieve the untimely…

  1. Numerical model of glulam beam delamination in dependence on cohesive strength

    Science.gov (United States)

    Kawecki, Bartosz; Podgórski, Jerzy

    2018-01-01

    This paper presents an attempt of using a finite element method for predicting delamination of a glue laminated timber beam through a cohesive layer. There were used cohesive finite elements, quadratic stress damage initiation criterion and mixed mode energy release rate failure model. Finite element damage was equal to its complete stiffness degradation. Timber material was considered to be an orthotropic with plastic behaviour after reaching bending limit.

  2. Mechanistic modeling of zircaloy deformation and fracture in fuel element analysis

    International Nuclear Information System (INIS)

    Nichols, F.A.

    1987-01-01

    A review is given of the comprehensive model developed in the 1960s at the Bettis Atomic Power Laboratory to explain the creep of Zircaloy during neutron irradiation and applied to fuel element analysis and design. The in-pile softening observed at low stresses was hypothesized to be due to a combination of the growth-directed Roberts-Cottrell yielding creep originally proposed for α-uranium and the formation of point defect loops preferentially on certain planes in response to the applied stress, with the second process being of relatively greater importance. The in-pile hardening observed at high stresses (or strain-rates) was proposed to be due to the cutting by dislocations of radiation-produced obstacles. In this stress (strain-rate) region, in-pile behavior was proposed to be identical to post-irradiation behavior. At intermediate stresses (strain-rates) a mechanism of radiation-enhanced climb around obstacles was suggested as being rate-controlling. As the stress is decreased, the climb process becomes easier, and the rate was then predicted to be controlled by glide at a flow-stress characteristic of unirradiated, annealed material, where radiation-enhanced diffusion enabled climbing around the normal strain-hardening obstacles. At still lower stresses, this glide process became negligibly slow compared with the growth-connected creep mechanism that was presumed to operate independently. The overall scheme was shown to be in good agreement with all the in-pile data then available and implemented into the computer analysis of fuel element behavior

  3. Fracture of functionally graded materials: application to hydrided zircaloy

    International Nuclear Information System (INIS)

    Perales, F.

    2005-12-01

    This thesis is devoted to the dynamic fracture of functionally graded materials. More particularly, it deals with the toughness of nuclear cladding at high burnup submitted to transient loading. The fracture is studied at local scale using cohesive zone model in a multi body approach. Cohesive zone models include frictional contact to take into account mixed mode fracture. Non smooth dynamics problems are treated within the Non-Smooth Contact Dynamics framework. A multi scale study is necessary because of the dimension of the clad. At microscopic scale, the effective properties of surface law, between each body, are obtained by periodic numerical homogenization. A two fields Finite Element formulation is so written. An extended formulation of the NSCD framework is obtained. The associated software allows to simulate, in finite deformation, from the crack initiation to post-fracture behavior in heterogeneous materials. At microscopic scale, random RVE calculations are made to determine effective properties. At macroscopic scale, calculations of part of clad are made to determine the role of the mean hydrogen concentration and gradient of hydrogen parameters in the toughness of the clad under dynamic loading. (author)

  4. An enriched cohesive zone model for delamination in brittle interfaces

    NARCIS (Netherlands)

    Samimi, M.; Dommelen, van J.A.W.; Geers, M.G.D.

    2009-01-01

    Application of standard cohesive zone models in a finite element framework to simulate delamination in brittle interfaces may trigger non-smooth load-displacement responses that lead to the failure of iterative solution procedures. This non-smoothness is an artifact of the discretization; and hence

  5. Towards an integrated approach to cohesion and coherence in ...

    African Journals Online (AJOL)

    The notions of cohesion and coherence have a long tradition in the linguistic literature. They date back to ancient .... syntax, and operates in short-term or working memory. Coherence is related to the ..... account of all the elements that occur in the film, namely, words, gestures, images, music and sound effects. In other ...

  6. Finite element analysis of a novel pin-sleeve system for external fixation of distal limb fractures in horses.

    Science.gov (United States)

    Brianza, Stefano; Brighenti, Vittoria; Lansdowne, Jennifer L; Schwieger, Karsten; Bouré, Ludovic

    2011-11-01

    The transfixation pin cast (TPC) is an external skeletal fixation technique used to treat horses with distal limb fractures, but its use is often associated with pin-loosening and an increased risk of treatment failure. To address implant loosening, the pin sleeve cast system (PSC) was recently designed and consists of a pin-sleeve unit inserted into the bone. Each pin runs through a sleeve placed in the bone, making contact at two fixed points only within the sleeve. Each pin is attached to a ring embedded in a resin cast. In this report, the mechanical performance of a traditional TPC pin arrangement was compared with that of the PSC using validated finite element models of bone substitutes previously tested in vitro. The PSC resulted in a marked reduction in peak strain magnitude around the pins and a more even distribution of strain across the bone cortex. The two systems resulted in comparable proximal fragment displacement and had a similar stress concentration around bone defects during implant removal. The findings suggest that the PSC load transfer mechanism is effective even in geometrically complex structures like equine bones. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Estimation of fracture energy of plain and reinforced concrete members

    International Nuclear Information System (INIS)

    Singh, Rajesh K.; Singh, R.K.; Kant, T.

    2012-01-01

    Modeling the complex behaviour of Reinforced concrete (RC), which is both non-homogenous and anisotropic, is a difficult task in finite element analysis of civil engineering structures. The application of fracture mechanics to plain and reinforced concrete has opened up a new field for modelling of phenomena that have often been treated empirically in the past. Cohesive crack model proposed by Hillerborg and crack band model Bazant et al with localization limiters are frequently used to study of tension failure of concrete. (author)

  8. Forms of cohesion in confinement institutions

    Directory of Open Access Journals (Sweden)

    Ekaterina D. Slobodenyuk

    2015-12-01

    Full Text Available Objective to identify the diversity of cohesion forms in confinement institutions. Methods qualitative analyses based on indepth semistructured interviews. Results the study included adaptation of Western methodologies of the cohesion phenomenon analysis to the Russian reality and operationalization of the moral bases of group cohesion. This served as the bases for designing a guide for indepth semistructured interviews 10 interviews were conducted with people recently released from general and strict regime colonies. Content analysis of the interviews revealed a number of structural sections that demonstrate the diversity of cohesion forms alongside with one that is most meaningful to the prisoners and therefore the most well perceived and articulated by respondents. Analysis of the latter allowed to identify a set of groups showing different degree and nature of cohesion. By the degree of cohesion one can identify the poorly cohesive groups quotloutsquot moderately cohesive quotredsquot quotthievesquot and highly cohesive quotfightersquot. By the nature of cohesion in the prisonersrsquo community there are both groups united on the basis of social morality quotredsquot quotthievesquot and groups demonstrating a high degree of cohesion based on the social justice morality quotfightersquot. A detailed analysis of the latter group also showed that the cohesion can have both traits of morality social justice and features of social order moral. Scientific novelty using the sociopsychological theory of the moral motives in determining the bases of cohesion. Practical significance the research results can be applied for the development of sociopsychological techniques for the penal system reform.

  9. Auto consolidated cohesive sediments erosion

    International Nuclear Information System (INIS)

    Ternat, F.

    2007-02-01

    Pollutants and suspended matters of a river can accumulate into the sedimentary column. Once deposited, they are submitted to self-weight consolidation processes, ageing and burying, leading to an increase of their erosion resistance. Pollutant fluxes can be related to sedimentary fluxes, determined by threshold laws. In this work, an erosion threshold model is suggested by introducing a cohesion force into the usual force balance. A model of cohesion is developed on the basis of interactions between argillaceous cohesive particles (clays), particularly the Van der Waals force, whose parameterization is ensured by means of granulometry and porosity. Artificial erosion experiments were performed in a recirculating erosion flume with natural cored sediments where critical shear stress measurements were performed. Other analyses provided granulometry and porosity. The results obtained constitute a good database for the literature. The model is then applied to the experimental conditions and gives good agreement with measurements. An example of the accounting for self-weight consolidation processes is finally suggested, before finishing on a Mohr like diagram dedicated to soft cohesive sediment erosion. (author)

  10. Flocculation Dynamics of cohesive sediment

    NARCIS (Netherlands)

    Maggi, F.

    2005-01-01

    Cohesive sediment suspended in natural waters is subject not only to transport and deposition processes but also to reactions of flocculation, \\textit{i.e.} aggregation of fine particles, and breakup of aggregates. Although aggregation and breakup occur at small and very small length scales compared

  11. Transport and deposition of cohesive pharmaceutical powders in human airway

    Directory of Open Access Journals (Sweden)

    Wang Yuan

    2017-01-01

    Full Text Available Pharmaceutical powders used in inhalation therapy are in the size range of 1-5 microns and are usually cohesive. Understanding the cohesive behaviour of pharmaceutical powders during their transportation in human airway is significant in optimising aerosol drug delivery and targeting. In this study, the transport and deposition of cohesive pharmaceutical powders in a human airway model is simulated by a well-established numerical model which combines computational fluid dynamics (CFD and discrete element method (DEM. The van der Waals force, as the dominant cohesive force, is simulated and its influence on particle transport and deposition behaviour is discussed. It is observed that even for dilute particle flow, the local particle concentration in the oral to trachea region can be high and particle aggregation happens due to the van der Waals force of attraction. It is concluded that the deposition mechanism for cohesive pharmaceutical powders, on one hand, is dominated by particle inertial impaction, as proven by previous studies; on the other hand, is significantly affected by particle aggregation induced by van der Waals force. To maximum respiratory drug delivery efficiency, efforts should be made to avoid pharmaceutical powder aggregation in human oral-to-trachea airway.

  12. Transport and deposition of cohesive pharmaceutical powders in human airway

    Science.gov (United States)

    Wang, Yuan; Chu, Kaiwei; Yu, Aibing

    2017-06-01

    Pharmaceutical powders used in inhalation therapy are in the size range of 1-5 microns and are usually cohesive. Understanding the cohesive behaviour of pharmaceutical powders during their transportation in human airway is significant in optimising aerosol drug delivery and targeting. In this study, the transport and deposition of cohesive pharmaceutical powders in a human airway model is simulated by a well-established numerical model which combines computational fluid dynamics (CFD) and discrete element method (DEM). The van der Waals force, as the dominant cohesive force, is simulated and its influence on particle transport and deposition behaviour is discussed. It is observed that even for dilute particle flow, the local particle concentration in the oral to trachea region can be high and particle aggregation happens due to the van der Waals force of attraction. It is concluded that the deposition mechanism for cohesive pharmaceutical powders, on one hand, is dominated by particle inertial impaction, as proven by previous studies; on the other hand, is significantly affected by particle aggregation induced by van der Waals force. To maximum respiratory drug delivery efficiency, efforts should be made to avoid pharmaceutical powder aggregation in human oral-to-trachea airway.

  13. Study of Anti-Sliding Stability of a Dam Foundation Based on the Fracture Flow Method with 3D Discrete Element Code

    Directory of Open Access Journals (Sweden)

    Chong Shi

    2017-10-01

    Full Text Available Fractured seepage is an important factor affecting the interface stability of rock mass. It is closely related to fracture properties and hydraulic conditions. In this study, the law of seepage in a single fracture surface based on modified cubic law is described, and the three-dimensional discrete element method is used to simulate the dam foundation structure of the Capulin San Pablo (Costa Rica hydropower station. The effect of construction joints and developed structure on dam stability is studied, and its permeability law and sliding stability are also evaluated. It is found that the hydraulic-mechanical coupling with strength reduction method in DEM is more appropriate to use to study the seepage-related problems of fractured rock mass, which considers practical conditions, such as the roughness of and the width of fracture. The strength reduction method provides a more accurate safety factor of dam when considering the deformation coordination with bedrocks. It is an important method with which to study the stability of seepage conditions in complex structures. The discrete method also provided an effective and reasonable way of determining seepage control measures.

  14. Parallel, Multigrid Finite Element Simulator for Fractured/Faulted and Other Complex Reservoirs based on Common Component Architecture (CCA)

    Energy Technology Data Exchange (ETDEWEB)

    Milind Deo; Chung-Kan Huang; Huabing Wang

    2008-08-31

    Black-oil, compositional and thermal simulators have been developed to address different physical processes in reservoir simulation. A number of different types of discretization methods have also been proposed to address issues related to representing the complex reservoir geometry. These methods are more significant for fractured reservoirs where the geometry can be particularly challenging. In this project, a general modular framework for reservoir simulation was developed, wherein the physical models were efficiently decoupled from the discretization methods. This made it possible to couple any discretization method with different physical models. Oil characterization methods are becoming increasingly sophisticated, and it is possible to construct geologically constrained models of faulted/fractured reservoirs. Discrete Fracture Network (DFN) simulation provides the option of performing multiphase calculations on spatially explicit, geologically feasible fracture sets. Multiphase DFN simulations of and sensitivity studies on a wide variety of fracture networks created using fracture creation/simulation programs was undertaken in the first part of this project. This involved creating interfaces to seamlessly convert the fracture characterization information into simulator input, grid the complex geometry, perform the simulations, and analyze and visualize results. Benchmarking and comparison with conventional simulators was also a component of this work. After demonstration of the fact that multiphase simulations can be carried out on complex fracture networks, quantitative effects of the heterogeneity of fracture properties were evaluated. Reservoirs are populated with fractures of several different scales and properties. A multiscale fracture modeling study was undertaken and the effects of heterogeneity and storage on water displacement dynamics in fractured basements were investigated. In gravity-dominated systems, more oil could be recovered at a given pore

  15. The Auger-spectroscopic study of the elemental composition of the fracture surface of titanic alloy vt-22 with different structure

    International Nuclear Information System (INIS)

    Tkachenko, E.A.; Chokin, K.Sh.; Masyagin, V.E.; Chasnikov, A.I.

    2002-01-01

    High titanium alloys belong to a group of materials with high thermal stability and strength-to-weight ratio, which, for example, are widely used in aviation. The structure and properties of this materials strongly depends on variations of their elemental composition. In the dependence on the content of alloying elements the structure after the hardening from β-phase changes that, in its turn, leads to the alteration of the mechanical properties. So, the study of the redistribution of the impurity and alloying elements at straining the alloys with different structures that associated with premature destruction of construction components made of the titanic alloys is of great interest. The present work performs the results of the Auger spectroscopic investigation of the elemental composition of the alloy VT-22 fraction surface. This investigation was fulfilled for the alloy samples with different structure: laminated (L), globular (G), and laminated-globular ones with the plasticity level 1280-1350 MPa. The alterations of the elemental concentrations on the fracture surface have been estimated with the special Auger-spectrometer (OSIPR-1). The analysis of the fracture surface for samples with L- and G-structures right after the destruction at different velocities have shown the enrichment of the surface with aluminium, oxygen, and carbon in bound state as titan carbide (TiC). At this, the content of these elements decreases with the growth of the test velocity. The impurities in the samples with different structures behave as follows. In the sample with L-structure sulphur, phosphorus, and calcium on the fracture surface have been detected. At this, with the growth of the test velocity their concentration increases, but not significantly. In the samples with G-structure sulphur presents on the surface only at great straining velocities, and phosphorus is absent. At the analysis of the obtained results, one should note that the fracture surface is being enriched

  16. Psychological characteristics of group cohesion athletes.

    OpenAIRE

    Sheriff Sarhan

    2011-01-01

    The basic components of group cohesion in sport teams. An analysis of publications on cohesion within the groups where an interconnection of individual goals of each participant group with common goals and the end result of teamwork. The concept of harmony in the team sports, where the rate of group cohesion is dependent on such integrative index as psychological climate. It is established that a number of athletes to achieve high results require high cohesion, unity, value-normative orientat...

  17. Fracture characterization in patterned thin films by cross-sectional nanoindentation

    International Nuclear Information System (INIS)

    Ocana, I.; Molina-Aldareguia, J.M.; Gonzalez, D.; Elizalde, M.R.; Sanchez, J.M.; Martinez-Esnaola, J.M.; Gil Sevillano, J.; Scherban, T..; Pantuso, D.; Sun, B.; Xu, G.; Miner, B.; He, J.; Maiz, J.

    2006-01-01

    A testing technique based on cross-sectional nanoindentation has been used to assess the mechanical reliability of interconnect structures. A Berkovich indenter was used to initiate fracture in a silicon substrate and cracks propagated through the structure. To better control crack growth and to convert the problem into two dimensions, a trench parallel to the indentation surface was previously machined using a focused ion beam. The crack lengths obtained for different material systems in the interconnect structure correlate well with the fracture energies measured for the same materials in blanket films. Finite element model simulations incorporating cohesive elements have been used to model the fracture processes and to explain the different cracking behaviour observed

  18. Fracture characterization in patterned thin films by cross-sectional nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Ocana, I. [CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastian (Spain); Molina-Aldareguia, J.M. [CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastian (Spain); Gonzalez, D. [CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastian (Spain); Elizalde, M.R. [CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastian (Spain)]. E-mail: relizalde@ceit.es; Sanchez, J.M. [CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastian (Spain); Martinez-Esnaola, J.M. [CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastian (Spain); Gil Sevillano, J. [CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastian (Spain); Scherban, T.. E-mail: Tracey_Scherban@Hotmail.com; Pantuso, D. [Logic Technology Development, Intel Corporation, Hillsboro, OR 97124 (United States); Sun, B. [Logic Technology Development, Intel Corporation, Hillsboro, OR 97124 (United States); Xu, G. [Logic Technology Development, Intel Corporation, Hillsboro, OR 97124 (United States); Miner, B. [Logic Technology Development, Intel Corporation, Hillsboro, OR 97124 (United States); He, J. [Logic Technology Development, Intel Corporation, Hillsboro, OR 97124 (United States); Maiz, J. [Logic Technology Development, Intel Corporation, Hillsboro, OR 97124 (United States)

    2006-08-15

    A testing technique based on cross-sectional nanoindentation has been used to assess the mechanical reliability of interconnect structures. A Berkovich indenter was used to initiate fracture in a silicon substrate and cracks propagated through the structure. To better control crack growth and to convert the problem into two dimensions, a trench parallel to the indentation surface was previously machined using a focused ion beam. The crack lengths obtained for different material systems in the interconnect structure correlate well with the fracture energies measured for the same materials in blanket films. Finite element model simulations incorporating cohesive elements have been used to model the fracture processes and to explain the different cracking behaviour observed.

  19. A biomechanical comparison of four fixed-angle dorsal plates in a finite element model of dorsally-unstable radius fracture.

    Science.gov (United States)

    Knežević, Josip; Kodvanj, Janoš; Čukelj, Fabijan; Pamuković, Frane; Pavić, Arsen

    2017-11-01

    To compare the finite element models of two different composite radius fracture patterns, reduced and stabilised with four different fixed-angle dorsal plates during axial, dorsal and volar loading conditions. Eight different plastic models representing four AO/ASIF type 23-A3 distal radius fractures and four AO/ASIF 23-C2 distal radius fractures were obtained and fixed each with 1 of 4 methods: a standard dorsal non-anatomical fixed angle T-plate (3.5mm Dorsal T-plate, Synthes), anatomical fixed-angle double plates (2.4mm LCP Dorsal Distal Radius, Synthes), anatomical fixed angle T-plate (2.4mm Acu-Loc Dorsal Plate, Acumed) or anatomical variable-angle dorsal T-plate (3.5mm, Dorsal Plate, Zrinski). Composite radius with plate and screws were scanned with a 3D optical scanner and later processed in Abaqus Software to generate the finite element model. All models were axially loaded at 3 points (centrally, volarly and dorsally) with 50 N forces to avoid the appearance of plastic deformations of the models. Total displacements at the end of the bone and the stresses in the bones and plates were determined and compared. Maximal von Mises stress in bone for 3-part fracture models was very similar to that in 2-part fracture models. The biggest difference between models and the largest displacements were seen during volar loading. The stresses in all models were the highest above the fracture gap. The best performance in all parameters tested was with the Zrinski plate and the most modest results were with the Synthes T-plate. There was no significant difference between 2-part (AO/ASIF type 23-A3) and 3-part (AO/ASIF 23-C2) fracture models. Maximal stresses in the plates appeared above the fracture gap; therefore, it is worth considering the development of plates without screw holes above the gap. © 2017 Elsevier Ltd. All rights reserved.

  20. Fracture Mechanics

    CERN Document Server

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...

  1. Finite element analysis of the equivalent stress distribution in Schanz screws during the use of a femoral fracture distractor

    Directory of Open Access Journals (Sweden)

    Vincenzo Giordano

    Full Text Available ABSTRACT To evaluate the mechanical stress and elastic deformation exercised in the thread/shaft transition of Schanz screws in assemblies with different screw anchorage distances in the entrance to the bone cortex, through the distribution and location of tension in the samples. An analysis of 3D finite elements was performed to evaluate the distribution of the equivalent stress (triple stress state in a Schanz screw fixed bicortically and orthogonally to a tubular bone, using two mounting patterns: (1 thread/shaft transition located 20 mm from the anchorage of the Schanz screws in the entrance to the bone cortex and (2 thread/shaft transition located 3 mm from the anchorage of the Schanz screws in entrance to the bone cortex. The simulations were performed maintaining the same direction of loading and the same distance from the force vector in relation to the center of the hypothetical bone. The load applied, its direction, and the distance to the center of the bone were constant during the simulations in order to maintain the moment of flexion equally constant. The present calculations demonstrated linear behavior during the experiment. It was found that the model with a distance of 20 mm between the Schanz screws anchorage in the entrance to the bone cortex and the thread/shaft transition reduces the risk of breakage or fatigue of the material during the application of constant static loads; in this model, the maximum forces observed were higher (350 MPa. The distance between the Schanz screws anchorage at the entrance to the bone cortex and the smooth thread/shaft transition of the screws used in a femoral distractor during acute distraction of a fracture must be farther from the entrance to the bone cortex, allowing greater degree of elastic deformation of the material, lower mechanical stress in the thread/shaft transition, and minimized breakage or fatigue. The suggested distance is 20 mm.

  2. Quantitative prediction of fractures using the finite element method: A case study of the lower Silurian Longmaxi Formation in northern Guizhou, South China

    Science.gov (United States)

    Liu, Jingshou; Ding, Wenlong; Yang, Haimeng; Jiu, Kai; Wang, Zhe; Li, Ang

    2018-04-01

    Natural fractures have long been considered important factors in the production of gas from shale reservoirs because they can connect pore spaces and enlarge transport channels, thereby influencing the migration, accumulation and preservation of shale gas. Industrial-level shale gas production has been initiated in the lower Silurian Longmaxi Formation in northern Guizhou, South China. However, it is important to quantitatively predict the distribution of natural fractures in the lower Silurian shale reservoirs to locate additional 'sweet spots' in northern Guizhou. In this study, data obtained from outcrops, cores, thin sections, field-emission scanning electron microscope (FE-SEM) images and X-ray diffraction (XRD) were used to determine the developmental characteristics and controlling factors of these fractures. Correlation analysis indicated that the mechanical parameters of the Longmaxi shale are mainly related to the total organic carbon (TOC), quartz, clay, calcite and dolomite contents. The spatial variations in the mechanical parameters of the Longmaxi shale were determined based on the spatial variations in the TOC and mineral contents. Then, a heterogeneous geomechanical model of the study area was established based on interpretations of the fault systems derived from seismic data and acoustic emission (AE) experiments performed on samples of the relevant rocks. The paleotectonic stress fields during the Yanshanian period were obtained using the finite element method (FEM). Finally, a fracture density calculation model was established to analyze the quantitative development of fractures, and the effects of faults and mechanical parameters on the development of fractures were determined. The results suggest that the main developmental period of tectonic fractures in the Longmaxi Formation was the Early Yanshanian period. During this time, the horizontal principal stress conditions were dominated by a SE-NW-trending (135-315°) compressional stress field

  3. Fracture surfaces of granular pastes.

    Science.gov (United States)

    Mohamed Abdelhaye, Y O; Chaouche, M; Van Damme, H

    2013-11-01

    Granular pastes are dense dispersions of non-colloidal grains in a simple or a complex fluid. Typical examples are the coating, gluing or sealing mortars used in building applications. We study the cohesive rupture of thick mortar layers in a simple pulling test where the paste is initially confined between two flat surfaces. After hardening, the morphology of the fracture surfaces was investigated, using either the box counting method to analyze fracture profiles perpendicular to the mean fracture plane, or the slit-island method to analyze the islands obtained by cutting the fracture surfaces at different heights, parallel to the mean fracture plane. The fracture surfaces were shown to exhibit scaling properties over several decades. However, contrary to what has been observed in the brittle or ductile fracture of solid materials, the islands were shown to be mass fractals. This was related to the extensive plastic flow involved in the fracture process.

  4. Numerical investigation of the effect of delaminations on fracture characteristics of glare

    Science.gov (United States)

    Bhat, Sunil; Narayanan, S.

    2013-10-01

    A finite element examination of the effect of delaminations on fracture characteristics of fibre metal laminate (Glare), by comparing energy release rates of normal cracks in laminates with and without delaminations, is presented in the paper. Glare comprising thin cracked 2024-T3 aerospace aluminum alloy layers alternately bonded with E-glass fibre based composite prepregs is considered for the analysis. Delaminations are modeled with interface cohesive elements. Energy release rates of normal cracks in laminates with delaminations are found to be higher than those in the laminates without delaminations.

  5. Biomechanical assessment of composite versus metallic intramedullary nailing system in femoral shaft fractures: A finite element study.

    Science.gov (United States)

    Samiezadeh, Saeid; Tavakkoli Avval, Pouria; Fawaz, Zouheir; Bougherara, Habiba

    2014-08-01

    Intramedullary nails are the primary choice for treating long bone fractures. However, complications following nail surgery including non-union, delayed union, and fracture of the bone or the implant still exist. Reducing nail stiffness while still maintaining sufficient stability seems to be the ideal solution to overcome the abovementioned complications. In this study, a new hybrid concept for nails made of carbon fibers/flax/epoxy was developed in order to reduce stress shielding. The mechanical performance of this new implant in terms of fracture stability and load sharing was assessed using a comprehensive non-linear FE model. This model considers several mechanical factors in nine fracture configurations at immediately post-operative, and in the healed bone stages. Post-operative results showed that the hybrid composite nail increases the average normal force at the fracture site by 319.23N (P<0.05), and the mean stress in the vicinity of fracture by 2.11MPa (P<0.05) at 45% gait cycle, while only 0.33mm and 0.39mm (P<0.05) increases in the fracture opening and the fragments' shear movement were observed. The healed bone results revealed that implantation of the titanium nail caused 20.2% reduction in bone stiffness, while the composite nail lowered the stiffness by 11.8% as compared to an intact femur. Our results suggest that the composite nail can provide a preferred mechanical environment for healing, particularly in transverse shaft fractures. This may help bioengineers better understand the biomechanics of fracture healing, and aid in the design of effective implants. Copyright © 2014. Published by Elsevier Ltd.

  6. Evaluation of Bone Atrophy After Treatment of Forearm Fracture Using Nonlinear Finite Element Analysis: A Comparative Study of Locking Plates and Conventional Plates.

    Science.gov (United States)

    Matsuura, Yusuke; Rokkaku, Tomoyuki; Suzuki, Takane; Thoreson, Andrew Ryan; An, Kai-Nan; Kuniyoshi, Kazuki

    2017-08-01

    Forearm diaphysis fractures are usually managed by open reduction internal fixation. Recently, locking plates have been used for treatment. In the long-term period after surgery, some patients present with bone atrophy adjacent to the plate. However, a comparison of locking and conventional plates as a cause of atrophy has not been reported. The aim of this study was to investigate long-term bone atrophy associated with use of locking and conventional plates for forearm fracture treatment. In this study we included 15 patients with forearm fracture managed by either locking or conventional plates and with more than 5 years of follow-up. Computed tomographic imaging of both forearms was performed to assess bone thickness and local bone mineral density and to predict bone strength without plate reinforcement based on finite element analysis. Mean patient age at surgery was 48.0 years. Eight patients underwent reduction with fixed locking plates and were followed up for a mean of 79.5 months; the remaining 7 patients were treated with conventional plates and were followed up for a mean of 105.0 months. Compared with the conventional plate group, the locking plate group had the same fractured limb-contralateral limb ratio of cortex bone thickness, but had significantly lower ratios of mineral density adjacent to the plate and adjusted bone strength. This study demonstrated bone atrophy after locking plate fixation for forearm fractures. Treatment plans for forearm fracture should take into consideration the impact of bone atrophy long after plate fixation. Therapeutic IV. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  7. Prediction of skull fracture risk for children 0-9 months old through validated parametric finite element model and cadaver test reconstruction.

    Science.gov (United States)

    Li, Zhigang; Liu, Weiguo; Zhang, Jinhuan; Hu, Jingwen

    2015-09-01

    Skull fracture is one of the most common pediatric traumas. However, injury assessment tools for predicting pediatric skull fracture risk is not well established mainly due to the lack of cadaver tests. Weber conducted 50 pediatric cadaver drop tests for forensic research on child abuse in the mid-1980s (Experimental studies of skull fractures in infants, Z Rechtsmed. 92: 87-94, 1984; Biomechanical fragility of the infant skull, Z Rechtsmed. 94: 93-101, 1985). To our knowledge, these studies contained the largest sample size among pediatric cadaver tests in the literature. However, the lack of injury measurements limited their direct application in investigating pediatric skull fracture risks. In this study, 50 pediatric cadaver tests from Weber's studies were reconstructed using a parametric pediatric head finite element (FE) model which were morphed into subjects with ages, head sizes/shapes, and skull thickness values that reported in the tests. The skull fracture risk curves for infants from 0 to 9 months old were developed based on the model-predicted head injury measures through logistic regression analysis. It was found that the model-predicted stress responses in the skull (maximal von Mises stress, maximal shear stress, and maximal first principal stress) were better predictors than global kinematic-based injury measures (peak head acceleration and head injury criterion (HIC)) in predicting pediatric skull fracture. This study demonstrated the feasibility of using age- and size/shape-appropriate head FE models to predict pediatric head injuries. Such models can account for the morphological variations among the subjects, which cannot be considered by a single FE human model.

  8. Cohesive zone modeling of intergranular cracking in polycrystalline aggregates

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2015-01-01

    Highlights: • Alternative approach to cohesive elements is proposed: cohesive-zone contact. • Applicability to measured and simulated grain structures is demonstrated. • Normal and normal/shear separation as a damage initialization is explored. • Normal/shear damage initialization significantly reduces ductility. • Little difference in Voronoi aggregate size on macroscopic response. - Abstract: Understanding and controlling early damage initiation and evolution are amongst the most important challenges in nuclear power plants, occurring in ferritic, austenitic steels and nickel based alloys. In this work a meso-scale approach to modeling initiation and evolution of early intergranular cracking is presented. This damage mechanism is present in a number of nuclear power plant components and depends on the material (e.g. composition, heat treatment, microstructure), environment and load. Finite element modeling is used to explicitly model the microstructure – both the grains and the grain boundaries. Spatial Voronoi tessellation is used to obtain the grain topology. In addition, measured topology of a 0.4 mm stainless steel wire is used. Anisotropic elasticity and crystal plasticity are used as constitutive laws for the grains. Grain boundaries are modeled using the cohesive zone approach. Different modeling assumptions/parameters are evaluated against the numerical stability criteria. The biggest positive contribution to numerical stability is the use of cohesive-type contact instead of cohesive elements. A small amount of viscous regularization should be also used along with the addition of a small amount of viscous forces to the global equilibrium equations. Two cases of grain boundary damage initiation are explored: (1) initiation due to normal separation and (2) initiation due to a combination of normal and shear separation. The second criterion significantly decreases the ductility of an aggregate and slightly improves the numerical stability

  9. [Finite element analysis of the maxillary central incisor with crown lengthening surgery and post-core restoration in management of crown-root fracture].

    Science.gov (United States)

    Zhen, Min; Hu, Wen-jie; Rong, Qi-guo

    2015-12-18

    To construct the finite element models of maxillary central incisor and the simulations with crown lengthening surgery and post-core restoration in management of different crown-root fracture types, to investigate the stress intensity and distributions of these models mentioned above, and to analyze the indications of crown lengthening from the point of view of mechanics. An extracted maxillary central incisor and alveolar bone plaster model were scanned by Micro-CT and dental impression scanner (3shape D700) respectively. Then the 3D finite element models of the maxillary central incisor and 9 simulations with crown lengthening surgery and post-core restoration were constructed by Mimics 10.0, Geomagic studio 9.0 and ANSYS 14.0 software. The oblique static force (100 N) was applied to the palatal surface (the junctional area of the incisal 1/3 and middle 1/3), at 45 degrees to the longitudinal axis, then the von Mises stress of dentin, periodontal ligament, alveolar bone, post and core, as well as the periodontal ligament area, were calculated. A total of 10 high-precision three-dimensional finite element models of maxillary central incisor were established. The von Mises stress of models: post>dentin>alveolar bone>core>periodontal ligament, and the von Mises stress increased linearly with the augmentation of fracture degree (besides the core). The periodontal ligament area of the crown lengthening was reduced by 12% to 33%. The von Mises stress of periodontal ligament of the B2L2c, B2L3c, B3L1c, B3L2c, B3L3c models exceeded their threshold limit value, respectively. The maxillary central incisors with the labial fracture greater than three-quarter crown length and the palatal fracture deeper than 1 mm below the alveolar crest are not the ideal indications of the crown lengthening surgery.

  10. The application of J integral to measure cohesive laws in materials undergoing large scale yielding

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Goutianos, Stergios

    2015-01-01

    We explore the possibility of determining cohesive laws by the J-integral approach for materials having non-linear stress-strain behaviour (e.g. polymers and composites) by the use of a DCB sandwich specimen, consisting of stiff elastic beams bonded to the non-linear test material, loaded with pure...... bending moments. For a wide range of parameters of the non-linear material, the plastic unloading during crack extension is small, resulting in J integral values (fracture resistance) that deviate maximum 15% from the work of the cohesive traction. Thus the method can be used to extract the cohesive laws...... directly from experiments without any presumption about their shape. Finally, the DCB sandwich specimen was also analysed using the I integral to quantify the overestimation of the steady-state fracture resistance obtained using the J integral based method....

  11. Stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture: a comparative finite element study.

    Science.gov (United States)

    Huang, Xiaowei; Zhi, Zhongzheng; Yu, Baoqing; Chen, Fancheng

    2015-11-25

    The purpose of this study is to compare the stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture. A three-dimensional (3D) finite element model of the medial tibial plateau fracture (Schatzker type IV fracture) was created. An axial force of 2500 N with a distribution of 60% to the medial compartment was applied to simulate the axial compressive load on an adult knee during single-limb stance. The equivalent von Mises stress, displacement of the model relative to the distal tibia, and displacement of the implants were used as the output measures. The mean stress value of the plate-screw fixation system was 18.78 MPa, which was significantly (P stress value of the triangular fragment in the plate-screw fixation system model was 42.04 MPa, which was higher than that in the screw fixation model (24.18 MPa). But the mean stress of the triangular fractured fragment in the screw fixation model was significantly higher in terms of equivalent von Mises stress (EVMS), x-axis, and z-axis (P < 0.001). This study demonstrated that the load transmission mechanism between plate-screw fixation system and screw fixation system was different and the stability provided by the plate-screw fixation system was superior to the screw fixation system.

  12. Application of Finite Element Method to Analyze the Influences of Process Parameters on the Cut Surface in Fine Blanking Processes by Using Clearance-Dependent Critical Fracture Criteria

    Directory of Open Access Journals (Sweden)

    Phyo Wai Myint

    2018-04-01

    Full Text Available The correct choice of process parameters is important in predicting the cut surface and obtaining a fully-fine sheared surface in the fine blanking process. The researchers used the value of the critical fracture criterion obtained by long duration experiments to predict the conditions of cut surfaces in the fine blanking process. In this study, the clearance-dependent critical ductile fracture criteria obtained by the Cockcroft-Latham and Oyane criteria were used to reduce the time and cost of experiments to obtain the value of the critical fracture criterion. The Finite Element Method (FEM was applied to fine blanking processes to study the influences of process parameters such as the initial compression, the punch and die corner radii and the shape and size of the V-ring indenter on the length of the sheared surface. The effects of stress triaxiality and punch diameters on the cut surface produced by the fine blanking process are also discussed. The verified process parameters and tool geometry for obtaining a fully-fine sheared SPCC surface are described. The results showed that the accurate and stable prediction of ductile fracture initiation can be achieved using the Oyane criterion.

  13. Direct restoration modalities of fractured central maxillary incisors: A multi-levels validated finite elements analysis with in vivo strain measurements.

    Science.gov (United States)

    Davide, Apicella; Raffaella, Aversa; Marco, Tatullo; Michele, Simeone; Syed, Jamaluddin; Massimo, Marrelli; Marco, Ferrari; Antonio, Apicella

    2015-12-01

    To quantify the influence of fracture geometry and restorative materials rigidity on the stress intensity and distribution of restored fractured central maxillary incisors (CMI) with particular investigation of the adhesive interfaces. Ancillary objectives are to present an innovative technology to measure the in vivo strain state of sound maxillary incisors and to present the collected data. A validation experimental biomechanics approach has been associated to finite element analysis. FEA models consisted of CMI, periodontal ligament and the corresponding alveolar bone process. Three models were created representing different orientation of the fracture planes. Three different angulations of the fracture plane in buccal-palatal direction were modeled: the fracture plane perpendicular to the long axis in the buccal-palatal direction (0°); the fracture plane inclined bucco-palatally in apical-coronal direction (-30°); the fracture plane inclined palatal-buccally in apical-coronal direction (+30°). First set of computing runs was performed for in vivo FE-model validation purposes. In the second part, a 50N force was applied on the buccal aspect of the CMI models. Ten patients were selected and subjected to the strain measurement of CMI under controlled loading conditions. The main differences were noticed in the middle and incisal thirds of incisors crowns, due to the presence of the incisal portion restoration. The stress intensity in -30° models is increased in the enamel structure close to the restoration, due to a thinning of the remaining natural tissues. The rigidity of the restoring material slightly reduces such phenomenon. -30° model exhibits the higher interfacial stress in the adhesive layer with respect to +30° and 0° models. The lower stress intensity was noticed in the 0° models, restoration material rigidity did not influenced the interfacial stress state in 0° models. On the contrary, material rigidity influenced the interfacial stress state

  14. Fracture Behavior and Properties of Functionally Graded Fiber-Reinforced Concrete

    International Nuclear Information System (INIS)

    Roesler, Jeffery; Bordelon, Amanda; Gaedicke, Cristian; Park, Kyoungsoo; Paulino, Glaucio

    2008-01-01

    In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this research was to address the structural benefits of functionally graded concrete materials (FGCM) for rigid pavements by testing and modeling the fracture behavior of different combinations of layered plain and synthetic fiber-reinforced concrete materials. Fracture parameters and the post-peak softening behavior were obtained for each FGCM beam configuration by the three point bending beam test. The peak loads and initial fracture energy between the plain, fiber-reinforced, and FGCM signified similar crack initiation. The total fracture energy indicated improvements in fracture behavior of FGCM relative to full-depth plain concrete. The fracture behavior of FGCM depended on the position of the fiber-reinforced layer relative to the starter notch. The fracture parameters of both fiber-reinforced and plain concrete were embedded into a finite element-based cohesive zone model. The model successfully captured the experimental behavior of the FGCMs and predicted the fracture behavior of proposed FGCM configurations and structures. This integrated approach (testing and modeling) demonstrates the viability of FGCM for designing layered concrete pavements system

  15. Investigating the settling dynamics of cohesive silt particles with particle-resolving simulations

    Science.gov (United States)

    Sun, Rui; Xiao, Heng; Sun, Honglei

    2018-01-01

    The settling of cohesive sediment is ubiquitous in aquatic environments, and the study of the settling process is important for both engineering and environmental reasons. In the settling process, the silt particles show behaviors that are different from non-cohesive particles due to the influence of inter-particle cohesive force. For instance, the flocs formed in the settling process of cohesive silt can loosen the packing, and thus the structural densities of cohesive silt beds are much smaller than that of non-cohesive sand beds. While there is a consensus that cohesive behaviors depend on the characteristics of sediment particles (e.g., Bond number, particle size distribution), little is known about the exact influence of these characteristics on the cohesive behaviors. In addition, since the cohesive behaviors of the silt are caused by the inter-particle cohesive forces, the motions of and the contacts among silt particles should be resolved to study these cohesive behaviors in the settling process. However, studies of the cohesive behaviors of silt particles in the settling process based on particle-resolving approach are still lacking. In the present work, three-dimensional settling process is investigated numerically by using CFD-DEM (Computational Fluid Dynamics-Discrete Element Method). The inter-particle collision force, the van der Waals force, and the fluid-particle interaction forces are considered. The numerical model is used to simulate the hindered settling process of silt based on the experimental setup in the literature. The results obtained in the simulations, including the structural densities of the beds, the characteristic lines, and the particle terminal velocity, are in good agreement with the experimental observations in the literature. To the authors' knowledge, this is the first time that the influences of non-dimensional Bond number and particle polydispersity on the structural densities of silt beds have been investigated separately

  16. Effects of trochanteric soft tissue thickness and hip impact velocity on hip fracture in sideways fall through 3D finite element simulations.

    Science.gov (United States)

    Majumder, Santanu; Roychowdhury, Amit; Pal, Subrata

    2008-09-18

    A major worldwide health problem is hip fracture due to sideways fall among the elderly population. The effects of sideways fall on the hip are required to be investigated thoroughly. The objectives of this study are to evaluate the responses to trochanteric soft tissue thickness (T) variations and hip impact velocity (V) variations during sideways fall based on a previously developed CT scan derived 3D non-linear and non-homogeneous finite element model of pelvis-femur-soft tissue complex with simplified biomechanical representation of the whole body. This study is also aimed at quantifying the effects [peak impact force (F(max)), time to F(max), acceleration and peak principal compressive strain (epsilon(max))] of these variations (T,V) on hip fracture. It was found that under constant impact energy, for 81% decrease in T (26-5mm), F(max) and epsilon(max) increased by 38% and 97%, respectively. Hence, decrease in T (as in slimmer persons) strongly correlated to risk for hip fracture (phi) and strain ratio (SR) by 0.972 and 0.988, respectively. Also under same T and body weight, for 75% decrease in V (4.79-1.2m/s), F(max) and epsilon(max) decreased by 70% and 86%, respectively. Hence, increase in V (as in taller persons) strongly correlated to phi and SR by 0.995 and 0.984, respectively. For both variations in T and V, inter-trochanteric fracture situations were well demonstrated by phi as well as by SR and strain contours, similar to clinically observed fractures. These quantifications would be helpful for effective design of person-specific hip protective devices.

  17. Erosion of cohesive soil layers above underground conduits

    Directory of Open Access Journals (Sweden)

    Luu Li-Hua

    2017-01-01

    Full Text Available Using a recently developed 2D numerical modelling that combines Discrete Element (DEM and Lattice Boltzmann methods (LBM, we simulate the destabilisation by an hydraulic gradient of a cohesive granular soil clogging the top of an underground conduit. We aim to perform a multi-scale study that relates the grain scale behavior to the macroscopic erosion process. In particular, we study the influence of the flow conditions and the inter-particle contact forces intensity on the erosion kinetic.

  18. Erosion of cohesive soil layers above underground conduits

    Science.gov (United States)

    Luu, Li-Hua; Philippe, Pierre; Noury, Gildas; Perrin, Jérôme; Brivois, Olivier

    2017-06-01

    Using a recently developed 2D numerical modelling that combines Discrete Element (DEM) and Lattice Boltzmann methods (LBM), we simulate the destabilisation by an hydraulic gradient of a cohesive granular soil clogging the top of an underground conduit. We aim to perform a multi-scale study that relates the grain scale behavior to the macroscopic erosion process. In particular, we study the influence of the flow conditions and the inter-particle contact forces intensity on the erosion kinetic.

  19. Continuous and Discontinuous Modelling of Fracture in Concrete Using FEM

    CERN Document Server

    Tejchman, Jacek

    2013-01-01

    The book analyzes a quasi-static fracture process in concrete and reinforced concrete by means of constitutive models formulated within continuum mechanics. A continuous and discontinuous modelling approach was used. Using a continuous approach, numerical analyses were performed using a finite element method and three different enhanced continuum models: isotropic elasto-plastic, isotropic damage and anisotropic smeared crack one. The models were equipped with a characteristic length of micro-structure by means of a non-local and a second-gradient theory. So they could properly describe the formation of localized zones with a certain thickness and spacing and a related deterministic size effect. Using a discontinuous FE approach, numerical results of cracks using a cohesive crack model and XFEM were presented which were also properly regularized. Finite element analyses were performed with concrete elements under monotonic uniaxial compression, uniaxial tension, bending and shear-extension. Concrete beams un...

  20. Cohesion Policy Contributing to Territorial Cohesion – Future Scenarios

    Directory of Open Access Journals (Sweden)

    Andreas Faludi

    2011-09-01

    Full Text Available The Barca Report advocates for developmental policies to be ‘place-based’: integrated as far as they affect ‘places’. The debate on territorial cohesion is equally concerned with integrating relevant policies and actions. This requires well-established democratic institutions and adequate responses to the demands of technical systems and of markets. Following Lisbeth Hooghe and Gary Marks, the respective arrangements are described as Governance Type I and Type II. All levels of government, including that of the EU, partake in both types, but relations between them are problematic, particularly in the context of Europe 2020: Will this EU strategy be mainly a matter for Directorate-Generals and their various clients pursuing their policies (Governance Type II, or will Cohesion policy, with its more integrated and decentralised approach, involving many levels of government and stakeholders (Governance Type I form platforms for integrating them? This paper presents four scenarios; each based on a combination of strong/weak Governance Type I and Type II, which are labelled as the ‘Anglo-Saxon’, ‘Saint-Simonian’, ‘Rhineland’ and the ‘European’ Scenarios. The authors prefer the latter, but the best one can hope for in the short term is for this option not to fall by the wayside.

  1. Team cohesion and team success in sport.

    Science.gov (United States)

    Carron, Albert V; Bray, Steven R; Eys, Mark A

    2002-02-01

    The main aim of this study was to examine the relationship between task cohesiveness and team success in elite teams using composite team estimates of cohesion. A secondary aim was to determine statistically the consistency (i.e. 'groupness') present in team members' perceptions of cohesion. Elite university basketball teams (n = 18) and club soccer teams (n = 9) were assessed for cohesiveness and winning percentages. Measures were recorded towards the end of each team's competitive season. Our results indicate that cohesiveness is a shared perception, thereby providing statistical support for the use of composite team scores. Further analyses indicated a strong relationship between cohesion and success (r = 0.55-0.67). Further research using multi-level statistical techniques is recommended.

  2. Computational aspects of nonlinear fracture mechanics

    International Nuclear Information System (INIS)

    Brocks, W.; Cornec, A.; Scheider, I.

    2003-01-01

    The following contribution will essentially restrict to the application of the von Mises theory of incremental plasticity to cracked specimens and components. In particular, the classical parameters of EPFM, J and CTOD, as well as subsequently proposed parameters such as energy dissipation rate and crack-tip opening angle (CTOA) and the related computational aspects will be discussed. Some remarks follow on the 'local approach to fracture' which is based on continuum field quantities, namely stresses and strains, and the damage models of Gurson (1977) and Rousselier (1987), which have now found increasing application, will be briefly addressed in Section 3.03.4. The numerical modeling of decohesion and separation phenomena by 'cohesive elements' will be presented in Section 3.03.5. (orig.)

  3. Sustaining exercise participation through group cohesion.

    Science.gov (United States)

    Estabrooks, P A

    2000-04-01

    The general hypothesis to be examined by this article is that increased group cohesion leads to an increase in adherence to an exercise program over time. Although preliminary research is promising, there is a need for further research aimed at examining the model of group development in exercise classes, the impact of group cohesion on both group and individual exercise behavior, and the measurement of group cohesion.

  4. Comparative studies on constitutive models for cohesive interface cracks of quasi-brittle materials

    International Nuclear Information System (INIS)

    Shen Xinpu; Shen Guoxiao; Zhou Lin

    2005-01-01

    In this paper, Concerning on the modelling of quasi-brittle fracture process zone at interface crack of quasi-brittle materials and structures, typical constitutive models of interface cracks were compared. Numerical calculations of the constitutive behaviours of selected models were carried out at local level. Aiming at the simulation of quasi-brittle fracture of concrete-like materials and structures, the emphases of the qualitative comparisons of selected cohesive models are focused on: (1) the fundamental mode I and mode II behaviours of selected models; (2) dilatancy properties of the selected models under mixed mode fracture loading conditions. (authors)

  5. Psychological characteristics of group cohesion athletes.

    Directory of Open Access Journals (Sweden)

    Sheriff Sarhan

    2011-07-01

    Full Text Available The basic components of group cohesion in sport teams. An analysis of publications on cohesion within the groups where an interconnection of individual goals of each participant group with common goals and the end result of teamwork. The concept of harmony in the team sports, where the rate of group cohesion is dependent on such integrative index as psychological climate. It is established that a number of athletes to achieve high results require high cohesion, unity, value-normative orientation, deep identification and responsibility for the results of the joint group activities.

  6. Regions and the Territorial Cohesion

    Directory of Open Access Journals (Sweden)

    Ioan Ianos

    2013-08-01

    Full Text Available Territorial cohesion is an important target of European Union, constantly promoted by its institutions and their representatives. In the context of the Europe 2020 strategy, one of the most important support documents, the region represents a very important issue, being considered to be the key to its successfulness. The region is seen as a support for the smart growth and all the operational policy concepts try to make use of the spatial potential, by taking better account of the territorial specificities. Two main questions play attention: the need to transform the present-day developmental regions into administrative ones is a priority? What kind of regionalization it must to be promoted? Correlating these issues with already defined territorial cohesion, the administrative region is a real tool for the future territorial development. The experience of the last 14 years asks urgently the building of a new territorial administrative reform, giving competences to regions. For instant, each development region is a construction resulted from a free association of the counties. Their role in the regional development is much reduced one, because their regional councils are not elected; decisions taken at this level are consultative for the social, economical, cultural or political actors.

  7. Rotational Failure of Rubble-pile Bodies: Influences of Shear and Cohesive Strengths

    Science.gov (United States)

    Zhang, Yun; Richardson, Derek C.; Barnouin, Olivier S.; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis

    2018-04-01

    The shear and cohesive strengths of a rubble-pile asteroid could influence the critical spin at which the body fails and its subsequent evolution. We present results using a soft-sphere discrete element method to explore the mechanical properties and dynamical behaviors of self-gravitating rubble piles experiencing increasing rotational centrifugal forces. A comprehensive contact model incorporating translational and rotational friction and van der Waals cohesive interactions is developed to simulate rubble-pile asteroids. It is observed that the critical spin depends strongly on both the frictional and cohesive forces between particles in contact; however, the failure behaviors only show dependence on the cohesive force. As cohesion increases, the deformation of the simulated body prior to disruption is diminished, the disruption process is more abrupt, and the component size of the fissioned material is increased. When the cohesive strength is high enough, the body can disaggregate into similar-size fragments, which could be a plausible mechanism to form asteroid pairs or active asteroids. The size distribution and velocity dispersion of the fragments in high-cohesion simulations show similarities to the disintegrating asteroid P/2013 R3, indicating that this asteroid may possess comparable cohesion in its structure and experience rotational fission in a similar manner. Additionally, we propose a method for estimating a rubble pile’s friction angle and bulk cohesion from spin-up numerical experiments, which provides the opportunity for making quantitative comparisons with continuum theory. The results show that the present technique has great potential for predicting the behaviors and estimating the material strengths of cohesive rubble-pile asteroids.

  8. Skull wounds linked with blunt trauma (hammer example). A report of two depressed skull fractures--elements of biomechanical explanation.

    Science.gov (United States)

    Delannoy, Yann; Becart, Anne; Colard, Thomas; Delille, Rémi; Tournel, Gilles; Hedouin, Valéry; Gosset, Didier

    2012-09-01

    The lesions of the skull following perforating traumas can create complex fractures. The blunt traumas can, according to the swiftness and the shape of the object used, create a depressed fracture. The authors describe through two clinical cases the lesional characteristic of the blunt traumas, perforating the skull using a hammer. In both cases the cranial lesions were very typical: they were geometrical, square shaped, of the same size than the tool (head and tip of the hammer). On the outer table of the skull, the edges of the wounds were sharp and regular. On the inner table, the edges of the wounds were beveled and irregular. The bony penetration in the depressed fracture results from a rupture of the outer table of the bone under tension, in periphery, by the bend of the bone to the impact (outbending) and then, from the inner table with comminuted bony fragmentation. Breeding on the fractures of the size and the shape of the blunt objects used is inconstant and differs, that it is the objects of flat surface or wide in opposition to those of small surface area. Fractures morphologies depend on one hand on these extrinsic factors and on the other hand, of intrinsic factors (structure of the bone). To identify them, we had previously conducted experimental work on cranial bone samples. The bone was submitted to a device for three-point bending. This work had shown properties of thickness and stiffness of the various areas of the vault. Our cases are consistent with these results and illustrate the variability of bone lesions according to region and mode of use of blunt weapons. Many studies have identified criteria for identification of the weapons and the assistance of digital and biomechanical models will be an invaluable contribution with this aim in the future. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Modeling and simulation of deformation and fracture behavior of components made of fully lamellar {gamma}TiAl alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, Mohammad Rizviul [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2008-07-01

    The present work deals with the modeling and simulation of deformation and fracture behavior of fully lamellar {gamma}TiAl alloy; focusing on understanding the variability of local material properties and their influences on translamellar fracture. Afracture model has been presented that takes the inhomogeneity of the local deformation behavior of the lamellar colonies as well as the variability in fracture strength and toughness into consideration. To obtain the necessary model parameters, a hybrid methodology of experiments and simulations has been adopted. The experiments were performed at room temperature that demonstrates quasi-brittle response of the TiAl polycrystal. Aremarkable variation in stress-strain curves has been found in the tensile tests. Additional fracture tests showed significant variations in crack initiation and propagation during translamellar fracture. Analyzing the fracture surfaces, the micromechanical causes of these macroscopic scatter have been explained. The investigation shows that the global scatter in deformation and fracture response is highly influenced by the colony orientation and tilting angle with respect to the loading axis. The deformation and fracture behavior have been simulated by a finite element model including the material decohesion process described by a cohesive model. In order to capture the scatter of the macroscopic behavior, a stochastic approach is chosen. The local variability of stressstrain in the polycrystal and the variability of fracture parameters of the colonies are implemented in the stochastic approach of the cohesive model. It has been shown that the proposed approach is able to predict the stochastic nature of crack initiation and propagation as observed from the experiments. The global specimen failure with stable or unstable crack propagation can be explained in terms of the local variation of material properties. (orig.)

  10. Experimental and finite element study of the effect of temperature and moisture on the tangential tensile strength and fracture behavior in timber logs

    DEFF Research Database (Denmark)

    Larsen, Finn; Ormarsson, Sigurdur

    2014-01-01

    Timber is normally dried by kiln drying, in the course of which moisture-induced stresses and fractures can occur. Cracks occur primarily in the radial direction due to tangential tensile strength (TSt) that exceeds the strength of the material. The present article reports on experiments and nume......Timber is normally dried by kiln drying, in the course of which moisture-induced stresses and fractures can occur. Cracks occur primarily in the radial direction due to tangential tensile strength (TSt) that exceeds the strength of the material. The present article reports on experiments...... and numerical simulations by finite element modeling (FEM) concerning the TSt and fracture behavior of Norway spruce under various climatic conditions. Thin log disc specimens were studied to simplify the description of the moisture flow in the samples. The specimens designed for TS were acclimatized...... to a moisture content (MC) of 18% before TSt tests at 20°C, 60°C, and 90°C were carried out. The maximum stress results of the disc simulations by FEM were compared with the experimental strength results at the same temperature levels. There is a rather good agreement between the results of modeling...

  11. Guidelines for Applying Cohesive Models to the Damage Behaviour of Engineering Materials and Structures

    CERN Document Server

    Schwalbe, Karl-Heinz; Cornec, Alfred

    2013-01-01

    This brief provides guidance for the application of cohesive models to determine damage and fracture in materials and structural components. This can be done for configurations with or without a pre-existing crack. Although the brief addresses structural behaviour, the methods described herein may also be applied to any deformation induced material damage and failure, e.g. those occurring during manufacturing processes. The methods described are applicable to the behaviour of ductile metallic materials and structural components made thereof. Hints are also given for applying the cohesive model to other materials.

  12. Mechanistic Study of Delamination Fracture in Al-Li Alloy C458 (2099)

    Science.gov (United States)

    Tayon, W. A.; Crooks, R. E.; Domack, M. S.; Wagner, J. A.; Beaudoin, A. J.; McDonald, R. J.

    2009-01-01

    Delamination fracture has limited the use of lightweight Al-Li alloys. In the present study, electron backscattered diffraction (EBSD) methods were used to characterize crack paths in Al-Li alloy C458 (2099). Secondary delamination cracks in fracture toughness samples showed a pronounced tendency for fracture between grain variants of the same deformation texture component. These results were analyzed by EBSD mapping methods and simulated with finite element analyses. Simulation procedures include a description of material anisotropy, local grain orientations, and fracture utilizing crystal plasticity and cohesive zone elements. Taylor factors computed for each grain orientation subjected to normal and shear stresses indicated that grain pairs with the largest Taylor factor differences were adjacent to boundaries that failed by delamination. Examination of matching delamination fracture surface pairs revealed pronounced slip bands in only one of the grains bordering the delamination. These results, along with EBSD studies, plasticity simulations, and Auger electron spectroscopy observations support a hypothesis that delamination fracture occurs due to poor slip accommodation along boundaries between grains with greatly differing plastic response.

  13. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  14. Why are Rich Countries more Politically Cohesive?

    DEFF Research Database (Denmark)

    Dalgaard, Carl-Johan Lars; Olsson, Ola

    of other groups in society. If the gains from specialization become sufficiently large, however, a market economy will emerge. From being essentially non-cohesive under self-sufficiency, the political decision making process becomes cohesive in the market economy, as the welfare of individuals...

  15. Education and Social Cohesion: Higher Education

    Science.gov (United States)

    Moiseyenko, Olena

    2005-01-01

    Social cohesion is understood as the social networks and the norms of reciprocity and trustworthiness that arise from connections among individuals. When students attend higher education institutions, they go through a process of socialization, and it is vital to ensure that they acquire the core values that underpin the social cohesion. This…

  16. Cohesion, leadership, mental health stigmatisation and perceived barriers to care in UK military personnel.

    Science.gov (United States)

    Jones, Norman; Campion, Ben; Keeling, Mary; Greenberg, Neil

    2018-02-01

    Military research suggests a significant association between leadership, cohesion, mental health stigmatisation and perceived barriers to care (stigma/BTC). Most studies are cross sectional, therefore longitudinal data were used to examine the association of leadership and cohesion with stigma/BTC. Military personnel provided measures of leadership, cohesion, stigma/BTC, mental health awareness and willingness to discuss mental health following deployment (n = 2510) and 4-6 months later (n = 1636). At follow-up, baseline leadership and cohesion were significantly associated with stigma/BTC; baseline cohesion alone was significantly associated with awareness of and willingness to discuss mental health at follow-up. Over time, changes in perceived leadership and cohesion were significantly associated with corresponding changes in stigma/BTC levels. Stigma/BTC content was similar in both surveys; fear of being viewed as weak and being treated differently by leaders was most frequently endorsed while thinking less of a help-seeking team member and unawareness of potential help sources were least common. Effective leadership and cohesion building may help to reduce stigma/BTC in military personnel. Mental health awareness and promoting the discussion of mental health matters may represent core elements of supportive leader behaviour. Perceptions of weakness and fears of being treated differently represent a focus for stigma/BTC reduction.

  17. Numerical simulation of particle settling and cohesion in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Johno, Y; Nakashima, K; Shigematsu, T; Ono, B [SASEBO National College of Technology, 1-1 Okishin, Sasebo, Nagasaki, 857-1193 (Japan); Satomi, M, E-mail: yjohno@post.cc.sasebo.ac.j [Sony Semiconductor Kyushu Corporation, Kikuchigun, Kumamoto (Japan)

    2009-02-01

    In this study, the motions of particles and particle clusters in liquid were numerically simulated. The particles of two sizes (Dp=40mum and 20mum) settle while repeating cohesion and dispersion, and finally the sediment of particles are formed at the bottom of a hexahedron container which is filled up with pure water. The flow field was solved with the Navier-Stokes equations and the particle motions were solved with the Lagrangian-type motion equations, where the interaction between fluid and particles due to drag forces were taken into account. The collision among particles was calculated using Distinct Element Method (DEM), and the effects of cohesive forces by van der Waals force acting on particle contact points were taken into account. Numerical simulations were performed under conditions in still flow and in shear flow. It was found that the simulation results enable us to know the state of the particle settling and the particle condensation.

  18. A cohesive zone framework for environmentally assisted fatigue

    DEFF Research Database (Denmark)

    del Busto, Susana; Betegón, Covadonga; Martínez Pañeda, Emilio

    2017-01-01

    We present a compelling finite element framework to model hydrogen assisted fatigue by means of a hydrogen- and cycle-dependent cohesive zone formulation. The model builds upon: (i) appropriate environmental boundary conditions, (ii) a coupled mechanical and hydrogen diffusion response, driven...... by chemical potential gradients, (iii) a mechanical behavior characterized by finite deformation J2 plasticity, (iv) a phenomenological trapping model, (v) an irreversible cohesive zone formulation for fatigue, grounded on continuum damage mechanics, and (vi) a traction-separation law dependent on hydrogen...... coverage calculated from first principles. The computations show that the present scheme appropriately captures the main experimental trends; namely, the sensitivity of fatigue crack growth rates to the loading frequency and the environment. The role of yield strength, work hardening, and constraint...

  19. Transfer and Cohesion in Interdisciplinary Education

    Directory of Open Access Journals (Sweden)

    Søren Harnow Klausen

    2014-06-01

    Full Text Available One of the great challenges of interdisciplinary education is to create sufficient cohesion between disciplines. It is suggested that cohesion depends on the transfer of knowledge (in a broad sense, which includes skill and competences among the disciplines involved. Some of the most characteristic types of such transfer are identified and analyzed: Transfer of factual knowledge, theories, methods, models, skills, modes of collaboration and organization, meta-competences, disciplinary self-consciousness, problem selection, framework construction and motivation. Though some of these types of transfer may have a greater or smaller potential for creating cohesion, different kinds of cohesion may serve different interests, and there is no reason to assume that e.g. joint problem solving or theoretical integration should be more conducive to cohesion than e.g. contributions to motivation or disciplinary self-consciousness.

  20. [Finite element analysis of the maxillary central incisor with traditional and modified crown lengthening surgery and post-core restoration in management of crown-root fracture].

    Science.gov (United States)

    Zhen, M; Wei, Y P; Hu, W J; Rong, Q G; Zhang, H

    2016-06-01

    To construct three-dimensional finite element models with modified crown lengthening surgery and post-core restoration in management of various crown-root fracture types, to investigate the intensity and distribution of stressin models mentioned above, and to compare and analyze the indications of traditional and modified crown lengthening surgeries from the mechanic point of view. Nine three-dimensional finite element models with modified crown lengthening surgery and post-core restoration were established and analyzed by micro-CT scanning technique, dental impression scanner, Mimics 10.0, Geomagic studio 9.0 and ANSYS 14.0 software. The von Mises stress of dentin, periodontal ligament, alveolar bone, post and core, as well as the periodontal ligament area and threshold limit value were calculated and compared with the findings of traditional crown lengthening models which had been published earlierby our research group. The von Mises stress intensity of modified crown lengthening models were: dentin>post>core>alveolar bone>periodontal ligament. The maximum von Mises stress of dentin(44.37-80.58 MPa)distributed in lingual central shoulder. The periodontal ligament area of the modified crown lengthening surgery was reduced by 6% to 28%, under the same crown-root fracture conditions, the periodontal ligament area of modified crown lengthening models was larger than that of the traditional crown lengthening models. In modified crown lengthening surgery models, the von Mises stress of periodontal ligament of B3L1m, B3L2m, B3L3m models exceeded their limit values, however, the von Mises stress of periodontal ligament of the B2L2c, B2L3c, B3L1c, B3L2c, B3L3c models exceeded their limit values in traditional crown lengthening surgery models. The modified crown lengthening surgery conserves more periodontal supporting tissues, which facilitates the long-term survival of teeth. The indication of modified crown lengthening surgery is wider than traditional method. The

  1. A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone

    KAUST Repository

    Leise, Tanya L.

    2009-08-19

    We consider the problem of the dynamic, transient propagation of a semi-infinite, mode I crack in an infinite elastic body with a nonlinear, viscoelastic cohesize zone. Our problem formulation includes boundary conditions that preclude crack face interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation is preceeded by significant crazing in a thin region surrounding the crack tip. We present a combined analytical/numerical solution method that involves reducing the problem to a Dirichlet-to-Neumann map along the crack face plane, resulting in a differo-integral equation relating the displacement and stress along the crack faces and within the cohesive zone. © 2009 Springer Science+Business Media B.V.

  2. Numerical insight into the micromechanics of jet erosion of a cohesive granular material

    Directory of Open Access Journals (Sweden)

    Cuéllar Pablo

    2017-01-01

    Full Text Available Here we investigate the physical mechanisms behind the surface erosion of a cohesive granular soil induced by an impinging jet by means of numerical simulations coupling fluid and grains at the microscale. The 2D numerical model combines the Discrete Element and Lattice Boltzmann methods (DEM-LBM and accounts for the granular cohesion with a contact model featuring a paraboloidal yield surface. Here we review first the hydrodynamical conditions imposed by the fluid jet on a solid granular packing, turning then the attention to the impact of cohesion on the erosion kinetics. Finally, the use of an additional subcritical debonding damage model based on the work of Silvani and co-workers provides a novel insight into the internal solicitation of the cohesive granular sample by the impinging jet.

  3. Numerical insight into the micromechanics of jet erosion of a cohesive granular material

    Science.gov (United States)

    Cuéllar, Pablo; Benseghier, Zeyd; Luu, Li-Hua; Bonelli, Stéphane; Delenne, Jean-Yves; Radjaï, Farhang; Philippe, Pierre

    2017-06-01

    Here we investigate the physical mechanisms behind the surface erosion of a cohesive granular soil induced by an impinging jet by means of numerical simulations coupling fluid and grains at the microscale. The 2D numerical model combines the Discrete Element and Lattice Boltzmann methods (DEM-LBM) and accounts for the granular cohesion with a contact model featuring a paraboloidal yield surface. Here we review first the hydrodynamical conditions imposed by the fluid jet on a solid granular packing, turning then the attention to the impact of cohesion on the erosion kinetics. Finally, the use of an additional subcritical debonding damage model based on the work of Silvani and co-workers provides a novel insight into the internal solicitation of the cohesive granular sample by the impinging jet.

  4. Effect of fiber angle orientation and stacking sequence on mixed mode fracture toughness of carbon fiber reinforced plastics: Numerical and experimental investigations

    International Nuclear Information System (INIS)

    Naghipour, P.; Bartsch, M.; Chernova, L.; Hausmann, J.; Voggenreiter, H.

    2010-01-01

    This paper focuses on the effect of fiber orientation and stacking sequence on the progressive mixed mode delamination failure in composite laminates using fracture experiments and finite element (FE) simulations. Every laminate is modelled numerically combining damageable layers with defined fiber orientations and cohesive zone interface elements, subjected to mixed mode bending. The numerical simulations are then calibrated and validated through experiments, conducted following standardized mixed mode delamination tests. The numerical model is able to successfully capture the experimentally observed effects of fiber angle orientations and variable stacking sequences on the global load-displacement response and mixed mode inter-laminar fracture toughness of the various laminates. For better understanding of the failure mechanism, fracture surfaces of laminates with different stacking sequences are also studied using scanning electron microscopy (SEM).

  5. Dual small fragment plating improves screw-to-screw load sharing for mid-diaphyseal humeral fracture fixation: a finite element study.

    Science.gov (United States)

    Kosmopoulos, Victor; Luedke, Colten; Nana, Arvind D

    2015-01-01

    A smaller humerus in some patients makes the use of a large fragment fixation plate difficult. Dual small fragment plate constructs have been suggested as an alternative. This study compares the biomechanical performance of three single and one dual plate construct for mid-diaphyseal humeral fracture fixation. Five humeral shaft finite element models (1 intact and 4 fixation) were loaded in torsion, compression, posterior-anterior (PA) bending, and lateral-medial (LM) bending. A comminuted fracture was simulated by a 1-cm gap. Fracture fixation was modelled by: (A) 4.5-mm 9-hole large fragment plate (wide), (B) 4.5-mm 9-hole large fragment plate (narrow), (C) 3.5-mm 9-hole small fragment plate, and (D) one 3.5-mm 9-hole small fragment plate and one 3.5-mm 7-hole small fragment plate. Model A showed the best outcomes in torsion and PA bending, whereas Model D outperformed the others in compression and LM bending. Stress concentrations were located near and around the unused screw holes for each of the single plate models and at the neck of the screws just below the plates for all the models studied. Other than in PA bending, Model D showed the best overall screw-to-screw load sharing characteristics. The results support using a dual small fragment locking plate construct as an alternative in cases where crutch weight-bearing (compression) tolerance may be important and where anatomy limits the size of the humerus bone segment available for large fragment plate fixation.

  6. Cohesive delamination and frictional contact on joining surface via XFEM

    Directory of Open Access Journals (Sweden)

    Francesco Parrinello

    2018-02-01

    Full Text Available In the present paper, the complex mechanical behaviour of the surfaces joining two differentbodies is analysed by a cohesive-frictional interface constitutive model. The kinematical behaviouris characterized by the presence of discontinuous displacement fields, that take place at the internalconnecting surfaces, both in the fully cohesive phase and in the delamination one. Generally, in order tocatch discontinuous displacement fields, internal connecting surfaces (adhesive layers are modelled bymeans of interface elements, which connect, node by node, the meshes of the joined bodies, requiringthe mesh to be conforming to the geometry of the single bodies and to the relevant connecting surface.In the present paper, the Extended Finite Element Method (XFEM is employed to model, both fromthe geometrical and from the kinematical point of view, the whole domain, including the connectedbodies and the joining surface. The joining surface is not discretized by specific finite elements, butit is defined as an internal discontinuity surface, whose spatial position inside the mesh is analyticallydefined. The proposed approach is developed for two-dimensional composite domains, formed by twoor more material portions joined together by means of a zero thickness adhesive layer. The numericalresults obtained with the proposed approach are compared with the results of the classical interfacefinite element approach. Some examples of delamination and frictional contact are proposed withlinear, circular and curvilinear adhesive layer.

  7. Neighborhood cohesion, neighborhood disorder, and cardiometabolic risk.

    Science.gov (United States)

    Robinette, Jennifer W; Charles, Susan T; Gruenewald, Tara L

    2018-02-01

    Perceptions of neighborhood disorder (trash, vandalism) and cohesion (neighbors trust one another) are related to residents' health. Affective and behavioral factors have been identified, but often in studies using geographically select samples. We use a nationally representative sample (n = 9032) of United States older adults from the Health and Retirement Study to examine cardiometabolic risk in relation to perceptions of neighborhood cohesion and disorder. Lower cohesion is significantly related to greater cardiometabolic risk in 2006/2008 and predicts greater risk four years later (2010/2012). The longitudinal relation is partially accounted for by anxiety and physical activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Natural disasters and indicators of social cohesion.

    Science.gov (United States)

    Calo-Blanco, Aitor; Kovářík, Jaromír; Mengel, Friederike; Romero, José Gabriel

    2017-01-01

    Do adversarial environmental conditions create social cohesion? We provide new answers to this question by exploiting spatial and temporal variation in exposure to earthquakes across Chile. Using a variety of methods and controlling for a number of socio-economic variables, we find that exposure to earthquakes has a positive effect on several indicators of social cohesion. Social cohesion increases after a big earthquake and slowly erodes in periods where environmental conditions are less adverse. Our results contribute to the current debate on whether and how environmental conditions shape formal and informal institutions.

  9. Justice and Social Cohesion: Some conservative perspectives

    DEFF Research Database (Denmark)

    Pedersen, Søren Hviid

    2011-01-01

    In the wake of recent debates on multiculturalism and value-pluralism, the pressing questions now focuses on whether social cohesion and the notion of justice are sustainable and can be upheld, at least from a European perspective. There are many theoretical and academic responses, mainly from...... liberals, on how to accommodate the different demands of various ethnic and religious groups and at the same time sustain a minimum of social cohesion and justice. One voice is missing and that is a conservative perspective. The purpose of this paper is to formulate a modern conservative analysis...... of this problem. The argument presented in this paper will, first, take its point of departure from David Hume’s notion of sympathy and how this makes social cohesion possible. Second, it will be argued that social cohesion is a prerequisite for the existence of justice, and therefore justice is a derivative...

  10. Cohesion in a Multinational Coalition Center

    National Research Council Canada - National Science Library

    Schaab, Brooke

    2007-01-01

    .... All of the remaining nine items fell within the agree-to-strongly agree area. On interpersonal cohesion, highest agreement was found on items addressing the importance of liking and socializing with team members...

  11. Social cohesion and integration: Learning active citizenship

    NARCIS (Netherlands)

    Jansen, T.J.M.; Chioncel, N.E.; Dekkers, H.P.J.M.

    2006-01-01

    This article starts from a conceptual clarification of the notions social integration and social cohesion as a prerequisite for the reorientation of citizenship education. Turning away from uncritically reproduced assumptions represented in mainstream `deficiency discourse', the article first

  12. Influence of dry cohesion on the micro- and macro-mechanical properties of dense polydisperse powders & grains

    Science.gov (United States)

    Kievitsbosch, Robert; Smit, Hendrik; Magnanimo, Vanessa; Luding, Stefan; Taghizadeh, Kianoosh

    2017-06-01

    Understanding how cohesive granular materials behave is of interest for many industrial applications, such as pharmaceutical or food and civil engineering. Models of the behaviour of granular materials on the microscopic scale can be used to obtain macroscopic continuum relations by a micro-macro transition approach. The Discrete Element Method (DEM) is used to inspect the influence of cohesion on the micro and macro behaviour of granular assemblies by using an elasto-plastic cohesive contact model. Interestingly, we observe that frictional samples prepared with different cohesion values show a significant difference in pressure and coordination number in the jammed regime; the differences become more pronounced when packings are closer to the jamming density, i.e. the lowest density where the system is mechanically stable. Furthermore, we observe that cohesion has an influence on the jamming density for frictional samples, but there is no influence on the jamming density for frictionless samples.

  13. Fracture of functionally graded materials: application to hydrided zircaloy; Fissuration des materiaux a gradient de proprietes: application au zircaloy hydrure

    Energy Technology Data Exchange (ETDEWEB)

    Perales, F

    2005-12-15

    This thesis is devoted to the dynamic fracture of functionally graded materials. More particularly, it deals with the toughness of nuclear cladding at high burnup submitted to transient loading. The fracture is studied at local scale using cohesive zone model in a multi body approach. Cohesive zone models include frictional contact to take into account mixed mode fracture. Non smooth dynamics problems are treated within the Non-Smooth Contact Dynamics framework. A multi scale study is necessary because of the dimension of the clad. At microscopic scale, the effective properties of surface law, between each body, are obtained by periodic numerical homogenization. A two fields Finite Element formulation is so written. An extended formulation of the NSCD framework is obtained. The associated software allows to simulate, in finite deformation, from the crack initiation to post-fracture behavior in heterogeneous materials. At microscopic scale, random RVE calculations are made to determine effective properties. At macroscopic scale, calculations of part of clad are made to determine the role of the mean hydrogen concentration and gradient of hydrogen parameters in the toughness of the clad under dynamic loading. (author)

  14. Emerging technologies, innovative teachers and moral cohesion

    CSIR Research Space (South Africa)

    Batchelor, J

    2012-05-01

    Full Text Available efficacy when they engage with emerging technologies. The concept of moral cohesion is further expanded and forms the main focus of this article. Keywords: emerging technologies, innovative teachers, moral cohesion, pedagogies, ethics, teacher.... African Renaissance and teacher disposition is identified as the strongest drivers. Teacher training forms the link between the strong drivers and the outcomes manifest as Stewardship and ethical considerations. 3.2 Professional Burden The theme...

  15. Group cohesion, task performance, and the experimenter expectancy effect.

    NARCIS (Netherlands)

    Hoogstraten, J.; Vorst, H.C.M.

    1978-01-01

    Studied the effects of cohesion on task fulfillment and explored the influence of task fulfillment on the initial level of cohesion. Within 4-person groups of undergraduates, cohesion was manipulated successfully by a triple procedure. The level of cohesion was ascertained directly after the

  16. The cohesion protein SOLO associates with SMC1 and is required for synapsis, recombination, homolog bias and cohesion and pairing of centromeres in Drosophila Meiosis.

    Science.gov (United States)

    Yan, Rihui; McKee, Bruce D

    2013-01-01

    Cohesion between sister chromatids is mediated by cohesin and is essential for proper meiotic segregation of both sister chromatids and homologs. solo encodes a Drosophila meiosis-specific cohesion protein with no apparent sequence homology to cohesins that is required in male meiosis for centromere cohesion, proper orientation of sister centromeres and centromere enrichment of the cohesin subunit SMC1. In this study, we show that solo is involved in multiple aspects of meiosis in female Drosophila. Null mutations in solo caused the following phenotypes: 1) high frequencies of homolog and sister chromatid nondisjunction (NDJ) and sharply reduced frequencies of homolog exchange; 2) reduced transmission of a ring-X chromosome, an indicator of elevated frequencies of sister chromatid exchange (SCE); 3) premature loss of centromere pairing and cohesion during prophase I, as indicated by elevated foci counts of the centromere protein CID; 4) instability of the lateral elements (LE)s and central regions of synaptonemal complexes (SCs), as indicated by fragmented and spotty staining of the chromosome core/LE component SMC1 and the transverse filament protein C(3)G, respectively, at all stages of pachytene. SOLO and SMC1 are both enriched on centromeres throughout prophase I, co-align along the lateral elements of SCs and reciprocally co-immunoprecipitate from ovarian protein extracts. Our studies demonstrate that SOLO is closely associated with meiotic cohesin and required both for enrichment of cohesin on centromeres and stable assembly of cohesin into chromosome cores. These events underlie and are required for stable cohesion of centromeres, synapsis of homologous chromosomes, and a recombination mechanism that suppresses SCE to preferentially generate homolog crossovers (homolog bias). We propose that SOLO is a subunit of a specialized meiotic cohesin complex that mediates both centromeric and axial arm cohesion and promotes homolog bias as a component of chromosome

  17. Fracture in Soft Materials

    DEFF Research Database (Denmark)

    Hassager, Ole

    Fracture is a phenomenon that is generally associated with solids. A key element in fracture theory is the so-called weakest link idea that fracture initiates from the largest pre-existing material imperfection. However, recent work has demonstrated that fracture can also happen in liquids, where...... surface tension will act to suppress such imperfections. Therefore, the weakest link idea does not seem immediately applicable to fracture in liquids. This presentation will review fracture in liquids and argue that fracture in soft liquids is a material property independent of pre-existing imperfections....... The following questions then emerge: What is the material description needed to predict crack initiation, crack speed and crack shape in soft materials and liquids....

  18. Development of a boundary element based program system for fracture mechanical evaluation of cracked structures; Entwicklung eines randelementbasierten Programmsystems zur bruchmechanischen Bewertung rissbehafteter Strukturen

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Wilhelm

    2010-07-01

    Cracks, which trace back to damaging during the manufacturing process, are often the origin of the failure of structures. The collapse of safety-relevant parts results in perilous situations for human beings. Therefore, the fracture mechanical assessment of these structures becomes more important in the dimensioning process. For this purpose numerical tools are required. In presence of cyclic loading conditions fatigue crack propagation is very critical, because crack growth occurs for lower stresses compared to static loadings. Due to the non-linear nature of crack growth an incremental procedure has to be applied for the simulation of crack propagation. Each increment starts with a complete stress analysis including the determination of the fracture mechanical parameters along the crack front. Then, the 3D crack growth criterion is evaluated for the calculation of the crack extension and the kink angle. Finally, the discretization is adjusted to the new crack geometry for the next incremental loop. For the stress analysis the boundary element method (BEM) in terms of the collocation technique is applied. The BEM has been proven as an efficient numerical tool for stress concentration problems. Moreover, the modification of the mesh during the simulation of crack propagation is easier by using boundary elements compared to volume orientated methods. By the application of the adaptive cross approximation the numerical complexity of the stress analysis is reduced significantly. In the framework of the dual discontinuity method the discontinuities of the displacements and the tractions are used directly as primary variables at the crack. Therewith 3D crack surface contact using a penalty formulation is taken into account for the forst time within this work. The simulation of crack growth is implemented in the framework of a predictor-corrector-scheme. This method ensures high accuracy with respect to the location and shape of the numerically determined crack fronts

  19. INTANGIBLE ASSETS THROUGH THE COHESION POLICY

    Directory of Open Access Journals (Sweden)

    Popescu (Stingaciu Ana-Maria

    2012-07-01

    Full Text Available INTANGIBLE ASSETS THROUGH THE COHESION POLICY Roth Anne-Marie-Monika West University of Timisoara Faculty of Economics and Business Administration Popescu (Stingaciu Ana-Maria West University of Timisoara Faculty of Economics and Business Administration Intangible assets in general and intellectual capital in particular are important to both society and organizations. It can be a source of competitive advantage for business and stimulate innovation that leads to wealth generation. Technological revolutions, the rise of the knowledge-based economy and the networked society have all led to the same conclusion that intangibles and how they contribute to value creation have to be appreciated so that the appropriate decisions can be made to protect and enhance them. The Cohesion Policy represents the main EU measure to ensure a balanced and sustainable growth in Europe by promoting harmonious development and reducing the regional disparities. The general objective of the paper is to highlight the important role of the Cohesion Policy in the development of intangible assets. The objectives and the instruments of the Cohesion Policy are designed to support programs on regional development, economic change, enhanced competitiveness and territorial cooperation through the European Union, to develop human resources and employability. Keywords: intangible assets, intellectual capital, Cohesion policy, development; JEL Classification: O43, G32, D24, O34

  20. Numerical modelling of fracture displacements due to thermal load from a KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Hakami, Eva; Olofsson, Stig-Olof [Itasca Geomekanik AB, Stockholm (Sweden)

    2002-01-01

    The objective of the project has been to estimate the largest shear displacements that could be expected on a pre-existing fracture located in the repository area, due to the heat release from the deposited waste. Two-dimensional numerical analyses using the 'Universal Distinct Element Code' (UDEC) have been performed. The UDEC models represent a vertical cross section of a KBS-3 type repository with a large planar fracture intersecting a deposition hole at the repository centre. The extension, dip and mechanical properties of the fracture were changed in different models to evaluate the influence of these parameters on fracture shear displacements. The fracture was modelled using a Coulomb slip criterion with no cohesion and no dilation. The rock mass surrounding the fracture was modelled as a homogeneous, isotropic and elastic material, with a Young's modulus of 40 GPa. The initial heat release per unit repository area was assumed to be 8W/m{sup 2} (total power/total repository area). The shear displacements occur due to the thermal expansion of the rock surrounding the heat generating canisters. The rock mass is almost free to expand vertically, but is constrained horizontally, which gives a temperature-induced addition of shear stresses in the plane of the fracture. The shear movement of the fracture therefore follows the temperature development in the surrounding rock and the maximum shear displacement develops about 200 years after the waste deposition. Altogether, twenty cases are analysed. The maximum shear displacement, which occurs at the fracture centre, amounts to 0.2-13.8 cm depending on the fracture parameters. Among the analysed cases, the largest shear values, about 13 cm, was calculated for the cases with about 700 m long fractures with a shear stiffness of 0.005 GPa/m. Also, for large fractures with a higher shear stiffness of 5 GPa/m, but with a low friction angle (15 deg), the shear displacement reaches similar magnitudes, about

  1. Fracture mechanics

    International Nuclear Information System (INIS)

    Miannay, D.P.

    1995-01-01

    This book entitle ''Fracture Mechanics'', the first one of the monograph ''Materiologie'' is geared to design engineers, material engineers, non destructive inspectors and safety experts. This book covers fracture mechanics in isotropic homogeneous continuum. Only the monotonic static loading is considered. This book intended to be a reference with the current state of the art gives the fundamental of the issues under concern and avoids the developments too complicated or not yet mastered for not making reading cumbersome. The subject matter is organized as going from an easy to a more complicated level and thus follows the chronological evolution in the field. Similarly the microscopic scale is considered before the macroscopic scale, the physical understanding of phenomena linked to the experimental observation of the material preceded the understanding of the macroscopic behaviour of structures. In this latter field the relatively recent contribution of finite element computations with some analogy with the experimental observation is determining. However more sensitive analysis is not skipped

  2. Linking Social Cohesion and Gender to Intrapersonal and Interactional Empowerment: Support and New Implications for Theory

    Science.gov (United States)

    Peterson, N. Andrew; Lowe, John B.; Aquilino, Mary L.; Schneider, John E.

    2005-01-01

    Empowerment is a social-action process through which people gain greater control, efficacy, and social justice. One way to develop empowerment is through active, meaningful participation in community groups and activities. Social cohesion is an emerging construct that expands the notion of community participation to include elements such as shared…

  3. Interface Fracture in Adhesively Bonded Shell Structures

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    2008-01-01

    Two methods for the prediction of crack propagation through the interface of adhesively bonded shells are discussed. One is based on a fracture mechanics approach; the other is based on a cohesive zone approach. Attention is focussed on predicting the shape of the crack front and the critical...

  4. Cohesion and Hierarchy in Physically Abusive Families

    Directory of Open Access Journals (Sweden)

    Clarissa De Antoni

    2009-06-01

    Full Text Available This paper investigates cohesion (emotional bonding and hierarchy (powerstructure in families with abuse against their children. Twenty low-incomefamilies participated. Father, mother and child’s perspective of family relations(cohesion and hierarchy were evaluated by the Family System Test(FAST. The relationship between father-child, mother-child, couple, andamong siblings were evaluated at typical and conflictive situations. Resultsshow a significance regarding to cohesion in typical and conflictive situationfor father-child and mother-child dyads in all perspectives (by father, mother,and child. There is no significant differences regarding to hierarchy. Theseresults suggest that the families see the intrafamilial violence as a constant,since they cannot differentiate between both situations.

  5. Anisotropy in cohesive, frictional granular media

    International Nuclear Information System (INIS)

    Luding, Stefan

    2005-01-01

    The modelling of cohesive, frictional granular materials with a discrete particle molecular dynamics is reviewed. From the structure of the quasi-static granular solid, the fabric, stress, and stiffness tensors are determined, including both normal and tangential forces. The influence of the material properties on the flow behaviour is also reported, including relations between the microscopic attractive force and the macroscopic cohesion as well as the dependence of the macroscopic friction on the microscopic contact friction coefficient. Related to the dynamics, the anisotropy of both structure and stress are exponentially approaching the maximum

  6. Adsorption induced losses in interfacial cohesion

    International Nuclear Information System (INIS)

    Asaro, R.J.

    1977-07-01

    A model for interfacial cohesion is developed which describes the loss in the strength of an interface due to the segregation and adsorption of impurities on it. Distinctions are made between interface separations that occur too rapidly for any significant redistribution of adsorbing matter to take place and separations that are slow enough to allow full adsorption equilibrium. Expressions for the total work of complete decohesion are presented for both cases. The results are applied to well-known model adsorption isotherms and some experimental data for grain boundary adsorption of phosphorus in iron is analyzed with respect to the losses in intergranular cohesion

  7. Upregulation of inflammatory genes and downregulation of sclerostin gene expression are key elements in the early phase of fragility fracture healing.

    Directory of Open Access Journals (Sweden)

    Joana Caetano-Lopes

    Full Text Available BACKGROUND: Fracture healing is orchestrated by a specific set of events that culminates in the repair of bone and reachievement of its biomechanical properties. The aim of our work was to study the sequence of gene expression events involved in inflammation and bone remodeling occurring in the early phases of callus formation in osteoporotic patients. METHODOLOGY/PRINCIPAL FINDINGS: Fifty-six patients submitted to hip replacement surgery after a low-energy hip fracture were enrolled in this study. The patients were grouped according to the time interval between fracture and surgery: bone collected within 3 days after fracture (n = 13; between the 4(th and 7(th day (n = 33; and after one week from the fracture (n = 10. Inflammation- and bone metabolism-related genes were assessed at the fracture site. The expression of pro-inflammatory cytokines was increased in the first days after fracture. The genes responsible for bone formation and resorption were upregulated one week after fracture. The increase in RANKL expression occurred just before that, between the 4(th-7(th days after fracture. Sclerostin expression diminished during the first days after fracture. CONCLUSIONS: The expression of inflammation-related genes, especially IL-6, is highest at the very first days after fracture but from day 4 onwards there is a shift towards bone remodeling genes, suggesting that the inflammatory phase triggers bone healing. We propose that an initial inflammatory stimulus and a decrease in sclerostin-related effects are the key components in fracture healing. In osteoporotic patients, cellular machinery seems to adequately react to the inflammatory stimulus, therefore local promotion of these events might constitute a promising medical intervention to accelerate fracture healing.

  8. Simulating the pervasive fracture and fragmentation of materials and structures using randomly close-packed Voronoi tessellations.

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Joseph E.

    2008-09-01

    Under extreme loading conditions most often the extent of material and structural fracture is pervasive in the sense that a multitude of cracks are nucleating, propagating in arbitrary directions, coalescing, and branching. Pervasive fracture is a highly nonlinear process involving complex material constitutive behavior, material softening, localization, surface generation, and ubiquitous contact. Two primary applications in which pervasive fracture is encountered are (1) weapons effects on structures and (2) geomechanics of highly jointed and faulted reservoirs. A pure Lagrangian computational method based on randomly close-packed Voronoi tessellations is proposed as a rational approach for simulating the pervasive fracture of materials and structures. Each Voronoi cell is formulated as a finite element using the reproducing kernel method. Fracture surfaces are allowed to nucleate only at the intercell faces. The randomly seeded Voronoi cells provide an unbiased network for representing cracks. In this initial study two approaches for allowing the new surfaces to initiate are studied: (1) dynamic mesh connectivity and the instantaneous insertion of a cohesive traction when localization is detected, and (2) a discontinuous Galerkin approach in which the interelement tractions are an integral part of the variational formulation, but only become active once localization is detected. Pervasive fracture problems are extremely sensitive to initial conditions and system parameters. Dynamic problems exhibit a form of transient chaos. The primary numerical challenge for this class of problems is the demonstration of model objectivity and, in particular, the identification and demonstration of a measure of convergence for engineering quantities of interest.

  9. Cohesive Zone Model Based Numerical Analysis of Steel-Concrete Composite Structure Push-Out Tests

    Directory of Open Access Journals (Sweden)

    J. P. Lin

    2014-01-01

    Full Text Available Push-out tests were widely used to determine the shear bearing capacity and shear stiffness of shear connectors in steel-concrete composite structures. The finite element method was one efficient alternative to push-out testing. This paper focused on a simulation analysis of the interface between concrete slabs and steel girder flanges as well as the interface of the shear connectors and the surrounding concrete. A cohesive zone model was used to simulate the tangential sliding and normal separation of the interfaces. Then, a zero-thickness cohesive element was implemented via the user-defined element subroutine UEL in the software ABAQUS, and a multiple broken line mode was used to define the constitutive relations of the cohesive zone. A three-dimensional numerical analysis model was established for push-out testing to analyze the load-displacement curves of the push-out test process, interface relative displacement, and interface stress distribution. This method was found to accurately calculate the shear capacity and shear stiffness of shear connectors. The numerical results showed that the multiple broken lines mode cohesive zone model could describe the nonlinear mechanical behavior of the interface between steel and concrete and that a discontinuous deformation numerical simulation could be implemented.

  10. Solidarity and Social Cohesion in Late Modernity

    DEFF Research Database (Denmark)

    Juul, Søren

    2010-01-01

    social cohesion. The central theme is that contemporary solidarity is about recognition and a fair distribution of chances for recognition. This ideal may function as a normative standard for critical research and as a guideline for people in their moral struggles. What ultimately needs to be done...

  11. The Corporate Stake in Social Cohesion

    Science.gov (United States)

    Oketch, Moses O.

    2005-01-01

    Corporate Social Responsibility (CSR) is a function that transcends, but includes, making profits, creating jobs, and producing goods and services. The effectiveness with which corporations perform this function determines their contribution (or lack of contribution) to social cohesion. This article therefore presents a discussion of some of the…

  12. Cohesion as interaction in ELF spoken discourse

    Directory of Open Access Journals (Sweden)

    T. Christiansen

    2013-10-01

    Full Text Available Hitherto, most research into cohesion has concentrated on texts (usually written only in standard Native Speaker English – e.g. Halliday and Hasan (1976. By contrast, following on the work in anaphora of such scholars as Reinhart (1983 and Cornish (1999, Christiansen (2011 describes cohesion as an interac­tive process focusing on the link between text cohesion and discourse coherence. Such a consideration of cohesion from the perspective of discourse (i.e. the process of which text is the product -- Widdowson 1984, p. 100 is especially relevant within a lingua franca context as the issue of different variations of ELF and inter-cultural concerns (Guido 2008 add extra dimensions to the complex multi-code interaction. In this case study, six extracts of transcripts (approximately 1000 words each, taken from the VOICE corpus (2011 of conference question and answer sessions (spoken interaction set in multicultural university con­texts are analysed in depth by means of a qualitative method.

  13. Group Cohesion in Experiential Growth Groups

    Science.gov (United States)

    Steen, Sam; Vasserman-Stokes, Elaina; Vannatta, Rachel

    2014-01-01

    This article explores the effect of web-based journaling on changes in group cohesion within experiential growth groups. Master's students were divided into 2 groups. Both used a web-based platform to journal after each session; however, only 1 of the groups was able to read each other's journals. Quantitative data collected before and…

  14. Group Cohesiveness in the Black Panther Party

    Science.gov (United States)

    Calloway, Carolyn R.

    1977-01-01

    This study selects for study the following propositions: 1) similarity among members increased the degree of cohesiveness within the party, 2) group devotion heightened interest in accomplishing group goals and 3) the threat of an external enemy led to interdependence among members and affected both activities and leadership styles. (Author/AM)

  15. Microzonation Analysis of Cohesionless and Cohesive Soil

    Directory of Open Access Journals (Sweden)

    Tan Choy Soon

    2017-01-01

    Full Text Available Urban seismic risk is a continuous worldwide issue, numerous researchers are putting great effort in dealing with how to minimise the level of the threat. The only way to minimise the social and economic consequences caused but the seismic risk is through comprehensive earthquake scenario analysis such as ground response analysis. This paper intends to examine the characteristic of shear wave velocity and peak ground acceleration on cohesionless and cohesiveness soil. In order to examine the characteristic of shear wave velocity and peak ground acceleration on cohesionless and cohesiveness soil, ground response analysis was performed using Nonlinear Earthquake Site Response Analysis (NERA and Equivalent-linear Earthquake Site Response Analysis (EERA. The value of ground acceleration was initially high at bedrock and vanishes during the propagation process. It is thus, the measured acceleration at surface is therefore much lower as compare to at bedrock. Result shows that seismic waves can travel faster in harder soil as compared to softer soil. Cohesive soil contributes more to the shaking amplification than cohesionless soil such as sand and harder soil. This is known as local site effect. The typical example is the Mexico Earthquake that happened in 1985. As conclusion, peak ground acceleration for cohesive soil is higher than in cohesionless soil.

  16. Validation of the Child Sport Cohesion Questionnaire

    Science.gov (United States)

    Martin, Luc J.; Carron, Albert V.; Eys, Mark A.; Loughead, Todd

    2013-01-01

    The purpose of the present study was to test the validity evidence of the Child Sport Cohesion Questionnaire (CSCQ). To accomplish this task, convergent, discriminant, and known-group difference validity were examined, along with factorial validity via confirmatory factor analysis (CFA). Child athletes (N = 290, M[subscript age] = 10.73 plus or…

  17. Toward a Cohesive Theory of Visual Literacy

    Science.gov (United States)

    Avgerinou, Maria D.; Pettersson, Rune

    2011-01-01

    Despite the fact that to date Visual Literacy (VL) scholars have not arrived at a general consensus for a theoretical organization of the VL field, important conceptual investigations have emerged over the past four decades. In this paper we discuss and synthesize those studies. We then present a first attempt toward a cohesive theory of VL. The…

  18. Slow stress relaxation behavior of cohesive powders

    NARCIS (Netherlands)

    Imole, Olukayode Isaiah; Paulick, Maria; Magnanimo, Vanessa; Morgenmeyer, Martin; Ramaioli, Marco; Chavez Montes, Bruno E.; Kwade, Arno; Luding, Stefan

    2016-01-01

    We present uniaxial (oedometric) compression tests on two cohesive industrially relevant granular materials (cocoa and limestone powder). A comprehensive set of experiments is performed using two devices – the FT4 Powder Rheometer and the custom made lambdameter – in order to investigate the

  19. Morphology and interdiffusion control to improve adhesion and cohesion properties in inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2015-01-01

    © 2014 Elsevier B.V. All rights reserved. The role of pre-electrode deposition annealing on the morphology and the fracture properties of polymer solar cells is discussed. We found an increase in adhesion at the weak P3HT:PCBM/PEDOT:PSS interface with annealing temperature, caused by increased interdiffusion between the organic layers. The formation of micrometer sized PCBM crystallites, which occurs with annealing above the crystallization temperature of PCBM, initially weakened the P3HT:PCBM layer itself. Further annealing improved the cohesion, due to a pull-out toughening mechanism of the growing PCBM clusters. Understanding how the morphology, tuned by annealing, affects the adhesive and cohesive properties in these organic films is essential for the mechanical integrity of OPV devices.

  20. Application of the cohesive zone model for the evaluation of stiffness losses in a rotor with a transverse breathing crack

    Science.gov (United States)

    Toni Liong, Rugerri; Proppe, Carsten

    2013-04-01

    The breathing mechanism of a transversely cracked rotor and its influence on a rotor system that appears due to shaft weight and inertia forces is studied. A method is proposed for the evaluation of the stiffness losses in the cross-section that contains the crack. This method is based on a cohesive zone model (CZM) instead of linear elastic fracture mechanics (LEFM). The CZM is developed for mode-I plane strain conditions and accounts explicitly for triaxiality of the stress state by using constitutive relations. The breathing crack is modelled by a parabolic shape. As long as the relative crack depth is small, a crack closure straight line model may be used, while the crack closure parabolic line should be used in the case of a deep crack. The CZM is also implemented in a one-dimensional continuum rotor model by means of finite element (FE) discretisation in order to predict and to analyse the dynamic behavior of a cracked rotor. The proposed method provides a useful tool for the analysis of rotor systems containing cracks.

  1. Territorial cohesion post - 2013 : To whomsoever it may concern

    NARCIS (Netherlands)

    Faludi, A.K.F.

    2010-01-01

    Conceived as a motion for resolution, the paper considers territorial cohesion now being on the statute book, the Green Paper on Territorial Cohesion, Barca making the case for integrated, place-based strategies, the EU Strategy for the Baltic Sea Region and the future of Cohesion policy. The

  2. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    Science.gov (United States)

    Jenkins, Andrew

    magnitude. These types of shifts are of great concern because they can impact subsequent fracture development causing non-uniform fracture propagation and the potential overlapping of fracture paths as they extend from the wellbore at the point of injection. The dynamics of stress variation that occur with respect to hydraulic fracturing is a somewhat new area of study. In order to accomplish the goals of this thesis and continue future research in this area a new transient model has been developed in order to asses these dynamic systems and determine their influence on fracture behavior. This applies the use of a fully coupled finite element method in 2-D using linear elastic fracture mechanics which is then expanded using displacement discontinuity to a cohesive zone model in 3-D. A static boundary element model was also used to determine stress fields surrounding static, predetermined fracture geometries. These models have been verified against analytical solutions for simple cases and are now being applied to more detailed case studies and analysis. These models have been briefly discussed throughout this thesis in order to give insight on their current capabilities and application as well as their future potential within this area of research. The majority of this work introduces transient stress field prediction to cases of single and multiple hydraulic fractures. The static assessment of these stresses is determined for verification of results to those found in publication which leads into these transient stress field variations. A new method has been developed and applied to the stress state prediction for the first time in a transient fracture model which is partly based upon a critical distance theory. These dynamic interactions can provide useful insight to pertinent issues within the petroleum and natural gas industry such as those to hydraulic fracturing fluid loss and induced seismic events, as well as to applications of efficiency and optimization of the

  3. Paleohydrogeological events recorded by stable isotopes, fluid inclusions and trace elements in fracture minerals in crystalline rock, Simpevarp area, SE Sweden

    International Nuclear Information System (INIS)

    Drake, Henrik; Tullborg, Eva-Lena

    2009-01-01

    Fracture minerals calcite, pyrite, gypsum, barite and quartz, formed during several events have been analysed for δ 13 C, δ 18 O, δ 34 S, 87 Sr/ 86 Sr, trace element chemistry and fluid inclusions in order to gain knowledge of the paleohydrogeological evolution of the Simpevarp area, south-eastern Sweden. This area is dominated by Proterozoic crystalline rocks and is currently being investigated by the Swedish Nuclear Fuel and Waste Management Co. (SKB) in order to find a suitable location for a deep-seated repository for spent nuclear fuel. Knowledge of the paleohydrogeological evolution is essential to understand the stability or evolution of the groundwater system over a time scale relevant to the performance assessment for a spent nuclear fuel repository. The ages of the minerals analysed range from the Proterozoic to possibly the Quaternary. The Proterozoic calcite and pyrite show inorganic and hydrothermal-magmatic stable isotope signatures and were probably formed during a long time period as indicated by the large span in temperatures (c. 200-360 deg. C) and salinities (0-24 wt.% eq. CaCl 2 ), obtained from fluid inclusion analyses. The Paleozoic minerals were formed from organically influenced brine-type fluids at temperatures of 80-145 deg. C. The isotopic results indicate that low temperature calcite and pyrite may have formed during different events ranging in time possibly from the end of the Paleozoic until the Quaternary. Formation conditions ranging from fresh to brackish and saline waters have been distinguished based on calcite crystal morphologies. The combination of δ 18 O and crystal morphologies show that the fresh-saline water interface has changed considerably over time, and water similar to the present meteoric water and brackish seawater at the site, have most probably earlier been residing in the bedrock. Organic influence and closed system in situ microbial activity causing disequilibrium are indicated by extremely low δ 13 C (down

  4. Natural disasters and indicators of social cohesion

    Czech Academy of Sciences Publication Activity Database

    Calo-Blanco, A.; Kovářík, Jaromír; Mengel, F.; Romero, J. G.

    2017-01-01

    Roč. 12, č. 6 (2017), s. 1-13, č. článku e0176885. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GA14-22044S Institutional support: RVO:67985998 Keywords : social cohesion * trust * climate Subject RIV: AH - Economic s OBOR OECD: Applied Economic s, Econometrics Impact factor: 2.806, year: 2016

  5. Whither Elite Cohesion in Mexico: A Comment

    Science.gov (United States)

    1988-11-01

    the problem of elite cohesion, including the mechanisms-- especially the camarilla system--whereby balance and equilibrium, control and cooptation...Generacicnes: Los Protagonistas de Ia Reforma y la Revoluci(n Mexicana, Secretaria de Educacion Pblica, Consejo Nacional de Fomento Educat ivo, Mexico City...loyalty and discipline toward the system as a whole, and especially its apex, the president, and its key institution, the PRI. All this looks different

  6. Brownfield regeneration: Towards strengthening social cohesion?

    Directory of Open Access Journals (Sweden)

    Minić Marta

    2016-01-01

    Full Text Available In broader terms, the paper refers to the topic of brownfield regeneration, as one of the most complex mechanisms for sustainable spatial development. In addition to the fact that brownfield regeneration demands a variety of instruments, such as: tax subsidies, the change of land use ownership, soil remediation, planning regulative amendments, etc., the complexity of brownfield regeneration is primarily seen in a number of stakeholders participating in such a process. Thus, the paper focuses on the social aspect of brownfield regeneration - precisely, on researching the community role and reviewing the possibilities for achieving the 'local' interests in complex developmental processes. The main research hypothesis is that brownfield regeneration positively affects the creation of and strengthening the social cohesion in the areas close to the brownfield site. More precisley, the paper presents the ways towards strenghtening social cohesion in the initial phase of the brownfield regeneration process, as well as the effects of such a process in its operationalisation phase on social cohesion. The thesis is examined by two main parameters: 1 participation of local community, and 2 social costs and benefits of brownfield regeneration versus greenfield investment. The research results are presented in the form of argumentative essay. In fact, the critical overview of arguments for and against the main research hypothesis is provided based on the review of interdisciplinary literature in the domain of brownfield regeneration. Such research organisation ensures the identification and description of the measures needed for strengthening social cohesion, as an utmost goal of this research. The final research contribution is about offering the guidelines for similar methodological approach in urban research.

  7. Social cohesion and interpersonal conflicts in projects

    OpenAIRE

    Ojiako, Udechukwu; Manville, Graham; Zouk, Nadine; Chipulu, Maxwell

    2016-01-01

    One particular area of project management literature that has continued to gain momentum in literature is its social dimension; with a number of scholars emphasising the fact that there is a considerable social dimension to every project activity. Within this context, the authors examine parameters that drive social facets of projects with a particular focus on social cohesion, interpersonal conflicts and national culture. Data from 167 project managers working in Kuwait were collected utilis...

  8. Investigation on the cohesive silt/clay-particle sediment via the coupled CFD-DEM simulations

    Science.gov (United States)

    Xu, S.; Sun, H.; Sun, R.

    2017-12-01

    Sedimentation of silt/clay particles happens ubiquitously in nature and engineering field. There have been abundant studies focusing on the settling velocity of the cohesive particles, while studies on the sediment deposited from silt/clay irregular particles, including the vertical concentration profile of sediment and the various forces among the deposited particles are still lacking. This paper aims to investigate the above topics by employing the CFD-DEM (Computational Fluid Dynamics-Discrete Element Method) simulations. In this work, we simulate the settling of the mono- and poly- dispersed silt/clay particles and mainly study the characteristics of the deposited cohesive sediment. We use the bonded particles to simulate the irregular silt/clay aggregates at the initial state and utilize the van der Waals force for all micro-particles to consider the cohesive force among silt/clay particles. The interparticle collision force and the fluid-particle interaction forces are also considered in our numerical model. The value of the mean structural density of cohesive sediment obtained from simulations is in good agreement with the previous research, and it is obviously smaller than no-cohesive sediment because of the existence of the silt/clay flocs. Moreover, the solid concentration of sediment increases with the growth of the depth. It is because the silt/clay flocs are more easily to break up due to the gradually increased submerged gravity of the deposited particles along the depth. We also obtain the noncontacted cohesive force and contact force profiles during the sedimentation and the self-weight consolidation process. The study of the concentration profile and the forces among silt/clay sediment will help to give an accurate initial condition for calculating the speed of the reconsolidation process by employing the artificial loads, which is necessary for practical designs of the land reclamation projects.

  9. Numerical modelling of intergranular fracture in polycrystalline materials and grain size effects

    Directory of Open Access Journals (Sweden)

    P. Wriggers

    2011-07-01

    Full Text Available In this paper, the phenomenon of intergranular fracture in polycrystalline materials is investigated using a nonlinear fracture mechanics approach. The nonlocal cohesive zone model (CZM for finite thickness interfaces recently proposed by the present authors is used to describe the phenomenon of grain boundary separation. From the modelling point of view, considering the dependency of the grain boundary thickness on the grain size observed in polycrystals, a distribution of interface thicknesses is obtained. Since the shape and the parameters of the nonlocal CZM depend on the interface thickness, a distribution of interface fracture energies is obtained as a consequence of the randomness of the material microstructure. Using these data, fracture mechanics simulations are performed and the homogenized stress-strain curves of 2D representative volume elements (RVEs are computed. Failure is the result of a diffuse microcrack pattern leading to a main macroscopic crack after coalescence, in good agreement with the experimental observation. Finally, testing microstructures characterized by different average grain sizes, the computed peak stresses are found to be dependent on the grain size, in agreement with the trend expected according to the Hall-Petch law.

  10. Hip Fracture

    Science.gov (United States)

    ... hip fractures in people of all ages. In older adults, a hip fracture is most often a result of a fall from a standing height. In people with very weak bones, a hip fracture can occur simply by standing on the leg and twisting. Risk factors The rate of hip fractures increases substantially with ...

  11. Fracture properties of hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Matsuda, Y.; King, S.W.; Bielefeld, J.; Xu, J.; Dauskardt, R.H.

    2012-01-01

    The cohesive fracture properties of hydrogenated amorphous silicon carbide (a-SiC:H) thin films in moist environments are reported. Films with stoichiometric compositions (C/Si ≈ 1) exhibited a decreasing cohesive fracture energy with decreasing film density similar to other silica-based hybrid organic–inorganic films. However, lower density a-SiC:H films with non-stoichiometric compositions (C/Si ≈ 5) exhibited much higher cohesive fracture energy than the films with higher density stoichiometric compositions. One of the non-stoichiometric films exhibited fracture energy (∼9.5 J m −2 ) greater than that of dense silica glasses. The increased fracture energy was due to crack-tip plasticity, as demonstrated by significant pileup formation during nanoindentation and a fracture energy dependence on film thickness. The a-SiC:H films also exhibited a very low sensitivity to moisture-assisted cracking compared with other silica-based hybrid films. A new atomistic fracture model is presented to describe the observed moisture-assisted cracking in terms of the limited Si-O-Si suboxide bond formation that occurs in the films.

  12. Study of the hoop fracture behaviour of nuclear fuel cladding from ring compression tests by means of non-linear optimization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, F.J., E-mail: javier.gomez@amsimulation.com [Advanced Material Simulation, AMS, Bilbao (Spain); Martin Rengel, M.A., E-mail: mamartin.rengel@upm.es [E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C/Professor Aranguren SN, E-28040 Madrid (Spain); Ruiz-Hervias, J.; Puerta, M.A. [E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C/Professor Aranguren SN, E-28040 Madrid (Spain)

    2017-06-15

    In this work, the hoop fracture toughness of ZIRLO{sup ®} fuel cladding is calculated as a function of three parameters: hydrogen concentration, temperature and displacement rate. To this end, pre-hydrided samples with nominal hydrogen concentrations of 0 (as-received), 150, 250, 500, 1200 and 2000 ppm were prepared. Hydrogen was precipitated as zirconium hydrides in the shape of platelets oriented along the hoop direction. Ring Compression Tests (RCTs) were conducted at three temperatures (20, 135 and 300 °C) and two displacement rates (0.5 and 100 mm/min). A new method has been proposed in this paper which allows the determination of fracture toughness from ring compression tests. The proposed method combines the experimental results, the cohesive crack model, finite elements simulations, numerical calculations and non-linear optimization techniques. The parameters of the cohesive crack model were calculated by minimizing the difference between the experimental data and the numerical results. An almost perfect fitting of the experimental results is achieved by this method. In addition, an estimation of the error in the calculated fracture toughness is also provided.

  13. Behaviour of high stretch bolts in tension working as part of elements of steel structures, and their tendency to delayed fracturing

    Directory of Open Access Journals (Sweden)

    Moyseychik Evgeniy Alekseevich

    2014-12-01

    Full Text Available In the article, the author has proven that manufacturing and installation errors, as well as contact deformations of high strength bolts, if analyzed as part of tensile connections of steel structures, work in eccentric tension. In pursuance of the effective state standards, the analysis of these bolts is based on the axial tension. The author has analyzed the failure of a steel structure, caused by the fracture of eccentrically loaded bolts made of steel grade XC 42 (France, or C40 (Germany, that later followed the delayed fracturing pattern. The author provides the findings of the lab tests, whereby the above bolts were tested in the presence of an angle washer. The author has also analyzed the findings of low-temperature tests of bolts in tension. The author demonstrates that the strength of high strength bolts is driven by the material, the structure shape, and the thermal treatment pattern. Eccentric tension tests of bolts have proven that cracks emerge in the areas of maximal concentration of stresses (holes in shafts, etc. that coincide with the areas where fibers are in tension; cracks tend to follow the delayed fracturing pattern, and their development is accompanied by the deformation-induced metal heating in the fracture area. Therefore, the analysis of high strength bolts shall concentrate on the eccentric tension with account for contact-induced loads, while the tendency to delayed fracturing may be adjusted through the employment of both metallurgical and process techniques.

  14. Computer simulation of model cohesive powders: Plastic consolidation, structural changes and elasticity under isotropic loads

    OpenAIRE

    Gilabert, Francisco; Roux, Jean-Noël; Castellanos, Antonio

    2008-01-01

    International audience; The quasistatic behavior of a simple 2D model of a cohesive powder under isotropic loads is investigated by Discrete Element simulations. The loose packing states, as studied in a previous paper, undergo important structural changes under growing confining pressure P, while solid fraction \\Phi irreversibly increases by large amounts. The system state goes through three stages, with different forms of the plastic consolidation curve \\Phi(P*), under growing reduced press...

  15. Cohesion-Induced Stabilization in Stick-Slip Dynamics of Weakly Wet, Sheared Granular Fault Gouge

    Science.gov (United States)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2018-03-01

    We use three-dimensional discrete element calculations to study stick-slip dynamics in a weakly wet granular layer designed to simulate fault gouge. The granular gouge is constituted by 8,000 spherical particles with a polydisperse size distribution. At very low liquid content, liquids impose cohesive and viscous forces on particles. Our simulations show that by increasing the liquid content, friction increases and granular layer shows higher recurrence time between slip events. We also observe that slip events exhibit larger friction drop and layer compaction in wet system compared to dry. We demonstrate that a small volume of liquid induces cohesive forces between wet particles that are responsible for an increase in coordination number leading to a more stable arrangement of particles. This stabilization is evidenced with 2 orders of magnitude lower particle kinetic energy in wet system during stick phase. Similar to previous experimental studies, we observe enhanced frictional strength for wet granular layers. In experiments, the physicochemical processes are believed to be the main reason for such behavior; we show, however, that at low confining stresses, the hydromechanical effects of induced cohesion are sufficient for observed behavior. Our simulations illuminate the role of particle interactions and demonstrate the conditions under which induced cohesion plays a significant role in fault zone processes, including slip initiation, weakening, and failure.

  16. Multiculturalism and Community Cohesion in Britain: The Case of Arab Minority

    Directory of Open Access Journals (Sweden)

    Mohamed Benitto

    2015-11-01

    Full Text Available This article falls within the scope of debate about 'Community Cohesion' in Britain. Community cohesion is at the centre of public policy initiated in response to the urban disturbances in northern towns. Many official reports pointed out that lack of community cohesion is an element jeopardizing security and safe coexistence. In this sense, this article explores hindrances to intergroup coexistence, given that this issue is the main concern in this pluralist society since the attacks in London in July, 7, 2005, through the study of intercultural relations between Arab minority of London and mainstream society in Britain. This research adopts an approach which aims to contribute to the understanding of the reasons hampering community cohesion through juxtaposition of viewpoints of both the minority and majority group. The originality of this approach lies in the fact that it tackles the issue of integration from two sided points of view: the point of the majority group and the point of view of the minority group; unlike most literature on intergroup relations which basically focus on the integration of the minority and its daptation to the dominant culture.

  17. Groupthink: one peril of group cohesiveness.

    Science.gov (United States)

    Rosenblum, E H

    1982-04-01

    A group's aim is to make well-conceived, well-understood, well-accepted and realistic decisions to reach their agreed-upon goals. This aim applies equally to their own goals and those occasionally imposed by outsiders such as hospital administration, accreditation committees and the federal government. Effective groupwork requires group cohesion with its components of trust, risk taking, mutual support, and group esteem. With constant vigilance the group can maintain its positive dynamics, so that the unhealthy state of groupthink does not undermine its existence.

  18. Coaches' Perceptions of Team Cohesion in Paralympic Sports.

    Science.gov (United States)

    Falcão, William R; Bloom, Gordon A; Loughead, Todd M

    2015-07-01

    The purpose of this study was to investigate Paralympic coaches' perceptions of team cohesion. Seven head coaches of summer and winter Canadian Paralympic sport teams participated in the study. Four participants coached individual sports and 3 coached team sports. Data were collected using semistructured interviews and analyzed using thematic analysis. The results addressed the coaches' perceptions of cohesion in the Paralympic sport setting and strategies used to foster cohesion with their teams. Participants described using techniques and strategies for enhancing cohesion that were similar to those in nondisability sport, such as task-related activities, goal setting, and regularly communicating with their athletes. They also listed how cohesion was distinct to the Paralympic setting, such as the importance of interpersonal activities to build social cohesion. The implications of these results for coaching athletes with a disability are also presented.

  19. The association between status and cohesion in sport teams.

    Science.gov (United States)

    Jacob, C S; Carron, A V

    1998-02-01

    The main objective of this study was to establish the relationship between perceptions of status attributes and cohesion and status ranking and cohesion. A secondary aim was to determine whether age (operationalized by scholastic levels) or culture serves as a moderator in the relationship between either status attributes or status ranking and cohesion. Another secondary aim was to determine if differences are present in the importance attached by athletes to status attributes. Canadian and Indian athletes were tested. Although perceptions of the importance of status attributes and cohesiveness were related, the effect size was small (Green, 1991); perceptions of status ranking and cohesiveness were not related. Neither scholastic level nor culture served as a moderator in the association between either status attributes or status rank and cohesion. The importance that athletes attach to status attributes is similar between scholastic levels and across cultures. The results are discussed in terms of the role of status in sport teams.

  20. Finite element model for heat conduction in jointed rock masses

    International Nuclear Information System (INIS)

    Gartling, D.K.; Thomas, R.K.

    1981-01-01

    A computatonal procedure for simulating heat conduction in a fractured rock mass is proposed and illustrated in the present paper. The method makes use of a simple local model for conduction in the vicinity of a single open fracture. The distributions of fractures and fracture properties within the finite element model are based on a statistical representation of geologic field data. Fracture behavior is included in the finite element computation by locating local, discrete fractures at the element integration points

  1. Cohesion, Cracking, Dilation, and Flow -- Rheological Behavior of Cohesive Pharmaceutical Powders

    Science.gov (United States)

    Muzzio, Fernando

    2007-03-01

    Cohesive powders can be loosely defined as systems where the attractive forced between particles exceed the average particle weight. Cohesive powder flow is interesting from a wide range of reasons. Their main characteristic, intermittence, is evidenced both in the interruption of flow out of hoppers (a mundane issue causing great annoyance to industrial practitioners) and in the sudden avalanching of snow and dirt that has terrified and terrified mankind since the dawn of time. At the present time, our ability to predict either of these phenomena (and many more involving cohesive powders) is very limited, primarily due to an incomplete understanding of their constitutive behavior. To wit, consider just a simple fact: a flowing powder never has constant density. Equations describing the relationship between velocity, shear, stress, and density are rudimentary at best. Computational and experimental approaches for characterizing flow behavior are in their infancy. In this talk, I will describe some recent progress achieved at Rutgers by our group. New instruments have been developed to determine simultaneously powder density and cohesive flow effects. Extensive measurements have been carried out focusing on pharmaceutical blends. These results have been used to fine-tune computational models that accurately predict dilation, flow in drums, and flow in hoppers. Impact of these observations for pharmaceutical manufacturing applications will be discussed in some detail.

  2. Personality in teams: its relationship to social cohesion, task cohesion, and team performance

    NARCIS (Netherlands)

    van Vianen, A.E.M.; de Dreu, C.K.W.

    2001-01-01

    This study continued past research on the relationship between personality composition in teams and social cohesion and team performance (Barrick, Stewart, Neubert, & Mount, 1998). Results from the Barrick et al. sample (N = 50) were compared with data from two new samples, one comprising drilling

  3. Environmental cohesion across the Hungarian-Croatian border

    OpenAIRE

    Varjú Viktor

    2016-01-01

    Environmental cohesion (as a new EU paradigm for a place-based interpretation of environmental justice) has a clear connection to territorial cohesion. Based on this idea, advantages for people can include an equitable distribution of environmental protection and access to environmental services. In non-EU countries regional environmental cohesion is used as an instrument to accelerate accession to the EU and it may be manifested as a declaration of environ...

  4. Automated Behavior and Cohesion Assessment Tools, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — An important consideration of long duration space flight operations is interpersonal dynamics that effect crew cohesion and performance. Flight surgeons have stated...

  5. EXAMINATION OF HANDBALL PLAYERS’ TEAM COHESION

    Directory of Open Access Journals (Sweden)

    İlyas Görgüt

    2017-04-01

    Full Text Available The aim of this study was to determine team cohesion of handballplayers who were actively engaged in sport in various categories. The study group consisted of a total of 607 handball players, 317 female and 290 male, selected by random method and from 11 provinces of Turkey according to the some factors. When we examine the age distributions of the participants, 121 athletes appear to be 13 years and under, 309 athletes 14-18 years, 94 athletes 19-23 years, 54 athletes 24-28 years and 29 athletes 29 years and over. In addition, 186 of them expressed their education situation as middle school, 253 of them expressed their education situation as high school and 168 of them expressed their education situation as university. Personal information form and team cohesion scale, developed by Widmeyer et al. (1985 and adapted to Turkish by Moralı (1994, were used as a data collecting tools. The Kolmogorov Smirnov test was used to measure whether the obtained data showed normal distribution or not and nonparametric tests were used to determine the subscale scores because they didn’t show normal disturbance. For binary comparisons Mann Whitney U test, for multiple comparisons Kruskal Wallis variance and for the difference between significant groups Bonferroni Mann Whitney U test were used. As a result of the research, there were significant differences in scale subscale scores in terms of gender, age, educational status, sports experience, income and province variables of handball players.

  6. Rib Fractures

    Science.gov (United States)

    ... Video) Achilles Tendon Tear Additional Content Medical News Rib Fractures By Thomas G. Weiser, MD, MPH, Associate Professor, ... Tamponade Hemothorax Injury to the Aorta Pulmonary Contusion Rib Fractures Tension Pneumothorax Traumatic Pneumothorax (See also Introduction to ...

  7. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  8. Hydro-mechanically coupled finite-element analysis of the stability of a fractured-rock slope using the equivalent continuum approach: a case study of planned reservoir banks in Blaubeuren, Germany

    Science.gov (United States)

    Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig

    2017-12-01

    Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.

  9. Hydro-mechanically coupled finite-element analysis of the stability of a fractured-rock slope using the equivalent continuum approach: a case study of planned reservoir banks in Blaubeuren, Germany

    Science.gov (United States)

    Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig

    2018-05-01

    Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.

  10. Posterior urethral injuries associated with motorcycle accidents and pelvic trauma in adolescents: analysis of urethral lesions occurring prior to a bony fracture using a computerized finite-element model.

    Science.gov (United States)

    Bréaud, J; Montoro, J; Lecompte, J F; Valla, J S; Loeffler, J; Baqué, P; Brunet, C; Thollon, L

    2013-02-01

    Adolescent males involved in motorcycle accidents are particularly at risk for pelvic injury, which may provoke a posterior urethral injury. The aim of this study was to develop a model to analyze the association between injuries and fractures of the pelvic ring and the risk of posterior urethral injury. Based on experience with traffic accident modeling, a computerized finite-element model was extrapolated from a computerized tomography scan of a 15-year-old boy. The anatomic structures concerned in urethral and pelvic ring trauma were isolated, rendered in 3D and given biomechanical properties. The model was verified according to available experiments on pelvic ring trauma. To apply the model, we recreated three impact mechanisms on the pelvic ring: lateral impact, antero-posterior impact and a real car‒motorcycle accident situation (postero-lateral impact). In all three situations, stretching of the posterior urethra was identified prior to bony fracture visualization. Application of this model allowed us to analyze precisely the link between trauma of the pelvic ring and lesions of the posterior urethra. The results should help to establish guidelines for urethral catheterization in male adolescents in cases of pelvic trauma, even when no bony fracture is present, in order to prevent iatrogenic worsening of a misdiagnosed posterior urethral trauma. Copyright © 2011 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  11. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  12. Exploring Advertising Texts in Nigeria within the Framework of Cohesive Influence

    Directory of Open Access Journals (Sweden)

    Taofeek DALAMU

    2018-06-01

    Full Text Available The thrust of the study explicates the utilization of grammatical and lexical devices in the texts of advertisements in Nigeria. This exploration aimed at demonstrating the way that advertising professionals wisely move from disjunctive organic elements to clause complexes as a convincing strategy. The advertisements of UBA®, Toyota®, Wema®, etisalat®, Standard Chartered® and Stanbic IBTC® were chosen as analyzable data to explain the behavior of the clause and its complexes in advertising. The conceptual framework is cohesion. Cohesive facilities have been applied as sub-concepts to interpret the constituents of the texts. The study demonstrates that reference, repetition, synonym, fragmented structure are deployed as inciting devices in the discursive strategy. In that sense, the study has the capacity to assist scholars to understand the nature of linguistic elements in clause complexes of advertisements. The analysis also reveals to advertising experts the cohesive resources that can help communicators to achieve intended goals of excitement. The study illuminates the extent at which advertisers take advantage of and associate with events in society to campaign their goods and services to consumers.

  13. Cohesion and device reliability in organic bulk heterojunction photovoltaic cells

    KAUST Repository

    Brand, Vitali; Bruner, Christopher; Dauskardt, Reinhold H.

    2012-01-01

    that the phase separated bulk heterojunction layer is the weakest layer and report quantitative cohesion values which ranged from ∼1 to 20 J m -2. The effects of layer thickness, composition, and annealing treatments on layer cohesion are investigated. Using

  14. Packing and Cohesive Properties of Some Locally Extracted Starches

    African Journals Online (AJOL)

    ... properties of the particles affect the packing and cohesive properties of the starches, and are important in predicting the behaviour of the starches during handling and use in pharmaceutical preparations. These properties need to be closely controlled in pre-formulation studies. Keywords: Packing and cohesive properties, ...

  15. A Reappraisal of Lexical Cohesion in Conversational Discourse

    Science.gov (United States)

    Gomez Gonzalez, Maria De Los Angeles

    2013-01-01

    Cohesion, or the connectedness of discourse, has been recognized as playing a crucial role in both language production and comprehension processes. Researchers have debated about the "right" number and classification of cohesive devices, as well as about their interaction with coherence and/or genre. The present study proposes an integrative model…

  16. Cohesion in Online Student Teams versus Traditional Teams

    Science.gov (United States)

    Hansen, David E.

    2016-01-01

    Researchers have found that the electronic methods in use for online team communication today increase communication quality in project-based work situations. Because communication quality is known to influence group cohesion, the present research examined whether online student project teams are more cohesive than traditional teams. We tested…

  17. Understanding Social Cohesion Differences in Common Interest Housing Developments

    NARCIS (Netherlands)

    Dam, van R.I.; Eshuis, J.; Twist, van M.J.W.; Anquetil, V.

    2014-01-01

    The worldwide upsurge of common interest housing developments (CIDs) has stirred up debates regarding community development and social cohesion. Critics have argued that CIDs lack social cohesion because people regulate the community via rules and contracts rather than through social relationships

  18. Anaphoric Referencing: A Cohesive Device in Written and Spoken ...

    African Journals Online (AJOL)

    unique firstlady

    cohesive function "if and when they can be interpreted through their relation to some other (explicit) encoding device in the same passage". ... is Anaphoric but when the implicit term precedes its linguistic referent, the cohesive tie is known as ...

  19. Cohesion: An Overview for the Teacher of Reading. Revised.

    Science.gov (United States)

    Chapman, L. John

    Pronouns, substitutes, elipses, conjunctions, synonyms, antonyms, superordinates and subordinates, and part-whole relations all provide cohesive ties that help a reader understand text. A study at Britain's Open University (England) has revealed the way in which the perception of cohesive ties is achieved as children's reading ability grows.…

  20. Characterizing delamination of fibre composites by mixed mode cohesive laws

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Jacobsen, Torben K.

    2009-01-01

    A novel method is used for the determination of mixed mode cohesive laws and bridging laws for the characterisation of crack bridging in composites. The approach is based on an application of the J integral. The obtained cohesive laws were found to possess high peak stress values. Mixed mode...

  1. Food education: health and social cohesion

    Directory of Open Access Journals (Sweden)

    Eva Zafra Aparici

    2017-07-01

    Full Text Available Using a theoretical-reflexive approach, this article connects the results of various qualitative studies in social conflict and medical anthropology, in order to investigate how food can be a tool for social transformation in terms of health but also in terms of the dialogue, respect and coexistence among people, groups and communities. In this sense the article presents a first approximation to a new theoretical and methodological approach to food education. In this approach, food adopts a political, sociocultural and participatory perspective that brings us closer to an innovative understanding of the phenomenon of food: not only as an analytic and diagnostic tool, but also as an instrument for health education interventions toward conflict resolution and the promotion of healthier societies overall – nutritionally, but also in terms of equality and social cohesion.

  2. Cohesive motion in one-dimensional flocking

    International Nuclear Information System (INIS)

    Dossetti, V

    2012-01-01

    A one-dimensional rule-based model for flocking, which combines velocity alignment and long-range centering interactions, is presented and studied. The induced cohesion in the collective motion of the self-propelled agents leads to unique group behavior that contrasts with previous studies. Our results show that the largest cluster of particles, in the condensed states, develops a mean velocity slower than the preferred one in the absence of noise. For strong noise, the system also develops a non-vanishing mean velocity, alternating its direction of motion stochastically. This allows us to address the directional switching phenomenon. The effects of different sources of stochasticity on the system are also discussed. (paper)

  3. In situ erosion of cohesive sediment

    International Nuclear Information System (INIS)

    Williamson, H.J.; Ockenden, M.C.

    1993-01-01

    There has been increasing interest in tidal power schemes and the effect of a tidal energy barrage on the environment. A large man-made environmental change, such as a barrage, would be expected to have significant effects on the sediment distribution and stability of an estuary and these effects need to be assessed when considering a tidal barrage project. This report describes the development of apparatus for in-situ measurements of cohesive sediment erosion on inter-tidal mudflats. Development of the prototype field erosion bell and field testing was commissioned on behalf of the Department of Trade and Industry by the Energy Technology Support Unit (ETSU). This later work commenced in August 1991 and was completed in September 1992. (Author)

  4. Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves.

    Science.gov (United States)

    Ning, Huiming; Li, Yuan; Hu, Ning; Cao, Yanping; Yan, Cheng; Azuma, Takesi; Peng, Xianghe; Wu, Liangke; Li, Jinhua; Li, Leilei

    2014-06-01

    The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m -2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%-73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.

  5. Simulation study of the discharge characteristics of silos with cohesive particles

    Science.gov (United States)

    Hund, David; Weis, Dominik; Hesse, Robert; Antonyuk, Sergiy

    2017-06-01

    In many industrial applications the silo for bulk materials is an important part of an overall process. Silos are used for instance to buffer intermediate products to ensure a continuous supply for the next process step. This study deals with the discharging behaviour of silos containing cohesive bulk solids with particle sizes in the range of 100-500 μm. In this contribution the TOMAS [1,2] model developed for stationary and non-stationary discharging of a convergent hopper is verified with experiments and simulations using the Discrete Element Method. Moreover the influence of the cohesion of the bulk solids on the discharge behaviour is analysed by the simulation. The simulation results showed a qualitative agreement with the analytical model of TOMAS.

  6. A new design equation for drained stability of conical slopes in cohesive-frictional soils

    Directory of Open Access Journals (Sweden)

    Boonchai Ukritchon

    2018-04-01

    Full Text Available New plasticity solutions to the drained stability of conical slopes in homogeneous cohesive-frictional soils were investigated by axisymmetric finite element limit analysis. Three parameters were studied, i.e. excavated height ratios, slope inclination angles, and soil friction angles. The influences of these parameters on the stability factor and predicted failure mechanism of conical slopes were discussed. A new design equation developed from a nonlinear regression of the lower bound solution was proposed for drained stability analyses of a conical slope in practice. Numerical examples were given to demonstrate a practical application of the proposed equation to stability evaluations of conical slopes with both associated and non-associated flow rules. Keywords: Limit analysis, Slope stability, Conical slope, Unsupported excavation, Cohesive-frictional soils

  7. Cohesive zone model for direct silicon wafer bonding

    Science.gov (United States)

    Kubair, D. V.; Spearing, S. M.

    2007-05-01

    Direct silicon wafer bonding and decohesion are simulated using a spectral scheme in conjunction with a rate-dependent cohesive model. The cohesive model is derived assuming the presence of a thin continuum liquid layer at the interface. Cohesive tractions due to the presence of a liquid meniscus always tend to reduce the separation distance between the wafers, thereby opposing debonding, while assisting the bonding process. In the absence of the rate-dependence effects the energy needed to bond a pair of wafers is equal to that needed to separate them. When rate-dependence is considered in the cohesive law, the experimentally observed asymmetry in the energetics can be explained. The derived cohesive model has the potential to form a bridge between experiments and a multiscale-modelling approach to understand the mechanics of wafer bonding.

  8. Numerical Investigation of Fracture Propagation in Geomaterials

    Science.gov (United States)

    Newell, P.; Borowski, E.; Major, J. R.; Eichhubl, P.

    2015-12-01

    Fracture in geomaterials is a critical behavior that affects the long-term structural response of geosystems. The processes involving fracture initiation and growth in rocks often span broad time scales and size scales, contributing to the complexity of these problems. To better understand fracture behavior, the authors propose an initial investigation comparing the fracture testing techniques of notched three-point bending (N3PB), short rod (SR), and double torsion (DT) on geomaterials using computational analysis. Linear softening cohesive fracture modeling (LCFM) was applied using ABAQUS to computationally simulate the three experimental set-ups. By applying material properties obtained experimentally, these simulations are intended to predict single-trace fracture growth. The advantages and limitations of the three testing techniques were considered for application to subcritical fracture propagation taking into account the accuracy of constraints, load applications, and modes of fracture. This work is supported as part of the Geomechanics of CO2 Reservoir Seals, a DOE-NETL funded under Award Number DE-FOA-0001037. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Atom-to-continuum methods for gaining a fundamental understanding of fracture.

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, David Lynn (Georgia Institute of Technology, Atlanta, GA); Reedy, Earl David, Jr.; Templeton, Jeremy Alan; Jones, Reese E.; Moody, Neville Reid; Zimmerman, Jonathan A.; Belytschko, Ted. (Northwestern University, Evanston, IL); Zhou, Xiao Wang; Lloyd, Jeffrey T. (Georgia Institute of Technology, Atlanta, GA); Oswald, Jay (Northwestern University, Evanston, IL); Delph, Terry J. (Lehigh University, Bethlehem, PA); Kimmer, Christopher J. (Indiana University Southeast, New Albany, IN)

    2011-08-01

    energy potential, the atomic J integral we developed is calculable and accurate at finite/room temperatures. In Chapter 6, we return in part to the fundamental efforts to connect material behavior at the atomic scale to that of the continuum. In this chapter, we devise theory that predicts the onset of instability characteristic of fracture/failure via atomic simulation. In Chapters 7 and 8, we describe the culmination of the project in connecting atomic information to continuum modeling. In these chapters we show that cohesive zone models are: (a) derivable from molecular dynamics in a robust and systematic way, and (b) when used in the more efficient continuum-level finite element technique provide results that are comparable and well-correlated with the behavior at the atomic-scale. Moreover, we show that use of these same cohesive zone elements is feasible at scales very much larger than that of the lattice. Finally, in Chapter 9 we describe our work in developing the efficient non-reflecting boundary conditions necessary to perform transient fracture and shock simulation with molecular dynamics.

  10. Acetabular Fracture

    Directory of Open Access Journals (Sweden)

    Chad Correa

    2017-09-01

    Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior

  11. Main factors causing intergranular and quasi-cleavage fractures at hydrogen-induced cracking in tempered martensitic steels

    Science.gov (United States)

    Kurokawa, Ami; Doshida, Tomoki; Hagihara, Yukito; Suzuki, Hiroshi; Takai, Kenichi

    2018-05-01

    Though intergranular (IG) and quasi-cleavage (QC) fractures have been widely recognized as typical fracture modes of the hydrogen-induced cracking in high-strength steels, the main factor has been unclarified yet. In the present study, the hydrogen content dependence on the main factor causing hydrogen-induced cracking has been examined through the fracture mode transition from QC to IG at the crack initiation site in the tempered martensitic steels. Two kinds of tempered martensitic steels were prepared to change the cohesive force due to the different precipitation states of Fe3C on the prior γ grain boundaries. A high amount of Si (H-Si) steel has a small amount of Fe3C on the prior austenite grain boundaries. Whereas, a low amount of Si (L-Si) steel has a large amount of Fe3C sheets on the grain boundaries. The fracture modes and initiations were observed using FE-SEM (Field Emission-Scanning Electron Microscope). The crack initiation sites of the H-Si steel were QC fracture at the notch tip under various hydrogen contents. While the crack initiation of the L-Si steel change from QC fracture at the notch tip to QC and IG fractures from approximately 10 µm ahead of the notch tip as increasing in hydrogen content. For L-Si steels, two possibilities are considered that the QC or IG fracture occurred firstly, or the QC and IG fractures occurred simultaneously. Furthermore, the principal stress and equivalent plastic strain distributions near the notch tip were calculated with FEM (Finite Element Method) analysis. The plastic strain was the maximum at the notch tip and the principle stress was the maximum at approximately 10 µm from the notch tip. The position of the initiation of QC and IG fracture observed using FE-SEM corresponds to the position of maximum strain and stress obtained with FEM, respectively. These findings indicate that the main factors causing hydrogen-induced cracking are different between QC and IG fractures.

  12. On the Theory and Numerical Simulation of Cohesive Crack Propagation with Application to Fiber-Reinforced Composites

    Science.gov (United States)

    Rudraraju, Siva Shankar; Garikipati, Krishna; Waas, Anthony M.; Bednarcyk, Brett A.

    2013-01-01

    The phenomenon of crack propagation is among the predominant modes of failure in many natural and engineering structures, often leading to severe loss of structural integrity and catastrophic failure. Thus, the ability to understand and a priori simulate the evolution of this failure mode has been one of the cornerstones of applied mechanics and structural engineering and is broadly referred to as "fracture mechanics." The work reported herein focuses on extending this understanding, in the context of through-thickness crack propagation in cohesive materials, through the development of a continuum-level multiscale numerical framework, which represents cracks as displacement discontinuities across a surface of zero measure. This report presents the relevant theory, mathematical framework, numerical modeling, and experimental investigations of through-thickness crack propagation in fiber-reinforced composites using the Variational Multiscale Cohesive Method (VMCM) developed by the authors.

  13. Nonlinear fracture mechanics investigation on the ductility of reinforced concrete beams

    Directory of Open Access Journals (Sweden)

    A. Carpinteri

    Full Text Available In the present paper, a numerical algorithm based on the finite element method is proposed for the prediction of the mechanical response of reinforced concrete (RC beams under bending loading. The main novelty of such an approach is the introduction of the Overlapping Crack Model, based on nonlinear fracture mechanics concepts, to describe concrete crushing. According to this model, the concrete dam- age in compression is represented by means of a fictitious interpenetration. The larger is the interpenetration, the lower are the transferred forces across the damaged zone. The well-known Cohesive Crack Model in tension and an elastic-perfectly plastic stress versus crack opening displacement relationship describing the steel reinforcement behavior are also integrated into the numerical algorithm. The application of the proposed Cohesive-Overlapping Crack Model to the assessment of the minimum reinforcement amount neces- sary to prevent unstable tensile crack propagation and to the evaluation of the rotational capacity of plastic hinges, permits to predict the size-scale effects evidenced by several experimental programs available in the literature. According to the obtained numerical results, new practical design formulae and diagrams are proposed for the improvement of the current code provisions which usually disregard the size effects.

  14. Instability in dynamic fracture

    Science.gov (United States)

    Fineberg, J.; Marder, M.

    1999-05-01

    The fracture of brittle amorphous materials is an especially challenging problem, because the way a large object shatters is intimately tied to details of cohesion at microscopic scales. This subject has been plagued by conceptual puzzles, and to make matters worse, experiments seemed to contradict the most firmly established theories. In this review, we will show that the theory and experiments fit within a coherent picture where dynamic instabilities of a crack tip play a crucial role. To accomplish this task, we first summarize the central results of linear elastic dynamic fracture mechanics, an elegant and powerful description of crack motion from the continuum perspective. We point out that this theory is unable to make predictions without additional input, information that must come either from experiment, or from other types of theories. We then proceed to discuss some of the most important experimental observations, and the methods that were used to obtain the them. Once the flux of energy to a crack tip passes a critical value, the crack becomes unstable, and it propagates in increasingly complicated ways. As a result, the crack cannot travel as quickly as theory had supposed, fracture surfaces become rough, it begins to branch and radiate sound, and the energy cost for crack motion increases considerably. All these phenomena are perfectly consistent with the continuum theory, but are not described by it. Therefore, we close the review with an account of theoretical and numerical work that attempts to explain the instabilities. Currently, the experimental understanding of crack tip instabilities in brittle amorphous materials is fairly detailed. We also have a detailed theoretical understanding of crack tip instabilities in crystals, reproducing qualitatively many features of the experiments, while numerical work is beginning to make the missing connections between experiment and theory.

  15. Cohesion energetics of carbon allotropes: Quantum Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyeondeok; Kang, Sinabro; Koo, Jahyun; Lee, Hoonkyung; Kwon, Yongkyung, E-mail: ykwon@konkuk.ac.kr [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Kim, Jeongnim, E-mail: jnkim@ornl.gov [Materials Science and Technology Division and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-03-21

    We have performed quantum Monte Carlo calculations to study the cohesion energetics of carbon allotropes, including sp{sup 3}-bonded diamond, sp{sup 2}-bonded graphene, sp–sp{sup 2} hybridized graphynes, and sp-bonded carbyne. The computed cohesive energies of diamond and graphene are found to be in excellent agreement with the corresponding values determined experimentally for diamond and graphite, respectively, when the zero-point energies, along with the interlayer binding in the case of graphite, are included. We have also found that the cohesive energy of graphyne decreases systematically as the ratio of sp-bonded carbon atoms increases. The cohesive energy of γ-graphyne, the most energetically stable graphyne, turns out to be 6.766(6) eV/atom, which is smaller than that of graphene by 0.698(12) eV/atom. Experimental difficulty in synthesizing graphynes could be explained by their significantly smaller cohesive energies. Finally, we conclude that the cohesive energy of a newly proposed graphyne can be accurately estimated with the carbon–carbon bond energies determined from the cohesive energies of graphene and three different graphynes considered here.

  16. Cohesion Energetics of Carbon Allotropes: Quantum Monte Carlo Study

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyeondeok [Konkuk University, South Korea; Kang, Sinabro [Konkuk University, South Korea; Koo, Jahyun [Konkuk University, South Korea; Lee, Hoonkyung [Konkuk University, South Korea; Kim, Jeongnim [ORNL; Kwon, Yongkyung [Konkuk University, South Korea

    2014-01-01

    We have performed quantum Monte Carlo calculations to study the cohesion energetics of carbon allotropes, including sp3-bonded diamond, sp2-bonded graphene, sp-sp2 hybridized graphynes, and sp-bonded carbyne. The comput- ed cohesive energies of diamond and graphene are found to be in excellent agreement with the corresponding values de- termined experimentally for diamond and graphite, respectively, when the zero-point energies, along with the interlayer binding in the case of graphite, are included. We have also found that the cohesive energy of graphyne decreases system- atically as the ratio of sp-bonded carbon atoms increases. The cohesive energy of -graphyne, the most energetically- stable graphyne, turns out to be 6.766(6) eV/atom, which is smaller than that of graphene by 0.698(12) eV/atom. Experi- mental difficulty in synthesizing graphynes could be explained by their significantly smaller cohesive energies. Finally we conclude that the cohesive energy of a newly-proposed two-dimensional carbon network can be accurately estimated with the carbon-carbon bond energies determined from the cohesive energies of graphene and three different graphynes.

  17. Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices

    KAUST Repository

    Bruner, Christopher; Miller, Nichole C.; McGehee, Michael D.; Dauskardt, Reinhold H.

    2013-01-01

    The phase separated bulk heterojunction (BHJ) layer in BHJ polymer:fullerene organic photovoltaic devices (OPV) are mechanically weak with low values of cohesion. Improved cohesion is important for OPV device thermomechanical reliability. BHJ devices are investigated and how fullerene intercalation within the active layer affects cohesive properties in the BHJ is shown. The intercalation of fullerenes between the side chains of the polymers poly(3,3″′-didocecyl quaterthiophene) (PQT-12) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT) is shown to enhance BHJ layer cohesion. Cohesion values range from ≈1 to 5 J m -2, depending on the polymer:fullerene blend, processing conditions, and composition. Devices with non-intercalated BHJ layers are found to have significantly reduced values of cohesion. The resulting device power conversion efficiencies (PCE) are also investigated and correlated with the device cohesion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices

    KAUST Repository

    Bruner, Christopher

    2013-01-17

    The phase separated bulk heterojunction (BHJ) layer in BHJ polymer:fullerene organic photovoltaic devices (OPV) are mechanically weak with low values of cohesion. Improved cohesion is important for OPV device thermomechanical reliability. BHJ devices are investigated and how fullerene intercalation within the active layer affects cohesive properties in the BHJ is shown. The intercalation of fullerenes between the side chains of the polymers poly(3,3″′-didocecyl quaterthiophene) (PQT-12) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT) is shown to enhance BHJ layer cohesion. Cohesion values range from ≈1 to 5 J m -2, depending on the polymer:fullerene blend, processing conditions, and composition. Devices with non-intercalated BHJ layers are found to have significantly reduced values of cohesion. The resulting device power conversion efficiencies (PCE) are also investigated and correlated with the device cohesion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Relationship between group cohesion and anxiety in soccer.

    Science.gov (United States)

    Borrego, Carla Chicau; Cid, Luis; Silva, Carlos

    2012-10-01

    Group cohesion in sport is a widely spread theme today. Research has found cohesion to be influenced by several individual and group components. Among the cognitive variables that relate to cohesion we found competitive anxiety. The purpose of this study was to examine the relation between task cohesion (ATG-T, and GI-T) and competitive state anxiety (A-state), and also if there would be a relation between cohesion and self-confidence. Participants were 366 football players of both genders male and female, aged between 15 to 23 years old, from Portugal's championships. Cohesion was measured using the Portuguese version of the Group Environment Questionnaire, and to assess competitive anxiety, we used the Portuguese version of the Competition State Anxiety Inventory 2. Our results show that female athletes report experiencing more cognitive anxiety and less self-confidence than male athletes. Only cognitive anxiety relates in a significantly negative way with the perception of cohesion (GI-T e ATG-T) in the total number of participants and in male athletes. Relatively to the somatic anxiety, it only relates negatively with the perception of the integration of the group in the total number of participants and in the male gender.

  20. Intergranular brittle fracture of a low alloy steel. Global and local approaches

    International Nuclear Information System (INIS)

    Kantidis, E.

    1993-08-01

    The intergranular brittle fracture of a low alloy steel (A533B.Cl1) is studied: an embrittlement heat treatment is used to develop two brittle 'states' that fail through an intergranular way at low temperatures. This mode of fracture leads to an important shift of the transition temperature (∼ 165 deg C) and a decrease in the fracture toughness. The local approach to fracture, developed for cleavage, is applied to the case of intergranular fracture. Modifications are proposed. The physical supports of these models are verified by biaxial (tension-torsion) tests. From the local approaches developed for intergranular fracture, the static and dynamic fracture toughness of the embrittled steel is predicted. The local approach applied to a structural steel, which presents mixed modes of fracture (cleavage and intergranular), showed that this mode of fracture seems to be controlled by intergranular loss of cohesion

  1. Hydraulic fracture propagation modeling and data-based fracture identification

    Science.gov (United States)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the

  2. Mandible Fractures.

    Science.gov (United States)

    Pickrell, Brent B; Serebrakian, Arman T; Maricevich, Renata S

    2017-05-01

    Mandible fractures account for a significant portion of maxillofacial injuries and the evaluation, diagnosis, and management of these fractures remain challenging despite improved imaging technology and fixation techniques. Understanding appropriate surgical management can prevent complications such as malocclusion, pain, and revision procedures. Depending on the type and location of the fractures, various open and closed surgical reduction techniques can be utilized. In this article, the authors review the diagnostic evaluation, treatment options, and common complications of mandible fractures. Special considerations are described for pediatric and atrophic mandibles.

  3. Determination of mode-I cohesive strength for interfaces

    DEFF Research Database (Denmark)

    Jørgensen, J. B.; Thouless, M. D.; Sørensen, Bent F.

    2016-01-01

    The cohesive strength is one of the governing parameters controlling crack deflection at interfaces, but measuring its magnitude is challenging. In this paper, we demonstrate a novel approach to determine the mode-I cohesive strength of an interface by using a 4-point single-edge-notch beam...... in response to this stress, before the main crack starts to grow. Observations using 2D digital-image correlation showed that an ''apparent" strain across the interface initially increases linearly with the applied load, but becomes nonlinear upon the initiation of the interface crack. The cohesive strength...

  4. Toughness-Dominated Regime of Hydraulic Fracturing in Cohesionless Materials

    Science.gov (United States)

    Germanovich, L. N.; Hurt, R. S.; Ayoub, J.; Norman, W. D.

    2011-12-01

    This work examines the mechanisms of hydraulic fracturing in cohesionless particulate materials with geotechnical, geological, and petroleum applications. For this purpose, experimental techniques have been developed, and used to quantify the initiation and propagation of hydraulic fractures in saturated particulate materials. The fracturing liquid is injected into particulate materials, which are practically cohesionless. The liquid flow is localized in thin self-propagating crack-like conduits. By analogy we call them 'cracks' or 'hydraulic fractures.' When a fracture propagates in a solid, new surfaces are created by breaking material bonds. Consequently, the material is in tension at the fracture tip. Because the particulate material is already 'fractured,' no new surface is created and no fracturing process per se is involved. Therefore, the conventional fracture mechanics principles cannot be directly applied. Based on the laboratory observations, performed on three particulate materials (Georgia Red Clay, silica flour, and fine sand, and their mixtures), this work offers physical concepts to explain the observed phenomena. The goal is to determine the controlling parameters of fracture behavior and to quantify their effects. An important conclusion of our work is that all parts of the cohesionless particulate material (including the tip zone of hydraulic fracture) are likely to be in compression. The compressive stress state is an important characteristic of hydraulic fracturing in particulate materials with low, or no, cohesion (such as were used in our experiments). At present, two kinematic mechanisms of fracture propagation, consistent with the compressive stress regime, can be offered. The first mechanism is based on shear bands propagating ahead of the tip of an open fracture. The second is based on the tensile strain ahead of the fracture tip and reduction of the effective stresses to zero within the leak-off zone. Scaling indicates that in our

  5. Characteristics of Non-Cohesive Embankment Failure

    Science.gov (United States)

    Yusof, Z. M.; Wahab, A. K. A.; Ismail, Z.; Amerudin, S.

    2018-04-01

    Embankments are important infrastructure built to provide flood control. They also present risks to property and life due to their potential to fail and cause catastrophic flooding. To mitigate these risks, authorities and regulators need to carefully analyse and inspect dams to identify potential failure modes and protect against them. This paper presents morphology of an embankment study and its sediment behaviour of different grain sizes after the embankment fails. A few experiments were carried out for the embankment size of 1V:3H with different sediment grain sizes; medium and coarser sand. The embankment material used is non-cohesive soil with the embankment height of 0.1 m. The embankment is tested with inflows rate of Q = 0.8 L/s. Experimental results showed the peak discharge for the same inflow rate is affected by the shape of embankment breached. The peak discharge of medium grain size of the embankment is highest, which gave 3.63 L/s in comparison with a coarser embankment. This concludes that the embankment morphology patterns are dissimilar to each other. The flow and dimension of embankment are shown to influence the characteristics of embankment failure.

  6. Facial Fractures.

    Science.gov (United States)

    Ghosh, Rajarshi; Gopalkrishnan, Kulandaswamy

    2018-06-01

    The aim of this study is to retrospectively analyze the incidence of facial fractures along with age, gender predilection, etiology, commonest site, associated dental injuries, and any complications of patients operated in Craniofacial Unit of SDM College of Dental Sciences and Hospital. This retrospective study was conducted at the Department of OMFS, SDM College of Dental Sciences, Dharwad from January 2003 to December 2013. Data were recorded for the cause of injury, age and gender distribution, frequency and type of injury, localization and frequency of soft tissue injuries, dentoalveolar trauma, facial bone fractures, complications, concomitant injuries, and different treatment protocols.All the data were analyzed using statistical analysis that is chi-squared test. A total of 1146 patients reported at our unit with facial fractures during these 10 years. Males accounted for a higher frequency of facial fractures (88.8%). Mandible was the commonest bone to be fractured among all the facial bones (71.2%). Maxillary central incisors were the most common teeth to be injured (33.8%) and avulsion was the most common type of injury (44.6%). Commonest postoperative complication was plate infection (11%) leading to plate removal. Other injuries associated with facial fractures were rib fractures, head injuries, upper and lower limb fractures, etc., among these rib fractures were seen most frequently (21.6%). This study was performed to compare the different etiologic factors leading to diverse facial fracture patterns. By statistical analysis of this record the authors come to know about the relationship of facial fractures with gender, age, associated comorbidities, etc.

  7. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  8. Transfer and Cohesion in Interdisciplinary Education

    DEFF Research Database (Denmark)

    Klausen, Søren Harnow

    2014-01-01

    Der argumenteres for at sammenhæng mellem fag og discipliner i tværfaglig undervisning skabes gennem overførsel (transfer) af elementer mellem de forskellig fag. De grundlæggende typer af sådanne elementer identificeres og analyseres, og der argumenteres for at relevant sammenhæng kan skabes på m...

  9. Hydrajet fracturing: an effective method for placing many fractures in openhole horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Surjaatmadja, J. B.; Grundmann, S. R.; McDaniel, B.; Deeg, W. F. J.; Brumley, J. L.; Swor, L. C.

    1998-12-31

    A new method for openhole horizontal well fracturing that combines hydrajetting and fracturing techniques, which was developed on the basis of Bernoulli`s theorem, is described. This theorem has been effectively proven in many applications such as jet pumps, additive injection systems and jet aircraft engines. By using this method, operators can position a jetting tool, without the use of sealing elements, at the exact point where fracture is required. The method also permits the use of multiple fractures in the same well, which can be spaced evenly or unevenly as prescribed by the fracturing program. Damage can be avoided by placing hundreds of small fractures in a long horizontal section, or operators can use acid and/or propped sand techniques to place a combination of two fracture types in the well. The paper describes the basic principles of horizontal hydrajet fracturing, and elements of a laboratory model which was developed to demonstrate the effectiveness of the method.

  10. Fracture sacrum.

    Directory of Open Access Journals (Sweden)

    Dogra A

    1995-04-01

    Full Text Available An extremely rare case of combined transverse and vertical fracture of sacrum with neurological deficit is reported here with a six month follow-up. The patient also had an L1 compression fracture. The patient has recovered significantly with conservative management.

  11. Bridge pier scour in cohesive soil: a review

    Indian Academy of Sciences (India)

    Y Sonia Devi

    process and mechanism at bridge pier in cohesive and noncohesive soil are presented. The effects ... examples: one under laboratory condition and another under field condition. ..... not take part in scouring as these sediments are swept over.

  12. Social cohesion: solution or driver of urban violence? | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-09-28

    Sep 28, 2016 ... Social cohesion can play an important role in building and maintaining ... Analysis of Violence demonstrates how social bonds and stark inequalities can also play ... Conflict and development in the hill settlements of Guwahati.

  13. Social cohesion: solution or driver of urban violence?

    International Development Research Centre (IDRC) Digital Library (Canada)

    to the state intervention, eroding existing civil society organization. The presence of the police ... creating its own parallel structures to existing representative bodies, ... When designing interventions take into account that social cohesion may ...

  14. Social cohesion: The missing link in overcoming violence and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Researchers will test the hypothesis that social cohesion is a critical factor in ... to community members, and ethnographic social network analysis, to help map ... to identify the most effective strategies for addressing these challenges in Latin ...

  15. Student leadership and advocacy for social cohesion: A South ...

    African Journals Online (AJOL)

    at how social cohesion could benefit economic development, hoped thereby ... institutions pledged to reverse 'outsourcing' to 'insourcing' of cleaning services, there is .... It is not so much the scale of these ills as it is the perceived failure of the.

  16. Barossa Night: cohesion in the British Army officer corps.

    Science.gov (United States)

    Bury, Patrick

    2017-06-01

    Contrasting the classical explanation of military group cohesion as sustained by interpersonal bonds, recent scholars have highlighted the importance of ritualized communication, training and drills in explaining effective military performance in professional armies. While this has offered a welcome addition to the cohesion literature and a novel micro-sociological method of examining cohesion, its primary evidential base has been combat groups. Indeed, despite their prominent role in directing operations over the past decade, the British Army's officer corps has received relatively little attention from sociologists during this period. No attempt has been made to explain cohesion in the officer corps. Using a similar method to recent cohesion scholars, this paper seeks to address this imbalance by undertaking a micro-sociology of one ritual in particular: 'Barossa Night' in the Royal Irish Regiment. Firstly, it draws on the work of Durkheim to examine how cohesion amongst the officer corps is created and sustained through a dense array of practises during formal social rituals. It provides evidence that the use of rituals highlights that social solidarity is central to understanding officer cohesion. Secondly, following Hockey's work on how private soldiers negotiate order, the paper shows how this solidarity in the officer corps is based on a degree of negotiated order and the need to release organizational tensions inherent in a strictly hierarchical rank structure. It highlights how the awarding of gallantry medals can threaten this negotiated order and fuel deviancy. In examining this behaviour, the paper shows that even amongst an officer class traditionally viewed as the elite upholders of organizational discipline, the negotiation of rank and hierarchy can be fluid. How deviant behaviour is later accepted and normalized by senior officers indicates that negotiated order is as important to understanding cohesion in the British Army's officer corps as it is

  17. Linking Scales in Plastic Deformation and Fracture

    DEFF Research Database (Denmark)

    Martinez-Paneda, Emilio; Niordson, Christian Frithiof; S. Deshpande, Vikram

    2017-01-01

    We investigate crack growth initiation and subsequent resistance in metallic materials by means of an implicit multi-scale approach. Strain gradient plasticity is employed to model the mechanical response of the solid so as to incorporate the role of geometrically necessary dislocations (GNDs......) and accurately capture plasticity at the small scales involved in crack tip deformation. The response ahead of the crack is described by means of a traction-separation law, which is characterized by the cohesive strength and the fracture energy. Results reveal that large gradients of plastic strain accumulatein...... the vicinity of the crack, elevating the dislocation density and the local stress. This stress elevation enhances crack propagation and significantly lowers the steady state fracture toughness with respect to conventional plasticity. Important insight is gained into fracture phenomena that cannot be explained...

  18. Transport of Particle Swarms Through Fractures

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    The transport of engineered micro- and nano-scale particles through fractured rock is often assumed to occur as dispersions or emulsions. Another potential transport mechanism is the release of particle swarms from natural or industrial processes where small liquid drops, containing thousands to millions of colloidal-size particles, are released over time from seepage or leaks. Swarms have higher velocities than any individual colloid because the interactions among the particles maintain the cohesiveness of the swarm as it falls under gravity. Thus particle swarms give rise to the possibility that engineered particles may be transported farther and faster in fractures than predicted by traditional dispersion models. In this study, the effect of fractures on colloidal swarm cohesiveness and evolution was studied as a swarm falls under gravity and interacts with fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with either (1) a uniform aperture or (2) a converging aperture followed by a uniform aperture (funnel-shaped). The samples consisted of two blocks that measured 100 x 100 x 50 mm. The separation between these blocks determined the aperture (0.5 mm to 50 mm). During experiments, a fracture was fully submerged in water and swarms were released into it. The swarms consisted of dilute suspensions of either 25 micron soda-lime glass beads (2% by mass) or 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. In the uniform aperture fracture, the speed of the swarm prior to bifurcation increased with aperture up to a maximum at a fracture width of approximately 10 mm. For apertures greater than ~15 mm, the velocity was essentially constant with fracture width (but less than at 10 mm). This peak suggests that two competing mechanisms affect swarm velocity in fractures. The wall provides both drag, which

  19. Modelling of composite concrete block pavement systems applying a cohesive zone model

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe

    This paper presents a numerical analysis of the fracture behaviour of the cement bound base material in composite concrete block pavement systems, using a cohesive zone model. The functionality of the proposed model is tested on experimental and numerical investigations of beam bending tests....... The pavement is modelled as a simple slab on grade structure and parameters influencing the response, such as analysis technique, geometry and material parameters are studied. Moreover, the analysis is extended to a real scale example, modelling the pavement as a three-layered structure. It is found...... block pavements. It is envisaged that the methodology implemented in this study can be extended and thereby contribute to the ongoing development of rational failure criteria that can replace the empirical formulas currently used in pavement engineering....

  20. Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins

    Science.gov (United States)

    Ouraga, Zady; Guy, Nicolas; Pouya, Amade

    2018-05-01

    In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.

  1. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part V: Elements of validation

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.; Kayser, Y.; Lacire, M.H.; Drubay, B.; Barthelet, B.; Le Delliou, P.; Rougier, V.; Naudin, C.; Gilles, P.; Triay, M.

    2007-01-01

    French nuclear codes include flaw assessment procedures: the RSE-M Code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction Rules for Mechanical Components of FBR Nuclear Islands and High Temperature Applications'. Development of analytical methods has been made for the last 10 years in the framework of a collaboration between CEA, EDF and AREVA-NP, and by R and D actions involving CEA and IRSN. These activities have led to a unification of the common methods of the two codes. The calculation of fracture mechanics parameters, in particular the stress intensity factor K I and the J integral, has been widely developed for industrial configurations. All the developments have been integrated in the 2005 edition of RSE-M and in 2007 edition of RCC-MR. This series of articles consists of 5 parts: the first part presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide the compendia for specific components. The geometries are plates (part II), pipes (part III) and elbows (part IV). This part presents validation of the methods, with details on the process followed for their development and of the evaluation accuracy of the proposed analytical methods

  2. Discontinuous finite element formulation for bodies of revolution with application in the prevention of fragile fracture in pressure vessel of PWR reactors; Formulacao de elementos finitos descontinuos para corpos de revolucao com aplicacao na prevencao de fratura fragil em vaso de pressao de reatores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Benitez Alvarez, Gustavo

    1999-08-15

    In this work, a hybrid formulation is established for bodies of revolution, based on the equation of Fourier series for the discontinuous finite element method, analogous to the one that exists in the classical finite element method. Furthermore, a methodology to analyse the prevention of fragile fracture in pressure vessel of pressurized water reactors is presented. The results obtained suggest that careful analysis must be made for non symmetric refrigeration. (author)

  3. The Impact of Adventure Based Activity at Malaysian National Service Training Programme on Team Cohesion: A Demographic Analysis.

    OpenAIRE

    Jaffry Zakaria; Mazuki Mohd Yasim; Md Amin Md Taff

    2012-01-01

    The present study examines the effects of physical module elements (adventure based activity) included in the Malaysian National Service Programme and to investigate the socio-demographic variables impact on team cohesion building among the participants. In this study, the participants were selected from three different camps, namely, Tasoh camp, Guar Chenderai camp and Meranti camp, located in the state of Perlis, Malaysia. The participants were those from the second batch intake in the yea...

  4. Towards re-reforming the EU cohesion policy: Key issues in the debate and some thoughts on peripheral regions

    Directory of Open Access Journals (Sweden)

    Foutakis Dimitris

    2009-01-01

    Full Text Available Two years after the inception of the fourth programming period, the debate on post-2013 cohesion policy has already been launched. In fact, public consultation was launched in 2007 and considerable steps have followed since then, while others are about to start. At the same time, the new strategic guidelines and rules that guide cohesion policy have only been in place for a short period and as yet their impacts are not clear. Critical events and major political issues that concern the whole EU structure are the main factors behind this evolution. In particular, the economic recession in addition to the prospects for the new EU Treaty could be considered decisive elements in the launch of the debate on future cohesion policy. More specifically, among the issues highlighted in this context are the distinction between efficiency and equity objectives, the need for a place-based strategy, high growth sectors and their contribution to cohesion, and the potential for creativity and innovation. Overall, it seems like old dilemmas of spatial development recur, while contemporary ones also gain ground. The outcome of this debate is of significant importance for all EU regions not only in budgetary terms, but also in terms of strategic policy goals. This paper examines the above future policy issues with an emphasis on regions faced with particular difficulties such as less favored regions as well as those in the EU periphery.

  5. Fracture mechanics

    CERN Document Server

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  6. Fracture analysis

    International Nuclear Information System (INIS)

    Ueng, Tzoushin; Towse, D.

    1991-01-01

    Fractures are not only the weak planes of a rock mass, but also the easy passages for the fluid flow. Their spacing, orientation, and aperture will affect the deformability, strength, heat transmittal, and fluid transporting properties of the rock mass. To understand the thermomechanical and hydrological behaviors of the rock surrounding the heater emplacement borehole, the location, orientation, and aperture of the fractures of the rock mass should be known. Borehole television and borescope surveys were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes drilled in the Prototype Engineered Barrier System Field Tests (PEBSFT) at G-Tunnel. Core logging was also performed during drilling. However, because the core was not oriented and the depth of the fracture cannot be accurately determined, the results of the core logging were only used as reference and will not be discussed here

  7. Facial Fractures.

    Science.gov (United States)

    Ricketts, Sophie; Gill, Hameet S; Fialkov, Jeffery A; Matic, Damir B; Antonyshyn, Oleh M

    2016-02-01

    After reading this article, the participant should be able to: 1. Demonstrate an understanding of some of the changes in aspects of facial fracture management. 2. Assess a patient presenting with facial fractures. 3. Understand indications and timing of surgery. 4. Recognize exposures of the craniomaxillofacial skeleton. 5. Identify methods for repair of typical facial fracture patterns. 6. Discuss the common complications seen with facial fractures. Restoration of the facial skeleton and associated soft tissues after trauma involves accurate clinical and radiologic assessment to effectively plan a management approach for these injuries. When surgical intervention is necessary, timing, exposure, sequencing, and execution of repair are all integral to achieving the best long-term outcomes for these patients.

  8. Pisiform fractures

    International Nuclear Information System (INIS)

    Fleege, M.A.; Jebson, P.J.; Renfrew, D.L.; El-Khoury, G.Y.; Steyers, C.M. Jr.

    1991-01-01

    Fractures of the pisiform are often missed due to improper radiographic evaluation and a tendency to focus on other, more obvious injuries. Delayed diagnosis may result in disabling sequelae. A high index of clinical suspicion and appropriate radiographic examination will establish the correct diagnosis. Ten patients with pisiform fracture are presented. The anatomy, mechanism of injury, clinical presentation, radiographic features, and evaluation of this injury are discussed. (orig.)

  9. Stress fractures

    International Nuclear Information System (INIS)

    Berquist, T.H.; Cooper, K.L.; Pritchard, D.J.

    1985-01-01

    The diagnosis of a stress fracture should be considered in patients presented with pain after a change in activity, especially if the activity is strenuous and the pain is in the lower extremities. Since evidence of the stress fracture may not be apparent for weeks on routine radiographs, proper use of other imaging techniques will allow an earlier diagnosis. Prompt diagnosis is especially important in the femur, where displacement may occur

  10. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  11. Britishness and Community Cohesion in Muslim News Online

    Directory of Open Access Journals (Sweden)

    Hassen ZRIBA

    2013-12-01

    Full Text Available The issues of British national identity and social cohesion have become pressing concerns within the multicultural fabric of contemporary British society. The increasing number of immigrants and their offspring, along with the maintenance of their cultural roots, seem to represent a serious defiance to social cohesion and the alleged “purity” of Britishness. A number of race related reports were produced by the official authorities to churn out the necessary steps to be followed by the British (immigrants and host community in order to keep social stability and community cohesion. Thus, the politics of community cohesion came to the fore as the neologism of contemporary British political discourse. Such new discourse of governance has been digested and processed differently by different mass media. It has been decoded, for instance, preferably by mainstream news agencies like BBC News Online. However, arguably, it is read appositionally or at best negotiatedly by ethnicity-related news agencies such as Muslim News Online. In this article, attempt has been made to adopt media discourse analysis tools to decipher the ways Muslim News Online decoded and then encoded the hegemonic official discourses of Britishness and community cohesion. A critical and interpretative approach is used to accomplish such study. The corpus of this study is primarily extracted from the website of the Muslim News Online.

  12. Assessing alternative conceptual models of fracture flow

    International Nuclear Information System (INIS)

    Ho, C.K.

    1995-01-01

    The numerical code TOUGH2 was used to assess alternative conceptual models of fracture flow. The models that were considered included the equivalent continuum model (ECM) and the dual permeability (DK) model. A one-dimensional, layered, unsaturated domain was studied with a saturated bottom boundary and a constant infiltration at the top boundary. Two different infiltration rates were used in the studies. In addition, the connection areas between the fracture and matrix elements in the dual permeability model were varied. Results showed that the two conceptual models of fracture flow produced different saturation and velocity profiles-even under steady-state conditions. The magnitudes of the discrepancies were sensitive to two parameters that affected the flux between the fractures and matrix in the dual permeability model: (1) the fracture-matrix connection areas and (2) the capillary pressure gradients between the fracture and matrix elements

  13. Scaphoid Fracture

    Directory of Open Access Journals (Sweden)

    Esther Kim, BS

    2018-04-01

    Full Text Available History of present illness: A 25-year-old, right-handed male presented to the emergency department with left wrist pain after falling from a skateboard onto an outstretched hand two-weeks prior. He otherwise had no additional concerns, including no complaints of weakness or loss of sensation. On physical exam, there was tenderness to palpation within the anatomical snuff box. The neurovascular exam was intact. Plain films of the left wrist and hand were obtained. Significant findings: The anteroposterior (AP plain film of this patient demonstrates a full thickness fracture through the middle third of the scaphoid (red arrow, with some apparent displacement (yellow lines and subtle angulation of the fracture fragments (blue line. Discussion: The scaphoid bone is the most commonly fractured carpal bone accounting for 70%-80% of carpal fractures.1 Classically, it is sustained following a fall onto an outstretched hand (FOOSH. Patients should be evaluated for tenderness with palpation over the anatomical snuffbox, which has a sensitivity of 100% and specificity of 40%.2 Plain films are the initial diagnostic modality of choice and have a sensitivity of 70%, but are commonly falsely negative in the first two to six weeks of injury (false negative of 20%.3 The Mayo classification organizes scaphoid fractures as involving the proximal, mid, and distal portions of the scaphoid bone with mid-fractures being the most common.3 The proximal scaphoid is highly susceptible to vascular compromise because it depends on retrograde blood flow from the radial artery. Therefore, disruption can lead to serious sequelae including osteonecrosis, arthrosis, and functional impairment. Thus, a low threshold should be maintained for neurovascular evaluation and surgical referral. Patients with non-displaced scaphoid fractures should be placed in a thumb spica splint.3 Patients with even suspected scaphoid fractures should be placed in a thumb spica splint and re

  14. Microstructural characterization, petrophysics and upscaling - from porous media to fractural media

    Science.gov (United States)

    Liu, J.; Liu, K.; Regenauer-Lieb, K.

    2017-12-01

    We present an integrated study for the characterization of complex geometry, fluid transport features and mechanical deformation at micro-scale and the upscaling of properties using microtomographic data: We show how to integrate microstructural characterization by the volume fraction, specific surface area, connectivity (percolation), shape and orientation of microstructures with identification of individual fractures from a 3D fractural network. In a first step we use stochastic analyses of microstructures to determine the geometric RVE (representative volume element) of samples. We proceed by determining the size of a thermodynamic RVE by computing upper/lower bounds of entropy production through Finite Element (FE) analyses on a series of models with increasing sizes. The minimum size for thermodynamic RVE's is identified on the basis of the convergence criteria of the FE simulations. Petrophysical properties (permeability and mechanical parameters, including plastic strength) are then computed numerically if thermodynamic convergence criteria are fulfilled. Upscaling of properties is performed by means of percolation theory. The percolation threshold is detected by using a shrinking/expanding algorithm on static micro-CT images of rocks. Parameters of the scaling laws can be extracted from quantitative analyses and/or numerical simulations on a series of models with similar structures but different porosities close to the percolation threshold. Different rock samples are analyzed. Characterizing parameters of porous/fractural rocks are obtained. Synthetic derivative models of the microstructure are used to estimate the relationships between porosity and mechanical properties. Results obtained from synthetic sandstones show that yield stress, cohesion and the angle of friction are linearly proportional to porosity. Our integrated study shows that digital rock technology can provide meaningful parameters for effective upscaling if thermodynamic volume averaging

  15. Osteoporosis and trace elements

    DEFF Research Database (Denmark)

    Aaseth, J.; Boivin, G.; Andersen, Ole

    2012-01-01

    More than 200 million people are affected by osteoporosis worldwide, as estimated by 2 million annual hip fractures and other debilitating bone fractures (vertebrae compression and Colles' fractures). Osteoporosis is a multi-factorial disease with potential contributions from genetic, endocrine...... in new bone and results in a net gain in bone mass, but may be associated with a tissue of poor quality. Aluminum induces impairment of bone formation. Gallium and cadmium suppresses bone turnover. However, exact involvements of the trace elements in osteoporosis have not yet been fully clarified...

  16. Fracture analyses of WWER reactor pressure vessels

    International Nuclear Information System (INIS)

    Sievers, J.; Liu, X.

    1997-01-01

    In the paper first the methodology of fracture assessment based on finite element (FE) calculations is described and compared with simplified methods. The FE based methodology was verified by analyses of large scale thermal shock experiments in the framework of the international comparative study FALSIRE (Fracture Analyses of Large Scale Experiments) organized by GRS and ORNL. Furthermore, selected results from fracture analyses of different WWER type RPVs with postulated cracks under different loading transients are presented. 11 refs, 13 figs, 1 tab

  17. Fracture analyses of WWER reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, J; Liu, X [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany)

    1997-09-01

    In the paper first the methodology of fracture assessment based on finite element (FE) calculations is described and compared with simplified methods. The FE based methodology was verified by analyses of large scale thermal shock experiments in the framework of the international comparative study FALSIRE (Fracture Analyses of Large Scale Experiments) organized by GRS and ORNL. Furthermore, selected results from fracture analyses of different WWER type RPVs with postulated cracks under different loading transients are presented. 11 refs, 13 figs, 1 tab.

  18. Cohesive zone model for intergranular slow crack growth in ceramics: influence of the process and the microstructure

    International Nuclear Information System (INIS)

    Romero de la Osa, M; Olagnon, C; Chevalier, J; Estevez, R; Tallaron, C

    2011-01-01

    Ceramic polycrystals are prone to slow crack growth (SCG) which is stress and environmentally assisted, similarly to observations reported for silica glasses. The kinetics of fracture are known to be dependent on the load level, the temperature and the relative humidity. In addition, evidence is available on the influence of the microstructure on the SCG rate with an increase in the crack velocity with decreasing the grain size. Crack propagation takes place beyond a load threshold, which is grain size dependent. We present a cohesive zone model for the intergranular failure process. The methodology accounts for an intrinsic opening that governs the length of the cohesive zone and allows the investigation of grain size effects. A rate and temperature-dependent cohesive model is proposed (Romero de la Osa M, Estevez R et al 2009 J. Mech. Adv. Mater. Struct. 16 623–31) to mimic the reaction–rupture mechanism. The formulation is inspired by Michalske and Freiman's picture (Michalske and Freiman 1983 J. Am. Ceram. Soc. 66 284–8) together with a recent study by Zhu et al (2005 J. Mech. Phys. Solids 53 1597–623) of the reaction–rupture mechanism. The present investigation extends a previous work (Romero de la Osa et al 2009 Int. J. Fracture 158 157–67) in which the problem is formulated. Here, we explore the influence of the microstructure in terms of grain size, their elastic properties and residual thermal stresses originating from the cooling from the sintering temperature down to ambient conditions. Their influence on SCG for static loadings is reported and the predictions compared with experimental trends. We show that the initial stress state is responsible for the grain size dependence reported experimentally for SCG. Furthermore, the account for the initial stresses enables the prediction of a load threshold below which no crack growth is observed: a crack arrest takes place when the crack path meets a region in compression

  19. Cohesiveness in financial news and its relation to market volatility.

    Science.gov (United States)

    Piškorec, Matija; Antulov-Fantulin, Nino; Novak, Petra Kralj; Mozetič, Igor; Grčar, Miha; Vodenska, Irena; Smuc, Tomislav

    2014-05-22

    Motivated by recent financial crises, significant research efforts have been put into studying contagion effects and herding behaviour in financial markets. Much less has been said regarding the influence of financial news on financial markets. We propose a novel measure of collective behaviour based on financial news on the Web, the News Cohesiveness Index (NCI), and we demonstrate that the index can be used as a financial market volatility indicator. We evaluate the NCI using financial documents from large Web news sources on a daily basis from October 2011 to July 2013 and analyse the interplay between financial markets and finance-related news. We hypothesise that strong cohesion in financial news reflects movements in the financial markets. Our results indicate that cohesiveness in financial news is highly correlated with and driven by volatility in financial markets.

  20. Cohesiveness in Financial News and its Relation to Market Volatility

    Science.gov (United States)

    Piškorec, Matija; Antulov-Fantulin, Nino; Novak, Petra Kralj; Mozetič, Igor; Grčar, Miha; Vodenska, Irena; Šmuc, Tomislav

    2014-01-01

    Motivated by recent financial crises, significant research efforts have been put into studying contagion effects and herding behaviour in financial markets. Much less has been said regarding the influence of financial news on financial markets. We propose a novel measure of collective behaviour based on financial news on the Web, the News Cohesiveness Index (NCI), and we demonstrate that the index can be used as a financial market volatility indicator. We evaluate the NCI using financial documents from large Web news sources on a daily basis from October 2011 to July 2013 and analyse the interplay between financial markets and finance-related news. We hypothesise that strong cohesion in financial news reflects movements in the financial markets. Our results indicate that cohesiveness in financial news is highly correlated with and driven by volatility in financial markets. PMID:24849598

  1. The effect of biological cohesion on current ripple development

    Science.gov (United States)

    Malarkey, Jonathan; Baas, Jaco H.; Hope, Julie

    2014-05-01

    Results are presented from laboratory experiments examining the role of biological cohesion, associated with Extra Polymeric Substances, on the development of current ripples. The results demonstrate the importance of biological cohesion compared to the effect of physical cohesion associated with clays in an otherwise sandy bed. FURTHER INFORMATION In fluvial and marine environments sediment transport is mainly dependent on the nature of the bed surface (rippled or flat) and the nature of cohesion in the bed. Cohesion can be either physical, as a result of the presence of clays, or biological as a result of the presence of organisms. In the case of the latter, biological cohesion occurs as a result of the presence of Extra Polymeric Substances (EPS) secreted by microorganisms. While it is known that EPS can dramatically increase the threshold of motion (Grant and Gust, 1987), comparatively little is known about the effect of EPS on ripple formation and development. The experiments described here seek to fill this gap. They also allow the effect of biological cohesion to be compared with that of physical cohesion from previous experiments (Baas et al., 2013). The experiments, which were conducted in a 10m flume at Bangor University, involved a current over a bed made of fine sand, with a median diameter of 0.148mm, and various amounts of xanthan gum, a proxy for naturally occurring EPS (Vardy et al., 2007). The hydrodynamic experimental conditions were matched very closely to those of Baas et al. (2013). The ripple dimensions were recorded through the glass side wall of the tank using time lapse photography. In the physical cohesion experiments of Baas et al. (2013) for clay contents up to 12%, the clay was very quickly winnowed out of the bed, leaving essentially clay-free ripples that developed at more or less the same rate as clean sand ripples. The resulting equilibrium ripples were essentially the same length as the clean sand ripples but reduced in height. By

  2. Sub-critical cohesive crack propagation with hydro-mechanical coupling and friction

    Directory of Open Access Journals (Sweden)

    S. Valente

    2016-01-01

    Full Text Available Looking at the long-time behaviour of a dam, it is necessary to assume that the water can penetrate a possible crack washing away some components of the concrete. This type of corrosion reduces the tensile strength and fracture energy of the concrete compared to the same parameters measured during a short-time laboratory test. This phenomenon causes the so called sub-critical crack propagation. That is the reason why the International Commission of Large Dams recommends to neglect the tensile strength of the joint between the dam and the foundation, which is the weakest point of a gravity dam. In these conditions a shear displacement discontinuity starts growing in a point, called Fictitious Crack Tip (shortened FCT, which is still subjected to a compression stress. In order to manage this problem, in this paper the cohesive crack model is re-formulated with the focus on the shear stress component. In this context, the classical Newton-Raphson method fails to converge to an equilibrium state. Therefore the approach used is based on two stages: (a a global one in which the FCT is moved ahead of one increment; (b a local one in which the non-linear conditions occurring in the Fracture Process Zone are taken into account. This two-stage approach, which is known in the literature as a Large Time Increment method, is able to model three different mechanical regimes occurring during the crack propagation between a dam and the foundation rock.

  3. Group cohesion in sports teams of different professional level

    Directory of Open Access Journals (Sweden)

    Vazha M. Devishvili

    2017-12-01

    Full Text Available Background. Team sports are not only the most exciting sporting events. but also complex activities that make serious demands on players. The effectiveness of the team depends not only on the high level of gaming interaction. but also on the relationship between the players. The work is based on the material of sports teams and is devoted to the study of the phenomenon of group cohesion. As a basic model. the authors choose a 4-factor model that describes cohesion in sports teams. The paper also considered the phenomenon of the emergence of the aggregate subject in the process of joint activity. when the participants feel themselves as a whole and experience feelings of satisfaction and a surge of energy. Objective. The main objective of the work is to investigate the relationship between the level of team cohesion and subjective feelings of unity of its players. As additional variables in the study there is a sport (football and volleyball and team level (amateur and professional. To test the assumptions. two methods were used (the Sport Team Cohesion Questionnaire and the Subject Unity Index. which allow not only to determine the overall level of cohesion and unity. but also to reveal the structure of both phenomena. The study involved two men’s volleyball and two men’s football teams of different ages: 8-9 years (39 athletes; 12-14 years (24 athletes and 18-25 years (41 athletes. Design. For amateur groups represented by children’s and teenage sports teams. significant correlations between unity and unity were obtained (r = 0.618. p <0.01; r = 0.477. p <0.05. For professional teams. no significant correlations were found. Influence of the sport on cohesion is also different for amateur and professional teams. In the first case. the cohesion is higher for football players (U = 118. p <0.05. and in the second case for volleyball players (U = 124. p <0.05. Results. The findings indicate that the professional level of players affects group

  4. Group cohesion in sports teams of different professional level

    OpenAIRE

    Vazha M. Devishvili; Marina O. Mdivani; Daria S. Elgina

    2017-01-01

    Background. Team sports are not only the most exciting sporting events. but also complex activities that make serious demands on players. The effectiveness of the team depends not only on the high level of gaming interaction. but also on the relationship between the players. The work is based on the material of sports teams and is devoted to the study of the phenomenon of group cohesion. As a basic model. the authors choose a 4-factor model that describes cohesion in sports teams. The pape...

  5. On the application of cohesive crack modeling in cementitious materials

    DEFF Research Database (Denmark)

    Stang, Henrik; Olesen, John Forbes; Poulsen, Peter Noe

    2007-01-01

    typically for multi scale problems such as crack propagation in fiber reinforced composites. Mortar and concrete, however, are multi-scale materials and the question naturally arises, if bridged crack models in fact are more suitable for concrete and mortar as well? In trying to answer this question a model......Cohesive crack models-in particular the Fictitious Crack Model - are applied routinely in the analysis of crack propagation in concrete and mortar. Bridged crack models-where cohesive stresses are assumed to exist together with a stress singularity at the crack tip-on the other hand, are used...

  6. INTERACTIVE EFFECTS OF TEAM COHESION ON PERCEIVED EFFICACY IN SEMI-PROFESSIONAL SPORT

    Directory of Open Access Journals (Sweden)

    Francisco Miguel Leo Marcos

    2010-06-01

    Full Text Available The present study examined the relationships among cohesion, self-efficacy, coaches' perceptions of their players' efficacy at the individual level and athletes' perceptions of their teammates' efficacy. Participants (n = 76 recruited from four semi- professional soccer and basketball teams completed cohesiveness and efficacy questionnaires who. Data were analyzed through a correlational methodology. Results indicated significant correlations between self-efficacy and task cohesion and social cohesion. Regression analysis results suggest task cohesion positively related to coaches and teammate´s perception of efficacy. These results have implications for practitioners in terms of the importance of team building to enhance team cohesion and feelings of efficacy

  7. Simulating Hydraulic Fracturing: Failure in soft versus hard rocks

    Science.gov (United States)

    Aleksans, J.; Koehn, D.; Toussaint, R.

    2017-12-01

    In this contribution we discuss the dynamic development of hydraulic fractures, their evolution and the resulting seismicity during fluid injection in a coupled numerical model. The model describes coupling between a solid that can fracture dynamically and a compressible fluid that can push back at the rock and open fractures. With a series of numerical simulations we show how the fracture pattern and seismicity change depending on changes in depth, injection rate, Young's Modulus and breaking strength. Our simulations indicate that the Young's Modulus has the largest influence on the fracture dynamics and also the related seismicity. Simulations of rocks with a Young's modulus smaller than 10 GPa show dominant mode I failure and a growth of fracture aperture with a decrease in Young's modulus. Simulations of rocks with a higher Young's modulus than 10 GPa show fractures with a constant aperture and fracture growth that is mainly governed by a growth in crack length and an increasing amount of mode II failure. We propose that two distinct failure regimes are observed in the simulations, above 10 GPa rocks break with a constant critical stress intensity factor whereas below 10 GPa they break reaching a critical cohesion, i.e. a critical tensile strength. These results are very important for the prediction of fracture dynamics and seismicity during fluid injection, especially since we see a transition from one failure regime to another at around 10 GPa, a Young's modulus that lies in the middle of possible values for natural shale rocks.

  8. Fracture mechanical analysis of strengthened concrete tension members with one crack

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Stang, Henrik

    2012-01-01

    A concrete tension member strengthened 2 with fiber reinforced polymer plates on two sides 3 is analyzed with non-linear fracture mechanics. The 4 analysis of the strengthened tension member incorpo5 rates cohesive properties for both concrete and inter6 face between concrete and strengthening...... the structural classification parameters, is inves13 tigated in a non-dimensional analysis, and found to 14 depend strongly on the ratio between interfacial and 15 concrete fracture energies....

  9. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model

    Directory of Open Access Journals (Sweden)

    Wang Yueying

    2017-08-01

    Full Text Available Isolated fractures usually exist in fractured media systems, where the capillary pressure in the fracture is lower than that of the matrix, causing the discrepancy in oil recoveries between fractured and non-fractured porous media. Experiments, analytical solutions and conventional simulation methods based on the continuum model approach are incompetent or insufficient in describing media containing isolated fractures. In this paper, the simulation of the counter-current imbibition in fractured media is based on the discrete-fracture model (DFM. The interlocking or arrangement of matrix and fracture system within the model resembles the traditional discrete fracture network model and the hybrid-mixed-finite-element method is employed to solve the associated equations. The Behbahani experimental data validates our simulation solution for consistency. The simulation results of the fractured media show that the isolated-fractures affect the imbibition in the matrix block. Moreover, the isolated fracture parameters such as fracture length and fracture location influence the trend of the recovery curves. Thus, the counter-current imbibition behavior of media with isolated fractures can be predicted using this method based on the discrete-fracture model.

  10. Discrete Element Method Simulation of a Boulder Extraction From an Asteroid

    Science.gov (United States)

    Kulchitsky, Anton K.; Johnson, Jerome B.; Reeves, David M.; Wilkinson, Allen

    2014-01-01

    The force required to pull 7t and 40t polyhedral boulders from the surface of an asteroid is simulated using the discrete element method considering the effects of microgravity, regolith cohesion and boulder acceleration. The connection between particle surface energy and regolith cohesion is estimated by simulating a cohesion sample tearing test. An optimal constant acceleration is found where the peak net force from inertia and cohesion is a minimum. Peak pulling forces can be further reduced by using linear and quadratic acceleration functions with up to a 40% reduction in force for quadratic acceleration.

  11. Trochanteric fractures

    International Nuclear Information System (INIS)

    Herrlin, K.; Stroemberg, T.; Lidgren, L.; Walloee, A.; Pettersson, H.; Lund Univ.

    1988-01-01

    Four hundred and thirty trochanteric factures operated upon with McLaughlin, Ender or Richard's osteosynthesis were divided into 6 different types based on their radiographic appearance before and immediately after reposition with special reference to the medial cortical support. A significant correlation was found between the fracture type and subsequent mechanical complications where types 1 and 2 gave less, and types 4 and 5 more complications. A comparison of the various osteosyntheses showed that Richard's had significantly fewer complications than either the Ender or McLaughlin types. For Richard's osteosynthesis alone no correlation to fracture type could be made because of the small number of complications in this group. (orig.)

  12. Fracture Blisters

    Directory of Open Access Journals (Sweden)

    Uebbing, Claire M

    2011-02-01

    Full Text Available Fracture blisters are a relatively uncommon complication of fractures in locations of the body, such as the ankle, wrist elbow and foot, where skin adheres tightly to bone with little subcutaneous fat cushioning. The blister that results resembles that of a second degree burn.These blisters significantly alter treatment, making it difficult to splint or cast and often overlying ideal surgical incision sites. Review of the literature reveals no consensus on management; however, most authors agree on early treatment prior to blister formation or delay until blister resolution before attempting surgical correction or stabilization. [West J Emerg Med. 2011;12(1;131-133.

  13. URBAN COHESION: A PUBLIC SPACE NETWORK ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Ana Júlia Pinto

    2015-07-01

    With this in mind, we have analysed one study case in Barcelona – the Barceloneta neighbourhood, a historic quarter outside the old walled city that is now part of its consolidated urban fabric. The analysis of this case allows us to assess both (1 the role that the urban layout plays in the configuration of the public space network, forcing us to reflect on the role of “boundaries” as fundamental elements in the articulation among the local and overall public space networks in the city; and (2 the role of several socio-economic dynamics affecting to the everyday life of these neighbourhoods

  14. RESEARCH PROGRAM ON FRACTURED PETROLEUM RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    2002-04-12

    Numerical simulation of water injection in discrete fractured media with capillary pressure is a challenge. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, they use a discrete-fracture model in which the fractures are discretized as one dimensional entities to account for fracture thickness by an integral form of the flow equations. This simple step greatly improves the numerical solution. Then the discrete-fracture model is implemented using a Galerkin finite element method. The robustness and the accuracy of the approach are shown through several examples. First they consider a single fracture in a rock matrix and compare the results of the discrete-fracture model with a single-porosity model. Then, they use the discrete-fracture model in more complex configurations. Numerical simulations are carried out in water-wet media as well as in mixed-wet media to study the effect of matrix and fracture capillary pressures.

  15. Elbow Fractures

    Science.gov (United States)

    ... is also an important factor when treating elbow fractures. Casts are used more frequently in children, as their risk of developing elbow stiffness is small; however, in an adult, elbow stiffness is much more likely. Rehabilitation directed by your doctor is often used to ...

  16. Wrist Fractures

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Wrist Fractures Email to a friend * required fields ...

  17. Shoulder Fractures

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Shoulder Fractures Email to a friend * required fields ...

  18. Coach-Initiated Motivational Climate and Cohesion in Youth Sport

    Science.gov (United States)

    Eys, Mark A.; Jewitt, Eryn; Evans, M. Blair; Wolf, Svenja; Bruner, Mark W.; Loughead, Todd M.

    2013-01-01

    Purpose: The general purpose of the present study was to examine the link between cohesion and motivational climate in youth sport. The first specific objective was to determine if relationships demonstrated in previous research with adult basketball and handball participants would be replicated in a younger sample and with a more heterogeneous…

  19. Examining the Relationship between Emotional Intelligence and Group Cohesion

    Science.gov (United States)

    Moore, Amanda; Mamiseishvili, Ketevan

    2012-01-01

    Collaborative learning experiences increase student learning, but what happens when students fail to collaborate? The authors investigated the relationship between emotional intelligence and group cohesion by studying 44 undergraduate teams who were completing semester-long projects in their business classes at a small private university in the…

  20. Fear, crime, and social cohesion in urban South Africa | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-12-13

    Dec 13, 2016 ... Social cohesion” broadly refers to the factors that hold a society ... published in March 2016, explores the role of social cohesion and ... Learn more about IDRC's research support to make cities safer through the Safe and Inclusive Cities partnership with the UK's Department for International Development.

  1. Isotropic compression of cohesive-frictional particles with rolling resistance

    NARCIS (Netherlands)

    Luding, Stefan; Benz, Thomas; Nordal, Steinar

    2010-01-01

    Cohesive-frictional and rough powders are the subject of this study. The behavior under isotropic compression is examined for different material properties involving Coulomb friction, rolling-resistance and contact-adhesion. Under isotropic compression, the density continuously increases according

  2. ReaderBench: An Integrated Cohesion-Centered Framework

    NARCIS (Netherlands)

    Dascalu, Mihai; Stavarache, Lucia Larise; Dessus, Philippe; Trausan-Matu, Stefan; McNamara, Danielle S.; Bianco, Maryse

    2015-01-01

    Dascalu, M., Stavarache, L.L., Dessus, P., Trausan-Matu, S., McNamara, D.S., & Bianco, M. (2015). ReaderBench: An Integrated Cohesion-Centered Framework. In G. Conole, T. Klobucar, C. Rensing, J. Konert & É. Lavoué (Eds.), 10th European Conf. on Technology Enhanced Learning (pp. 505–508). Toledo,

  3. Teacher Governance Factors and Social Cohesion: Insights from Pakistan

    Science.gov (United States)

    Halai, Anjum; Durrani, Naureen

    2016-01-01

    This paper explores teacher governance factors, particularly recruitment and deployment of teachers, in relation to inequalities and social cohesion. Pakistan introduced major reforms in education in the post 9/11 context of escalating conflict. These include a merit and needs-based policy on teacher recruitment to eliminate corruption in…

  4. Cohesion and coordination effects on transition metal surface energies

    Science.gov (United States)

    Ruvireta, Judit; Vega, Lorena; Viñes, Francesc

    2017-10-01

    Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.

  5. Interfacial stresses in strengthened beam with shear cohesive zone ...

    Indian Academy of Sciences (India)

    The results of parametric study are compared with those of Smith and Teng. They confirm the accuracy of the proposed approach in predicting both interfacial shear and normal stresses. Keywords. Strengthened beam; interfacial stresses; cohesive zone; shear deformation. 1. Introduction. The FRP plates can be either ...

  6. The Impact of Cooperative Video Games on Team Cohesion

    Science.gov (United States)

    Anderson, Greg

    2010-01-01

    In today's economy, productivity and efficiency require collaboration between employees. In order to improve collaboration the factors affecting teamwork must be examined to identify where changes can be made in order to increase performance. One factor contributing to teamwork is team cohesion and represents a process whereby members are joined…

  7. Explaining Couple Cohesion in Different Types of Gay Families

    Science.gov (United States)

    van Eeden-Moorefield, Brad; Pasley, Kay; Crosbie-Burnett, Margaret; King, Erin

    2012-01-01

    This Internet-based study used data from a convenience sample of 176 gay men in current partnerships to examine differences in outness, cohesion, and relationship quality between three types of gay male couples: first cohabiting partnerships, repartnerships, and gay stepfamilies. Also, we tested whether relationship quality mediated the link…

  8. Meiotic sister chromatid cohesion and recombination in two filamentous fungi

    NARCIS (Netherlands)

    Heemst, van D.

    2000-01-01

    Homologous recombination and sister chromatid cohesion play important roles in the maintenance of genome integrity and the fidelity of chromosome segregation in mitosis and meiosis. Within the living cell, the integrity of the DNA is threatened by various factors that cause DNA-lesions, of

  9. Visibility and anonymity effects on attraction and group cohesiveness

    NARCIS (Netherlands)

    Lea, Martin; Spears, Russell; Watt, Susan E.

    2007-01-01

    This study investigated attraction and group cohesiveness under different visibility and anonymity conditions for social categories that differed in their capacity to be visually cued. Using computer-mediated communication in 36 mixed gender (visually cued category) and nationality (non-visually

  10. Facilitating or hindering social cohesion? The impact of the ...

    African Journals Online (AJOL)

    However, we show in this article that that the impact of the CWP is not always positive and that the CWP may in some cases result in tensions and contradictions that hinder social cohesion and even cause violence. If not implemented in a consultative participatory manner, the CWP may be a source of conflict rather than of ...

  11. Grain-resolving simulations of settling cohesive sediment

    Science.gov (United States)

    Vowinckel, Bernhard; Whithers, Jade; Meiburg, Eckart; Luzzatto-Fegiz, Paolo

    2017-11-01

    Cohesive sediment is ubiquitous in natural environments such as rivers, lakes and coastal ecosystems. For this type of sediment, we can no longer ignore the short-range attractive forces that result in flocculation of aggregates much larger than the individual grain size. Hence, understanding the complex dynamics of the interplay between flocculated sediment and the ambient fluid is of prime interest for managing aquatic environments, although a comprehensive understanding of these phenomena is still lacking. In the present study, we address this issue by carrying out grain-resolved simulations of cohesive particles settling under gravity using the Immersed Boundary Method. We present a computational model formulation to accurately resolve the process of flocculation. The cohesive model is then applied to a complex test case. A randomly distributed ensemble of 1261 polydisperse particles is released in a tank of quiescent fluid. Subsequently, particles start to settle, thereby replacing fluid at the bottom of the tank, which induces a counter flow opposing the settling direction. This mechanism will be compared to experimental studies from the literature, as well as to the non-cohesive counterpart to assessthe impact of flocculation on sedimentation.

  12. Working with Group-Tasks and Group Cohesiveness

    Science.gov (United States)

    Anwar, Khoirul

    2016-01-01

    This study aimed at exploring the connection between the use of group task and group cohesiveness. This study is very important because the nature of the learner's success is largely determined by the values of cooperation, interaction, and understanding of the learning objectives together. Subjects of this study are 28 students on the course…

  13. Cohesive Errors in Writing among ESL Pre-Service Teachers

    Science.gov (United States)

    Kwan, Lisa S. L.; Yunus, Melor Md

    2014-01-01

    Writing is a complex skill and one of the most difficult to master. A teacher's weak writing skills may negatively influence their students. Therefore, reinforcing teacher education by first determining pre-service teachers' writing weaknesses is imperative. This mixed-methods error analysis study aims to examine the cohesive errors in the writing…

  14. Family Cohesion, Adaptability and Composition in Adolescents from Callao, Peru

    Science.gov (United States)

    Villarreal-Zegarra, David; Paz-Jesús, Angel

    2017-01-01

    The objective of the study was to analyze if there are significant differences between family cohesion and adaptability according to the type of family composition (nuclear, extended, single parent and non-nuclear). This is a non-experimental and empirical research, in which a non-probabilistic, cross-sectional, selective and associative strategy…

  15. Writing Cohesion Using Content Lexical Ties in ESOL.

    Science.gov (United States)

    Liu, Dilin

    2000-01-01

    Describes a series of exercises that have proved useful in helping students learning English to enhance their writing skills, particularly cohesion in their writing. Exercises enabled students to learn words in context or in relation to one another as synonyms, antonyms, superordinates, or hyponyms, and a better understanding of these words…

  16. Social cohesion, sexuality, homophobia and women's sport in South ...

    African Journals Online (AJOL)

    ... secondly, that the success of national teams and athletes promotes national pride and unity. ... We explore these issues by drawing on media reports of cases in which ... To realise the potential of sport as a tool for building social cohesion, ...

  17. Botswana team sport players' perception of cohesion and imagery ...

    African Journals Online (AJOL)

    Perception of cohesion and imagery use among 45 elite team sport players in Botswana were assessed with the Group Environment Questionnaire (Carron et al., 1985) and the Sport Imagery Questionnaire (Hall et al., 1998) to determine whether a relationship exists between the variables, and whether imagery use will ...

  18. Leadership, Cohesion, and Team Norms Regarding Cheating and Aggression.

    Science.gov (United States)

    Shields, David Lyle Light; And Others

    1995-01-01

    Study explored leadership, cohesion, and demographic variables in relation to team norms about cheating and aggression. Surveys of high school and college ball players indicated that older age, higher year in school, and more years playing ball correlated positively with expectations of peer cheating and aggression. (SM)

  19. The Relationship between Task Cohesion and Competitive State Anxiety.

    Science.gov (United States)

    Eys, Mark A.; Hardy, James; Carron, Albert V.; Beauchamp, Mark R.

    2003-01-01

    Examined the association between athlete perceptions of task cohesiveness (Individual Attractions to the Group-Task and Group Integration-Task) and the degree to which they viewed their perceptions of the presence of pre-competition anxiety symptoms as facilitative or debilitative. Survey data indicated that the more positive their perceptions of…

  20. Sense of Cohesion among Community Activists Engaging in Volunteer Activity

    Science.gov (United States)

    Levy, Drorit; Itzhaky, Haya; Zanbar, Lea; Schwartz, Chaya

    2012-01-01

    The present article attempts to shed light on the direct and indirect contribution of personal resources and community indices to Sense of Cohesion among activists engaging in community volunteer work. The sample comprised 481 activists. Based on social systems theory, three levels of variables were examined: (1) inputs, which included personal…

  1. Family Cohesion and Level of Communication Between Parents and ...

    African Journals Online (AJOL)

    This study investigated the level of communication between parents and their adolescent children and how such communication affects family cohesion. A sample of 200 subjects made up of adolescents and parents were selected through cluster, stratified and random sampling techniques from ten Local Government Areas ...

  2. IUTAM Symposium on Fracture Phenomena in Nature and Technology

    CERN Document Server

    Carini, Angelo; Gei, Massimiliano; Salvadori, Alberto

    2014-01-01

    This book contains contributions presented at the IUTAM Symposium "Fracture Phenomena in Nature and Technology" held in Brescia, Italy, 1-5 July, 2012.The objective of the Symposium was fracture research, interpreted broadly to include new engineering and structural mechanics treatments of damage development and crack growth, and also large-scale failure processes as exemplified by earthquake or landslide failures, ice shelf break-up, and hydraulic fracturing (natural, or for resource extraction or CO2 sequestration), as well as small-scale rupture phenomena in materials physics including, e.g., inception of shear banding, void growth, adhesion and decohesion in contact and friction, crystal dislocation processes, and atomic/electronic scale treatment of brittle crack tips and fundamental cohesive properties.Special emphasis was given to multiscale fracture description and new scale-bridging formulations capable to substantiate recent experiments and tailored to become the basis for innovative computationa...

  3. Preliminary assessment of the healing of fractures in salt

    International Nuclear Information System (INIS)

    1983-07-01

    Natural fractures in salt are not common but have been observed. An assessment is made of whether and under what conditions such fractures regain cohesion (heal). Evidence comes from observations in mines, commercial processing, and laboratory testing of both fractured and granular salt. Healing can take the form of chemical precipitation, ductile injection, and creep closure. Of these, creep closure is of principal interest. Healing is measured in terms of recovered strength and reduced permeability. It is found to increase with increased confining pressure and is greatly enhanced when the salt is in contact with brine. Research at Sandia National Laboratories has demonstrated salt fracture healing in relatively short time periods under conditions consistent with the environment of a geologic repository. 45 references

  4. Cohesion, Flexibility, and the Mediating Effects of Shared Visionand Compassionon Engagement Army Acquisition Teams

    Science.gov (United States)

    2015-04-01

    issues such as social desirability, negative affect, and acquiescence (Spector, 2006) in the analysis of final model. To test for multicollinearity ...emotional cohesion, cognitive cohesion, and flexibility) are independent with no multicollinearity issues. Development and test of structural

  5. An examination of the relationship between athlete leadership and cohesion using social network analysis.

    Science.gov (United States)

    Loughead, Todd M; Fransen, Katrien; Van Puyenbroeck, Stef; Hoffmann, Matt D; De Cuyper, Bert; Vanbeselaere, Norbert; Boen, Filip

    2016-11-01

    Two studies investigated the structure of different athlete leadership networks and its relationship to cohesion using social network analysis. In Study 1, we examined the relationship between a general leadership quality network and task and social cohesion as measured by the Group Environment Questionnaire (GEQ). In Study 2, we investigated the leadership networks for four different athlete leadership roles (task, motivational, social and external) and their association with task and social cohesion networks. In Study 1, the results demonstrated that the general leadership quality network was positively related to task and social cohesion. The results from Study 2 indicated positive correlations between the four leadership networks and task and social cohesion networks. Further, the motivational leadership network emerged as the strongest predictor of the task cohesion network, while the social leadership network was the strongest predictor of the social cohesion network. The results complement a growing body of research indicating that athlete leadership has a positive association with cohesion.

  6. The Effects Of Physical And Biological Cohesion On Bedforms

    Science.gov (United States)

    Parsons, D. R.; Schindler, R.; Baas, J.; Hope, J. A.; Malarkey, J.; Paterson, D. M.; Peakall, J.; Manning, A. J.; Ye, L.; Aspden, R.; Alan, D.; Bass, S. J.

    2014-12-01

    Most coastal sediments consist of complex mixtures of cohesionless sands, physically-cohesive clays and extra cellular polymeric substances (EPS) that impart biological cohesion. Yet, our ability to predict bedform dimensions in these substrates is reliant on predictions based exclusively on cohesionless sand. We present findings from the COHBED project - which explicitly examines how bedform dynamics are modified by natural cohesion. Our experimental results show that for ripples, height and length are inversely proportional to initial clay content and bedforms take longer to appear, with no ripples when clay content exceeds 18%. When clay is replaced by EPS the development time and time of first appearance of ripples both increase by two orders of magnitude, with no bedforms above 0.125% EPS. For dunes, height and length are also inversely proportional to initial substrate clay content, resulting in a transition from dunes to ripples normally associated with velocity decreases. Addition of low EPS concentrations into the substrate results in yet smaller bedforms at the same clay contents and at high EPS concentrations, biological cohesion supersedes all electrostatic bonding, and bedform size is no longer related to mud content. The contrast in physical and biological cohesion effects on bedform development result from the disparity between inter-particle electrostatic bonding of clay particles and EPS grain coating and strands that physically link sediments together, which effects winnowing rates as bedforms evolve. These findings have wide ranging implications for bedform predictions in both modern and ancient environments. Coupling of biological and morphological processes not only requires an understanding of how bedform dimensions influence biota and habitat, but also how benthic species can modify bedform dimensions. Consideration of both aspects provides a means in which fluid dynamics, sediment transport and ecosystem energetics can be linked to yield

  7. The Influence of Neighborhood Aesthetics, Safety, and Social Cohesion on Perceived Stress in Disadvantaged Communities.

    Science.gov (United States)

    Henderson, Heather; Child, Stephanie; Moore, Spencer; Moore, Justin B; Kaczynski, Andrew T

    2016-09-01

    Limited research has explored how specific elements of physical and social environments influence mental health indicators such as perceived stress, or whether such associations are moderated by gender. This study examined the relationship between selected neighborhood characteristics and perceived stress levels within a primarily low-income, older, African-American population in a mid-sized city in the Southeastern U.S. Residents (n = 394; mean age=55.3 years, 70.9% female, 89.3% African American) from eight historically disadvantaged neighborhoods completed surveys measuring perceptions of neighborhood safety, social cohesion, aesthetics, and stress. Multivariate linear regression models examined the association between each of the three neighborhood characteristics and perceived stress. Greater perceived safety, improved neighborhood aesthetics, and social cohesion were significantly associated with lower perceived stress. These associations were not moderated by gender. These findings suggest that improving social attributes of neighborhoods may have positive impacts on stress and related benefits for population health. Future research should examine how neighborhood characteristics influence stress over time. © Society for Community Research and Action 2016.

  8. The holistic concepts of disaster management and social cohesion - statistics and method

    Directory of Open Access Journals (Sweden)

    Gheorghe SĂVOIU

    2011-09-01

    Full Text Available The paper uses a multidisciplinary approach to underline the importance of some holistic concepts like social cohesion and human ecology, and also to assess environmental and economic specificity of these new ecological and social terms. The structure of the paper consists of an introduction describing the transition from mythological existence to the contemporary holistic view and four sections. While, the first section details the vital elements of the ecosphere in the new holistic sense, the second describes the holistic concept of human ecology, and the third details the significance, importance and impact of the contemporary management disasters and some global statistics. The last section summarize a statistical method known as the social cohesion evaluation, applied by the author in our country, during Romania’s admission period to EU, that in conjunction with holistic concept of human ecology represent new necessary analysis in this decade. Some final remarks underline the importance of a new approach in economics based on holistic principle and reciprocity.

  9. Adhesive and Cohesive Strength in FeB/Fe2B Systems

    Science.gov (United States)

    Meneses-Amador, A.; Blancas-Pérez, D.; Corpus-Mejía, R.; Rodríguez-Castro, G. A.; Martínez-Trinidad, J.; Jiménez-Tinoco, L. F.

    2018-05-01

    In this work, FeB/Fe2B systems were evaluated by the scratch test. The powder-pack boriding process was performed on the surface of AISI M2 steel. The mechanical parameters, such as yield stress and Young's modulus of the boride layer, were obtained by the instrumented indentation technique. Residual stresses produced on the boride layer were estimated by using the x-ray diffraction (XRD) technique. The scratch test was performed in order to evaluate the cohesive/adhesive strength of the FeB/Fe2B coating. In addition, a numerical evaluation of the scratch test on boride layers was performed by the finite element method. Maximum principal stresses were related to the failure mechanisms observed by the experimental scratch test. Shear stresses at the interfaces of the FeB/Fe2B/substrate system were also evaluated. Finally, the results obtained provide essential information about the effect of the layer thickness, the residual stresses, and the resilience modulus on the cohesive/adhesive strength in FeB/Fe2B systems.

  10. Bimalleolar ankle fracture with proximal fibular fracture

    NARCIS (Netherlands)

    Colenbrander, R. J.; Struijs, P. A. A.; Ultee, J. M.

    2005-01-01

    A 56-year-old female patient suffered a bimalleolar ankle fracture with an additional proximal fibular fracture. This is an unusual fracture type, seldom reported in literature. It was operatively treated by open reduction and internal fixation of the lateral malleolar fracture. The proximal fibular

  11. Estimating cohesion in small groups using audio-visual nonverbal behavior

    NARCIS (Netherlands)

    Hung, H.; Gatica-Perez, D.

    2010-01-01

    Cohesiveness in teams is an essential part of ensuring the smooth running of task-oriented groups. Research in social psychology and management has shown that good cohesion in groups can be correlated with team effectiveness or productivity, so automatically estimating group cohesion for team

  12. TIBIAL PERIPROSTHETIC FRACTURE COMBINED WITH TIBIAL STEM STRESS FRACTURE FROM TOTAL KNEE ARTHROPLASTY

    OpenAIRE

    Fonseca, Fernando; Rebelo, Edgar; Completo, Antonio

    2011-01-01

    Total knee arthroplasty complications related to the prosthetic material are very rare, except for polyethylene wear. We report the case of a 58-year-old woman who came to the emergency service of our hospital with a periprosthetic tibial fracture (Mayo Clinic type I). Careful examination showed that this fracture was concomitantly associated with a tibial stem fatigue fracture. The prosthesis and the stem were sent to an independent biomechanics laboratory for evaluation. A finite-element CA...

  13. Well test analysis in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K.

    1987-04-01

    The behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. These models are based on the assumption that a fracture system under well test conditions may be represented by two concentric regions, one representing a small number of fractures that dominates flow near the well, and the other representing average conditions farther away from the well. Type curves are presented that can be used to find the flow parameters of these two regions and the extent of the inner concentric region. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented.

  14. Psychobiological Assessment and Enhancement of Team Cohesion and Psychological Resilience in ROTC Cadets Using a Virtual-Reality Team Cohesion Test

    Science.gov (United States)

    2016-06-01

    Using a Virtual - Reality Team Cohesion Test PRINCIPAL INVESTIGATOR: Josh Woolley MD/PhD CONTRACTING ORGANIZATION: NORTHERN CALIFORNIA INSTITUTE SAN...Team Cohesion and Psychological Resilience in ROTC Cadets Using a Virtual - Reality Team Cohesion Test 5b. GRANT NUMBER W81XWH-15-1-0042 5c. PROGRAM...targets while flying a virtual air vehicle. No individual has access to all the necessary information or controls, so operating as a team is crucial

  15. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    Science.gov (United States)

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  16. A numerical insight into elastomer normally closed micro valve actuation with cohesive interfacial cracking modelling

    Science.gov (United States)

    Wang, Dongyang; Ba, Dechun; Hao, Ming; Duan, Qihui; Liu, Kun; Mei, Qi

    2018-05-01

    Pneumatic NC (normally closed) valves are widely used in high density microfluidics systems. To improve actuation reliability, the actuation pressure needs to be reduced. In this work, we utilize 3D FEM (finite element method) modelling to get an insight into the valve actuation process numerically. Specifically, the progressive debonding process at the elastomer interface is simulated with CZM (cohesive zone model) method. To minimize the actuation pressure, the V-shape design has been investigated and compared with a normal straight design. The geometrical effects of valve shape has been elaborated, in terms of valve actuation pressure. Based on our simulated results, we formulate the main concerns for micro valve design and fabrication, which is significant for minimizing actuation pressures and ensuring reliable operation.

  17. Grain boundary embrittlement and cohesion enhancement in copper

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Anthony; Lozovoi, Alexander [Atomistic Simulation Centre, Queen' s University Belfast, BT7 1NN (United Kingdom); Schweinfest, Rainer [Science+Computing ag, Hagellocher Weg 71-5, 720270 T ubingen (Germany); Finnis, Michael [Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2008-07-01

    There has been a long standing debate surrounding the mechanism of grain boundary embrittlement and cohesion enhancement in metals. Embrittlement can lead to catastrophic failure such as happened in the Hinkley Point disaster, or indeed in the case of the Titanic. This kind of embrittlement is caused by segregation of low solubility impurities to grain boundaries. While the accepted wisdom is that this is a phenomenon driven by electronic or chemical factors, using language such as charge transfer and electronegativity difference; we believe that in copper, at least, both cohesion enhancement and reduction are caused by a simple size effect. We have developed a theory that allows us to separate unambiguously, if not uniquely, chemical and structural factors. We have studied a large number of solutes in copper using first principles atomistic simulation to support this argument, and the results of these calculations are presented here.

  18. The limits of social capital: Durkheim, suicide, and social cohesion.

    Science.gov (United States)

    Kushner, Howard I; Sterk, Claire E

    2005-07-01

    Recent applications of social capital theories to population health often draw on classic sociological theories for validation of the protective features of social cohesion and social integration. Durkheim's work on suicide has been cited as evidence that modern life disrupts social cohesion and results in a greater risk of morbidity and mortality-including self-destructive behaviors and suicide. We argue that a close reading of Durkheim's evidence supports the opposite conclusion and that the incidence of self-destructive behaviors such as suicide is often greatest among those with high levels of social integration. A reexamination of Durkheim's data on female suicide and suicide in the military suggests that we should be skeptical about recent studies connecting improved population health to social capital.

  19. Comparison of fracture properties of cellulose nanopaper, printing paper and buckypaper

    DEFF Research Database (Denmark)

    Mao, Rui; Goutianos, Stergios; Tu, Wei-Chen

    2017-01-01

    Cellulose nanopaper consists of a dense fibrous self-binding network composed of cellulose nanofibres connected by physical entanglements, hydrogen bonding, etc. Compared with conventional printing paper, cellulose nanopaper has higher strength and modulus because of stronger fibres and inter......-fibre bonding. The aim of this paper is to investigate the fracture properties of cellulose nanopaper using double edge notch tensile tests on samples with different notch lengths. It was found that strength is insensitive to notch length. A cohesive zone model was used to describe the fracture behaviour...... of notched cellulose nanopaper. Fracture energy was extracted from the cohesive zone model and divided into an energy component consumed by damage in the material and a component related to pull-out or bridging of nanofibres between crack surfaces which was not facilitated due to the limited fibre lengths...

  20. Social cohesion and civil law: marriage, divorce and religious courts

    OpenAIRE

    Douglas, Gillian; Doe, Christopher Norman; Gilliat-Ray, Sophie; Sandberg, Russell; Khan, Asma

    2011-01-01

    This Cardiff University study of religious courts and tribunals across the UK has been funded by the AHRC/ESRC Religion and Society Programme. The project, „Social Cohesion and Civil Law: Marriage, Divorce and Religious Courts‟, explores how religious law functions alongside civil law in England and Wales.\\ud The context, though not the catalyst, for our study, is the lecture given by the Archbishop of Canterbury in 2008 on the relationship between religious law - primarily though not exclusi...

  1. Family Change and Implications for Family Solidarity and Social Cohesion

    Directory of Open Access Journals (Sweden)

    Ravanera, Zenaida

    2008-01-01

    Full Text Available EnglishSocial cohesion can be viewed in terms of common projects and networks of social relations that characterize families, communities and society. In the past decades, the basis for family cohesion has shifted from organic to mechanical or from breadwinner to collaborative model. As in many Western countries, data on family change in Canada point to a greater flexibility in the entry and exit from relationships, a delay in the timing of family events, and a diversity of family forms. After looking at changes in families and in the family setting of individuals, the paper considers both intra-family cohesion and families as basis for social cohesion. Implications are raised for adults, children and publicp olicy.FrenchLa cohésion sociale peut se voir à travers les projets communs et les réseaux desrelations sociales qui caractérisent les familles, les communautés et les sociétés.La base de cohésion familiale est passée d’organique à mécanique, pour utiliserles termes de Durkheim, ou vers un modèle de collaboration plutôt qu’unepartage asymétrique de tâches. Comme dans d’autres sociétés orientales, lafamille au Canada est devenue plus flexible par rapport aux entrées et sortiesd’unions, il y a un délais dans les événements familiaux, et une variété deformes de familles. Après un regard sur les changements dans les familles etdans la situation familiale des individus, nous considérons la cohésion intrafamilialeet la famille comme base de cohésion sociale. Nous discutons desimpacts sur les adultes, les enfants et la politique publique.

  2. Multiple intersecting cohesive discontinuities in 3D reservoir geomechanics

    OpenAIRE

    Das, K. C.; Sandha, S.S.; Carol, Ignacio; Vargas, P.E.; Gonzalez, Nubia Aurora; Rodrigues, E.; Segura Segarra, José María; Lakshmikantha, Ramasesha Mookanahallipatna; Mello,, U.

    2013-01-01

    Reservoir Geomechanics is playing an increasingly important role in developing and producing hydrocarbon reserves. One of the main challenges in reservoir modeling is accurate and efficient simulation of arbitrary intersecting faults. In this paper, we propose a new formulation to model multiple intersecting cohesive discontinuities (faults) in reservoirs using the XFEM framework. This formulation involves construction of enrichment functions and computation of stiffness sub-matrices for bulk...

  3. Fracture induced electromagnetic radiation

    International Nuclear Information System (INIS)

    Frid, V; Rabinovitch, A; Bahat, D

    2003-01-01

    In our laboratory, we combine accurate electromagnetic radiation (EMR) measurements during fracture of rocks (carbonate and igneous) and transparent materials (glass, PMMA and glass ceramics) with careful fractographic methods. A critical analysis of experimental observations, accumulated here during the last decade together with supporting material from the works of other authors are used in this study to demonstrate the failure of all current models to explain the properties of EMR arising from fracture. The basic elements of a new model are proposed. These are (a) the EMR amplitude increases as long as the crack continues to grow, since new atomic bonds are severed and their contribution is added to the EMR. As a result, the atoms on both sides of the bonds are moved to 'non-equilibrium' positions relative to their steady state ones and begin to oscillate collectively in a manner similar to Debye model bulk oscillations - 'surface vibrational optical waves'; (b) when the crack halts, the waves and the EMR pulse amplitude decay by relaxation. These basic elements are already enough to describe the characteristics of the experimentally obtained isolated individual EMR pulses. These characteristics include the shape of the EMR pulse envelope, and the frequency, time duration and rise - fall time of the pulse

  4. Fracture induced electromagnetic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Frid, V [Geological and Environmental Sciences Department, Deichmann Rock Mechanics Laboratory of the Negev, Ben Gurion University of the Negev, Beer Sheva (Israel); Rabinovitch, A [Physics Department, Deichmann Rock Mechanics Laboratory of the Negev, Ben Gurion University of the Negev, Beer Sheva (Israel); Bahat, D [Geological and Environmental Sciences Department, Deichmann Rock Mechanics Laboratory of the Negev, Ben Gurion University of the Negev, Beer Sheva (Israel)

    2003-07-07

    In our laboratory, we combine accurate electromagnetic radiation (EMR) measurements during fracture of rocks (carbonate and igneous) and transparent materials (glass, PMMA and glass ceramics) with careful fractographic methods. A critical analysis of experimental observations, accumulated here during the last decade together with supporting material from the works of other authors are used in this study to demonstrate the failure of all current models to explain the properties of EMR arising from fracture. The basic elements of a new model are proposed. These are (a) the EMR amplitude increases as long as the crack continues to grow, since new atomic bonds are severed and their contribution is added to the EMR. As a result, the atoms on both sides of the bonds are moved to 'non-equilibrium' positions relative to their steady state ones and begin to oscillate collectively in a manner similar to Debye model bulk oscillations - 'surface vibrational optical waves'; (b) when the crack halts, the waves and the EMR pulse amplitude decay by relaxation. These basic elements are already enough to describe the characteristics of the experimentally obtained isolated individual EMR pulses. These characteristics include the shape of the EMR pulse envelope, and the frequency, time duration and rise - fall time of the pulse.

  5. The Process Architecture of EU Territorial Cohesion Policy

    Directory of Open Access Journals (Sweden)

    Andreas Faludi

    2010-08-01

    Full Text Available When preparing the European Spatial Development Perspective (ESDP, Member States were supported by the European Commission but denied the EU a competence in the matter. Currently, the Treaty of Lisbon identifies territorial cohesion as a competence shared between the Union and the Member States. This paper is about the process architecture of territorial cohesion policy. In the past, this architecture resembled the Open Method of Coordination (OMC which the White Paper on European Governance praised, but only in areas where there was no EU competence. This reflected zero-sum thinking which may continue even under the Lisbon Treaty. After all, for as long as territorial cohesion was not a competence, voluntary cooperation as practiced in the ESDP process was pursued in this way. However, the practice of EU policies, even in areas where there is an EU competence, often exhibits features of the OMC. Surprisingly effective innovations hold the promise of rendering institutions of decision making comprehensible and democratically accountable. In the EU as a functioning polity decision making is thus at least part deliberative so that actors’ preferences are transformed by the force of the better argument. This brings into focus the socialisation of the deliberators into epistemic communities. Largely an informal process, this is reminiscent of European spatial planning having been characterised as a learning process.

  6. Influence of magnetic cohesion on the stability of granular slopes.

    Science.gov (United States)

    Taylor, K; King, P J; Swift, Michael R

    2008-09-01

    We use a molecular dynamics model to simulate the formation and evolution of a granular pile in two dimensions in order to gain a better understanding of the role of magnetic interactions in avalanche dynamics. We find that the angle of repose increases only slowly with magnetic field; the increase in angle is small even for intergrain cohesive forces many times stronger than gravity. The magnetic forces within the bulk of the pile partially cancel as a result of the anisotropic nature of the dipole-dipole interaction between grains. However, we show that this cancellation effect is not sufficiently strong to explain the discrepancy between the angle of repose in wet systems and magnetically cohesive systems. In our simulations we observe shearing deep within the pile, and we argue that it is this motion that prevents the angle of repose from increasing dramatically. We also investigate different implementations of friction with the front and back walls of the container, and conclude that the nature of the friction dramatically affects the influence of magnetic cohesion on the angle of repose.

  7. The Role of Lexical Cohesion in Writing Quality

    Directory of Open Access Journals (Sweden)

    Hmoud Alotaibi

    2015-01-01

    Full Text Available The idea of whether repetition has any relation with the writing quality of the text has remained an issue that intrigues a number of scholars in linguistics and in writing studies. Michael Hoey (1991, Halliday and Hasan (1976 are two prominent works in presenting detailed and thoughtful analysis of repetition occurrences in the text. This study uses a model of lexical cohesion proposed by Witte and Faigley (1981 which itself is based on the taxonomies of cohesive ties presented by Halliday and Hasan (1976.  The model deals with lexical cohesion and its subclasses, namely, repetition (same type, synonym, near-synonym, super-ordinate item, and general item and collocation. The corpus includes five argumentative essays written by students in the field of English language literature. Five teaching assistants were asked to rank the papers on a five-point scale based on their perception of the papers’ writing quality. The results showed that the paper that received the lowest rating in terms of the writing quality was the one that included the largest number of repetition occurrences of the same type. The study concludes by arguing that repetition may not be considered as monolithic, and suggests that every type of repetition needs to be examined individually in order to determine what enhances and what deteriorates the writing quality.

  8. An examination of the cohesion-performance relationship in university hockey teams.

    Science.gov (United States)

    Slater, M R; Sewell, D F

    1994-10-01

    The objective of this study was to assess, using the Group Environment Questionnaire, whether team cohesion in university-level field hockey was a cause for, or an effect of, successful performance. A quasi-experimental longitudinal design with cross-lagged correlational analysis was adopted and measures of cohesion and performance were taken midway and later in the season. The results of the synchronous correlations showed a positive relationship (with good stationarity) between team cohesion and performance outcome. Although non-significant cross-lagged differentials indicated a circular relationship, the magnitudes of both the cross-lagged correlations and the partial correlations, together with multiple-regression analyses, revealed that the stronger flow was from cohesion to performance. The socially oriented aspects of cohesion, in particular, had significant associations with performance. The results imply that cohesion-performance relationships should be examined within a circular model, in which cohesion and performance are interdependent.

  9. Petrous bone fracture: a virtual trauma analysis.

    Science.gov (United States)

    Montava, Marion; Deveze, Arnaud; Arnoux, Pierre-Jean; Bidal, Samuel; Brunet, Christian; Lavieille, Jean-Pierre

    2012-06-01

    The temporal bone shields sensorineural, nervous, and vascular structures explaining the potential severity and complications of trauma related to road and sport accidents. So far, no clear data are available on the exact mechanisms involved for fracture processes. Modelization of structures helps to answer these concerns. Our objective was to design a finite element model of the petrous bone structure to modelize temporal bone fracture propagation in a scenario of lateral impact. A finite element model of the petrous bone structure was designed based on computed tomography data. A 7-m/s lateral impact was simulated to reproduce a typical lateral trauma. Results of model analysis was based on force recorded, stress level on bone structure up to induce a solution of continuity of the bony structure. Model simulation showed that bone fractures follow the main axes of the petrous bone and occurred in a 2-step process: first, a crush, and second, a massive fissuration of the petrous bone. The lines of fracture obtained by simulation of a lateral impact converge toward the middle ear region. This longitudinal fracture is located at the mastoid-petrous pyramid junction. Using this model, it was possible to map petrous bone fractures including fracture chronology and areas of fusion of the middle ear region. This technique may represent a first step to investigate the pathophysiology of the petrous bone fractures, aiming to define prognostic criteria for patients' care.

  10. Modeling the effect of preexisting joints on normal fault geometries using a brittle and cohesive material

    Science.gov (United States)

    Kettermann, M.; van Gent, H. W.; Urai, J. L.

    2012-04-01

    Brittle rocks, such as for example those hosting many carbonate or sandstone reservoirs, are often affected by different kinds of fractures that influence each other. Understanding the effects of these interactions on fault geometries and the formation of cavities and potential fluid pathways might be useful for reservoir quality prediction and production. Analogue modeling has proven to be a useful tool to study faulting processes, although usually the used materials do not provide cohesion and tensile strength, which are essential to create open fractures. Therefore, very fine-grained, cohesive, hemihydrate powder was used for our experiments. The mechanical properties of the material are scaling well for natural prototypes. Due to the fine grain size structures are preserved in in great detail. The used deformation box allows the formation of a half-graben and has initial dimensions of 30 cm width, 28 cm length and 20 cm height. The maximum dip-slip along the 60° dipping predefined basement fault is 4.5 cm and was fully used in all experiments. To setup open joints prior to faulting, sheets of paper placed vertically within the box to a depth of about 5 cm from top. The powder was then sieved into the box, embedding the paper almost entirely. Finally strings were used to remove the paper carefully, leaving open voids. Using this method allows the creation of cohesionless open joints while ensuring a minimum impact on the sensitive surrounding material. The presented series of experiments aims to investigate the effect of different angles between the strike of a rigid basement fault and a distinct joint set. All experiments were performed with a joint spacing of 2.5 cm and the fault-joint angles incrementally covered 0°, 4°, 8°, 12°, 16°, 20° and 25°. During the deformation time lapse photography from the top and side captured every structural change and provided data for post-processing analysis using particle imaging velocimetry (PIV). Additionally

  11. Interrelations between EOS parameters and cohesive energy of transition metals: Thermostatistical approach, ab initio calculations and analysis of ;universality; features

    Science.gov (United States)

    Bertoldi, Dalía S.; Ramos, Susana B.; Guillermet, Armando Fernández

    2017-08-01

    We present a theoretical analysis of the equation of state (EOS) of metals using a quasi-harmonic Einstein model with a dimensionless cohesive energy versus distance function (F(z)) involving the Wigner-Seitz radius and a material-dependent scaling length, as suggested in classical works by Rose, Ferrante, Smith and collaborators. Using this model, and "universal" values for the function and its first and second derivatives at the equilibrium distance (z=0), three general interrelations between EOS parameters and the cohesive energy are obtained. The first correlation involves the bulk modulus, and the second, the thermal expansion coefficient. In order to test these results an extensive database is developed, which involves available experimental data, and results of current ab initio density-functional-theory calculations using the VASP code. In particular, the 0 K values for volume, bulk modulus, its pressure derivative, and the cohesive energy of 27 elements belonging to the first (Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Zn), second (Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd) and third (Hf, Ta, W, Re, Os, Ir, Pt, Au) transition row of the Periodic Table are calculated ab initio and used to test the present results. The third correlation obtained, allows an evaluation of the third derivative of F(z) at z=0 for the current elements. With this new information, a discussion is presented of the possibility of finding a "universal" F(z) versus z function able to account accurately for the pressure derivative of the bulk modulus of the transition elements.

  12. Analytical, numerical and experimental investigations of transverse fracture propagation from horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M.; Hossain, M.M.; Crosby, D.G.; Rahman, M.K.; Rahman, S.S. [School of Petroleum Engineering, The University of New South Wales, 2052 Sydney (Australia)

    2002-08-01

    This paper presents results of a comprehensive study involving analytical, numerical and experimental investigations into transverse fracture propagation from horizontal wells. The propagation of transverse hydraulic fractures from horizontal wells is simulated and investigated in the laboratory using carefully designed experimental setups. Closed-form analytical theories for Mode I (opening) stress intensity factors for idealized fracture geometries are reviewed, and a boundary element-based model is used herein to investigate non-planar propagation of fractures. Using the mixed mode fracture propagation criterion of the model, a reasonable agreement is found with respect to fracture geometry, net fracture pressures and fracture propagation paths between the modeled fractures and the laboratory tested fractures. These results suggest that the propagation of multiple fractures requires higher net pressures than a single fracture, the underlying reason of which is theoretically justified on the basis of local stress distribution.

  13. Hip fracture - discharge

    Science.gov (United States)

    ... neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge ... in the hospital for surgery to repair a hip fracture, a break in the upper part of ...

  14. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress.

    Science.gov (United States)

    Mathieu, L; Bertrand, I; Abe, Y; Angel, E; Block, J C; Skali-Lami, S; Francius, G

    2014-05-15

    Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τw (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. When rapidly increasing the hydrodynamic constraint, biofilm removal was found to be dependent on a dual process of erosion and coalescence of the biofilm clusters. Indeed, 56% of the biofilm cells were removed with, concomitantly, a decrease in the number of the 50-300 μm(3) clusters and an increase in the number of the smaller (i.e., 600 μm(3)) ones. Moreover, AFM evidenced the strengthening of the biofilm structure along with the doubling of the number of contact points, NC, per cluster volume unit following the hydrodynamic disturbance. This suggests that the compactness of the biofilm exopolymers increases with hydrodynamic stress. Shock chlorination removed cells (-75%) from the biofilm while reducing the volume of biofilm clusters. Oxidation stress resulted in a decrease in the cohesive strength profile of the remaining drinking water biofilms linked to a reduction in the number of contact points within the biofilm network structure in particular for the largest biofilm cluster volumes (>200 μm(3)). Changes in the cohesive

  15. Transport of Particle Swarms Through Variable Aperture Fractures

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2012-12-01

    Particle transport through fractured rock is a key concern with the increased use of micro- and nano-size particles in consumer products as well as from other activities in the sub- and near surface (e.g. mining, industrial waste, hydraulic fracturing, etc.). While particle transport is often studied as the transport of emulsions or dispersions, particles may also enter the subsurface from leaks or seepage that lead to particle swarms. Swarms are drop-like collections of millions of colloidal-sized particles that exhibit a number of unique characteristics when compared to dispersions and emulsions. Any contaminant or engineered particle that forms a swarm can be transported farther, faster, and more cohesively in fractures than would be expected from a traditional dispersion model. In this study, the effects of several variable aperture fractures on colloidal swarm cohesiveness and evolution were studied as a swarm fell under gravity and interacted with the fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with (1) a uniform aperture, (2) a converging region followed by a uniform region (funnel shaped), (3) a uniform region followed by a diverging region (inverted funnel), and (4) a cast of a an induced fracture from a carbonate rock. All of the samples consisted of two blocks that measured 100 x 100 x 50 mm. The minimum separation between these blocks determined the nominal aperture (0.5 mm to 20 mm). During experiments a fracture was fully submerged in water and swarms were released into it. The swarms consisted of a dilute suspension of 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. The variation in fracture aperture controlled swarm behavior. Diverging apertures caused a sudden loss of confinement that resulted in a rapid change in the swarm's shape as well as a sharp increase in its velocity

  16. On the failure analysis of bondlines: Stress or energy based fracture criteria?

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos

    2014-01-01

    that characterizes a given bondline, both its cohesive strength and fracture toughness material parameters must be experimentally defined. Based on these properties, failure analysis of the bondline can be done either through stress- or energy-based criteria. The aim of this work is to investigate the effectiveness...... to classify the wide range of bondlines with respect to the failure theory that best describes the debonding process. Cohesive length scale effects are first demonstrated by modeling end notch flexure geometries and later by modeling double strap joint geometries within the framework of a wide numerical...

  17. The optimal XFEM approximation for fracture analysis

    International Nuclear Information System (INIS)

    Jiang Shouyan; Du Chengbin; Ying Zongquan

    2010-01-01

    The extended finite element method (XFEM) provides an effective tool for analyzing fracture mechanics problems. A XFEM approximation consists of standard finite elements which are used in the major part of the domain and enriched elements in the enriched sub-domain for capturing special solution properties such as discontinuities and singularities. However, two issues in the standard XFEM should specially be concerned: efficient numerical integration methods and an appropriate construction of the blending elements. In the paper, an optimal XFEM approximation is proposed to overcome the disadvantage mentioned above in the standard XFEM. The modified enrichment functions are presented that can reproduced exactly everywhere in the domain. The corresponding FORTRAN program is developed for fracture analysis. A classic problem of fracture mechanics is used to benchmark the program. The results indicate that the optimal XFEM can alleviate the errors and improve numerical precision.

  18. Well test analysis in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K.

    1986-04-01

    In this study the behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented. This model develops an explicit solution in the porous matrix as well as in the discrete fractures. Because the model does not require the assumptions of the conventional double porosity approach, it may be used to simulate cases where double porosity models fail.

  19. A cavitation transition in the energy landscape of simple cohesive liquids and glasses

    International Nuclear Information System (INIS)

    Altabet, Y. Elia; Debenedetti, Pablo G.; Stillinger, Frank H.

    2016-01-01

    In particle systems with cohesive interactions, the pressure-density relationship of the mechanically stable inherent structures sampled along a liquid isotherm (i.e., the equation of state of an energy landscape) will display a minimum at the Sastry density ρ S . The tensile limit at ρ S is due to cavitation that occurs upon energy minimization, and previous characterizations of this behavior suggested that ρ S is a spinodal-like limit that separates all homogeneous and fractured inherent structures. Here, we revisit the phenomenology of Sastry behavior and find that it is subject to considerable finite-size effects, and the development of the inherent structure equation of state with system size is consistent with the finite-size rounding of an athermal phase transition. What appears to be a continuous spinodal-like point at finite system sizes becomes discontinuous in the thermodynamic limit, indicating behavior akin to a phase transition. We also study cavitation in glassy packings subjected to athermal expansion. Many individual expansion trajectories averaged together produce a smooth equation of state, which we find also exhibits features of finite-size rounding, and the examples studied in this work give rise to a larger limiting tension than for the corresponding landscape equation of state.

  20. Proximal femoral fractures.

    Science.gov (United States)

    Webb, Lawrence X

    2002-01-01

    Fractures of the proximal femur include fractures of the head, neck, intertrochanteric, and subtrochanteric regions. Head fractures commonly accompany dislocations. Neck fractures and intertrochanteric fractures occur with greatest frequency in elderly patients with a low bone mineral density and are produced by low-energy mechanisms. Subtrochanteric fractures occur in a predominantly strong cortical osseous region which is exposed to large compressive stresses. Implants used to address these fractures must be able to accommodate significant loads while the fractures consolidate. Complications secondary to these injuries produce significant morbidity and include infection, nonunion, malunion, decubitus ulcers, fat emboli, deep venous thrombosis, pulmonary embolus, pneumonia, myocardial infarction, stroke, and death.