WorldWideScience

Sample records for elegans neuromuscular junction

  1. Electrophysiological study in neuromuscular junction disorders

    Directory of Open Access Journals (Sweden)

    Ajith Cherian

    2013-01-01

    Full Text Available This review is on ultrastructure and subcellular physiology at normal and abnormal neuromuscular junctions. The clinical and electrophysiological findings in myasthenia gravis, Lambert-Eaton myasthenic syndrome (LEMS, congenital myasthenic syndromes, and botulinum intoxication are discussed. Single fiber electromyography (SFEMG helps to explain the basis of testing neuromuscular junction function by repetitive nerve stimulation (RNS. SFEMG requires skill and patience and its availability is limited to a few centers. For RNS supramaximal stimulation is essential and so is display of the whole waveform of each muscle response at maximum amplitude. The amplitudes of the negative phase of the first and fourth responses are measured from baseline to negative peak, and the percent change of the fourth response compared with the first represents the decrement or increment. A decrement greater than 10% is accepted as abnormal and smooth progression of response amplitude train and reproducibility form the crux. In suspected LEMS the effect of fast rates of stimulation should be determined after RNS response to slow rates of stimulation. Caution is required to avoid misinterpretation of potentiation and pseudofacilitation.

  2. Motor neuron, nerve, and neuromuscular junction disease.

    Science.gov (United States)

    Finsterer, Josef; Papić, Lea; Auer-Grumbach, Michaela

    2011-10-01

    The aim is to review the most relevant findings published during the last year concerning clinical, genetic, pathogenic, and therapeutic advances in motor neuron disease, neuropathies, and neuromuscular junction disorders. Studies on animal and cell models have improved the understanding of how mutated survival motor neuron protein in spinal muscular atrophy governs the pathogenetic processes. New phenotypes of SOD1 mutations have been described. Moreover, animal models enhanced the insight into the pathogenetic background of sporadic and familial amyotrophic lateral sclerosis. Novel treatment options for motor neuron disease have been described in humans and animal models. Considerable progress has been achieved also in elucidating the genetic background of many forms of inherited neuropathies and high clinical and genetic heterogeneity has been demonstrated. Mutations in MuSK and GFTP1 have been shown to cause new types of congenital myasthenic syndromes. A third type of autoantibodies (Lrp4) has been detected to cause myasthenia gravis. Advances in the clinical and genetic characterization of motor neuron diseases, neuropathies, and neuromuscular transmission defects have important implications on the fundamental understanding, diagnosis, and management of these disorders. Identification of crucial steps of the pathogenetic process may provide the basis for the development of novel therapeutic strategies.

  3. Ultrastructural muscle and neuro-muscular junction alterations in polymyositis

    Directory of Open Access Journals (Sweden)

    L. L. Babakova

    2012-01-01

    Full Text Available Ultrastructural analysis of 7 biopsies from m.palmaris longus and m.deltoideus in patients with confirmed polymyositis revealed alterationand degeneration of muscle fibers and anomalies of neuro-muscular junction (NMJ. The NMJ abnormalities and following denervation ofmuscle fibers in polymyositis start with subsynaptic damages. The occurance of regeneration features in muscle fibers at any stage is characteristic for PM.

  4. Silent synapses in neuromuscular junction development.

    Science.gov (United States)

    Tomàs, Josep; Santafé, Manel M; Lanuza, Maria A; García, Neus; Besalduch, Nuria; Tomàs, Marta

    2011-01-01

    In the last few years, evidence has been found to suggest that some synaptic contacts become silent but can be functionally recruited before they completely retract during postnatal synapse elimination in muscle. The physiological mechanism of developmental synapse elimination may be better understood by studying this synapse recruitment. This Mini-Review collects previously published data and new results to propose a molecular mechanism for axonal disconnection. The mechanism is based on protein kinase C (PKC)-dependent inhibition of acetylcholine (ACh) release. PKC activity may be stimulated by a methoctramine-sensitive M2-type muscarinic receptor and by calcium inflow though P/Q- and L-type voltage-dependent calcium channels. In addition, tropomyosin-related tyrosine kinase B (trkB) receptor-mediated brain-derived neurotrophic factor (BDNF) activity may oppose the PKC-mediated ACh release depression. Thus, a balance between trkB and muscarinic pathways may contribute to the final functional suppression of some neuromuscular synapses during development. © 2010 Wiley-Liss, Inc.

  5. Rapid synthesis of acetylcholine receptors at neuromuscular junctions.

    Science.gov (United States)

    Ramsay, D A; Drachman, D B; Pestronk, A

    1988-10-11

    The rate of acetylcholine receptor (AChR) degradation in mature, innervated mammalian neuromuscular junctions has recently been shown to be biphasic; up to 20% are rapidly turned over (RTOs; half life less than 1 day) whereas the remainder are lost more slowly ('stable' AChRs; half life 10-12 days). In order to maintain normal junctional receptor density, synthesis and insertion of AChRs should presumably be sufficiently rapid to replace both the RTOs and the stable receptors. We have tested this prediction by blocking pre-existing AChRs in the mouse sternomastoid muscle with alpha-bungarotoxin (alpha-BuTx), and monitoring the subsequent appearance of 'new' junctional AChRs at intervals of 3 h to 20 days by labeling them with 125I-alpha-BuTx. The results show that new receptors were initially inserted rapidly (16% at 24 h and 28% at 48 h). The rate of increase of 'new' 125I-alpha-BuTx binding sites gradually slowed down during the remainder of the time period studied. Control observations excluded possible artifacts of the experimental procedure including incomplete blockade of AChRs, dissociation of toxin-receptor complexes, or experimentally induced alteration of receptor synthesis. The present demonstration of rapid synthesis and incorporation of AChRs at innervated neuromuscular junctions provides support for the concept of a subpopulation of rapidly turned over AChRs. The RTOs may serve as precursors for the larger population of stable receptors and have an important role in the metabolism of the neuromuscular synapse.

  6. Schwann Cells in Neuromuscular Junction Formation and Maintenance.

    Science.gov (United States)

    Barik, Arnab; Li, Lei; Sathyamurthy, Anupama; Xiong, Wen-Cheng; Mei, Lin

    2016-09-21

    The neuromuscular junction (NMJ) is a tripartite synapse that is formed by motor nerve terminals, postjunctional muscle membranes, and terminal Schwann cells (TSCs) that cover the nerve-muscle contact. NMJ formation requires intimate communications among the three different components. Unlike nerve-muscle interaction, which has been well characterized, less is known about the role of SCs in NMJ formation and maintenance. We show that SCs in mice lead nerve terminals to prepatterned AChRs. Ablating SCs at E8.5 (i.e., prior nerve arrival at the clusters) had little effect on aneural AChR clusters at E13.5, suggesting that SCs may not be necessary for aneural clusters. SC ablation at E12.5, a time when phrenic nerves approach muscle fibers, resulted in smaller and fewer nerve-induced AChR clusters; however, SC ablation at E15.5 reduced AChR cluster size but had no effect on cluster density, suggesting that SCs are involved in AChR cluster maturation. Miniature endplate potential amplitude, but not frequency, was reduced when SCs were ablated at E15.5, suggesting that postsynaptic alterations may occur ahead of presynaptic deficits. Finally, ablation of SCs at P30, after NMJ maturation, led to NMJ fragmentation and neuromuscular transmission deficits. Miniature endplate potential amplitude was reduced 3 d after SC ablation, but both amplitude and frequency were reduced 6 d after. Together, these results indicate that SCs are not only required for NMJ formation, but also necessary for its maintenance; and postsynaptic function and structure appeared to be more sensitive to SC ablation. Neuromuscular junctions (NMJs) are critical for survival and daily functioning. Defects in NMJ formation during development or maintenance in adulthood result in debilitating neuromuscular disorders. The role of Schwann cells (SCs) in NMJ formation and maintenance was not well understood. We genetically ablated SCs during development and after NMJ formation to investigate the consequences

  7. Active zones of mammalian neuromuscular junctions: formation, density, and aging.

    Science.gov (United States)

    Nishimune, Hiroshi

    2012-12-01

    Presynaptic active zones are synaptic vesicle release sites that play essential roles in the function and pathology of mammalian neuromuscular junctions (NMJs). The molecular mechanisms of active zone organization use presynaptic voltage-dependent calcium channels (VDCCs) in NMJs as scaffolding proteins. VDCCs interact extracellularly with the muscle-derived synapse organizer, laminin β2 and interact intracellularly with active zone-specific proteins, such as Bassoon, CAST/Erc2/ELKS2alpha, ELKS, Piccolo, and RIMs. These molecular mechanisms are supported by studies in P/Q- and N-type VDCCs double-knockout mice, and they are consistent with the pathological conditions of Lambert-Eaton myasthenic syndrome and Pierson syndrome, which are caused by autoantibodies against VDCCs or by a laminin β2 mutation. During normal postnatal maturation, NMJs maintain the density of active zones, while NMJs triple their size. However, active zones become impaired during aging. Propitiously, muscle exercise ameliorates the active zone impairment in aged NMJs, which suggests the potential for therapeutic strategies. © 2012 New York Academy of Sciences.

  8. Genetic and evolutionary analysis of the Drosophila larval neuromuscular junction

    Science.gov (United States)

    Campbell, Megan

    Although evolution of brains and behaviors is of fundamental biological importance, we lack comprehensive understanding of the general principles governing these processes or the specific mechanisms and molecules through which the evolutionary changes are effected. Because synapses are the basic structural and functional units of nervous systems, one way to address these problems is to dissect the genetic and molecular pathways responsible for morphological evolution of a defined synapse. I have undertaken such an analysis by examining morphology of the larval neuromuscular junction (NMJ) in wild caught D. melanogaster as well as in over 20 other species of Drosophila. Whereas variation in NMJ morphology within a species is limited, I discovered a surprisingly extensive variation among different species. Compared with evolution of other morphological traits, NMJ morphology appears to be evolving very rapidly. Moreover, my data indicate that natural selection rather than genetic drift is primarily responsible for evolution of NMJ morphology. To dissect underlying molecular mechanisms that may govern NMJ growth and evolutionary divergence, I focused on a naturally occurring variant in D. melanogaster that causes NMJ overgrowth. I discovered that the variant mapped to Mob2, a gene encoding a kinase adapter protein originally described in yeast as a member of the Mitotic Exit Network (MEN). I have subsequently examined mutations in the Drosophila orthologs of all the core components of the yeast MEN and found that all of them function as part of a common pathway that acts presynaptically to negatively regulate NMJ growth. As in the regulation of yeast cytokinesis, these components of the MEN appear to act ultimately by regulating actin dynamics during the process of bouton growth and division. These studies have thus led to the discovery of an entirely new role for the MEN---regulation of synaptic growth---that is separate from its function in cell division. This work

  9. Effect of temperature on spontaneous release of transmitter at the mammalian neuromuscular junction

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, C J; Statham, H E

    1977-01-01

    Temperature has a multifactorial effect on miniature endplate potential (MEPP) frequency at the mammalian neuromuscular junction, with a negative Q/sub 10/ at 14--28/sup 0/C. The results are explained in terms of the effect of temperature on the various factors that control (Ca/sup 2/+sub i/ at the presynaptic terminals. The temperature-sensitivity of the Ca/sup 2 +/-transport enzyme is believed to be of particular significance and accounts for the observed differences between the amphibian and mammalian neuromuscular junctions.

  10. Protein kinase C isoforms at the neuromuscular junction: localization and specific roles in neurotransmission and development.

    Science.gov (United States)

    Lanuza, Maria A; Santafe, Manel M; Garcia, Neus; Besalduch, Núria; Tomàs, Marta; Obis, Teresa; Priego, Mercedes; Nelson, Phillip G; Tomàs, Josep

    2014-01-01

    The protein kinase C family (PKC) regulates a variety of neural functions including neurotransmitter release. The selective activation of a wide range of PKC isoforms in different cells and domains is likely to contribute to the functional diversity of PKC phosphorylating activity. In this review, we describe the isoform localization, phosphorylation function, regulation and signalling of the PKC family at the neuromuscular junction. Data show the involvement of the PKC family in several important functions at the neuromuscular junction and in particular in the maturation of the synapse and the modulation of neurotransmission in the adult. © 2013 Anatomical Society.

  11. Roles of neuro-exocytotic proteins at the neuromuscular junction

    NARCIS (Netherlands)

    Sons-Michel, Michèle S.

    2011-01-01

    The aim of the studies described in the thesis was to elucidate the roles of several neuro-exocytotic proteins at the motor nerve terminal in neuromuscular synaptic transmission, making use of genetic knockout (KO) mice, each missing one (or more) neuro-exocytotic proteins. In addition, it was

  12. Dysfunction of the neuromuscular junction in spinal muscular atrophy types 2 and 3.

    Science.gov (United States)

    Wadman, Renske I; Vrancken, Alexander F J E; van den Berg, Leonard H; van der Pol, W Ludo

    2012-11-13

    Spinal muscular atrophy (SMA) is pathologically characterized by degeneration of anterior horn cells. Recent observations in animal models of SMA and muscle tissue from patients with SMA suggest additional abnormalities in the development and maturation of the neuromuscular junction. We therefore evaluated neuromuscular junction function in SMA with repetitive nerve stimulation. In this case-control study, repetitive nerve stimulation was performed in 35 patients with SMA types 2, 3, and 4, 20 healthy controls, and 5 controls with motor neuron disease. Pathologic decremental responses (>10%) during 3-Hz repetitive nerve stimulation were observed in 17 of 35 patients (49%) with SMA types 2 and 3, but not in healthy controls or controls with motor neuron disease. None of the patients or controls had an abnormal incremental response of >60%. The presence of an abnormal decremental response was not specific for the type of SMA, nor was it associated with compound muscle action potential amplitude, clinical scores, or disease duration. Two of 4 patients with SMA type 3 who tried pyridostigmine reported increased stamina. These data suggest dysfunction of the neuromuscular junction in patients with SMA types 2 and 3. Therefore, drugs that facilitate neuromuscular transmission are candidate drugs for evaluation in carefully designed, placebo-controlled, clinical trials.

  13. Gradual nerve elongation affects nerve cell bodies and neuro-muscular junctions.

    Science.gov (United States)

    Kazuo Ikeda, K I; Masaki Matsuda, M M; Daisuke Yamauchi, D Y; Katsuro Tomita, K T; Shigenori Tanaka, S T

    2005-07-01

    The purpose of this study is to clarify the reactions of the neuro-muscular junction and nerve cell body to gradual nerve elongation. The sciatic nerves of Japanese white rabbits were lengthened by 30 mm in increments of 0.8 mm/day, 2.0 mm/day and 4.0 mm/day. A scanning electron microscopic examination showed no degenerative change at the neuro-muscular junction, even eight weeks after elongation in the 4-mm group. Hence, neuro-muscular junction is not critical for predicting damage from gradual nerve elongation. There were no axon reaction cells in the 0.8-mm group, a small amount in the 2-mm group, and a large amount in the 4-mm group. The rate of growth associated protein-43 positive nerve cells was significant in the 4-mm group. Hence, the safe speed for nerve cells appeared to be 0.8-mm/day, critical speed to be 2.0-mm/day, and dangerous speed to be 4.0-mm/day in this elongation model.

  14. The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction.

    Science.gov (United States)

    Obis, Teresa; Hurtado, Erica; Nadal, Laura; Tomàs, Marta; Priego, Mercedes; Simon, Anna; Garcia, Neus; Santafe, Manel M; Lanuza, Maria A; Tomàs, Josep

    2015-12-01

    Various protein kinase C (PKC) isoforms contribute to the phosphorylating activity that modulates neurotransmitter release. In previous studies we showed that nPKCε is confined in the presynaptic site of the neuromuscular junction and its presynaptic function is activity-dependent. Furthermore, nPKCε regulates phorbol ester-induced acetylcholine release potentiation, which further indicates that nPKCε is involved in neurotransmission. The present study is designed to examine the nPKCε involvement in transmitter release at the neuromuscular junction. We use the specific nPKCε translocation inhibitor peptide εV1-2 and electrophysiological experiments to investigate the involvement of this isoform in acetylcholine release. We observed that nPKCε membrane translocation is key to the synaptic potentiation of NMJ, being involved in several conditions that upregulate PKC isoforms coupling to acetylcholine (ACh) release (incubation with high Ca(2+), stimulation with phorbol esters and protein kinase A, stimulation with adenosine 3',5'-cyclic monophosphorothioate, 8-Bromo-, Rp-isomer, sodium salt -Sp-8-BrcAMP-). In all these conditions, preincubation with the nPKCε translocation inhibitor peptide (εV1-2) impairs PKC coupling to acetylcholine release potentiation. In addition, the inhibition of nPKCε translocation and therefore its activity impedes that presynaptic muscarinic autoreceptors and adenosine autoreceptors modulate transmitter secretion. Together, these results point to the importance of nPKCε isoform in the control of acetylcholine release in the neuromuscular junction.

  15. Acetylcholine-induced inhibition of presynaptic calcium signals and transmitter release in the frog neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Eduard Khaziev

    2016-12-01

    Full Text Available Acetylcholine (ACh, released from axonal terminals of motor neurones in neuromuscular junctions regulates the efficacy of neurotransmission through activation of presynaptic nicotinic and muscarinic autoreceptors. Receptor-mediated presynaptic regulation could reflect either direct action on exocytotic machinery or modulation of Ca2+ entry and resulting intra-terminal Ca2+ dynamics. We have measured free intra-terminal cytosolic Ca2+ ([Ca2+]i using Oregon-Green 488 microfluorimetry, in parallel with voltage-clamp recordings of spontaneous (mEPC and evoked (EPC postsynaptic currents in post-junctional skeletal muscle fibre. Activation of presynaptic muscarinic and nicotinic receptors with exogenous acetylcholine and its non-hydrolized analogue carbachol reduced amplitude of the intra-terminal [Ca2+]i transients and decreased quantal content (calculated by dividing the area under EPC curve by the area under mEPC curve. Pharmacological analysis revealed the role of muscarinic receptors of M2 subtype as well as d-tubocurarine-sensitive nicotinic receptor in presynaptic modulation of [Ca2+]i transients. Modulation of synaptic transmission efficacy by ACh receptors was completely eliminated by pharmacological inhibition of N-type Ca2+ channels. We conclude that ACh receptor-mediated reduction of Ca2+ entry into the nerve terminal through N-type Ca2+ channels represents one of possible mechanism of presynaptic modulation in frog neuromuscular junction.

  16. Degradation rate of acetylcholine receptors inserted into denervated vertebrate neuromuscular junctions

    International Nuclear Information System (INIS)

    Shyng, S.L.; Salpeter, M.M.

    1989-01-01

    Many studies exist on the effect of denervation on the degradation of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction (nmj). These studies have described the behavior of either the total population of junctional receptors at different times after denervation, or of the receptors present at the time of denervation. No experimental studies yet exist on the degradation rate of the receptors newly inserted into denervated junctions. In the previous studies, the original receptors of mouse sternomastoid muscles were found to retain the slow degradation (t 1/2) of approximately 8-10 d of innervated junctional receptors for up to 10 d after denervation before accelerating to a t 1/2 of approximately 3 d. The total junctional receptors, on the other hand, showed a progressive increase in degradation rate from a t 1/2 of 8-10 d to a t 1/2 of 1 d. To reconcile these earlier observations, the present study examines the degradation of new receptors inserted into the nmj after denervation. To avoid possible contamination of the data with postdenervation extrajunctional receptors, we used transmission electron microscope autoradiography to study only receptors located at the postjunctional fold of the nmj. We established that the new receptors inserted into denervated junctions have a t 1/2 of approximately 1 d, considerably faster than that of the original receptors and equivalent to that of postdenervation extrajunctional receptors. Both original and new receptors are interspersed at the top of the junctional folds. Thus, until all the original receptors are degraded, the postjunctional membrane contains two populations of AChRs that maintain a total steady-state site density but degrade at different rates

  17. Neuromuscular Junction Impairment in Amyotrophic Lateral Sclerosis: Reassessing the Role of Acetylcholinesterase.

    Science.gov (United States)

    Campanari, Maria-Letizia; García-Ayllón, María-Salud; Ciura, Sorana; Sáez-Valero, Javier; Kabashi, Edor

    2016-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a highly debilitating disease caused by progressive degeneration of motorneurons (MNs). Due to the wide variety of genes and mutations identified in ALS, a highly varied etiology could ultimately converge to produce similar clinical symptoms. A major hypothesis in ALS research is the "distal axonopathy" with pathological changes occurring at the neuromuscular junction (NMJ), at very early stages of the disease, prior to MNs degeneration and onset of clinical symptoms. The NMJ is a highly specialized cholinergic synapse, allowing signaling between muscle and nerve necessary for skeletal muscle function. This nerve-muscle contact is characterized by the clustering of the collagen-tailed form of acetylcholinesterase (ColQ-AChE), together with other components of the extracellular matrix (ECM) and specific key molecules in the NMJ formation. Interestingly, in addition to their cholinergic role AChE is thought to play several "non-classical" roles that do not require catalytic function, most prominent among these is the facilitation of neurite growth, NMJ formation and survival. In all this context, abnormalities of AChE content have been found in plasma of ALS patients, in which AChE changes may reflect the neuromuscular disruption. We review these findings and particularly the evidences of changes of AChE at neuromuscular synapse in the pre-symptomatic stages of ALS.

  18. Adenosine A2B and A3 receptor location at the mouse neuromuscular junction.

    Science.gov (United States)

    Garcia, Neus; Priego, Mercedes; Hurtado, Erica; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Lanuza, Maria Angel; Tomàs, Josep

    2014-07-01

    To date, four subtypes of adenosine receptors have been cloned (A(1)R, A(2A)R, A(2B)R, and A(3)R). In a previous study we used confocal immunocytochemistry to identify A(1)R and A(2A)R receptors at mouse neuromuscular junctions (NMJs). The data shows that these receptors are localized differently in the three cells (muscle, nerve and glia) that configure the NMJs. A(1)R localizes in the terminal teloglial Schwann cell and nerve terminal, whereas A(2A)R localizes in the postsynaptic muscle and in the axon and nerve terminal. Here, we use Western blotting to investigate the presence of A(2B)R and A(3)R receptors in striated muscle and immunohistochemistry to localize them in the three cells of the adult neuromuscular synapse. The data show that A(2B)R and A(3)R receptors are present in the nerve terminal and muscle cells at the NMJs. Neither A(2B)R nor A(3)R receptors are localized in the Schwann cells. Thus, the four subtypes of adenosine receptors are present in the motor endings. The presence of these receptors in the neuromuscular synapse allows the receptors to be involved in the modulation of transmitter release. © 2014 Anatomical Society.

  19. Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction.

    Science.gov (United States)

    Saveliev, Anatoly; Khuzakhmetova, Venera; Samigullin, Dmitry; Skorinkin, Andrey; Kovyazina, Irina; Nikolsky, Eugeny; Bukharaeva, Ellya

    2015-10-01

    The timing of transmitter release from nerve endings is considered nowadays as one of the factors determining the plasticity and efficacy of synaptic transmission. In the neuromuscular junction, the moments of release of individual acetylcholine quanta are related to the synaptic delays of uniquantal endplate currents recorded under conditions of lowered extracellular calcium. Using Bayesian modelling, we performed a statistical analysis of synaptic delays in mouse neuromuscular junction with different patterns of rhythmic nerve stimulation and when the entry of calcium ions into the nerve terminal was modified. We have obtained a statistical model of the release timing which is represented as the summation of two independent statistical distributions. The first of these is the exponentially modified Gaussian distribution. The mixture of normal and exponential components in this distribution can be interpreted as a two-stage mechanism of early and late periods of phasic synchronous secretion. The parameters of this distribution depend on both the stimulation frequency of the motor nerve and the calcium ions' entry conditions. The second distribution was modelled as quasi-uniform, with parameters independent of nerve stimulation frequency and calcium entry. Two different probability density functions for the distribution of synaptic delays suggest at least two independent processes controlling the time course of secretion, one of them potentially involving two stages. The relative contribution of these processes to the total number of mediator quanta released depends differently on the motor nerve stimulation pattern and on calcium ion entry into nerve endings.

  20. Crimpy enables discrimination of presynaptic and postsynaptic pools of a BMP at the Drosophila neuromuscular junction.

    Science.gov (United States)

    James, Rebecca E; Hoover, Kendall M; Bulgari, Dinara; McLaughlin, Colleen N; Wilson, Christopher G; Wharton, Kristi A; Levitan, Edwin S; Broihier, Heather T

    2014-12-08

    Distinct pools of the bone morphogenetic protein (BMP) Glass bottom boat (Gbb) control structure and function of the Drosophila neuromuscular junction. Specifically, motoneuron-derived Gbb regulates baseline neurotransmitter release, whereas muscle-derived Gbb regulates neuromuscular junction growth. Yet how cells differentiate between these ligand pools is not known. Here we present evidence that the neuronal Gbb-binding protein Crimpy (Cmpy) permits discrimination of pre- and postsynaptic ligand by serving sequential functions in Gbb signaling. Cmpy first delivers Gbb to dense core vesicles (DCVs) for activity-dependent release from presynaptic terminals. In the absence of Cmpy, Gbb is no longer associated with DCVs and is not released by activity. Electrophysiological analyses demonstrate that Cmpy promotes Gbb's proneurotransmission function. Surprisingly, the Cmpy ectodomain is itself released upon DCV exocytosis, arguing that Cmpy serves a second function in BMP signaling. In addition to trafficking Gbb to DCVs, we propose that Gbb/Cmpy corelease from presynaptic terminals defines a neuronal protransmission signal. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Alternative NF-κB Isoforms in the Drosophila Neuromuscular Junction and Brain.

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    Full Text Available The Drosophila NF-κB protein Dorsal is expressed at the larval neuromuscular junction, where its expression appears unrelated to known Dorsal functions in embryonic patterning and innate immunity. Using confocal microscopy with domain-specific antisera, we demonstrate that larval muscle expresses only the B isoform of Dorsal, which arises by intron retention. We find that Dorsal B interacts with and stabilizes Cactus at the neuromuscular junction, but exhibits Cactus independent localization and an absence of detectable nuclear translocation. We further find that the Dorsal-related immune factor Dif encodes a B isoform, reflecting a conservation of B domains across a range of insect NF-κB proteins. Carrying out mutagenesis of the Dif locus via a site-specific recombineering approach, we demonstrate that Dif B is the major, if not sole, Dif isoform in the mushroom bodies of the larval brain. The Dorsal and Dif B isoforms thus share a specific association with nervous system tissues as well as an alternative protein structure.

  2. Analysis of Caribbean ciguatoxin-1 effects on frog myelinated axons and the neuromuscular junction.

    Science.gov (United States)

    Mattei, César; Marquais, Michel; Schlumberger, Sébastien; Molgó, Jordi; Vernoux, Jean-Paul; Lewis, Richard J; Benoit, Evelyne

    2010-10-01

    Caribbean ciguatoxin-1 (C-CTX-1) induced, after about 1h exposure, muscle membrane depolarisation and repetitive post-synaptic action potentials (APs) in frog neuromuscular preparations. This depolarising effect was also observed in a Ca(2+)-free medium with a strong enhancement of spontaneous quantal transmitter release, compared with control conditions. The ciguatoxin-induced increase in release could be accelerated when Ca(2+) was present in the extracellular medium. C-CTX-1 also enhanced nerve-evoked quantal acetylcholine (ACh) release. At normal neuromuscular junctions loaded with the fluorescent dye FM1-43, C-CTX-1 induced swelling of nerve terminals, an effect that was reversed by hyperosmotic d-mannitol. In myelinated axons, C-CTX-1 increased nodal membrane excitability, inducing spontaneous and repetitive APs. Also, the toxin enlarged the repolarising phase of APs in control and tetraethylammonium-treated axons. Overall, our data suggest that C-CTX-1 affects nerve excitability and neurotransmitter release at nerve terminals. We conclude that C-CTX-1-induced up-regulation of Na(+) channels and the inhibition of K(+) channels, at low nanomolar concentrations, produce a variety of functional dysfunctions that are in part responsible for the human muscle skeletal symptoms observed in ciguatera. All these dysfunctions seem to result from the subtle balance between ionic currents, intracellular Na(+) and Ca(2+) concentrations, and engaged second messengers. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Nerve terminal contributes to acetylcholine receptor organization at the dystrophic neuromuscular junction of mdx mice.

    Science.gov (United States)

    Marques, Maria Julia; Taniguti, Ana Paula Tiemi; Minatel, Elaine; Neto, Humberto Santo

    2007-02-01

    Changes in the distribution of acetylcholine receptors have been reported to occur at the neuromuscular junction of mdx mice and may be a consequence of muscle fiber regeneration rather than the absence of dystrophin. In the present study, we examined whether the nerve terminal determines the fate of acetylcholine receptor distribution in the dystrophic muscle fibers of mdx mice. The left sternomastoid muscle of young (1-month-old) and adult (6-month-old) mdx mice was injected with 60 microl lidocaine hydrochloride to induce muscle degeneration-regeneration. Some mice had their sternomastoid muscle denervated at the time of lidocaine injection. After 10 days of muscle denervation, nerve terminals and acetylcholine receptors were labeled with 4-Di-2-ASP and rhodamine-alpha-bungarotoxin, respectively, for confocal microscopy. In young mdx mice, 75% (n = 137 endplates) of the receptors were distributed in islands. The same was observed in 100% (n = 114 endplates) of the adult junctions. In denervated-regenerated fibers of young mice, the receptors were distributed as branches in 89% of the endplates (n = 90). In denervated-regenerated fibers of adult mice, the receptors were distributed in islands in 100% of the endplates (n = 100). These findings show that nerve-dependent mechanisms are also involved in the changes in receptor distribution in young dystrophic muscles. In older dystrophic muscles, other factors may play a role in receptor distribution.

  4. In vivo imaging of the developing neuromuscular junction in neonatal mice.

    Science.gov (United States)

    Turney, Stephen G; Walsh, Mark K; Lichtman, Jeff W

    2012-11-01

    Although fluorescently labeled structures can be analyzed more easily at high resolution in fixed-tissue preparations than in living animals, some biological questions can only be answered by time-lapse imaging. Changes in nervous system wiring during development cannot be determined reliably by taking tissue from different animals at staggered time points. Rather, the same cells and connections must be viewed repeatedly. To study developmental synapse elimination, we image muscles in transgenic mice that express fluorescent proteins in motor neurons and follow the same neuromuscular junctions (NMJs) over multiple days. This protocol describes the use of confocal microscopy for in vivo imaging of developing NMJs in transgenic neonatal mice expressing cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP). The sternomastoid, a flat, accessible neck muscle with large junctions, is imaged. A principal advantage of confocal microscopy is the ability to acquire multiple fluorescence channels simultaneously. If the channels are acquired sequentially, there is inevitably misalignment because of movement. Moreover, the total imaging time scales linearly with the number of channels. With simultaneous acquisition, only a single scan may be required. With perfect alignment between channels, irrespective of movement that might occur during a scan, color differences can be used to study interactions between axons over time. A limitation of this technique is that axons must be brightly labeled and at the muscle surface. NMJs that are more than one muscle fiber deep may be difficult to scan because of index of refraction changes that cause image blurring.

  5. Tracking C. elegans and its neuromuscular activity using NemaFlex

    Science.gov (United States)

    van Bussel, Frank; Rahman, Mizanur; Hewitt, Jennifer; Blawzdziewicz, Jerzy; Driscoll, Monica; Szewczyk, Nathaniel; Vanapalli, Siva

    Recently, a novel platform has been developed for studying the behavior and physical characteristics of the nematode C. elegans. This is NemaFlex, developed by the Vanapalli group at Texas Tech University to analyze movement and muscular strength of crawling C. elegans. NemaFlex is a microfluidic device consisting of an array of deformable PDMS pillars, with which the C. elegans interacts in the course of moving through the system. Deflection measurements then allow us to calculate the force exerted by the worm via Euler-Bernoulli beam theory. For the procedure to be fully automated a fairly sophisticated software analysis has to be developed in tandem with the physical device. In particular, the usefulness of the force calculations is highly dependent on the accuracy and volume of the deflection measurements, which would be prohibitively time-consuming if carried out by hand/eye. In order to correlate the force results with muscle activations the C. elegans itself has to be tracked simultaneously, and pillar deflections precisely associated with mechanical-contact on the worm's body. Here we will outline the data processing and analysis routines that have been implemented in order to automate the calculation of these forces and muscular activations.

  6. Oligomeric structure and functional characterization of Caenorhabditis elegans Innexin-6 gap junction protein.

    Science.gov (United States)

    Oshima, Atsunori; Matsuzawa, Tomohiro; Nishikawa, Kouki; Fujiyoshi, Yoshinori

    2013-04-12

    Innexin is the molecular component of invertebrate gap junctions. Here we successfully expressed and purified Caenorhabditis elegans innexin-6 (INX-6) gap junction channels and characterized the molecular dimensions and channel permeability using electron microscopy (EM) and microinjection of fluorescent dye tracers, respectively. Negative staining and thin-section EM of isolated INX-6 gap junction membranes revealed a loosely packed hexagonal lattice and a greater cross-sectional width than that of connexin26 and connexin43 (Cx43)-GFP. In gel filtration analysis, the elution profile of purified INX-6 channels in dodecyl maltoside solution exhibited a peak at ∼400 kDa that was shifted to ∼800 kDa in octyl glucose neopentyl glycol. We also obtained the class averages of purified INX-6 channels from these peak fractions by single particle analysis. The class average from the ∼800-kDa fraction showed features of the junction form with a longitudinal height of 220 Å, a channel diameter of 110 Å in the absence of detergent micelles, and an extracellular gap space of 60 Å, whereas the class averages from the ∼400-kDa fraction showed diameters of up to 140 Å in the presence of detergent micelles. These findings indicate that the purified INX-6 channels are predominantly hemichannels in dodecyl maltoside and docked junction channels in octyl glucose neopentyl glycol. Dye transfer experiments revealed that the INX-6-GFP-His channels are permeable to 3- and 10-kDa tracers, whereas no significant amounts of these tracers passed through the Cx43-GFP channels. Based on these findings, INX-6 channels have a larger overall structure and greater permeability than connexin channels.

  7. Oligomeric Structure and Functional Characterization of Caenorhabditis elegans Innexin-6 Gap Junction Protein*

    Science.gov (United States)

    Oshima, Atsunori; Matsuzawa, Tomohiro; Nishikawa, Kouki; Fujiyoshi, Yoshinori

    2013-01-01

    Innexin is the molecular component of invertebrate gap junctions. Here we successfully expressed and purified Caenorhabditis elegans innexin-6 (INX-6) gap junction channels and characterized the molecular dimensions and channel permeability using electron microscopy (EM) and microinjection of fluorescent dye tracers, respectively. Negative staining and thin-section EM of isolated INX-6 gap junction membranes revealed a loosely packed hexagonal lattice and a greater cross-sectional width than that of connexin26 and connexin43 (Cx43)-GFP. In gel filtration analysis, the elution profile of purified INX-6 channels in dodecyl maltoside solution exhibited a peak at ∼400 kDa that was shifted to ∼800 kDa in octyl glucose neopentyl glycol. We also obtained the class averages of purified INX-6 channels from these peak fractions by single particle analysis. The class average from the ∼800-kDa fraction showed features of the junction form with a longitudinal height of 220 Å, a channel diameter of 110 Å in the absence of detergent micelles, and an extracellular gap space of 60 Å, whereas the class averages from the ∼400-kDa fraction showed diameters of up to 140 Å in the presence of detergent micelles. These findings indicate that the purified INX-6 channels are predominantly hemichannels in dodecyl maltoside and docked junction channels in octyl glucose neopentyl glycol. Dye transfer experiments revealed that the INX-6-GFP-His channels are permeable to 3- and 10-kDa tracers, whereas no significant amounts of these tracers passed through the Cx43-GFP channels. Based on these findings, INX-6 channels have a larger overall structure and greater permeability than connexin channels. PMID:23460640

  8. Generation of functional neuromuscular junctions from human pluripotent stem cell lines

    Directory of Open Access Journals (Sweden)

    Katja ePuttonen

    2015-12-01

    Full Text Available Several neuromuscular diseases involve dysfunction of neuromuscular junctions (NMJs, yet there are no patient-specific human models for electrophysiological characterization of NMJ. We seeded cells of neurally-induced embryoid body-like spheres derived from induced pluripotent stem cell (iPSC or embryonic stem cell (ESC lines as monolayers without basic fibroblast factor (bFGF and observed differentiation of neuronal as well as spontaneously contracting, multinucleated skeletal myotubes. The myotubes showed striation, immunoreactivity for myosin heavy chain, actin bundles typical for myo-oriented cells, and generated spontaneous and evoked action potentials (APs. The myogenic differentiation was associated with expression of MyoD1, myogenin and type I ryanodine receptor. Neurons formed end plate like structures with strong binding of α-bungarotoxin, a marker of nicotinic acetylcholine receptors highly expressed in the postsynaptic membrane of NMJs, and expressed SMI-32, a motoneuron marker, as well as SV2, a marker for synapses. Pharmacological stimulation of cholinergic receptors resulted in strong depolarization of myotube membrane and raised Ca2+ concentration in sarcoplasm, while electrical stimulation evoked Ca2+ transients in myotubes. Stimulation of motoneurons with N-Methyl-D-aspartate resulted in reproducible APs in myotubes and end plates displayed typical MEPs and tonic activity depolarizing myotubes of about 10 mV. We conclude that simultaneous differentiation of neurons and myotubes from patient-specific iPSCs or ESCs results also in the development of functional NMJs. Our human model of NMJ may serve as an important tool to investigate normal development, mechanisms of diseases and novel drug targets involving NMJ dysfunction and degeneration.

  9. Neuromodulation of activity-dependent synaptic enhancement at crayfish neuromuscular junction.

    Science.gov (United States)

    Qian, S M; Delaney, K R

    1997-10-17

    Action potential-evoked transmitter release is enhanced for many seconds after moderate-frequency stimulation (e.g. 15 Hz for 30 s) at the excitor motorneuron synapse of the crayfish dactyl opener muscle. Beginning about 1.5 s after a train, activity-dependent synaptic enhancement (ADSE) is dominated by a process termed augmentation (G.D. Bittner, D.A. Baxter, Synaptic plasticity at crayfish neuromuscular junctions: facilitation and augmentation, Synapse 7 (1991) 235-243'[4]; K.L. Magleby, Short-term changes in synaptic efficacy, in: G.M. Edelman, L.E. Gall, C.W. Maxwell (Eds.), Synaptic Function, John Wiley and Sons, New York, 1987, pp. 21-56; K.L. Magleby; J.E. Zengel, Augmentation: a process that acts to increase transmitter release at the frog neuromuscular junction, J. Physiol. (Lond.) 257 (1976) 449-470) which decays approximately exponentially with a time constant of about 10 s at 16 degrees C, reflecting the removal of Ca2+ which accumulates during the train in presynaptic terminals (K.R. Delaney, D.W. Tank, R.S. Zucker, Serotonin-mediated enhancement of transmission at crayfish neuromuscular junction is independent of changes in calcium, J. Neurosci. 11 (1991) 2631-2643). Serotonin (5-HT, 1 microM) increases evoked and spontaneous transmitter release several-fold (D. Dixon, H.L. Atwood, Crayfish motor nerve terminal's response to serotonin examined by intracellular microelectrode, J. Neurobiol. 16 (1985) 409-424; J. Dudel, Modulation of quantal synaptic release by serotonin and forskolin in crayfish motor nerve terminals, in: Modulation of Synaptic Transmission and Plasticity in Nervous Systems, G. Hertting, H.-C. Spatz (Eds.), Springer-Verlag, Berlin, 1988; S. Glusman, E.A. Kravitz. The action of serotonin on excitatory nerve terminals in lobster nerve-muscle preparations, J. Physiol. (Lond.) 325 (1982) 223-241). We found that ADSE persists about 2-3 times longer after moderate-frequency presynaptic stimulation in the presence of 5-HT. This slowing of the

  10. Reversing the outcome of synapse elimination at developing neuromuscular junctions in vivo: evidence for synaptic competition and its mechanism.

    Directory of Open Access Journals (Sweden)

    Stephen G Turney

    Full Text Available During mammalian development, neuromuscular junctions and some other postsynaptic cells transition from multiple- to single-innervation as synaptic sites are exchanged between different axons. It is unclear whether one axon invades synaptic sites to drive off other inputs or alternatively axons expand their territory in response to sites vacated by other axons. Here we show that soon-to-be-eliminated axons rapidly reverse fate and grow to occupy vacant sites at a neuromuscular junction after laser removal of a stronger input. This reversal supports the idea that axons take over sites that were previously vacated. Indeed, during normal development we observed withdrawal followed by takeover. The stimulus for axon growth is not postsynaptic cell inactivity because axons grow into unoccupied sites even when target cells are functionally innervated. These results demonstrate competition at the synaptic level and enable us to provide a conceptual framework for understanding this form of synaptic plasticity.

  11. Reversing the outcome of synapse elimination at developing neuromuscular junctions in vivo: evidence for synaptic competition and its mechanism.

    Science.gov (United States)

    Turney, Stephen G; Lichtman, Jeff W

    2012-01-01

    During mammalian development, neuromuscular junctions and some other postsynaptic cells transition from multiple- to single-innervation as synaptic sites are exchanged between different axons. It is unclear whether one axon invades synaptic sites to drive off other inputs or alternatively axons expand their territory in response to sites vacated by other axons. Here we show that soon-to-be-eliminated axons rapidly reverse fate and grow to occupy vacant sites at a neuromuscular junction after laser removal of a stronger input. This reversal supports the idea that axons take over sites that were previously vacated. Indeed, during normal development we observed withdrawal followed by takeover. The stimulus for axon growth is not postsynaptic cell inactivity because axons grow into unoccupied sites even when target cells are functionally innervated. These results demonstrate competition at the synaptic level and enable us to provide a conceptual framework for understanding this form of synaptic plasticity.

  12. Peripheral nerve hyperexcitability with preterminal nerve and neuromuscular junction remodeling is a hallmark of Schwartz-Jampel syndrome.

    Science.gov (United States)

    Bauché, Stéphanie; Boerio, Delphine; Davoine, Claire-Sophie; Bernard, Véronique; Stum, Morgane; Bureau, Cécile; Fardeau, Michel; Romero, Norma Beatriz; Fontaine, Bertrand; Koenig, Jeanine; Hantaï, Daniel; Gueguen, Antoine; Fournier, Emmanuel; Eymard, Bruno; Nicole, Sophie

    2013-12-01

    Schwartz-Jampel syndrome (SJS) is a recessive disorder with muscle hyperactivity that results from hypomorphic mutations in the perlecan gene, a basement membrane proteoglycan. Analyses done on a mouse model have suggested that SJS is a congenital form of distal peripheral nerve hyperexcitability resulting from synaptic acetylcholinesterase deficiency, nerve terminal instability with preterminal amyelination, and subtle peripheral nerve changes. We investigated one adult patient with SJS to study this statement in humans. Perlecan deficiency due to hypomorphic mutations was observed in the patient biological samples. Electroneuromyography showed normal nerve conduction, neuromuscular transmission, and compound nerve action potentials while multiple measures of peripheral nerve excitability along the nerve trunk did not detect changes. Needle electromyography detected complex repetitive discharges without any evidence for neuromuscular transmission failure. The study of muscle biopsies containing neuromuscular junctions showed well-formed post-synaptic element, synaptic acetylcholinesterase deficiency, denervation of synaptic gutters with reinnervation by terminal sprouting, and long nonmyelinated preterminal nerve segments. These data support the notion of peripheral nerve hyperexcitability in SJS, which would originate distally from synergistic actions of peripheral nerve and neuromuscular junction changes as a result of perlecan deficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Cross‐disease comparison of amyotrophic lateral sclerosis and spinal muscular atrophy reveals conservation of selective vulnerability but differential neuromuscular junction pathology

    Science.gov (United States)

    Nijssen, Jik; Frost‐Nylen, Johanna

    2015-01-01

    Neuromuscular junctions are primary pathological targets in the lethal motor neuron diseases spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Synaptic pathology and denervation of target muscle fibers has been reported prior to the appearance of clinical symptoms in mouse models of both diseases, suggesting that neuromuscular junctions are highly vulnerable from the very early stages, and are a key target for therapeutic intervention. Here we examined neuromuscular pathology longitudinally in three clinically relevant muscle groups in mouse models of ALS and SMA in order to assess their relative vulnerabilities. We show for the first time that neuromuscular junctions of the extraocular muscles (responsible for the control of eye movement) were resistant to degeneration in endstage SMA mice, as well as in late symptomatic ALS mice. Tongue muscle neuromuscular junctions were also spared in both animal models. Conversely, neuromuscular junctions of the lumbrical muscles of the hind‐paw were vulnerable in both SMA and ALS, with a loss of neuronal innervation and shrinkage of motor endplates in both diseases. Thus, the pattern of selective vulnerability was conserved across these two models of motor neuron disease. However, the first evidence of neuromuscular pathology occurred at different timepoints of disease progression, with much earlier evidence of presynaptic involvement in ALS, progressing to changes on the postsynaptic side. Conversely, in SMA changes appeared concomitantly at the neuromuscular junction, suggesting that mechanisms of neuromuscular disruption are distinct in these diseases. J. Comp. Neurol. 524:1424–1442, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26502195

  14. Nonmechanical Roles of Dystrophin and Associated Proteins in Exercise, Neuromuscular Junctions, and Brains

    Directory of Open Access Journals (Sweden)

    Bailey Nichols

    2015-07-01

    Full Text Available Dystrophin-glycoprotein complex (DGC is an important structural unit in skeletal muscle that connects the cytoskeleton (f-actin of a muscle fiber to the extracellular matrix (ECM. Several muscular dystrophies, such as Duchenne muscular dystrophy, Becker muscular dystrophy, congenital muscular dystrophies (dystroglycanopathies, and limb-girdle muscular dystrophies (sarcoglycanopathies, are caused by mutations in the different DGC components. Although many early studies indicated DGC plays a crucial mechanical role in maintaining the structural integrity of skeletal muscle, recent studies identified novel roles of DGC. Beyond a mechanical role, these DGC members play important signaling roles and act as a scaffold for various signaling pathways. For example, neuronal nitric oxide synthase (nNOS, which is localized at the muscle membrane by DGC members (dystrophin and syntrophins, plays an important role in the regulation of the blood flow during exercise. DGC also plays important roles at the neuromuscular junction (NMJ and in the brain. In this review, we will focus on recently identified roles of DGC particularly in exercise and the brain.

  15. Presynaptic active zones of mammalian neuromuscular junctions: Nanoarchitecture and selective impairments in aging.

    Science.gov (United States)

    Badawi, Yomna; Nishimune, Hiroshi

    2018-02-01

    Neurotransmitter release occurs at active zones, which are specialized regions of the presynaptic membrane. A dense collection of proteins at the active zone provides a platform for molecular interactions that promote recruitment, docking, and priming of synaptic vesicles. At mammalian neuromuscular junctions (NMJs), muscle-derived laminin β2 interacts with presynaptic voltage-gated calcium channels to organize active zones. The molecular architecture of presynaptic active zones has been revealed using super-resolution microscopy techniques that combine nanoscale resolution and multiple molecular identification. Interestingly, the active zones of adult NMJs are not stable structures and thus become impaired during aging due to the selective degeneration of specific active zone proteins. This review will discuss recent progress in the understanding of active zone nanoarchitecture and the mechanisms underlying active zone organization in mammalian NMJs. Furthermore, we will summarize the age-related degeneration of active zones at NMJs, and the role of exercise in maintaining active zones. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  16. Stem cell-derived neurotrophic support for the neuromuscular junction in spinal muscular atrophy.

    Science.gov (United States)

    Wyatt, Tanya J; Keirstead, Hans S

    2010-11-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by specific degeneration of α-motor neurons in the spinal cord. The use of cell transplantation to restore lost function through cell replacement or prevent further degeneration of motor neurons and synapses through neurotrophic support heralds tremendous hope in the SMA field. Much research has been carried out in the last decade on the use of embryonic stem cells in cell replacement strategies for various neurodegenerative diseases. Cell replacement is contingent on the ability of transplanted cells to integrate and form new functional connections with host cells. In the case of SMA, cell replacement is a tall order in that axons of transplanted cells would be required to grow over long distances from the spinal cord through growth-averse terrain to synapse with muscles in the periphery. The efficacy of neurotrophic support is contingent on the ability of transplanted cells to secrete neurotrophins appropriate for degenerating motor neurons in the spinal cord or development/stability of the neuromuscular junction (NMJ) in the periphery. The reader will gain an understanding of the potential of neurotrophins to promote development of the NMJ in a diseased or injured environment. Neurotrophins play a major role in NMJ development and thus may be a key factor in the pathogenesis of NMJs in SMA. Further research into the signaling mechanisms involved in NMJ maturation may identify additional mechanisms by which transplanted cells may be of therapeutic benefit.

  17. Myotubular myopathy and the neuromuscular junction: a novel therapeutic approach from mouse models

    Directory of Open Access Journals (Sweden)

    James J. Dowling

    2012-11-01

    Myotubular myopathy (MTM is a severe congenital muscle disease characterized by profound weakness, early respiratory failure and premature lethality. MTM is defined by muscle biopsy findings that include centralized nuclei and disorganization of perinuclear organelles. No treatments currently exist for MTM. We hypothesized that aberrant neuromuscular junction (NMJ transmission is an important and potentially treatable aspect of the disease pathogenesis. We tested this hypothesis in two murine models of MTM. In both models we uncovered evidence of a disorder of NMJ transmission: fatigable weakness, improved strength with neostigmine, and electrodecrement with repetitive nerve stimulation. Histopathological analysis revealed abnormalities in the organization, appearance and size of individual NMJs, abnormalities that correlated with changes in acetylcholine receptor gene expression and subcellular localization. We additionally determined the ability of pyridostigmine, an acetylcholinesterase inhibitor, to ameliorate aspects of the behavioral phenotype related to NMJ dysfunction. Pyridostigmine treatment resulted in significant improvement in fatigable weakness and treadmill endurance. In all, these results describe a newly identified pathological abnormality in MTM, and uncover a potential disease-modifying therapy for this devastating disorder.

  18. Two Algorithms for High-throughput and Multi-parametric Quantification of Drosophila Neuromuscular Junction Morphology.

    Science.gov (United States)

    Castells-Nobau, Anna; Nijhof, Bonnie; Eidhof, Ilse; Wolf, Louis; Scheffer-de Gooyert, Jolanda M; Monedero, Ignacio; Torroja, Laura; van der Laak, Jeroen A W M; Schenck, Annette

    2017-05-03

    Synaptic morphology is tightly related to synaptic efficacy, and in many cases morphological synapse defects ultimately lead to synaptic malfunction. The Drosophila larval neuromuscular junction (NMJ), a well-established model for glutamatergic synapses, has been extensively studied for decades. Identification of mutations causing NMJ morphological defects revealed a repertoire of genes that regulate synapse development and function. Many of these were identified in large-scale studies that focused on qualitative approaches to detect morphological abnormalities of the Drosophila NMJ. A drawback of qualitative analyses is that many subtle players contributing to NMJ morphology likely remain unnoticed. Whereas quantitative analyses are required to detect the subtler morphological differences, such analyses are not yet commonly performed because they are laborious. This protocol describes in detail two image analysis algorithms "Drosophila NMJ Morphometrics" and "Drosophila NMJ Bouton Morphometrics", available as Fiji-compatible macros, for quantitative, accurate and objective morphometric analysis of the Drosophila NMJ. This methodology is developed to analyze NMJ terminals immunolabeled with the commonly used markers Dlg-1 and Brp. Additionally, its wider application to other markers such as Hrp, Csp and Syt is presented in this protocol. The macros are able to assess nine morphological NMJ features: NMJ area, NMJ perimeter, number of boutons, NMJ length, NMJ longest branch length, number of islands, number of branches, number of branching points and number of active zones in the NMJ terminal.

  19. Formation and characterisation of neuromuscular junctions between hiPSC derived motoneurons and myotubes

    Directory of Open Access Journals (Sweden)

    M. Demestre

    2015-09-01

    Full Text Available Striated skeletal muscle cells from humans represent a valuable source for in vitro studies of the motoric system as well as for pathophysiological investigations in the clinical settings. Myoblasts can readily be grown from human muscle tissue. However, if muscle tissue is unavailable, myogenic cells can be generated from human induced pluripotent stem cells (hiPSCs preferably without genetic engineering. Our study aimed to optimize the generation of hiPSCs derived myogenic cells by employing selection of CD34 positive cells and followed by distinct, stepwise culture conditions. Following the expansion of CD34 positive single cells under myogenic cell culture conditions, serum deprived myoblast-like cells finally fused and formed multinucleated striated myotubes that expressed a set of key markers for muscle differentiation. In addition, these myotubes contracted upon electrical stimulation, responded to acetylcholine (Ach and were able to generate action potentials. Finally, we co-cultured motoneurons and myotubes generated from identical hiPSCs cell lines. We could observe the early aggregation of acetylcholine receptors in muscle cells of immature co-cultures. At later stages, we identified and characterised mature neuromuscular junctions (NMJs. In summary, we describe here the successful generation of an iPS cell derived functional cellular system consisting of two distinct communicating cells types. This in vitro co-culture system could therefore contribute to research on diseases in which the motoneurons and the NMJ are predominantly affected, such as in amyotrophic lateral sclerosis or spinal muscular atrophy.

  20. Agrin and synaptic laminin are required to maintain adult neuromuscular junctions.

    Directory of Open Access Journals (Sweden)

    Melanie A Samuel

    Full Text Available As synapses form and mature the synaptic partners produce organizing molecules that regulate each other's differentiation and ensure precise apposition of pre- and post-synaptic specializations. At the skeletal neuromuscular junction (NMJ, these molecules include agrin, a nerve-derived organizer of postsynaptic differentiation, and synaptic laminins, muscle-derived organizers of presynaptic differentiation. Both become concentrated in the synaptic cleft as the NMJ develops and are retained in adulthood. Here, we used mutant mice to ask whether these organizers are also required for synaptic maintenance. Deletion of agrin from a subset of adult motor neurons resulted in the loss of acetylcholine receptors and other components of the postsynaptic apparatus and synaptic cleft. Nerve terminals also atrophied and eventually withdrew from muscle fibers. On the other hand, mice lacking the presynaptic organizer laminin-α4 retained most of the synaptic cleft components but exhibited synaptic alterations reminiscent of those observed in aged animals. Although we detected no marked decrease in laminin or agrin levels at aged NMJs, we observed alterations in the distribution and organization of these synaptic cleft components suggesting that such changes could contribute to age-related synaptic disassembly. Together, these results demonstrate that pre- and post-synaptic organizers actively function to maintain the structure and function of adult NMJs.

  1. Glial processes at the Drosophila larval neuromuscular junction match synaptic growth.

    Directory of Open Access Journals (Sweden)

    Deidre L Brink

    Full Text Available Glia are integral participants in synaptic physiology, remodeling and maturation from blowflies to humans, yet how glial structure is coordinated with synaptic growth is unknown. To investigate the dynamics of glial development at the Drosophila larval neuromuscular junction (NMJ, we developed a live imaging system to establish the relationship between glia, neuronal boutons, and the muscle subsynaptic reticulum. Using this system we observed processes from two classes of peripheral glia present at the NMJ. Processes from the subperineurial glia formed a blood-nerve barrier around the axon proximal to the first bouton. Processes from the perineurial glial extended beyond the end of the blood-nerve barrier into the NMJ where they contacted synapses and extended across non-synaptic muscle. Growth of the glial processes was coordinated with NMJ growth and synaptic activity. Increasing synaptic size through elevated temperature or the highwire mutation increased the extent of glial processes at the NMJ and conversely blocking synaptic activity and size decreased the presence and size of glial processes. We found that elevated temperature was required during embryogenesis in order to increase glial expansion at the nmj. Therefore, in our live imaging system, glial processes at the NMJ are likely indirectly regulated by synaptic changes to ensure the coordinated growth of all components of the tripartite larval NMJ.

  2. Muscle Mitochondrial Uncoupling Dismantles Neuromuscular Junction and Triggers Distal Degeneration of Motor Neurons

    Science.gov (United States)

    Dupuis, Luc; Gonzalez de Aguilar, Jose-Luis; Echaniz-Laguna, Andoni; Eschbach, Judith; Rene, Frédérique; Oudart, Hugues; Halter, Benoit; Huze, Caroline; Schaeffer, Laurent; Bouillaud, Frédéric; Loeffler, Jean-Philippe

    2009-01-01

    Background Amyotrophic lateral sclerosis (ALS), the most frequent adult onset motor neuron disease, is associated with hypermetabolism linked to defects in muscle mitochondrial energy metabolism such as ATP depletion and increased oxygen consumption. It remains unknown whether muscle abnormalities in energy metabolism are causally involved in the destruction of neuromuscular junction (NMJ) and subsequent motor neuron degeneration during ALS. Methodology/Principal Findings We studied transgenic mice with muscular overexpression of uncoupling protein 1 (UCP1), a potent mitochondrial uncoupler, as a model of muscle restricted hypermetabolism. These animals displayed age-dependent deterioration of the NMJ that correlated with progressive signs of denervation and a mild late-onset motor neuron pathology. NMJ regeneration and functional recovery were profoundly delayed following injury of the sciatic nerve and muscle mitochondrial uncoupling exacerbated the pathology of an ALS animal model. Conclusions/Significance These findings provide the proof of principle that a muscle restricted mitochondrial defect is sufficient to generate motor neuron degeneration and suggest that therapeutic strategies targeted at muscle metabolism might prove useful for motor neuron diseases. PMID:19404401

  3. Presynaptic Membrane Receptors Modulate ACh Release, Axonal Competition and Synapse Elimination during Neuromuscular Junction Development.

    Science.gov (United States)

    Tomàs, Josep; Garcia, Neus; Lanuza, Maria A; Santafé, Manel M; Tomàs, Marta; Nadal, Laura; Hurtado, Erica; Simó, Anna; Cilleros, Víctor

    2017-01-01

    During the histogenesis of the nervous system a lush production of neurons, which establish an excessive number of synapses, is followed by a drop in both neurons and synaptic contacts as maturation proceeds. Hebbian competition between axons with different activities leads to the loss of roughly half of the neurons initially produced so connectivity is refined and specificity gained. The skeletal muscle fibers in the newborn neuromuscular junction (NMJ) are polyinnervated but by the end of the competition, 2 weeks later, the NMJ are innervated by only one axon. This peripheral synapse has long been used as a convenient model for synapse development. In the last few years, we have studied transmitter release and the local involvement of the presynaptic muscarinic acetylcholine autoreceptors (mAChR), adenosine autoreceptors (AR) and trophic factor receptors (TFR, for neurotrophins and trophic cytokines) during the development of NMJ and in the adult. This review article brings together previously published data and proposes a molecular background for developmental axonal competition and loss. At the end of the first week postnatal, these receptors modulate transmitter release in the various nerve terminals on polyinnervated NMJ and contribute to axonal competition and synapse elimination.

  4. Presynaptic Membrane Receptors Modulate ACh Release, Axonal Competition and Synapse Elimination during Neuromuscular Junction Development

    Directory of Open Access Journals (Sweden)

    Josep Tomàs

    2017-05-01

    Full Text Available During the histogenesis of the nervous system a lush production of neurons, which establish an excessive number of synapses, is followed by a drop in both neurons and synaptic contacts as maturation proceeds. Hebbian competition between axons with different activities leads to the loss of roughly half of the neurons initially produced so connectivity is refined and specificity gained. The skeletal muscle fibers in the newborn neuromuscular junction (NMJ are polyinnervated but by the end of the competition, 2 weeks later, the NMJ are innervated by only one axon. This peripheral synapse has long been used as a convenient model for synapse development. In the last few years, we have studied transmitter release and the local involvement of the presynaptic muscarinic acetylcholine autoreceptors (mAChR, adenosine autoreceptors (AR and trophic factor receptors (TFR, for neurotrophins and trophic cytokines during the development of NMJ and in the adult. This review article brings together previously published data and proposes a molecular background for developmental axonal competition and loss. At the end of the first week postnatal, these receptors modulate transmitter release in the various nerve terminals on polyinnervated NMJ and contribute to axonal competition and synapse elimination.

  5. Integrated genomics and proteomics of the Torpedo californica electric organ: concordance with the mammalian neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Mate Suzanne E

    2011-05-01

    Full Text Available Abstract Background During development, the branchial mesoderm of Torpedo californica transdifferentiates into an electric organ capable of generating high voltage discharges to stun fish. The organ contains a high density of cholinergic synapses and has served as a biochemical model for the membrane specialization of myofibers, the neuromuscular junction (NMJ. We studied the genome and proteome of the electric organ to gain insight into its composition, to determine if there is concordance with skeletal muscle and the NMJ, and to identify novel synaptic proteins. Results Of 435 proteins identified, 300 mapped to Torpedo cDNA sequences with ≥2 peptides. We identified 14 uncharacterized proteins in the electric organ that are known to play a role in acetylcholine receptor clustering or signal transduction. In addition, two human open reading frames, C1orf123 and C6orf130, showed high sequence similarity to electric organ proteins. Our profile lists several proteins that are highly expressed in skeletal muscle or are muscle specific. Synaptic proteins such as acetylcholinesterase, acetylcholine receptor subunits, and rapsyn were present in the electric organ proteome but absent in the skeletal muscle proteome. Conclusions Our integrated genomic and proteomic analysis supports research describing a muscle-like profile of the organ. We show that it is a repository of NMJ proteins but we present limitations on its use as a comprehensive model of the NMJ. Finally, we identified several proteins that may become candidates for signaling proteins not previously characterized as components of the NMJ.

  6. Drosophila Cbp53E Regulates Axon Growth at the Neuromuscular Junction.

    Directory of Open Access Journals (Sweden)

    Kimberly R Hagel

    Full Text Available Calcium is a primary second messenger in all cells that functions in processes ranging from cellular proliferation to synaptic transmission. Proper regulation of calcium is achieved through numerous mechanisms involving channels, sensors, and buffers notably containing one or more EF-hand calcium binding domains. The Drosophila genome encodes only a single 6 EF-hand domain containing protein, Cbp53E, which is likely the prototypic member of a small family of related mammalian proteins that act as calcium buffers and calcium sensors. Like the mammalian homologs, Cbp53E is broadly though discretely expressed throughout the nervous system. Despite the importance of calcium in neuronal function and growth, nothing is known about Cbp53E's function in neuronal development. To address this deficiency, we generated novel null alleles of Drosophila Cbp53E and examined neuronal development at the well-characterized larval neuromuscular junction. Loss of Cbp53E resulted in increases in axonal branching at both peptidergic and glutamatergic neuronal terminals. This overgrowth could be completely rescued by expression of exogenous Cbp53E. Overexpression of Cbp53E, however, only affected the growth of peptidergic neuronal processes. These findings indicate that Cbp53E plays a significant role in neuronal growth and suggest that it may function in both local synaptic and global cellular mechanisms.

  7. Mechanisms of hydrogen sulfide (H2S) action on synaptic transmission at the mouse neuromuscular junction.

    Science.gov (United States)

    Gerasimova, E; Lebedeva, J; Yakovlev, A; Zefirov, A; Giniatullin, R; Sitdikova, G

    2015-09-10

    Hydrogen sulfide (H2S) is a widespread gasotransmitter also known as a powerful neuroprotective agent in the central nervous system. However, the action of H2S in peripheral synapses is much less studied. In the current project we studied the modulatory effects of the H2S donor sodium hydrosulfide (NaHS) on synaptic transmission in the mouse neuromuscular junction using microelectrode technique. Using focal recordings of presynaptic response and evoked transmitter release we have shown that NaHS (300 μM) increased evoked end-plate currents (EPCs) without changes of presynaptic waveforms which indicated the absence of NaHS effects on sodium and potassium currents of motor nerve endings. Using intracellular recordings it was shown that NaHS increased the frequency of miniature end-plate potentials (MEPPs) without changing their amplitudes indicating a pure presynaptic effect. Furthermore, NaHS increased the amplitude of end-plate potentials (EPPs) without influencing the resting membrane potential of muscle fibers. L-cysteine, a substrate of H2S synthesis induced, similar to NaHS, an increase of EPC amplitudes whereas inhibitors of H2S synthesis (β-cyano-L-alanine and aminooxyacetic acid) had the opposite effect. Inhibition of adenylate cyclase using MDL 12,330A hydrochloride (MDL 12,330A) or elevation of cAMP level with 8-(4-chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (pCPT-cAMP) completely prevented the facilitatory action of NaHS indicating involvement of the cAMP signaling cascade. The facilitatory effect of NaHS was significantly diminished when intracellular calcium (Ca(2+)) was buffered by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid acetoxymethyl ester (EGTA-AM). Activation of ryanodine receptors by caffeine or ryanodine increased acetylcholine release and prevented further action of NaHS on transmitter release, likely due to

  8. PKA, PKC, and AKAP localization in and around the neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Newton Alexandra

    2001-10-01

    Full Text Available Abstract Background One mechanism that directs the action of the second messengers, cAMP and diacylglycerol, is the compartmentalization of protein kinase A (PKA and protein kinase C (PKC. A-kinase anchoring proteins (AKAPs can recruit both enzymes to specific subcellular locations via interactions with the various isoforms of each family of kinases. We found previously that a new class of AKAPs, dual-specific AKAPs, denoted D-AKAP1 and D-AKAP2, bind to RIα in addition to the RII subunits. Results Immunohistochemistry and confocal microscopy were used here to determine that D-AKAP1 colocalizes with RIα at the postsynaptic membrane of the vertebrate neuromuscular junction (NMJ and the adjacent muscle, but not in the presynaptic region. The labeling pattern for RIα and D-AKAP1 overlapped with mitochondrial staining in the muscle fibers, consistent with our previous work showing D-AKAP1 association with mitochondria in cultured cells. The immunoreactivity of D-AKAP2 was distinct from that of D-AKAP1. We also report here that even though the PKA type II subunits (RIIα and RIIβ are localized at the NMJ, their patterns are distinctive and differ from the other R and D-AKAP patterns examined. PKCβ appeared to colocalize with the AKAP, gravin, at the postsynaptic membrane. Conclusions The kinases and AKAPs investigated have distinct patterns of colocalization, which suggest a complex arrangement of signaling micro-environments. Because the labeling patterns for RIα and D-AKAP 1 are similar in the muscle fibers and at the postsynaptic membrane, it may be that this AKAP anchors RIα in these regions. Likewise, gravin may be an anchor of PKCβ at the NMJ.

  9. Eps homology domain endosomal transport proteins differentially localize to the neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Mate Suzanne E

    2012-09-01

    Full Text Available Abstract Background Recycling of endosomes is important for trafficking and maintenance of proteins at the neuromuscular junction (NMJ. We have previously shown high expression of the endocytic recycling regulator Eps15 homology domain-containing (EHD1 proteinin the Torpedo californica electric organ, a model tissue for investigating a cholinergic synapse. In this study, we investigated the localization of EHD1 and its paralogs EHD2, EHD3, and EHD4 in mouse skeletal muscle, and assessed the morphological changes in EHD1−/− NMJs. Methods Localization of the candidate NMJ protein EHD1 was assessed by confocal microscopy analysis of whole-mount mouse skeletal muscle fibers after direct gene transfer and immunolabeling. The potential function of EHD1 was assessed by specific force measurement and α-bungarotoxin-based endplate morphology mapping in EHD1−/− mouse skeletal muscle. Results Endogenous EHD1 localized to primary synaptic clefts of murine NMJ, and this localization was confirmed by expression of recombinant green fluorescent protein labeled-EHD1 in murine skeletal muscle in vivo. EHD1−/− mouse skeletal muscle had normal histology and NMJ morphology, and normal specific force generation during muscle contraction. The EHD 1–4 proteins showed differential localization in skeletal muscle: EHD2 to muscle vasculature, EHD3 to perisynaptic regions, and EHD4 to perinuclear regions and to primary synaptic clefts, but at lower levels than EHD1. Additionally, specific antibodies raised against mammalian EHD1-4 recognized proteins of the expected mass in the T. californica electric organ. Finally, we found that EHD4 expression was more abundant in EHD1−/− mouse skeletal muscle than in wild-type skeletal muscle. Conclusion EHD1 and EHD4 localize to the primary synaptic clefts of the NMJ. Lack of obvious defects in NMJ structure and muscle function in EHD1−/− muscle may be due to functional compensation by other EHD paralogs.

  10. "Warming yang and invigorating qi" acupuncture alters acetylcholine receptor expression in the neuromuscular junction of rats with experimental autoimmune myasthenia gravis

    Directory of Open Access Journals (Sweden)

    Hai-peng Huang

    2016-01-01

    Full Text Available Myasthenia gravis is an autoimmune disorder in which antibodies have been shown to form against the nicotinic acetylcholine nicotinic postsynaptic receptors located at the neuromuscular junction. "Warming yang and invigorating qi" acupuncture treatment has been shown to reduce serum inflammatory cytokine expression and increase transforming growth factor beta expression in rats with experimental autoimmune myasthenia gravis. However, few studies have addressed the effects of this type of acupuncture on the acetylcholine receptors at the neuromuscular junction. Here, we used confocal laser scanning microscopy to examine the area and density of immunoreactivity for an antibody to the nicotinic acetylcholine receptor at the neuromuscular junction in the phrenic nerve of rats with experimental autoimmune myasthenia gravis following "warming yang and invigorating qi" acupuncture therapy. Needles were inserted at acupressure points Shousanli (LI10, Zusanli (ST36, Pishu (BL20, and Shenshu (BL23 once daily for 7 consecutive days. The treatment was repeated after 1 day of rest. We found that area and the integrated optical density of the immunoreactivity for the acetylcholine receptor at the neuromuscular junction of the phrenic nerve was significantly increased following acupuncture treatment. This outcome of the acupuncture therapy was similar to that of the cholinesterase inhibitor pyridostigmine bromide. These findings suggest that "warming yang and invigorating qi" acupuncture treatment increases acetylcholine receptor expression at the neuromuscular junction in a rat model of autoimmune myasthenia gravis.

  11. Abnormally Small Neuromuscular Junctions in the Extraocular Muscles From Subjects With Idiopathic Nystagmus and Nystagmus Associated With Albinism.

    Science.gov (United States)

    McLoon, Linda K; Willoughby, Christy L; Anderson, Jill S; Bothun, Erick D; Stager, David; Felius, Joost; Lee, Helena; Gottlob, Irene

    2016-04-01

    Infantile nystagmus syndrome (INS) is often associated with abnormalities of axonal outgrowth and connectivity. To determine if this manifests in extraocular muscle innervation, specimens from children with idiopathic INS or INS and albinism were examined and compared to normal age-matched control extraocular muscles. Extraocular muscles removed during normal surgery on children with idiopathic INS or INS and albinism were immunostained for neuromuscular junctions, myofiber type, the immature form of the acetylcholine receptor, and brain-derived neurotrophic factor (BDNF) and compared to age-matched controls. Muscles from both the idiopathic INS and INS and albinism groups had neuromuscular junctions that were 35% to 71% smaller based on myofiber area and myofiber perimeter than found in age-matched controls, and this was seen on both fast and slow myosin heavy chain isoform-expressing myofibers (all P albinism showed a 7-fold increase in neuromuscular junction numbers on fast myofibers expressing the immature gamma subunit of the acetylcholine receptor. The extraocular muscles from both INS subgroups showed a significant increase in the number and size of slow myofibers compared to age-matched controls. Brain-derived neurotrophic factor was expressed in control muscle but was virtually absent in the INS muscles. These studies suggest that, relative to the final common pathway, INS is not the same between different patient etiologies. It should be possible to modulate these final common pathway abnormalities, via exogenous application of appropriate drugs, with the hope that this type of treatment may reduce the involuntary oscillatory movements in these children.

  12. Effect of purines on calcium-independent acetylcholine release at the mouse neuromuscular junction.

    Science.gov (United States)

    Veggetti, M; Muchnik, S; Losavio, A

    2008-07-17

    At the mouse neuromuscular junction, activation of adenosine A(1) and P2Y receptors inhibits acetylcholine release by an effect on voltage dependent calcium channels related to spontaneous and evoked secretion. However, an effect of purines upon the neurotransmitter-releasing machinery downstream of Ca(2+) influx cannot be ruled out. An excellent tool to study neurotransmitter exocytosis in a Ca(2+)-independent step is the hypertonic response. Intracellular recordings were performed on diaphragm fibers of CF1 mice to determine the action of the specific adenosine A(1) receptor agonist 2-chloro-N(6)-cyclopentyl-adenosine (CCPA) and the P2Y(12-13) agonist 2-methylthio-adenosine 5'-diphosphate (2-MeSADP) on the hypertonic response. Both purines significantly decreased such response (peak and area under the curve), and their effect was prevented by specific antagonists of A(1) and P2Y(12-13) receptors, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and N-[2-(methylthioethyl)]-2-[3,3,3-trifluoropropyl]thio-5'-adenylic acid, monoanhydride with dichloromethylenebiphosphonic acid, tetrasodium salt (AR-C69931MX), respectively. Moreover, incubation of preparations only with the antagonists induced a higher response compared with controls, suggesting that endogenous ATP/ADP and adenosine are able to modulate the hypertonic response by activating their specific receptors. To search for the intracellular pathways involved in this effect, we studied the action of CCPA and 2-MeSADP in hypertonicity in the presence of inhibitors of several pathways. We found that the effect of CPPA was prevented by the calmodulin antagonist N-(6-aminohexil)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7) while that of 2-MeSADP was occluded by the protein kinase C antagonist chelerythrine and W-7. On the other hand, the inhibitors of protein kinase A (N-(2[pbromocinnamylamino]-ethyl)-5-isoquinolinesulfonamide, H-89) and phosphoinositide-3 kinase (PI3K) (2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran

  13. Muscle Expression of SOD1G93A Triggers the Dismantlement of Neuromuscular Junction via PKC-Theta.

    Science.gov (United States)

    Dobrowolny, Gabriella; Martini, Martina; Scicchitano, Bianca Maria; Romanello, Vanina; Boncompagni, Simona; Nicoletti, Carmine; Pietrangelo, Laura; De Panfilis, Simone; Catizone, Angela; Bouchè, Marina; Sandri, Marco; Rudolf, Rüdiger; Protasi, Feliciano; Musarò, Antonio

    2018-04-20

    Neuromuscular junction (NMJ) represents the morphofunctional interface between muscle and nerve. Several chronic pathologies such as aging and neurodegenerative diseases, including muscular dystrophy and amyotrophic lateral sclerosis, display altered NMJ and functional denervation. However, the triggers and the molecular mechanisms underlying the dismantlement of NMJ remain unclear. Here we provide evidence that perturbation in redox signaling cascades, induced by muscle-specific accumulation of mutant SOD1 G93A in transgenic MLC/SOD1 G93A mice, is causally linked to morphological alterations of the neuromuscular presynaptic terminals, high turnover rate of acetylcholine receptor, and NMJ dismantlement. The analysis of potential molecular mechanisms that mediate the toxic activity of SOD1 G93A revealed a causal link between protein kinase Cθ (PKCθ) activation and NMJ disintegration. The study discloses the molecular mechanism that triggers functional denervation associated with the toxic activity of muscle SOD1 G93A expression and suggests the possibility of developing a new strategy to counteract age- and pathology-associated denervation based on pharmacological inhibition of PKCθ activity. Collectively, these data indicate that muscle-specific accumulation of oxidative damage can affect neuromuscular communication and induce NMJ dismantlement through a PKCθ-dependent mechanism. Antioxid. Redox Signal. 28, 1105-1119.

  14. Measuring Neuromuscular Junction Functionality in the SOD1(G93A) Animal Model of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Rizzuto, Emanuele; Pisu, Simona; Musarò, Antonio; Del Prete, Zaccaria

    2015-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to motor neuron degeneration, alteration in neuromuscular junctions (NMJs), muscle atrophy, and paralysis. To investigate the NMJ functionality in ALS we tested, in vitro, two innervated muscle types excised from SOD1(G93A) transgenic mice at the end-stage of the disease: the Soleus, a postural muscle almost completely paralyzed at that stage, and the diaphragm, which, on the contrary, is functional until death. To this aim we employed an experimental protocol that combined two types of electrical stimulation: the direct stimulation and the stimulation through the nerve. The technique we applied allowed us to determine the relevance of NMJ functionality separately from muscle contractile properties in SOD1(G93A) animal model. Functional measurements revealed that the muscle contractility of transgenic diaphragms is almost unaltered in comparison to control muscles, while transgenic Soleus muscles were severely compromised. In contrast, when stimulated via the nerve, both transgenic muscle types showed a strong decrease of the contraction force, a slowing down of the kinetic parameters, as well as alterations in the neurotransmission failure parameter. All together, these results confirm a severely impaired functionality in the SOD1(G93A) neuromuscular junctions.

  15. Presynaptic inhibition of spontaneous acetylcholine release induced by adenosine at the mouse neuromuscular junction.

    Science.gov (United States)

    De Lorenzo, Silvana; Veggetti, Mariela; Muchnik, Salomón; Losavio, Adriana

    2004-05-01

    1. At the mouse neuromuscular junction, adenosine (AD) and the A(1) agonist 2-chloro-N(6)-cyclopentyl-adenosine (CCPA) induce presynaptic inhibition of spontaneous acetylcholine (ACh) release by activation of A(1) AD receptors through a mechanism that is still unknown. To evaluate whether the inhibition is mediated by modulation of the voltage-dependent calcium channels (VDCCs) associated with tonic secretion (L- and N-type VDCCs), we measured the miniature end-plate potential (mepp) frequency in mouse diaphragm muscles. 2. Blockade of VDCCs by Cd(2+) prevented the effect of the CCPA. Nitrendipine (an L-type VDCC antagonist) but not omega-conotoxin GVIA (an N-type VDCC antagonist) blocked the action of CCPA, suggesting that the decrease in spontaneous mepp frequency by CCPA is associated with an action on L-type VDCCs only. 3. As A(1) receptors are coupled to a G(i/o) protein, we investigated whether the inhibition of PKA or the activation of PKC is involved in the presynaptic inhibition mechanism. Neither N-(2[p-bromocinnamylamino]-ethyl)-5-isoquinolinesulfonamide (H-89, a PKA inhibitor), nor 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine (H-7, a PKC antagonist), nor phorbol 12-myristate 13-acetate (PHA, a PKC activator) modified CCPA-induced presynaptic inhibition, suggesting that these second messenger pathways are not involved. 4. The effect of CCPA was eliminated by the calmodulin antagonist N-(6-aminohexil)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7) and by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid-acetoxymethyl ester epsilon6TDelta-BM, which suggests that the action of CCPA to modulate L-type VDCCs may involve Ca(2+)-calmodulin. 5. To investigate the action of CCPA on diverse degrees of nerve terminal depolarization, we studied its effect at different external K(+) concentrations. The effect of CCPA on ACh secretion evoked by 10 mm K(+) was prevented by the P/Q-type VDCC antagonist omega-agatoxin IVA. 6. CCPA failed to

  16. LL5beta: a regulator of postsynaptic differentiation identified in a screen for synaptically enriched transcripts at the neuromuscular junction.

    Science.gov (United States)

    Kishi, Masashi; Kummer, Terrance T; Eglen, Stephen J; Sanes, Joshua R

    2005-04-25

    In both neurons and muscle fibers, specific mRNAs are concentrated beneath and locally translated at synaptic sites. At the skeletal neuromuscular junction, all synaptic RNAs identified to date encode synaptic components. Using microarrays, we compared RNAs in synapse-rich and -free regions of muscles, thereby identifying transcripts that are enriched near synapses and that encode soluble membrane and nuclear proteins. One gene product, LL5beta, binds to both phosphoinositides and a cytoskeletal protein, filamin, one form of which is concentrated at synaptic sites. LL5beta is itself associated with the cytoplasmic face of the postsynaptic membrane; its highest levels border regions of highest acetylcholine receptor (AChR) density, which suggests a role in "corraling" AChRs. Consistent with this idea, perturbing LL5beta expression in myotubes inhibits AChR aggregation. Thus, a strategy designed to identify novel synaptic components led to identification of a protein required for assembly of the postsynaptic apparatus.

  17. The effects of neurotoxins and radiation on the neuromuscular junction of the mouse: a physiological and morphological study

    International Nuclear Information System (INIS)

    Gomez, S.

    Some of the factors controlling axonal growth are studied by observing the effects of botulinum toxin, black widow spider venom and X-irradiation on teh neuromuscular junction in mice. Irradiation alone caused no changes since radiation is believed to affect only the Schwann cells. Irradiation prior to the administration of botulinum delayed the recovery of transmission and led to the failure of maturation and myelination of newly formed axons; this illustrates the importance of the Schwann cell for continued growth, functional maturation and myelination of axons. The effect of black widow spider venom on the end-plates was degeneration of the nerve terminals within a few hours but after a few days there was regeneration and restoration of normal transmission. The effects of black widow spider venom on muscles paralysed by botulinum were also studied; the recovery from the action of botulinum was greatly accelerated by the venom and axonal sprouting was either abolished or greatly reduced. (U.K.)

  18. Motor neuron apoptosis and neuromuscular junction perturbation are prominent features in a Drosophila model of Fus-mediated ALS

    Science.gov (United States)

    2012-01-01

    Backgound Amyotrophic lateral sclerosis (ALS) is progressive neurodegenerative disease characterized by the loss of motor function. Several ALS genes have been identified as their mutations can lead to familial ALS, including the recently reported RNA-binding protein fused in sarcoma (Fus). However, it is not clear how mutations of Fus lead to motor neuron degeneration in ALS. In this study, we present a Drosophila model to examine the toxicity of Fus, its Drosophila orthologue Cabeza (Caz), and the ALS-related Fus mutants. Results Our results show that the expression of wild-type Fus/Caz or FusR521G induced progressive toxicity in multiple tissues of the transgenic flies in a dose- and age-dependent manner. The expression of Fus, Caz, or FusR521G in motor neurons significantly impaired the locomotive ability of fly larvae and adults. The presynaptic structures in neuromuscular junctions were disrupted and motor neurons in the ventral nerve cord (VNC) were disorganized and underwent apoptosis. Surprisingly, the interruption of Fus nuclear localization by either deleting its nuclear localization sequence (NLS) or adding a nuclear export signal (NES) blocked Fus toxicity. Moreover, we discovered that the loss of caz in Drosophila led to severe growth defects in the eyes and VNCs, caused locomotive disability and NMJ disruption, but did not induce apoptotic cell death. Conclusions These data demonstrate that the overexpression of Fus/Caz causes in vivo toxicity by disrupting neuromuscular junctions (NMJs) and inducing apoptosis in motor neurons. In addition, the nuclear localization of Fus is essential for Fus to induce toxicity. Our findings also suggest that Fus overexpression and gene deletion can cause similar degenerative phenotypes but the underlying mechanisms are likely different. PMID:22443542

  19. Motor neuron apoptosis and neuromuscular junction perturbation are prominent features in a Drosophila model of Fus-mediated ALS

    Directory of Open Access Journals (Sweden)

    Xia Ruohan

    2012-03-01

    Full Text Available Abstract Backgound Amyotrophic lateral sclerosis (ALS is progressive neurodegenerative disease characterized by the loss of motor function. Several ALS genes have been identified as their mutations can lead to familial ALS, including the recently reported RNA-binding protein fused in sarcoma (Fus. However, it is not clear how mutations of Fus lead to motor neuron degeneration in ALS. In this study, we present a Drosophila model to examine the toxicity of Fus, its Drosophila orthologue Cabeza (Caz, and the ALS-related Fus mutants. Results Our results show that the expression of wild-type Fus/Caz or FusR521G induced progressive toxicity in multiple tissues of the transgenic flies in a dose- and age-dependent manner. The expression of Fus, Caz, or FusR521G in motor neurons significantly impaired the locomotive ability of fly larvae and adults. The presynaptic structures in neuromuscular junctions were disrupted and motor neurons in the ventral nerve cord (VNC were disorganized and underwent apoptosis. Surprisingly, the interruption of Fus nuclear localization by either deleting its nuclear localization sequence (NLS or adding a nuclear export signal (NES blocked Fus toxicity. Moreover, we discovered that the loss of caz in Drosophila led to severe growth defects in the eyes and VNCs, caused locomotive disability and NMJ disruption, but did not induce apoptotic cell death. Conclusions These data demonstrate that the overexpression of Fus/Caz causes in vivo toxicity by disrupting neuromuscular junctions (NMJs and inducing apoptosis in motor neurons. In addition, the nuclear localization of Fus is essential for Fus to induce toxicity. Our findings also suggest that Fus overexpression and gene deletion can cause similar degenerative phenotypes but the underlying mechanisms are likely different.

  20. INTERACTION OF VERAPAMIL AND LITHIUM AT THE NEUROMUSCULAR JUNCTION ON RAT ISOLATED MUSCLE-HEMIDIAPHRAGM

    Directory of Open Access Journals (Sweden)

    H. R. Sadeghipour

    1998-08-01

    Full Text Available It has been reported that cither lithium or verapamil can potentiate the neuromuscular blocking activity of certain neuromuscular blockers. In the present investigation, possible interaction of verapamil with lithium has been described. The dose ■ response effects of verapamil and lithium on diaphragmatic contractility were assessed in vitro. Mechanical responses of the muscle to indirect (nerve and direct (muscle electrical stimulation were recorded. Verapamil depressed rat diaphragm twitch tensions induced by nerve stimulation in a dose - dependent manner with the 50 percent depression of the original twitch tensions (ICSQ by 5.6 xlO^mmol/l."nThe IC50 of verapamil for direct stimulation of the muscle was LI x W'5 mmol II. Partial replacement of sodium chloride by lithium chloride (0.5, 1.5 and 5 mmol /1 in the medium did not change the depressant effect of verapamil on muscle twitches induced by direct (muscle or indirect (nerve electrical stimulation.

  1. Morphology of the bryozoan Cinctipora elegans (Cyclostomata, Cinctiporidae) with first data on its sexual reproduction and the cyclostome neuro-muscular system.

    Science.gov (United States)

    Schwaha, Thomas F; Handschuh, Stephan; Ostrovsky, Andrew N; Wanninger, Andreas

    2018-06-14

    Cyclostome bryozoans are an ancient group of marine colonial suspension-feeders comprising approximately 700 extant species. Previous morphological studies are mainly restricted to skeletal characters whereas data on soft tissues obtained by state-of-the-art methods are still lacking. In order to contribute to issues related to cyclostome ground pattern reconstruction, we analyzed the morphology of the neuromuscular system Cinctipora elegans by means of immunocytochemical staining, confocal laser scanning microscopy, histological sections and microCT imaging. Polypides of C. elegans are located in elongated tubular skeletal cystids. Distally, the orifice leads into a prominent vestibulum which is lined by an epithelium that joins an almost complete perimetrical attachment organ, both containing radially arranged neurite bundles and muscles. Centrally, the prominent atrial sphincter separates the vestibulum from the atrium. The latter is enclosed by the tentacle sheath which contains few longitudinal muscle fibers and two principal neurite bundles. These emerge from the cerebral ganglion, which is located at the lophophoral base. Lateral ganglia are located next to the cerebral ganglion from which the visceral neurite bundles emerge that extend proximally towards the foregut. There are four tentacle neurite bundles that emerge from the ganglia and the circum-oral nerve ring, which encompasses the pharynx. The tentacles possess two striated longitudinal muscles. Short buccal dilatators are situated at the lophophoral base and short muscular sets are present at the abfrontal and frontal side of the tentacle base. The pharynx is myoepithelial and triradiate in cross-section. Oocytes are found inside the pharyngeal myoepithelium. The digestive tract contains dense circular musculature and few longitudinal muscles. The membranous sac contains regular, thin, circular and diagonal muscles and neurites in its epithelial lining. The general structure of the neuro-muscular

  2. Injection of a soluble fragment of neural agrin (NT-1654 considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction.

    Directory of Open Access Journals (Sweden)

    Stefan Hettwer

    Full Text Available Treatment of neuromuscular diseases is still an unsolved problem. Evidence over the last years strongly indicates the involvement of malformation and dysfunction of neuromuscular junctions in the development of such medical conditions. Stabilization of NMJs thus seems to be a promising approach to attenuate the disease progression of muscle wasting diseases. An important pathway for the formation and maintenance of NMJs is the agrin/Lrp4/MuSK pathway. Here we demonstrate that the agrin biologic NT-1654 is capable of activating the agrin/Lrp4/MuSK system in vivo, leading to an almost full reversal of the sarcopenia-like phenotype in neurotrypsin-overexpressing (SARCO mice. We also show that injection of NT-1654 accelerates muscle re-innervation after nerve crush. This report demonstrates that a systemically administered agrin fragment has the potential to counteract the symptoms of neuromuscular disorders.

  3. Adenosine A₁ and A₂A receptor-mediated modulation of acetylcholine release in the mice neuromuscular junction.

    Science.gov (United States)

    Garcia, Neus; Priego, Mercedes; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Besalduch, Nuria; Lanuza, M Angel; Tomàs, Josep

    2013-07-01

    Immunocytochemistry shows that purinergic receptors (P1Rs) type A1 and A2A (A1 R and A2 A R, respectively) are present in the nerve endings at the P6 and P30 Levator auris longus (LAL) mouse neuromuscular junctions (NMJs). As described elsewhere, 25 μm adenosine reduces (50%) acetylcholine release in high Mg(2+) or d-tubocurarine paralysed muscle. We hypothesize that in more preserved neurotransmission machinery conditions (blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB) the physiological role of the P1Rs in the NMJ must be better observed. We found that the presence of a non-selective P1R agonist (adenosine) or antagonist (8-SPT) or selective modulators of A1 R or A2 A R subtypes (CCPA and DPCPX, or CGS-21680 and SCH-58261, respectively) does not result in any changes in the evoked release. However, P1Rs seem to be involved in spontaneous release (miniature endplate potentials MEPPs) because MEPP frequency is increased by non-selective block but decreased by non-selective stimulation, with A1 Rs playing the main role. We assayed the role of P1Rs in presynaptic short-term plasticity during imposed synaptic activity (40 Hz for 2 min of supramaximal stimuli). Depression is reduced by micromolar adenosine but increased by blocking P1Rs with 8-SPT. Synaptic depression is not affected by the presence of selective A1 R and A2 A R modulators, which suggests that both receptors need to collaborate. Thus, A1 R and A2 A R might have no real effect on neuromuscular transmission in resting conditions. However, these receptors can conserve resources by limiting spontaneous quantal leak of acetylcholine and may protect synaptic function by reducing the magnitude of depression during repetitive activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Neuroleptics as therapeutic compounds stabilizing neuromuscular transmission in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Patten, Shunmoogum A; Aggad, Dina; Martinez, Jose; Tremblay, Elsa; Petrillo, Janet; Armstrong, Gary Ab; La Fontaine, Alexandre; Maios, Claudia; Liao, Meijiang; Ciura, Sorana; Wen, Xiao-Yan; Rafuse, Victor; Ichida, Justin; Zinman, Lorne; Julien, Jean-Pierre; Kabashi, Edor; Robitaille, Richard; Korngut, Lawrence; Parker, J Alexander; Drapeau, Pierre

    2017-11-16

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, fatal disorder with no effective treatment. We used simple genetic models of ALS to screen phenotypically for potential therapeutic compounds. We screened libraries of compounds in C. elegans, validated hits in zebrafish, and tested the most potent molecule in mice and in a small clinical trial. We identified a class of neuroleptics that restored motility in C. elegans and in zebrafish, and the most potent was pimozide, which blocked T-type Ca2+ channels in these simple models and stabilized neuromuscular transmission in zebrafish and enhanced it in mice. Finally, a short randomized controlled trial of sporadic ALS subjects demonstrated stabilization of motility and evidence of target engagement at the neuromuscular junction. Simple genetic models are, thus, useful in identifying promising compounds for the treatment of ALS, such as neuroleptics, which may stabilize neuromuscular transmission and prolong survival in this disease.

  5. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes.

    Science.gov (United States)

    Samigullin, Dmitry; Fatikhov, Nijaz; Khaziev, Eduard; Skorinkin, Andrey; Nikolsky, Eugeny; Bukharaeva, Ellya

    2014-01-01

    At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers-which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal-has hitherto been technically impossible. With the aim of quantifying both Ca(2+) currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 pA and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 μM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  6. Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system.

    Science.gov (United States)

    Guo, Xiufang; Gonzalez, Mercedes; Stancescu, Maria; Vandenburgh, Herman H; Hickman, James J

    2011-12-01

    Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time-lapse recordings and their subsequent quenching by d-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Neuromuscular junction formation between human stem-cell-derived motoneurons and rat skeletal muscle in a defined system.

    Science.gov (United States)

    Guo, Xiufang; Das, Mainak; Rumsey, John; Gonzalez, Mercedes; Stancescu, Maria; Hickman, James

    2010-12-01

    To date, the coculture of motoneurons (MNs) and skeletal muscle in a defined in vitro system has only been described in one study and that was between rat MNs and rat skeletal muscle. No in vitro studies have demonstrated human MN to rat muscle synapse formation, although numerous studies have attempted to implant human stem cells into rat models to determine if they could be of therapeutic use in disease or spinal injury models, although with little evidence of neuromuscular junction (NMJ) formation. In this report, MNs differentiated from human spinal cord stem cells, together with rat skeletal myotubes, were used to build a coculture system to demonstrate that NMJ formation between human MNs and rat skeletal muscles is possible. The culture was characterized by morphology, immunocytochemistry, and electrophysiology, while NMJ formation was demonstrated by immunocytochemistry and videography. This defined system provides a highly controlled reproducible model for studying the formation, regulation, maintenance, and repair of NMJs. The in vitro coculture system developed here will be an important model system to study NMJ development, the physiological and functional mechanism of synaptic transmission, and NMJ- or synapse-related disorders such as amyotrophic lateral sclerosis, as well as for drug screening and therapy design.

  8. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes

    Directory of Open Access Journals (Sweden)

    Dmitry eSamigullin

    2015-01-01

    Full Text Available At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers—which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal—has hitherto been technically impossible. With the aim of quantifying both Ca2+ currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 рА and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 µM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  9. ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions.

    Science.gov (United States)

    Je, H Shawn; Yang, Feng; Ji, Yuanyuan; Potluri, Srilatha; Fu, Xiu-Qing; Luo, Zhen-Ge; Nagappan, Guhan; Chan, Jia Pei; Hempstead, Barbara; Son, Young-Jin; Lu, Bai

    2013-06-12

    During development, mammalian neuromuscular junctions (NMJs) transit from multiple-innervation to single-innervation through axonal competition via unknown molecular mechanisms. Previously, using an in vitro model system, we demonstrated that the postsynaptic secretion of pro-brain-derived neurotrophic factor (proBDNF) stabilizes or eliminates presynaptic axon terminals, depending on its proteolytic conversion at synapses. Here, using developing mouse NMJs, we obtained in vivo evidence that proBDNF and mature BDNF (mBDNF) play roles in synapse elimination. We observed that exogenous proBDNF promoted synapse elimination, whereas mBDNF infusion substantially delayed synapse elimination. In addition, pharmacological inhibition of the proteolytic conversion of proBDNF to mBDNF accelerated synapse elimination via activation of p75 neurotrophin receptor (p75(NTR)). Furthermore, the inhibition of both p75(NTR) and sortilin signaling attenuated synapse elimination. We propose a model in which proBDNF and mBDNF serve as potential "punishment" and "reward" signals for inactive and active terminals, respectively, in vivo.

  10. Adenosine Receptors in Developing and Adult Mouse Neuromuscular Junctions and Functional Links With Other Metabotropic Receptor Pathways.

    Science.gov (United States)

    Tomàs, Josep; Garcia, Neus; Lanuza, Maria A; Santafé, Manel M; Tomàs, Marta; Nadal, Laura; Hurtado, Erica; Simó-Ollé, Anna; Cilleros-Mañé, Víctor; Just-Borràs, Laia

    2018-01-01

    In the last few years, we have studied the presence and involvement in synaptogenesis and mature transmitter release of the adenosine autoreceptors (AR) in the mammalian neuromuscular junction (NMJ). Here, we review and bring together the previously published data to emphasize the relevance of these receptors for developmental axonal competition, synaptic loss and mature NMJ functional modulation. However, in addition to AR, activity-dependent mediators originating from any of the three cells that make the synapse (nerve, muscle, and glial cells) cross the extracellular cleft to generate signals in target metabotropic receptors. Thus, the integrated interpretation of the complementary function of all these receptors is needed. We previously studied, in the NMJ, the links of AR with mAChR and the neurotrophin receptor TrkB in the control of synapse elimination and transmitter release. We conclude that AR cooperate with these receptors through synergistic and antagonistic effects in the developmental synapse elimination process. In the adult NMJ, this cooperation is manifested so as that the functional integrity of a given receptor group depends on the other receptors operating normally (i.e., the functional integrity of mAChR depends on AR operating normally). These observations underlie the relevance of AR in the NMJ function.

  11. The interaction between tropomyosin-related kinase B receptors and serine kinases modulates acetylcholine release in adult neuromuscular junctions.

    Science.gov (United States)

    Santafé, Manel M; Garcia, Neus; Tomàs, Marta; Obis, Teresa; Lanuza, Maria A; Besalduch, Nuria; Tomàs, Josep

    2014-02-21

    We conducted an electrophysiological study of the functional link between the tropomyosin-related kinase B (trkB) receptor signaling mechanism and serine-threonine kinases, both protein kinase C (PKC) and protein kinase A (PKA). We describe their coordinated role in transmitter release at the neuromuscular junction (NMJ) of the Levator auris longus muscle of the adult mouse. The trkB receptor normally seems to be coupled to stimulate ACh release because inhibiting the trkB receptor with K-252a results in a significant reduction in the size of EPPs. We found that the intracellular PKC pathway can operate as in basal conditions (to potentiate ACh release) without the involvement of the trkB receptor function, although the trkB pathway needs an operative PKC pathway if it is to couple to the release mechanism and potentiate it. To actively stimulate PKA (which also results in ACh release potentiation), the operativity of trkB is a necessary condition, and one effect of trkB may be PKA stimulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Adenosine Receptors in Developing and Adult Mouse Neuromuscular Junctions and Functional Links With Other Metabotropic Receptor Pathways

    Directory of Open Access Journals (Sweden)

    Josep Tomàs

    2018-04-01

    Full Text Available In the last few years, we have studied the presence and involvement in synaptogenesis and mature transmitter release of the adenosine autoreceptors (AR in the mammalian neuromuscular junction (NMJ. Here, we review and bring together the previously published data to emphasize the relevance of these receptors for developmental axonal competition, synaptic loss and mature NMJ functional modulation. However, in addition to AR, activity-dependent mediators originating from any of the three cells that make the synapse (nerve, muscle, and glial cells cross the extracellular cleft to generate signals in target metabotropic receptors. Thus, the integrated interpretation of the complementary function of all these receptors is needed. We previously studied, in the NMJ, the links of AR with mAChR and the neurotrophin receptor TrkB in the control of synapse elimination and transmitter release. We conclude that AR cooperate with these receptors through synergistic and antagonistic effects in the developmental synapse elimination process. In the adult NMJ, this cooperation is manifested so as that the functional integrity of a given receptor group depends on the other receptors operating normally (i.e., the functional integrity of mAChR depends on AR operating normally. These observations underlie the relevance of AR in the NMJ function.

  13. Kinesin Khc-73/KIF13B modulates retrograde BMP signaling by influencing endosomal dynamics at the Drosophila neuromuscular junction.

    Science.gov (United States)

    Liao, Edward H; Gray, Lindsay; Tsurudome, Kazuya; El-Mounzer, Wassim; Elazzouzi, Fatima; Baim, Christopher; Farzin, Sarah; Calderon, Mario R; Kauwe, Grant; Haghighi, A Pejmun

    2018-01-01

    Retrograde signaling is essential for neuronal growth, function and survival; however, we know little about how signaling endosomes might be directed from synaptic terminals onto retrograde axonal pathways. We have identified Khc-73, a plus-end directed microtubule motor protein, as a regulator of sorting of endosomes in Drosophila larval motor neurons. The number of synaptic boutons and the amount of neurotransmitter release at the Khc-73 mutant larval neuromuscular junction (NMJ) are normal, but we find a significant decrease in the number of presynaptic release sites. This defect in Khc-73 mutant larvae can be genetically enhanced by a partial genetic loss of Bone Morphogenic Protein (BMP) signaling or suppressed by activation of BMP signaling in motoneurons. Consistently, activation of BMP signaling that normally enhances the accumulation of phosphorylated form of BMP transcription factor Mad in the nuclei, can be suppressed by genetic removal of Khc-73. Using a number of assays including live imaging in larval motor neurons, we show that loss of Khc-73 curbs the ability of retrograde-bound endosomes to leave the synaptic area and join the retrograde axonal pathway. Our findings identify Khc-73 as a regulator of endosomal traffic at the synapse and modulator of retrograde BMP signaling in motoneurons.

  14. Functional neuromuscular junctions formed by embryonic stem cell-derived motor neurons.

    Directory of Open Access Journals (Sweden)

    Joy A Umbach

    Full Text Available A key objective of stem cell biology is to create physiologically relevant cells suitable for modeling disease pathologies in vitro. Much progress towards this goal has been made in the area of motor neuron (MN disease through the development of methods to direct spinal MN formation from both embryonic and induced pluripotent stem cells. Previous studies have characterized these neurons with respect to their molecular and intrinsic functional properties. However, the synaptic activity of stem cell-derived MNs remains less well defined. In this study, we report the development of low-density co-culture conditions that encourage the formation of active neuromuscular synapses between stem cell-derived MNs and muscle cells in vitro. Fluorescence microscopy reveals the expression of numerous synaptic proteins at these contacts, while dual patch clamp recording detects both spontaneous and multi-quantal evoked synaptic responses similar to those observed in vivo. Together, these findings demonstrate that stem cell-derived MNs innervate muscle cells in a functionally relevant manner. This dual recording approach further offers a sensitive and quantitative assay platform to probe disorders of synaptic dysfunction associated with MN disease.

  15. Metabolic stabilization of acetylcholine receptors in vertebrate neuromuscular junction by muscle activity

    International Nuclear Information System (INIS)

    Rotzler, S.; Brenner, H.R.

    1990-01-01

    The effects of muscle activity on the growth of synaptic acetylcholine receptor (AChR) accumulations and on the metabolic AChR stability were investigated in rat skeletal muscle. Ectopic end plates induced surgically in adult soleus muscle were denervated early during development when junctional AChR number and stability were still low and, subsequently, muscles were either left inactive or they were kept active by chronic exogenous stimulation. AChR numbers per ectopic AChR cluster and AChR stabilities were estimated from the radioactivity and its decay with time, respectively, of end plate sites whose AChRs had been labeled with 125 I-alpha-bungarotoxin (alpha-butx). The results show that the metabolic stability of the AChRs in ectopic clusters is reversibly increased by muscle activity even when innervation is eliminated very early in development. 1 d of stimulation is sufficient to stabilize the AChRs in ectopic AChR clusters. Muscle stimulation also produced an increase in the number of AChRs at early denervated end plates. Activity-induced cluster growth occurs mainly by an increase in area rather than in AChR density, and for at least 10 d after denervation is comparable to that in normally developing ectopic end plates. The possible involvement of AChR stabilization in end plate growth is discussed

  16. Presynaptic inhibition of spontaneous acetylcholine release mediated by P2Y receptors at the mouse neuromuscular junction.

    Science.gov (United States)

    De Lorenzo, S; Veggetti, M; Muchnik, S; Losavio, A

    2006-09-29

    At the neuromuscular junction, ATP is co-released with the neurotransmitter acetylcholine (ACh) and once in the synaptic space, it is degraded to the presynaptically active metabolite adenosine. Intracellular recordings were performed on diaphragm fibers of CF1 mice to determine the action of extracellular ATP (100 muM) and the slowly hydrolysable ATP analog 5'-adenylylimidodiphosphate lithium (betagamma-imido ATP) (30 muM) on miniature end-plate potential (MEPP) frequency. We found that application of ATP and betagamma-imido ATP decreased spontaneous secretion by 45.3% and 55.9% respectively. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective A(1) adenosine receptor antagonist and alpha,beta-methylene ADP sodium salt (alphabeta-MeADP), which is an inhibitor of ecto-5'-nucleotidase, did not prevent the inhibitory effect of ATP, demonstrating that the nucleotide is able to modulate spontaneous ACh release through a mechanism independent of the action of adenosine. Blockade of Ca(2+) channels by both, Cd(2+) or the combined application of nitrendipine and omega-conotoxin GVIA (omega-CgTx) (L-type and N-type Ca(2+) channel antagonists, respectively) prevented the effect of betagamma-imido ATP, indicating that the nucleotide modulates Ca(2+) influx through the voltage-dependent Ca(2+) channels related to spontaneous secretion. betagamma-Imido ATP-induced modulation was antagonized by the non-specific P2 receptor antagonist suramin and the P2Y receptor antagonist 1-amino-4-[[4-[[4-chloro-6-[[3(or4)-sulfophenyl] amino]-1,3,5-triazin-2-yl]amino]-3-sulfophenyl] amino]-9,10-dihydro-9,10-dioxo-2-anthracenesulfonic acid (reactive blue-2), but not by pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt (PPADS), which has a preferential antagonist effect on P2X receptors. Pertussis toxin and N-ethylmaleimide (NEM), which are blockers of G(i/o) proteins, prevented the action of the nucleotide, suggesting that the effect is mediated by P2Y receptors

  17. Validation of simple and inexpensive algometry using sphygmomanometer cuff and neuromuscular junction monitor with standardized laboratory algometer

    Science.gov (United States)

    Durga, Padmaja; Wudaru, Sreedhar Reddy; Khambam, Sunil Kumar Reddy; Chandra, Shobha Jagadish; Ramachandran, Gopinath

    2016-01-01

    Background and Aims: The availability, ergonomics and economics prohibit the routine use of algometers in clinical practice and research by the anesthesiologists. A simple bedside technique of quantitative pain measurement would enable the routine use of algometry. We proposed to validate simple pain provocation using sphygmomanometer cuff and the electric stimulation of neuromuscular junction monitor (TOF-guard, Organon Teknika) to measure pain against a standardized laboratory pressure algometer. Material and Methods: Pain detection threshold (Pdt) and pain tolerance threshold (Ptt) were measured in forty healthy volunteers of both genders, using the above three techniques. All measurements were repeated three times. The co-efficient of inter-rater reliability (or consistency) between three independent measurements obtained from each of the techniques was determined by Cronbach's co-efficient alpha (α C). The correlation between the mean Pdt and Ptt values recorded by standardized algometer and the sphygmomanometer technique and nerve stimulator technique was performed using Pearson Correlation. An r >0.5 and a two-tailed significance of algometer and the tested techniques. Results: There was a good inter-rater reliability (α C > 0.7) for the three techniques. There was a good correlation with r >0.65 (P algometer and the two techniques being tested as alternatives for algometer to measure pain. Conclusion: The sphygmomanometer cuff technique and electrical stimulation with the peripheral nerve stimulator to measure pain threshold and tolerance provide a simple, efficient, repeatable measure of pain intensity and can be used as suitable alternatives to standard algometers. PMID:27006546

  18. Synergistic Action of Presynaptic Muscarinic Acetylcholine Receptors and Adenosine Receptors in Developmental Axonal Competition at the Neuromuscular Junction.

    Science.gov (United States)

    Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria Angel; Cilleros, Victor; Tomàs, Josep Maria

    2016-01-01

    The development of the nervous system involves the initial overproduction of synapses, which promotes connectivity. Hebbian competition between axons with different activities leads to the loss of roughly half of the overproduced elements and this refines connectivity. We used quantitative immunohistochemistry to investigate, in the postnatal day 7 (P7) to P9 neuromuscular junctions, the involvement of muscarinic receptors (muscarinic acetylcholine autoreceptors and the M1, M2, and M4 subtypes) and adenosine receptors (A1 and A2A subtypes) in the control of axonal elimination after the mouse levator auris longus muscle had been exposed to selective antagonists in vivo. In a previous study we analyzed the role of each of the individual receptors. Here we investigate the additive or occlusive effects of their inhibitors and thus the existence of synergistic activity between the receptors. The main results show that the A2A, M1, M4, and A1 receptors (in this order of ability) delayed axonal elimination at P7. M4 produces some occlusion of the M1 pathway and some addition to the A1 pathway, which suggests that they cooperate. M2 receptors may modulate (by allowing a permissive action) the other receptors, mainly M4 and A1. The continued action of these receptors (now including M2 but not M4) finally promotes axonal loss at P9. All 4 receptors (M2, M1, A1, and A2A, in this order of ability) are necessary. The M4 receptor (which in itself does not affect axon loss) seems to modulate the other receptors. We found a synergistic action between the M1, A1, and A2A receptors, which show an additive effect, whereas the potent M2 effect is largely independent of the other receptors (though can be modulated by M4). At P9, there is a full mutual dependence between the A1 and A2A receptors in regulating axon loss. In summary, postnatal axonal elimination is a regulated multireceptor mechanism that involves the cooperation of several muscarinic and adenosine receptor subtypes.

  19. Utrophin abundance is reduced at neuromuscular junctions of patients with both inherited and acquired acetylcholine receptor deficiencies

    NARCIS (Netherlands)

    Slater, CR; Young, C; Wood, SJ; Bewick, GS; Anderson, LVB; Baxter, P; Fawcett, PRW; Roberts, M; Jacobson, L; Kuks, J; Vincent, A; NewsomDavis, J

    Congenital myasthenic syndromes are a heterogenous group of conditions in which muscle weakness resulting from impaired neuromuscular transmission is often present from infancy. One form of congenital myasthenic syndrome is due to a reduction of the number of acetylcholine receptors (AChRs) at the

  20. The glial cell line-derived neurotrophic factor (GDNF) does not acutely change acetylcholine release in developing and adult neuromuscular junction.

    Science.gov (United States)

    Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Lanuza, Maria A; Besalduch, Nuria; Priego, Merche; Tomàs, Josep

    2010-08-16

    We use immunocytochemistry to show that the trophic molecule glial cell line-derived neurotrophic factor (GDNF) and its receptor GDNF family receptor alpha-1 (GFRalpha-1) are present in both neonatal (P6) and adult (P45) rodent neuromuscular junctions (NMJ) colocalized with several synaptic markers. However, incubation with exogenous GDNF (10-200ng/ml, 1-3h), does not affect spontaneous ACh release. Moreover, GDNF does not change the size of the evoked ACh release from the weak and the strong axonal inputs on dually innervated postnatal endplates nor in the most developed singly-innervated synapses at P6 and P45. Our findings indicate that GDNF (unlike neurotrophins) does not acutely modulate transmitter release during the developmental process of synapse elimination nor as the NMJ matures. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction.

    Science.gov (United States)

    Hurtado, Erica; Cilleros, Víctor; Just, Laia; Simó, Anna; Nadal, Laura; Tomàs, Marta; Garcia, Neus; Lanuza, Maria A; Tomàs, Josep

    2017-01-01

    Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release.

  2. Combinatorial regulation of meiotic holliday junction resolution in C. elegans by HIM-6 (BLM) helicase, SLX-4, and the SLX-1, MUS-81 and XPF-1 nucleases.

    Science.gov (United States)

    Agostinho, Ana; Meier, Bettina; Sonneville, Remi; Jagut, Marlène; Woglar, Alexander; Blow, Julian; Jantsch, Verena; Gartner, Anton

    2013-01-01

    Holliday junctions (HJs) are cruciform DNA structures that are created during recombination events. It is a matter of considerable importance to determine the resolvase(s) that promote resolution of these structures. We previously reported that C. elegans GEN-1 is a symmetrically cleaving HJ resolving enzyme required for recombinational repair, but we could not find an overt role in meiotic recombination. Here we identify C. elegans proteins involved in resolving meiotic HJs. We found no evidence for a redundant meiotic function of GEN-1. In contrast, we discovered two redundant HJ resolution pathways likely coordinated by the SLX-4 scaffold protein and also involving the HIM-6/BLM helicase. SLX-4 associates with the SLX-1, MUS-81 and XPF-1 nucleases and has been implicated in meiotic recombination in C. elegans. We found that C. elegans [mus-81; xpf-1], [slx-1; xpf-1], [mus-81; him-6] and [slx-1; him-6] double mutants showed a similar reduction in survival rates as slx-4. Analysis of meiotic diakinesis chromosomes revealed a distinct phenotype in these double mutants. Instead of wild-type bivalent chromosomes, pairs of "univalents" linked by chromatin bridges occur. These linkages depend on the conserved meiosis-specific transesterase SPO-11 and can be restored by ionizing radiation, suggesting that they represent unresolved meiotic HJs. This suggests the existence of two major resolvase activities, one provided by XPF-1 and HIM-6, the other by SLX-1 and MUS-81. In all double mutants crossover (CO) recombination is reduced but not abolished, indicative of further redundancy in meiotic HJ resolution. Real time imaging revealed extensive chromatin bridges during the first meiotic division that appear to be eventually resolved in meiosis II, suggesting back-up resolution activities acting at or after anaphase I. We also show that in HJ resolution mutants, the restructuring of chromosome arms distal and proximal to the CO still occurs, suggesting that CO initiation

  3. Repouso da junção neuromuscular no tratamento de crises miastênicas e colinérgicas Management of the myasthenic and cholinergic crisis by neuromuscular junction rest

    Directory of Open Access Journals (Sweden)

    J. Lamartine de Assis

    1968-06-01

    Full Text Available Os autores trataram 18 crises miastênicas e colinérgicas desenvolvidas em 12 pacientes com forma generalizada e severa de miastenia grave, mediante o "repouso" da junção neuromuscular. Êste foi conseguido, em um grupo de 6 enfermos, pela suspensão das drogas anticolinesterásicas, emprego da respiração artificial e alimentação por sonda nasogástrica — "repouso relativo". Outro grupo de 6 pacientes foi submetido ao "repouso absoluto" da junção neuromuscular, mediante o uso da respiração artificial, alimentação por sonda nasogástrica e curarização prolongada pela galamina. Em mais de 50% das crises observaram-se melhoras imediatas e acentuadas com o método de tratamento pelo "repouso" da junção neuromuscular, ao lado de redução significativa da taxa de mortalidade nas crises. A evolução mostrou que os pacientes que responderam melhor durante e logo após o tratamento da crise, tiveram, também, melhor evolução ulterior. Dos 12 enfermos somente um era portador de timoma e, mesmo nesse paciente, a evolução foi satisfatória. A sensibilidade inicial ao curare foi muito grande em todos os doentes submetidos à curarização prolongada, mas, em prazo relativamente curto (alguns dias, esta hipersensibilidade diminuiu sensivelmente. Apesar de todos os cuidados, as infecções respiratórias foram a regra, exigindo tratamento enérgico e bem orientado.The neuromuscular junction rest method was employed in the treatment of 18 myasthenic and cholinergic crisis occurring in 12 patients with severe forms of myasthenia gravis. Six of these patients received a "relative rest" and other six patients received an "absolute rest" treatment. In the first group of patients the method consisted essentially in withdrawal of anticholinesterase therapy and mechanical respiratory support with early performance of traqueostomy and use of the intermitente positive pressure breathing (I.P.P.B. with cuffed traqueostomy tube. The patients of

  4. Phospho-regulated Drosophila adducin is a determinant of synaptic plasticity in a complex with Dlg and PIP2 at the larval neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Simon Ji Hau Wang

    2014-11-01

    Full Text Available Adducin is a ubiquitously expressed actin- and spectrin-binding protein involved in cytoskeleton organization, and is regulated through phosphorylation of the myristoylated alanine-rich C-terminal kinase (MARCKS-homology domain by protein kinase C (PKC. We have previously shown that the Drosophila adducin, Hu-li tai shao (Hts, plays a role in larval neuromuscular junction (NMJ growth. Here, we find that the predominant isoforms of Hts at the NMJ contain the MARCKS-homology domain, which is important for interactions with Discs large (Dlg and phosphatidylinositol 4,5-bisphosphate (PIP2. Through the use of Proximity Ligation Assay (PLA, we show that the adducin-like Hts isoforms are in complexes with Dlg and PIP2 at the NMJ. We provide evidence that Hts promotes the phosphorylation and delocalization of Dlg at the NMJ through regulation of the transcript distribution of the PAR-1 and CaMKII kinases in the muscle. We also show that Hts interactions with Dlg and PIP2 are impeded through phosphorylation of the MARCKS-homology domain. These results are further evidence that Hts is a signaling-responsive regulator of synaptic plasticity in Drosophila.

  5. Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction

    Directory of Open Access Journals (Sweden)

    Erica Hurtado

    2017-08-01

    Full Text Available Conventional protein kinase C βI (cPKCβI is a conventional protein kinase C (PKC isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ. It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1. Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min. Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1 protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release.

  6. MAPK3 at the Autism-Linked Human 16p11.2 Locus Influences Precise Synaptic Target Selection at Drosophila Larval Neuromuscular Junctions.

    Science.gov (United States)

    Park, Sang Mee; Park, Hae Ryoun; Lee, Ji Hye

    2017-02-01

    Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 locus in the human genome and investigated potential defects in synaptic connectivity caused by reduced activities of genes located in this region at Drosophila larval neuromuscular junctions, a well-established model synapse with stereotypic synaptic structures. A mutation of rolled , a Drosophila homolog of human mitogen-activated protein kinase 3 ( MAPK3 ) at the 16p11.2 locus, caused ectopic innervation of axonal branches and their abnormal defasciculation. The specificity of these phenotypes was confirmed by expression of wild-type rolled in the mutant background. Albeit to a lesser extent, we also observed ectopic innervation patterns in mutants defective in Cdk2, Gα q , and Gp93, all of which were expected to interact with Rolled MAPK3. A further genetic analysis in double heterozygous combinations revealed a synergistic interaction between rolled and Gp93 . In addition, results from RT-qPCR analyses indicated consistently reduced rolled mRNA levels in Cdk2 , Gα q , and Gp93 mutants. Taken together, these data suggest a central role of MAPK3 in regulating the precise targeting of presynaptic axons to proper postsynaptic targets, a critical step that may be altered significantly in ASD.

  7. Milk fat globule membrane supplementation with voluntary running exercise attenuates age-related motor dysfunction by suppressing neuromuscular junction abnormalities in mice.

    Science.gov (United States)

    Yano, Michiko; Minegishi, Yoshihiko; Sugita, Satoshi; Ota, Noriyasu

    2017-10-15

    Age-related loss of skeletal muscle mass and function attenuates physical performance, and maintaining fine muscle innervation is known to play an important role in its prevention. We had previously shown that consumption of milk fat globule membrane (MFGM) with habitual exercise improves the muscle mass and motor function in humans and mice. Improvement of neuromuscular junction (NMJ) was suggested as one of the mechanisms underlying these effects. In this study, we evaluated the effect of MFGM intake combined with voluntary running (MFGM-VR) on morphological changes of NMJ and motor function in aging mice. Seven months following the intervention, the MFGM-VR group showed a significantly improved motor coordination in the rotarod test and muscle force in the grip strength test compared with the control group at 13 and 14months of age, respectively. In 14-month old control mice, the extensor digitorum longus muscle showed increased abnormal NMJs, such as fragmentation and denervation, compared with 6-month old young mice. However, such age-related deteriorations of NMJs were significantly suppressed in the MFGM-VR group. Increase in the expression of NMJ formation-related genes, such as agrin and LDL Receptor Related Protein 4 (LRP4), might contribute to this beneficial effect. Rotarod performance and grip strength showed significant negative correlation with the status of denervation and fragmentation of NMJs. These results suggest that MFGM intake with voluntary running exercise effectively suppresses age-related morphological deterioration of NMJ, thus contributing to improvement of motor function. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Localization of brain-derived neurotrophic factor, neurotrophin-4, tropomyosin-related kinase b receptor, and p75 NTR receptor by high-resolution immunohistochemistry on the adult mouse neuromuscular junction.

    Science.gov (United States)

    Garcia, Neus; Tomàs, Marta; Santafe, Manel M; Lanuza, M Angel; Besalduch, Nuria; Tomàs, Josep

    2010-03-01

    Neurotrophins and their receptors, the trk receptor tyrosine kinases (trks) and p75(NTR), are differentially expressed among the cell types that make up synapses. It is important to determine the precise location of these molecules involved in neurotransmission. Here we use immunostaining and Western blotting to study the localization and expression of neurotrophin brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) and the receptors tropomyosin-related kinase b (trkB) and p75(NTR) at the adult neuromuscular junction. Our confocal immunofluorescence results on the whole mounts of the mouse Levator auris longus muscle and on semithin cross-sections showed that BDNF, NT-4, trkB, and p75(NTR) were localized on the three cells in the neuromuscular synapse (motor axons, post-synaptic muscle and Schwann cells).

  9. Glucuronylated core 1 glycans are required for precise localization of neuromuscular junctions and normal formation of basement membranes on Drosophila muscles.

    Science.gov (United States)

    Itoh, Kazuyoshi; Akimoto, Yoshihiro; Kondo, Shu; Ichimiya, Tomomi; Aoki, Kazuhiro; Tiemeyer, Michael; Nishihara, Shoko

    2018-04-15

    T antigen (Galβ1-3GalNAcα1-Ser/Thr) is an evolutionary-conserved mucin-type core 1 glycan structure in animals synthesized by core 1 β1,3-galactosyltransferase 1 (C1GalT1). Previous studies showed that T antigen produced by Drosophila C1GalT1 (dC1GalT1) was expressed in various tissues and dC1GalT1 loss in larvae led to various defects, including decreased number of circulating hemocytes, hyper-differentiation of hematopoietic stem cells in lymph glands, malformation of the central nervous system, mislocalization of neuromuscular junction (NMJ) boutons, and ultrastructural abnormalities in NMJs and muscle cells. Although glucuronylated T antigen (GlcAβ1-3Galβ1-3GalNAcα1-Ser/Thr) has been identified in Drosophila, the physiological function of this structure has not yet been clarified. In this study, for the first time, we unraveled biological roles of glucuronylated T antigen. Our data show that in Drosophila, glucuronylation of T antigen is predominantly carried out by Drosophila β1,3-glucuronyltransferase-P (dGlcAT-P). We created dGlcAT-P null mutants and found that mutant larvae showed lower expression of glucuronylated T antigen on the muscles and at NMJs. Furthermore, mislocalization of NMJ boutons and a partial loss of the basement membrane components collagen IV (Col IV) and nidogen (Ndg) at the muscle 6/7 boundary were observed. Those two phenotypes were correlated and identical to previously described phenotypes in dC1GalT1 mutant larvae. In addition, dGlcAT-P null mutants exhibited fewer NMJ branches on muscles 6/7. Moreover, ultrastructural analysis revealed that basement membranes that lacked Col IV and Ndg were significantly deformed. We also found that the loss of dGlcAT-P expression caused ultrastructural defects in NMJ boutons. Finally, we showed a genetic interaction between dGlcAT-P and dC1GalT1. Therefore, these results demonstrate that glucuronylated core 1 glycans synthesized by dGlcAT-P are key modulators of NMJ bouton localization

  10. Excitatory effect of the A2A adenosine receptor agonist CGS-21680 on spontaneous and K+-evoked acetylcholine release at the mouse neuromuscular junction.

    Science.gov (United States)

    Palma, A G; Muchnik, S; Losavio, A S

    2011-01-13

    The mechanism of action of the A2A adenosine receptor agonist 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680) in the facilitation of spontaneous (isotonic and hypertonic condition) and K+-evoked acetylcholine (ACh) release was investigated in the mouse diaphragm muscles. At isotonic condition, the CGS-21680-induced excitatory effect on miniature end-plate potential (MEPP) frequency was not modified in the presence of CdCl2 and in a medium free of Ca2+ (0Ca2+-EGTA), but it was abolished after buffering the rise of intracellular Ca2+ with 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetra(acetoxy-methyl) (BAPTA-AM) and when the Ca2+-ATPase inhibitor thapsigargin was used to deplete intracellular Ca2+ stores. CGS-21680 did not have a direct effect on the Ca2+-independent neurotransmitter-releasing machinery, since the modulatory effect on the hypertonic response was also occluded by BAPTA-AM and thapsigargin. CGS-21680 facilitation on K+-evoked ACh release was not altered by the P/Q-type voltage-dependent calcium channel (VDCC) blocker ω-Agatoxin IVA, but it was completely prevented by both, the L-type VDCC blocker nitrendipine (which is known to immobilize their gating charges), or thapsigargin, suggesting that the effects of CGS-21680 on L-type VDCC and thapsigargin-sensitive internal stores are associated. We found that the VDCC pore blocker Cd2+ (2 mM Ca2+ or 0Ca2+-EGTA) failed to affect the CGS-21680 effect in high K+ whereas nitrendipine in 0Ca2+-EGTA+Cd2+ occluded its action. The blockade of Ca2+ release from endoplasmic reticulum with ryanodine antagonized the facilitating effect of CGS-21680 in control and high K+ concentration. It is concluded that, at the mouse neuromuscular junction, activation of A2A receptors facilitates spontaneous and K+-evoked ACh release by an external Ca2+-independent mechanism but that involves mobilization of Ca2+ from internal stores: during spontaneous ACh release

  11. Membrane Receptor-Induced Changes of the Protein Kinases A and C Activity May Play a Leading Role in Promoting Developmental Synapse Elimination at the Neuromuscular Junction.

    Science.gov (United States)

    Tomàs, Josep M; Garcia, Neus; Lanuza, Maria A; Nadal, Laura; Tomàs, Marta; Hurtado, Erica; Simó, Anna; Cilleros, Víctor

    2017-01-01

    Synapses that are overproduced during histogenesis in the nervous system are eventually lost and connectivity is refined. Membrane receptor signaling leads to activity-dependent mutual influence and competition between axons directly or with the involvement of the postsynaptic cell and the associated glial cell/s. Presynaptic muscarinic acetylcholine (ACh) receptors (subtypes mAChR; M 1 , M 2 and M 4 ), adenosine receptors (AR; A 1 and A 2A ) and the tropomyosin-related kinase B receptor (TrkB), among others, all cooperate in synapse elimination. Between these receptors there are several synergistic, antagonic and modulatory relations that clearly affect synapse elimination. Metabotropic receptors converge in a limited repertoire of intracellular effector kinases, particularly serine protein kinases A and C (PKA and PKC), to phosphorylate protein targets and bring about structural and functional changes leading to axon loss. In most cells A 1 , M 1 and TrkB operate mainly by stimulating PKC whereas A 2A , M 2 and M 4 inhibit PKA. We hypothesize that a membrane receptor-induced shifting in the protein kinases A and C activity (inhibition of PKA and/or stimulation of PKC) in some nerve endings may play an important role in promoting developmental synapse elimination at the neuromuscular junction (NMJ). This hypothesis is supported by: (i) the tonic effect (shown by using selective inhibitors) of several membrane receptors that accelerates axon loss between postnatal days P5-P9; (ii) the synergistic, antagonic and modulatory effects (shown by paired inhibition) of the receptors on axonal loss; (iii) the fact that the coupling of these receptors activates/inhibits the intracellular serine kinases; and (iv) the increase of the PKA activity, the reduction of the PKC activity or, in most cases, both situations simultaneously that presumably occurs in all the situations of singly and paired inhibition of the mAChR, AR and TrkB receptors. The use of transgenic animals and

  12. Membrane Receptor-Induced Changes of the Protein Kinases A and C Activity May Play a Leading Role in Promoting Developmental Synapse Elimination at the Neuromuscular Junction

    Directory of Open Access Journals (Sweden)

    Josep M. Tomàs

    2017-08-01

    Full Text Available Synapses that are overproduced during histogenesis in the nervous system are eventually lost and connectivity is refined. Membrane receptor signaling leads to activity-dependent mutual influence and competition between axons directly or with the involvement of the postsynaptic cell and the associated glial cell/s. Presynaptic muscarinic acetylcholine (ACh receptors (subtypes mAChR; M1, M2 and M4, adenosine receptors (AR; A1 and A2A and the tropomyosin-related kinase B receptor (TrkB, among others, all cooperate in synapse elimination. Between these receptors there are several synergistic, antagonic and modulatory relations that clearly affect synapse elimination. Metabotropic receptors converge in a limited repertoire of intracellular effector kinases, particularly serine protein kinases A and C (PKA and PKC, to phosphorylate protein targets and bring about structural and functional changes leading to axon loss. In most cells A1, M1 and TrkB operate mainly by stimulating PKC whereas A2A, M2 and M4 inhibit PKA. We hypothesize that a membrane receptor-induced shifting in the protein kinases A and C activity (inhibition of PKA and/or stimulation of PKC in some nerve endings may play an important role in promoting developmental synapse elimination at the neuromuscular junction (NMJ. This hypothesis is supported by: (i the tonic effect (shown by using selective inhibitors of several membrane receptors that accelerates axon loss between postnatal days P5–P9; (ii the synergistic, antagonic and modulatory effects (shown by paired inhibition of the receptors on axonal loss; (iii the fact that the coupling of these receptors activates/inhibits the intracellular serine kinases; and (iv the increase of the PKA activity, the reduction of the PKC activity or, in most cases, both situations simultaneously that presumably occurs in all the situations of singly and paired inhibition of the mAChR, AR and TrkB receptors. The use of transgenic animals and various

  13. Neuromuscular Disorders

    Science.gov (United States)

    ... lead to twitching, cramps, aches and pains, and joint and movement problems. Sometimes it also affects heart function and your ability to breathe. Examples of neuromuscular disorders include Amyotrophic lateral sclerosis Multiple sclerosis Myasthenia ...

  14. The undesirable effects of neuromuscular blocking drugs

    DEFF Research Database (Denmark)

    Claudius, C; Garvey, L H; Viby-Mogensen, J

    2009-01-01

    Neuromuscular blocking drugs are designed to bind to the nicotinic receptor at the neuromuscular junction. However, they also interact with other acetylcholine receptors in the body. Binding to these receptors causes adverse effects that vary with the specificity for the cholinergic receptor...... in question. Moreover, all neuromuscular blocking drugs may cause hypersensitivity reactions. Often the symptoms are mild and self-limiting but massive histamine release can cause systematic reactions with circulatory and respiratory symptoms and signs. At the end of anaesthesia, no residual effect...... of a neuromuscular blocking drug should be present. However, the huge variability in response to neuromuscular blocking drugs makes it impossible to predict which patient will suffer postoperative residual curarization. This article discusses the undesirable effects of the currently available neuromuscular blocking...

  15. Doenças neuromusculares Neuromuscular disorders

    Directory of Open Access Journals (Sweden)

    Umbertina C. Reed

    2002-08-01

    differential diagnosis among the main neuromuscular disorders in children, that include the diseases affecting the motor unity, i.e. spinal motor neurons, peripheral nerves, neuromuscular junction and muscular fibers. Sources: the review of the clinical aspects that should be considered for a prompt differential diagnosis among several neuromuscular disorders as well as between those and the main causes of secondary muscular hypotonia due to central nervous system or systemic disturbances is based on the clinical experience acquired along the last 12 years in following-up children with Neuromuscular Disorders attended at the outpatient Service of Neuromuscular Disorders at the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. In addition, it is based on Medline and on the review of the most recent numbers of Neuromuscular Disorders, the official journal of the World Muscle Society. Summary of the findings: most of neuromuscular disorders are genetic conditions in children and the most common of them are X-linked Progressive Muscular Dystrophy of Duchenne, Spinal Muscular Atrophy, Congenital Muscular Dystrophy, Myotonic Dystrophy and Congenital Myopathies. Conclusions: due to the phenomenal development in human molecular genetics the pathogenesis of several neuromuscular disorders in children has been clarified over the last decade. Nowadays many new diagnostic methods, including techniques of fetal diagnosis, and a more objective genotype-phenotype correlation as well as classification are available.

  16. [Characteristics of neuromuscular scoliosis].

    Science.gov (United States)

    Putzier, M; Groß, C; Zahn, R K; Pumberger, M; Strube, P

    2016-06-01

    Usually, neuromuscular scolioses become clinically symptomatic relatively early and are rapidly progressive even after the end of growth. Without sufficient treatment they lead to a severe reduction of quality of life, to a loss of the ability of walking, standing or sitting as well as to an impairment of the cardiopulmonary system resulting in an increased mortality. Therefore, an intensive interdisciplinary treatment by physio- and ergotherapists, internists, pediatricians, orthotists, and orthopedists is indispensable. In contrast to idiopathic scoliosis the treatment of patients with neuromuscular scoliosis with orthosis is controversially discussed, whereas physiotherapy is established and essential to prevent contractures and to maintain the residual sensorimotor function.Frequently, the surgical treatment of the scoliosis is indicated. It should be noted that only long-segment posterior correction and fusion of the whole deformity leads to a significant improvement of the quality of life as well as to a prevention of a progression of the scoliosis and the development of junctional problems. The surgical intervention is usually performed before the end of growth. A prolonged delay of surgical intervention does not result in an increased height but only in a deformity progression and is therefore not justifiable. In early onset neuromuscular scolioses guided-growth implants are used to guarantee the adequat development. Because of the high complication rates, further optimization of these implant systems with regard to efficiency and safety have to be addressed in future research.

  17. BDNF-TrkB Signaling Coupled to nPKCε and cPKCβI Modulate the Phosphorylation of the Exocytotic Protein Munc18-1 During Synaptic Activity at the Neuromuscular Junction

    Directory of Open Access Journals (Sweden)

    Anna Simó

    2018-06-01

    Full Text Available Munc18-1, a neuron-specific member of the Sec1/Munc18 family, is involved in neurotransmitter release by binding tightly to syntaxin. Munc18-1 is phosphorylated by PKC on Ser-306 and Ser-313 in vitro which reduces the amount of Munc18-1 able to bind syntaxin. We have previously identified that PKC is involved in neurotransmitter release when continuous electrical stimulation imposes a moderate activity on the NMJ and that muscle contraction through TrkB has an important impact on presynaptic PKC isoforms levels, specifically cPKCβI and nPKCε. Therefore, the present study was designed to understand how Munc18-1 phosphorylation is affected by (1 synaptic activity at the neuromuscular junction, (2 nPKCε and cPKCβI isoforms activity, (3 muscle contraction per se, and (4 the BDNF/TrkB signaling in a neuromuscular activity-dependent manner. We performed immunohistochemistry and confocal techniques to evidence the presynaptic location of Munc18-1 in the rat diaphragm muscle. To study synaptic activity, we stimulated the phrenic nerve (1 Hz, 30 min with or without contraction (abolished by μ-conotoxin GIIIB. Specific inhibitory reagents were used to block nPKCε and cPKCβI activity and to modulate the tropomyosin receptor kinase B (TrkB. Main results obtained from Western blot experiments showed that phosphorylation of Munc18-1 at Ser-313 increases in response to a signaling mechanism initiated by synaptic activity and directly mediated by nPKCε. Otherwise, cPKCβI and TrkB activities work together to prevent this synaptic activity–induced Munc18-1 phosphorylation by a negative regulation of cPKCβI over nPKCε. Therefore, a balance between the activities of these PKC isoforms could be a relevant cue in the regulation of the exocytotic apparatus. The results also demonstrate that muscle contraction prevents the synaptic activity–induced Munc18-1 phosphorylation through a mechanism that opposes the TrkB/cPKCβI/nPKCε signaling.

  18. BDNF-TrkB Signaling Coupled to nPKCε and cPKCβI Modulate the Phosphorylation of the Exocytotic Protein Munc18-1 During Synaptic Activity at the Neuromuscular Junction.

    Science.gov (United States)

    Simó, Anna; Just-Borràs, Laia; Cilleros-Mañé, Víctor; Hurtado, Erica; Nadal, Laura; Tomàs, Marta; Garcia, Neus; Lanuza, Maria A; Tomàs, Josep

    2018-01-01

    Munc18-1, a neuron-specific member of the Sec1/Munc18 family, is involved in neurotransmitter release by binding tightly to syntaxin. Munc18-1 is phosphorylated by PKC on Ser-306 and Ser-313 in vitro which reduces the amount of Munc18-1 able to bind syntaxin. We have previously identified that PKC is involved in neurotransmitter release when continuous electrical stimulation imposes a moderate activity on the NMJ and that muscle contraction through TrkB has an important impact on presynaptic PKC isoforms levels, specifically cPKCβI and nPKCε. Therefore, the present study was designed to understand how Munc18-1 phosphorylation is affected by (1) synaptic activity at the neuromuscular junction, (2) nPKCε and cPKCβI isoforms activity, (3) muscle contraction per se , and (4) the BDNF/TrkB signaling in a neuromuscular activity-dependent manner. We performed immunohistochemistry and confocal techniques to evidence the presynaptic location of Munc18-1 in the rat diaphragm muscle. To study synaptic activity, we stimulated the phrenic nerve (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Specific inhibitory reagents were used to block nPKCε and cPKCβI activity and to modulate the tropomyosin receptor kinase B (TrkB). Main results obtained from Western blot experiments showed that phosphorylation of Munc18-1 at Ser-313 increases in response to a signaling mechanism initiated by synaptic activity and directly mediated by nPKCε. Otherwise, cPKCβI and TrkB activities work together to prevent this synaptic activity-induced Munc18-1 phosphorylation by a negative regulation of cPKCβI over nPKCε. Therefore, a balance between the activities of these PKC isoforms could be a relevant cue in the regulation of the exocytotic apparatus. The results also demonstrate that muscle contraction prevents the synaptic activity-induced Munc18-1 phosphorylation through a mechanism that opposes the TrkB/cPKCβI/nPKCε signaling.

  19. Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 and M4 subtypes), adenosine receptors (A1 and A2A) and tropomyosin-related kinase B receptor (TrkB) modulate the developmental synapse elimination process at the neuromuscular junction.

    Science.gov (United States)

    Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria A; Santafé, Manel; Tomàs, Josep

    2016-06-23

    The development of the nervous system involves an initially exuberant production of neurons that make an excessive number of synaptic contacts. The initial overproduction of synapses promotes connectivity. Hebbian competition between axons with different activities (the least active are punished) leads to the loss of roughly half of the overproduced elements and this refines connectivity and increases specificity. The neuromuscular junction is innervated by a single axon at the end of the synapse elimination process and, because of its relative simplicity, has long been used as a model for studying the general principles of synapse development. The involvement of the presynaptic muscarinic ACh autoreceptors may allow for the direct competitive interaction between nerve endings through differential activity-dependent acetylcholine release in the synaptic cleft. Then, the most active ending may directly punish the less active ones. Our previous results indicate the existence in the weakest axons on the polyinnervated neonatal NMJ of an ACh release inhibition mechanism based on mAChR coupled to protein kinase C and voltage-dependent calcium channels. We suggest that this mechanism plays a role in the elimination of redundant neonatal synapses. Here we used confocal microscopy and quantitative morphological analysis to count the number of brightly fluorescent axons per endplate in P7, P9 and P15 transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice. We investigate the involvement of individual mAChR M1-, M2- and M4-subtypes in the control of axonal elimination after the Levator auris longus muscle had been exposed to agonist and antagonist in vivo. We also analysed the role of adenosine receptor subtypes (A1 and A2A) and the tropomyosin-related kinase B receptor. The data show that postnatal axonal elimination is a regulated multireceptor mechanism that guaranteed the monoinnervation of the neuromuscular synapses. The three receptor sets considered (mAChR, AR and TrkB receptors

  20. The Caenorhabditis elegans interneuron ALA is (also) a high-threshold mechanosensor.

    Science.gov (United States)

    Sanders, Jarred; Nagy, Stanislav; Fetterman, Graham; Wright, Charles; Treinin, Millet; Biron, David

    2013-12-17

    To survive dynamic environments, it is essential for all animals to appropriately modulate their behavior in response to various stimulus intensities. For instance, the nematode Caenorhabditis elegans suppresses the rate of egg-laying in response to intense mechanical stimuli, in a manner dependent on the mechanosensory neurons FLP and PVD. We have found that the unilaterally placed single interneuron ALA acted as a high-threshold mechanosensor, and that it was required for this protective behavioral response. ALA was required for the inhibition of egg-laying in response to a strong (picking-like) mechanical stimulus, characteristic of routine handling of the animals. Moreover, ALA did not respond physiologically to less intense touch stimuli, but exhibited distinct physiological responses to anterior and posterior picking-like touch, suggesting that it could distinguish between spatially separated stimuli. These responses required neither neurotransmitter nor neuropeptide release from potential upstream neurons. In contrast, the long, bilaterally symmetric processes of ALA itself were required for producing its physiological responses; when they were severed, responses to stimuli administered between the cut and the cell body were unaffected, while responses to stimuli administered posterior to the cut were abolished. C. elegans neurons are typically classified into three major groups: sensory neurons with specialized sensory dendrites, interneurons, and motoneurons with neuromuscular junctions. Our findings suggest that ALA can autonomously sense intense touch and is thus a dual-function neuron, i.e., an interneuron as well as a novel high-threshold mechanosensor.

  1. Influência da procainamida sobre o bloqueio neuromuscular produzido pelo rocurônio e investigação sobre o mecanismo de ação da procainamida na junção neuromuscular Influencia de la procainamida sobre el bloqueo neuromuscular producido por el rocuronio e investigación sobre el mecanismo de acción de la procainamida en la junción neuromuscular Influence of procainamide on the neuromuscular blockade caused by rocuronium and investigation on the mechanism of action of procainamide on the neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Thalita Duque Martins

    2007-02-01

    Full Text Available JUSTIFICATIVA E OBJETIVOS: A potencialização da procainamida sobre o bloqueio neuromuscular produzido pela d-tubocurarina já está comprovada, porém o mecanismo é controverso. O objetivo do estudo foi avaliar a influência da procainamida no bloqueio neuromuscular produzido pelo rocurônio e investigar os mecanismos desta interação. MÉTODO: Foram utilizados 15 ratos (250 a 300 g em preparação descrita por Bülbring. Formaram-se os seguintes grupos (n = 5 cada: procainamida - 20 µg.mL-1 (Grupo I; rocurônio - 4 µg.mL-1 (Grupo II e rocurônio - 4 µg.mL-1 e procainamida - 20 µg.mL-1 (Grupo III. Avaliaram-se: 1 a amplitude das contrações musculares sob estimulação indireta em cada grupo, antes e após a adição dos fármacos; 2 os potenciais de placa terminal em miniatura (PPTM; 3 a eficácia da 4-aminopiridina na reversão do bloqueio neuromuscular. O mecanismo da interação foi estudado em Biventer cervicis (n = 5 e diafragma de rato desnervado (n = 5, observando-se a influência da procainamida na resposta à acetilcolina antes e após a adição da procainamida. RESULTADOS: A procainamida isoladamente não alterou as respostas neuromusculares. O bloqueio produzido com o Grupo III foi de 68,6% ± 7,1%, com diferença significativa (p = 0,0067 em relação ao Grupo II (10,4% ± 4,5%, revertido pela 4-aminopiridina. A procainamida ocasionou aumento na freqüência dos PPTM, seguido de bloqueio revertido pela 4-aminopiridina. Em Biventer cervicis a procainamida aumentou a resposta à ação de contração da acetilcolina, resultado não observado com o diafragma desnervado. CONCLUSÕES: A procainamida potencializou o bloqueio produzido pelo rocurônio. As alterações observadas com PPTM e Biventer cervicis identificaram ação pré-sináptica. O antagonismo da 4-aminopiridina sobre o bloqueio dos PPTM sugeriu dessensibilização dos receptores pela procainamida.JUSTIFICATIVA Y OBJETIVOS: La potenciación de la procainamida sobre

  2. Microfluidic Devices in Advanced Caenorhabditis elegans Research

    Directory of Open Access Journals (Sweden)

    Muniesh Muthaiyan Shanmugam

    2016-08-01

    Full Text Available The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology.

  3. In Vivo Modelling of ATP1A3 G316S-Induced Ataxia in C. elegans Using CRISPR/Cas9-Mediated Homologous Recombination Reveals Dominant Loss of Function Defects.

    Directory of Open Access Journals (Sweden)

    Altar Sorkaç

    Full Text Available The NIH Undiagnosed Diseases Program admitted a male patient with unclassifiable late-onset ataxia-like symptoms. Exome sequencing revealed a heterozygous de novo mutation converting glycine 316 to serine in ATP1A3, which might cause disease. ATP1A3 encodes the Na+/K+ ATPase pump α3-subunit. Using CRISPR/Cas9-mediated homologous recombination for genome editing, we modelled this putative disease-causing allele in Caenorhabditis elegans, recreating the patient amino acid change in eat-6, the orthologue of ATP1A3. The impact of the mutation on eat-6 function at the neuromuscular junction was examined using two behavioural assays: rate of pharyngeal pumping and sensitivity to aldicarb, a drug that causes paralysis over time via the inhibition of acetylcholinesterase. The patient allele decreased pumping rates and caused hypersensitivity to aldicarb. Animals heterozygous for the allele exhibited similar defects, whereas loss of function mutations in eat-6 were recessive. These results indicate that the mutation is dominant and impairs the neuromuscular function. Thus, we conclude that the de novo G316S mutation in ATP1A3 likely causes or contributes to patient symptoms. More broadly, we conclude that, for conserved genes, it is possible to rapidly and easily model human diseases in C. elegans using CRIPSR/Cas9 genome editing.

  4. Neuromuscular blockade in children Bloqueadores neuromusculares em crianças

    Directory of Open Access Journals (Sweden)

    João Fernando Lourenço de Almeida

    2000-06-01

    Full Text Available Neuromuscular blocking agents (NMBAs have been widely used to control patients who need to be immobilized for some kind of medical intervention, such as an invasive procedure or synchronism with mechanical ventilation. The purpose of this monograph is to review the pharmacology of the NMBAs, to compare the main differences between the neuromuscular junction in neonates, infants, toddlers and adults, and moreover to discuss their indications in critically ill pediatric patients. Continuous improvement of knowledge about NMBAs pharmacology, adverse effects, and the many other remaining unanswered questions about neuromuscular junction and neuromuscular blockade in children is essential for the correct use of these drugs. Therefore, the indication of these agents in pediatrics is determined with extreme judiciousness. Computorized (Medline 1990-2000 and active search of articles were the mechanisms used in this review.Os bloqueadores neuromusculares têm sido amplamente utilizados para controlar pacientes que necessitem imobilidade para algum tipo de intervenção médica, desde a realização de procedimentos invasivos até a obtenção de sincronismo com a ventilação mecânica. O objetivo básico desta monografia é revisar a farmacologia dos principais bloqueadores neuromusculares, analisar as diferenças existentes na junção neuromuscular de neonatos, lactentes, pré-escolares e adultos, além de discutir suas indicações em pacientes criticamente enfermos internados em unidade de terapia intensiva pediátrica. Revisão computadorizada da literatura (Medline 1990-2000 associado a busca ativa de artigos compuseram o mecanismo de busca dos dados desta revisão.

  5. Objective neuromuscular monitoring of neuromuscular blockade in Denmark

    DEFF Research Database (Denmark)

    Söderström, C M; Eskildsen, K Z; Gätke, M R

    2017-01-01

    BACKGROUND: Neuromuscular blocking agents are commonly used during general anaesthesia but can lead to postoperative residual neuromuscular blockade and associated morbidity. With appropriate objective neuromuscular monitoring (objNMM) residual blockade can be avoided. In this survey, we investig...

  6. TEACHING NEUROMUSCULAR RELAXATION.

    Science.gov (United States)

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  7. BIOLOGY OF SOME NEUROMUSCULAR DISORDERS

    Directory of Open Access Journals (Sweden)

    Gerta Vrbova

    2004-12-01

    unit is slower. The rate of maturation is critical for the survival of both motoneurone and muscle and that events that interfere with the time course of maturation cause both motoneurone and muscle fibre death. The proposal that the SMN gene/protein is involved in the process to developmental changes in cells and therefore crucial for their survival is put forward. The understanding of the developmental changes and their influence on motoneurone and muscle survival may help to devise therapeutic interventions. These may include a protection of the motoneurone cell body during a critical period of its development by reducing its excitability or enhancing its defences by upregulating heat shock proteins, b stabilizing neuromuscular junctions to enhance and prolong the retrograde influences from the muscle that affect motoneurone survival, c protecting muscle fibres from apoptosis, as well as stimulating their maturation by activity appropriate to their younger age that results from their delayed development.These approaches should be considered in addition to or in conjunction with possible interference with the gene and its product.In order to understand and possibly interfere/treat neuromuscular disorders it is important to analyze the biological events that may be causing the disability. In this presentation I would illustrate such attempts on two examples of genetically determined neuromuscular diseases: 1 Duchenne muscular dystrophy, and 2 Spinal muscular atrophy.

  8. Neuromuscular complications of thyrotoxicosis.

    Science.gov (United States)

    Kung, Annie W C

    2007-11-01

    Thyroid hormones exert multiple effects on the neuromuscular system and the brain, with the most important being their role in stimulating the development and differentiation of the neuromuscular system and brain in foetal and neonatal life. In the presence of hyperthyroidism, muscular and neurological symptoms may be the presenting clinical features of the disease. The frequency and severity of neuromuscular complications vary considerably and are probably related to the degree of hyperthyroidism, although in some patients the neuromuscular dysfunction is caused by associated disorders rather than by hyperthyroidism per se. This update focuses on the most common neurological and muscular disorders that occur in patients with thyrotoxicosis. It is beyond the scope of this paper to discuss thyroid eye disease and cardiac complications, in themselves separate complications of specific myocytes.

  9. Effects of Genetic Mutations and Chemical Exposures on Caenorhabditis elegans Feeding: Evaluation of a Novel, High-Throughput Screening Assay

    OpenAIRE

    Boyd, Windy A.; McBride, Sandra J.; Freedman, Jonathan H.

    2007-01-01

    Background Government agencies have defined a need to reduce, refine or replace current mammalian-based bioassays with testing methods that use alternative species. Invertebrate species, such as Caenorhabditis elegans, provide an attractive option because of their short life cycles, inexpensive maintenance, and high degree of evolutionary conservation with higher eukaryotes. The C. elegans pharynx is a favorable model for studying neuromuscular function, and the effects of chemicals on neurom...

  10. FUNCTIONS OF A NEUROMUSCULAR CENTRE

    Directory of Open Access Journals (Sweden)

    Janez Zidar

    2004-12-01

    Full Text Available Main functions of a neuromuscular (NM centre are making diagnosis, treatment and counselling. Some other functions, e. g. forming a register and epidemiological endeavours, could be added. All these activities are expected to be achieved by multidisciplinary approach with the idea that members use the same guidelines and share the same knowledge.NM diseases affect lower levels of the nervous system that is motor units (motor cells in the brainstem and spinal cord, nerve roots, cranial and peripheral nerves, neuromuscular junction, and muscles. There are many such diseases; a few are more common others are rare.Rational approach in making a diagnosis can be divided into several steps. The process begins with a person with clinical symptoms and signs which raise the suspicion of NM disease. The first step is the description of the predominant pattern of muscular wasting and weakness (e. g. limb-girdle, distal, ocular, facio-scapulo-humeral. Each of these syndromes require a differential diagnosis within the motor unit territory what is achieved by means of EMG and muscle biopsy. The latter is even more important to define the nature of the abnormality. Disease nature can also be determined biochemically and, as NM disorders are commonly genetically determined, at the molecular genetic level. Treatment modalities include drugs (causative and symptomatic and other measures such as promoting and maintaining good general health, preventing skeletal deformities, physiotherapy, orthoses, surgery, and prevention of respiratory and cardiac functions. Counselling is mainly by social workers that focus on the practical aspects of coping with illness and disability and by genetic counsellors who gave advise on family planning.

  11. Neuromuscular diseases: Diagnosis and management.

    Science.gov (United States)

    Mary, P; Servais, L; Vialle, R

    2018-02-01

    Neuromuscular diseases (NMDs) affect the peripheral nervous system, which includes the motor neurons and sensory neurons; the muscle itself; or the neuromuscular junction. Thus, the term NMDs encompasses a vast array of different syndromes. Some of these syndromes are of direct relevance to paediatric orthopaedic surgeons, either because the presenting manifestation is a functional sign (e.g., toe-walking) or deformity (e.g., pes cavus or scoliosis) suggesting a need for orthopaedic attention or because orthopaedic abnormalities requiring treatment develop during the course of a known NMD. The main NMDs relevant to the orthopaedic surgeon are infantile spinal muscular atrophy (a motor neuron disease), peripheral neuropathies (chiefly, Charcot-Marie-Tooth disease), congenital muscular dystrophies, progressive muscular dystrophies, and Steinert myotonic dystrophy (or myotonic dystrophy type 1). Muscle weakness is a symptom shared by all these conditions. The paediatric orthopaedic surgeon must be familiar, not only with the musculoskeletal system, but also with many other domains (particularly respiratory and cardiac function and nutrition) that may interfere with the treatment and require preoperative management. Good knowledge of the natural history of each NMD is essential to ensure optimal timing of the therapeutic interventions, which must be performed under the best possible conditions in these usually frail patients. Timing is particularly crucial for the treatment of spinal deformities due to paraspinal muscle hypotonia during growth: depending on the disease and natural history, the treatment may involve non-operative methods or growing rods, followed by spinal fusion. A multidisciplinary approach is always required. Finally, the survival gains achieved in recent years increasingly require attention to preparing for adult life, to orthopaedic problems requiring treatment before the patient leaves the paediatric environment, and to the transition towards the

  12. Hereditary neuromuscular diseases

    Energy Technology Data Exchange (ETDEWEB)

    Oezsarlak, O. E-mail: ozkan.ozsarlak@uza.be; Schepens, E.; Parizel, P.M.; Goethem, J.W. van; Vanhoenacker, F.; Schepper, A.M. de; Martin, J.J

    2001-12-01

    This article presents the actual classification of neuromuscular diseases based on present expansion of our knowledge and understanding due to genetic developments. It summarizes the genetic and clinical presentations of each disorder together with CT findings, which we studied in a large group of patients with neuromuscular diseases. The muscular dystrophies as the largest and most common group of hereditary muscle diseases will be highlighted by giving detailed information about the role of CT and MRI in the differential diagnosis. The radiological features of neuromuscular diseases are atrophy, hypertrophy, pseudohypertrophy and fatty infiltration of muscles on a selective basis. Although the patterns and distribution of involvement are characteristic in some of the diseases, the definition of the type of disease based on CT scan only is not always possible.

  13. SNT-1 functions as the Ca2+ sensor for tonic and evoked neurotransmitter release in C. elegans.

    Science.gov (United States)

    Li, Lei; Liu, Haowen; Wang, Wei; Chandra, Mintu; Collins, Brett M; Hu, Zhitao

    2018-05-14

    Synaptotagmin-1 (Syt1) binds Ca 2+ through its tandem C2 domains (C2A and C2B) and triggers Ca 2+ -dependent neurotransmitter release. Here we show that snt-1 , the homolog of mammalian Syt1, functions as the Ca 2+ sensor for both tonic and evoked neurotransmitter release at the C. elegans neuromuscular junction. Mutations that disrupt Ca 2+ binding in double C2 domains of SNT-1 significantly impaired tonic release, whereas disrupting Ca 2+ binding in a single C2 domain had no effect, indicating that the Ca 2+ binding of the two C2 domains is functionally redundant for tonic release. Stimulus-evoked release was significantly reduced in snt-1 mutants, with prolonged release latency as well as faster rise and decay kinetics. Unlike tonic release, evoked release was triggered by Ca 2+ binding solely to the C2B domain. Moreover, we showed that SNT-1 plays an essential role in the priming process in different subpopulations of synaptic vesicles with tight or loose coupling to Ca 2+ entry. SIGNIFICANCE STATEMENT We showed that SNT-1 in C. elegans regulates evoked neurotransmitter release through Ca 2+ binding to its C2B domain, a similar way to Syt1 in the mouse CNS and the fly NMJ. However, the largely decreased tonic release in snt-1 mutants argues SNT-1 has a clamping function. Indeed, Ca 2+ -binding mutations in the C2 domains in SNT-1 significantly reduced the frequency of the miniature excitatory postsynaptic current (mEPSC), indicating that SNT-1 also acts as a Ca 2+ sensor for tonic release. Therefore, revealing the differential mechanisms between invertebrates and vertebrates will provide significant insights into our understanding how synaptic vesicle fusion is regulated. Copyright © 2018 the authors.

  14. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello

    2009-01-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged k......This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one...... conductance during exercise, events that are not associated with either acetylcholine or an increased oxygen demand. The results do not support an essential role for acetylcholine, released form the neuromuscular junction, in exercise hyperaemia or for the enhanced blood flow during neuromuscular blockade....... The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibres. Key words: blood flow, neuromuscular blockade, exercise, skeletal muscle....

  15. MRI in neuromuscular disorders

    International Nuclear Information System (INIS)

    Fischmann, Arne

    2014-01-01

    Neuromuscular disorders are caused by damage of the skeletal muscles or supplying nerves, in many cases due to a genetic defect, resulting in progressive disability, loss of ambulation and often a reduced life expectancy. Previously only supportive care and steroids were available as treatments, but several novel therapies are under development or in clinical trial phase. Muscle imaging can detect specific patterns of involvement and facilitate diagnosis and guide genetic testing. Quantitative MRT can be used to monitor disease progression either to monitor treatment or as a surrogate parameter for clinical trails. Novel imaging sequences can provide insights into disease pathology and muscle metabolism. (orig.)

  16. Gap Junctions

    Science.gov (United States)

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  17. Gait modulation in C. elegans: An integrated neuromechanical model

    Directory of Open Access Journals (Sweden)

    Jordan Hylke Boyle

    2012-03-01

    Full Text Available Equipped with its 302-cell nervous system, the nematode Caenorhabditis elegans adapts its locomotion in different environments, exhibiting so-called swimming in liquids and crawling on dense gels. Recent experiments have demonstrated that the worm displays the full range of intermediate behaviors when placed in intermediate environments. The continuous nature of this transition strongly suggests that these behaviors all stem from modulation of a single underlying mechanism. Wepresent a model of C. elegans forward locomotion that includes a neuromuscular control system that relies on a sensory feedback mechanism to generate undulations and is integrated with a physical model of the body and environment. We find that the model reproduces the entire swim-crawl transition, as well as locomotion in complex and heterogeneous environments. This is achieved with no modulatory mechanism, except via the proprioceptive response to the physical environment. Manipulations of the model are used to dissect the proposed pattern generation mechanism and its modulation. The model suggests a possible role for GABAergic D-class neurons in forward locomotion and makes a number of experimentalpredictions, in particular with respect to nonlinearities in the model and to symmetry breaking between the neuromuscular systems on the ventral and dorsal sides of the body.

  18. An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jiou Wang

    2009-01-01

    Full Text Available The nature of toxic effects exerted on neurons by misfolded proteins, occurring in a number of neurodegenerative diseases, is poorly understood. One approach to this problem is to measure effects when such proteins are expressed in heterologous neurons. We report on effects of an ALS-associated, misfolding-prone mutant human SOD1, G85R, when expressed in the neurons of Caenorhabditis elegans. Stable mutant transgenic animals, but not wild-type human SOD1 transgenics, exhibited a strong locomotor defect associated with the presence, specifically in mutant animals, of both soluble oligomers and insoluble aggregates of G85R protein. A whole-genome RNAi screen identified chaperones and other components whose deficiency increased aggregation and further diminished locomotion. The nature of the locomotor defect was investigated. Mutant animals were resistant to paralysis by the cholinesterase inhibitor aldicarb, while exhibiting normal sensitivity to the cholinergic agonist levamisole and normal muscle morphology. When fluorescently labeled presynaptic components were examined in the dorsal nerve cord, decreased numbers of puncta corresponding to neuromuscular junctions were observed in mutant animals and brightness was also diminished. At the EM level, mutant animals exhibited a reduced number of synaptic vesicles. Neurotoxicity in this system thus appears to be mediated by misfolded SOD1 and is exerted on synaptic vesicle biogenesis and/or trafficking.

  19. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Serena A D'Souza

    2016-04-01

    Full Text Available The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle's plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue.

  20. Effects of genetic mutations and chemical exposures on Caenorhabditis elegans feeding: evaluation of a novel, high-throughput screening assay.

    Directory of Open Access Journals (Sweden)

    Windy A Boyd

    2007-12-01

    Full Text Available Government agencies have defined a need to reduce, refine or replace current mammalian-based bioassays with testing methods that use alternative species. Invertebrate species, such as Caenorhabditis elegans, provide an attractive option because of their short life cycles, inexpensive maintenance, and high degree of evolutionary conservation with higher eukaryotes. The C. elegans pharynx is a favorable model for studying neuromuscular function, and the effects of chemicals on neuromuscular activity, i.e., feeding. Current feeding methodologies, however, are labor intensive and only semi-quantitative.Here a high-throughput assay is described that uses flow cytometry to measure C. elegans feeding by determining the size and intestinal fluorescence of hundreds of nematodes after exposure to fluorescent-labeled microspheres. This assay was validated by quantifying fluorescence in feeding-defective C. elegans (eat mutants, and by exposing wild-type nematodes to the neuroactive compounds, serotonin and arecoline. The eat mutations previously determined to cause slow pumping rates exhibited the lowest feeding levels with our assay. Concentration-dependent increases in feeding levels after serotonin exposures were dependent on food availability, while feeding levels decreased in arecoline-exposed nematodes regardless of the presence of food. The effects of the environmental contaminants, cadmium chloride and chlorpyrifos, on wild-type C. elegans feeding were then used to demonstrate an application of the feeding assay. Cadmium exposures above 200 microM led to a sharp drop in feeding levels. Feeding of chlorpyrifos-exposed nematodes decreased in a concentration-dependent fashion with an EC(50 of 2 microM.The C. elegans fluorescence microsphere feeding assay is a rapid, reliable method for the assessment of neurotoxic effects of pharmaceutical drugs, industrial chemicals or environmental agents. This assay may also be applicable to large scale genetic or

  1. The Action of Botulinum Toxin at the Neuromuscular Junction

    Science.gov (United States)

    1980-12-22

    fast - twitch " (gastrocnemius) and " slow - twitch " (soleus) muscles ... muscle fibers -"_re not significantly affected by the toxin. It is interesting to note that, although fast - twitch and slow - twitch mucles were...Duchen LW: An electron microscopic study of the changes induced by borulinum o::in in the motor end-plates of slow and fast skeletal muscle fibres of

  2. Some effects of lead at mammalian neuromuscular junction

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, J.B.; Bornstein, J.C.

    1984-03-01

    The effect of lead on transmitter release was investigated in a rat phrenic nerve-hemidiaphragm preparation using conventional microelectrode techniques. Lead reduced the number of quanta released by a nerve stimulus (m) in a dose-dependent fashion. As extracellular Ca/sup 2 +/ concentration ((Ca/sup 2 +/)/sub 0/) was varied in the absence of lead, a linear relationship between ln(m) and ln((Ca/sup 2 +/)/sub 0/) was obtained. Lead shifted the relationship between ln(m) and ln((Ca/sup 2 +/)/sub 0/) to the right without altering the slope. This suggested lead competed with Ca/sup 2 +/, which was confirmed by using a modified Lineweaver-Burk plot. Lead inhibits Ca/sup 2 +/ entry into frog sympathetic preganglionic nerve terminals, and a similar mechanism may underlie this present finding; such a mechanism, however, could not explain all the observed actions of lead. Lead increased the frequency of spontaneous quantal release in a dose-dependent manner, and 10/sup -4/ M lead doubled the magnitude of facilitation of evoked release seen with five stimuli at 60 Hz. It is suggested that these effects result from inhibition of some, or all, of the nerve terminal's Ca/sup 2 +/ sequestration mechanisms.

  3. Effect of calcium on excitatory neuromuscular transmission in the crayfish

    Science.gov (United States)

    Bracho, H.; Orkand, R. K.

    1970-01-01

    1. The effects of varying the external Ca concentration from 1·8 to 30 mM/l. (⅛-2 times normal) have been studied at the in vitro crayfish excitatory neuromuscular junction. Electrophysiological techniques were used to record transmembrane junctional potentials from muscle fibres and extracellular junctional currents from the vicinity of nerve terminals. 2. The excitatory junctional potential amplitude was proportional to [Ca]0n, where n varied between 0·68 and 0·94 (mean 0·82) when [Ca]0 was varied from 1·8 to 15 mM/l. 3. The increase in junctional potential amplitude on raising [Ca]0 resulted primarily from an increase in the average number of quanta of excitatory transmitter released from the presynaptic nerve terminal by the nerve impulse. 4. The size of the quanta, synaptic delay, presynaptic potential and electrical properties of the muscle membrane were little affected by changes in calcium concentration in the range studied. PMID:5498460

  4. Caenorhabditis elegans response to salt

    NARCIS (Netherlands)

    O.O. Umuerri (Oluwatoroti Omowayewa)

    2012-01-01

    textabstractThis thesis describes my work, where I used genetic methods to identify new genes involved in salt taste in C. elegans. In addition, I used calcium imaging to characterize the cellular response of C. elegans to salt. The thesis is divided into five sections and each section is summarized

  5. Neuromuscular disease classification system

    Science.gov (United States)

    Sáez, Aurora; Acha, Begoña; Montero-Sánchez, Adoración; Rivas, Eloy; Escudero, Luis M.; Serrano, Carmen

    2013-06-01

    Diagnosis of neuromuscular diseases is based on subjective visual assessment of biopsies from patients by the pathologist specialist. A system for objective analysis and classification of muscular dystrophies and neurogenic atrophies through muscle biopsy images of fluorescence microscopy is presented. The procedure starts with an accurate segmentation of the muscle fibers using mathematical morphology and a watershed transform. A feature extraction step is carried out in two parts: 24 features that pathologists take into account to diagnose the diseases and 58 structural features that the human eye cannot see, based on the assumption that the biopsy is considered as a graph, where the nodes are represented by each fiber, and two nodes are connected if two fibers are adjacent. A feature selection using sequential forward selection and sequential backward selection methods, a classification using a Fuzzy ARTMAP neural network, and a study of grading the severity are performed on these two sets of features. A database consisting of 91 images was used: 71 images for the training step and 20 as the test. A classification error of 0% was obtained. It is concluded that the addition of features undetectable by the human visual inspection improves the categorization of atrophic patterns.

  6. Developmental and adult-specific processes contribute to de novo neuromuscular regeneration in the lizard tail.

    Science.gov (United States)

    Tokuyama, Minami A; Xu, Cindy; Fisher, Rebecca E; Wilson-Rawls, Jeanne; Kusumi, Kenro; Newbern, Jason M

    2018-01-15

    Peripheral nerves exhibit robust regenerative capabilities in response to selective injury among amniotes, but the regeneration of entire muscle groups following volumetric muscle loss is limited in birds and mammals. In contrast, lizards possess the remarkable ability to regenerate extensive de novo muscle after tail loss. However, the mechanisms underlying reformation of the entire neuromuscular system in the regenerating lizard tail are not completely understood. We have tested whether the regeneration of the peripheral nerve and neuromuscular junctions (NMJs) recapitulate processes observed during normal neuromuscular development in the green anole, Anolis carolinensis. Our data confirm robust axonal outgrowth during early stages of tail regeneration and subsequent NMJ formation within weeks of autotomy. Interestingly, NMJs are overproduced as evidenced by a persistent increase in NMJ density 120 and 250 days post autotomy (DPA). Substantial Myelin Basic Protein (MBP) expression could also be detected along regenerating nerves indicating that the ability of Schwann cells to myelinate newly formed axons remained intact. Overall, our data suggest that the mechanism of de novo nerve and NMJ reformation parallel, in part, those observed during neuromuscular development. However, the prolonged increase in NMJ number and aberrant muscle differentiation hint at processes specific to the adult response. An examination of the coordinated exchange between peripheral nerves, Schwann cells, and newly synthesized muscle of the regenerating neuromuscular system may assist in the identification of candidate molecules that promote neuromuscular recovery in organisms incapable of a robust regenerative response. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The neuro-muscular system in continuously swimming cercariae from Belarus. I Xiphidiocercariae.

    Science.gov (United States)

    Tolstenkov, Oleg O; Akimova, Ludmila N; Terenina, Nadezhda B; Gustafsson, Margaretha K S

    2012-11-01

    The neuromuscular system (NMS) in cercariae of Neoastiotrema trituri, Plagiorchis elegans, Omphalometra flexuosa, Skrjabinoeces similis and Prosthogonimus ovatus was studied with immunocytochemical methods and confocal scanning laser microscopy. The patterns of F-actin in the musculature, 5-HT immunoreactive (IR), FMRFamide-IR neuronal elements and α-tubulin-IR sensory receptors were investigated, and they were found to be rather similar in all the cercariae studied. Four species have seven paired 5-HT-IR neurons in the body, and P. elegans has eight. N. trituri has three 5-HT-IR neurons in each brain ganglion, while the other species have four. A high degree of conformity in the structure of the NMS was observed, probably reflecting the close phylogenetic relationship and the similar strategy of host finding.

  8. Food deprivation and nicotine correct akinesia and freezing in Na(+) -leak current channel (NALCN)-deficient strains of Caenorhabditis elegans.

    Science.gov (United States)

    Bonnett, K; Zweig, R; Aamodt, E J; Dwyer, D S

    2014-09-01

    Mutations in various genes adversely affect locomotion in model organisms, and thus provide valuable clues about the complex processes that control movement. In Caenorhabditis elegans, loss-of-function mutations in the Na(+) leak current channel (NALCN) and associated proteins (UNC-79 and UNC-80) cause akinesia and fainting (abrupt freezing of movement during escape from touch). It is not known how defects in the NALCN induce these phenotypes or if they are chronic and irreversible. Here, we report that akinesia and freezing are state-dependent and reversible in NALCN-deficient mutants (nca-1;nca-2, unc-79 and unc-80) when additional cation channels substitute for this protein. Two main measures of locomotion were evaluated: spontaneous movement (traversal of >2 head lengths during a 5 second observation period) and the touch-freeze response (movement greater than three body bends in response to tail touch). Food deprivation for as little as 3 min stimulated spontaneous movement and corrected the touch-freeze response. Conversely, food-deprived animals that moved normally in the absence of bacteria rapidly reverted to uncoordinated movement when re-exposed to food. The effects of food deprivation were mimicked by nicotine, which suggested that acetylcholine mediated the response. Nicotine appeared to act on interneurons or motor neurons rather than directly at the neuromuscular junction because levamisole, which stimulates muscle contraction, did not correct movement. Neural circuits have been proposed to account for the effects of food deprivation and nicotine on spontaneous movement and freezing. The NALCN may play an unrecognized role in human movement disorders characterized by akinesia and freezing gait. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. Neuromuscular control and ankle instability.

    Science.gov (United States)

    Gutierrez, Gregory M; Kaminski, Thomas W; Douex, Al T

    2009-04-01

    Lateral ankle sprains (LAS) are common injuries in athletics and daily activity. Although most are resolved with conservative treatment, others develop chronic ankle instability (AI)-a condition associated with persistent pain, weakness, and instability-both mechanical (such as ligamentous laxity) and functional (neuromuscular impairment with or without mechanical laxity). The predominant theory in AI is one of articular deafferentation from the injury, affecting closed-loop (feedback/reflexive) neuromuscular control, but recent research has called that theory into question. A considerable amount of attention has been directed toward understanding the underlying causes of this pathology; however, little is known concerning the neuromuscular mechanisms behind the development of AI. The purpose of this review is to summarize the available literature on neuromuscular control in uninjured individuals and individuals with AI. Based on available research and reasonable speculation, it seems that open-loop (feedforward/anticipatory) neuromuscular control may be more important for the maintenance of dynamic joint stability than closed-loop control systems that rely primarily on proprioception. Therefore, incorporating perturbation activities into patient rehabilitation schemes may be of some benefit in enhancing these open-loop control mechanisms. Despite the amount of research conducted in this area, analysis of individuals with AI during dynamic conditions is limited. Future work should aim to evaluate dynamic perturbations in individuals with AI, as well as subjects who have a history of at least one LAS and never experienced recurrent symptoms. These potential findings may help elucidate some compensatory mechanisms, or more appropriate neuromuscular control strategies after an LAS event, thus laying the groundwork for future intervention studies that can attempt to reduce the incidence and severity of acute and chronic lateral ankle injury.

  10. Neuromuscular ultrasound of cranial nerves.

    Science.gov (United States)

    Tawfik, Eman A; Walker, Francis O; Cartwright, Michael S

    2015-04-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed.

  11. Transmitter release in the neuromuscular synapse of the protein kinase C theta-deficient adult mouse.

    Science.gov (United States)

    Besalduch, Núria; Santafé, Manel M; Garcia, Neus; Gonzalez, Carmen; Tomás, Marta; Tomás, Josep; Lanuza, Maria A

    2011-04-01

    We studied structural and functional features of the neuromuscular junction in adult mice (P30) genetically deficient in the protein kinase C (PKC) theta isoform. Confocal and electron microscopy shows that there are no differences in the general morphology of the endplates between PKC theta-deficient and wild-type (WT) mice. Specifically, there is no difference in the density of the synaptic vesicles. However, the myelin sheath is not as thick in the intramuscular nerve fibers of the PKC theta-deficient mice. We found a significant reduction in the size of evoked endplate potentials and in the frequency of spontaneous, asynchronous, miniature endplate potentials in the PKC theta-deficient neuromuscular preparations in comparison with the WT, but the mean amplitude of the spontaneous potentials is not different. These changes indicate that PKC theta has a presynaptic role in the function of adult neuromuscular synapses. Copyright © 2010 Wiley-Liss, Inc.

  12. Neutralization of the neuromuscular inhibition of venom and taipoxin from the taipan (Oxyuranus scutellatus) by F(ab0)2 and whole IgG antivenoms

    OpenAIRE

    Herrera Vega, María; de Cássia de O. Collaço, Rita; Villalta, Mauren; Segura Ruiz, Álvaro; Vargas Arroyo, Mariángela; Wright, Christine E.; Paiva, Owen K.; Matainaho, Teatulohi; Jensen, Simon D.; León Montero, Guillermo; Williams, David J.; Rodrigues Simioni, Lea; Gutiérrez, José María

    2016-01-01

    The neuromuscular junction activity of Oxyuranus scutellatus venom and its presynaptic neurotoxin, taipoxin, and their neutralization by two antivenoms were examined in mouse phrenic nerve-diaphragm preparations. The action of taipoxin was also studied at 21 °C. The efficacy of the antivenoms was also assessed in an in vivo mouse model. Both antivenoms were effective in neutralizing the neuromuscular blocking activity in preincubation-type experiments. In experiments involving independent add...

  13. Neutralization Of The Neuromuscular Inhibition Of Venom And Taipoxin From The Taipan (oxyuranus Scutellatus) By F(ab ') 2 And Whole Igg Antivenoms

    OpenAIRE

    Herrera; Maria; de O Collaco; Rita de Cassia; Villalta; Mauren; Segura; Alvaro; Vargas; Mariangela; Wright; Christine E.; Paiva; Owen K.; Matainaho; Teatulohi; Jensen; Simon D.; Leon; Guillermo; Williams; David J.; Rodrigues-Simioni; Lea; Maria Gutierrez; Jose

    2016-01-01

    The neuromuscular junction activity of Oxyuranus scutellatus venom and its presynaptic neurotoxin, taipoxin, and their neutralization by two antivenoms were examined in mouse phrenic nerve-diaphragm preparations. The action of taipoxin was also studied at 21 degrees C. The efficacy of the antivenoms was also assessed in an in vivo mouse model. Both antivenoms were effective in neutralizing the neuromuscular blocking activity in preincubation-type experiments. In experiments involving independ...

  14. Vocational perspectives and neuromuscular disorders

    NARCIS (Netherlands)

    Andries, F.; Wevers, C. W.; Wintzen, A. R.; Busch, H. F.; Höweler, C. J.; de Jager, A. E.; Padberg, G. W.; de Visser, M.; Wokke, J. H.

    1997-01-01

    The present study analyses the actual occupational situation, vocational handicaps and past labour career of a group of about 1000 Dutch patients suffering from a neuromuscular disorder (NMD). On the basis of the likelihood of a substantial employment history and sufficient numbers of patients, four

  15. Vocational perspectives and neuromuscular disorders

    NARCIS (Netherlands)

    Andries, F; Wevers, CWJ; Wintzen, AR; Busch, HFM; Howeler, CJ; deJager, AEJ; Padberg, GW; deVisser, M; Wokke, JHJ

    The present study analyses the actual occupational situation, vocational handicaps and past labour career of a group of about 1000 Dutch patients suffering from a neuromuscular disorder (NMD). On the basis of the likelihood of a substantial employment history and sufficient numbers of patients, four

  16. Palliative care in neuromuscular diseases

    NARCIS (Netherlands)

    de Visser, Marianne; Oliver, David J.

    2017-01-01

    Purpose of review Palliative care is an approach that improves the quality of life of patients and their families facing the problem associated with life-threatening illness. Neuromuscular disorders (NMDs) are characterized by progressive muscle weakness, leading to pronounced and incapacitating

  17. Effectiveness of Neuromuscular Training Based on the Neuromuscular Risk Profile.

    Science.gov (United States)

    Hewett, Timothy E; Ford, Kevin R; Xu, Yingying Y; Khoury, Jane; Myer, Gregory D

    2017-07-01

    The effects of targeted neuromuscular training (TNMT) on movement biomechanics associated with the risk of anterior cruciate ligament (ACL) injuries are currently unknown. Purpose/Hypotheses: To determine the effectiveness of TNMT specifically designed to increase trunk control and hip strength. The hypotheses were that (1) TNMT would decrease biomechanical and neuromuscular factors related to an increased ACL injury risk and (2) TNMT would decrease these biomechanical and neuromuscular factors to a greater extent in athletes identified as being at a high risk for future ACL injuries. Controlled laboratory study. Female athletes who participated in jumping, cutting, and pivoting sports underwent 3-dimensional biomechanical testing before the season and after completing TNMT. During testing, athletes performed 3 different types of tasks: (1) drop vertical jump, (2) single-leg drop, and (3) single-leg cross drop. Analysis of covariance was used to examine the treatment effects of TNMT designed to enhance core and hip strength on biomechanical and neuromuscular characteristics. Differences were also evaluated by risk profile. Differences were considered statistically significant at P risk before the intervention (risk profile III) had a more significant treatment effect of TNMT than low-risk groups (risk profiles I and II). TNMT significantly improved proximal biomechanics, including increased hip external rotation moments and moment impulses, increased peak trunk flexion, and decreased peak trunk extension. TNMT that focuses exclusively on proximal leg and trunk risk factors is not, however, adequate to induce significant changes in frontal-plane knee loading. Biomechanical changes varied across the risk profile groups, with higher risk groups exhibiting greater improvements in their biomechanics.

  18. Neuromuscular disease and respiratory physiology in children: putting lung function into perspective.

    Science.gov (United States)

    Fauroux, Brigitte; Khirani, Sonia

    2014-08-01

    Neuromuscular diseases represent a heterogeneous group of disorders of the muscle, nerve or neuromuscular junction. The respiratory muscles are rarely spared in neuromuscular diseases even if the type of muscle involvement, severity and time course greatly varies among the different diseases. Diagnosis of respiratory muscle weakness is crucial because of the importance of respiratory morbidity and mortality. Presently, routine respiratory evaluation is based on non-invasive volitional tests, such as the measurement of lung volumes, spirometry and the maximal static pressures, which may be difficult or impossible to obtain in some young children. Other tools or parameters are thus needed to assess the respiratory muscle weakness and its consequences in young children. The measurement of oesogastric pressures can be helpful as they allow the diagnosis and quantification of paradoxical breathing, as well as the assessment of the strength of the inspiratory and expiratory muscles by means of the oesophageal pressure during a maximal sniff and of the gastric pressure during a maximal cough. Sleep assessment should also be part of the respiratory evaluation of children with neuromuscular disease with at least the recording of nocturnal gas exchange if polysomnography is not possible or unavailable. This improvement in the assessment of respiratory muscle performance may increase our understanding of the respiratory pathophysiology of the different neuromuscular diseases, improve patient care, and guide research and innovative therapies by identifying and validating respiratory parameters. © 2014 Asian Pacific Society of Respirology.

  19. [Respiratory treatments in neuromuscular disease].

    Science.gov (United States)

    Martínez Carrasco, C; Cols Roig, M; Salcedo Posadas, A; Sardon Prado, O; Asensio de la Cruz, O; Torrent Vernetta, A

    2014-10-01

    In a previous article, a review was presented of the respiratory pathophysiology of the patient with neuromuscular disease, as well as their clinical evaluation and the major complications causing pulmonary deterioration. This article presents the respiratory treatments required to preserve lung function in neuromuscular disease as long as possible, as well as in special situations (respiratory infections, spinal curvature surgery, etc.). Special emphasis is made on the use of non-invasive ventilation, which is changing the natural history of many of these diseases. The increase in survival and life expectancy of these children means that they can continue their clinical care in adult units. The transition from pediatric care must be an active, timely and progressive process. It may be slightly stressful for the patient before the adaptation to this new environment, with multidisciplinary care always being maintained. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  20. Dengue-associated neuromuscular complications

    OpenAIRE

    Ravindra Kumar Garg; Hardeep Singh Malhotra; Amita Jain; Kiran Preet Malhotra

    2015-01-01

    Dengue is associated with many neurological dysfunctions. Up to 4% of dengue patients may develop neuromuscular complications. Muscle involvement can manifest with myalgias, myositis, rhabdomyolysis and hypokalemic paralysis. Diffuse myalgia is the most characteristic neurological symptom of dengue fever. Dengue-associated myositis can be of varying severity ranging from self-limiting muscle involvement to severe dengue myositis. Dengue-associated hypokalemic paralysis often has a rapidly evo...

  1. C. elegans microRNAs.

    Science.gov (United States)

    Vella, Monica C; Slack, Frank J

    2005-09-21

    MicroRNAs (miRNAs) are small, non-coding regulatory RNAs found in many phyla that control such diverse events as development, metabolism, cell fate and cell death. They have also been implicated in human cancers. The C. elegans genome encodes hundreds of miRNAs, including the founding members of the miRNA family lin-4 and let-7. Despite the abundance of C. elegans miRNAs, few miRNA targets are known and little is known about the mechanism by which they function. However, C. elegans research continues to push the boundaries of discovery in this area. lin-4 and let-7 are the best understood miRNAs. They control the timing of adult cell fate determination in hypodermal cells by binding to partially complementary sites in the mRNA of key developmental regulators to repress protein expression. For example, lin-4 is predicted to bind to seven sites in the lin-14 3' untranslated region (UTR) to repress LIN-14, while let-7 is predicted to bind two let-7 complementary sites in the lin-41 3' UTR to down-regulate LIN-41. Two other miRNAs, lsy-6 and mir-273, control left-right asymmetry in neural development, and also target key developmental regulators for repression. Approximately one third of the C. elegans miRNAs are differentially expressed during development indicating a major role for miRNAs in C. elegans development. Given the remarkable conservation of developmental mechanism across phylogeny, many of the principles of miRNAs discovered in C. elegans are likely to be applicable to higher animals.

  2. Identification and Simulation as Tools for Measurement of Neuromuscular Properties

    National Research Council Canada - National Science Library

    Kearney, R

    2001-01-01

    Quantitative, objective methods for the evaluation of neuromuscular properties are required for the diagnosis of neuromuscular disorders and the evaluation of the effectiveness of treatment and rehabilitation...

  3. Neuromuscular Control and Coordination during Cycling

    Science.gov (United States)

    Li, Li

    2004-01-01

    The neuromuscular control aspect of cycling has been investigated through the effects of modifying posture and cadence. These studies show that changing posture has a more profound influence on neuromuscular coordination than does changing slope. Most of the changes with standing posture occur late in the downstroke: increased ankle and knee joint…

  4. Kinship and interaction in neuromuscular pharmacology

    NARCIS (Netherlands)

    Schiere, Sjouke

    2006-01-01

    The background of this thesis is presented in the introductory chapters and stafts with a brief history of neuromuscular relaxants. It is followed by a short description of the neuromuscular physiology and pharmacology in chapters 2 and 3, respectively. In chapter 4 the aim of the thesis is

  5. Gustatory Behaviour in Caenorhabditis elegans

    NARCIS (Netherlands)

    R.K. Hukema (Renate)

    2006-01-01

    textabstractThe nematode C. elegans is an ideal model-organism to study the genetics of behaviour (Brenner, 1974). It is capable of sensing salts and we discriminate three different responses: it is attracted to low salt concentrations (Ward, 1973; Dusenbery et al., 1974), it avoids high salt

  6. Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Karen K Y Ling

    2010-11-01

    Full Text Available Spinal muscular atrophy (SMA is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΔ7. In the neuromuscular circuitry, we found that nearly all neuromuscular junctions (NMJs in hindlimb muscles of SMNΔ7 mice remained fully innervated at the disease end stage and were capable of eliciting muscle contraction, despite a modest reduction in quantal content. In the spinal circuitry, we observed a ∼28% loss of synapses onto spinal motoneurons in the lateral column of lumbar segments 3-5, and a significant reduction in proprioceptive sensory neurons, which may contribute to the 50% reduction in vesicular glutamate transporter 1(VGLUT1-positive synapses onto SMNΔ7 motoneurons. In addition, there was an increase in the association of activated microglia with SMNΔ7 motoneurons. Together, our results present a novel concept that synaptic defects occur at multiple levels of the spinal and neuromuscular circuitry in SMNΔ7 mice, and that proprioceptive spinal synapses could be a potential target for SMA therapy.

  7. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia.

    Science.gov (United States)

    Pannérec, Alice; Springer, Margherita; Migliavacca, Eugenia; Ireland, Alex; Piasecki, Mathew; Karaz, Sonia; Jacot, Guillaume; Métairon, Sylviane; Danenberg, Esther; Raymond, Frédéric; Descombes, Patrick; McPhee, Jamie S; Feige, Jerome N

    2016-04-01

    Declining muscle mass and function is one of the main drivers of loss of independence in the elderly. Sarcopenia is associated with numerous cellular and endocrine perturbations, and it remains challenging to identify those changes that play a causal role and could serve as targets for therapeutic intervention. In this study, we uncovered a remarkable differential susceptibility of certain muscles to age-related decline. Aging rats specifically lose muscle mass and function in the hindlimbs, but not in the forelimbs. By performing a comprehensive comparative analysis of these muscles, we demonstrate that regional susceptibility to sarcopenia is dependent on neuromuscular junction fragmentation, loss of motoneuron innervation, and reduced excitability. Remarkably, muscle loss in elderly humans also differs in vastus lateralis and tibialis anterior muscles in direct relation to neuromuscular dysfunction. By comparing gene expression in susceptible and non-susceptible muscles, we identified a specific transcriptomic signature of neuromuscular impairment. Importantly, differential molecular profiling of the associated peripheral nerves revealed fundamental changes in cholesterol biosynthetic pathways. Altogether our results provide compelling evidence that susceptibility to sarcopenia is tightly linked to neuromuscular decline in rats and humans, and identify dysregulation of sterol metabolism in the peripheral nervous system as an early event in this process.

  8. Molecular electronic junction transport

    DEFF Research Database (Denmark)

    Solomon, Gemma C.; Herrmann, Carmen; Ratner, Mark

    2012-01-01

    Whenasinglemolecule,oracollectionofmolecules,isplacedbetween two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative, and f...

  9. Model-independent phenotyping of C. elegans locomotion using scale-invariant feature transform.

    Directory of Open Access Journals (Sweden)

    Yelena Koren

    Full Text Available To uncover the genetic basis of behavioral traits in the model organism C. elegans, a common strategy is to study locomotion defects in mutants. Despite efforts to introduce (semi-automated phenotyping strategies, current methods overwhelmingly depend on worm-specific features that must be hand-crafted and as such are not generalizable for phenotyping motility in other animal models. Hence, there is an ongoing need for robust algorithms that can automatically analyze and classify motility phenotypes quantitatively. To this end, we have developed a fully-automated approach to characterize C. elegans' phenotypes that does not require the definition of nematode-specific features. Rather, we make use of the popular computer vision Scale-Invariant Feature Transform (SIFT from which we construct histograms of commonly-observed SIFT features to represent nematode motility. We first evaluated our method on a synthetic dataset simulating a range of nematode crawling gaits. Next, we evaluated our algorithm on two distinct datasets of crawling C. elegans with mutants affecting neuromuscular structure and function. Not only is our algorithm able to detect differences between strains, results capture similarities in locomotory phenotypes that lead to clustering that is consistent with expectations based on genetic relationships. Our proposed approach generalizes directly and should be applicable to other animal models. Such applicability holds promise for computational ethology as more groups collect high-resolution image data of animal behavior.

  10. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons

    OpenAIRE

    Lee, Young il; Mikesh, Michelle; Smith, Ian; Rimer, Mendell; Thompson, Wesley

    2011-01-01

    A mouse model of the devastating human disease "spinal muscular atrophy" (SMA) was used to investigate the severe muscle weakness and spasticity that precedes the death of these animals near the end of the 2nd postnatal week. Counts of motor units to the soleus muscle as well as of axons in the soleus muscle nerve showed no loss of motor neurons. Similarly, neither immunostaining of neuromuscular junctions nor the measurement of the tension generated by nerve stimulation gave evidence of any ...

  11. The Nucleolus of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Li-Wei Lee

    2012-01-01

    Full Text Available Nucleolar size and appearance correlate with ribosome biogenesis and cellular activity. The mechanisms underlying changes in nucleolar appearance and regulation of nucleolar size that occur during differentiation and cell cycle progression are not well understood. Caenorhabditis elegans provides a good model for studying these processes because of its small size and transparent body, well-characterized cell types and lineages, and because its cells display various sizes of nucleoli. This paper details the advantages of using C. elegans to investigate features of the nucleolus during the organism's development by following dynamic changes in fibrillarin (FIB-1 in the cells of early embryos and aged worms. This paper also illustrates the involvement of the ncl-1 gene and other possible candidate genes in nucleolar-size control. Lastly, we summarize the ribosomal proteins involved in life span and innate immunity, and those homologous genes that correspond to human disorders of ribosomopathy.

  12. Untwisting the Caenorhabditis elegans embryo

    OpenAIRE

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Col?n-Ramos, Daniel A

    2015-01-01

    eLife digest Understanding how the brain and nervous system develops from a few cells into complex, interconnected networks is a key goal for neuroscientists. Although researchers have identified many of the genes involved in this process, how these work together to form an entire brain remains unknown. A simple worm called Caenorhabiditis elegans is commonly used to study brain development because it has only about 300 neurons, simplifying the study of its nervous system. The worms are easy ...

  13. Junction and circuit fabrication

    International Nuclear Information System (INIS)

    Jackel, L.D.

    1980-01-01

    Great strides have been made in Josephson junction fabrication in the four years since the first IC SQUID meeting. Advances in lithography have allowed the production of devices with planar dimensions as small as a few hundred angstroms. Improved technology has provided ultra-high sensitivity SQUIDS, high-efficiency low-noise mixers, and complex integrated circuits. This review highlights some of the new fabrication procedures. The review consists of three parts. Part 1 is a short summary of the requirements on junctions for various applications. Part 2 reviews intergrated circuit fabrication, including tunnel junction logic circuits made at IBM and Bell Labs, and microbridge radiation sources made at SUNY at Stony Brook. Part 3 describes new junction fabrication techniques, the major emphasis of this review. This part includes a discussion of small oxide-barrier tunnel junctions, semiconductor barrier junctions, and microbridge junctions. Part 3 concludes by considering very fine lithography and limitations to miniaturization. (orig.)

  14. Neuromuscular complications of immune checkpoint inhibitor therapy.

    Science.gov (United States)

    Kolb, Noah A; Trevino, Christopher R; Waheed, Waqar; Sobhani, Fatemeh; Landry, Kara K; Thomas, Alissa A; Hehir, Mike

    2018-01-17

    Immune checkpoint inhibitor (ICPI) therapy unleashes the body's natural immune system to fight cancer. ICPIs improve overall cancer survival, however, the unbridling of the immune system may induce a variety of immune-related adverse events. Neuromuscular immune complications are rare but they can be severe. Myasthenia gravis and inflammatory neuropathy are the most common neuromuscular adverse events but a variety of others including inflammatory myopathy are reported. The pathophysiologic mechanism of these autoimmune disorders may differ from that of non-ICPI-related immune diseases. Accordingly, while the optimal treatment for ICPI-related neuromuscular disorders generally follows a traditional paradigm, there are important novel considerations in selecting appropriate immunosuppressive therapy. This review presents 2 new cases, a summary of neuromuscular ICPI complications, and an approach to the diagnosis and treatment of these disorders. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.

  15. Deep Neuromuscular Blockade Improves Laparoscopic Surgical Conditions

    DEFF Research Database (Denmark)

    Rosenberg, Jacob; Herring, W Joseph; Blobner, Manfred

    2017-01-01

    INTRODUCTION: Sustained deep neuromuscular blockade (NMB) during laparoscopic surgery may facilitate optimal surgical conditions. This exploratory study assessed whether deep NMB improves surgical conditions and, in doing so, allows use of lower insufflation pressures during laparoscopic cholecys...

  16. Neuromuscular control of prey capture in frogs.

    OpenAIRE

    Nishikawa, K C

    1999-01-01

    While retaining a feeding apparatus that is surprisingly conservative morphologically, frogs as a group exhibit great variability in the biomechanics of tongue protraction during prey capture, which in turn is related to differences in neuromuscular control. In this paper, I address the following three questions. (1) How do frog tongues differ biomechanically? (2) What anatomical and physiological differences are responsible? (3) How is biomechanics related to mechanisms of neuromuscular cont...

  17. Sugammadex: A Review of Neuromuscular Blockade Reversal.

    Science.gov (United States)

    Keating, Gillian M

    2016-07-01

    Sugammadex (Bridion(®)) is a modified γ-cyclodextrin that reverses the effect of the steroidal nondepolarizing neuromuscular blocking agents rocuronium and vecuronium. Intravenous sugammadex resulted in rapid, predictable recovery from moderate and deep neuromuscular blockade in patients undergoing surgery who received rocuronium or vecuronium. Recovery from moderate neuromuscular blockade was significantly faster with sugammadex 2 mg/kg than with neostigmine, and recovery from deep neuromuscular blockade was significantly faster with sugammadex 4 mg/kg than with neostigmine or spontaneous recovery. In addition, recovery from neuromuscular blockade was significantly faster when sugammadex 16 mg/kg was administered 3 min after rocuronium than when patients spontaneously recovered from succinylcholine. Sugammadex also demonstrated efficacy in various special patient populations, including patients with pulmonary disease, cardiac disease, hepatic dysfunction or myasthenia gravis and morbidly obese patients. Intravenous sugammadex was generally well tolerated. In conclusion, sugammadex is an important option for the rapid reversal of rocuronium- or vecuronium-induced neuromuscular blockade.

  18. Neuromuscular blockade in the elderly patient

    Directory of Open Access Journals (Sweden)

    Lee LA

    2016-06-01

    Full Text Available Luis A Lee, Vassilis Athanassoglou, Jaideep J Pandit Nuffield Department of Anaesthetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK Abstract: Neuromuscular blockade is a desirable or even essential component of general anesthesia for major surgical operations. As the population continues to age, and more operations are conducted in the elderly, due consideration must be given to neuromuscular blockade in these patients to avoid possible complications. This review considers the pharmacokinetics and pharmacodynamics of neuromuscular blockade that may be altered in the elderly. Compartment distribution, metabolism, and excretion of drugs may vary due to age-related changes in physiology, altering the duration of action with a need for reduced dosage (eg, aminosteroids. Other drugs (atracurium, cisatracurium have more reliable duration of action and should perhaps be considered for use in the elderly. The range of interpatient variability that neuromuscular blocking drugs may exhibit is then considered and drugs with a narrower range, such as cisatracurium, may produce more predictable, and inherently safer, outcomes. Ultimately, appropriate neuromuscular monitoring should be used to guide the administration of muscle relaxants so that the risk of residual neuromuscular blockade postoperatively can be minimized. The reliability of various monitoring is considered. This paper concludes with a review of the various reversal agents, namely, anticholinesterase drugs and sugammadex, and the alterations in dosing of these that should be considered for the elderly patient. Keywords: anesthesia, elderly, drugs, pharmacokinetics, pharmacodynamics 

  19. Josephson junction arrays

    International Nuclear Information System (INIS)

    Bindslev Hansen, J.; Lindelof, P.E.

    1985-01-01

    In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)

  20. Equivalent Josephson junctions

    International Nuclear Information System (INIS)

    Boyadzhiev, T.L.; ); Semerdzhieva, E.G.; Shukrinov, Yu.M.; Fiziko-Tekhnicheskij Inst., Dushanbe

    2008-01-01

    The magnetic field dependences of critical current are numerically constructed for a long Josephson junction with a shunt- or resistor-type microscopic inhomogeneities and compared to the critical curve of a junction with exponentially varying width. The numerical results show that it is possible to replace the distributed inhomogeneity of a long Josephson junction by an inhomogeneity localized at one of its ends, which has certain technological advantages. It is also shown that the critical curves of junctions with exponentially varying width and inhomogeneities localized at the ends are unaffected by the mixed fluxon-antifluxon distributions of the magnetic flux [ru

  1. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons.

    Science.gov (United States)

    Lee, Young Il; Mikesh, Michelle; Smith, Ian; Rimer, Mendell; Thompson, Wesley

    2011-08-15

    A mouse model of the devastating human disease "spinal muscular atrophy" (SMA) was used to investigate the severe muscle weakness and spasticity that precede the death of these animals near the end of the 2nd postnatal week. Counts of motor units to the soleus muscle as well as of axons in the soleus muscle nerve showed no loss of motor neurons. Similarly, neither immunostaining of neuromuscular junctions nor the measurement of the tension generated by nerve stimulation gave evidence of any significant impairment in neuromuscular transmission, even when animals were maintained up to 5days longer via a supplementary diet. However, the muscles were clearly weaker, generating less than half their normal tension. Weakness in 3 muscles examined in the study appears due to a severe but uniform reduction in muscle fiber size. The size reduction results from a failure of muscle fibers to grow during early postnatal development and, in soleus, to a reduction in number of fibers generated. Neuromuscular development is severely delayed in these mutant animals: expression of myosin heavy chain isoforms, the elimination of polyneuronal innervation, the maturation in the shape of the AChR plaque, the arrival of SCs at the junctions and their coverage of the nerve terminal, the development of junctional folds. Thus, if SMA in this particular mouse is a disease of motor neurons, it can act in a manner that does not result in their death or disconnection from their targets but nonetheless alters many aspects of neuromuscular development. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Chemical constituents and biological activities of Dianthus elegans var. elegans.

    Science.gov (United States)

    Mutlu, Kiymet; Sarikahya, Nazli Boke; Nalbantsoy, Ayse; Kirmizigul, Suheyla

    2018-06-01

    Chemical investigation of the aerial parts of Dianthus elegans var. elegans afforded two previously undescribed saponins, named dianosides M-N (1-2), together with four oleanane-type triterpenoid glycosides (3-6). Their structures were elucidated as 3-O-α-L-arabinofuranosyl-16α-hydroxyolean-12-ene-23α, 28β-dioic acid (1) and 3-O-α-L-arabinofuranosyl-(1 → 3)-β-D-glucopyranosyl 16α-hydroxyolean-12-ene-23α-oic acid, 28-O-β-D-glucopyranosyl-(1 → 6)-β-D-glycosyl ester (2) by chemical and extensive spectroscopic methods including IR, 1D, 2D NMR and HRESIMS. Both of the saponins were evaluated for their cytotoxicities against HEK-293, A-549 and HeLa human cancer cells using the MTT method. All compounds showed no substantial cytotoxic activity against tested cell lines. However, dianosides M-N and the n-butanol fraction exhibited considerable haemolysis in human erythrocyte cells. The immunomodulatory properties of dianosides M-N were also evaluated in activated whole blood cells by PMA plus ionomycin. Dianosides M-N increased IL-1β concentration significantly whereas the n-butanol fraction slightly augmented IL-1β secretion. All compounds did not change IL-2 and IFN-γ levels considerably.

  3. Intrauterine neuromuscular blockade in fetus.

    Science.gov (United States)

    Fan, S Z; Huang, F Y; Lin, S Y; Wang, Y P; Hsieh, F J

    1990-03-01

    Antenatal intrauterine fetal therapy has now become the target of numerous invasive diagnostic and therapeutic maneuvers. Fetal motion during intrauterine fetal therapy not only makes these procedures technically more difficult but also increases the likelihood of trauma to the umbilical vessels and the fetus. Combination of high doses of sedatives, tranquilizers, and narcotics rarely results in adequate suppression of fetal movement. Such medication puts the mother at risk of respiratory depression, regurgitation and aspiration. The use of pancuronium or atracurium to temporarily arrest fetal movement in ten fetus is reported. After an initial ultrasound assessment of fetal lie, placental location, and umbilical cord insertion site, the fetal weight was calculated by the ultrasound parameters of biparietal diameter and abdominal circumference. Under ultrasound guidance, we injected pancuronium 0.15 mg/kg or atracurium 1.0 mg/kg using a 23-gauge spinal needle into the fetal gluteal muscle. Short-term paralysis of the fetus was induced in all cases. Fetal movement stopped by sonographic observation within 5.8 +/- 2.3 min in the pancuronium group and 4.7 +/- 1.8 min in the atracurium group. Fetal movements returned both to maternal sensation or ultrasonic observation by 92 +/- 23 min in the first group and 36 +/- 11 min in the second group. No adverse effect of the relaxant has been observed in any of the mothers. There was no evidence of local soft tissue, nerve or muscle damage at the site of injection on initial examination of the neonates after delivery. The use of neuromuscular relaxant in fetus was a safe and useful method.

  4. Protein defects in neuromuscular diseases

    Directory of Open Access Journals (Sweden)

    Vainzof M.

    2003-01-01

    Full Text Available Muscular dystrophies are a heterogeneous group of genetically determined progressive disorders of the muscle with a primary or predominant involvement of the pelvic or shoulder girdle musculature. The clinical course is highly variable, ranging from severe congenital forms with rapid progression to milder forms with later onset and a slower course. In recent years, several proteins from the sarcolemmal muscle membrane (dystrophin, sarcoglycans, dysferlin, caveolin-3, from the extracellular matrix (alpha2-laminin, collagen VI, from the sarcomere (telethonin, myotilin, titin, nebulin, from the muscle cytosol (calpain 3, TRIM32, from the nucleus (emerin, lamin A/C, survival motor neuron protein, and from the glycosylation pathway (fukutin, fukutin-related protein have been identified. Mutations in their respective genes are responsible for different forms of neuromuscular diseases. Protein analysis using Western blotting or immunohistochemistry with specific antibodies is of the utmost importance for the differential diagnosis and elucidation of the physiopathology of each genetic disorder involved. Recent molecular studies have shown clinical inter- and intra-familial variability in several genetic disorders highlighting the importance of other factors in determining phenotypic expression and the role of possible modifying genes and protein interactions. Developmental studies can help elucidate the mechanism of normal muscle formation and thus muscle regeneration. In the last fifteen years, our research has focused on muscle protein expression, localization and possible interactions in patients affected by different forms of muscular dystrophies. The main objective of this review is to summarize the most recent findings in the field and our own contribution.

  5. Prolongation of rapacuronium neuromuscular blockade by clindamycin and magnesium.

    Science.gov (United States)

    Sloan, Paul A; Rasul, Mazhar

    2002-01-01

    We report a prolonged neuromuscular block with the nondepolarizing muscle relaxant rapacuronium in the presence of clindamycin. Even when using "short-acting" muscle relaxants, the anesthesiologist must routinely monitor the neuromuscular function.

  6. Joint molecule resolution requires the redundant activities of MUS-81 and XPF-1 during Caenorhabditis elegans meiosis.

    Directory of Open Access Journals (Sweden)

    Nigel J O'Neil

    Full Text Available The generation and resolution of joint molecule recombination intermediates is required to ensure bipolar chromosome segregation during meiosis. During wild type meiosis in Caenorhabditis elegans, SPO-11-generated double stranded breaks are resolved to generate a single crossover per bivalent and the remaining recombination intermediates are resolved as noncrossovers. We discovered that early recombination intermediates are limited by the C. elegans BLM ortholog, HIM-6, and in the absence of HIM-6 by the structure specific endonuclease MUS-81. In the absence of both MUS-81 and HIM-6, recombination intermediates persist, leading to chromosome breakage at diakinesis and inviable embryos. MUS-81 has an additional role in resolving late recombination intermediates in C. elegans. mus-81 mutants exhibited reduced crossover recombination frequencies suggesting that MUS-81 is required to generate a subset of meiotic crossovers. Similarly, the Mus81-related endonuclease XPF-1 is also required for a subset of meiotic crossovers. Although C. elegans gen-1 mutants have no detectable meiotic defect either alone or in combination with him-6, mus-81 or xpf-1 mutations, mus-81;xpf-1 double mutants are synthetic lethal. While mus-81;xpf-1 double mutants are proficient for the processing of early recombination intermediates, they exhibit defects in the post-pachytene chromosome reorganization and the asymmetric disassembly of the synaptonemal complex, presumably triggered by crossovers or crossover precursors. Consistent with a defect in resolving late recombination intermediates, mus-81; xpf-1 diakinetic bivalents are aberrant with fine DNA bridges visible between two distinct DAPI staining bodies. We were able to suppress the aberrant bivalent phenotype by microinjection of activated human GEN1 protein, which can cleave Holliday junctions, suggesting that the DNA bridges in mus-81; xpf-1 diakinetic oocytes are unresolved Holliday junctions. We propose that the

  7. Supramolecular tunneling junctions

    NARCIS (Netherlands)

    Wimbush, K.S.

    2012-01-01

    In this study a variety of supramolecular tunneling junctions were created. The basis of these junctions was a self-assembled monolayer of heptathioether functionalized ß-cyclodextrin (ßCD) formed on an ultra-flat Au surface, i.e., the bottom electrode. This gave a well-defined hexagonally packed

  8. Untwisting the Caenorhabditis elegans embryo

    Science.gov (United States)

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-01-01

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis. DOI: http://dx.doi.org/10.7554/eLife.10070.001 PMID:26633880

  9. Untwisting the Caenorhabditis elegans embryo.

    Science.gov (United States)

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-12-03

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis.

  10. Autophagy in C. elegans development.

    Science.gov (United States)

    Palmisano, Nicholas J; Meléndez, Alicia

    2018-04-27

    Autophagy involves the sequestration of cytoplasmic contents in a double-membrane structure referred to as the autophagosome and the degradation of its contents upon delivery to lysosomes. Autophagy activity has a role in multiple biological processes during the development of the nematode Caenorhabditis elegans. Basal levels of autophagy are required to remove aggregate prone proteins, paternal mitochondria, and spermatid-specific membranous organelles. During larval development, autophagy is required for the remodeling that occurs during dauer development, and autophagy can selectively degrade components of the miRNA-induced silencing complex, and modulate miRNA-mediated silencing. Basal levels of autophagy are important in synapse formation and in the germ line, to promote the proliferation of proliferating stem cells. Autophagy activity is also required for the efficient removal of apoptotic cell corpses by promoting phagosome maturation. Finally, autophagy is also involved in lipid homeostasis and in the aging process. In this review, we first describe the molecular complexes involved in the process of autophagy, its regulation, and mechanisms for cargo recognition. In the second section, we discuss the developmental contexts where autophagy has been shown to be important. Studies in C. elegans provide valuable insights into the physiological relevance of this process during metazoan development. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Anormalidades neuromuscular no desuso, senilidade e caquexia Neuromuscular abnormalities in disuse, cachexia and ageing

    Directory of Open Access Journals (Sweden)

    João Aris Kouyoumdjian

    1993-09-01

    Full Text Available É feita revisão de literatura sobre as principais alterações do sistema neuromuscular no desuso, senilidade e caquexia no ser humano e em modelos animais. A diminuição do diâmetro das fibras musculares após período de inatividade/imobilidade (desuso deve-se à perda de miofibrilas periféricas não ocorrendo formação de core-targetóides ou diminuição da atividade da miofosforilase, próprias da desnervação; mantêm-se a liberação espontânea de acetilcolina e fatores tróficos na junção mio-neural; em geral são afetadas preferencialmente fibras II, que podem assumir forma angular. Existe um processo contínuo intrínseco de envelhecimento de nervos e músculos, com desnervação e reinervação lenta e progressiva; o número de unidades motoras se reduz após 60 anos, sem ocorrência de atividade elétrica desnervatória; a quantidade de acetilcolina liberada nos neurônios terminais e a capacidade máxima de utilização de oxigênio estão diminuídas; a redução da capacidade oxidativa mitocondrial pode explicar o aumento de fibras I, mantendo-se o equilíbrio energético. Após poucas semanas de caquexia as fibras musculares podem ter o diâmetro reduzido em 30%, essa redução ocorre em ordem decrescente nos músculos dos membros inferiores, superiores e tronco; existe atrofia II preferencial com fibras angulares ocasionais, redução de RNA/síntese proteica, mantendo-se DNA normal.Cachexia, ageing and disuse and their effects on the human and animals neuromuscular system are reviewed. Disuse induces reduction of muscle fibers (mainly II diameter with peripheral myofibrils lost; there is no core-targetoid or even reduction on myophosphorilase activity, both typical of denervation; the acetylcholine spontaneous release and trophic factors on myoneural junction are maintained; muscle fibers could change to angular shape. Ageing affects nerve and muscle by a continuous and progressive process of denervation and reinner

  12. Computed tomography (CT) in neuromuscular disorders

    International Nuclear Information System (INIS)

    Novak, M.; Ambler, Z.

    1997-01-01

    For 24 patients with confirmed neuromuscular disorders, the clinical picture of the disease was complemented with CT examination. It is concluded, in accordance with the literature, that CT has a supplementary value as regards the extent and degree of disorder of the affected muscle groups. The basic pathological picture includes muscular atrophies, dystrophies, hypertrophies, and their combinations. The CT images are non-specific for the individual neuromuscular disorders and are of minor importance in the diagnostic process. 1 tab., 7 figs., 6 refs

  13. Research highlights of partial neuromuscular disorders

    Directory of Open Access Journals (Sweden)

    Cheng ZHANG

    2014-05-01

    Full Text Available In order to understand the latest progression on neuromuscular disorders for clinicians, this review screened and systemized the papers on neuromuscular disorders which were collected by PubMed from January 2013 to February 2014. This review also introduced the clinical diagnosis and treatment hightlights on glycogen storage disease type Ⅱ (GSD Ⅱ, Duchenne muscular dystrophy (DMD, amyotrophic lateral sclerosis (ALS and spinal muscular atrophy (SMA. The important references will be useful for clinicians. doi: 10.3969/j.issn.1672-6731.2014.05.004

  14. Characterization of hydroxyurea resistance in C. elegans

    DEFF Research Database (Denmark)

    Brejning, Jeanette

    The soil nematode Caenorhabditis elegans has become a prominent model organism for studying aging and many age-related diseases. We use C. elegans to study the relationship between cancer and aging. To prevent cancer, cells are equipped with surveillance systems that detect damage and stop cells...... from dividing. These surveillance systems are collectively called cellular checkpoints. We have found that inactivation of certain checkpoint proteins, including p53, also cause resistance to the chemotherapeutic drug hydroxyurea (HU) that stalls replication. We have found that in C. elegans, HU...... inhibits ribonucleotide reductase (RNR). RNR is involved in synthesis of deoxyribonucleotide (dNTP) precursors for DNA replication and repair. Previously we have shown that inactivation of some checkpoint proteins can increase stress resistance and lifespan of C. elegans1. Interestingly, several genes...

  15. Forward and reverse mutagenesis in C. elegans

    Science.gov (United States)

    Kutscher, Lena M.; Shaham, Shai

    2014-01-01

    Mutagenesis drives natural selection. In the lab, mutations allow gene function to be deciphered. C. elegans is highly amendable to functional genetics because of its short generation time, ease of use, and wealth of available gene-alteration techniques. Here we provide an overview of historical and contemporary methods for mutagenesis in C. elegans, and discuss principles and strategies for forward (genome-wide mutagenesis) and reverse (target-selected and gene-specific mutagenesis) genetic studies in this animal. PMID:24449699

  16. Loss of Sphingosine Kinase Alters Life History Traits and Locomotor Function in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Jason P. Chan

    2017-09-01

    Full Text Available Sphingolipid metabolism is important to balance the abundance of bioactive lipid molecules involved in cell signaling, neuronal function, and survival. Specifically, the sphingolipid sphingosine mediates cell death signaling, whereas its phosphorylated form, sphingosine-1-phosphate (S1P, mediates cell survival signaling. The enzyme sphingosine kinase produces S1P, and the activity of sphingosine kinase impacts the ability of cells to survive under stress and challenges. To examine the influence of sphingolipid metabolism, particularly enzymes regulating sphingosine and S1P, in mediating aging, neuronal function and stress response, we examined life history traits, locomotor capacities and heat stress responses of young and old animals using the model organism Caenorhabditis elegans. We found that C. elegans sphk-1 mutants, which lack sphingosine kinase, had shorter lifespans, reduced brood sizes, and smaller body sizes compared to wild type animals. By analyzing a panel of young and old animals with genetic mutations in the sphingolipid signaling pathway, we showed that aged sphk-1 mutants exhibited a greater decline in neuromuscular function and locomotor behavior. In addition, aged animals lacking sphk-1 were more susceptible to death induced by acute and prolonged heat exposure. On the other hand, older animals with loss of function mutations in ceramide synthase (hyl-1, which converts sphingosine to ceramide, showed improved neuromuscular function and stress response with age. This phenotype was dependent on sphk-1. Together, our data show that loss of sphingosine kinase contributes to poor animal health span, suggesting that sphingolipid signaling may be important for healthy neuronal function and animal stress response during aging.

  17. Sugammadex Improves Neuromuscular Function in Patients ...

    African Journals Online (AJOL)

    2018-02-23

    Feb 23, 2018 ... aminoglycosides), history of allergy to neuromuscular blocking agents, opioids or other drugs, and alcohol and drug dependence. Patients were divided into two ... titration microcalorimetry investigated the likelihood of the formation of complexes between sugammadex and other steroidal and nonsteroidal ...

  18. Neuromuscular transmission: new concepts and agents.

    NARCIS (Netherlands)

    Boer, H.D. de

    2009-01-01

    Sugammadex is the first selective relaxant binding agent which was originally designed to reverse the steroidal NMB drug rocuronium. The results of recent studies demonstrate that sugammadex is effective for reversal of rocuronium and vecuronium-induced neuromuscular block without apparent

  19. Optogenetic mutagenesis in Caenorhabditis elegans.

    Science.gov (United States)

    Noma, Kentaro; Jin, Yishi

    2015-12-03

    Reactive oxygen species (ROS) can modify and damage DNA. Here we report an optogenetic mutagenesis approach that is free of toxic chemicals and easy to perform by taking advantage of a genetically encoded ROS generator. This method relies on the potency of ROS generation by His-mSOG, the mini singlet oxygen generator, miniSOG, fused to a histone. Caenorhabditis elegans expressing His-mSOG in the germline behave and reproduce normally, without photoinduction. Following exposure to blue light, the His-mSOG animals produce progeny with a wide range of heritable phenotypes. We show that optogenetic mutagenesis by His-mSOG induces a broad spectrum of mutations including single-nucleotide variants (SNVs), chromosomal deletions, as well as integration of extrachromosomal transgenes, which complements those derived from traditional chemical or radiation mutagenesis. The optogenetic mutagenesis expands the toolbox for forward genetic screening and also provides direct evidence that nuclear ROS can induce heritable and specific genetic mutations.

  20. Caenorhabditis elegans: nature and nurture gift to nematode parasitologists.

    Science.gov (United States)

    Salinas, Gustavo; Risi, Gastón

    2017-12-06

    The free-living nematode Caenorhabditis elegans is the simplest animal model organism to work with. Substantial knowledge and tools have accumulated over 50 years of C. elegans research. The use of C. elegans relating to parasitic nematodes from a basic biology standpoint or an applied perspective has increased in recent years. The wealth of information gained on the model organism, the use of the powerful approaches and technologies that have advanced C. elegans research to parasitic nematodes and the enormous success of the omics fields have contributed to bridge the divide between C. elegans and parasite nematode researchers. We review key fields, such as genomics, drug discovery and genetics, where C. elegans and nematode parasite research have convened. We advocate the use of C. elegans as a model to study helminth metabolism, a neglected area ready to advance. How emerging technologies being used in C. elegans can pave the way for parasitic nematode research is discussed.

  1. Primary Tunnel Junction Thermometry

    International Nuclear Information System (INIS)

    Pekola, Jukka P.; Holmqvist, Tommy; Meschke, Matthias

    2008-01-01

    We describe the concept and experimental demonstration of primary thermometry based on a four-probe measurement of a single tunnel junction embedded within four arrays of junctions. We show that in this configuration random sample specific and environment-related errors can be avoided. This method relates temperature directly to Boltzmann constant, which will form the basis of the definition of temperature and realization of official temperature scales in the future

  2. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  3. Duplication in the microtubule-actin cross-linking factor 1 gene causes a novel neuromuscular condition

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Mosbech, Mai-Britt; Færgeman, Nils J

    2014-01-01

    Spectrins and plakins are important communicators linking cytoskeletal components to each other and to cellular junctions. Microtubule-actin cross-linking factor 1 (MACF1) belongs to the spectraplakin family and is involved in control of microtubule dynamics. Complete knock out of MACF1 in mice...... muscles and diminished motor skills, with heterogeneous presentation among the affected family members. To corroborate these findings we used RNA interference to knock down the VAB-10 locus containing the MACF1 homologue in C. elegans, and we could show that this also causes movement disturbances...

  4. Stabilization of acetylcholine receptors at the neuromuscular synapse: the role of the nerve.

    Science.gov (United States)

    Ramsay, D A; Drachman, D B; Drachman, R J; Stanley, E F

    1992-05-29

    The majority of acetylcholine receptors (AChRs) at innervated neuromuscular junctions (NMJs) are stable, with half-lives averaging about 11 days in rodent muscles. In addition to the stable AChRs, approximately 18% of AChRs at these innervated junctions are rapidly turned over (RTOs), with half lives of less than 24 h. We have postulated that RTOs may be precursors of stable AChRs, and that the motor nerve may influence their stabilization. This hypothesis was tested by: (i) labeling AChRs in mouse sternomastoid (SM) muscles with 125I-alpha-BuTx; (ii) denervating one SM muscle in each mouse, and (iii) following the fate of the labeled AChRs through a 5-day period when RTOs were either stabilized or degraded. The hypothesis predicts that denervation should preclude stabilization of RTOs, resulting in a deficit of stable AChRs in denervated muscles. The results showed a highly significant (P less than 0.002) deficit of stable AChRs in denervated as compared with innervated muscles. Control experiments excluded the possibility that this deficit could be attributed to independent accelerated degradation of either RTOs or pre-existing stable AChRs. The observed deficit was quantitatively consistent with the deficit predicted by a mathematical model based on interruption of stabilization following denervation. We conclude that: (i) the observed deficit after denervation of NMJs is due to failure of stabilization of pre-existing RTOs; (ii) RTOs at normally innervated NMJs are precursors of stable AChRs; (iii) stabilization occurs after the insertion of AChRs at NMJs, and (iv) motor nerves play a key role in stabilization of RTOs. The concept of receptor stabilization has important implications for understanding the biology of the neuromuscular junction and post-synaptic plasticity.

  5. A rolling circle replication mechanism produces multimeric lariats of mitochondrial DNA in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Samantha C Lewis

    2015-02-01

    Full Text Available Mitochondrial DNA (mtDNA encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans.

  6. Screening for bioactivity of Mutinus elegans extracts

    Science.gov (United States)

    Gajendiran, A.; Cyriac, RE; Abraham, J.

    2017-11-01

    Mutinus elegans is a species of fungi that is commonly called as Elegant Stinkhorn. The aim of this study was to screen the crude extracts of the fungus for phytochemical analysis, antimicrobial activity, antioxidant assay and anticancer activity. Extraction of the fungal sample in Soxhlet apparatus was done with n-hexane and methanol as the solvent. Stock solutions of the crude methanol extract were prepared and used for microbiological assay. Thin layer chromatography was performed in order to determine the number of active components in n-hexane, and methanol solvent system for the fungus Mutinus elegans. Further, antioxidant assay was performed using DPPH radical scavenging assay. The fungal sample was then tested for cytotoxicity assay against MG63 osteosarcoma cell lines. The antimicrobial assay of Mutinus elegans extract exhibited activity against five pathogens. The zone of inhibition was measured with respect to standard antibiotics. Gas chromatography and Mass spectrometry (GC/MS analysis), revealed the presence of dibromo-tetradecan-1-ol-acetate, 2-myristynoyl-glycinamide, fumaric acid, and cyclohexylmethyldecyl ester compounds were presented in methanol and n-hexane extract of Mutinus elegans. The present study concludes the presence of bioactive compound in the extract which exhibited antimicrobial and antioxidant activity in Mutinus elegans.

  7. Cell Death in C. elegans Development.

    Science.gov (United States)

    Malin, Jennifer Zuckerman; Shaham, Shai

    2015-01-01

    Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity. © 2015 Elsevier Inc. All rights reserved.

  8. A decline in transcript abundance for Heterodera glycines homologs of Caenorhabditis elegans uncoordinated genes accompanies its sedentary parasitic phase

    Directory of Open Access Journals (Sweden)

    Overall Christopher C

    2007-04-01

    Full Text Available Abstract Background Heterodera glycines (soybean cyst nematode [SCN], the major pathogen of Glycine max (soybean, undergoes muscle degradation (sarcopenia as it becomes sedentary inside the root. Many genes encoding muscular and neuromuscular components belong to the uncoordinated (unc family of genes originally identified in Caenorhabditis elegans. Previously, we reported a substantial decrease in transcript abundance for Hg-unc-87, the H. glycines homolog of unc-87 (calponin during the adult sedentary phase of SCN. These observations implied that changes in the expression of specific muscle genes occurred during sarcopenia. Results We developed a bioinformatics database that compares expressed sequence tag (est and genomic data of C. elegans and H. glycines (CeHg database. We identify H. glycines homologs of C. elegans unc genes whose protein products are involved in muscle composition and regulation. RT-PCR reveals the transcript abundance of H. glycines unc homologs at mobile and sedentary stages of its lifecycle. A prominent reduction in transcript abundance occurs in samples from sedentary nematodes for homologs of actin, unc-60B (cofilin, unc-89, unc-15 (paromyosin, unc-27 (troponin I, unc-54 (myosin, and the potassium channel unc-110 (twk-18. Less reduction is observed for the focal adhesion complex gene Hg-unc-97. Conclusion The CeHg bioinformatics database is shown to be useful in identifying homologs of genes whose protein products perform roles in specific aspects of H. glycines muscle biology. Our bioinformatics comparison of C. elegans and H. glycines genomic data and our Hg-unc-87 expression experiments demonstrate that the transcript abundance of specific H. glycines homologs of muscle gene decreases as the nematode becomes sedentary inside the root during its parasitic feeding stages.

  9. Neuromuscular Exercise Post Partial Medial Meniscectomy

    DEFF Research Database (Denmark)

    Hall, Michelle; Hinman, Rana S; Wrigley, Tim V

    2015-01-01

    PURPOSE: To evaluate the effects of a 12-week, home-based, physiotherapist-guided neuromuscular exercise program on the knee adduction moment (an indicator of mediolateral knee load distribution) in people with a medial arthroscopic partial meniscectomy within the past 3-12 months. METHODS......: An assessor-blinded, randomised controlled trial including people aged 30-50 years with no to mild pain following medial arthroscopic partial meniscectomy was conducted. Participants were randomly allocated to either a 12-week neuromuscular exercise program that targeted neutral lower limb alignment...... or a control group with no exercise. The exercise program included eight individual sessions with one of seven physiotherapists in private clinics, together with home exercises. Primary outcomes were the peak external knee adduction moment during normal pace walking and during a one-leg sit-to-stand. Secondary...

  10. Four-junction superconducting circuit

    Science.gov (United States)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  11. Improving Neuromuscular Monitoring and Reducing Residual Neuromuscular Blockade With E-Learning

    DEFF Research Database (Denmark)

    Thomsen, Jakob Louis Demant; Mathiesen, Ole; Hägi-Pedersen, Daniel

    2017-01-01

    neuromuscular blockade in surgical patients at 6 Danish teaching hospitals. METHODS: In this interrupted time series study, we are collecting data repeatedly, in consecutive 3-week periods, before and after the intervention, and we will analyze the effect using segmented regression analysis. Anesthesia...... and an increased risk of respiratory complications. Use of an objective neuromuscular monitoring device may prevent residual block. Despite this, many anesthetists refrain from using the device. Efforts to increase the use of objective monitoring are time consuming and require the presence of expert personnel...... practice, and patient outcomes. The primary outcome is use of neuromuscular monitoring in patients according to the type of muscle relaxant received. Secondary outcomes include last recorded train-of-four value, administration of reversal agents, and time to discharge from the postanesthesia care unit...

  12. Tunable Nitride Josephson Junctions.

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lewis, Rupert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfley, Steven L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolak, Matthaeus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.

  13. Improving Neuromuscular Monitoring and Reducing Residual Neuromuscular Blockade With E-Learning

    DEFF Research Database (Denmark)

    Thomsen, Jakob Louis Demant; Mathiesen, Ole; Hägi-Pedersen, Daniel

    2017-01-01

    BACKGROUND: Muscle relaxants facilitate endotracheal intubation under general anesthesia and improve surgical conditions. Residual neuromuscular blockade occurs when the patient is still partially paralyzed when awakened after surgery. The condition is associated with subjective discomfort and an......-learning module can increase anesthetists' use of neuromuscular monitoring. TRIAL REGISTRATION: Clinicaltrials.gov NCT02925143; https://clinicaltrials.gov/ct2/show/NCT02925143 (Archived by WebCite® at http://www.webcitation.org/6s50iTV2x)....

  14. Chemical encapsulation of rocuronium by synthetic cyclodextrin derivatives: reversal of neuromuscular block in anaesthetized Rhesus monkeys.

    NARCIS (Netherlands)

    Boer, H.D. de; Egmond, J. van; Pol, F. van de; Bom, A.; Booij, L.H.D.J.

    2006-01-01

    BACKGROUND: At present, reversal of neuromuscular block induced by steroidal neuromuscular blocking agents (NMBAs) is achieved by administration of cholinesterase inhibitors. Chemical encapsulation of steroidal NMBAs, such as rocuronium, by a cyclodextrin is a new concept in neuromuscular block

  15. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H.

    2012-01-01

    -performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising

  16. of Caenorhabditis elegans: Adaptive and developmental regulation

    Indian Academy of Sciences (India)

    2015-04-27

    Apr 27, 2015 ... cursor for the synthesis of flavin adenine dinucleotide (FAD) ... an excellent animal model for performing integrated in vivo ..... amino acid sequence of C. elegans RFT-2 with human hRFT2 (RFVT3), rat rRFT2 and mice.

  17. Involvement of neurotrophin-3 (NT-3) in the functional elimination of synaptic contacts during neuromuscular development.

    Science.gov (United States)

    Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Lanuza, Maria A; Besalduch, Nuria; Tomàs, Josep

    2010-04-05

    Confocal immunohistochemistry shows that neurotrophin-3 (NT-3) and its receptor tropomyosin-related tyrosin kinase C (trkC) are present in both neonatal (P6) and adult (P45) mouse motor nerve terminals in neuromuscular junctions (NMJ) colocalized with several synaptic proteins. NT-3 incubation (1-3h, in the range 10-200ng/ml) does not change the size of the evoked and spontaneous endplate potentials at P45. However, NT-3 (1h, 100ng/ml) strongly potentiates evoked ACh release from the weak (70%) and the strong (50%) axonal inputs on dually innervated postnatal endplates (P6) but not in the most developed postnatal singly innervated synapses at P6. The present results indicate that NT-3 has a role in the developmental mechanism that eliminates redundant synapses though it cannot modulate synaptic transmission locally as the NMJ matures.

  18. Neurotrophin-4 couples to locally modulated ACh release at the end of neuromuscular synapse maturation.

    Science.gov (United States)

    Garcia, N; Santafe, M M; Tomas, M; Lanuza, M A; Besalduch, N; Tomas, J

    2010-01-01

    We use immunocytochemistry to show that neurotrophin-4 (NT-4) and its receptor proteins (p75(NTR) and tropomyosin-related tyrosine kinase B) are present in neonatal neuromuscular junctions (NMJ) colocalized with several synaptic markers. NT-4 incubation (1h, in the range 2-12 nM) does not change the size of the endplate potential between P6 and P45. However, extended exposure (3h) to a relatively low dose of NT-4 (2 nM) potentiates ACh release (approx. 70%) in adult but not in neonatal muscles. The present results suggest that the developmental mechanism of axonal competition and neonatal elimination of redundant synapses cannot be modulated by added NT-4. However, this neurotrophin was able to modulate synaptic transmission locally in the adult NMJ.

  19. Synaptic activity-related classical protein kinase C isoform localization in the adult rat neuromuscular synapse.

    Science.gov (United States)

    Besalduch, Núria; Tomàs, Marta; Santafé, Manel M; Garcia, Neus; Tomàs, Josep; Lanuza, Maria Angel

    2010-01-10

    Protein kinase C (PKC) is essential for signal transduction in a variety of cells, including neurons and myocytes, and is involved in both acetylcholine release and muscle fiber contraction. Here, we demonstrate that the increases in synaptic activity by nerve stimulation couple PKC to transmitter release in the rat neuromuscular junction and increase the level of alpha, betaI, and betaII isoforms in the membrane when muscle contraction follows the stimulation. The phosphorylation activity of these classical PKCs also increases. It seems that the muscle has to contract in order to maintain or increase classical PKCs in the membrane. We use immunohistochemistry to show that PKCalpha and PKCbetaI were located in the nerve terminals, whereas PKCalpha and PKCbetaII were located in the postsynaptic and the Schwann cells. Stimulation and contraction do not change these cellular distributions, but our results show that the localization of classical PKC isoforms in the membrane is affected by synaptic activity.

  20. Autoantibodies to neurotransmitter receptors and ion channels: from neuromuscular to neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Pilar eMartinez-Martinez

    2013-09-01

    Full Text Available Changes of voltage-gated ion channels and ligand-gated receptor channels caused by mutation or autoimmune attack are the cause of so-called channelopathies in the central and peripheral nervous system. We present the pathophysiology of channelopathies of the neuromuscular junction in terms of loss-of-function and gain-of-function principles. Autoantibodies generally have reduced access to the CNS, but in some cases this is enough to cause disease. A review is provided of recent findings implicating autoantibodies against ligand–activated receptor channels and potassium channels in psychiatric and neurological disorders, including schizophrenia and limbic encephalitis. The emergence of channelopathy-related neuropsychiatric disorders has implications for research and practice.

  1. Classification of neuromuscular blocking agents in a new neuromuscular preparation of the chick in vitro

    NARCIS (Netherlands)

    Riezen, H. van

    1968-01-01

    A neuromuscular preparation of the chick is described: 1. 1. The sciatic nerve-tibilis anterior muscle preparation of the 2–10 days old chick fulfils all criteria of an assay preparation and differentiates between curare-like and decamethonium-like agents. 2. 2. The preparation responds to

  2. Neuromuscular adaptations induced by adjacent joint training.

    Science.gov (United States)

    Ema, R; Saito, I; Akagi, R

    2018-03-01

    Effects of resistance training are well known to be specific to tasks that are involved during training. However, it remains unclear whether neuromuscular adaptations are induced after adjacent joint training. This study examined the effects of hip flexion training on maximal and explosive knee extension strength and neuromuscular performance of the rectus femoris (RF, hip flexor, and knee extensor) compared with the effects of knee extension training. Thirty-seven untrained young men were randomly assigned to hip flexion training, knee extension training, or a control group. Participants in the training groups completed 4 weeks of isometric hip flexion or knee extension training. Standardized differences in the mean change between the training groups and control group were interpreted as an effect size, and the substantial effect was assumed to be ≥0.20 of the between-participant standard deviation at baseline. Both types of training resulted in substantial increases in maximal (hip flexion training group: 6.2% ± 10.1%, effect size = 0.25; knee extension training group: 20.8% ± 9.9%, effect size = 1.11) and explosive isometric knee extension torques and muscle thickness of the RF in the proximal and distal regions. Improvements in strength were accompanied by substantial enhancements in voluntary activation, which was determined using the twitch interpolation technique and RF activation. Differences in training effects on explosive torques and neural variables between the two training groups were trivial. Our findings indicate that hip flexion training results in substantial neuromuscular adaptations during knee extensions similar to those induced by knee extension training. © 2017 The Authors. Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.

  3. Neuromuscular Manifestations of West Nile Virus Infection

    Directory of Open Access Journals (Sweden)

    A. Arturo eLeis

    2012-03-01

    Full Text Available The most common neuromuscular manifestation of West Nile virus (WNV infection is a poliomyelitis syndrome with asymmetric paralysis variably involving one (monoparesis to four limbs (quadriparesis, with or without brainstem involvement and respiratory failure. This syndrome of acute flaccid paralysis may occur without overt fever or meningoencephalitis. Although involvement of anterior horn cells in the spinal cord and motor neurons in the brainstem are the major sites of pathology responsible for neuromuscular signs, inflammation also may involve skeletal or cardiac muscle (myositis, myocarditis, motor axons (polyradiculitis, peripheral nerve (Guillain-Barré syndrome, brachial plexopathy. In addition, involvement of spinal sympathetic neurons and ganglia provides a plausible explanation for autonomic instability seen in some patients. Many patients also experience prolonged subjective generalized weakness and disabling fatigue. Despite recent evidence that WNV may persist long term in the central nervous system or periphery in animals, the evidence in humans is controversial. WNV persistence would be of great concern in immunosuppressed patients or in those with prolonged or recurrent symptoms. Support for the contention that WNV can lead to autoimmune disease arises from reports of patients presenting with various neuromuscular diseases that presumably involve autoimmune mechanisms (GBS, other demyelinating neu¬ropathies, myasthenia gravis, brachial plexopathies, stiff-person syndrome, and delayed or recurrent symptoms. Although there is no specific treatment or vaccine currently approved in humans, and the standard remains supportive care, drugs that can alter the cascade of immunobiochemical events leading to neuronal death may be potentially useful (high-dose corticosteroids, interferon preparations, and intravenous immune globulin containing WNV-specific antibodies. Human experience with these agents seems promising based on anecdotal

  4. Acute neuromuscular weakness associated with dengue infection

    Directory of Open Access Journals (Sweden)

    Harmanjit Singh Hira

    2012-01-01

    Full Text Available Background: Dengue infections may present with neurological complications. Whether these are due to neuromuscular disease or electrolyte imbalance is unclear. Materials and Methods: Eighty-eight patients of dengue fever required hospitalization during epidemic in year 2010. Twelve of them presented with acute neuromuscular weakness. We enrolled them for study. Diagnosis of dengue infection based on clinical profile of patients, positive serum IgM ELISA, NS1 antigen, and sero-typing. Complete hemogram, kidney and liver functions, serum electrolytes, and creatine phosphokinase (CPK were tested. In addition, two patients underwent nerve conduction velocity (NCV test and electromyography. Results: Twelve patients were included in the present study. Their age was between 18 and 34 years. Fever, myalgia, and motor weakness of limbs were most common presenting symptoms. Motor weakness developed on 2 nd to 4 th day of illness in 11 of 12 patients. In one patient, it developed on 10 th day of illness. Ten of 12 showed hypokalemia. One was of Guillain-Barré syndrome and other suffered from myositis; they underwent NCV and electromyography. Serum CPK and SGOT raised in 8 out of 12 patients. CPK of patient of myositis was 5098 IU. All of 12 patients had thrombocytopenia. WBC was in normal range. Dengue virus was isolated in three patients, and it was of serotype 1. CSF was normal in all. Within 24 hours, those with hypokalemia recovered by potassium correction. Conclusions: It was concluded that the dengue virus infection led to acute neuromuscular weakness because of hypokalemia, myositis, and Guillain-Barré syndrome. It was suggested to look for presence of hypokalemia in such patients.

  5. Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse.

    Science.gov (United States)

    Santafe, M M; Priego, M; Obis, T; Garcia, N; Tomàs, M; Lanuza, M A; Tomàs, J

    2015-07-01

    Adenosine receptors (ARs) are present in the motor terminals at the mouse neuromuscular junction. ARs and the presynaptic muscarinic acetylcholine receptors (mAChRs) share the functional control of the neuromuscular junction. We analysed their mutual interaction in transmitter release modulation. In electrophysiological experiments with unaltered synaptic transmission (muscles paralysed by blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB), we found that: (i) a collaborative action between different AR subtypes reduced synaptic depression at a moderate activity level (40 Hz); (ii) at high activity levels (100 Hz), endogenous adenosine production in the synaptic cleft was sufficient to reduce depression through A1 -type receptors (A1 Rs) and A2 A-type receptors (A2 A Rs); (iii) when the non-metabolizable 2-chloroadenosine (CADO) agonist was used, both the quantal content and depression were reduced; (iv) the protective effect of CADO on depression was mediated by A1 Rs, whereas A2 A Rs seemed to modulate A1 Rs; (v) ARs and mAChRs absolutely depended upon each other for the modulation of evoked and spontaneous acetylcholine release in basal conditions and in experimental conditions with CADO stimulation; (vi) the purinergic and muscarinic mechanisms cooperated in the control of depression by sharing a common pathway although the purinergic control was more powerful than the muscarinic control; and (vii) the imbalance of the ARs created by using subtype-selective and non-selective inhibitory and stimulatory agents uncoupled protein kinase C from evoked transmitter release. In summary, ARs (A1 Rs, A2 A Rs) and mAChRs (M1 , M2 ) cooperated in the control of activity-dependent synaptic depression and may share a common protein kinase C pathway. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Medical back belt with integrated neuromuscular electrical stimulation

    NARCIS (Netherlands)

    Bottenberg, E. (Eliza); Brinks, G.J. (Ger); Hesse, J. (Jenny)

    2014-01-01

    The medical back belt with integrated neuromuscular electrical stimulation is anorthopedic device, which has two main functions. The first function is to stimulate the backmuscles by using a neuromuscular electrical stimulation device that releases regular,electrical impulses. The second function of

  7. Neuromuscular function during a forward lunge in meniscectomized patients

    DEFF Research Database (Denmark)

    Thorlund, Jonas Bloch; Damgaard, Jacob; Roos, Ewa M.

    2012-01-01

    This study aimed to investigate differences in knee joint kinematics, ground reaction force kinetics and neuromuscular activity including muscle coactivation, and medial versus lateral muscle activity during a forward lunge between the operated and contralateral legs of meniscectomized patients....... Such differences may represent early changes in neuromuscular function potentially contributing to the development of knee osteoarthritis....

  8. Recent achievements in restorative neurology: Progressive neuromuscular diseases

    International Nuclear Information System (INIS)

    Dimitrijevic, M.R.; Kakulas, B.A.; Vrbova, G.

    1986-01-01

    This book contains 27 chapters. Some of the chapter titles are: Computed Tomography of Muscles in Neuromuscular Disease; Mapping the Genes for Muscular Dystrophy; Trophic Factors and Motor Neuron Development; Size of Motor Units and Firing Rate in Muscular Dystrophy; Restorative Possibilities in Relation to the Pathology of Progressive Neuromuscular Disease; and An Approach to the Pathogenesis of some Congenital Myopathies

  9. Behavioral deficits during early stages of aging in Caenorhabditis elegans result from locomotory deficits possibly linked to muscle frailty.

    Science.gov (United States)

    Glenn, Charles F; Chow, David K; David, Lawrence; Cooke, Carol A; Gami, Minaxi S; Iser, Wendy B; Hanselman, Keaton B; Goldberg, Ilya G; Wolkow, Catherine A

    2004-12-01

    Many behavioral responses require the coordination of sensory inputs with motor outputs. Aging is associated with progressive declines in both motor function and muscle structure. However, the consequences of age-related motor deficits on behavior have not been clearly defined. Here, we examined the effects of aging on behavior in the nematode, Caenorhabditis elegans. As animals aged, mild locomotory deficits appeared that were sufficient to impair behavioral responses to sensory cues. In contrast, sensory ability appeared well maintained during aging. Age-related behavioral declines were delayed in animals with mutations in the daf-2/insulin-like pathway governing longevity. A decline in muscle tissue integrity was correlated with the onset of age-related behavioral deficits, although significant muscle deterioration was not. Treatment with a muscarinic agonist significantly improved locomotory behavior in aged animals, indicating that improved neuromuscular signaling may be one strategy for reducing the severity of age-related behavioral impairments.

  10. RNAi-Mediated Reverse Genetic Screen Identified Drosophila Chaperones Regulating Eye and Neuromuscular Junction Morphology

    Directory of Open Access Journals (Sweden)

    Sandeep Raut

    2017-07-01

    Full Text Available Accumulation of toxic proteins in neurons has been linked with the onset of neurodegenerative diseases, which in many cases are characterized by altered neuronal function and synapse loss. Molecular chaperones help protein folding and the resolubilization of unfolded proteins, thereby reducing the protein aggregation stress. While most of the chaperones are expressed in neurons, their functional relevance remains largely unknown. Here, using bioinformatics analysis, we identified 95 Drosophila chaperones and classified them into seven different classes. Ubiquitous actin5C-Gal4-mediated RNAi knockdown revealed that ∼50% of the chaperones are essential in Drosophila. Knocking down these genes in eyes revealed that ∼30% of the essential chaperones are crucial for eye development. Using neuron-specific knockdown, immunocytochemistry, and robust behavioral assays, we identified a new set of chaperones that play critical roles in the regulation of Drosophila NMJ structural organization. Together, our data present the first classification and comprehensive analysis of Drosophila chaperones. Our screen identified a new set of chaperones that regulate eye and NMJ morphogenesis. The outcome of the screen reported here provides a useful resource for further elucidating the role of individual chaperones in Drosophila eye morphogenesis and synaptic development.

  11. Development of the mouse neuromuscular junction in the absence of regulated secretion

    NARCIS (Netherlands)

    Heeroma, J.H.; Plomp, J.J.; Roubos, E.W.; Verhage, M.

    2003-01-01

    To investigate the role of neurotransmitter secretion in the development and stabilization of synapses, the innervation of the diaphragm and intercostal muscles was studied in munc18-1 null mutant mice, which lack regulated secretion. We found that this mutant is completely devoid of both

  12. Cholinergic regulation of the evoked quantal release at frog neuromuscular junction

    Czech Academy of Sciences Publication Activity Database

    Nikolsky, E. E.; Vyskočil, František; Bukharaeva, E. A.; Samigullin, D.; Magazanik, L. G.

    2004-01-01

    Roč. 560, č. 1 (2004), s. 77-88 ISSN 0022-3751 R&D Projects: GA AV ČR IAA5011411; GA ČR GA305/02/1333 Institutional research plan: CEZ:AV0Z5011922 Keywords : acetylcholine * quantal * synapse Subject RIV: ED - Physiology Impact factor: 4.346, year: 2004

  13. Temperature effect on carbachol-induced depression of spontaneous quantal transmitter release in frog neuromuscular junction

    Czech Academy of Sciences Publication Activity Database

    Strunsky, E. G.; Borisover, M. D.; Nikolsky, E. E.; Vyskočil, František

    2001-01-01

    Roč. 26, 8-9 (2001), s. 891-897 ISSN 0364-3190 R&D Projects: GA AV ČR IAA7011902; GA MŠk OK 267 Grant - others:RFBR(RU) 99-04-48286; EU(XX) Nesting Institutional research plan: CEZ:AV0Z5011922 Keywords : carbachol * temperature * acetylcholine release Subject RIV: ED - Physiology Impact factor: 1.638, year: 2001

  14. Calcium dependence of uni-quantal release latencies and quantal content at mouse neuromuscular junction

    Czech Academy of Sciences Publication Activity Database

    Samigullin, D.; Bukharaeva, E. A.; Vyskočil, František; Nikolsky, E. E.

    2005-01-01

    Roč. 54, č. 1 (2005), s. 129-132 ISSN 0862-8408 R&D Projects: GA AV ČR(CZ) IAA5011411; GA ČR(CZ) GA305/02/1333 Grant - others:RFBR(RU) 05-04-49723; Russian Science Support Foundation(RU) 1063.2003.4; GA-(RU) MK-2153.2003.04 Institutional research plan: CEZ:AV0Z50110509 Keywords : quantal release * synaptic latency * calcium Subject RIV: ED - Physiology Impact factor: 1.806, year: 2005

  15. Possible mechanisms of action of Gymnodinium breve toxin at the mammalian neuromuscular junction.

    Science.gov (United States)

    Shinnick-Gallagher, P.

    1980-01-01

    1 The mechanism of action of a crude fraction of Gymnodinium breve toxin (GBTX) was investigated by intracellular recording techniques in the rat phrenic nerve diaphragm preparation. 2 GBTX (2 micrograms/ml) decreased the input resistance of the muscle membrane concomitantly with a depolarization of the resting membrane potential. 3 A low sodium solution reversed or prevented a GBTX-induced membrane depolarization. 4 Tetrodotoxin (TTX) antagonized a GBTX-induced increase in miniature endplate potential (m.e.p.p.) frequency and repolarized a GBTX-depolarized membrane. Pretreatment with TTX prevented GBTX effects. 5 GBTX reversibly reduced depolarizations produced by bath applied acetylcholine (ACh). The membrane depolarization was not responsible for the depression of ACh responses. 6 These findings suggest that GBTX increases m.e.p.p. frequency and depolarizes the resting membrane potential by increasing sodium permeability. The reduction of ACh-induced depolarizations suggests that GBTX may be acting at some site on the ACh receptor. PMID:7190452

  16. Interaction of glutamate- and adenosine-induced decrease of acetylcholine quantal release at frog neuromuscular junction

    Czech Academy of Sciences Publication Activity Database

    Adámek, S.; Shakirzyanova, V.; Malomouzh, A. I.; Naumenko, N. V.; Vyskočil, František

    2010-01-01

    Roč. 59, č. 5 (2010), s. 803-810 ISSN 0862-8408 R&D Projects: GA AV ČR(CZ) IAA500110905; GA ČR GA202/09/0806 Institutional research plan: CEZ:AV0Z50110509 Keywords : Endplate potentials * Guanylyl cyclase Subject RIV: ED - Physiology Impact factor: 1.646, year: 2010

  17. Glutamate regulation of non-quantal release of acetylcholine in the rat neuromuscular junction

    Czech Academy of Sciences Publication Activity Database

    Malomouzh, A. I.; Mukhtarov, M. R.; Nikolsky, E. E.; Vyskočil, František; Lieberman, E. M.; Urazaev, A. K.

    2003-01-01

    Roč. 85, č. 1 (2003), s. 206-213 ISSN 0022-3042 R&D Projects: GA AV ČR IAA7011902; GA ČR GA305/02/1333; GA ČR GA202/02/1213 Institutional research plan: CEZ:AV0Z5011922; CEZ:MSM 113100003 Keywords : muscle endplate * nitric oxide * N-methyl-D-aspartate receptor Subject RIV: CG - Electrochemistry Impact factor: 4.825, year: 2003

  18. The effect of palytoxin on neuromuscular junctions in the anococcygeus muscle of the rat.

    Science.gov (United States)

    Amir, I; Harris, J B; Zar, M A

    1997-06-01

    Palytoxin, a highly toxic natural product isolated from zoanthids of the genus Palythoa, is accumulated by a wide range of fishes and marine invertebrates used as food in the Indo-Pacific. It is responsible for many incidents of human morbidity and mortality. The toxin is a potent smooth muscle spasmogen. The cause of the contraction of smooth muscle is unclear, but recent work strongly suggests that it is primarily initiated by the release of neurotransmitters from the motor innervation of the smooth muscle. We show here that palytoxin caused the swelling of the muscle cells and some internal organelles of the anococcygeus muscle of the rat, but no substantial structural damage to the tissue. Axons and Schwann cells were also swollen but the most dramatic feature was the depletion of synaptic vesicles from putative release sites in the axons. Some axons were physically damaged following exposure to the toxin, but this was relatively uncommon (< 10% of all axons studied). In the majority of axons there was no damage to nerve terminal membranes, but there was damage to mitochondria. The depletion of vesicles involved all types-clear, dense-cored, large and small. Our observations and pharmacological data gathered elsewhere, provide a neuropathological basis for the spasmogenic activity of palytoxin.

  19. Josephson junctions array resonators

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Oscar; Muppalla, Phani; Mirzaei, Iman; Kirchmair, Gerhard [Institute for Quantum Optics and Quantum Information, Innsbruck (Austria)

    2016-07-01

    We present an experimental analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. The chain consists of 1600 individual junctions and we can measure quality factors in excess of 10000. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power we are able to measure this frequency shift on a single mode (self-kerr). By changing the input power on another mode while measuring the same one, we are able to evaluate the cross-kerr effect. We can measure the cross-Kerr effect by probing the resonance frequency of one mode while exciting another mode of the array with a microwave drive.

  20. Curved Josephson junction

    International Nuclear Information System (INIS)

    Dobrowolski, Tomasz

    2012-01-01

    The constant curvature one and quasi-one dimensional Josephson junction is considered. On the base of Maxwell equations, the sine–Gordon equation that describes an influence of curvature on the kink motion was obtained. It is showed that the method of geometrical reduction of the sine–Gordon model from three to lower dimensional manifold leads to an identical form of the sine–Gordon equation. - Highlights: ► The research on dynamics of the phase in a curved Josephson junction is performed. ► The geometrical reduction is applied to the sine–Gordon model. ► The results of geometrical reduction and the fundamental research are compared.

  1. Neuromuscular blockade in cardiac surgery: An update for clinicians

    Directory of Open Access Journals (Sweden)

    Hemmerling Thomas

    2008-01-01

    Full Text Available There have been great advancements in cardiac surgery over the last two decades; the widespread use of off-pump aortocoronary bypass surgery, minimally invasive cardiac surgery, and robotic surgery have also changed the face of cardiac anaesthesia. The concept of "Fast-track anaesthesia" demands the use of nondepolarising neuromuscular blocking drugs with short duration of action, combining the ability to provide (if necessary sufficiently profound neuromuscular blockade during surgery and immediate re-establishment of normal neuromuscular transmission at the end of surgery. Postoperative residual muscle paralysis is one of the major hurdles for immediate or early extubation after cardiac surgery. Nondepolarising neuromuscular blocking drugs for cardiac surgery should therefore be easy to titrate, of rapid onset and short duration of action with a pathway of elimination independent from hepatic or renal dysfunction, and should equally not affect haemodynamic stability. The difference between repetitive bolus application and continuous infusion is outlined in this review, with the pharmacodynamic and pharmacokinetic characteristics of vecuronium, pancuronium, rocuronium, and cisatracurium. Kinemyography and acceleromyography are the most important currently used neuromuscular monitoring methods. Whereas monitoring at the adductor pollicis muscle is appropriate at the end of surgery, monitoring of the corrugator supercilii muscle better reflects neuromuscular blockade at more central, profound muscles, such as the diaphragm, larynx, or thoraco-abdominal muscles. In conclusion, cisatracurium or rocuronium is recommended for neuromuscular blockade in modern cardiac surgery.

  2. HMP-1/α-catenin promotes junctional mechanical integrity during morphogenesis.

    Directory of Open Access Journals (Sweden)

    Thanh Thi Kim Vuong-Brender

    Full Text Available Adherens junctions (AJs are key structures regulating tissue integrity and maintaining adhesion between cells. During morphogenesis, junctional proteins cooperate closely with the actomyosin network to drive cell movement and shape changes. How the junctions integrate the mechanical forces in space and in time during an in vivo morphogenetic event is still largely unknown, due to a lack of quantitative data. To address this issue, we inserted a functional Fluorescence Resonance Energy Transfer (FRET-based force biosensor within HMP-1/α-catenin of Caenorhabditis elegans. We find that the tension exerted on HMP-1 has a cell-specific distribution, is actomyosin-dependent, but is regulated differently from the tension on the actin cortex during embryonic elongation. By using time-lapse analysis of mutants and tissue-specific rescue experiments, we confirm the role of VAB-9/Claudin as an actin bundle anchor. Nevertheless, the tension exerted on HMP-1 did not increase in the absence of VAB-9/Claudin, suggesting that HMP-1 activity is not upregulated to compensate for loss of VAB-9. Our data indicate that HMP-1 does not modulate HMR-1/E-cadherin turnover, is required to recruit junctional actin but not stress fiber-like actin bundles. Altogether, our data suggest that HMP-1/α-catenin acts to promote the mechanical integrity of adherens junctions.

  3. C. elegans model of neuronal aging

    OpenAIRE

    Peng, Chiu-Ying; Chen, Chun-Hao; Hsu, Jiun-Min; Pan, Chun-Liang

    2011-01-01

    Aging of the nervous system underlies the behavioral and cognitive decline associated with senescence. Understanding the molecular and cellular basis of neuronal aging will therefore contribute to the development of effective treatments for aging and age-associated neurodegenerative disorders. Despite this pressing need, there are surprisingly few animal models that aim at recapitulating neuronal aging in a physiological context. We recently developed a C. elegans model of neuronal aging, and...

  4. The mevalonate pathway in C. Elegans

    Directory of Open Access Journals (Sweden)

    Rauthan Manish

    2011-12-01

    Full Text Available Abstract The mevalonate pathway in human is responsible for the synthesis of cholesterol and other important biomolecules such as coenzyme Q, dolichols and isoprenoids. These molecules are required in the cell for functions ranging from signaling to membrane integrity, protein prenylation and glycosylation, and energy homeostasis. The pathway consists of a main trunk followed by sub-branches that synthesize the different biomolecules. The majority of our knowledge about the mevalonate pathway is currently focused on the cholesterol synthesis branch, which is the target of the cholesterol-lowering statins; less is known about the function and regulation of the non-cholesterol-related branches. To study them, we need a biological system where it is possible to specifically modulate these metabolic branches individually or in groups. The nematode Caenorhabditis elegans (C. elegans is a promising model to study these non-cholesterol branches since its mevalonate pathway seems very well conserved with that in human except that it has no cholesterol synthesis branch. The simple genetic makeup and tractability of C. elegans makes it relatively easy to identify and manipulate key genetic components of the mevalonate pathway, and to evaluate the consequences of tampering with their activity. This general experimental approach should lead to new insights into the physiological roles of the non-cholesterol part of the mevalonate pathway. This review will focus on the current knowledge related to the mevalonate pathway in C. elegans and its possible applications as a model organism to study the non-cholesterol functions of this pathway.

  5. The Si elegans project at the interface of experimental and computational Caenorhabditis elegans neurobiology and behavior

    Science.gov (United States)

    Petrushin, Alexey; Ferrara, Lorenzo; Blau, Axel

    2016-12-01

    Objective. In light of recent progress in mapping neural function to behavior, we briefly and selectively review past and present endeavors to reveal and reconstruct nervous system function in Caenorhabditis elegans through simulation. Approach. Rather than presenting an all-encompassing review on the mathematical modeling of C. elegans, this contribution collects snapshots of pathfinding key works and emerging technologies that recent single- and multi-center simulation initiatives are building on. We thereby point out a few general limitations and problems that these undertakings are faced with and discuss how these may be addressed and overcome. Main results. Lessons learned from past and current computational approaches to deciphering and reconstructing information flow in the C. elegans nervous system corroborate the need of refining neural response models and linking them to intra- and extra-environmental interactions to better reflect and understand the actual biological, biochemical and biophysical events that lead to behavior. Together with single-center research efforts, the Si elegans and OpenWorm projects aim at providing the required, in some cases complementary tools for different hardware architectures to support advancement into this direction. Significance. Despite its seeming simplicity, the nervous system of the hermaphroditic nematode C. elegans with just 302 neurons gives rise to a rich behavioral repertoire. Besides controlling vital functions (feeding, defecation, reproduction), it encodes different stimuli-induced as well as autonomous locomotion modalities (crawling, swimming and jumping). For this dichotomy between system simplicity and behavioral complexity, C. elegans has challenged neurobiologists and computational scientists alike. Understanding the underlying mechanisms that lead to a context-modulated functionality of individual neurons would not only advance our knowledge on nervous system function and its failure in pathological

  6. Filamin and phospholipase C-ε are required for calcium signaling in the Caenorhabditis elegans spermatheca.

    Directory of Open Access Journals (Sweden)

    Ismar Kovacevic

    2013-05-01

    Full Text Available The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue.

  7. Visible light reduces C. elegans longevity.

    Science.gov (United States)

    De Magalhaes Filho, C Daniel; Henriquez, Brian; Seah, Nicole E; Evans, Ronald M; Lapierre, Louis R; Dillin, Andrew

    2018-03-02

    The transparent nematode Caenorhabditis elegans can sense UV and blue-violet light to alter behavior. Because high-dose UV and blue-violet light are not a common feature outside of the laboratory setting, we asked what role, if any, could low-intensity visible light play in C. elegans physiology and longevity. Here, we show that C. elegans lifespan is inversely correlated to the time worms were exposed to visible light. While circadian control, lite-1 and tax-2 do not contribute to the lifespan reduction, we demonstrate that visible light creates photooxidative stress along with a general unfolded-protein response that decreases the lifespan. Finally, we find that long-lived mutants are more resistant to light stress, as well as wild-type worms supplemented pharmacologically with antioxidants. This study reveals that transparent nematodes are sensitive to visible light radiation and highlights the need to standardize methods for controlling the unrecognized biased effect of light during lifespan studies in laboratory conditions.

  8. Acute carbon dioxide avoidance in Caenorhabditis elegans.

    Science.gov (United States)

    Hallem, Elissa A; Sternberg, Paul W

    2008-06-10

    Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFbeta signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm.

  9. The human myotendinous junction

    DEFF Research Database (Denmark)

    Knudsen, A B; Larsen, M; Mackey, Abigail

    2015-01-01

    The myotendinous junction (MTJ) is a specialized structure in the musculotendinous system, where force is transmitted from muscle to tendon. Animal models have shown that the MTJ takes form of tendon finger-like processes merging with muscle tissue. The human MTJ is largely unknown and has never...... been described in three dimensions (3D). The aim of this study was to describe the ultrastructure of the human MTJ and render 3D reconstructions. Fourteen subjects (age 25 ± 3 years) with isolated injury of the anterior cruciate ligament (ACL), scheduled for reconstruction with a semitendinosus...

  10. Tight junctions and human diseases.

    Science.gov (United States)

    Sawada, Norimasa; Murata, Masaki; Kikuchi, Keisuke; Osanai, Makoto; Tobioka, Hirotoshi; Kojima, Takashi; Chiba, Hideki

    2003-09-01

    Tight junctions are intercellular junctions adjacent to the apical end of the lateral membrane surface. They have two functions, the barrier (or gate) function and the fence function. The barrier function of tight junctions regulates the passage of ions, water, and various macromolecules, even of cancer cells, through paracellular spaces. The barrier function is thus relevant to edema, jaundice, diarrhea, and blood-borne metastasis. On the other hand, the fence function maintains cell polarity. In other words, tight junctions work as a fence to prevent intermixing of molecules in the apical membrane with those in the lateral membrane. This function is deeply involved in cancer cell biology, in terms of loss of cell polarity. Of the proteins comprising tight junctions, integral membrane proteins occludin, claudins, and JAMs have been recently discovered. Of these molecules, claudins are exclusively responsible for the formation of tight-junction strands and are connected with the actin cytoskeleton mediated by ZO-1. Thus, both functions of tight junctions are dependent on the integrity of the actin cytoskeleton as well as ATP. Mutations in the claudin14 and the claudin16 genes result in hereditary deafness and hereditary hypomagnesemia, respectively. Some pathogenic bacteria and viruses target and affect the tight-junction function, leading to diseases. In this review, the relationship between tight junctions and human diseases is summarized.

  11. Gap junctions and motor behavior

    DEFF Research Database (Denmark)

    Kiehn, Ole; Tresch, Matthew C.

    2002-01-01

    The production of any motor behavior requires coordinated activity in motor neurons and premotor networks. In vertebrates, this coordination is often assumed to take place through chemical synapses. Here we review recent data suggesting that electrical gap-junction coupling plays an important role...... in coordinating and generating motor outputs in embryonic and early postnatal life. Considering the recent demonstration of a prevalent expression of gap-junction proteins and gap-junction structures in the adult mammalian spinal cord, we suggest that neuronal gap-junction coupling might also contribute...... to the production of motor behavior in adult mammals....

  12. [The hip joint in neuromuscular disorders].

    Science.gov (United States)

    Strobl, W M

    2009-07-01

    Physiologic motor and biomechanical parameters are prerequisites for normal hip development and hip function. Disorders of muscle activity and lack of weight bearing due to neuromuscular diseases may cause clinical symptoms such as an unstable hip or reduced range of motion. Disability and handicap because of pain, hip dislocation, osteoarthritis, gait disorders, or problems in seating and positioning are dependent on the severity of the disease, the time of occurrence, and the means of prevention and treatment. Preservation of pain-free and stable hip joints should be gained by balancing muscular forces and by preventing progressive dislocation. Most important is the exact indication of therapeutic options such as movement and standing therapy as well as drugs and surgery.

  13. Stable nuclear transformation of Eudorina elegans

    Directory of Open Access Journals (Sweden)

    Lerche Kai

    2013-02-01

    Full Text Available Abstract Background A fundamental step in evolution was the transition from unicellular to differentiated, multicellular organisms. Volvocine algae have been used for several decades as a model lineage to investigate the evolutionary aspects of multicellularity and cellular differentiation. There are two well-studied volvocine species, a unicellular alga (Chlamydomonas reinhardtii and a multicellular alga with differentiated cell types (Volvox carteri. Species with intermediate characteristics also exist, which blur the boundaries between unicellularity and differentiated multicellularity. These species include the globular alga Eudorina elegans, which is composed of 16–32 cells. However, detailed molecular analyses of E. elegans require genetic manipulation. Unfortunately, genetic engineering has not yet been established for Eudorina, and only limited DNA and/or protein sequence information is available. Results Here, we describe the stable nuclear transformation of E. elegans by particle bombardment using both a chimeric selectable marker and reporter genes from different heterologous sources. Transgenic algae resistant to paromomycin were achieved using the aminoglycoside 3′-phosphotransferase VIII (aphVIII gene of Streptomyces rimosus, an actinobacterium, under the control of an artificial promoter consisting of two V. carteri promoters in tandem. Transformants exhibited an increase in resistance to paromomycin by up to 333-fold. Co-transformation with non-selectable plasmids was achieved with a rate of 50 - 100%. The luciferase (gluc gene from the marine copepod Gaussia princeps, which previously was engineered to match the codon usage of C. reinhardtii, was used as a reporter gene. The expression of gluc was mediated by promoters from C. reinhardtii and V. carteri. Heterologous heat shock promoters induced an increase in luciferase activity (up to 600-fold at elevated temperatures. Long-term stability and both constitutive and

  14. The effect of dys-1 mutation on miRNA expression profile in Caenorhabditis elegans during Shenzhou-8 mission

    Science.gov (United States)

    Xu, Dan; Sun, Yeqing; Gao, Ying; Xing, Yanfang

    microRNAs (miRNAs) is reported to be sensitive to radiation exposure and altered gravity, involved in a variety of biological processes through negative regulation of gene expression. Dystrophin-like dys-1 gene is expressed and required in muscle tissue, which plays a vital role in mechanical transduction when gravity varies. In the present study, we investigated the effect of dys-1 mutation on miRNA expression profile in Caenorhabditis elegans (C. elegans) under space radiation associated with microgravity (R+M) and radiation alone (R) environment during Shenzhou-8 mission. We performed miRNA microarray analysis in dys-1 mutant and wide-type (WT) of dauer larvae and found that 27 miRNAs changed in abundance after spaceflight. Compared with WT, there was different miRNA expression pattern in different treatments in dys-1 mutant. Cel-miR-796 and miR-124 were reversely expressed under R+M and R environment in WT and dys-1 mutant, respectively, indicating they might be affected by microgravity. Mutation of dys-1 remarkably reduced the number of altered miRNAs under space environment, resulting in the decrease of genes in biological categories of “body morphogenesis”, “behavior”, “cell adhesion” and so on. Particularly, we found that those genes controlling regulation of locomotion in WT were lost in dys-1 mutant, while genes in positive regulation of developmental process only existed in dys-1 mutant. miR-796 was predicted to target genes ace-1 and dyc-1 that are functionally linked to dys-1. Integration analysis of miRNA and mRNA expression profile revealed that miR-56 and miR-124 were involved in behavior and locomotion by regulating different target genes under space environment, among which nep-11, deb-1, C07H4.1 and F11H8.2 might be associated with neuromuscular system. Our findings suggest that dys-1 could cause alteration of miRNAs and target genes, involved in regulating the response of C. elegans to space microgravity in neuromuscular system. This

  15. Immobilization of Caenorhabditis elegans to Analyze Intracellular Transport in Neurons.

    Science.gov (United States)

    Niwa, Shinsuke

    2017-10-18

    Axonal transport and intraflagellar transport (IFT) are essential for axon and cilia morphogenesis and function. Kinesin superfamily proteins and dynein are molecular motors that regulate anterograde and retrograde transport, respectively. These motors use microtubule networks as rails. Caenorhabditis elegans (C. elegans) is a powerful model organism to study axonal transport and IFT in vivo. Here, I describe a protocol to observe axonal transport and IFT in living C. elegans. Transported cargo can be visualized by tagging cargo proteins using fluorescent proteins such as green fluorescent protein (GFP). C. elegans is transparent and GFP-tagged cargo proteins can be expressed in specific cells under cell-specific promoters. Living worms can be fixed by microbeads on 10% agarose gel without killing or anesthetizing the worms. Under these conditions, cargo movement can be directly observed in the axons and cilia of living C. elegans without dissection. This method can be applied to the observation of any cargo molecule in any cells by modifying the target proteins and/or the cells they are expressed in. Most basic proteins such as molecular motors and adaptor proteins that are involved in axonal transport and IFT are conserved in C. elegans. Compared to other model organisms, mutants can be obtained and maintained more easily in C. elegans. Combining this method with various C. elegans mutants can clarify the molecular mechanisms of axonal transport and IFT.

  16. Caenorhabditis elegans intersectin: a synaptic protein regulating neurotransmission

    DEFF Research Database (Denmark)

    Rose, Simon; Malabarba, Maria Grazia; Krag, Claudia

    2007-01-01

    the characterization of intersectin function in Caenorhabditis elegans. Nematode intersectin (ITSN-1) is expressed in the nervous system, and it is enriched in presynaptic regions. The C. elegans intersectin gene (itsn-1) is nonessential for viability. In addition, itsn-1-null worms do not display any evident...

  17. Genetic screens in Caenorhabditis elegans models for neurodegenerative diseases

    NARCIS (Netherlands)

    Alvarenga Fernandes Sin, Olga; Michels, Helen; Nollen, Ellen A. A.

    2014-01-01

    Caenorhabditis elegans comprises unique features that make it an attractive model organism in diverse fields of biology. Genetic screens are powerful to identify genes and C. elegans can be customized to forward or reverse genetic screens and to establish gene function. These genetic screens can be

  18. Genetics of Pediatric-Onset Motor Neuron and Neuromuscular Diseases

    Science.gov (United States)

    2015-08-24

    Spinal Muscular Atrophy; Charcot-Marie-Tooth Disease; Muscular Dystrophy; Spinal Muscular Atrophy With Respiratory Distress 1; Amyotrophic Lateral Sclerosis; Motor Neuron Disease; Neuromuscular Disease; Peroneal Muscular Atrophy; Fragile X Syndrome

  19. The role of proprioception and neuromuscular stability in carpal instabilities.

    Science.gov (United States)

    Hagert, E; Lluch, A; Rein, S

    2016-01-01

    Carpal stability has traditionally been defined as dependent on the articular congruity of joint surfaces, the static stability maintained by intact ligaments, and the dynamic stability caused by muscle contractions resulting in a compression of joint surfaces. In the past decade, a fourth factor in carpal stability has been proposed, involving the neuromuscular and proprioceptive control of joints. The proprioception of the wrist originates from afferent signals elicited by sensory end organs (mechanoreceptors) in ligaments and joint capsules that elicit spinal reflexes for immediate joint stability, as well as higher order neuromuscular influx to the cerebellum and sensorimotor cortices for planning and executing joint control. The aim of this review is to provide an understanding of the role of proprioception and neuromuscular control in carpal instabilities by delineating the sensory innervation and the neuromuscular control of the carpus, as well as descriptions of clinical applications of proprioception in carpal instabilities. © The Author(s) 2015.

  20. Effects of napping on neuromuscular fatigue in myasthenia gravis.

    Science.gov (United States)

    Kassardjian, Charles D; Murray, Brian J; Kokokyi, Seint; Jewell, Dana; Barnett, Carolina; Bril, Vera; Katzberg, Hans D

    2013-11-01

    The relationship between sleep and neuromuscular fatigue is understood poorly. The goal of this study was to evaluate the effects of napping on quantitative measures of neuromuscular fatigue in patients with myasthenia gravis (MG). Eight patients with mild to moderate MG were recruited. Patients underwent maintenance of wakefulness tests (MWT) and multiple sleep latency tests (MSLT). The Quantitative Myasthenia Gravis Score (QMGS) was measured before nap and after each nap to examine the effects of napping and sleep on neuromuscular weakness. Results showed that QMGS improves only after naps where patients slept more than 5 min but not where patients did not sleep or slept less than 5 min. Daytime napping mitigates neuromuscular fatigue in patients with MG, especially if patients slept for more than 5 min. Copyright © 2013 Wiley Periodicals, Inc.

  1. Dissecting the C. elegans response during infection using quantitative proteomics

    DEFF Research Database (Denmark)

    Simonsen, Karina Trankjær; Møller-Jensen, Jakob; Kristensen, Anders Riis

    2008-01-01

    The adherent invasive E. coli isolated from patients with Crohn’s disease in humans is pathogenic for C. elegans. We show here that when C. elegans feeds on the pathogenic E. coli, the life span is shortened significantly compared to the normal laboratory food, the OP50 E. coli. In this study...... the infection process is followed using GFP-expressing bacteria and persistence assays. A quantitative proteomic approach was used to follow the C. elegans host response during the infection process. C. elegans were metabolic labeled with the stable isotope 15N and samples from three different time points......, many of which also have been found in studies using other pathogens. So far, large-scale investigations of the C. elegans immune response have been performed using micro-arrays. This study is the first to make use of quantitative proteomics to directly follow the protein dynamics during the infection...

  2. Junction detection and pathway selection

    Science.gov (United States)

    Peck, Alex N.; Lim, Willie Y.; Breul, Harry T.

    1992-02-01

    The ability to detect junctions and make choices among the possible pathways is important for autonomous navigation. In our script-based navigation approach where a journey is specified as a script of high-level instructions, actions are frequently referenced to junctions, e.g., `turn left at the intersection.' In order for the robot to carry out these kind of instructions, it must be able (1) to detect an intersection (i.e., an intersection of pathways), (2) know that there are several possible pathways it can take, and (3) pick the pathway consistent with the high level instruction. In this paper we describe our implementation of the ability to detect junctions in an indoor environment, such as corners, T-junctions and intersections, using sonar. Our approach uses a combination of partial scan of the local environment and recognition of sonar signatures of certain features of the junctions. In the case where the environment is known, we use additional sensor information (such as compass bearings) to help recognize the specific junction. In general, once a junction is detected and its type known, the number of possible pathways can be deduced and the correct pathway selected. Then the appropriate behavior for negotiating the junction is activated.

  3. Mixing in T-junctions

    NARCIS (Netherlands)

    Kok, Jacobus B.W.; van der Wal, S.

    1996-01-01

    The transport processes that are involved in the mixing of two gases in a T-junction mixer are investigated. The turbulent flow field is calculated for the T-junction with the k- turbulence model by FLOW3D. In the mathematical model the transport of species is described with a mixture fraction

  4. Dynamics of Josephson junction arrays

    International Nuclear Information System (INIS)

    Hadley, P.

    1989-01-01

    The dynamics of Josephson junction arrays is a topic that lies at the intersection of the fields of nonlinear dynamics and Josephson junction technology. The series arrays considered here consist of several rapidly oscillating Josephson junctions where each junction is coupled equally to every other junction. The purpose of this study is to understand phaselocking and other cooperative dynamics of this system. Previously, little was known about high dimensional nonlinear systems of this sort. Numerical simulations are used to study the dynamics of these arrays. Three distinct types of periodic solutions to the array equations were observed as well as period doubled and chaotic solutions. One of the periodic solutions is the symmetric, in-phase solution where all of the junctions oscillate identically. The other two periodic solutions are symmetry-broken solutions where all of the junction do not oscillate identically. The symmetry-broken solutions are highly degenerate. As many as (N - 1) stable solutions can coexist for an array of N junctions. Understanding the stability of these several solutions and the transitions among them is vital to the design of useful devices

  5. Neuromuscular fatigue and recovery profiles in individuals with intellectual disability

    OpenAIRE

    Borji , Rihab; Zghal , Firas; Zarrouk , Nidhal; Martin , Vincent; Sahli , Sonia; Rebai , Haithem

    2017-01-01

    International audience; Purpose: This study aimed to explore neuromuscular fatigue and recovery profiles in individuals with intellectual disability (ID) after exhausting submaximal contraction.Methods: Ten men with ID were compared to 10 men without ID. The evaluation of neuromuscular function consisted in brief (3 s) isometric maximal voluntary contraction (IMVC) of the knee extension superimposed with electrical nerve stimulation before, immediately after, and during 33 min after an exhaus...

  6. Neuromuscular prehabilitation to prevent osteoarthritis after a traumatic joint injury.

    Science.gov (United States)

    Tenforde, Adam S; Shull, Pete B; Fredericson, Michael

    2012-05-01

    Post-traumatic osteoarthritis (PTOA) is a process resulting from direct forces applied to a joint that cause injury and degenerative changes. An estimated 12% of all symptomatic osteoarthritis (OA) of the hip, knee, and ankle can be attributed to a post-traumatic cause. Neuromuscular prehabilitation is the process of improving neuromuscular function to prevent development of PTOA after an initial traumatic joint injury. Prehabilitation strategies include restoration of normative movement patterns that have been altered as the result of traumatic injury, along with neuromuscular exercises and gait retraining to prevent the development of OA after an injury occurs. A review of the current literature shows that no studies have been performed to evaluate methods of neuromuscular prehabilitation to prevent PTOA after a joint injury. Instead, current research has focused on management strategies after knee injuries, the value of exercise in the management of OA, and neuromuscular exercises after total knee arthroplasty. Recent work in gait retraining that alters knee joint loading holds promise for preventing the development of PTOA after joint trauma. Future research should evaluate methods of neuromuscular prehabilitation strategies in relationship to the outcome of PTOA after joint injury. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  7. Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues.

    Science.gov (United States)

    Johnston, Josiah; Iser, Wendy B; Chow, David K; Goldberg, Ilya G; Wolkow, Catherine A

    2008-07-30

    Aging is associated with functional and structural declines in many body systems, even in the absence of underlying disease. In particular, skeletal muscles experience severe declines during aging, a phenomenon termed sarcopenia. Despite the high incidence and severity of sarcopenia, little is known about contributing factors and development. Many studies focus on functional aspects of aging-related tissue decline, while structural details remain understudied. Traditional approaches for quantifying structural changes have assessed individual markers at discrete intervals. Such approaches are inadequate for the complex changes associated with aging. An alternative is to consider changes in overall morphology rather than in specific markers. We have used this approach to quantitatively track tissue architecture during adulthood and aging in the C. elegans pharynx, the neuromuscular feeding organ. Using pattern recognition to analyze aged-grouped pharynx images, we identified discrete step-wise transitions between distinct morphologies. The morphology state transitions were maintained in mutants with pharynx neurotransmission defects, although the pace of the transitions was altered. Longitudinal measurements of pharynx function identified a predictive relationship between mid-life pharynx morphology and function at later ages. These studies demonstrate for the first time that adult tissues undergo distinct structural transitions reflecting postdevelopmental events. The processes that underlie these architectural changes may contribute to increased disease risk during aging, and may be targets for factors that alter the aging rate. This work further demonstrates that pattern analysis of an image series offers a novel and generally accessible approach for quantifying morphological changes and identifying structural biomarkers.

  8. Biotransformation of furanocoumarins by Cunninghamella elegans

    Directory of Open Access Journals (Sweden)

    Ghada Ismail El-shahat Ali Attia

    2015-06-01

    Full Text Available Biotransformation of Furanocoumarins; psoralen (1, bergapten (2, xanthotoxin (3 and imperatorin (4 was explored by Cunninghamella elegans NRRL 1392, revealing the metabolism of psoralen (1 and bergapten (2 into bergaptol (5, while xanthotoxin (3 and imperatorin (4 were converted into xanthotoxol (6. On the other hand unexpected conversion of xanthotoxin (3 into 3,4 dihydroxanthotoxin (7 occurred. The structure of the isolated pure metabolites was established using physical and spectroscopic techniques including, melting points, IR, 1H NMR, 13C NMR and mass spectroscopy.

  9. Characterization of the Caenorhabditis elegans HIM-6/BLM helicase: unwinding recombination intermediates.

    Science.gov (United States)

    Jung, Hana; Lee, Jin A; Choi, Seoyoon; Lee, Hyunwoo; Ahn, Byungchan

    2014-01-01

    Mutations in three human RecQ genes are implicated in heritable human syndromes. Mutations in BLM, a RecQ gene, cause Bloom syndrome (BS), which is characterized by short stature, cancer predisposition, and sensitivity to sunlight. BLM is a RecQ DNA helicase that, with interacting proteins, is able to dissolve various DNA structures including double Holliday junctions. A BLM ortholog, him-6, has been identified in Caenorhabditis elegans, but little is known about its enzymatic activities or its in vivo roles. By purifying recombinant HIM-6 and performing biochemical assays, we determined that the HIM-6 has DNA-dependent ATPase activity HIM-6 and helicase activity that proceeds in the 3'-5' direction and needs at least five 3' overhanging nucleotides. HIM-6 is also able to unwind DNA structures including D-loops and Holliday junctions. Worms with him-6 mutations were defective in recovering the cell cycle arrest after HU treatment. These activities strongly support in vivo roles for HIM-6 in processing recombination intermediates.

  10. The neuromuscular differential diagnosis of joint hypermobility.

    Science.gov (United States)

    Donkervoort, S; Bonnemann, C G; Loeys, B; Jungbluth, H; Voermans, N C

    2015-03-01

    Joint hypermobility is the defining feature of various inherited connective tissue disorders such as Marfan syndrome and various types of Ehlers-Danlos syndrome and these will generally be the first conditions to be considered by geneticists and pediatricians in the differential diagnosis of a patient presenting with such findings. However, several congenital and adult-onset inherited myopathies also present with joint hypermobility in the context of often only mild-to-moderate muscle weakness and should, therefore, be included in the differential diagnosis of joint hypermobility. In fact, on the molecular level disorders within both groups represent different ends of the same spectrum of inherited extracellular matrix (ECM) disorders. In this review we will summarize the measures of joint hypermobility, illustrate molecular mechanisms these groups of disorders have in common, and subsequently discuss the clinical features of: 1) the most common connective tissue disorders with myopathic or other neuromuscular features: Ehlers-Danlos syndrome, Marfan syndrome and Loeys-Dietz syndrome; 2) myopathy and connective tissue overlap disorders (muscle extracellular matrix (ECM) disorders), including collagen VI related dystrophies and FKBP14 related kyphoscoliotic type of Ehlers-Danlos syndrome; and 3) various (congenital) myopathies with prominent joint hypermobility including RYR1- and SEPN1-related myopathy. The aim of this review is to assist clinical geneticists and other clinicians with recognition of these disorders. © 2015 Wiley Periodicals, Inc.

  11. Assessment of Motor Units in Neuromuscular Disease.

    Science.gov (United States)

    Henderson, Robert D; McCombe, Pamela A

    2017-01-01

    The motor unit comprises the anterior horn cell, its axon, and the muscle fibers that it innervates. Although the true number of motor units is unknown, the number of motor units appears to vary greatly between different muscles and between different individuals. Assessment of the number and function of motor units is needed in diseases of the anterior horn cell and other motor nerve disorders. Amyotrophic lateral sclerosis is the most important disease of anterior horn cells. The need for an effective biomarker for assessing disease progression and for use in clinical trials in amyotrophic lateral sclerosis has stimulated the study of methods to measure the number of motor units. Since 1970 a number of different methods, including the incremental, F-wave, multipoint, and statistical methods, have been developed but none has achieved widespread applicability. Two methods (MUNIX and the multipoint incremental method) are in current use across multiple centres and are discussed in detail in this review, together with other recently published methods. Imaging with magnetic resonance and ultrasound is increasingly being applied to this area. Motor unit number estimates have also been applied to other neuromuscular diseases such as spinal muscular atrophy, compression neuropathies, and prior poliomyelitis. The need for an objective measure for the assessment of motor units remains tantalizingly close but unfulfilled in 2016.

  12. Neuromuscular dentistry: Occlusal diseases and posture.

    Science.gov (United States)

    Khan, Mohd Toseef; Verma, Sanjeev Kumar; Maheshwari, Sandhya; Zahid, Syed Naved; Chaudhary, Prabhat K

    2013-01-01

    Neuromuscular dentistry has been a controversial topic in the field of dentistry and still remains debatable. The issue of good occlusion and sound health has been repeatedly discussed. Sometimes we get complains of sensitive teeth and sometimes of tired facial muscles on getting up in the morning. Owing to the intimate relation of masticatory apparatus with the cranium and cervico-scapular muscular system, the disorders in any system, draw attention from concerned clinicians involved in management, to develop an integrated treatment protocol for the suffering patients. There may be patients reporting to the dental clinics after an occlusal restoration or extraction, having pain in or around the temporomandibular joint, headache or neck pain. Although their esthetic demands must not be undermined during the course of treatment plan, whenever dental treatment of any sort is planned, occlusion/bite should be given prime importance. Very few dentist are able to diagnose the occlusal disease and of those who diagnose many people resort to aggressive treatment modalities. This paper aims to report the signs of occlusal disease, and discuss their association with TMDs and posture.

  13. Neuromuscular Fatigue During 200 M Breaststroke

    Directory of Open Access Journals (Sweden)

    Ana Conceição

    2014-03-01

    Full Text Available The aims of this study were: i to analyze activation patterns of four upper limb muscles (duration of the active and non-active phase in each lap of 200m breaststroke, ii quantify neuromuscular fatigue, with kinematics and physiologic assessment. Surface electromyogram was collected for the biceps brachii, deltoid anterior, pectoralis major and triceps brachii of nine male swimmers performing a maximal 200m breaststroke trial. Swimming speed, SL, SR, SI decreased from the 1st to the 3rd lap. SR increased on the 4th lap (35.91 ± 2.99 stroke·min-1. Peak blood lactate was 13.02 ± 1.72 mmol·l-1 three minutes after the maximal trial. The EMG average rectified value (ARV increased at the end of the race for all selected muscles, but the deltoid anterior and pectoralis major in the 1st lap and for biceps brachii, deltoid anterior and triceps brachii in the 4th lap. The mean frequency of the power spectral density (MNF decreased at the 4th lap for all muscles. These findings suggest the occurrence of fatigue at the beginning of the 2nd lap in the 200m breaststroke trial, characterized by changes in kinematic parameters and selective changes in upper limb muscle action. There was a trend towards a non-linear fatigue state.

  14. Stem cell route to neuromuscular therapies.

    Science.gov (United States)

    Partridge, Terence A

    2003-02-01

    As applied to skeletal muscle, stem cell therapy is a reincarnation of myoblast transfer therapy that has resulted from recent advances in the cell biology of skeletal muscle. Both strategies envisage the reconstruction of damaged muscle from its precursors, but stem cell therapy employs precursors that are earlier in the developmental hierarchy. It is founded on demonstrations of apparently multipotential cells in a wide variety of tissues that can assume, among others, a myogenic phenotype. The main demonstrated advantage of such cells is that they are capable of colonizing many tissues, including skeletal and cardiac muscle via the blood vascular system, thereby providing the potential for a body-wide distribution of myogenic progenitors. From a practical viewpoint, the chief disadvantage is that such colonization has been many orders of magnitude too inefficient to be useful. Proposals for overcoming this drawback are the subject of much speculation but, so far, relatively little experimentation. This review attempts to give some perspective to the status of the stem cell as a therapeutic instrument for neuromuscular disease and to identify issues that need to be addressed for application of this technology.

  15. Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Troemel, Emily R; Félix, Marie-Anne; Whiteman, Noah K; Barrière, Antoine; Ausubel, Frederick M

    2008-12-09

    For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes.

  16. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens.

    Science.gov (United States)

    Powell, Jennifer R; Ausubel, Frederick M

    2008-01-01

    The nematode Caenorhabditis elegans is a simple model host for studying the relationship between the animal innate immune system and a variety of bacterial and fungal pathogens. Extensive genetic and molecular tools are available in C. elegans, facilitating an in-depth analysis of host defense factors and pathogen virulence factors. Many of these factors are conserved in insects and mammals, indicating the relevance of the nematode model to the vertebrate innate immune response. Here, we describe pathogen assays for a selection of the most commonly studied bacterial and fungal pathogens using the C. elegans model system.

  17. The RNAi Inheritance Machinery of Caenorhabditis elegans.

    Science.gov (United States)

    Spracklin, George; Fields, Brandon; Wan, Gang; Becker, Diveena; Wallig, Ashley; Shukla, Aditi; Kennedy, Scott

    2017-07-01

    Gene silencing mediated by dsRNA (RNAi) can persist for multiple generations in Caenorhabditis elegans (termed RNAi inheritance). Here we describe the results of a forward genetic screen in C. elegans that has identified six factors required for RNAi inheritance: GLH-1/VASA, PUP-1/CDE-1, MORC-1, SET-32, and two novel nematode-specific factors that we term here (heritable RNAi defective) HRDE-2 and HRDE-4 The new RNAi inheritance factors exhibit mortal germline (Mrt) phenotypes, which we show is likely caused by epigenetic deregulation in germ cells. We also show that HRDE-2 contributes to RNAi inheritance by facilitating the binding of small RNAs to the inheritance Argonaute (Ago) HRDE-1 Together, our results identify additional components of the RNAi inheritance machinery whose conservation provides insights into the molecular mechanism of RNAi inheritance, further our understanding of how the RNAi inheritance machinery promotes germline immortality, and show that HRDE-2 couples the inheritance Ago HRDE-1 with the small RNAs it needs to direct RNAi inheritance and germline immortality. Copyright © 2017 by the Genetics Society of America.

  18. Precision Electrophile Tagging in Caenorhabditis elegans.

    Science.gov (United States)

    Long, Marcus J C; Urul, Daniel A; Chawla, Shivansh; Lin, Hong-Yu; Zhao, Yi; Haegele, Joseph A; Wang, Yiran; Aye, Yimon

    2018-01-16

    Adduction of an electrophile to privileged sensor proteins and the resulting phenotypically dominant responses are increasingly appreciated as being essential for metazoan health. Functional similarities between the biological electrophiles and electrophilic pharmacophores commonly found in covalent drugs further fortify the translational relevance of these small-molecule signals. Genetically encodable or small-molecule-based fluorescent reporters and redox proteomics have revolutionized the observation and profiling of cellular redox states and electrophile-sensor proteins, respectively. However, precision mapping between specific redox-modified targets and specific responses has only recently begun to be addressed, and systems tractable to both genetic manipulation and on-target redox signaling in vivo remain largely limited. Here we engineer transgenic Caenorhabditis elegans expressing functional HaloTagged fusion proteins and use this system to develop a generalizable light-controlled approach to tagging a prototypical electrophile-sensor protein with native electrophiles in vivo. The method circumvents issues associated with low uptake/distribution and toxicity/promiscuity. Given the validated success of C. elegans in aging studies, this optimized platform offers a new lens with which to scrutinize how on-target electrophile signaling influences redox-dependent life span regulation.

  19. Alcohol disinhibition of behaviors in C. elegans.

    Directory of Open Access Journals (Sweden)

    Stephen M Topper

    Full Text Available Alcohol has a wide variety of effects on physiology and behavior. One of the most well-recognized behavioral effects is disinhibition, where behaviors that are normally suppressed are displayed following intoxication. A large body of evidence has shown that alcohol-induced disinhibition in humans affects attention, verbal, sexual, and locomotor behaviors. Similar behavioral disinhibition is also seen in many animal models of ethanol response, from invertebrates to mammals and primates. Here we describe several examples of disinhibition in the nematode C. elegans. The nematode displays distinct behavioral states associated with locomotion (crawling on land and swimming in water that are mediated by dopamine. On land, animals crawl and feed freely, but these behaviors are inhibited in water. We found that additional behaviors, including a variety of escape responses are also inhibited in water. Whereas alcohol non-specifically impaired locomotion, feeding, and escape responses in worms on land, alcohol specifically disinhibited these behaviors in worms immersed in water. Loss of dopamine signaling relieved disinhibition of feeding behavior, while loss of the D1-like dopamine receptor DOP-4 impaired the ethanol-induced disinhibition of crawling. The powerful genetics and simple nervous system of C. elegans may help uncover conserved molecular mechanisms that underlie alcohol-induced disinhibition of behaviors in higher animals.

  20. Approaches for Studying Autophagy in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Yanfang Chen

    2017-08-01

    Full Text Available Macroautophagy (hereafter referred to as autophagy is an intracellular degradative process, well conserved among eukaryotes. By engulfing cytoplasmic constituents into the autophagosome for degradation, this process is involved in the maintenance of cellular homeostasis. Autophagy induction triggers the formation of a cup-shaped double membrane structure, the phagophore, which progressively elongates and encloses materials to be removed. This double membrane vesicle, which is called an autophagosome, fuses with lysosome and forms the autolysosome. The inner membrane of the autophagosome, along with engulfed compounds, are degraded by lysosomal enzymes, which enables the recycling of carbohydrates, amino acids, nucleotides, and lipids. In response to various factors, autophagy can be induced for non-selective degradation of bulk cytoplasm. Autophagy is also able to selectively target cargoes and organelles such as mitochondria or peroxisome, functioning as a quality control system. The modification of autophagy flux is involved in developmental processes such as resistance to stress conditions, aging, cell death, and multiple pathologies. So, the use of animal models is essential for understanding these processes in the context of different cell types throughout the entire lifespan. For almost 15 years, the nematode Caenorhabditis elegans has emerged as a powerful model to analyze autophagy in physiological or pathological contexts. This review presents a rapid overview of physiological processes involving autophagy in Caenorhabditis elegans, the different assays used to monitor autophagy, their drawbacks, and specific tools for the analyses of selective autophagy.

  1. Instabilities in thin tunnel junctions

    International Nuclear Information System (INIS)

    Konkin, M.K.; Adler, J.G.

    1978-01-01

    Tunnel junctions prepared for inelastic electron tunneling spectroscopy are often plagued by instabilities in the 0-500-meV range. This paper relates the bias at which the instability occurs to the barrier thickness

  2. The Control of Junction Flows

    National Research Council Canada - National Science Library

    Smith, Charles

    1997-01-01

    An experimental study of the effects of spatially-limited (i.e. localized) surface suction on unsteady laminar and turbulent junction flows was performed using hydrogen bubble flow visualization and Particle Image Velocimetry (PIV...

  3. Lumbopelvic flexibility modulates neuromuscular responses during trunk flexion-extension.

    Science.gov (United States)

    Sánchez-Zuriaga, Daniel; Artacho-Pérez, Carla; Biviá-Roig, Gemma

    2016-06-01

    Various stimuli such as the flexibility of lumbopelvic structures influence the neuromuscular responses of the trunk musculature, leading to different load sharing strategies and reflex muscle responses from the afferents of lumbopelvic mechanoreceptors. This link between flexibility and neuromuscular response has been poorly studied. The aim of this study was to investigate the relationship between lumbopelvic flexibility and neuromuscular responses of the erector spinae, hamstring and abdominal muscles during trunk flexion-extension. Lumbopelvic movement patterns were measured in 29 healthy women, who were separated into two groups according to their flexibility during trunk flexion-extension. The electromyographic responses of erector spinae, rectus abdominis and biceps femoris were also recorded. Subjects with greater lumbar flexibility had significantly less pelvic flexibility and vice versa. Subjects with greater pelvic flexibility had a higher rate of relaxation and lower levels of hamstring activation during maximal trunk flexion. The neuromuscular response patterns of the hamstrings seem partially modulated by pelvic flexibility. Not so with the lumbar erector spinae and lumbar flexibility, despite the assertions of some previous studies. The results of this study improve our knowledge of the relationships between trunk joint flexibility and neuromuscular responses, a relationship which may play a role in low back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Josephson junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Wild, Georg Hermann

    2012-01-01

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO x /Pd 0.82 Ni 0.18 /Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to π-coupling is observed for a thickness d F =6 nm of the ferromagnetic Pd 0.82 Ni 0.18 interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd 0.82 Ni 0.18 has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  5. Josephson junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  6. Electronic thermometry in tunable tunnel junction

    Science.gov (United States)

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  7. Peltier cooling in molecular junctions

    Science.gov (United States)

    Cui, Longji; Miao, Ruijiao; Wang, Kun; Thompson, Dakotah; Zotti, Linda Angela; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2018-02-01

    The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion1-4. Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions5-9 has enabled studies of the relationship between thermoelectricity and molecular structure10,11. However, observations of Peltier cooling in molecular junctions—a critical step for establishing molecular-based refrigeration—have remained inaccessible. Here, we report direct experimental observations of Peltier cooling in molecular junctions. By integrating conducting-probe atomic force microscopy12,13 with custom-fabricated picowatt-resolution calorimetric microdevices, we created an experimental platform that enables the unified characterization of electrical, thermoelectric and energy dissipation characteristics of molecular junctions. Using this platform, we studied gold junctions with prototypical molecules (Au-biphenyl-4,4'-dithiol-Au, Au-terphenyl-4,4''-dithiol-Au and Au-4,4'-bipyridine-Au) and revealed the relationship between heating or cooling and charge transmission characteristics. Our experimental conclusions are supported by self-energy-corrected density functional theory calculations. We expect these advances to stimulate studies of both thermal and thermoelectric transport in molecular junctions where the possibility of extraordinarily efficient energy conversion has been theoretically predicted2-4,14.

  8. Pharmacokinetic studies of neuromuscular blocking agents: Good Clinical Research Practice (GCRP)

    DEFF Research Database (Denmark)

    Viby-Mogensen, J.; Østergaard, D.; Donati, F.

    2000-01-01

    Good Clinical Research Practice (GCRP), neuromuscular blocking agents, pharmacokinetics, pharmacokinetic/pharmacodynamic modeling, population pharmacokinetics, statistics, study design......Good Clinical Research Practice (GCRP), neuromuscular blocking agents, pharmacokinetics, pharmacokinetic/pharmacodynamic modeling, population pharmacokinetics, statistics, study design...

  9. Reversal of profound rocuronium neuromuscular blockade by sugammadex in anesthetized rhesus monkeys.

    NARCIS (Netherlands)

    Boer, H.D. de; Egmond, J. van; Pol, F. van de; Bom, A.; Booij, L.H.D.J.

    2006-01-01

    BACKGROUND: Reversal of neuromuscular blockade can be accomplished by chemical encapsulation of rocuronium by sugammadex, a synthetic gamma-cyclodextrin derivative. The current study determined the feasibility of reversal of rocuronium-induced profound neuromuscular blockade with sugammadex in the

  10. Clinical features of neuromuscular disorders in patients with N-type voltage-gated calcium channel antibodies

    Directory of Open Access Journals (Sweden)

    Andreas Totzeck

    2016-09-01

    Full Text Available Neuromuscular junction disorders affect the pre- or postsynaptic nerve to muscle transmission due to autoimmune antibodies. Members of the group like myasthenia gravis and Lambert-Eaton syndrome have pathophysiologically distinct characteristics. However, in practice, distinction may be difficult. We present a series of three patients with a myasthenic syndrome, dropped-head syndrome, bulbar and respiratory muscle weakness and positive testing for anti-N-type voltage-gated calcium channel antibodies. In two cases anti-acetylcholin receptor antibodies were elevated, anti-P/Q-type voltage-gated calcium channel antibodies were negative. All patients initially responded to pyridostigmine with a non-response in the course of the disease. While one patient recovered well after treatment with intravenous immunoglobulins, 3,4-diaminopyridine, steroids and later on immunosuppression with mycophenolate mofetil, a second died after restriction of treatment due to unfavorable cancer diagnosis, the third patient declined treatment. Although new antibodies causing neuromuscular disorders were discovered, clinical distinction has not yet been made. Our patients showed features of pre- and postsynaptic myasthenic syndrome as well as severe dropped-head syndrome and bulbar and axial muscle weakness, but only anti-N-type voltage-gated calcium channel antibodies were positive. When administered, one patient benefited from 3,4-diaminopyridine. We suggest that this overlap-syndrome should be considered especially in patients with assumed seronegative myasthenia gravis and lack of improvement under standard therapy.

  11. Caenorhabditis elegans reveals novel Pseudomonas aeruginosa virulence mechanism

    NARCIS (Netherlands)

    Utari, Putri Dwi; Quax, Wim J.

    The susceptibility of Caenorhabditis elegans to different virulent phenotypes of Pseudomonas aeruginosa makes the worms an excellent model for studying host-pathogen interactions. Including the recently described liquid killing, five different killing assays are now available offering superb

  12. C. elegans as a model in developmental neurotoxicology.

    Science.gov (United States)

    Ruszkiewicz, Joanna A; Pinkas, Adi; Miah, Mahfuzur R; Weitz, Rebecca L; Lawes, Michael J A; Akinyemi, Ayodele J; Ijomone, Omamuyovwi M; Aschner, Michael

    2018-03-14

    Due to many advantages Caenorhabditis elegans (C. elegans) has become a preferred model of choice in many fields, including neurodevelopmental toxicity studies. This review discusses the benefits of using C. elegans as an alternative to mammalian systems and gives examples of the uses of the nematode in evaluating the effects of major known neurodevelopmental toxins, including manganese, mercury, lead, fluoride, arsenic and organophosphorus pesticides. Reviewed data indicates numerous similarities with mammals in response to these toxins. Thus, C. elegans studies have the potential to predict possible effects of developmental neurotoxicants in higher animals, and may be used to identify new molecular pathways behind neurodevelopmental disruptions, as well as new toxicants. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Osmotic potential of Zinnia elegans plant material affects the yield ...

    African Journals Online (AJOL)

    Jane

    2010-12-20

    Dec 20, 2010 ... The Zinnia elegans cell suspension culture is excellent for ... development and therefore dimensions of TEs in an in vitro .... Electrical conductivity and light intensity effects on ..... cell wall formation in the woody dicot stem.

  14. Pseudomonas aeruginosa PA14 pathogenesis in Caenorhabditis elegans.

    Science.gov (United States)

    Kirienko, Natalia V; Cezairliyan, Brent O; Ausubel, Frederick M; Powell, Jennifer R

    2014-01-01

    The nematode Caenorhabditis elegans is a simple model host for studying the interaction between bacterial pathogens such as Pseudomonas aeruginosa and the metazoan innate immune system. Powerful genetic and molecular tools in both C. elegans and P. aeruginosa facilitate the identification and analysis of bacterial virulence factors as well as host defense factors. Here we describe three different assays that use the C. elegans-P. aeruginosa strain PA14 host-pathogen system. Fast Killing is a toxin-mediated death that depends on a diffusible toxin produced by PA14 but not on live bacteria. Slow Killing is due to an active infection in which bacteria colonize the C. elegans intestinal lumen. Liquid Killing is designed for high-throughput screening of chemical libraries for anti-infective compounds. Each assay has unique features and, interestingly, the PA14 virulence factors involved in killing are different in each assay.

  15. Quantitative proteomics by amino acid labeling in C. elegans

    DEFF Research Database (Denmark)

    Fredens, Julius; Engholm-Keller, Kasper; Giessing, Anders

    2011-01-01

    We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi-med......-mediated knockdown of the nuclear hormone receptor 49 in C. elegans. The combined use of quantitative proteomics and selective gene knockdown is a powerful tool for C. elegans biology.......We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi...

  16. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade

    DEFF Research Database (Denmark)

    Brueckmann, B; Sasaki, N; Grobara, P

    2015-01-01

    BACKGROUND: This study aimed to investigate whether reversal of rocuronium-induced neuromuscular blockade with sugammadex reduced the incidence of residual blockade and facilitated operating room discharge readiness. METHODS: Adult patients undergoing abdominal surgery received rocuronium, followed...... by randomized allocation to sugammadex (2 or 4 mg kg(-1)) or usual care (neostigmine/glycopyrrolate, dosing per usual care practice) for reversal of neuromuscular blockade. Timing of reversal agent administration was based on the providers' clinical judgement. Primary endpoint was the presence of residual...... measured at PACU entry. Zero out of 74 sugammadex patients and 33 out of 76 (43.4%) usual care patients had TOF-Watch® SX-assessed residual neuromuscular blockade at PACU admission (odds ratio 0.0, 95% CI [0-0.06], P

  17. Total hip arthroplasty in patients with neuromuscular imbalance.

    Science.gov (United States)

    Konan, S; Duncan, C P

    2018-01-01

    Patients with neuromuscular imbalance who require total hip arthroplasty (THA) present particular technical problems due to altered anatomy, abnormal bone stock, muscular imbalance and problems of rehabilitation. In this systematic review, we studied articles dealing with THA in patients with neuromuscular imbalance, published before April 2017. We recorded the demographics of the patients and the type of neuromuscular pathology, the indication for surgery, surgical approach, concomitant soft-tissue releases, the type of implant and bearing, pain and functional outcome as well as complications and survival. Recent advances in THA technology allow for successful outcomes in these patients. Our review suggests excellent benefits for pain relief and good functional outcome might be expected with a modest risk of complication. Cite this article: Bone Joint J 2018;100-B(1 Supple A):17-21. ©2018 The British Editorial Society of Bone & Joint Surgery.

  18. Surgical Space Conditions During Low-Pressure Laparoscopic Cholecystectomy with Deep Versus Moderate Neuromuscular Blockade

    DEFF Research Database (Denmark)

    Staehr-Rye, Anne K; Rasmussen, Lars S.; Rosenberg, Jacob

    2014-01-01

    : In this assessor-blinded study, 48 patients undergoing elective laparoscopic cholecystectomy were administered rocuronium for neuromuscular blockade and randomized to either deep neuromuscular blockade (rocuronium bolus plus infusion maintaining a posttetanic count 0-1) or moderate neuromuscular blockade...... (rocuronium repeat bolus only for inadequate surgical conditions with spontaneous recovery of neuromuscular function). Patients received anesthesia with propofol, remifentanil, and rocuronium. The primary outcome was the proportion of procedures with optimal surgical space conditions (assessed by the surgeon...

  19. Molecular control of memory in nematode Caenorhabditis elegans

    OpenAIRE

    Ye, Hua-Yue; Ye, Bo-Ping; Wang, Da-Yong

    2008-01-01

    Model invertebrate organism Caenorhabditis elegans has become an ideal model to unravel the complex processes of memory. C. elegans has three simple forms of memory: memory for thermosensation, memory for chemosensation, and memory for mechanosensation. In the form of memory for mechanosensation, short-term memory, intermediate-term memory, and long-term memory have been extensively studied. The short-term memory and intermediate-term memory may occur in the presynaptic sensory neurons, where...

  20. Anti-GM2 gangliosides IgM paraprotein induces neuromuscular block without neuromuscular damage.

    Science.gov (United States)

    Santafé, Manel M; Sabaté, M Mar; Garcia, Neus; Ortiz, Nico; Lanuza, M Angel; Tomàs, Josep

    2008-11-15

    We analyzed the effect on the mouse neuromuscular synapses of a human monoclonal IgM, which binds specifically to gangliosides with the common epitope [GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-]. We focused on the role of the complement. Evoked neurotransmission was partially blocked by IgM both acutely (1 h) and chronically (10 days). Transmission electron microscopy shows important nerve terminal growth and retraction remodelling though axonal injury can be ruled out. Synapses did not show mouse C5b-9 immunofluorescence and were only immunolabelled when human complement was added. Therefore, the IgM-induced synaptic changes occur without complement-mediated membrane attack.

  1. In Vivo Inhibition of Lipid Accumulation in Caenorhabditis elegans

    Science.gov (United States)

    Sulistiyani; Purwakusumah, E. P.; Andrianto, D.

    2017-03-01

    This is a preliminary research report on the use of Caenorhabditis elegans as a model to establish anti-obesity screening assay of the natural plant resources. Nematode C. elegans has been used as experimental animal model for understanding lipid accumulation. The objective of this research was to investigate the effect of selected plant extracts on lipid accumulation in C. elegans. Currently no report could be found regarding lipid accumulation in C.elegans treated with ethanolic leaf extracts of jabon merah (Anthocephalus macrophyllus), jati belanda (Guazuma ulmifolia), and Mindi (Melia Azedarach) plants. Lipid accumulation was determined qualitatively using lipid staining method and quantitatively by colorimetry using sulpho-phospho-vanillin reagent. Data showed that lipid accumulation was inhibited up to 72% by extract of M. azedarach, about 35% by both of A. macrophyllus and G. ulmifolia extracts, and up to 25% by orlistat (a synthetic slimming drug). Ethanolic extract of A. macrophyllus, G. ulmifolia, and M. azedarach leaves were shown to inhibit lipid accumulation in C. elegans and M. azedarach leaves extracts was the most effective inhibitor. C.elegans were shown to be an effective model for in vivo lipid accumulation mechanism and potential to be used as a rapid screening assay for bioactive compounds with lipid accumulation inhibitory activity.

  2. Exercise Therapy in Spinobulbar Muscular Atrophy and Other Neuromuscular Disorders

    DEFF Research Database (Denmark)

    Dahlqvist, Julia Rebecka; Vissing, John

    2016-01-01

    There is no curative treatment for most neuromuscular disorders. Exercise, as a treatment for these diseases, has therefore received growing attention. When executed properly, exercise can maintain and improve health and reduce the risk of cardiovascular disease, obesity, and diabetes. In persons...... in patients with neuromuscular diseases associated with weakness and wasting. We review studies that have investigated different types of exercise in both myopathies and motor neuron diseases, with particular emphasis on training of persons affected by spinobulbar muscular atrophy (SBMA). Finally, we provide...

  3. New techniques in the tissue diagnosis of gastrointestinal neuromuscular diseases

    Institute of Scientific and Technical Information of China (English)

    Charles H Knowles; Joanne E Martin

    2009-01-01

    Gastrointestinal neuromuscular diseases are a clinically heterogeneous group of disorders of children and adults in which symptoms are presumed or proven to arise as a result of neuromuscular (including interstitial cell of Cajal) dysfunction. Common to most of these diseases are symptoms of impaired motor activity which manifest as slowed or obstructed transit with or without evidence of transient or persistent radiological visceral dilatation. A variety of histopathological techniques and allied investigations are being increasingly applied to tissue biopsies from such patients. This review outlines some of the more recent advances in this field, particularly in the most contentious area of small bowel disease manifesting as intestinal pseudo-obstruction.

  4. Neuromuscular exercise as treatment of degenerative knee disease

    DEFF Research Database (Denmark)

    Ageberg, Eva; Roos, Ewa M.

    2015-01-01

    Exercise is recommended as first-line treatment of degenerative knee disease. Our hypothesis is that neuromuscular exercise is feasible and at least as effective as tradionally used strength or aerobic training, but aims to more closely target the sensorimotor deficiencies and functional...... instability associated with the degenerative knee disease than traditionally used training methods.SUMMARY FOR TABLE OF CONTENTS PAGECurrent data suggests that the effect from neuromuscular exercise on pain and function is comparable to the effects seen from other forms of exercise....

  5. Neuromuscular Activity and Knee Kinematics in Adolescents with Patellofemoral Pain

    DEFF Research Database (Denmark)

    Rathleff, Michael Skovdal; Samani, Afshin; Olesen, Jens L

    2013-01-01

    This study aimed to investigate the neuromuscular control of the knee during stair descent among female adolescents with patellofemoral pain (PFP) and to report its association with self-reported clinical status assessed by the Knee Injury and Osteoarthritis Outcome Score (KOOS).......This study aimed to investigate the neuromuscular control of the knee during stair descent among female adolescents with patellofemoral pain (PFP) and to report its association with self-reported clinical status assessed by the Knee Injury and Osteoarthritis Outcome Score (KOOS)....

  6. Big Data in Caenorhabditis elegans: quo vadis?

    Science.gov (United States)

    Hutter, Harald; Moerman, Donald

    2015-11-05

    A clear definition of what constitutes "Big Data" is difficult to identify, but we find it most useful to define Big Data as a data collection that is complete. By this criterion, researchers on Caenorhabditis elegans have a long history of collecting Big Data, since the organism was selected with the idea of obtaining a complete biological description and understanding of development. The complete wiring diagram of the nervous system, the complete cell lineage, and the complete genome sequence provide a framework to phrase and test hypotheses. Given this history, it might be surprising that the number of "complete" data sets for this organism is actually rather small--not because of lack of effort, but because most types of biological experiments are not currently amenable to complete large-scale data collection. Many are also not inherently limited, so that it becomes difficult to even define completeness. At present, we only have partial data on mutated genes and their phenotypes, gene expression, and protein-protein interaction--important data for many biological questions. Big Data can point toward unexpected correlations, and these unexpected correlations can lead to novel investigations; however, Big Data cannot establish causation. As a result, there is much excitement about Big Data, but there is also a discussion on just what Big Data contributes to solving a biological problem. Because of its relative simplicity, C. elegans is an ideal test bed to explore this issue and at the same time determine what is necessary to build a multicellular organism from a single cell. © 2015 Hutter and Moerman. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Blocking p75 (NTR) receptors alters polyinnervationz of neuromuscular synapses during development.

    Science.gov (United States)

    Garcia, Neus; Tomàs, Marta; Santafe, Manel M; Lanuza, Maria A; Besalduch, Nuria; Tomàs, Josep

    2011-09-01

    High-resolution immunohistochemistry shows that the receptor protein p75(NTR) is present in the nerve terminal, muscle cell, and glial Schwann cell at the neuromuscular junction (NMJ) of postnatal rats (P4-P6) during the synapse elimination period. Blocking the receptor with the antibody anti-p75-192-IgG (1-5 μg/ml, 1 hr) results in reduced endplate potentials (EPPs) in mono- and polyinnervated synapses ex vivo, but the mean number of functional inputs per NMJ does not change for as long as 3 hr. Incubation with exogenous brain-derived neurotrophic factor (BDNF) for 1 hr (50 nM) resulted in a significant increase in the size of the EPPs in all nerve terminals, and preincubation with anti-p75-192-IgG prevented this potentiation. Long exposure (24 hr) in vivo of the NMJs to the antibody anti-p75-192-IgG (1-2 μg/ml) results in a delay of postnatal synapse elimination and even some regrowth of previously withdrawn axons, but also in some acceleration of the morphologic maturation of the postsynaptic nicotinic acetylcholine receptor (nAChR) clusters. The results indicate that p75(NTR) is involved in both ACh release and axonal retraction during postnatal axonal competition and synapse elimination. Copyright © 2011 Wiley-Liss, Inc.

  8. The effect of ventilatory muscle training on respiratory function and capacity in ambulatory and bed-ridden patients with neuromuscular disease.

    Science.gov (United States)

    Gross, D; Meiner, Z

    1993-08-01

    Most patients with neuromuscular disease develop muscle weakness, including the ventilatory muscles leading to respiratory difficulty and, at times, respiratory insufficiency. We studied the effect of ventilatory muscle training on the ventilatory function and capacity of patients with various types of neuromuscular disease. The ambulatory patients were divided into three major groups. Group I (n = 6) patients with motor neuron disease (MND), such as amyotrophic latera sclerosis; Group II (n = 11) patients with myoneural junction disease (MNJ), such as myasthenia gravis and: Group III (n = 7) patients with muscle diseases such as progressive muscular disease. Patients were evaluated for their neuromuscular diagnosis and status of the disease. A complete physical examination and the various neuromuscular tests were performed. A complete respiratory evaluation was applied: pulmonary function tests (PFT), maximum inspiratory pressure (MIP). Patients then started ventilatory muscle training by resistive breathing, as a prophylactic treatment, for 10 min, three times daily, with a resistance which would induce fatigue. All tests were repeated every six weeks, and the results were as follow: forced vital capacity (FVC) changed from 38.8 +/- 12.3 to 53.2 +/- 9.6% (NS) of predicted value in group I, from 49.8 +/- 8.7 to 66.1 +/- 7.5% (p < 0.002) in group II, and from 47.0 +/- 7.5 to 53.3 +/- 7.6% (p < 0.04) in group III. Forced expiratory volume in one second (FEV1) was 34.8 +/- 11.0, 46.3 +/- 5, and 45.1 +/- 9% for the three groups, respectively, and did not change with training.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Transport properties of molecular junctions

    CERN Document Server

    Zimbovskaya, Natalya A

    2013-01-01

    A comprehensive overview of the physical mechanisms that control electron transport and the characteristics of metal-molecule-metal (MMM) junctions is presented. As far as possible, methods and formalisms presented elsewhere to analyze electron transport through molecules are avoided. This title introduces basic concepts—a description of the electron transport through molecular junctions—and briefly describes relevant experimental methods. Theoretical methods commonly used to analyze the electron transport through molecules are presented. Various effects that manifest in the electron transport through MMMs, as well as the basics of density-functional theory and its applications to electronic structure calculations in molecules are presented. Nanoelectronic applications of molecular junctions and similar systems are discussed as well. Molecular electronics is a diverse and rapidly growing field. Transport Properties of Molecular Junctions presents an up-to-date survey of the field suitable for researchers ...

  10. NbN tunnel junctions

    International Nuclear Information System (INIS)

    Villegier, J.C.; Vieux-Rochaz, L.; Goniche, M.; Renard, P.; Vabre, M.

    1984-09-01

    All-niobium nitride Josephon junctions have been prepared successfully using a new processing called SNOP: Selective Niobium (nitride) Overlap Process. Such a process involves the ''trilayer'' deposition on the whole wafer before selective patterning of the electrodes by optically controlled dry reactive ion etching. Only two photomask levels are need to define an ''overlap'' or a ''cross-type'' junction with a good accuracy. The properties of the niobium nitride films deposited by DC-magnetron sputtering and the surface oxide growth are analysed. The most critical point to obtain high quality and high gap value junctions resides in the early stage of the NbN counterelectrode growth. Some possibilities to overcome such a handicap exist even if the fabrication needs substrate temperatures below 250 0 C

  11. Diagnostic value of CT scanning in neuromuscular diseases

    International Nuclear Information System (INIS)

    Bulcke, J.A.L.; Leuven Univ.; Herpels, V.

    1983-01-01

    The diagnosis of myopathies has become easier since the CT technique is available. In this article the possibilities of CT for diagnostic procedures of neuromuscular diseases are pointed out. Density measurements increase differentiation of atrophy or hypertrophy of muscles as well as other pathological changes. (orig.)

  12. Volume of the effect compartment in simulations of neuromuscular block

    NARCIS (Netherlands)

    Nigrovic, Vladimir; Proost, Johannes H.; Amann, Anton; Bhatt, Shashi B.

    2005-01-01

    Background: The study examines the role of the volume of the effect compartment in simulations of neuromuscular block (NMB) produced by nondepolarizing muscle relaxants. Methods: The molar amount of the postsynaptic receptors at the motor end plates in muscle was assumed constant; the apparent

  13. Neuromuscular stimulation after stroke: from technology to clinical deployment

    NARCIS (Netherlands)

    IJzerman, Maarten Joost; Renzenbrink, Gerbert J.; Geurts, Alexander C.H.

    2009-01-01

    Since the early 1960s, electrical or neuromuscular electrical stimulation (NMES) has been used to support the rehabilitation of stroke patients. One of the earliest applications of NMES included the use of external muscle stimulation to correct drop-foot after stroke. During the last few decades

  14. Elbow joint position sense after neuromuscular training with handheld vibration.

    Science.gov (United States)

    Tripp, Brady L; Faust, Donald; Jacobs, Patrick

    2009-01-01

    Clinicians use neuromuscular control exercises to enhance joint position sense (JPS); however, because standardizing such exercises is difficult, validations of their use are limited. To evaluate the acute effects of a neuromuscular training exercise with a handheld vibrating dumbbell on elbow JPS acuity. Crossover study. University athletic training research laboratory. Thirty-one healthy, college-aged volunteers (16 men, 15 women, age = 23 + or - 3 years, height = 173 + or - 8 cm, mass = 76 + or - 14 kg). We measured and trained elbow JPS using an electromagnetic tracking device that provided auditory and visual biofeedback. For JPS testing, participants held a dumbbell and actively identified the target elbow flexion angle (90 degrees ) using the software-generated biofeedback, followed by 3 repositioning trials without feedback. Each neuromuscular training protocol included 3 exercises during which participants held a 2.55-kg dumbbell vibrating at 15, 5, or 0 Hz and used software-generated biofeedback to locate and maintain the target elbow flexion angle for 15 seconds. We calculated absolute (accuracy) and variable (variability) errors using the differences between target and reproduced angles. Training protocols using 15-Hz vibration enhanced accuracy and decreased variability of elbow JPS (P or = .200). Our results suggest these neuromuscular control exercises, which included low-magnitude, low-frequency handheld vibration, may enhance elbow JPS. Future researchers should examine vibration of various durations and frequencies, should include injured participants and functional multijoint and multiplanar measures, and should examine long-term effects of training protocols on JPS and injury.

  15. Imaging of respiratory muscles in neuromuscular disease: A review.

    Science.gov (United States)

    Harlaar, L; Ciet, P; van der Ploeg, A T; Brusse, E; van der Beek, N A M E; Wielopolski, P A; de Bruijne, M; Tiddens, H A W M; van Doorn, P A

    2018-03-01

    Respiratory muscle weakness frequently occurs in patients with neuromuscular disease. Measuring respiratory function with standard pulmonary function tests provides information about the contribution of all respiratory muscles, the lungs and airways. Imaging potentially enables the study of different respiratory muscles, including the diaphragm, separately. In this review, we provide an overview of imaging techniques used to study respiratory muscles in neuromuscular disease. We identified 26 studies which included a total of 573 patients with neuromuscular disease. Imaging of respiratory muscles was divided into static and dynamic techniques. Static techniques comprise chest radiography, B-mode (brightness mode) ultrasound, CT and MRI, and are used to assess the position and thickness of the diaphragm and the other respiratory muscles. Dynamic techniques include fluoroscopy, M-mode (motion mode) ultrasound and MRI, used to assess diaphragm motion in one or more directions. We discuss how these imaging techniques relate with spirometric values and whether these can be used to study the contribution of the different respiratory muscles in patients with neuromuscular disease. Copyright © 2017. Published by Elsevier B.V.

  16. Neuromuscular blockade for improvement of surgical conditions during laparotomy

    DEFF Research Database (Denmark)

    Madsen, Matias Vested; Scheppan, Susanne; Kissmeyer, Peter

    2015-01-01

    neuromuscular blockade (NMB), defined as a post-tetanic-count (PTC) of 0-1, paralyses the abdominal wall muscles and the diaphragm. We hypothesised that deep NMB (PTC 0-1) would improve surgical conditions during upper laparotomy as compared to standard NMB with bolus administration. METHODS...

  17. Neuromuscular Bandage: Neurophysiological Effects and the Role of Fascias

    Directory of Open Access Journals (Sweden)

    Ximena María Villota Chicaíza

    2014-05-01

    Full Text Available During the last years, neuromuscular bandage, a therapeutic application created in 1979 by doctor Kenzo Kase has been introduced in the management of many disorders of the musculo-skeletal system and even more so in the treatment of neurological disorders; This therapeutic tool which consists of a self adhesive elastic bandage allows recovery of the injured party without diminishing its bodily function. According to the existing literature on the physiological effects of this therapeutic application in the body, you could say that there is consensus. However in this article the author wants to highlight the significant although little highlighted role played by the fas¬cias on the therapeutic effects of neuromuscular bandage, analyzing from a reflective perspective the analgesic, neuromechanical and circulatory effects, as fundamental effects of neuromuscular bandage and fascias in the same function, trying to bring a global understanding on the way they relate to all connective tissues, aspects that are of great importance for the proper evaluation of alterations and prescription of neuromuscular bandage

  18. Alterations in neuromuscular function in girls with generalized joint hypermobility

    DEFF Research Database (Denmark)

    Jensen, Bente Rona; Melcher, Jesper Sandfeld; Melcher, Pia Grethe Sandfeld

    2016-01-01

    BACKGROUND: Generalized Joint Hypermobility (GJH) is associated with increased risk of musculoskeletal joint pain. We investigated neuromuscular performance and muscle activation strategy. METHODS: Girls with GJH and non-GJH (NGJH) performed isometric knee flexions (90°,110°,130°), and extensions...

  19. Influence of intense neuromuscular blockade on surgical conditions during laparotomy

    DEFF Research Database (Denmark)

    Madsen, Matias Vested; Donatsky, Anders Meller; Jensen, Bente Rona

    2015-01-01

    endotracheally intubated, mechanically ventilated, anesthetized with propofol and fentanyl, and randomized into two groups in a cross-over assessor-blinded design. Neuromuscular block was established with rocuronium. Artificial laparotomy for ileus was performed. We investigated the influence of intense...

  20. Neuromuscular function during stair descent in meniscectomized patients and controls

    DEFF Research Database (Denmark)

    Thorlund, Jonas Bloch; Roos, Ewa M; Aagaard, Per

    2011-01-01

    The aim of this study was to identify differences in knee range of motion (ROM), movement speed, ground reaction forces (GRF) profile, neuromuscular activity, and muscle coactivation during the transition between stair descent and level walking in meniscectomized patients at high risk of knee...

  1. Comparison of the Effect of Neuromuscular Electrical Stimulation ...

    African Journals Online (AJOL)

    Children with cerebral palsy (CP) often demonstrate poor hand function due to spasticity. Thus spasticity in the wrist and finger flexors poses a great deal of functional limitations. This study was therefore designed to compare the effectiveness of Cryotherapy and Neuromuscular Electrical Stimulation (NMES) on spasticity ...

  2. Biochemistry of Neuromuscular Diseases: A Course for Undergraduate Students

    Science.gov (United States)

    Ohlendieck, Kay

    2002-01-01

    This article outlines an undergraduate course focusing on supramolecular membrane protein complexes involved in the molecular pathogenesis of neuromuscular disorders. The emphasis of this course is to introduce students to the key elements involved in the ion regulation and membrane stabilization during muscle contraction and the role of these…

  3. Gravitation at the Josephson Junction

    Directory of Open Access Journals (Sweden)

    Victor Atanasov

    2018-01-01

    Full Text Available A geometric potential from the kinetic term of a constrained to a curved hyperplane of space-time quantum superconducting condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor is demonstrated. At a Josephson junction the energy conservation relation implies the possibility of transforming electric energy into geometric field energy, that is, curvature of space-time. Experimental procedures to verify that the Josephson junction can act as a voltage-to-curvature converter are discussed.

  4. Quantitative proteomics by amino acid labeling identifies novel NHR-49 regulated proteins in C. elegans

    DEFF Research Database (Denmark)

    Fredens, Julius; Færgeman, Nils J.

    2012-01-01

    in the nematode Caenorhabditis elegans. We have recently shown that C. elegans can be completely labeled with heavy-labeled lysine by feeding worms on prelabeled lysine auxotroph Escherichia coli for just one generation. We applied this methodology to examine the organismal response to functional loss or RNAi...... gene knockdown by RNAi provides a powerful tool with broad implications for C. elegans biology....

  5. Interaction of antibiotics on pipecuronium-induced neuromuscular blockade.

    Science.gov (United States)

    de Gouw, N E; Crul, J F; Vandermeersch, E; Mulier, J P; van Egmond, J; Van Aken, H

    1993-01-01

    To measure the interaction of two antibiotics (clindamycin and colistin) on neuromuscular blockade induced by pipecuronium bromide (a new long-acting, steroidal, nondepolarizing neuromuscular blocking drug). Prospective, randomized, placebo-controlled study. Inpatient gynecologic and gastroenterologic service at a university medical center. Three groups of 20 ASA physical status I and II patients with normal kidney and liver function, taking no medication, and undergoing elective surgery under general anesthesia. Anesthesia was induced with propofol and alfentanil intravenously (IV) and maintained with a propofol infusion and 60% nitrous oxide in oxygen. Pipecuronium bromide 50 micrograms/kg was administered after reaching a stable baseline of single-twitch response. At 25% recovery of pipecuronium-induced neuromuscular blockade, patients received one of two antibiotics, clindamycin 300 mg or colistin 1 million IU, or a placebo. The recovery index (RI, defined as time from 25% to 75% recovery of neuromuscular blockade) was measured using the single-twitch response of the adductor pollicis muscle with supramaximal stimulation of the ulnar nerve at the wrist. RI after administration of an antibiotic (given at 25% recovery) was measured and compared with RI of the control group using Student's unpaired t-test. Statistical analyses of the results showed a significant prolongation of the recovery time (from 25% to 75% recovery) of 40 minutes for colistin. When this type of antibiotic is used during anesthesia with pipercuronium as a muscle relaxant, one must be aware of a significant prolongation of an already long-acting neuromuscular blockade and (although not observed in this study) possible problems in antagonism.

  6. Neuromuscular Activity of Micrurus laticollaris (Squamata: Elapidae Venom in Vitro

    Directory of Open Access Journals (Sweden)

    Alejandro Carbajal-Saucedo

    2014-01-01

    Full Text Available In this work, we have examined the neuromuscular activity of Micrurus laticollaris (Mexican coral snake venom (MLV in vertebrate isolated nerve-muscle preparations. In chick biventer cervicis preparations, the MLV induced an irreversible concentration- and time-dependent (1–30 µg/mL neuromuscular blockade, with 50% blockade occurring between 8 and 30 min. Muscle contractures evoked by exogenous acetylcholine were completely abolished by MLV, whereas those of KCl were also significantly altered (86% ± 11%, 53% ± 11%, 89% ± 5% and 89% ± 7% for one, three, 10 and 30 µg of venom/mL, respectively; n = 4; p < 0.05. In mouse phrenic nerve-diaphragm preparations, MLV (1–10 µg/mL promoted a slight increase in the amplitude of twitch-tension (3 µg/mL, followed by neuromuscular blockade (n = 4; the highest concentration caused complete inhibition of the twitches (time for 50% blockade = 26 ± 3 min, without exhibiting a previous neuromuscular facilitation. The venom (3 µg/mL induced a biphasic modulation in the frequency of miniature end-plate potentials (MEPPs/min, causing a significant increase after 15 min, followed by a decrease after 60 min (from 17 ± 1.4 (basal to 28 ± 2.5 (t15 and 12 ± 2 (t60. The membrane resting potential of mouse diaphragm preparations pre-exposed or not to d-tubocurarine (5 µg/mL was also significantly less negative with MLV (10 µg/mL. Together, these results indicate that M. laticollaris venom induces neuromuscular blockade by a combination of pre- and post-synaptic activities.

  7. Stunted PFC activity during neuromuscular control under stress with obesity.

    Science.gov (United States)

    Mehta, Ranjana K

    2016-02-01

    Obesity is an established risk factor for impaired cognition, which is primarily regulated by the prefrontal cortex (PFC). However, very little is known about the neural pathways that underlie obesity-related declines in neuromuscular control, particularly under stress. The purpose of this study was to determine the role of the PFC on neuromuscular control during handgrip exertions under stress with obesity. Twenty non-obese and obese young adults performed submaximal handgrip exertions in the absence and presence of a concurrent stressful task. Primary dependent measures included oxygenated hemoglobin (HbO2: a measure of PFC activity) and force fluctuations (an indicator of neuromuscular control). Higher HbO2 levels in the PFC were observed in the non-obese compared to the obese group (P = 0.009). In addition, higher HbO2 levels were observed in the stress compared to the control condition in the non-obese group; however, this trend was reversed in the obese group (P = 0.043). In general, force fluctuations increased by 26% in the stress when compared to the control condition (P = 0.001) and obesity was associated with 39% greater force fluctuation (P = 0.024). Finally, while not significant, obesity-related decrements in force fluctuations were magnified under stress (P = 0.063). The current study provides the first evidence that neuromuscular decrements with obesity were associated with impaired PFC activity and this relationship was augmented in stress conditions. These findings are important because they provide new information on obesity-specific changes in brain function associated with neuromuscular control since the knowledge previously focused largely on obesity-specific changes in peripheral muscle capacity.

  8. Electronic noise of superconducting tunnel junction detectors

    International Nuclear Information System (INIS)

    Jochum, J.; Kraus, H.; Gutsche, M.; Kemmather, B.; Feilitzsch, F. v.; Moessbauer, R.L.

    1994-01-01

    The optimal signal to noise ratio for detectors based on superconducting tunnel junctions is calculated and compared for the cases of a detector consisting of one single tunnel junction, as well as of series and of parallel connections of such tunnel junctions. The influence of 1 / f noise and its dependence on the dynamical resistance of tunnel junctions is discussed quantitatively. A single tunnel junction yields the minimum equivalent noise charge. Such a tunnel junction exhibits the best signal to noise ratio if the signal charge is independent of detector size. In case, signal charge increases with detector size, a parallel or a series connection of tunnel junctions would provide the optimum signal to noise ratio. The equivalent noise charge and the respective signal to noise ratio are deduced as functions of tunnel junction parameters such as tunneling time, quasiparticle lifetime, etc. (orig.)

  9. Current noise in tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Moritz; Grabert, Hermann [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Strasse 3, 79104, Freiburg (Germany)

    2017-06-15

    We study current fluctuations in tunnel junctions driven by a voltage source. The voltage is applied to the tunneling element via an impedance providing an electromagnetic environment of the junction. We use circuit theory to relate the fluctuations of the current flowing in the leads of the junction with the voltage fluctuations generated by the environmental impedance and the fluctuations of the tunneling current. The spectrum of current fluctuations is found to consist of three parts: a term arising from the environmental Johnson-Nyquist noise, a term due to the shot noise of the tunneling current and a third term describing the cross-correlation between these two noise sources. Our phenomenological theory reproduces previous results based on the Hamiltonian model for the dynamical Coulomb blockade and provides a simple understanding of the current fluctuation spectrum in terms of circuit theory and properties of the average current. Specific results are given for a tunnel junction driven through a resonator. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Caenorhabditis elegans: a simple nematode infection model for Penicillium marneffei.

    Directory of Open Access Journals (Sweden)

    Xiaowen Huang

    Full Text Available Penicillium marneffei, one of the most important thermal dimorphic fungi, is a severe threat to the life of immunocompromised patients. However, the pathogenic mechanisms of P. marneffei remain largely unknown. In this work, we developed a model host by using nematode Caenorhabditis elegans to investigate the virulence of P. marneffei. Using two P. marneffei clinical isolate strains 570 and 486, we revealed that in both liquid and solid media, the ingestion of live P. marneffei was lethal to C. elegans (P<0.001. Meanwhile, our results showed that the strain 570, which can produce red pigment, had stronger pathogenicity in C. elegans than the strain 486, which can't produce red pigment (P<0.001. Microscopy showed the formation of red pigment and hyphae within C. elegans after incubation with P. marneffei for 4 h, which are supposed to be two contributors in nematodes killing. In addition, we used C. elegans as an in vivo model to evaluate different antifungal agents against P. marneffei, and found that antifungal agents including amphotericin B, terbinafine, fluconazole, itraconazole and voriconazole successfully prolonged the survival of nematodesinfected by P. marneffei. Overall, this alternative model host can provide us an easy tool to study the virulence of P. marneffei and screen antifungal agents.

  11. Genome wide analyses of metal responsive genes in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Michael eAschner

    2012-04-01

    Full Text Available Metals are major contaminants that influence human health. Many metals have physiologic roles, but excessive levels can be harmful. Advances in technology have made toxicogenomic analyses possible to characterize the effects of metal exposure on the entire genome. Much of what is known about cellular responses to metals has come from mammalian systems; however the use of non-mammalian species is gaining wider attention. Caenorhabditis elegans (C. elegans is a small round worm whose genome has been fully sequenced and its development from egg to adult is well characterized. It is an attractive model for high throughput screens due to its short lifespan, ease of genetic mutability, low cost and high homology with humans. Research performed in C. elegans has led to insights in apoptosis, gene expression and neurodegeneration, all of which can be altered by metal exposure. Additionally, by using worms one can potentially study how the mechanisms that underline differential responses to metals in nematodes and humans, allowing for identification of novel pathways and therapeutic targets. In this review, toxicogenomic studies performed in C. elegans exposed to various metals will be discussed, highlighting how this non-mammalian system can be utilized to study cellular processes and pathways induced by metals. Recent work focusing on neurodegeneration in Parkinson’s disease will be discussed as an example of the usefulness of genetic screens in C. elegans and the novel findings that can be produced.

  12. Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues.

    Directory of Open Access Journals (Sweden)

    Josiah Johnston

    2008-07-01

    Full Text Available Aging is associated with functional and structural declines in many body systems, even in the absence of underlying disease. In particular, skeletal muscles experience severe declines during aging, a phenomenon termed sarcopenia. Despite the high incidence and severity of sarcopenia, little is known about contributing factors and development. Many studies focus on functional aspects of aging-related tissue decline, while structural details remain understudied. Traditional approaches for quantifying structural changes have assessed individual markers at discrete intervals. Such approaches are inadequate for the complex changes associated with aging. An alternative is to consider changes in overall morphology rather than in specific markers. We have used this approach to quantitatively track tissue architecture during adulthood and aging in the C. elegans pharynx, the neuromuscular feeding organ. Using pattern recognition to analyze aged-grouped pharynx images, we identified discrete step-wise transitions between distinct morphologies. The morphology state transitions were maintained in mutants with pharynx neurotransmission defects, although the pace of the transitions was altered. Longitudinal measurements of pharynx function identified a predictive relationship between mid-life pharynx morphology and function at later ages. These studies demonstrate for the first time that adult tissues undergo distinct structural transitions reflecting postdevelopmental events. The processes that underlie these architectural changes may contribute to increased disease risk during aging, and may be targets for factors that alter the aging rate. This work further demonstrates that pattern analysis of an image series offers a novel and generally accessible approach for quantifying morphological changes and identifying structural biomarkers.

  13. Effect of Hyperglycemia on Purinergic and Nitrergic Inhibitory Neuromuscular Transmission in the Antrum of the Stomach: Implications for Fast Gastric Emptying

    Directory of Open Access Journals (Sweden)

    Xue-Dao He

    2018-01-01

    Full Text Available BackgroundHyperglycemia has been reported to enhance vagovagal reflex that causes the release of inhibitory neurotransmitter, nitric oxide (NO, at the neuromuscular junction in the antrum to relax the antrum and slow gastric emptying by stimulating glucose-sensitive afferent neurons. However, hyperglycemia has also been reported to cause fast gastric emptying that may be due to suppression of the inhibitory motor neurons.AimsThe purpose of the present study was to investigate changes in inhibitory neuromuscular transmission in the gastric antrum due to hyperglycemia.MethodsInhibitory electrical junction potentials were recorded from gastric antral muscle strips, using intracellular electrodes under non-adrenergic, non-cholinergic conditions. Studies were performed in non-hyperglycemic NOD (NH-NOD, NOD mice as they develop hyperglycemia (H-NOD and their age-matched controls. The purinergic inhibitory junction potential (pIJP and nitrergic IJP (nIJP were isolated pharmacologically.ResultsThe control pIJP was large, around −18 mV and nIJP was small, around −9 mV. In NH-NOD the IJPs were not affected, but in H-NOD pIJP was nearly abolished and nIJP was significantly reduced. In H-NOD mice, membrane hyperpolarization caused by exogenous α,β-MeATP or diethylenetriamine NO adduct was similar to that in wild-type controls (P > 0.05. H-NOD smooth muscles were significantly depolarized as compared to NH-NOD smooth muscles.ConclusionThese observations show that hyperglycemia causes suppression of purinergic and nitrergic transmission by acting on the motor neurons that form the last neuron in the vagovagal circuit. Moreover, the loss the neurotransmission is due to a defect in neurotransmitter release rather than a defect in signal transduction. Hyperglycemia also causes depolarization of smooth muscles that may increase their excitability.

  14. Stability of large-area molecular junctions

    NARCIS (Netherlands)

    Akkerman, Hylke B.; Kronemeijer, Auke J.; Harkema, Jan; van Hal, Paul A.; Smits, Edsger C. P.; de Leeuw, Dago M.; Blom, Paul W. M.

    The stability of molecular junctions is crucial for any application of molecular electronics. Degradation of molecular junctions when exposed to ambient conditions is regularly observed. In this report the stability of large-area molecular junctions under ambient conditions for more than two years

  15. Dynamics of pi-junction interferometer circuits

    DEFF Research Database (Denmark)

    Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.

    2002-01-01

    The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current depe...

  16. Functional genomic analysis of C. elegans molting.

    Directory of Open Access Journals (Sweden)

    Alison R Frand

    2005-10-01

    Full Text Available Although the molting cycle is a hallmark of insects and nematodes, neither the endocrine control of molting via size, stage, and nutritional inputs nor the enzymatic mechanism for synthesis and release of the exoskeleton is well understood. Here, we identify endocrine and enzymatic regulators of molting in C. elegans through a genome-wide RNA-interference screen. Products of the 159 genes discovered include annotated transcription factors, secreted peptides, transmembrane proteins, and extracellular matrix enzymes essential for molting. Fusions between several genes and green fluorescent protein show a pulse of expression before each molt in epithelial cells that synthesize the exoskeleton, indicating that the corresponding proteins are made in the correct time and place to regulate molting. We show further that inactivation of particular genes abrogates expression of the green fluorescent protein reporter genes, revealing regulatory networks that might couple the expression of genes essential for molting to endocrine cues. Many molting genes are conserved in parasitic nematodes responsible for human disease, and thus represent attractive targets for pesticide and pharmaceutical development.

  17. A living model for obesity and aging research: Caenorhabditis elegans.

    Science.gov (United States)

    Shen, Peiyi; Yue, Yiren; Park, Yeonhwa

    2018-03-24

    Caenorhabditis elegans (C. elegans) is a free-living nematode that has been extensively utilized as an animal model for research involving aging and neurodegenerative diseases, like Alzheimer's and Parkinson's, etc. Compared with traditional animal models, this small nematode possesses many benefits, such as small body size, short lifespan, completely sequenced genome, and more than 65% of the genes associated with human disease. All these characteristics make this organism an ideal living system for obesity and aging studies. This review gives a brief introduction of C. elegans as an animal model, highlights some advantages of research using this model and describes methods to evaluate the effect of treatments on obesity and aging of this organism.

  18. The Caenorhabditis elegans nicotinamidase PNC-1 enhances survival.

    Science.gov (United States)

    van der Horst, Armando; Schavemaker, Jolanda M; Pellis-van Berkel, Wendy; Burgering, Boudewijn M T

    2007-04-01

    In yeast, increasing the copy number of the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase Sir2 extends lifespan, which can be inhibited by nicotinamide (Nam), the end-product of Sir2-mediated NAD-breakdown. Furthermore, the yeast pyrazinamidase/nicotinamidase PNC-1 can extend yeast lifespan by converting Nam. In Caenorhabditis elegans (C. elegans), increased dosage of the gene encoding SIR-2.1 also increases lifespan. Here, we report that knockdown of the C. elegans homologue of yeast PNC-1 as well as growing worms on Nam-containing medium significantly decreases adult lifespan. Accordingly, increased gene dosage of pnc-1 increases adult survival under conditions of oxidative stress. These data show for the first time the involvement of PNC-1/Nam in the survival of a multicellular organism and may also contribute to our understanding of lifespan regulation in mammals.

  19. A method for measuring fatty acid oxidation in C. elegans

    DEFF Research Database (Denmark)

    Elle, Ida Coordt; Rødkær, Steven Vestergaard; Fredens, Julius

    2012-01-01

    The nematode C. elegans has during the past decade proven to be a valuable model organism to identify and examine molecular mechanisms regulating lipid storage and metabolism. While the primary approach has been to identify genes and pathways conferring alterations in lipid accumulation, only a few...... recent studies have recognized the central role of fatty acid degradation in cellular lipid homeostasis. In the present study, we show how complete oxidation of fatty acids can be determined in live C. elegans by examining oxidation of tritium-labeled fatty acids to tritiated H2O that can be measured......, the present methodology can be used to delineate the role of specific genes and pathways in the regulation of β-oxidation in C. elegans....

  20. The role of patient advocacy organisations in neuromuscular disease R&D - The case of the Dutch neuromuscular disease association VSN

    NARCIS (Netherlands)

    Boon, W.P.C.; Broekgaarden, R.

    2010-01-01

    This article investigates to what extent patient advocacy organisations play a role in influencing R&D and policymaking for rare neuromuscular diseases. The Dutch neuromuscular disease organisation VSN is studied in depth. A brief history of the VSN is sketched along with the international

  1. Ferromagnetic Josephson Junctions for Cryogenic Memory

    Science.gov (United States)

    Niedzielski, Bethany M.; Gingrich, Eric C.; Khasawneh, Mazin A.; Loloee, Reza; Pratt, William P., Jr.; Birge, Norman O.

    2015-03-01

    Josephson junctions containing ferromagnetic materials are of interest for both scientific and technological purposes. In principle, either the amplitude of the critical current or superconducting phase shift across the junction can be controlled by the relative magnetization directions of the ferromagnetic layers in the junction. Our approach concentrates on phase control utilizing two junctions in a SQUID geometry. We will report on efforts to control the phase of junctions carrying either spin-singlet or spin-triplet supercurrent for cryogenic memory applications. Supported by Northorp Grumman Corporation and by IARPA under SPAWAR Contract N66001-12-C-2017.

  2. Method of manufacturing Josephson junction integrated circuits

    International Nuclear Information System (INIS)

    Jillie, D.W. Jr.; Smith, L.N.

    1985-01-01

    Josephson junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson junction electrode for the Josephson junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groudplane function and the Josephson junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed

  3. Measuring Food Intake and Nutrient Absorption in Caenorhabditis elegans.

    Science.gov (United States)

    Gomez-Amaro, Rafael L; Valentine, Elizabeth R; Carretero, Maria; LeBoeuf, Sarah E; Rangaraju, Sunitha; Broaddus, Caroline D; Solis, Gregory M; Williamson, James R; Petrascheck, Michael

    2015-06-01

    Caenorhabditis elegans has emerged as a powerful model to study the genetics of feeding, food-related behaviors, and metabolism. Despite the many advantages of C. elegans as a model organism, direct measurement of its bacterial food intake remains challenging. Here, we describe two complementary methods that measure the food intake of C. elegans. The first method is a microtiter plate-based bacterial clearing assay that measures food intake by quantifying the change in the optical density of bacteria over time. The second method, termed pulse feeding, measures the absorption of food by tracking de novo protein synthesis using a novel metabolic pulse-labeling strategy. Using the bacterial clearance assay, we compare the bacterial food intake of various C. elegans strains and show that long-lived eat mutants eat substantially more than previous estimates. To demonstrate the applicability of the pulse-feeding assay, we compare the assimilation of food for two C. elegans strains in response to serotonin. We show that serotonin-increased feeding leads to increased protein synthesis in a SER-7-dependent manner, including proteins known to promote aging. Protein content in the food has recently emerged as critical factor in determining how food composition affects aging and health. The pulse-feeding assay, by measuring de novo protein synthesis, represents an ideal method to unequivocally establish how the composition of food dictates protein synthesis. In combination, these two assays provide new and powerful tools for C. elegans research to investigate feeding and how food intake affects the proteome and thus the physiology and health of an organism. Copyright © 2015 by the Genetics Society of America.

  4. Formation of longitudinal axon pathways in Caenorhabditis elegans.

    Science.gov (United States)

    Hutter, Harald

    2017-11-18

    The small number of neurons and the simple architecture of the Caenorhabditis elegans (C. elegans) nervous system enables researchers to study axonal pathfinding at the level of individually identified axons. Axons in C. elegans extend predominantly along one of the two major body axes, the anterior-posterior axis and the dorso-ventral axis. This review will focus on axon navigation along the anterior-posterior axis, leading to the establishment of the longitudinal axon tracts, with a focus on the largest longitudinal axon tract, the ventral nerve cord (VNC). In the VNC, axons grow out in a stereotypic order, with early outgrowing axons (pioneers) playing an important role in guiding later outgrowing (follower) axons. Genetic screens have identified a number of genes specifically affecting the formation of longitudinal axon tracts. These genes include secreted proteins, putative receptors and adhesion molecules, as well as intracellular proteins regulating the cell's response to guidance cues. In contrast to dorso-ventral navigation, no major general guidance cues required for the establishment of longitudinal pathways have been identified so far. The limited penetrance of defects found in many mutants affecting longitudinal navigation suggests that guidance cues act redundantly in this process. The majority of the axon guidance genes identified in C. elegans are evolutionary conserved, i.e. have homologs in other animals, including vertebrates. For a number of these genes, a role in axon guidance has not been described outside C. elegans. Taken together, studies in C. elegans contribute to a fundamental understanding of the molecular basis of axonal navigation that can be extended to other animals, including vertebrates and probably humans as well. Copyright © 2017. Published by Elsevier Ltd.

  5. Staphylococcal biofilm exopolysaccharide protects against Caenorhabditis elegans immune defenses.

    Directory of Open Access Journals (Sweden)

    Jakob Begun

    2007-04-01

    Full Text Available Staphylococcus epidermidis and Staphylococcus aureus are leading causes of hospital-acquired infections that have become increasingly difficult to treat due to the prevalence of antibiotic resistance in these organisms. The ability of staphylococci to produce biofilm is an important virulence mechanism that allows bacteria both to adhere to living and artificial surfaces and to resist host immune factors and antibiotics. Here, we show that the icaADBC locus, which synthesizes the biofilm-associated polysaccharide intercellular adhesin (PIA in staphylococci, is required for the formation of a lethal S. epidermidis infection in the intestine of the model nematode Caenorhabditis elegans. Susceptibility to S. epidermidis infection is influenced by mutation of the C. elegans PMK-1 p38 mitogen-activated protein (MAP kinase or DAF-2 insulin-signaling pathways. Loss of PIA production abrogates nematocidal activity and leads to reduced bacterial accumulation in the C. elegans intestine, while overexpression of the icaADBC locus in S. aureus augments virulence towards nematodes. PIA-producing S. epidermidis has a significant survival advantage over ica-deficient S. epidermidis within the intestinal tract of wild-type C. elegans, but not in immunocompromised nematodes harboring a loss-of-function mutation in the p38 MAP kinase pathway gene sek-1. Moreover, sek-1 and pmk-1 mutants are equally sensitive to wild-type and icaADBC-deficient S. epidermidis. These results suggest that biofilm exopolysaccharide enhances virulence by playing an immunoprotective role during colonization of the C. elegans intestine. These studies demonstrate that C. elegans can serve as a simple animal model for studying host-pathogen interactions involving staphylococcal biofilm exopolysaccharide and suggest that the protective activity of biofilm matrix represents an ancient conserved function for resisting predation.

  6. Molecular series-tunneling junctions.

    Science.gov (United States)

    Liao, Kung-Ching; Hsu, Liang-Yan; Bowers, Carleen M; Rabitz, Herschel; Whitesides, George M

    2015-05-13

    Charge transport through junctions consisting of insulating molecular units is a quantum phenomenon that cannot be described adequately by classical circuit laws. This paper explores tunneling current densities in self-assembled monolayer (SAM)-based junctions with the structure Ag(TS)/O2C-R1-R2-H//Ga2O3/EGaIn, where Ag(TS) is template-stripped silver and EGaIn is the eutectic alloy of gallium and indium; R1 and R2 refer to two classes of insulating molecular units-(CH2)n and (C6H4)m-that are connected in series and have different tunneling decay constants in the Simmons equation. These junctions can be analyzed as a form of series-tunneling junctions based on the observation that permuting the order of R1 and R2 in the junction does not alter the overall rate of charge transport. By using the Ag/O2C interface, this system decouples the highest occupied molecular orbital (HOMO, which is localized on the carboxylate group) from strong interactions with the R1 and R2 units. The differences in rates of tunneling are thus determined by the electronic structure of the groups R1 and R2; these differences are not influenced by the order of R1 and R2 in the SAM. In an electrical potential model that rationalizes this observation, R1 and R2 contribute independently to the height of the barrier. This model explicitly assumes that contributions to rates of tunneling from the Ag(TS)/O2C and H//Ga2O3 interfaces are constant across the series examined. The current density of these series-tunneling junctions can be described by J(V) = J0(V) exp(-β1d1 - β2d2), where J(V) is the current density (A/cm(2)) at applied voltage V and βi and di are the parameters describing the attenuation of the tunneling current through a rectangular tunneling barrier, with width d and a height related to the attenuation factor β.

  7. Genome-Wide Mutational Signature of the Chemotherapeutic Agent Mitomycin C in Caenorhabditis elegans.

    Science.gov (United States)

    Tam, Annie S; Chu, Jeffrey S C; Rose, Ann M

    2015-11-12

    Cancer therapy largely depends on chemotherapeutic agents that generate DNA lesions. However, our understanding of the nature of the resulting lesions as well as the mutational profiles of these chemotherapeutic agents is limited. Among these lesions, DNA interstrand crosslinks are among the more toxic types of DNA damage. Here, we have characterized the mutational spectrum of the commonly used DNA interstrand crosslinking agent mitomycin C (MMC). Using a combination of genetic mapping, whole genome sequencing, and genomic analysis, we have identified and confirmed several genomic lesions linked to MMC-induced DNA damage in Caenorhabditis elegans. Our data indicate that MMC predominantly causes deletions, with a 5'-CpG-3' sequence context prevalent in the deleted regions of DNA. Furthermore, we identified microhomology flanking the deletion junctions, indicative of DNA repair via nonhomologous end joining. Based on these results, we propose a general repair mechanism that is likely to be involved in the biological response to this highly toxic agent. In conclusion, the systematic study we have described provides insight into potential sequence specificity of MMC with DNA. Copyright © 2016 Tam et al.

  8. Genome-Wide Mutational Signature of the Chemotherapeutic Agent Mitomycin C in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Annie S. Tam

    2016-01-01

    Full Text Available Cancer therapy largely depends on chemotherapeutic agents that generate DNA lesions. However, our understanding of the nature of the resulting lesions as well as the mutational profiles of these chemotherapeutic agents is limited. Among these lesions, DNA interstrand crosslinks are among the more toxic types of DNA damage. Here, we have characterized the mutational spectrum of the commonly used DNA interstrand crosslinking agent mitomycin C (MMC. Using a combination of genetic mapping, whole genome sequencing, and genomic analysis, we have identified and confirmed several genomic lesions linked to MMC-induced DNA damage in Caenorhabditis elegans. Our data indicate that MMC predominantly causes deletions, with a 5′-CpG-3′ sequence context prevalent in the deleted regions of DNA. Furthermore, we identified microhomology flanking the deletion junctions, indicative of DNA repair via nonhomologous end joining. Based on these results, we propose a general repair mechanism that is likely to be involved in the biological response to this highly toxic agent. In conclusion, the systematic study we have described provides insight into potential sequence specificity of MMC with DNA.

  9. Flexible 2D layered material junctions

    Science.gov (United States)

    Balabai, R.; Solomenko, A.

    2018-03-01

    Within the framework of the methods of the electron density functional and the ab initio pseudopotential, we have obtained the valence electron density spatial distribution, the densities of electron states, the widths of band gaps, the charges on combined regions, and the Coulomb potentials for graphene-based flexible 2D layered junctions, using author program complex. It is determined that the bending of the 2D layered junctions on the angle α leads to changes in the electronic properties of these junctions. In the graphene/graphane junction, there is clear charge redistribution with different signs in the regions of junctions. The presence in the heterojunctions of charge regions with different signs leads to the formation of potential barriers. The greatest potential jump is in the graphene/fluorographene junction. The greatest value of the band gap width is in the graphene/graphane junction.

  10. Learning disabilities in neuromuscular disorders: a springboard for adult life.

    Science.gov (United States)

    Astrea, Guja; Battini, Roberta; Lenzi, Sara; Frosini, Silvia; Bonetti, Silvia; Moretti, Elena; Perazza, Silvia; Santorelli, Filippo M; Pecini, Chiara

    2016-10-01

    Although the presence of cognitive deficits in Duchenne muscular dystrophy or myotonic dystrophy DM1 is well established in view of brain-specific expression of affected muscle proteins, in other neuromuscular disorders, such as congenital myopathies and limb-girdle muscular dystrophies, cognitive profiles are poorly defined. Also, there are limited characterization of the cognitive profile of children with congenital muscular dystrophies, notwithstanding the presence of cerebral abnormality in some forms, and in spinal muscular atrophies, with the exception of distal spinal muscular atrophy (such as the DYN1CH1- associated form). Starting from the Duchenne muscular dystrophy, which may be considered a kind of paradigm for the co-occurrence of learning disabilities in the contest of a progressive muscular involvement, the findings of neuropsychological (or cognitive) dysfunctions in several forms of neuromuscular diseases will be examined and reviewed.

  11. Neuromuscular deficits after peripheral joint injury: a neurophysiological hypothesis.

    Science.gov (United States)

    Ward, Sarah; Pearce, Alan J; Pietrosimone, Brian; Bennell, Kim; Clark, Ross; Bryant, Adam L

    2015-03-01

    In addition to biomechanical disturbances, peripheral joint injuries (PJIs) can also result in chronic neuromuscular alterations due in part to loss of mechanoreceptor-mediated afferent feedback. An emerging perspective is that PJI should be viewed as a neurophysiological dysfunction, not simply a local injury. Neurophysiological and neuroimaging studies have provided some evidence for central nervous system (CNS) reorganization at both the cortical and spinal levels after PJI. The novel hypothesis proposed is that CNS reorganization is the underlying mechanism for persisting neuromuscular deficits after injury, particularly muscle weakness. There is a lack of direct evidence to support this hypothesis, but future studies utilizing force-matching tasks with superimposed transcranial magnetic stimulation may be help clarify this notion. © 2014 Wiley Periodicals, Inc.

  12. Early appearance and possible roles of non-neuromuscular cholinesterases.

    Directory of Open Access Journals (Sweden)

    Carla eFalugi

    2012-04-01

    Full Text Available The biological function of the cholinesterase (ChE enzymes is well known and has been studied since the beginning of the XXth century; in particular, acetylcholinesterase (AChE, E.C. 3.1.1.7 is an enzyme playing a key role in the modulation of neuromuscular impulse transmission. However, in the past decades, there has been increasing interest concerning its role in regulating non-neuromuscular cell-to-cell interactions mediated by intracellular ion concentration changes, like the ones occurring during gamete interaction and embryonic development. An understanding of the mechanisms of the cholinergic regulation of these events can help us foresee the possible impact on environmental and human health, including gamete efficiency and possible teratogenic effects on different models, and help elucidate the extent to which exposure to ChE inhibitors may affect human health.

  13. Theory of multichannel magnetic stimulation: toward functional neuromuscular rehabilitation.

    Science.gov (United States)

    Ruohonen, J; Ravazzani, P; Grandori, F; Ilmoniemi, R J

    1999-06-01

    Human excitable cells can be stimulated noninvasively with externally applied time-varying electromagnetic fields. The stimulation can be achieved either by directly driving current into the tissue (electrical stimulation) or by means of electro-magnetic induction (magnetic stimulation). While the electrical stimulation of the peripheral neuromuscular system has many beneficial applications, peripheral magnetic stimulation has so far only a few. This paper analyzes theoretically the use of multiple magnetic stimulation coils to better control the excitation and also to eventually mimic electrical stimulation. Multiple coils allow electronic spatial adjustment of the shape and location of the stimulus without moving the coils. The new properties may enable unforeseen uses for peripheral magnetic stimulation, e.g., in rehabilitation of patients with neuromuscular impairment.

  14. [Neuromuscular disease: respiratory clinical assessment and follow-up].

    Science.gov (United States)

    Martínez Carrasco, C; Villa Asensi, J R; Luna Paredes, M C; Osona Rodríguez de Torres, F B; Peña Zarza, J A; Larramona Carrera, H; Costa Colomer, J

    2014-10-01

    Patients with neuromuscular disease are an important group at risk of frequently suffering acute or chronic respiratory failure, which is their main cause of death. They require follow-up by a pediatric respiratory medicine specialist from birth or diagnosis in order to confirm the diagnosis and treat any respiratory complications within a multidisciplinary context. The ventilatory support and the cough assistance have improved the quality of life and long-term survival for many of these patients. In this paper, the authors review the pathophysiology, respiratory function evaluation, sleep disorders, and the most frequent respiratory complications in neuromuscular diseases. The various treatments used, from a respiratory medicine point of view, will be analyzed in a next paper. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  15. Bloqueio neuromuscular residual após o uso de rocurônio ou cisatracúrio Bloqueo neuromuscular residual después del uso de rocuronio o cisatracúrio Residual neuromuscular block after rocuronium or cisatracurium

    Directory of Open Access Journals (Sweden)

    Bruno Salomé de Morais

    2005-12-01

    Full Text Available JUSTIFICATIVA E OBJETIVOS: O bloqueio neuromuscular residual na sala de recuperação pós-anestésica (SRPA é um fenômeno que pode aumentar a morbidade pós-operatória, com incidência variando entre 0% e 93%. O objetivo deste estudo foi avaliar a incidência do bloqueio neuromuscular residual na SRPA. MÉTODO: Foram estudados 93 pacientes submetidos à cirurgia geral com o uso de cisatracúrio ou rocurônio. Após a admissão na SRPA foi realizada a monitorização objetiva da função neuromuscular (aceleromiografia - TOF GUARD. O bloqueio neuromuscular residual foi definido como SQE JUSTIFICATIVA Y OBJETIVOS: El bloqueo neuromuscular residual en la sala de recuperación posanestésica (SRPA es un fenómeno que puede aumentar la morbidez posoperatoria, con incidencia variando entre 0% y 93%. La finalidad de este estudio fue evaluar la incidencia del bloqueo neuromuscular residual en la SRPA. MÉTODO: Fueron estudiados 93 pacientes sometidos a cirugía general con el uso de cisatracúrio o rocuronio. Después de la admisión en la SRPA fue realizada la monitorización objetiva de la función neuromuscular (aceleromiografia - TOF-GUARD. El bloqueo neuromuscular residual fue definido como TOF BACKGROUND AND OBJECTIVES: Residual neuromuscular block in the post-anesthetic recovery unit (PACU may increase postoperative morbidity from 0% to 93%. This study aimed at evaluating the incidence of residual neuromuscular block in the PACU. METHODS: Participated in this study 93 patients submitted to general anesthesia with cisatracurium or rocuronium. After PACU admission, neuromuscular function was objectively monitored (acceleromyography - TOF GUARD. Residual neuromuscular block was defined as TOF < 0.9. RESULTS: From 93 patients, 53 received cisatracurium and 40 rocuronium. Demographics, procedure length and the use of antagonists were comparable between groups. Residual neuromuscular block was 32% in subgroup C (cisatracurium and 30% in subgroup R

  16. Report on Adaptive Force, a specific neuromuscular function

    Directory of Open Access Journals (Sweden)

    Marko Hoff

    2015-08-01

    Full Text Available In real life motions, as well as in sports, the adaptation of the neuromuscular systems to externally applied forces plays an important role. The term Adaptive Force (AF shall characterize the ability of the nerve-muscle-system to adapt to impacting external forces during isometric and eccentric muscle action. The focus in this paper is on the concept of this neuromuscular action, which is not yet described in this way. A measuring system was constructed and evaluated for this specific neuromuscular function, but only the main information of the evaluation of the measuring system and the preliminary reference values are mentioned here, while an article with detailed description will be published separately. This paper concentrates on the three following points: 1 What is the peculiarity of this neuromuscular function, introduced as AF? 2 Is the measuring system able to capture its specific characteristics and which phases of measurement occur? 3 It seems reasonable to discuss if AF can be distinguished and classified among the known force concepts. The article describes the measuring system and how it is able to capture special features of real life motions like submaximal intensities and the subjects’ option to react adequately on external varying forces. Furthermore, within one measurement the system records three different force qualities: the isometric submaximal Adaptive Force (AFiso, the maximal isometric Adaptive Force (AFisomax and the maximal eccentric Adaptive Force (AFeccmax. Each of these phases provide different and unique information on the nerve-muscle-system that are discussed in detail. Important, in terms of the Adaptive Force, seems to be the combination of conditional and coordinative abilities.

  17. Selective activation of neuromuscular compartments within the human trapezius muscle

    DEFF Research Database (Denmark)

    Holtermann, A; Roeleveld, K; Mork, P J

    2009-01-01

    of the human trapezius muscle can be independently activated by voluntary command, indicating neuromuscular compartmentalization of the trapezius muscle. The independent activation of the upper and lower subdivisions of the trapezius is in accordance with the selective innervation by the fine cranial and main...... branch of the accessory nerve to the upper and lower subdivisions. These findings provide new insight into motor control characteristics, learning possibilities, and function of the clinically relevant human trapezius muscle....

  18. Neuromuscular Control of Rapid Linear Accelerations in Fish

    Science.gov (United States)

    2016-06-22

    sunfish, Lepomis macrochirus. Animals with flexible bodies, like fishes , face a tradeoff for rapid movements. To produce high forces, they must...2014 30-Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: Neuromuscular Control of Rapid Linear Accelerations in Fish The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 swimming, acceleration, fish , muscle, stiffness REPORT DOCUMENTATION PAGE 11. SPONSOR

  19. Computed tomography of skeletal muscles in neuromuscular disease

    International Nuclear Information System (INIS)

    Rodiek, S.O.; Kuether, G.; Muenchen Univ.

    1985-01-01

    CT-documentation of skeletal muscular lesions caused by neuromuscular diseases implies an essential contribution to conventional techniques in the macroscopic field. Size, distribution and degree of lesions as well as compensatory mechanisms are proved thereby. We report about the different effects on muscle appearance referring to 106 patients of our own experience in amyotrophic lateral sclerosis, spinal muscular atrophy, poliomyelitis, polyradiculitis, polyneuropathy as well as peripheral traumatic nerve lesions. (orig.) [de

  20. Computed tomography of skeletal muscles in neuromuscular disease

    Energy Technology Data Exchange (ETDEWEB)

    Rodiek, S.O.; Kuether, G.

    1985-06-01

    CT-documentation of skeletal muscular lesions caused by neuromuscular diseases implies an essential contribution to conventional techniques in the macroscopic field. Size, distribution and degree of lesions as well as compensatory mechanisms are proved thereby. We report about the different effects on muscle appearance referring to 106 patients of our own experience in amyotrophic lateral sclerosis, spinal muscular atrophy, poliomyelitis, polyradiculitis, polyneuropathy as well as peripheral traumatic nerve lesions.

  1. Josephson junctions and circle maps

    Energy Technology Data Exchange (ETDEWEB)

    Bak, P; Bohr, T; Jensen, M H; Christiansen, P V

    1984-01-01

    The return map of a differential equation for the current driven Josephson junction, or the damped driven pendulum, is shown numerically to be a circle map. Phase locking, noise and hysteresis, can thus be understood in a simple and coherent way. The transition to chaos is related to the development of a cubic inflection point. Recent theoretical results on universal behavior at the transition to chaos can readily be checked experimentally by studying I-V characteristics. 17 references, 1 figure.

  2. Fatty replacement of lower paraspinal muscles: normal and neuromuscular disorders

    International Nuclear Information System (INIS)

    Hader, H.; Gadoth, N.; Heifetz, H.

    1983-01-01

    The physiologic replacement of the lower paraspinal muscles by fat was evaluated in 157 patients undergoing computed tomography for reasons unrelated to abnormalities of the locomotor system. Five patients with neuromuscular disorders were similarly evaluated. The changes were graded according to severity at three spinal levels: lower thoracic-upper lumbar, midlumbar, and lumbosacral. The results were analyzed in relation to age and gender. It was found that fatty replacement of paraspinal muscles is a normal age-progressive phenomenon most prominent in females. It progresses down the spine, being most advanced in the lumbosacral region. The severest changes in the five patients with neuromuscular disorders (three with poliomyelitis and two with progressive muscular dystrophy) consisted of complete muscle group replacement by fat. In postpoliomyelitis atrophy, the distribution was typically asymmetric and sometimes lacked clinical correlation. In muscular dystrophy, fatty replacement was symmetric, showing relative sparing of the psoas and multifidus muscles. In patients with neuromuscular diseases, computed tomography of muscles may be helpful in planning a better rehabilitation regimen

  3. Fatty replacement of lower paraspinal muscles: normal and neuromuscular disorders

    Energy Technology Data Exchange (ETDEWEB)

    Hader, H.; Gadoth, N.; Heifetz, H.

    1983-11-01

    The physiologic replacement of the lower paraspinal muscles by fat was evaluated in 157 patients undergoing computed tomography for reasons unrelated to abnormalities of the locomotor system. Five patients with neuromuscular disorders were similarly evaluated. The changes were graded according to severity at three spinal levels: lower thoracic-upper lumbar, midlumbar, and lumbosacral. The results were analyzed in relation to age and gender. It was found that fatty replacement of paraspinal muscles is a normal age-progressive phenomenon most prominent in females. It progresses down the spine, being most advanced in the lumbosacral region. The severest changes in the five patients with neuromuscular disorders (three with poliomyelitis and two with progressive muscular dystrophy) consisted of complete muscle group replacement by fat. In postpoliomyelitis atrophy, the distribution was typically asymmetric and sometimes lacked clinical correlation. In muscular dystrophy, fatty replacement was symmetric, showing relative sparing of the psoas and multifidus muscles. In patients with neuromuscular diseases, computed tomography of muscles may be helpful in planning a better rehabilitation regimen.

  4. Neuromuscular dose-response studies: determining sample size.

    Science.gov (United States)

    Kopman, A F; Lien, C A; Naguib, M

    2011-02-01

    Investigators planning dose-response studies of neuromuscular blockers have rarely used a priori power analysis to determine the minimal sample size their protocols require. Institutional Review Boards and peer-reviewed journals now generally ask for this information. This study outlines a proposed method for meeting these requirements. The slopes of the dose-response relationships of eight neuromuscular blocking agents were determined using regression analysis. These values were substituted for γ in the Hill equation. When this is done, the coefficient of variation (COV) around the mean value of the ED₅₀ for each drug is easily calculated. Using these values, we performed an a priori one-sample two-tailed t-test of the means to determine the required sample size when the allowable error in the ED₅₀ was varied from ±10-20%. The COV averaged 22% (range 15-27%). We used a COV value of 25% in determining the sample size. If the allowable error in finding the mean ED₅₀ is ±15%, a sample size of 24 is needed to achieve a power of 80%. Increasing 'accuracy' beyond this point requires increasing greater sample sizes (e.g. an 'n' of 37 for a ±12% error). On the basis of the results of this retrospective analysis, a total sample size of not less than 24 subjects should be adequate for determining a neuromuscular blocking drug's clinical potency with a reasonable degree of assurance.

  5. Neuromuscular interactions around the knee in children, adults and elderly

    Science.gov (United States)

    Kellis, Eleftherios; Mademli, Lida; Patikas, Dimitrios; Kofotolis, Nikolaos

    2014-01-01

    Although injury and neuromuscular activation patterns may be common for all individuals, there are certain factors which differentiate neuromuscular activity responses between children, adults and elderly. The purpose of this study is to review recent evidence on age differences in neural activation and muscle balances around the knee when performing single joint movements. Particularly, current evidence indicates that there are some interesting similarities in the neuromuscular mechanisms by which children or the elderly differ compared with adults. Both children and elderly display a lower absolute muscle strength capacity than adults which cannot fully be explained by differences in muscle mass. Quadriceps activation failure is a common symptom of all knee injuries, irrespective of age but it is likely that its effect is more evident in children or adults. While one might expect that antagonist co-activation would differ between age categories, it appears that this is not the case. Although hamstring: quadriceps ratio levels are altered after knee injury, it is not clear whether this is an age specific response. Finally, evidence suggests that both children and the elderly display less stiffness of the quadriceps muscle-tendon unit than adults which affects their knee joint function. PMID:25232523

  6. Bilateral neuromuscular and force differences during a plyometric task.

    Science.gov (United States)

    Ball, Nick B; Scurr, Joanna C

    2009-08-01

    The purpose of this article is to compare the bilateral neuromuscular and force contribution during a plyometric bounce drop jump task and to assess the affects of nonsimultaneous foot placement. Sixteen male participants performed bounce drop jumps from a height of 0.4 m. Mean peak electromyography activity of the soleus, medial, and lateral gastrocnemius of both legs was recorded from each phase of the drop jump and normalized to a reference dynamic muscle action. Resultant ground reaction force, ground contact time, and duration of the drop jumps were recorded from each leg. Multivariate analysis of variance was used to compare bilateral electromyographic activity, resultant peak ground reaction force, and contact duration. Pearson's correlations (r) ascertained relationships between normalized electromyographic activity and contact time. Significant differences were shown between left and right triceps surae normalized electromyography during precontact and contact40ms (p 0.01). Significant differences were found between normalized soleus electromyography and both gastrocnemii for both legs during precontact (p 0.01). Weak relationships were found between normalized electromyographic activity and nonsimultaneous foot contact (r < 0.2). This study showed differences between left and right triceps surae in neuromuscular strategies engaged in the early stages of a drop jump task. Differences in contact time initiation were present; however, they are not significant enough to cause neuromuscular differences in the plantar flexor muscles.

  7. Neuromuscular signs associated with acute hypophosphatemia in a dog.

    Science.gov (United States)

    Claus, Kimberly N; Day, Thomas K; Wolf, Christina

    2015-01-01

    The purpose of this report was to describe the successful recognition and management of neuromuscular dysfunction secondary to severe, acute hypophosphatemia in an adult dog with a 2 day history of vomiting, anorexia, and abdominal pain. Radiographs were suggestive of a foreign body obstruction, and surgery was recommended. Resection and anastomosis of the distal duodenum and proximal jejunum was performed. The dog recovered uneventfully, but approximately 36 hr postoperatively, he was found to have significant weakness and muscle tremors that were accompanied by hyperthermia. The only significant abnormality on a serum biochemical profile was a phosphorous level of 0.26 mmol/L. Within 6 hr of initiating phosphorous supplementation, the patient fully recovered and had no residual signs of neuromuscular dysfunction. Signs of neurologic dysfunction secondary to hypophosphatemia are commonly recognized in human patients. Reports of patients with severe muscle weakness, some of which necessitate ventilation due to weakening of muscles of respiration, are common throughout the literature. Less commonly, tremors are noted. This is the first known report of neuromuscular signs recognized and rapidly corrected in a dog. Although it is likely to be uncommon, hypophosphatemia should be recognized as a differential diagnosis in patients with tremors and/or muscle weakness.

  8. CT in neuromuscular disorders: A comparison of CT and histology

    International Nuclear Information System (INIS)

    Vliet, A.M. van der; Thijssen, H.O.M.; Merx, J.L.; Joosten, E.

    1988-01-01

    The value of CT-examination of the muscles compared to histology was studied in a retrospective analysis of 30 patients with clinical suspicion of neuromuscular disorder. In the evaluation of the CT-results descriptive criteria were used. The histologic diagnosis came from needle-biopsies taken from the quadriceps muscle. Considering the whole group of neuromuscular disorders, CT has an overall accuracy of 84.8%, a positive predictive value of 95.5% and a negative predictive value of 63.6%. This makes the use of CT as a diagnostic tool in neuromuscular disorders a reliable examination technique. In patients with a polymyositis there is even a 100% correlation between CT findings and biopsy results. Discrepancy between the biopsy results is remarkable of the quadriceps muscle and the CT findings: The number of abnormal histological findings is twice the number of abnormal CT findings. Using the more proximal gluteal region as a biopsy site would have decreased this discrepancy and would therefore have given a better correlation between CT and histology. The choice of protocol in determining the levels to be scanned is of great importance in achieving good reproducability in follow-up CT examinations. (orig.)

  9. Recent advances in antisense oligonucleotide therapy in genetic neuromuscular diseases

    Directory of Open Access Journals (Sweden)

    Ashok Verma

    2018-01-01

    Full Text Available Genetic neuromuscular diseases are caused by defective expression of nuclear or mitochondrial genes. Mutant genes may reduce expression of wild-type proteins, and strategies to activate expression of the wild-type proteins might provide therapeutic benefits. Also, a toxic mutant protein may cause cell death, and strategies that reduce mutant gene expression may provide therapeutic benefit. Synthetic antisense oligonucleotide (ASO can recognize cellular RNA and control gene expression. In recent years, advances in ASO chemistry, creation of designer ASO molecules to enhance their safety and target delivery, and scientific controlled clinical trials to ascertain their therapeutic safety and efficacy have led to an era of plausible application of ASO technology to treat currently incurable neuromuscular diseases. Over the past 1 year, for the first time, the United States Food and Drug Administration has approved two ASO therapies in genetic neuromuscular diseases. This overview summarizes the recent advances in ASO technology, evolution and use of synthetic ASOs as a therapeutic platform, and the mechanism of ASO action by exon-skipping in Duchenne muscular dystrophy and exon-inclusion in spinal muscular atrophy, with comments on their advantages and limitations.

  10. Magnetic resonance imaging (MRI) in the diagnosis of neuromuscular diseases

    International Nuclear Information System (INIS)

    Schalke, B.C.G.; Rohkamm, R.; Kaiser, W.

    1990-01-01

    In the last few years imaging procedures became also important in the diagnosis of neuromuscular diseases. We examined more than 150 patients with different neuromuscular diseases with MRI. Conventional diagnostic procedures like EMG, muscle biopsy can not be replaced by imaging procedures. MRI gives the chance to get additional diagnostic informations. It is possible to determine exact distribution and intensity of pathological changes in the muscle. Inflammatory muscle diseases can be differrentiated by T1/T2 values from atrophic/dystrophic diseases. The resolving power is very high and allows the exact detection of affected areas even in a single muscle. This can help to reduce false negative muscle biopsies. This is very useful in children and young adults. MRI can be used for the early detection of genetic myopathies and neuropathies. MRI allows to examine all muscles, including the heart, bone artefacts are absent. Heart muscle involvement in neuromuscular diseases can directly be shown by this method without any risk for the patient. In addition P-spectroscopy can be done for better understanding of pathogenesis, especially if the exact distribution of pathological changes is known. (author)

  11. Recent advances in neuromuscular block during anesthesia [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Martijn Boon

    2018-02-01

    Full Text Available Muscle relaxation is a routine part of anesthesia and has important advantages. However, the lingering effects of muscle relaxants in the postoperative period have historically been associated with postoperative adverse events. Neuromuscular reversal, together with neuromuscular monitoring, is a recognized strategy to reduce the rate of postoperative residual relaxation but has only marginally improved outcome in the past few decades. Sugammadex, a novel reversal agent with unique encapsulating properties, has changed the landscape of neuromuscular reversal and opened up new opportunities to improve patient care. By quickly and completely reversing any depth of neuromuscular block, it may reduce the rate of residual relaxation and improve respiratory recovery. In addition, sugammadex has made the use of deep neuromuscular block possible during surgery. Deep neuromuscular block may improve surgical working conditions and allow for a reduction in insufflation pressures during selected laparoscopic procedures. However, whether and how this may impact outcomes is not well established.

  12. Squeezed States in Josephson Junctions.

    Science.gov (United States)

    Hu, X.; Nori, F.

    1996-03-01

    We have studied quantum fluctuation properties of Josephson junctions in the limit of large Josephson coupling energy and small charging energy, when the eigenstates of the system can be treated as being nearly localized. We have considered(X. Hu and F. Nori, preprints.) a Josephson junction in a variety of situations, e.g., coupled to one or several of the following elements: a capacitor, an inductor (in a superconducting ring), and an applied current source. By solving an effective Shrödinger equation, we have obtained squeezed vacuum (coherent) states as the ground states of a ``free-oscillating'' (linearly-driven) Josephson junction, and calculated the uncertainties of its canonical momentum, charge, and coordinate, phase. We have also shown that the excited states of the various systems we consider are similar to the number states of a simple harmonic oscillator but with different fluctuation properties. Furthermore, we have obtained the time-evolution operators for these systems. These operators can make it easier to calculate the time-dependence of the expectation values and fluctuations of various quantities starting from an arbitrary initial state.

  13. Superconducting tunnel-junction refrigerator

    International Nuclear Information System (INIS)

    Melton, R.G.; Paterson, J.L.; Kaplan, S.B.

    1980-01-01

    The dc current through an S 1 -S 2 tunnel junction, with Δ 2 greater than Δ 1 , when biased with eV 1 +Δ 2 , will lower the energy in S 1 . This energy reduction will be shared by the phonons and electrons. This device is shown to be analogous to a thermoelectric refrigerator with an effective Peltier coefficient π* approx. Δ 1 /e. Tunneling calculations yield the cooling power P/sub c/, the electrical power P/sub e/ supplied by the bias supply, and the cooling efficiency eta=P/sub c//P/sub e/. The maximum cooling power is obtained for eV= +- (Δ 2 -Δ 1 ) and t 1 =T 1 /T/sub c/1 approx. 0.9. Estimates are made of the temperature difference T 2 -T 1 achievable in Al-Pb and Sn-Pb junctions with an Al 2 O 3 tunneling barrier. The performance of this device is shown to yield a maximum cooling efficiency eta approx. = Δ 1 /(Δ 2 -Δ 1 ) which can be compared with that available in an ideal Carnot refrigerator of eta=T 1 /(T 2 -T 1 ). The development of a useful tunnel-junction refrigerator requires a tunneling barrier with an effective thermal conductance per unit area several orders of magnitude less than that provided by the A1 2 O 3 barrier in the Al-Pb and Sn-Pb systems

  14. The relative frequency of common neuromuscular diagnoses in a reference center

    OpenAIRE

    Cotta, Ana; Paim, Júlia Filardi; Carvalho, Elmano; da-Cunha-Júnior, Antonio Lopes; Navarro, Monica M.; Valicek, Jaquelin; Menezes, Miriam Melo; Nunes, Simone Vilela; Xavier-Neto, Rafael; Baptista Junior, Sidney; Lima, Luciano Romero; Takata, Reinaldo Issao; Vargas, Antonio Pedro

    2017-01-01

    ABSTRACT The diagnostic procedure in neuromuscular patients is complex. Knowledge of the relative frequency of neuromuscular diseases within the investigated population is important to allow the neurologist to perform the most appropriate diagnostic tests. Objective: To report the relative frequency of common neuromuscular diagnoses in a reference center. Methods: A 17-year chart review of patients with suspicion of myopathy. Results: Among 3,412 examinations, 1,603 (46.98%) yielded confir...

  15. The temporal scaling of Caenorhabditis elegans ageing.

    Science.gov (United States)

    Stroustrup, Nicholas; Anthony, Winston E; Nash, Zachary M; Gowda, Vivek; Gomez, Adam; López-Moyado, Isaac F; Apfeld, Javier; Fontana, Walter

    2016-02-04

    The process of ageing makes death increasingly likely, involving a random aspect that produces a wide distribution of lifespan even in homogeneous populations. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating the manner and extent to which specific molecular processes contribute to the aspect of ageing that determines lifespan.

  16. The temporal scaling of Caenorhabditis elegans ageing

    Science.gov (United States)

    Stroustrup, Nicholas; Anthony, Winston E.; Nash, Zachary M.; Gowda, Vivek; Gomez, Adam; López-Moyado, Isaac F.; Apfeld, Javier; Fontana, Walter

    2016-02-01

    The process of ageing makes death increasingly likely, involving a random aspect that produces a wide distribution of lifespan even in homogeneous populations. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating the manner and extent to which specific molecular processes contribute to the aspect of ageing that determines lifespan.

  17. Microbeam irradiation of the C. elegans nematode

    International Nuclear Information System (INIS)

    Bertucci, Antonella; Brenner, David J.; Pocock, Roger D.J.; Randers-Pehrson, Gerhard

    2009-01-01

    The understanding of complex radiation responses in biological systems, such as non-targeted effects as represented by the bystander response, can be enhanced by the use of genetically amenable model organisms. Almost all bystander studies to date have been carried out by using conventional single-cell in vitro systems, which are useful tools to characterize basic cellular and molecular responses. A few studies have been reported in monolayer explants and bystander responses have been also investigated in a three-dimensional normal human tissue system. However, despite the well-know usefulness of in vitro models, they cannot capture the complexity of radiation responses of living systems such as animal models. To carry out in vivo studies on the bystander effect we have developed a new technique to expose living organisms using proton microbeams. We report the use of a nematode C. elegans strain with a Green Fluorescent Protein (GFP) reporter for the hsp-4 heat-shock gene as an in vivo model for radiation studies. Exposing animals to heat and chemicals stressors leads to whole body increases in the hsp-4 protein reflected by enhanced fluorescence. We report here that γ-rays also can induce stress response in a dose dependent manner. However, whole body exposure to stress agents does not allow for evaluation of distance dependent response in non targeted tissues: the so-called bystander effect. We used the RARAF microbeam to site specifically deliver 3 MeV protons to a site in the tail of young worms. GFP expression was enhanced after 24 hours in a number dependent manner at distances > 100 μm from the site of irradiation. (author)

  18. Utilization of ACL Injury Biomechanical and Neuromuscular Risk Profile Analysis to Determine the Effectiveness of Neuromuscular Training.

    Science.gov (United States)

    Hewett, Timothy E; Ford, Kevin R; Xu, Yingying Y; Khoury, Jane; Myer, Gregory D

    2016-12-01

    The widespread use of anterior cruciate ligament (ACL) injury prevention interventions has not been effective in reducing the injury incidence among female athletes who participate in high-risk sports. The purpose of this study was to determine if biomechanical and neuromuscular factors that contribute to the knee abduction moment (KAM), a predictor of future ACL injuries, could be used to characterize athletes by a distinct factor. Specifically, we hypothesized that a priori selected biomechanical and neuromuscular factors would characterize participants into distinct at-risk profiles. Controlled laboratory study. A total of 624 female athletes who participated in jumping, cutting, and pivoting sports underwent testing before their competitive season. During testing, athletes performed drop-jump tasks from which biomechanical measures were captured. Using data from these tasks, latent profile analysis (LPA) was conducted to identify distinct profiles based on preintervention biomechanical and neuromuscular measures. As a validation, we examined whether the profile membership was a significant predictor of the KAM. LPA using 6 preintervention biomechanical measures selected a priori resulted in 3 distinct profiles, including a low (profile 1), moderate (profile 2), and high (profile 3) risk for ACL injuries. Athletes with profiles 2 and 3 had a significantly higher KAM compared with those with profile 1 (P risk profiles. Three distinct risk groups were identified based on differences in the peak KAM. These findings demonstrate the existence of discernable groups of athletes that may benefit from injury prevention interventions. ClinicalTrials.gov NCT identifier: NCT01034527. © 2016 The Author(s).

  19. A case series of re-establishment of neuromuscular block with rocuronium after sugammadex reversal.

    Science.gov (United States)

    Iwasaki, Hajime; Sasakawa, Tomoki; Takahoko, Kenichi; Takagi, Shunichi; Nakatsuka, Hideki; Suzuki, Takahiro; Iwasaki, Hiroshi

    2016-06-01

    We report the use of rocuronium to re-establish neuromuscular block after reversal with sugammadex. The aim of this study was to investigate the relationship between the dose of rocuronium needed to re-establish neuromuscular block and the time interval between sugammadex administration and re-administration of rocuronium. Patients who required re-establishment of neuromuscular block within 12 h after the reversal of rocuronium-induced neuromuscular block with sugammadex were included. After inducing general anesthesia and placing the neuromuscular monitor, the protocol to re-establish neuromuscular block was as follows. An initial rocuronium dose of 0.6 mg/kg was followed by additional 0.3 mg/kg doses every 2 min until train-of-four responses were abolished. A total of 11 patients were enrolled in this study. Intervals between sugammadex and second rocuronium were 12-465 min. Total dose of rocuronium needed to re-establish neuromuscular block was 0.6-1.2 mg/kg. 0.6 mg/kg rocuronium re-established neuromuscular block in all patients who received initial sugammadex more than 3 h previously. However, when the interval between sugammadex and second rocuronium was less than 2 h, more than 0.6 mg/kg rocuronium was necessary to re-establish neuromuscular block.

  20. A description of the life stages of Echinoparyphium elegans ...

    African Journals Online (AJOL)

    The life cycle of Echinoparyphium elegans Looss 1899 is described from the Free State, South Africa.The freshwater snail Bulinus tropicus (Krauss 1848), the intermediate host of Calicophorort microbothrium (Paramphistomum microbothrium Fischoeder, 1901) in this area, serves as first intermediate host. The same snail ...

  1. Histidine protects against zinc and nickel toxicity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    John T Murphy

    2011-03-01

    Full Text Available Zinc is an essential trace element involved in a wide range of biological processes and human diseases. Zinc excess is deleterious, and animals require mechanisms to protect against zinc toxicity. To identify genes that modulate zinc tolerance, we performed a forward genetic screen for Caenorhabditis elegans mutants that were resistant to zinc toxicity. Here we demonstrate that mutations of the C. elegans histidine ammonia lyase (haly-1 gene promote zinc tolerance. C. elegans haly-1 encodes a protein that is homologous to vertebrate HAL, an enzyme that converts histidine to urocanic acid. haly-1 mutant animals displayed elevated levels of histidine, indicating that C. elegans HALY-1 protein is an enzyme involved in histidine catabolism. These results suggest the model that elevated histidine chelates zinc and thereby reduces zinc toxicity. Supporting this hypothesis, we demonstrated that dietary histidine promotes zinc tolerance. Nickel is another metal that binds histidine with high affinity. We demonstrated that haly-1 mutant animals are resistant to nickel toxicity and dietary histidine promotes nickel tolerance in wild-type animals. These studies identify a novel role for haly-1 and histidine in zinc metabolism and may be relevant for other animals.

  2. Proteomic analysis uncovers a metabolic phenotype in C. elegans after

    Czech Academy of Sciences Publication Activity Database

    Pohludka, M.; Šimečková, K.; Vohanka, J.; Yilma, P.; Novák, Petr; Krause, M. W.; Kostrouchová, M.; Kostrouch, Z.

    2008-01-01

    Roč. 374, č. 1 (2008), s. 49-54 ISSN 0006-291X R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50200510 Keywords : nuclear hormone receptors * caenorhabditis elegans * nhr-40 Subject RIV: EE - Microbiology, Virology Impact factor: 2.648, year: 2008

  3. Identification of an estrogenic hormone receptor in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Mimoto, Ai; Fujii, Madoka; Usami, Makoto; Shimamura, Maki; Hirabayashi, Naoko; Kaneko, Takako; Sasagawa, Noboru; Ishiura, Shoichi

    2007-01-01

    Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen

  4. Biophysical and biological meanings of healthspan from C. elegans cohort

    International Nuclear Information System (INIS)

    Suda, Hitoshi

    2014-01-01

    Highlights: • We focus on a third factor, noise, as well as on genetic and environmental factors. • C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. • An amplification of ATP noise was clearly evident from around the onset of biodemographic aging. • The extension of timing of noise amplification may contribute to effectively extending the healthspan. • The same mechanism of the mean lifespan extension in C. elegans may be realized in humans. - Abstract: Lifespan among individuals ranges widely in organisms from yeast to mammals, even in an isogenic cohort born in a nearly uniform environment. Needless to say, genetic and environmental factors are essential for aging and lifespan, but in addition, a third factor or the existence of a stochastic element must be reflected in aging and lifespan. An essential point is that lifespan or aging is an unpredictable phenomenon. The present study focuses on elucidating the biophysical and biological meanings of healthspan that latently indwells a stochastic nature. To perform this purpose, the nematode Caenorhabditis elegans served as a model animal. C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. Then, utilizing this phenomenon, we clarified a mechanism of healthspan extension by measuring the single-worm ATP and estimating the ATP noise (or the variability of the ATP content) among individual worms and by quantitatively analyzing biodemographic data with the lifespan equation that was derived from a fluctuation theory

  5. insights from a linkage map of the damselfly Ischnura elegans

    Indian Academy of Sciences (India)

    tion of achiasmiatic meiosis. Biochem. Genet. 19, 1237–. 1245. Cooper G., Miller P. L. and Holland P. W. H. 1994 Molecular genetic analysis of sperm competition in the damselfly Ischnura elegans (Vander Linden). Proc. R. Soc. London, Ser. B 263,. 1343–1349. Huxley J. S. 1928 Sexual differences in linkage in Gammar-.

  6. Allyl isothiocyanate induced stress response in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Saini AkalRachna K

    2011-11-01

    Full Text Available Abstract Background Allyl isothiocyanate (AITC from mustard is cytotoxic; however the mechanism of its toxicity is unknown. We examined the effects of AITC on heat shock protein (HSP 70 expression in Caenorhabditis elegans. We also examined factors affecting the production of AITC from its precursor, sinigrin, a glucosinolate, in ground Brassica juncea cv. Vulcan seed as mustard has some potential as a biopesticide. Findings An assay to determine the concentration of AITC in ground mustard seed was improved to allow the measurement of AITC release in the first minutes after exposure of ground mustard seed to water. Using this assay, we determined that temperatures above 67°C decreased sinigrin conversion to AITC in hydrated ground B. juncea seed. A pH near 6.0 was found to be necessary for AITC release. RT-qPCR revealed no significant change in HSP70A mRNA expression at low concentrations of AITC ( 1.0 μM resulted in a four- to five-fold increase in expression. A HSP70 ELISA showed that AITC toxicity in C. elegans was ameliorated by the presence of ground seed from low sinigrin B. juncea cv. Arrid. Conclusions • AITC induced toxicity in C. elegans, as measured by HSP70 expression. • Conditions required for the conversion of sinigrin to AITC in ground B. juncea seed were determined. • The use of C. elegans as a bioassay to test AITC or mustard biopesticide efficacy is discussed.

  7. On the growth rate of the foliicolous lichen Strigula elegans

    NARCIS (Netherlands)

    Wilde-Duyfjes, de B.E.E.

    1967-01-01

    The diametral growth rate of the foliicolous lichen Strigula elegans (Fée) Müll. Arg., measured under natural conditions in the African tropical rainforest, has been established to amount to (0.7-)3-3-6(-8) mm annually. As compared to the diametral growth rate of lichens from temperate regions,

  8. Phomalactone from a phytopathogenic fungus infecting Zinnia elegans (Asteraceae) leaves

    Science.gov (United States)

    Zinnia elegans plants are infected by a fungus that causes necrosis with dark red spots particularly in late spring to the middle of summer in the Mid-South part of the United States. This fungal disease when untreated causes the leaves to wilt and eventually kills the plant. The fungus was isolated...

  9. Cell fate determination in the Caenorhabditis elegans epidermal lineages

    NARCIS (Netherlands)

    Soete, G.A.J.

    2007-01-01

    The starting point for this work was to use the hypodermal seam of C. elegans as a model system to study cell fate determination. Even though the seam is a relatively simple developmental system, the mechanisms that control cell fate determination in the seam lineages are connected in a highly

  10. An Elegant Mind: Learning and Memory in "Caenorhabditis elegans"

    Science.gov (United States)

    Ardiel, Evan L.; Rankin, Catharine H.

    2010-01-01

    This article reviews the literature on learning and memory in the soil-dwelling nematode "Caenorhabditis elegans." Paradigms include nonassociative learning, associative learning, and imprinting, as worms have been shown to habituate to mechanical and chemical stimuli, as well as learn the smells, tastes, temperatures, and oxygen levels that…

  11. Biophysical and biological meanings of healthspan from C. elegans cohort

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Hitoshi, E-mail: suda@tsc.u-tokai.ac.jp

    2014-09-12

    Highlights: • We focus on a third factor, noise, as well as on genetic and environmental factors. • C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. • An amplification of ATP noise was clearly evident from around the onset of biodemographic aging. • The extension of timing of noise amplification may contribute to effectively extending the healthspan. • The same mechanism of the mean lifespan extension in C. elegans may be realized in humans. - Abstract: Lifespan among individuals ranges widely in organisms from yeast to mammals, even in an isogenic cohort born in a nearly uniform environment. Needless to say, genetic and environmental factors are essential for aging and lifespan, but in addition, a third factor or the existence of a stochastic element must be reflected in aging and lifespan. An essential point is that lifespan or aging is an unpredictable phenomenon. The present study focuses on elucidating the biophysical and biological meanings of healthspan that latently indwells a stochastic nature. To perform this purpose, the nematode Caenorhabditis elegans served as a model animal. C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. Then, utilizing this phenomenon, we clarified a mechanism of healthspan extension by measuring the single-worm ATP and estimating the ATP noise (or the variability of the ATP content) among individual worms and by quantitatively analyzing biodemographic data with the lifespan equation that was derived from a fluctuation theory.

  12. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans.

    Science.gov (United States)

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J; Saghatelian, Alan; Ausubel, Frederick M

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches.

  13. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Brent Cezairliyan

    2013-01-01

    Full Text Available Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches.

  14. Using Caenorhabditis elegans as a Model for Obesity Pharmacology Development.

    Science.gov (United States)

    Zheng, Jolene; Vasselli, Joseph R; King, Jason F; King, Michael L; We, Wenqian; Fitzpatrick, Zachary; Johnson, William D; Finley, John W; Martin, Roy J; Keenan, Michael J; Enright, Frederic M; Greenway, Frank L

    The Caenorhabditis elegans model is a rapid and inexpensive method to address pharmacologic questions. We describe the use of C. elegans to explore 2 pharmacologic questions concerning candidate antiobesity drugs and illustrate its potential usefulness in pharmacologic research: (1) to determine a ratio of betahistine-olanzapine that blocks the olanzapine-induced intestinal fat deposition (IFD) as detected by Nile red staining and (2) to identify the mechanism of action of a pharmaceutical candidate AB-101 that reduces IFD. Olanzapine (53 μg/mL) increased the IFD (12.1 ± 0.1%, P < 0.02), which was blocked by betahistine (763 μg/mL, 39.3 ± 0.01%, P < 0.05) in wild-type C. elegans (N2). AB-101 (1.0%) reduced the IFD in N2 (P < 0.05), increased the pharyngeal pumping rate (P < 0.05), and reversed the elevated IFD induced by protease inhibitors atazanavir and ritonavir (P < 0.05). AB-101 did not affect IFD in a ACS null mutant strain acs-4(ok2872) III/hT2[bli-4(e937) let-?(q782) qIs48](I;III) suggesting an involvement of the lipid oxidation pathway and an upregulation of CPT-1. Our studies suggest that C. elegans may be used as a resource in pharmacologic research. This article is intended to stimulate a greater appreciation of its value in the development of new pharmaceutical interventions.

  15. Redefining the role of syndecans in C. elegans biology

    DEFF Research Database (Denmark)

    Gopal, Sandeep; Couchman, John; Pocock, Roger

    2016-01-01

    in the activation of several downstream signaling pathways. We identified a previously unappreciated role of syndecans in cytosolic calcium regulation in mammals that is conserved in C. elegans. We concluded that calcium regulation is the basic, evolutionarily conserved role for syndecans, which enables them...

  16. Zebrafish CaV2.1 Calcium Channels Are Tailored for Fast Synchronous Neuromuscular Transmission

    Science.gov (United States)

    Naranjo, David; Wen, Hua; Brehm, Paul

    2015-01-01

    The CaV2.2 (N-type) and CaV2.1 (P/Q-type) voltage-dependent calcium channels are prevalent throughout the nervous system where they mediate synaptic transmission, but the basis for the selective presence at individual synapses still remains an open question. The CaV2.1 channels have been proposed to respond more effectively to brief action potentials (APs), an idea supported by computational modeling. However, the side-by-side comparison of CaV2.1 and CaV2.2 kinetics in intact neurons failed to reveal differences. As an alternative means for direct functional comparison we expressed zebrafish CaV2.1 and CaV2.2 α-subunits, along with their accessory subunits, in HEK293 cells. HEK cells lack calcium currents, thereby circumventing the need for pharmacological inhibition of mixed calcium channel isoforms present in neurons. HEK cells also have a simplified morphology compared to neurons, which improves voltage control. Our measurements revealed faster kinetics and shallower voltage-dependence of activation and deactivation for CaV2.1. Additionally, recordings of calcium current in response to a command waveform based on the motorneuron AP show, directly, more effective activation of CaV2.1. Analysis of calcium currents associated with the AP waveform indicate an approximately fourfold greater open probability (PO) for CaV2.1. The efficient activation of CaV2.1 channels during APs may contribute to the highly reliable transmission at zebrafish neuromuscular junctions. PMID:25650925

  17. Presynaptic membrane receptors in acetylcholine release modulation in the neuromuscular synapse.

    Science.gov (United States)

    Tomàs, Josep; Santafé, Manel M; Garcia, Neus; Lanuza, Maria A; Tomàs, Marta; Besalduch, Núria; Obis, Teresa; Priego, Mercedes; Hurtado, Erica

    2014-05-01

    Over the past few years, we have studied, in the mammalian neuromuscular junction (NMJ), the local involvement in transmitter release of the presynaptic muscarinic ACh autoreceptors (mAChRs), purinergic adenosine autoreceptors (P1Rs), and trophic factor receptors (TFRs; for neurotrophins and trophic cytokines) during development and in the adult. At any given moment, the way in which a synapse works is largely the logical outcome of the confluence of these (and other) metabotropic signalling pathways on intracellular kinases, which phosphorylate protein targets and materialize adaptive changes. We propose an integrated interpretation of the complementary function of these receptors in the adult NMJ. The activity of a given receptor group can modulate a given combination of spontaneous, evoked, and activity-dependent release characteristics. For instance, P1Rs can conserve resources by limiting spontaneous quantal leak of ACh (an A1 R action) and protect synapse function, because stimulation with adenosine reduces the magnitude of depression during repetitive activity. The overall outcome of the mAChRs seems to contribute to upkeep of spontaneous quantal output of ACh, save synapse function by decreasing the extent of evoked release (mainly an M2 action), and reduce depression. We have also identified several links among P1Rs, mAChRs, and TFRs. We found a close dependence between mAChR and some TFRs and observed that the muscarinic group has to operate correctly if the tropomyosin-related kinase B receptor (trkB) is also to operate correctly, and vice versa. Likewise, the functional integrity of mAChRs depends on P1Rs operating normally. Copyright © 2014 Wiley Periodicals, Inc.

  18. The Dissolution of Double Holliday Junctions

    DEFF Research Database (Denmark)

    Bizard, Anna H; Hickson, Ian D

    2014-01-01

    as "double Holliday junction dissolution." This reaction requires the cooperative action of a so-called "dissolvasome" comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding......Double Holliday junctions (dHJS) are important intermediates of homologous recombination. The separate junctions can each be cleaved by DNA structure-selective endonucleases known as Holliday junction resolvases. Alternatively, double Holliday junctions can be processed by a reaction known......) fold containing accessory factor (Rmi1). This review details our current knowledge of the dissolution process and the players involved in catalyzing this mechanistically complex means of completing homologous recombination reactions....

  19. Lipid droplets as ubiquitous fat storage organelles in C. elegans

    Directory of Open Access Journals (Sweden)

    Guo Fengli

    2010-12-01

    Full Text Available Abstract Background Lipid droplets are a class of eukaryotic cell organelles for storage of neutral fat such as triacylglycerol (TAG and cholesterol ester (CE. We and others have recently reported that lysosome-related organelles (LROs are not fat storage structures in the nematode C. elegans. We also reported the formation of enlarged lipid droplets in a class of peroxisomal fatty acid β-oxidation mutants. In the present study, we seek to provide further evidence on the organelle nature and biophysical properties of fat storage structures in wild-type and mutant C. elegans. Results In this study, we provide biochemical, histological and ultrastructural evidence of lipid droplets in wild-type and mutant C. elegans that lack lysosome related organelles (LROs. The formation of lipid droplets and the targeting of BODIPY fatty acid analogs to lipid droplets in live animals are not dependent on lysosomal trafficking or peroxisome dysfunction. However, the targeting of Nile Red to lipid droplets in live animals occurs only in mutants with defective peroxisomes. Nile Red labelled-lipid droplets are characterized by a fluorescence emission spectrum distinct from that of Nile Red labelled-LROs. Moreover, we show that the recently developed post-fix Nile Red staining method labels lipid droplets exclusively. Conclusions Our results demonstrate lipid droplets as ubiquitous fat storage organelles and provide a unified explanation for previous studies on fat labelling methods in C. elegans. These results have important applications to the studies of fat storage and lipid droplet regulation in the powerful genetic system, C. elegans.

  20. Geodynamical simulation of the RRF triple junction

    Science.gov (United States)

    Wang, Z.; Wei, D.; Liu, M.; Shi, Y.; Wang, S.

    2017-12-01

    Triple junction is the point at which three plate boundaries meet. Three plates at the triple junction form a complex geological tectonics, which is a natural laboratory to study the interactions of plates. This work studies a special triple junction, the oceanic transform fault intersects the collinear ridges with different-spreading rates, which is free of influence of ridge-transform faults and nearby hotspots. First, we build 3-D numerical model of this triple junction used to calculate the stead-state velocity and temperature fields resulting from advective and conductive heat transfer. We discuss in detail the influence of the velocity and temperature fields of the triple junction from viscosity, spreading rate of the ridge. The two sides of the oceanic transform fault are different sensitivities to the two factors. And, the influence of the velocity mainly occurs within 200km of the triple junction. Then, we modify the model by adding a ridge-transform fault to above model and directly use the velocity structure of the Macquarie triple junction. The simulation results show that the temperature at both sides of the oceanic transform fault decreases gradually from the triple junction, but the temperature difference between the two sides is a constant about 200°. And, there is little effect of upwelling velocity away from the triple junction 100km. The model results are compared with observational data. The heat flux and thermal topography along the oceanic transform fault of this model are consistent with the observed data of the Macquarie triple junction. The earthquakes are strike slip distributed along the oceanic transform fault. Their depths are also consistent with the zone of maximum shear stress. This work can help us to understand the interactions of plates of triple junctions and help us with the foundation for the future study of triple junctions.

  1. Hysteresis development in superconducting Josephson junctions

    International Nuclear Information System (INIS)

    Refai, T.F.; Shehata, L.N.

    1988-09-01

    The resistively and capacitive shunted junction model is used to investigate hysteresis development in superconducting Josephson junctions. Two empirical formulas that relate the hysteresis width and the quasi-particle diffusion length in terms of the junctions electrical parameters, temperature and frequency are obtained. The obtained formulas provide a simple tool to investigate the full potentials of the hysteresis phenomena. (author). 9 refs, 3 figs

  2. Josephson tunnel junction microwave attenuator

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.

    1993-01-01

    A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc biased...... at different points in the current-voltage characteristic. Both numerical calculations based on the Tien-Gordon theory and 70-GHz microwave experiments have confirmed the wide dynamic range (more than 15-dB attenuation for one stage) and the low insertion loss in the ''open'' state. The performance of a fully...

  3. Loss models for long Josephson junctions

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1984-01-01

    A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement.......A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement....

  4. Harmonic synchronization in resistively coupled Josephson junctions

    International Nuclear Information System (INIS)

    Blackburn, J.A.; Gronbech-Jensen, N.; Smith, H.J.T.

    1994-01-01

    The oscillations of two resistively coupled Josephson junctions biased only by a single dc current source are shown to lock harmonically in a 1:2 mode over a significant range of bias current, even when the junctions are identical. The dependence of this locking on both junction and coupling parameters is examined, and it is found that, for this particular two-junction configuration, 1:1 locking can never occur, and also that a minimum coupling coefficient is needed to support harmonic locking. Some issues related to subharmonic locking are also discussed

  5. Superconducting flux qubits with π-junctions

    International Nuclear Information System (INIS)

    Shcherbakova, Anastasia

    2014-01-01

    In this thesis, we present a fabrication technology of Al/AlO x /Al Josephson junctions on Nb pads. The described technology gives the possibility of combining a variety of Nb-based superconducting circuits, like pi-junction phase-shifters with sub-micron Al/AlO x /Al junctions. Using this approach, we fabricated hybrid Nb/Al flux qubits with and without the SFS-junctions and studied dispersive magnetic field response of these qubits as well as their spectroscopy characteristics.

  6. Improvement of neuromuscular synaptic phenotypes without enhanced survival and motor function in severe spinal muscular atrophy mice selectively rescued in motor neurons.

    Directory of Open Access Journals (Sweden)

    Ximena Paez-Colasante

    Full Text Available In the inherited childhood neuromuscular disease spinal muscular atrophy (SMA, lower motor neuron death and severe muscle weakness result from the reduction of the ubiquitously expressed protein survival of motor neuron (SMN. Although SMA mice recapitulate many features of the human disease, it has remained unclear if their short lifespan and motor weakness are primarily due to cell-autonomous defects in motor neurons. Using Hb9(Cre as a driver, we selectively raised SMN expression in motor neurons in conditional SMAΔ7 mice. Unlike a previous study that used choline acetyltransferase (ChAT(Cre+ as a driver on the same mice, and another report that used Hb9(Cre as a driver on a different line of conditional SMA mice, we found no improvement in survival, weight, motor behavior and presynaptic neurofilament accumulation. However, like in ChAT(Cre+ mice, we detected rescue of endplate size and mitigation of neuromuscular junction (NMJ denervation status. The rescue of endplate size occurred in the absence of an increase in myofiber size, suggesting endplate size is determined by the motor neuron in these animals. Real time-PCR showed that the expression of spinal cord SMN transcript was sharply reduced in Hb9(Cre+ SMA mice relative to ChAT(Cre+ SMA mice. This suggests that our lack of overall phenotypic improvement is most likely due to an unexpectedly poor recombination efficiency driven by Hb9(Cre . Nonetheless, the low levels of SMN were sufficient to rescue two NMJ structural parameters indicating that these motor neuron cell autonomous phenotypes are very sensitive to changes in motoneuronal SMN levels. Our results directly suggest that even those therapeutic interventions with very modest effects in raising SMN in motor neurons may provide mitigation of neuromuscular phenotypes in SMA patients.

  7. An atlas of Caenorhabditis elegans chemoreceptor expression.

    Directory of Open Access Journals (Sweden)

    Berta Vidal

    2018-01-01

    Full Text Available One goal of modern day neuroscience is the establishment of molecular maps that assign unique features to individual neuron types. Such maps provide important starting points for neuron classification, for functional analysis, and for developmental studies aimed at defining the molecular mechanisms of neuron identity acquisition and neuron identity diversification. In this resource paper, we describe a nervous system-wide map of the potential expression sites of 244 members of the largest gene family in the C. elegans genome, rhodopsin-like (class A G-protein-coupled receptor (GPCR chemoreceptors, using classic gfp reporter gene technology. We cover representatives of all sequence families of chemoreceptor GPCRs, some of which were previously entirely uncharacterized. Most reporters are expressed in a very restricted number of cells, often just in single cells. We assign GPCR reporter expression to all but two of the 37 sensory neuron classes of the sex-shared, core nervous system. Some sensory neurons express a very small number of receptors, while others, particularly nociceptive neurons, coexpress several dozen GPCR reporter genes. GPCR reporters are also expressed in a wide range of inter- and motorneurons, as well as non-neuronal cells, suggesting that GPCRs may constitute receptors not just for environmental signals, but also for internal cues. We observe only one notable, frequent association of coexpression patterns, namely in one nociceptive amphid (ASH and two nociceptive phasmid sensory neurons (PHA, PHB. We identified GPCRs with sexually dimorphic expression and several GPCR reporters that are expressed in a left/right asymmetric manner. We identified a substantial degree of GPCR expression plasticity; particularly in the context of the environmentally-induced dauer diapause stage when one third of all tested GPCRs alter the cellular specificity of their expression within and outside the nervous system. Intriguingly, in a number of

  8. Cellular localization of the atypical isoforms of protein kinase C (aPKCζ/PKMζ and aPKCλ/ι) on the neuromuscular synapse.

    Science.gov (United States)

    Besalduch, Núria; Lanuza, Maria A; Garcia, Neus; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Priego, Mercedes; Tomàs, Josep

    2013-11-27

    Several classic and novel protein kinase C (PKC) isoforms are selectively distributed in specific cell types of the adult neuromuscular junction (NMJ), in the neuron, glia and muscle components, and are involved in many functions, including neurotransmission. Here, we investigate the presence in this paradigmatic synapse of atypical PKCs, full-length atypical PKC zeta (aPKCζ), its separated catalytic part (PKMζ) and atypical lambda-iota PKC (aPKCλ/ι). High resolution immunohistochemistry was performed using a pan-atypical PKC antibody. Our results show moderate immunolabeling on the three cells (presynaptic motor nerve terminal, teloglial Schwann cell and postsynaptic muscle cell) suggesting the complex involvement of atypical PKCs in synaptic function. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Early reversal of profound rocuronium-induced neuromuscular blockade by sugammadex in a randomized multicenter study - Efficacy, safety, and pharmacokinetics

    NARCIS (Netherlands)

    Sparr, Harald J.; Vermeyen, Karel M.; Beaufort, Anton M.; Rietbergen, Henk; Proost, Johannes H.; Saldien, Vera; Velik-Salchner, Corinna; Wierda, J. Mark K. H.

    Background: Sugammadex reverses the neuromuscular blocking effects of rocuronium by chemical encapsulation. The efficacy, safety, and pharmacokinetics of sugammadex for reversal of profound rocuronium-induced neuromuscular blockade were evaluated. Methods: Ninety-eight male adult patients were

  10. Quality of life after surgery for neuromuscular scoliosis

    Directory of Open Access Journals (Sweden)

    Peter Obid

    2013-02-01

    Full Text Available Surgery in patients with neuromuscular scoliosis is associated with a higher rate of complications. It is still controversially discussed whether the patients truly benefit from deformity correction. The purpose of this study is to investigate if the quality of life has been improved and if the patients and their caregivers are satisfied with the results of surgery. This is a retrospective clinical outcome study of 46 patients with neuromuscular scoliosis which were treated with primary stable posterior pedicle screw instrumentation and correction. To achieve fusion only autologous bone was used. Follow up was minimum 2 years and maximum 5 years with an average of 36 months. The patients and/or their caregivers received a questionnaire based on the PEDI (pediatric disability inventory and the GMFS (gross motor function score. The patients (and their caregivers were also asked if the quality of life has improved after surgery. Only 32 of 46 patients answered the questionnaire. The answers showed a high approval-rate regarding the patients satisfaction with the surgery and the improvement of quality of life. The questionnaire could be answered from 1 (I do not agree to 4 (I completely agree. The average agreement to the following statements was: i the quality of life has improved: 3.35; ii I am satisfied with surgery: 3.95; iii the operation has fulfilled my expectations: 3.76. The average age at surgery was 12.7 years. The mean pre-operative cobb-angle of the main curve was 83.1° with a correction post-operatively to a mean of 36.9° and 42.6° at final follow-up. That is an average correction of 56.9%. Although spinal fusion in neuromuscular scoliosis is associated with a higher rate of complications our results show that the patients and their caregivers are satisfied with the operation and the quality of life has improved after surgery.

  11. Neuromuscular activity of Bothrops fonsecai snake venom in vertebrate preparations

    Science.gov (United States)

    Fernandes, Carla T; Giaretta, Vânia MA; Prudêncio, Luiz S; Toledo, Edvana O; da Silva, Igor RF; Collaço, Rita CO; Barbosa, Ana M; Hyslop, Stephen; Rodrigues-Simioni, Léa; Cogo, José C

    2014-01-01

    The neuromuscular activity of venom from Bothrops fonsecai, a lancehead endemic to southeastern Brazil, was investigated. Chick biventer cervicis (CBC) and mouse phrenic nerve-diaphragm (PND) preparations were used for myographic recordings and mouse diaphragm muscle was used for membrane resting potential (RP) and miniature end-plate potential (MEPP) recordings. Creatine kinase release and muscle damage were also assessed. In CBC, venom (40, 80 and 160μg/ml) produced concentration- and time-dependent neuromuscular blockade (50% blockade in 85±9 min and 73±8 min with 80 and 160μg/ml, respectively) and attenuated the contractures to 110μM ACh (78–100% inhibition) and 40mM KCl (45–90% inhibition). The venom-induced decrease in twitch-tension in curarized, directly-stimulated preparations was similar to that in indirectly stimulated preparations. Venom (100 and 200μg/ml) also caused blockade in PND preparations (50% blockade in 94±13 min and 49±8 min with 100 and 200μg/ml, respectively) but did not alter the RP or MEPP amplitude. In CBC, venom caused creatine kinase release and myonecrosis. The venom-induced decrease in twitch-tension and in the contractures to ACh and K+ were abolished by preincubating venom with commercial antivenom. These findings indicate that Bothrops fonsecai venom interferes with neuromuscular transmission essentially through postsynaptic muscle damage that affects responses to ACh and KCl. These actions are effectively prevented by commercial antivenom. PMID:25028603

  12. Running Economy: Neuromuscular and Joint Stiffness Contributions in Trained Runners.

    Science.gov (United States)

    Tam, Nicholas; Tucker, Ross; Santos-Concejero, Jordan; Prins, Danielle; Lamberts, Robert P

    2018-05-29

    It is debated whether running biomechanics make good predictors of running economy, with little known information about the neuromuscular and joint stiffness contributions to economical running gait. The aim of this study was to understand the relationship between certain neuromuscular and spatiotemporal biomechanical factors associated with running economy. Thirty trained runners performed a 6-minute constant-speed running set at 3.3 m∙s -1 , where oxygen consumption was assessed. Overground running trials were also performed at 3.3 m∙s -1 to assess kinematics, kinetics and muscle activity. Spatiotemporal gait variables, joint stiffness, pre-activation and stance phase muscle activity (gluteus medius; rectus femoris (RF); biceps femoris(BF); peroneus longus (PL); tibialis anterior (TA); gastrocnemius lateralis and medius (LG and MG) were variables of specific interest and thus determined. Additionally, pre-activation and ground contact of agonist:antagonist co-activation were calculated. More economical runners presented with short ground contact times (r=0.639, p<0.001) and greater strides frequencies (r=-0.630, p<0.001). Lower ankle and greater knee stiffness were associated with lower oxygen consumption (r=0.527, p=0.007 & r=0.384, p=0.043, respectively). Only LG:TA co-activation during stance were associated with lower oxygen cost of transport (r=0.672, p<0.0001). Greater muscle pre-activation and bi-articular muscle activity during stance were associated with more economical runners. Consequently, trained runners who exhibit greater neuromuscular activation prior to and during ground contact, in turn optimise spatiotemporal variables and joint stiffness, will be the most economical runners.

  13. Neuromuscular Responses to Simulated Brazilian Jiu-Jitsu Fights

    Directory of Open Access Journals (Sweden)

    Corrêa da Silva Bruno Victor

    2014-12-01

    Full Text Available The aim of this study was to investigate the neuromuscular performance responses following successive Brazilian Jiu-Jitsu (BJJ fights. Twenty-three BJJ athletes (age: 26.3 ± 6.3 years; body mass: 79.4 ± 9.7 kg; body height: 1.80 ± 0.1 m undertook 3 simulated BJJ fights (10 min duration each separated by 15 min of rest. Neuromuscular performance was measured by the bench press throw (BPT and vertical counter movement jump (VCMJ tests, assessed before the 1st fight (Pre and after the last one (Post. Blood lactate (LA was measured at Pre, 1 min Post, and 15 min Post fights. Paired t-tests were employed in order to compare the BPT and VCMJ results. One-way ANOVA with Bonferroni post hoc tests were utilized to compare LA responses. The results revealed a significant (p < 0.05 increase in VCMJ performance (40.8 ± 5.5 cm Pre vs. 42.0 ± 5.8 cm Post, but no significant changes in the BPT (814 ± 167 W Pre vs. 835 ± 213 W Post were observed. LA concentration increased significantly (p < 0.05 at Post, both in the 1st min and the 15th min of recovery. We concluded that successive simulated BJJ fights demanded considerable anaerobic contribution of ATP supply, reinforcing the high-intensity intermittent nature of the sport. Nevertheless, no negative impact on acute neuromuscular performance (power was observed.

  14. Advanced Behavioral Analyses Show that the Presence of Food Causes Subtle Changes in C. elegans Movement

    OpenAIRE

    Angstman, Nicholas B.; Frank, Hans-Georg; Schmitz, Christoph

    2016-01-01

    As a widely used and studied model organism, Caenorhabditis elegans worms offer the ability to investigate implications of behavioral change. Although, investigation of C. elegans behavioral traits has been shown, analysis is often narrowed down to measurements based off a single point, and thus cannot pick up on subtle behavioral and morphological changes. In the present study videos were captured of four different C. elegans strains grown in liquid cultures and transferred to NGM-agar plate...

  15. An electrophysiological study on the effects of Pa-1G (a phospholipase A(2)) from the venom of king brown snake, Pseudechis australis, on neuromuscular function.

    Science.gov (United States)

    Fatehi, M; Rowan, E G; Harvey, A L

    2002-01-01

    The effects of Pa-1G, a phospholipase A(2) (PLA(2)) from the venom of the Australian king brown snake (Pseudechis australis) were determined on the release of acetylcholine, muscle resting membrane potential and motor nerve terminal action potential at mouse neuromuscular junction. Intracellular recording from endplate regions of mouse triangularis sterni nerve-muscle preparations revealed that Pa-1G (800 nM) significantly reduced the amplitude of endplate potentials within 10 min exposure. The quantal content of endplate potentials was decreased to 58+/-6% of control after 30 min exposure to 800 nM Pa-1G. The toxin also caused a partial depolarisation of mouse muscle fibres within 60 min exposure. Extracellular recording of action potentials at motor nerve terminals showed that Pa-1G reduced the waveforms associated with both sodium and potassium conductances. To investigate whether this was a direct or indirect effect of the toxin on these ionic currents, whole cell patch clamp experiments were performed using human neuroblastoma (SK-N-SH) cells and B82 mouse fibroblasts stably transfected with rKv1.2. Patch clamp recording experiments confirmed that potassium currents sensitive to alpha-dendrotoxin recorded from B82 cells and sodium currents in SK-N-SH cells were not affected by the toxin. Since neither facilitation of acetylcholine release at mouse neuromuscular junction nor depression of potassium currents in B82 cells has been observed, the apparent blockade of potassium currents at mouse motor nerve endings induced by the toxin is unlikely to be due to a selective block of potassium channels.

  16. The endocannabinoid anandamide regulates the peristaltic reflex by reducing neuro-neuronal and neuro-muscular neurotransmission in ascending myenteric reflex pathways in rats.

    Science.gov (United States)

    Sibaev, Andrei; Yuece, Birol; Allescher, Hans Dieter; Saur, Dieter; Storr, Martin; Kurjak, Manfred

    2014-04-01

    Endocannabinoids (EC) and the cannabinoid-1 (CB1) receptor are involved in the regulation of motility in the gastrointestinal (GI) tract. However, the underlying physiological mechanisms are not completely resolved. The purpose of this work was to study the physiological influence of the endocannabinoid anandamide, the putative endogenous CB1 active cannabinoid, and of the CB1 receptor on ascending peristaltic activity and to identify the involved neuro-neuronal, neuro-muscular and electrophysiological mechanisms. The effects of anandamide and the CB1 receptor antagonist SR141716A were investigated on contractions of the circular smooth muscle of rat ileum and in longitudinal rat ileum segments where the ascending myenteric part of the peristaltic reflex was studied in a newly designed organ bath. Additionally intracellular recordings were performed in ileum and colon. Anandamide significantly reduced cholinergic twitch contractions of ileum smooth muscle whereas SR141716A caused an increase. Anandamide reduced the ascending peristaltic contraction by affecting neuro-neuronal and neuro-muscular neurotransmission. SR141716A showed opposite effects and all anandamide effects were antagonized by SR141716A (1 μM). Anandamide reduced excitatory junction potentials (EJP) and inhibitory junction potentials (IJP), whereas intestinal slow waves were not affected. CB1 receptors regulate force and timing of the intestinal peristaltic reflex and these actions involve interneurons and motor-neurons. The endogenous cannabinoid anandamide mediates these effects by activation of CB1 receptors. The endogenous cannabinoid system is permanently active, suggesting the CB1 receptor being a possible target for the treatment of motility related disorders. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Diagnostics of neuromuscular diseases with the aid of computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Visser, M de; Verbeeten, Jr, B J

    1988-06-04

    In this article the diagnosis of neuromuscular diseases with the aid of computerized tomography is treated. Computerized tomography of skeletal muscles give no information which is pathognomonic for particular diseases. But the technique can be used in the following aspects: to choose a muscle for a biopsy; when it is not possible to examine the function of a muscle, a CT scan can visualize morphological deviations; in the differentiation of muscle hypertrophy and pseudo-hypertrophy. For some cases as Becker-type muscular dystrophy, facioscapulohumeral dystrophy and Kugelberg-Welander type spinal muscular atrophy computerized tomography gives characteristic images. 10 refs.; 6 figs.

  18. Diagnostics of neuromuscular diseases with the aid of computerized tomography

    International Nuclear Information System (INIS)

    Visser, M. de; Verbeeten, B.J. Jr.

    1988-01-01

    In this article the diagnosis of neuromuscular diseases with the aid of computerized tomography is treated. Computerized tomography of skeletal muscles give no information which is pathognomonic for particular diseases. But the technique can be used in the following aspects: to choose a muscle for a biopsy; when it is not possible to examine the function of a muscle, a CT scan can visualize morphological deviations; in the differentiation of muscle hypertrophy and pseudo-hypertrophy. For some cases as Becker-type muscular dystrophy, facioscapulohumeral dystrophy and Kugelberg-Welander type spinal muscular atrophy computerized tomography gives characteristic images. 10 refs.; 6 figs

  19. Cardiac involvement in children with neuro-muscular disorders

    Directory of Open Access Journals (Sweden)

    E. N. Arkhipova

    2015-01-01

    Full Text Available Many inherited neuromuscular disorders include cardiac involvement as a typical clinical feature. Among the most common of them is the group of muscular dystrophies. Dilated cardiomyopathy, ventricular arrhythmias, atrial fibrillations, atrioventricular and intraventricular conduction abnormalities, and sudden cardiac death are well known pathological findings in Duchenne muscular dystrophies, myotonic dystrophy type I and 2, Emery-Dreifuss muscular dystrophies and different types of limb-girdle muscular dystrophies and other disorders. Detection of cardiac pathology in patients with different muscular dystrophies is possible with ECG, echocardiography and cardiovascular magnetic resonance imaging, which are recommended for screening and early cardioprotective treatment.

  20. Preventing Ischial Pressure Ulcers: I. Review of Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Hilton M. Kaplan

    2011-01-01

    Full Text Available Objective: Pressure ulcers (PUs are common and debilitating wounds that arise when immobilized patients cannot shift their weight. Treatment is expensive and recurrence rates are high. Pathophysiological mechanisms include reduced bulk and perfusion of chronically atrophic muscles as well as prolonged occlusion of blood flow to soft tissues from lack of voluntary postural shifting of body weight. This has suggested that PUs might be prevented by reanimating the paralyzed muscles using neuromuscular electrical stimulation (NMES. A review of the published literature over the past 2 decades is detailed.

  1. Resúmenes de los trabajos sobre las Enfermedades Neuromusculares

    OpenAIRE

    Congreso Nacional de Neurología

    2010-01-01

    Las enfermedades neuromusculares constituyen un conjunto de afectaciones que afectan las neuronas motoras periférica, las vías motoras eferentes o los efectores (músculos esqueléticos). Sus manifestaciones clínicas son muy variadas y dependen de la causa y de los niveles de afectación. En este acápite se pueden encontrar los resúmenes de trabajos relacionados con el síndrome de Guillain Barre, polineuropatía diabética, Atrofia Muscular Espinal, Distrofia miotónica y otros todos presentados en...

  2. MRI in neuromuscular disorders; MRT bei neuromuskulaeren Erkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Fischmann, Arne [Klinik St. Anna, Luzern (Switzerland). Inst. fuer Radiologie und Nuklearmedizin; Fischer, Dirk [Kantonsspital Bruderholz (Switzerland)

    2014-03-15

    Neuromuscular disorders are caused by damage of the skeletal muscles or supplying nerves, in many cases due to a genetic defect, resulting in progressive disability, loss of ambulation and often a reduced life expectancy. Previously only supportive care and steroids were available as treatments, but several novel therapies are under development or in clinical trial phase. Muscle imaging can detect specific patterns of involvement and facilitate diagnosis and guide genetic testing. Quantitative MRT can be used to monitor disease progression either to monitor treatment or as a surrogate parameter for clinical trails. Novel imaging sequences can provide insights into disease pathology and muscle metabolism. (orig.)

  3. Sugammadex, a new reversal agent for neuromuscular block induced by rocuronium in the anaesthetized Rhesus monkey.

    NARCIS (Netherlands)

    Boer, H.D. de; Egmond, J. van; Pol, F. van de; Bom, A.; Booij, L.H.D.J.

    2006-01-01

    BACKGROUND: Binding of the steroidal molecule of rocuronium by a cyclodextrin is a new concept for reversal of neuromuscular block. The present study evaluated the ability of Sugammadex Org 25969, a synthetic gamma-cyclodextrin derivative, to reverse constant neuromuscular block of about 90% induced

  4. Reversal of rocuronium-induced profound neuromuscular block by sugammadex in Duchenne muscular dystrophy.

    NARCIS (Netherlands)

    Boer, H.D. de; Egmond, J. van; Booij, L.H.D.J.; Driessen, J.J.

    2009-01-01

    A case is reported in which a child with Duchenne muscular dystrophy received a dose of sugammadex to reverse a rocuronium-induced profound neuromuscular block. Sugammadex is the first selective relaxant binding agent and reverses rocuronium- and vecuronium-induced neuromuscular block. A fast and

  5. A new approach to anesthesia management in myasthenia gravis: reversal of neuromuscular blockade by sugammadex.

    NARCIS (Netherlands)

    Boer, H.D. de; Egmond, J. van; Driessen, J.J.; Booij, L.H.D.J.

    2010-01-01

    A neuromuscular blocking drug (NMBD) induced neuromuscular blockade (NMB) in patients with myasthenia gravis usually dissipates either spontaneously or by administration of neostigmine. We administered sugammadex to a patient with myasthenia gravis to reverse a rocuronium-induced profound NMB. NMBDs

  6. Fatigue in neuromuscular disorders: Focus on Guillain-Barré syndrome and Pompe disease

    NARCIS (Netherlands)

    J.M. de Vries (Juna); M.L.C. Hagemans (Marloes); J.B.J. Bussmann (Hans); A.T. van der Ploeg (Ans); P.A. van Doorn (Pieter)

    2010-01-01

    textabstractFatigue accounts for an important part of the burden experienced by patients with neuromuscular disorders. Substantial high prevalence rates of fatigue are reported in a wide range of neuromuscular disorders, such as Guillain-Barré syndrome and Pompe disease. Fatigue can be subdivided

  7. View of environmental radiation effects from the study of radiation biology in C. elegans

    International Nuclear Information System (INIS)

    Sakashita, Tetsuya

    2011-01-01

    Caenorhabditis (C.) elegans is a non-parasitic soil nematode and is well-known as a unique model organism, because of its complete cell-lineage, nervous network and genome sequences. Also, C. elegans can be easily manipulated in the laboratory. These advantages make C. elegans as a good in vivo model system in the field of radiation biology. Radiation effects in C. elegans have been studied for three decades. Here, I briefly review the current knowledge of the biological effects of ionizing irradiation in C. elegans with a scope of environmental radiation effects. Firstly, basic information of C. elegans as a model organism is described. Secondly, historical view is reported on the study of radiation biology in C. elegans. Thirdly, our research on learning behavior is presented. Finally, an opinion of the use of C. elegans for environmental radiation protection is referred. I believe that C. elegans may be a good promising in vivo model system in the field of environmental radiation biology. (author)

  8. Caenorhabditis elegans Egg-Laying Detection and Behavior Study Using Image Analysis

    Directory of Open Access Journals (Sweden)

    Palm Megan

    2005-01-01

    Full Text Available Egg laying is an important phase of the life cycle of the nematode Caenorhabditis elegans (C. elegans. Previous studies examined egg-laying events manually. This paper presents a method for automatic detection of egg-laying onset using deformable template matching and other morphological image analysis techniques. Some behavioral changes surrounding egg-laying events are also studied. The results demonstrate that the computer vision tools and the algorithm developed here can be effectively used to study C. elegans egg-laying behaviors. The algorithm developed is an essential part of a machine-vision system for C. elegans tracking and behavioral analysis.

  9. The immediate effect of neuromuscular joint facilitation on the rotation of the tibia during walking.

    Science.gov (United States)

    Li, Desheng; Huang, Qiuchen; Huo, Ming; Hiiragi, Yukinobu; Maruyama, Hitoshi

    2017-01-01

    [Purpose] The aim of this study was to investigate the change in tibial rotation during walking among young adults after neuromuscular joint facilitation therapy. [Subjects and Methods] The subjects were twelve healthy young people (6 males, 6 females). A neuromuscular joint facilitation intervention and nonintervention were performed. The interventions were performed one after the other, separated by a 1-week interval. The order of the interventions was completely randomized. The rotation of the tibia during walking was evaluated before and after treatment. [Results] The neuromuscular joint facilitation group demonstrated increased lateral rotation of the tibia in the overall gait cycle and stance phase, and decreased medial rotation of the tibia in the overall gait cycle, stance phase, and swing phase after the neuromuscular joint facilitation intervention. In the control group, there were no significant differences. [Conclusion] These results suggest neuromuscular joint facilitation intervention has an immediate effect on the rotational function of the knee.

  10. Linker-dependent Junction Formation Probability in Single-Molecule Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Pil Sun; Kim, Taekyeong [HankukUniversity of Foreign Studies, Yongin (Korea, Republic of)

    2015-01-15

    We compare the junction formation probabilities of single-molecule junctions with different linker molecules by using a scanning tunneling microscope-based break-junction technique. We found that the junction formation probability varies as SH > SMe > NH2 for the benzene backbone molecule with different types of anchoring groups, through quantitative statistical analysis. These results are attributed to different bonding forces according to the linker groups formed with Au atoms in the electrodes, which is consistent with previous works. Our work allows a better understanding of the contact chemistry in the metal.molecule junction for future molecular electronic devices.

  11. Cavity syncronisation of underdamped Josephson junction arrays

    DEFF Research Database (Denmark)

    Barbara, P.; Filatrella, G.; Lobb, C.

    2003-01-01

    the junctions in the array and an electromagnetic cavity. Here we show that a model of a one-dimensional array of Josephson junctions coupled to a resonator can produce many features of the coherent be havior above threshold, including coherent radiation of power and the shape of the array current...

  12. Functional anatomy of the human ureterovesical junction

    NARCIS (Netherlands)

    Roshani, H.; Dabhoiwala, N. F.; Verbeek, F. J.; Lamers, W. H.

    1996-01-01

    BACKGROUND: The valve function of the ureterovesical-junction (UVJ) is responsible for protection of the low pressure upper urinary tract from the refluxing of urine from the bladder. Controversy about the microanatomy of the human ureterovesical-junction persists. METHODS: Ten (3 male and 7 female)

  13. Spin, Vibrations and Radiation in Superconducting Junctions

    NARCIS (Netherlands)

    Padurariu, C.

    2013-01-01

    This thesis presents the theoretical study of superconducting transport in several devices based on superconducting junctions. The important feature of these devices is that the transport properties of the junction are modified by the interaction with another physical system integrated in the

  14. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the

  15. Multiplication in Silicon p-n Junctions

    DEFF Research Database (Denmark)

    Moll, John L.

    1965-01-01

    Multiplication values were measured in the collector junctions of silicon p-n-p and n-p-n transistors before and after bombardment by 1016 neutrons/cm2. Within experimental error there was no change either in junction fields, as deduced from capacitance measurements, or in multiplication values i...

  16. impairs gap junction function causing congenital cataract

    Indian Academy of Sciences (India)

    Navya

    2017-03-24

    Mar 24, 2017 ... experiment showed a lower dye diffusion distance of Cx46 V44M cells, ... Studies of connexins show that channel gating and permeability .... have found that connexin assembled into gap junction plaques is not soluble in 1% ..... high glucose reduces gap junction activity in microvascular endothelial cells.

  17. impairs gap junction function causing congenital cataract

    Indian Academy of Sciences (India)

    LIJUAN CHEN

    2017-12-20

    Dec 20, 2017 ... showed a lower dye diffusion distance of Cx46 V44M cells, which indicates that the gap junction intercellular ... permeability could be affected by alterations of charged residues of .... bled into gap junction plaques is not soluble in 1% Triton ..... regulation of connexin 43 expression by high glucose reduces.

  18. Fabrication of Josephson Junction without shadow evaporation

    Science.gov (United States)

    Wu, Xian; Ku, Hsiangsheng; Long, Junling; Pappas, David

    We developed a new method of fabricating Josephson Junction (Al/AlOX/Al) without shadow evaporation. Statistics from room temperature junction resistance and measurement of qubits are presented. Unlike the traditional ``Dolan Bridge'' technique, this method requires two individual lithographies and straight evaporations of Al. Argon RF plasma is used to remove native AlOX after the first evaporation, followed by oxidation and second Al evaporation. Junction resistance measured at room temperature shows linear dependence on Pox (oxidation pressure), √{tox} (oxidation time), and inverse proportional to junction area. We have seen 100% yield of qubits made with this method. This method is promising because it eliminates angle dependence during Junction fabrication, facilitates large scale qubits fabrication.

  19. Overlap junctions for high coherence superconducting qubits

    Science.gov (United States)

    Wu, X.; Long, J. L.; Ku, H. S.; Lake, R. E.; Bal, M.; Pappas, D. P.

    2017-07-01

    Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ by Ar plasma before junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.

  20. Quantum synchronization effects in intrinsic Josephson junctions

    International Nuclear Information System (INIS)

    Machida, M.; Kano, T.; Yamada, S.; Okumura, M.; Imamura, T.; Koyama, T.

    2008-01-01

    We investigate quantum dynamics of the superconducting phase in intrinsic Josephson junctions of layered high-T c superconductors motivated by a recent experimental observation for the switching rate enhancement in the low temperature quantum regime. We pay attention to only the capacitive coupling between neighboring junctions and perform large-scale simulations for the Schroedinger equation derived from the Hamiltonian considering the capacitive coupling alone. The simulation focuses on an issue whether the switching of a junction induces those of the other junctions or not. The results reveal that the superconducting phase dynamics show synchronous behavior with increasing the quantum character, e.g., decreasing the junction plane area and effectively the temperature. This is qualitatively consistent with the experimental result

  1. Characterization of Two C. Elegans Homologuses of Oncogenic Inhibitor of Apoptosis Proteins (IAPs) and Identification of Interacting Genes

    National Research Council Canada - National Science Library

    Fraser, Andrew

    2000-01-01

    .... I have previously identified two BIR-containing Proteins (BIRPs) in the nematode worm C. elegans. One of these, BIR-l, appears to play no role in the regulation of programmed cell death in C. elegans...

  2. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.

    Science.gov (United States)

    Bickel, C Scott; Gregory, Chris M; Dean, Jesse C

    2011-10-01

    Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.

  3. Ultrastructural findings in noncompaction prevail with neuromuscular disorders.

    Science.gov (United States)

    Finsterer, Josef; Stöllberger, Claudia

    2013-01-01

    Little is known about the ultrastructural abnormalities of left ventricular hypertrabeculation/noncompaction (LVHT). This literature review aimed to summarize and discuss ultrastructural abnormalities described in LVHT so far. The literature search was conducted via MEDLINE using the search terms 'non-compaction', 'noncompaction', 'left ventricular hypertrabeculation', 'spongy myocardium' in combination with the terms 'ultra-structural', or 'electron microscopy'. Altogether, 11 studies reporting ultrastructural investigations of LVHT were retrieved. In these 11 studies, data on 13 patients with LVHT were presented. Ultrastructural abnormalities found in these study patients were generally nonspecific and included an increase in the number of mitochondria (n = 3), abnormally shaped mitochondria (n = 2), distorted cristae (n = 3), sarcomeric derangement (n = 3), immature cardiomyocytes (n = 1), lipid-like inclusions (n = 1), enlarged interstitial spaces (n = 1), increased interstitial collagen (n = 1), or increased glycogen (n = 1). The morphological abnormalities were most prominent in patients with a neuromuscular disorder like Barth syndrome or mitochondrial myopathy. Only in few patients with LVHT, ultrastructural investigations have been performed so far. Ultrastructural abnormalities in LVHT are nonspecific and most prominent in patients with a neuromuscular disorder. There is a strong need to carry out thorough ultrastructural investigations of LVHT to contribute to the understanding of this still unexplained myocardial abnormality.

  4. Neuromuscular rate of force development deficit in Parkinson disease.

    Science.gov (United States)

    Hammond, Kelley G; Pfeiffer, Ronald F; LeDoux, Mark S; Schilling, Brian K

    2017-06-01

    Bradykinesia and reduced neuromuscular force exist in Parkinson disease. The interpolated twitch technique has been used to evaluate central versus peripheral manifestations of neuromuscular strength in healthy, aging, and athletic populations, as well as moderate to advanced Parkinson disease, but this method has not been used in mild Parkinson disease. This study aimed to evaluate quadriceps femoris rate of force development and quantify potential central and peripheral activation deficits in individuals with Parkinson disease. Nine persons with mild Parkinson Disease (Hoehn & Yahr≤2, Unified Parkinson Disease Rating Scale total score=mean 19.1 (SD 5.0)) and eight age-matched controls were recruited in a cross-sectional investigation. Quadriceps femoris voluntary and stimulated maximal force and rate of force development were evaluated using the interpolated twitch technique. Thirteen participants satisfactorily completed the protocol. Individuals with early Parkinson disease (n=7) had significantly slower voluntary rate of force development (p=0.008; d=1.97) and rate of force development ratio (p=0.004; d=2.18) than controls (n=6). No significant differences were found between groups for all other variables. Persons with mild-to-moderate Parkinson disease display disparities in rate of force development, even without deficits in maximal force. The inability to produce force at a rate comparable to controls is likely a downstream effect of central dysfunction of the motor pathway in Parkinson disease. Copyright © 2017. Published by Elsevier Ltd.

  5. Toward Balance Recovery With Leg Prostheses Using Neuromuscular Model Control

    Science.gov (United States)

    Geyer, Hartmut

    2016-01-01

    Objective Lower limb amputees are at high risk of falling as current prosthetic legs provide only limited functionality for recovering balance after unexpected disturbances. For instance, the most established control method used on powered leg prostheses tracks local joint impedance functions without taking the global function of the leg in balance recovery into account. Here we explore an alternative control policy for powered transfemoral prostheses that considers the global leg function and is based on a neuromuscular model of human locomotion. Methods We adapt this model to describe and simulate an amputee walking with a powered prosthesis using the proposed control, and evaluate the gait robustness when confronted with rough ground and swing leg disturbances. We then implement and partially evaluate the resulting controller on a leg prosthesis prototype worn by a non-amputee user. Results In simulation, the proposed prosthesis control leads to gaits that are more robust than those obtained by the impedance control method. The initial hardware experiments with the prosthesis prototype show that the proposed control reproduces normal walking patterns qualitatively and effectively responds to disturbances in early and late swing. However, the response to mid-swing disturbances neither replicates human responses nor averts falls. Conclusions The neuromuscular model control is a promising alternative to existing prosthesis controls, although further research will need to improve on the initial implementation and determine how well these results transfer to amputee gait. Significance This work provides a potential avenue for future development of control policies that help improve amputee balance recovery. PMID:26315935

  6. [Six-minute walk test in children with neuromuscular disease.

    Science.gov (United States)

    Cruz-Anleu, Israel Didier; Baños-Mejía, Benjamín Omar; Galicia-Amor, Susana

    2013-01-01

    Background: neuromuscular diseases affect the motor unit. When they evolve, respiratory complications are common; the six-minute walk test plays an important role in the assessment of functional capacity. Methods: prospective, transversal, descriptive and observational study. We studied seven children with a variety of neuromuscular diseases and spontaneous ambulation. We tested their lung function, and administered a six-minute walk test and a test of respiratory muscle strength to these children. Results: the age was 9.8 ± 2.4 years. All patients were males. Forced vital capacity decreased in three patients (42.8 %), forced expiratory volume during the first second (2.04 ± 1.4 L) and peak expiratory flow (4.33 ± 3.3 L/s) were normal. The maximum strength of respiratory muscles was less than 60 % of predicted values. The distance covered in the six-minute walk test was lower when compared with healthy controls (29.9 %). Conclusions: the six-minute walk test can be a useful tool in early stages of this disease, since it is easy to perform and well tolerated by the patients.

  7. Effect of salbutamol on neuromuscular function in endurance athletes.

    Science.gov (United States)

    Decorte, Nicolas; Bachasson, Damien; Guinot, Michel; Flore, Patrice; Levy, Patrick; Verges, Samuel; Wuyam, Bernard

    2013-10-01

    The potential ergogenic effects of therapeutic inhaled salbutamol doses in endurance athletes have been controversially discussed for decades. We hypothesized that salbutamol inhalation may increase peripheral muscle contractility, reduce fatigability, and improve force recovery after a localized exercise in endurance athletes. Eleven healthy, nonasthmatic male athletes with high aerobic capacities were recruited to be compared in a double-blinded, randomized crossover study of two dose levels of salbutamol (200 and 800 μg) and a placebo administered by inhalation before a quadriceps fatigue test. Subjects performed an incremental exercise protocol consisting in sets of 10 intermittent isometric contractions starting at 20% of maximum voluntary contraction (MVC) with 10% MVC increment until exhaustion. Femoral nerve magnetic stimulation was used during and after MVC to evaluate neuromuscular fatigue after each set, at task failure, and after 10 and 30 min of recovery. Initial MVC and evoked muscular responses were not modified with salbutamol (P > 0.05). The total number of submaximal contractions until task failure significantly differed between treatments (placebo, 72 ± 7; 200 µg, 78 ± 8; and 800 µg, 82 ± 7; P 0.05). Voluntary activation was unaffected by the fatiguing task and treatments (P > 0.05). Supratherapeutic inhaled doses of β2-agonists increased quadriceps endurance during an incremental and localized fatiguing task in healthy endurance-trained athletes without significant effect on neuromuscular fatigue. Further studies are needed to clarify the underlying mechanisms.

  8. Estimating neuromuscular stimulation within the human torso with Taser stimulus.

    Science.gov (United States)

    Sun, Hongyu; Webster, John G

    2007-11-07

    Designers of electromuscular incapacitation devices need to know efficacy. Which areas of nerve and muscle are stimulated and are these areas adequate to cause incapacitation? This paper focuses on efficacy, which used a torso-sized finite element model with a mesh of about 5 mm. To estimate the neuromuscular regions stimulated by the Taser X26, calculations of electric current density and field strength values with 1 A inserted into the torso using the Utah 3D mesh were made. Field-times-duration values for given Taser stimulation were calculated. Then the region where the motor nerve was stimulated by the Taser was estimated by using a field-times-duration threshold from Reilly (1998 'Applied Bioelectricity: From Electrical Stimulation to Electropathology ' (New York: Springer)). Neuromuscular stimulation occurred up to about 19 cm away from the darts and included the spinal cord. The current density at the heart for dart separation less than 10 cm was smaller than for larger dart separation. Users of finite element computer models will find information for torso models and their creation, meshing and operation.

  9. Neuromuscular compensation mechanisms in vocal fold paralysis and paresis.

    Science.gov (United States)

    Dewan, Karuna; Vahabzadeh-Hagh, Andrew; Soofer, Donna; Chhetri, Dinesh K

    2017-07-01

    Vocal fold paresis and paralysis are common conditions. Treatment options include augmentation laryngoplasty and voice therapy. The optimal management for this condition is unclear. The objective of this study was to assess possible neuromuscular compensation mechanisms that could potentially be used in the treatment of vocal fold paresis and paralysis. In vivo canine model. In an in vivo canine model, we examined three conditions: 1) unilateral right recurrent laryngeal nerve (RLN) paresis and paralysis, 2) unilateral superior laryngeal nerve (SLN) paralysis, and 3) unilateral vagal nerve paresis and paralysis. Phonatory acoustics and aerodynamics were measured in each of these conditions. Effective compensation was defined as improved acoustic and aerodynamic profile. The most effective compensation for all conditions was increasing RLN activation and decreasing glottal gap. Increasing RLN activation increased the percentage of possible phonatory conditions that achieved phonation onset. SLN activation generally led to decreased number of total phonation onset conditions within each category. Differential effects of SLN (cricothyroid [CT] muscle) activation were seen. Ipsilateral SLN activation could compensate for RLN paralysis; normal CT compensated well in unilateral SLN paralysis; and in vagal paresis/paralysis, contralateral SLN and RLN displayed antagonistic relationships. Methods to improve glottal closure should be the primary treatment for large glottal gaps. Neuromuscular compensation is possible for paresis. This study provides insights into possible compensatory mechanisms in vocal fold paresis and paralysis. NA Laryngoscope, 127:1633-1638, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  10. Emerging modalities in dysphagia rehabilitation: neuromuscular electrical stimulation.

    Science.gov (United States)

    Huckabee, Maggie-Lee; Doeltgen, Sebastian

    2007-10-12

    The aim of this review article is to advise the New Zealand medical community about the application of neuromuscular electrical stimulation (NMES) as a treatment for pharyngeal swallowing impairment (dysphagia). NMES in this field of rehabilitation medicine has quickly emerged as a widely used method overseas but has been accompanied by significant controversy. Basic information is provided about the physiologic background of electrical stimulation. The literature reviewed in this manuscript was derived through a computer-assisted search using the biomedical database Medline to identify all relevant articles published until from the initiation of the databases up to January 2007. The reviewers used the following search strategy: [(deglutition disorders OR dysphagia) AND (neuromuscular electrical stimulation OR NMES)]. In addition, the technique of reference tracing was used and very recently published studies known to the authors but not yet included in the database systems were included. This review elucidates not only the substantive potential benefit of this treatment, but also potential key concerns for patient safety and long term outcome. The discussion within the clinical and research communities, especially around the commercially available VitalStim stimulator, is objectively explained.

  11. The Sexual Dimorphism of Dietary Restriction Responsiveness in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Sakiko Honjoh

    2017-12-01

    Full Text Available Organismal lifespan is highly plastic in response to environmental cues, and dietary restriction (DR is the most robust way to extend lifespan in various species. Recent studies have shown that sex also is an important factor for lifespan regulation; however, it remains largely unclear how these two factors, food and sex, interact in lifespan regulation. The nematode Caenorhabditis elegans has two sexes, hermaphrodite and male, and only the hermaphrodites are essential for the short-term succession of the species. Here, we report an extreme sexual dimorphism in the responsiveness to DR in C. elegans; the essential hermaphrodites show marked longevity responses to various forms of DR, but the males show few longevity responses and sustain reproductive ability. Our analysis reveals that the sex determination pathway and the steroid hormone receptor DAF-12 regulate the sex-specific DR responsiveness, integrating sex and environmental cues to determine organismal lifespan.

  12. [Specification of cell destiny in early Caenorhabditis elegans embryo].

    Science.gov (United States)

    Schierenberg, E

    1997-02-01

    Embryogenesis of the nematode Caenorhabditis elegans has been described completely on a cell-by-cell basis and found to be essentially invariant. With this knowledge in hands, micromanipulated embryos and mutants have been analyzed for cell lineage defects and the distribution of specific gene products. The results challenge the classical view of cell-autonomous development in nematodes and indicate that the early embryo of C. elegans is a highly dynamic system. A network of inductive events between neighboring cells is being revealed, which is necessary to assign different developmental programs to blastomeres. In those cases where molecules involved in these cell-cell interactions have been identified, homologies to cell surface receptors, ligands and transcription factors found in other systems have become obvious.

  13. Characterization of mitochondrial thioredoxin reductase from C. elegans

    International Nuclear Information System (INIS)

    Lacey, Brian M.; Hondal, Robert J.

    2006-01-01

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k cat of 610 min -1 and a K m of 610 μM using E. coli thioredoxin as substrate. The reported k cat is 25% of the k cat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate

  14. X-ray inactivation of Caenorhabditis elegans embryos or larvae

    Energy Technology Data Exchange (ETDEWEB)

    Ishi, N; Suzuki, K [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine

    1990-11-01

    The lethal effects of X-irradiation were examined in staged populations of Caenorhabditis elegans embryos or larvae. Radiation resistance decreased slightly throughout the first, proliferative phase of embryogenesis. This might be due to the increase in target size, since most cells in C. elegans are autonomously determined. Animals irradiated in the second half of embryogenesis were about 40-fold more resistant to the lethal effects of X-rays. This is probably due to the absence of cell divisions during this time. The radiation resistance increased still more with advancing larval stages. A radiation hypersensitive mutant, rad-1, irradiated in the first half of embryogenesis, is about 30-fold more sensitive than wild-type, but in the second half it is the same as wild-type. (author).

  15. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement

  16. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions

    International Nuclear Information System (INIS)

    Xiao-Lan, Kong; Yong-Jian, Xiong

    2010-01-01

    We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction

  17. Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand?

    OpenAIRE

    Gjorgjieva, Julijana; Biron, David; Haspel, Gal

    2014-01-01

    Animals use a nervous system for locomotion in some stage of their life cycle. The nematode Caenorhabditis elegans, a major animal model for almost all fields of experimental biology, has long been used for detailed studies of genetic and physiological locomotion mechanisms. Of its 959 somatic cells, 302 are neurons that are identifiable by lineage, location, morphology, and neurochemistry in every adult hermaphrodite. Of those, 75 motoneurons innervate body wall muscles that provide the thru...

  18. Chemotaxis-defective mutants of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Dusenbery, D B; Sheridan, R E; Russell, R L

    1975-06-01

    The technique of countercurrent separation has been used to isolate 17 independent chemotaxis-defective mutants of the nematode Caenorhabditis elegans. The mutants, selected to be relatively insensitive to the normally attractive salt NaCl, show varying degrees of residual sensitivity; some are actually weakly repelled by NaCl. The mutants are due to single gene defects, are autosomal and recessive, and identify at least five complementation groups.

  19. Antifungal chemical compounds identified using a C. elegans pathogenicity assay.

    Directory of Open Access Journals (Sweden)

    Julia Breger

    2007-02-01

    Full Text Available There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also involved in nematode killing. We devised a Candida-mediated C. elegans assay that allows high-throughput in vivo screening of chemical libraries for antifungal activities, while synchronously screening against toxic compounds. The assay is performed in liquid media using standard 96-well plate technology and allows the study of C. albicans in non-planktonic form. A screen of 1,266 compounds with known pharmaceutical activities identified 15 (approximately 1.2% that prolonged survival of C. albicans-infected nematodes and inhibited in vivo filamentation of C. albicans. Two compounds identified in the screen, caffeic acid phenethyl ester, a major active component of honeybee propolis, and the fluoroquinolone agent enoxacin exhibited antifungal activity in a murine model of candidiasis. The whole-animal C. elegans assay may help to study the molecular basis of C. albicans pathogenesis and identify antifungal compounds that most likely would not be identified by in vitro screens that target fungal growth. Compounds identified in the screen that affect the virulence of Candida in vivo can potentially be used as "probe compounds" and may have antifungal activity against other fungi.

  20. A maternal-effect genetic incompatibility in Caenorhabditis elegans

    OpenAIRE

    Burga, Alejandro; Ben-David, Eyal; Kruglyak, Leonid

    2017-01-01

    Selfish genetic elements spread in natural populations and have an important role in genome evolution. We discovered a selfish element causing a genetic incompatibility between strains of the nematode Caenorhabditis elegans . The element is made up of sup-35 , a maternal-effect toxin that kills developing embryos, and pha-1 , its zygotically expressed antidote. pha-1 has long been considered essential for pharynx development based on its mutant phenotype, but this phenotype in fact arises fro...

  1. Spaceflight and ageing: reflecting on Caenorhabditis elegans in space.

    Science.gov (United States)

    Honda, Yoko; Honda, Shuji; Narici, Marco; Szewczyk, Nathaniel J

    2014-01-01

    The prospect of space travel continues to capture the imagination. Several competing companies are now promising flights for the general population. Previously, it was recognized that many of the physiological changes that occur with spaceflight are similar to those seen with normal ageing. This led to the notion that spaceflight can be used as a model of accelerated ageing and raised concerns about the safety of individuals engaging in space travel. Paradoxically, however, space travel has been recently shown to be beneficial to some aspects of muscle health in the tiny worm Caenorhabditis elegans. C. elegans is a commonly used laboratory animal for studying ageing. C. elegans displays age-related decline of some biological processes observed in ageing humans, and about 35% of C. elegans' genes have human homologs. Space flown worms were found to have decreased expression of a number of genes that increase lifespan when expressed at lower levels. These changes were accompanied by decreased accumulation of toxic protein aggregates in ageing worms' muscles. Thus, in addition to spaceflight producing physiological changes that are similar to accelerated ageing, it also appears to produce some changes similar to delayed ageing. Here, we put forward the hypothesis that in addition to the previously well-appreciated mechanotransduction changes, neural and endocrine signals are altered in response to spaceflight and that these may have both negative (e.g. less muscle protein) and some positive consequences (e.g. healthier muscles), at least for invertebrates, with respect to health in space. Given that changes in circulating hormones are well documented with age and in astronauts, our view is that further research into the relationship between metabolic control, ageing, and adaptation to the environment should be productive in advancing our understanding of the physiology of both spaceflight and ageing.

  2. A mutational analysis of Caenorhabditis elegans in space

    International Nuclear Information System (INIS)

    Zhao Yang; Lai, Kenneth; Cheung, Iris; Youds, Jillian; Tarailo, Maja; Tarailo, Sanja; Rose, Ann

    2006-01-01

    The International Caenorhabditis elegans Experiment First Flight (ICE-First) was a project using C. elegans as a model organism to study the biological effects of short duration spaceflight (11 days in the International Space Station). As a member of the ICE-First research team, our group focused on the mutational effects of spaceflight. Several approaches were taken to measure mutational changes that occurred during the spaceflight including measurement of the integrity of poly-G/poly-C tracts, determination of the mutation frequency in the unc-22 gene, analysis of lethal mutations captured by the genetic balancer eT1(III;V), and identification of alterations in telomere length. By comparing the efficiency, sensitivity, and convenience of these methods, we deduced that the eT1 balancer system is well-suited for capturing, maintaining and recovering mutational events that occur over several generations during spaceflight. In the course of this experiment, we have extended the usefulness of the eT1 balancer system by identifying the physical breakpoints of the eT1 translocation and have developed a PCR assay to follow the eT1 chromosomes. C. elegans animals were grown in a defined liquid media during the spaceflight. This is the first analysis of genetic changes in C. elegans grown in the defined media. Although no significant difference in mutation rate was detected between spaceflight and control samples, which is not surprising given the short duration of the spaceflight, we demonstrate here the utility of worms as an integrating biological dosimeter for spaceflight

  3. A mutational analysis of Caenorhabditis elegans in space

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yang [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Lai, Kenneth [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Cheung, Iris [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Youds, Jillian [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Tarailo, Maja [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Tarailo, Sanja [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Rose, Ann [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada)]. E-mail: arose@gene.nce.ubc.ca

    2006-10-10

    The International Caenorhabditis elegans Experiment First Flight (ICE-First) was a project using C. elegans as a model organism to study the biological effects of short duration spaceflight (11 days in the International Space Station). As a member of the ICE-First research team, our group focused on the mutational effects of spaceflight. Several approaches were taken to measure mutational changes that occurred during the spaceflight including measurement of the integrity of poly-G/poly-C tracts, determination of the mutation frequency in the unc-22 gene, analysis of lethal mutations captured by the genetic balancer eT1(III;V), and identification of alterations in telomere length. By comparing the efficiency, sensitivity, and convenience of these methods, we deduced that the eT1 balancer system is well-suited for capturing, maintaining and recovering mutational events that occur over several generations during spaceflight. In the course of this experiment, we have extended the usefulness of the eT1 balancer system by identifying the physical breakpoints of the eT1 translocation and have developed a PCR assay to follow the eT1 chromosomes. C. elegans animals were grown in a defined liquid media during the spaceflight. This is the first analysis of genetic changes in C. elegans grown in the defined media. Although no significant difference in mutation rate was detected between spaceflight and control samples, which is not surprising given the short duration of the spaceflight, we demonstrate here the utility of worms as an integrating biological dosimeter for spaceflight.

  4. Optically Highlighting Basement Membrane Components in C. elegans

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Elliott Hagedorn & David Sherwood ### Abstract Green fluorescent protein (GFP) and other genetically encoded fluorescent proteins provide a means to study gene expression pattern and protein localization in living tissues. Recently discovered GFP-like fluorophores and engineered variants have further expanded the fluorescent protein toolkit for in vivo imaging. Here we describe a technique using transgenic C. elegans that contain laminin or type IV collagen fused to the green...

  5. Agrin-LRP4-MuSK signaling as a therapeutic target for myasthenia gravis and other neuromuscular disorders.

    Science.gov (United States)

    Ohno, Kinji; Ohkawara, Bisei; Ito, Mikako

    2017-10-01

    Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including myasthenia gravis, Lambert-Eaton myasthenic syndrome, Isaacs' syndrome, congenital myasthenic syndromes, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. Except for sarcopenia, all are orphan diseases. In addition, the NMJ signal transduction is impaired by tetanus, botulinum, curare, α-bungarotoxin, conotoxins, organophosphate, sarin, VX, and soman to name a few. Areas covered: This review covers the agrin-LRP4-MuSK signaling pathway, which drives clustering of acetylcholine receptors (AChRs) and ensures efficient signal transduction at the NMJ. We also address diseases caused by autoantibodies against the NMJ molecules and by germline mutations in genes encoding the NMJ molecules. Expert opinion: Representative small compounds to treat the defective NMJ signal transduction are cholinesterase inhibitors, which exert their effects by increasing the amount of acetylcholine at the synaptic space. Another possible therapeutic strategy to enhance the NMJ signal transduction is to increase the number of AChRs, but no currently available drug has this functionality.

  6. Differential expression pattern of UBX family genes in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Yamauchi, Seiji; Sasagawa, Yohei; Ogura, Teru; Yamanaka, Kunitoshi

    2007-01-01

    UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics in their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated

  7. Courtship herding in the fiddler crab Uca elegans.

    Science.gov (United States)

    How, Martin J; Hemmi, Jan M

    2008-12-01

    Male and female animals are not always complicit during reproduction, giving rise to coercion. One example of a system that is assumed to involve sexual coercion is the mate herding behaviour of fiddler crabs: males push females towards the home burrow with the goal of forcing copulation at the burrow entrance. We recorded and analysed in detail the courtship behaviour of a North Australian species of fiddler crab Uca elegans. Courtship was composed of four main phases: broadcast waving, outward run, herding and at burrow display. During interactions males produced claw-waving displays which were directed posteriorly towards the female and which varied in timing and structure depending on the courtship phase. We suggest that courtship herding in U. elegans is driven primarily by mate choice for the following reasons, (1) females can evade herding, (2) no other reproductive strategies were observed, (3) males broadcast their presence and accompany courtship with conspicuous claw waves, and (4) the behaviour ends with the female leading the male into the home burrow. As an alternative function for herding in U. elegans we suggest that the behaviour represents a form of courtship guiding, in which males direct complicit females to the correct home burrow.

  8. Dietary regulation of hypodermal polyploidization in C. elegans

    Directory of Open Access Journals (Sweden)

    Lozano Encarnación

    2008-03-01

    Full Text Available Abstract Background Dietary restriction (DR results in increased longevity, reduced fecundity and reduced growth in many organisms. Though many studies have examined the effects of DR on longevity and fecundity, few have investigated the effects on growth. Results Here we use Caenorhabditis elegans to determine the mechanisms that regulate growth under DR. We show that rather than a reduction in cell number, decreased growth in wild type C. elegans under DR is correlated with lower levels of hypodermal polyploidization. We also show that mutants lacking wild type sensory ciliated neurons are small, exhibit hypo-polyploidization and more importantly, when grown under DR, reduce their levels of endoreduplication to a lesser extent than wild type, suggesting that these neurons are required for the regulation of hypodermal polyploidization in response to DR. Similarly, we also show that the cGMP-dependent protein kinase EGL-4 and the SMA/MAB signalling pathway regulate polyploidization under DR. Conclusion We show C. elegans is capable of actively responding to food levels to regulate adult ploidy. We suggest this response is dependent on the SMA/MAB signalling pathway.

  9. Dietary regulation of hypodermal polyploidization in C. elegans.

    Science.gov (United States)

    Tain, Luke S; Lozano, Encarnación; Sáez, Alberto G; Leroi, Armand M

    2008-03-12

    Dietary restriction (DR) results in increased longevity, reduced fecundity and reduced growth in many organisms. Though many studies have examined the effects of DR on longevity and fecundity, few have investigated the effects on growth. Here we use Caenorhabditis elegans to determine the mechanisms that regulate growth under DR. We show that rather than a reduction in cell number, decreased growth in wild type C. elegans under DR is correlated with lower levels of hypodermal polyploidization. We also show that mutants lacking wild type sensory ciliated neurons are small, exhibit hypo-polyploidization and more importantly, when grown under DR, reduce their levels of endoreduplication to a lesser extent than wild type, suggesting that these neurons are required for the regulation of hypodermal polyploidization in response to DR. Similarly, we also show that the cGMP-dependent protein kinase EGL-4 and the SMA/MAB signalling pathway regulate polyploidization under DR. We show C. elegans is capable of actively responding to food levels to regulate adult ploidy. We suggest this response is dependent on the SMA/MAB signalling pathway.

  10. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Yinxia Li

    Full Text Available Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  11. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    Science.gov (United States)

    Li, Yinxia; Zhao, Yunli; Huang, Xu; Lin, Xingfeng; Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  12. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.

    Science.gov (United States)

    Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej

    2017-10-01

    Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.

  13. Tat-mediated protein delivery in living Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Delom, Frederic; Fessart, Delphine; Caruso, Marie-Elaine; Chevet, Eric

    2007-01-01

    The Tat protein from HIV-1 fused with heterologous proteins traverses biological membranes in a transcellular process called: protein transduction. This has already been successfully exploited in various biological models, but never in the nematode worm Caenorhabditis elegans. TAT-eGFP or GST-eGFP proteins were fed to C. elegans worms, which resulted in the specific localization of Tat-eGFP to epithelial intestinal cells. This system represents an efficient tool for transcellular transduction in C. elegans intestinal cells. Indeed, this approach avoids the use of tedious purification steps to purify the TAT fusion proteins and allows for rapid analyses of the transduced proteins. In addition, it may represent an efficient tool to functionally analyze the mechanisms of protein transduction as well as to complement RNAi/KO in the epithelial intestinal system. To sum up, the advantage of this technology is to combine the potential of bacterial expression system and the Tat-mediated transduction technique in living worm

  14. Function and regulation of lipid biology in Caenorhabditis elegans aging

    Directory of Open Access Journals (Sweden)

    Nicole Shangming Hou

    2012-05-01

    Full Text Available Rapidly expanding aging populations and a concomitant increase in the prevalence of age-related diseases are global health problems today. Over the past three decades, a large body of work has led to the identification of genes and regulatory networks that affect longevity and health span, often benefitting from the tremendous power of genetics in vertebrate and invertebrate model organisms. Interestingly, many of these factors appear linked to lipids, important molecules that participate in cellular signaling, energy metabolism, and structural compartmentalization. Despite the putative link between lipids and longevity, the role of lipids in aging remains poorly understood. Emerging data from the model organism Caenorhabditis elegans suggest that lipid composition may change during aging, as several pathways that influence aging also regulate lipid metabolism enzymes; moreover, some of these enzymes apparently play key roles in the pathways that affect the rate of aging. By understanding how lipid biology is regulated during C. elegans aging, and how it impacts molecular, cellular and organismal function, we may gain insight into novel ways to delay aging using genetic or pharmacological interventions. In the present review we discuss recent insights into the roles of lipids in C. elegans aging, including regulatory roles played by lipids themselves, the regulation of lipid metabolic enzymes, and the roles of lipid metabolism genes in the pathways that affect aging.

  15. Serotonin Control of Thermotaxis Memory Behavior in Nematode Caenorhabditis elegans

    Science.gov (United States)

    Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans. PMID:24223727

  16. Research progress in neuro-immune interactions in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Jin-ling CAI

    2012-09-01

    Full Text Available The innate immune response may be activated quickly once the organism is invaded by exotic pathogens. An excessive immune response may result in inflammation and tissue damage, whereas an insufficient immune response may result in infection. Nervous system may regulate the intensity of innate immune responses by releasing neurotransmitters, neuropeptides and hormones. Compared with the complicated neuro-immune system in mammals, it is much simpler in Caenorhabditis elegans. Besides, C. elegans is accessible to genetic, molecular biology and behavioral analyses, so it has been used in studies on neuro-immune interactions. It has been revealed recently in the studies with C. elegans that the neuronal pathways regulating innate immune responses primarily include a transforming growth factor-β (TGF-β pathway, an insulin/insulin-like growth factor receptor (IGF pathway and dopaminergic neurotransmission. Since these pathways are evolutionally conservative, so it might be able to provide some new ideas for the research on neuro-immune interactions at molecular levels. The recent progress in this field has been reviewed in present paper.

  17. Electron optics with ballistic graphene junctions

    Science.gov (United States)

    Chen, Shaowen

    Electrons transmitted across a ballistic semiconductor junction undergo refraction, analogous to light rays across an optical boundary. A pn junction theoretically provides the equivalent of a negative index medium, enabling novel electron optics such as negative refraction and perfect (Veselago) lensing. In graphene, the linear dispersion and zero-gap bandstructure admit highly transparent pn junctions by simple electrostatic gating, which cannot be achieved in conventional semiconductors. Robust demonstration of these effects, however, has not been forthcoming. Here we employ transverse magnetic focusing to probe propagation across an electrostatically defined graphene junction. We find perfect agreement with the predicted Snell's law for electrons, including observation of both positive and negative refraction. Resonant transmission across the pn junction provides a direct measurement of the angle dependent transmission coefficient, and we demonstrate good agreement with theory. Comparing experimental data with simulation reveals the crucial role played by the effective junction width, providing guidance for future device design. Efforts toward sharper pn junction and possibility of zero field Veselago lensing will also be discussed. This work is supported by the Semiconductor Research Corporations NRI Center for Institute for Nanoelectronics Discovery and Exploration (INDEX).

  18. Valley dependent transport in graphene L junction

    Science.gov (United States)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  19. Caenorhabditis elegans, a Biological Model for Research in Toxicology.

    Science.gov (United States)

    Tejeda-Benitez, Lesly; Olivero-Verbel, Jesus

    2016-01-01

    Caenorhabditis elegans is a nematode of microscopic size which, due to its biological characteristics, has been used since the 1970s as a model for research in molecular biology, medicine, pharmacology, and toxicology. It was the first animal whose genome was completely sequenced and has played a key role in the understanding of apoptosis and RNA interference. The transparency of its body, short lifespan, ability to self-fertilize and ease of culture are advantages that make it ideal as a model in toxicology. Due to the fact that some of its biochemical pathways are similar to those of humans, it has been employed in research in several fields. C. elegans' use as a biological model in environmental toxicological assessments allows the determination of multiple endpoints. Some of these utilize the effects on the biological functions of the nematode and others use molecular markers. Endpoints such as lethality, growth, reproduction, and locomotion are the most studied, and usually employ the wild type Bristol N2 strain. Other endpoints use reporter genes, such as green fluorescence protein, driven by regulatory sequences from other genes related to different mechanisms of toxicity, such as heat shock, oxidative stress, CYP system, and metallothioneins among others, allowing the study of gene expression in a manner both rapid and easy. These transgenic strains of C. elegans represent a powerful tool to assess toxicity pathways for mixtures and environmental samples, and their numbers are growing in diversity and selectivity. However, other molecular biology techniques, including DNA microarrays and MicroRNAs have been explored to assess the effects of different toxicants and samples. C. elegans has allowed the assessment of neurotoxic effects for heavy metals and pesticides, among those more frequently studied, as the nematode has a very well defined nervous system. More recently, nanoparticles are emergent pollutants whose toxicity can be explored using this nematode

  20. The Preparation Period in Basketball: Training Load and Neuromuscular Adaptations.

    Science.gov (United States)

    Ferioli, Davide; Bosio, Andrea; Bilsborough, Johann C; Torre, Antonio La; Tornaghi, Michele; Rampinini, Ermanno

    2018-01-18

    To investigate the 1) effect of the preparation period on the neuromuscular characteristics of 12 professional (PRO) and 16 semi-professional (SEMI-PRO) basketball players; 2) relationships between training load indices and changes in neuromuscular physical performance. Prior to and following the preparation period, players underwent a counter-movement jump (CMJ) test, followed by a repeated change of direction (COD) test consisting of 4 levels with increasing intensities. The peripheral neuromuscular functions of the knee extensors (peak torque, PT) were measured using electrical stimulations after each level (PT1, PT2, PT3 and PT4). Furthermore, PT Max (the highest value of PT) and PT Dec (PT decrement from PT Max to PT4) were calculated. Trivial-to-small (effect size, ES: -0.17 to 0.46) improvements were found in CMJ variables, regardless of the competitive levels. After the preparation period, peripheral fatigue induced by a COD test was similarly reduced in both PRO (PT Dec: from 27.8±21.3% to 11.4±13.7%, ES±90%CI= -0.71±0.30) and SEMI-PRO (PT Dec: from 26.1±21.9% to 10.2±8.2%, ES±90%CI= -0.69±0.32). Moderate-to-large relationships were found between session rating of perceived exertion training load and changes in PPO measured during the CMJs (r s ±90%CI: PPOabs, -0.46±0.26; PPOrel, -0.53±0.23) and in some PTs measured during the COD test (PT1, -0.45±0.26; PT2, -0.44±0.26; PT3, -0.40±0.27 and PT Max, -0.38±0.28). Preparation period induced minimal changes in the CMJ, while the ability to sustain repeated COD efforts was improved. Reaching high session rating of perceived exertion training loads might partially and negatively affect the ability to produce strength and power.

  1. Shot noise in YBCO bicrystal Josephson junctions

    DEFF Research Database (Denmark)

    Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.

    2003-01-01

    We measured spectral noise density in YBCO symmetric bicrystal Josephson junctions on sapphire substrates at bias voltages up to 100 mV and T 4.2 K. Normal state resistance of the Josephson junctions, R-N = 20-90 Omega and ICRN up to 2.2 mV have been observed in the experimental samples. Noise...... may explain the experimentally measured linewidth broadening of Josephson oscillations at mm and submm wave frequencies in high-Tc superconducting junctions. Experimental results are discussed in terms of bound states existing at surfaces of d-wave superconducting electrodes....

  2. delta-biased Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, Jesper; Koshelet, V.

    2010-01-01

    Abstract: The behavior of a long Josephson tunnel junction drastically depends on the distribution of the dc bias current. We investigate the case in which the bias current is fed in the central point of a one-dimensional junction. Such junction configuration has been recently used to detect...... the persistent currents circulating in a superconducting loop. Analytical and numerical results indicate that the presence of fractional vortices leads to remarkable differences from the conventional case of uniformly distributed dc bias current. The theoretical findings are supported by detailed measurements...

  3. Parametric frequency conversion in long Josephson junctions

    International Nuclear Information System (INIS)

    Irie, F.; Ashihara, S.; Yoshida, K.

    1976-01-01

    Current steps at voltages corresponding to the parametric coupling between an applied r.f. field and junction resonant modes have been observed in long Josephson tunnel junctions in the flux-flow state. The observed periodic variations of the step height due to the applied magnetic field are explained quantitatively by a perturbational analysis using Josephson phase equations. The present study demonstrates that the moving vortex array can serve as a coherent pump wave for signal waves propagating in the barrier region, which indicates, as a result, the possibility of traveling-wave parametric devices with long Josephson tunnel junctions. (author)

  4. On-Demand Isolation and Manipulation of C. elegans by In Vitro Maskless Photopatterning.

    Directory of Open Access Journals (Sweden)

    C Ryan Oliver

    Full Text Available Caenorhabditis elegans (C. elegans is a model organism for understanding aging and studying animal behavior. Microfluidic assay techniques have brought widespread advances in C. elegans research; however, traditional microfluidic assays such as those based on soft lithography require time-consuming design and fabrication cycles and offer limited flexibility in changing the geometric environment during experimentation. We present a technique for maskless photopatterning of a biocompatible hydrogel on an NGM (Agar substrate, enabling dynamic manipulation of the C. elegans culture environment in vitro. Maskless photopatterning is performed using a projector-based microscope system largely built from off-the-shelf components. We demonstrate the capabilities of this technique by building micropillar arrays during C. elegans observation, by fabricating free-floating mechanisms that can be actuated by C. elegans motion, by using freehand drawing to isolate individual C. elegans in real time, and by patterning arrays of mazes for isolation and fitness testing of C. elegans populations. In vitro photopatterning enables rapid and flexible design of experiment geometry as well as real-time interaction between the researcher and the assay such as by sequential isolation of individual organisms. Future adoption of image analysis and machine learning techniques could be used to acquire large datasets and automatically adapt the assay geometry.

  5. Characterization and expression of calmodulin gene during larval settlement and metamorphosis of the polychaete Hydroides elegans

    KAUST Repository

    Chen, Zhangfan; Wang, Hao; Qian, Peiyuan

    2012-01-01

    multifunctional calcium metabolism regulator, in the larval settlement and metamorphosis of . H. elegans. A full-length . CaM cDNA was successfully cloned from . H. elegans (. He-CaM) and it contained an open reading frame of 450. bp, encoding 149 amino acid

  6. Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"

    Science.gov (United States)

    Amano, Hisayuki; Maruyama, Ichiro N.

    2011-01-01

    The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…

  7. Selenite protects Caenorhabditis elegans from oxidative stress via DAF-16 and TRXR-1.

    Science.gov (United States)

    Li, Wen-Hsuan; Shi, Yeu-Ching; Chang, Chun-Han; Huang, Chi-Wei; Hsiu-Chuan Liao, Vivian

    2014-04-01

    Selenium is an essential micronutrient. In the present study, trace amount of selenite (0.01 μM) was evaluated for oxidative stress resistance and potential associated factors in Caenorhabditis elegans. Selenite-treated C. elegans showed an increased survival under oxidative stress and thermal stress compared to untreated controls. Further studies demonstrated that the significant stress resistance of selenite on C. elegans could be attributed to its in vivo free radical-scavenging ability. We also found that the oxidative and thermal stress resistance phenotypes by selenite were absent from the forkhead transcription factor daf-16 mutant worms. Moreover, selenite influenced the subcellular distribution of DAF-16 in C. elegans. Furthermore, selenite increased mRNA levels of stress-resistance-related proteins, including superoxide dismutase-3 and heat shock protein-16.2. Additionally, selenite (0.01 μM) upregulated expressions of transgenic C. elegans carrying sod-3::green fluorescent protein (GFP) and hsp-16.2::GFP, whereas this effect was abolished by feeding daf-16 RNA interference in C. elegans. Finally, unlike the wild-type N2 worms, the oxidative stress resistance phenotypes by selenite were both absent from the C. elegans selenoprotein trxr-1 mutant worms and trxr-1 mutants feeding with daf-16 RNA interference. These findings suggest that the antioxidant effects of selenite in C. elegans are mediated via DAF-16 and TRXR-1. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Tissue Specific Roles of Dynein Light Chain 1 in Regulating Germ Cell Apoptosis in Ceanorhabditis elegans

    DEFF Research Database (Denmark)

    Morthorst, Tine Hørning

    2015-01-01

    in the etiology of many diseases, including cancer, neurodegenerative, cardiovascular and autoimmune diseases. Several of the first genes found to regulate apoptosis were discovered in the nematode Caenorhabditis elegans. In this project, two different and tissue specific roles of C. elegans dynein light chain 1...

  9. In vivo visualization and quantification of mitochondrial morphology in C. elegans

    NARCIS (Netherlands)

    Smith, R.L.; De Vos, W.H.; de Boer, R.; Manders, E.M.M.; van der Spek, H.; Weissig, V.; Edeas, M.

    2015-01-01

    Caenorhabditis elegans is a highly malleable model system, intensively used for functional, genetic, cytometric, and integrative studies. Due to its simplicity and large muscle cell number, C. elegans has frequently been used to study mitochondrial deficiencies caused by disease or drug toxicity.

  10. Multiple sensory G proteins in the olfactory, gustatory and nociceptive neurons modulate longevity in Caenorhabditis elegans

    NARCIS (Netherlands)

    H. Lans (Hannes); G. Jansen (Gert)

    2007-01-01

    textabstractThe life span of the nematode Caenorhabditis elegans is under control of sensory signals detected by the amphid neurons. In these neurons, C. elegans expresses at least 13 Galpha subunits and a Ggamma subunit, which are involved in the transduction and modulation of sensory signals.

  11. Caenorhabditis elegans as a Model for Toxic Effects of Nanoparticles: Lethality, Growth, and Reproduction.

    Science.gov (United States)

    Maurer, Laura L; Ryde, Ian T; Yang, Xinyu; Meyer, Joel N

    2015-11-02

    The nematode Caenorhabditis elegans is extensively utilized in toxicity studies. C. elegans offers a high degree of homology with higher organisms, and its ease of use and relatively inexpensive maintenance have made it an attractive complement to mammalian and ecotoxicological models. C. elegans provides multiple benefits, including the opportunity to perform relatively high-throughput assays on whole organisms, a wide range of genetic tools permitting investigation of mechanisms and genetic sensitivity, and transparent bodies that facilitate toxicokinetic studies. This unit describes protocols for three nanotoxicity assays in C. elegans: lethality, growth, and reproduction. This unit focuses on how to use these well-established assays with nanoparticles, which are being produced in ever-increasing volume and exhibit physicochemical properties that require alteration of standard toxicity assays. These assays permit a broad phenotypic assessment of nanotoxicity in C. elegans, and, when used in combination with genetic tools and other assays, also permit mechanistic insight. Copyright © 2015 John Wiley & Sons, Inc.

  12. The ETS-5 transcription factor regulates activity states in Caenorhabditis elegans by controlling satiety

    DEFF Research Database (Denmark)

    Juozaityte, Vaida; Pladevall-Morera, David; Podolska, Agnieszka

    2017-01-01

    Animal behavior is shaped through interplay among genes, the environment, and previous experience. As in mammals, satiety signals induce quiescence in Caenorhabditis elegans Here we report that the C. elegans transcription factor ETS-5, an ortholog of mammalian FEV/Pet1, controls satiety......-induced quiescence. Nutritional status has a major influence on C. elegans behavior. When foraging, food availability controls behavioral state switching between active (roaming) and sedentary (dwelling) states; however, when provided with high-quality food, C. elegans become sated and enter quiescence. We show......-regulated behavioral state switching. Taken together, our results identify a neuronal mechanism for controlling intestinal fat stores and organismal behavioral states in C. elegans, and establish a paradigm for the elucidation of obesity-relevant mechanisms....

  13. Neuromuscular blockade for improvement of surgical conditions during laparotomy

    DEFF Research Database (Denmark)

    Madsen, Matias Vested; Scheppan, Susanne; Kissmeyer, Peter

    2015-01-01

    INTRODUCTION: During laparotomy, surgeons frequently experience difficult surgical conditions if the patient's abdominal wall or diaphragm is tense. This issue is particularly pertinent while closing the fascia and placing the intestines into the abdominal cavity. Establishment of a deep neuromus......INTRODUCTION: During laparotomy, surgeons frequently experience difficult surgical conditions if the patient's abdominal wall or diaphragm is tense. This issue is particularly pertinent while closing the fascia and placing the intestines into the abdominal cavity. Establishment of a deep...... neuromuscular blockade (NMB), defined as a post-tetanic-count (PTC) of 0-1, paralyses the abdominal wall muscles and the diaphragm. We hypothesised that deep NMB (PTC 0-1) would improve surgical conditions during upper laparotomy as compared to standard NMB with bolus administration. METHODS...

  14. Diverticular Disease of the Colon: Neuromuscular Function Abnormalities.

    Science.gov (United States)

    Bassotti, Gabrio; Villanacci, Vincenzo; Bernardini, Nunzia; Dore, Maria P

    2016-10-01

    Colonic diverticular disease is a frequent finding in daily clinical practice. However, its pathophysiological mechanisms are largely unknown. This condition is likely the result of several concomitant factors occurring together to cause anatomic and functional abnormalities, leading as a result to the outpouching of the colonic mucosa. A pivotal role seems to be played by an abnormal colonic neuromuscular function, as shown repeatedly in these patients, and by an altered visceral perception. There is recent evidence that these abnormalities might be related to the derangement of the enteric innervation, to an abnormal distribution of mucosal neuropeptides, and to low-grade mucosal inflammation. The latter might be responsible for the development of visceral hypersensitivity, often causing abdominal pain in a subset of these patients.

  15. Improving Neuromuscular Monitoring and Reducing Residual Neuromuscular Blockade With E-Learning: Protocol for the Multicenter Interrupted Time Series INVERT Study.

    Science.gov (United States)

    Thomsen, Jakob Louis Demant; Mathiesen, Ole; Hägi-Pedersen, Daniel; Skovgaard, Lene Theil; Østergaard, Doris; Engbaek, Jens; Gätke, Mona Ring

    2017-10-06

    Muscle relaxants facilitate endotracheal intubation under general anesthesia and improve surgical conditions. Residual neuromuscular blockade occurs when the patient is still partially paralyzed when awakened after surgery. The condition is associated with subjective discomfort and an increased risk of respiratory complications. Use of an objective neuromuscular monitoring device may prevent residual block. Despite this, many anesthetists refrain from using the device. Efforts to increase the use of objective monitoring are time consuming and require the presence of expert personnel. A neuromuscular monitoring e-learning module might support consistent use of neuromuscular monitoring devices. The aim of the study is to assess the effect of a neuromuscular monitoring e-learning module on anesthesia staff's use of objective neuromuscular monitoring and the incidence of residual neuromuscular blockade in surgical patients at 6 Danish teaching hospitals. In this interrupted time series study, we are collecting data repeatedly, in consecutive 3-week periods, before and after the intervention, and we will analyze the effect using segmented regression analysis. Anesthesia departments in the Zealand Region of Denmark are included, and data from all patients receiving a muscle relaxant are collected from the anesthesia information management system MetaVision. We will assess the effect of the module on all levels of potential effect: staff's knowledge and skills, patient care practice, and patient outcomes. The primary outcome is use of neuromuscular monitoring in patients according to the type of muscle relaxant received. Secondary outcomes include last recorded train-of-four value, administration of reversal agents, and time to discharge from the postanesthesia care unit as well as a multiple-choice test to assess knowledge. The e-learning module was developed based on a needs assessment process, including focus group interviews, surveys, and expert opinions. The e

  16. Neuromuscular training in construction workers: a longitudinal controlled pilot study.

    Science.gov (United States)

    Faude, Oliver; Donath, Lars; Bopp, Micha; Hofmann, Sara; Erlacher, Daniel; Zahner, Lukas

    2015-08-01

    Many accidents at construction sites are due to falls. An exercise-based workplace intervention may improve intrinsic fall risk factors. In this pilot study, we aimed at evaluating the effects of neuromuscular exercise on static and functional balance performance as well as on lower limb explosive power in construction workers. Healthy middle-aged construction workers were non-randomly assigned to an intervention [N = 20, age = 40.3 (SD 8.3) years] or a control group [N = 20, age = 41.8 (9.9) years]. The intervention group performed static and dynamic balance and strength exercises (13 weeks, 15 min each day). Before and after the intervention and after an 8-week follow-up, unilateral postural sway, backward balancing (on 3- and 4.5-cm-wide beams) as well as vertical jump height were assessed. We observed a group × time interaction for postural sway (p = 0.002) with a reduction in the intervention group and no relevant change in the control group. Similarly, the number of successful steps while walking backwards on the 3-cm beam increased only in the intervention group (p = 0.047). These effects were likely to most likely practically beneficial from pretest to posttest and to follow-up test for postural sway (+12%, standardized mean difference (SMD) = 0.65 and 17%, SMD = 0.92) and backward balancing on the 3-cm beam (+58%, SMD = 0.59 and 37%, SMD = 0.40). Fifteen minutes of neuromuscular training each day can improve balance performance in construction workers and, thus, may contribute to a decreased fall risk.

  17. EFFECT OF NEUROMUSCULAR TRAINING ON BALANCE AMONG UNIVERSITY ATHLETES

    Directory of Open Access Journals (Sweden)

    Mohansundar Sankaravel

    2016-06-01

    Full Text Available Background: Proprioceptive deficiency followed by lateral ankle sprain leads to poor balance is not uncommon. It has been linked with increased injury risk among young athletes. Introducing neuromuscular training programs for this have been believed as one of the means of injury prevention. Hence, this study was aimed to determine the effects of six weeks progressive neuromuscular training (PNM Training on static balance gains among the young athletes with a previous history of ankle sprains. Methods: This study was an experimental study design, with pre and post test method to determine the effects of PNM Training on static balance gains. All data were collected at university’s sports rehabilitation lab before and after six weeks of intervention period. There were 20 male and female volunteer young athletes (20.9 ± 0.85 years of age with a previous history of ankle sprain involving various sports were recruited from the University community. All the subjects were participated in a six week PNM Training that included stability, strength and power training. Outcome measures were collected by calculating the errors on balance error scoring system made by the athletes on static balance before and after the six weeks of intervention period. Static balance was tested in firm and foam surfaces and recorded accordingly. Results: The researchers found a significant decrease (2.40 ± 0.82 in total errors among the samples at the post test compared with their pre test (P >0.05. Conclusions: The study demonstrates that a PNM Training can improve the static balance on both the firm and foam surfaces among the young athletes with a previous history of ankle sprains.

  18. Neuromuscular Strain Increases Symptom Intensity in Chronic Fatigue Syndrome.

    Directory of Open Access Journals (Sweden)

    Peter C Rowe

    Full Text Available Chronic fatigue syndrome (CFS is a complex, multisystem disorder that can be disabling. CFS symptoms can be provoked by increased physical or cognitive activity, and by orthostatic stress. In preliminary work, we noted that CFS symptoms also could be provoked by application of longitudinal neural and soft tissue strain to the limbs and spine of affected individuals. In this study we measured the responses to a straight leg raise neuromuscular strain maneuver in individuals with CFS and healthy controls. We randomly assigned 60 individuals with CFS and 20 healthy controls to either a 15 minute period of passive supine straight leg raise (true neuromuscular strain or a sham straight leg raise. The primary outcome measure was the symptom intensity difference between the scores during and 24 hours after the study maneuver compared to baseline. Fatigue, body pain, lightheadedness, concentration difficulties, and headache scores were measured individually on a 0-10 scale, and summed to create a composite symptom score. Compared to individuals with CFS in the sham strain group, those with CFS in the true strain group reported significantly increased body pain (P = 0.04 and concentration difficulties (P = 0.02 as well as increased composite symptom scores (all P = 0.03 during the maneuver. After 24 hours, the symptom intensity differences were significantly greater for the CFS true strain group for the individual symptom of lightheadedness (P = 0.001 and for the composite symptom score (P = 0.005. During and 24 hours after the exposure to the true strain maneuver, those with CFS had significantly higher individual and composite symptom intensity changes compared to the healthy controls. We conclude that a longitudinal strain applied to the nerves and soft tissues of the lower limb is capable of increasing symptom intensity in individuals with CFS for up to 24 hours. These findings support our preliminary observations that increased mechanical

  19. Tunnel junctions with multiferroic barriers

    Science.gov (United States)

    Gajek, Martin; Bibes, Manuel; Fusil, Stéphane; Bouzehouane, Karim; Fontcuberta, Josep; Barthélémy, Agnès; Fert, Albert

    2007-04-01

    Multiferroics are singular materials that can exhibit simultaneously electric and magnetic orders. Some are ferroelectric and ferromagnetic and provide the opportunity to encode information in electric polarization and magnetization to obtain four logic states. However, such materials are rare and schemes allowing a simple electrical readout of these states have not been demonstrated in the same device. Here, we show that films of La0.1Bi0.9MnO3 (LBMO) are ferromagnetic and ferroelectric, and retain both ferroic properties down to a thickness of 2nm. We have integrated such ultrathin multiferroic films as barriers in spin-filter-type tunnel junctions that exploit the magnetic and ferroelectric degrees of freedom of LBMO. Whereas ferromagnetism permits read operations reminiscent of magnetic random access memories (MRAM), the electrical switching evokes a ferroelectric RAM write operation. Significantly, our device does not require the destructive ferroelectric readout, and therefore represents an advance over the original four-state memory concept based on multiferroics.

  20. Chirality effect in disordered graphene ribbon junctions

    International Nuclear Information System (INIS)

    Long Wen

    2012-01-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)

  1. Josephson tunnel junctions in niobium films

    International Nuclear Information System (INIS)

    Wiik, Tapio.

    1976-12-01

    A method of fabricating stable Josephson tunnel junctions with reproducible characteristics is described. The junctions have a sandwich structure consisting of a vacuum evaporated niobium film, a niobium oxide layer produced by the glow discharge method and a lead film deposited by vacuum evaporation. Difficulties in producing thin-film Josephson junctions are discussed. Experimental results suggest that the lower critical field of the niobium film is the most essential parameter when evaluating the quality of these junctions. The dependence of the lower critical field on the film thickness and on the Ginzburg-Landau parameter of the film is studied analytically. Comparison with the properties of the evaporated films and with the previous calculations for bulk specimens shows that the presented model is applicable for most of the prepared samples. (author)

  2. Transparency of atom-sized superconducting junctions

    International Nuclear Information System (INIS)

    Van-der-Post, N.; Peters, E.T.; Van Ruitenbeek, J.M.; Yanson, I.K.

    1995-01-01

    We discuss the transparency of atom-size superconducting tunnel junctions by comparing experimental values of the normal resistance and Subgap Structure with the theoretical predictions for these phenomena by Landauer's formula and Multiple Andreev Reflection, respectively

  3. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  4. Neutron induced permanent damage in Josephson junctions

    International Nuclear Information System (INIS)

    Mueller, G.P.; Rosen, M.

    1982-01-01

    14 MeV neutron induced permanent changes in the critical current density of Josephson junctions due to displacement damage in the junction barrier are estimated using a worst case model and the binary collision simulation code MARLOWE. No likelihood of single event hard upsets is found in this model. It is estimated that a fluence of 10 18 -10 19 neutrons/cm 2 are required to change the critical current density by 5%

  5. Exotic hadron and string junction model

    International Nuclear Information System (INIS)

    Imachi, Masahiro

    1978-01-01

    Hadron structure is investigated adopting string junction model as a realization of confinement. Besides exotic hadrons (M 4 , B 5 etc.), unconventional hadrons appear. A mass formula for these hadrons is proposed. New selection rule is introduced which requires the covalence of constituent line at hadron vertex. New duality appears due to the freedom of junction, especially in anti BB→anti BB reaction. A possible assignment of exotic and unconventional hadrons to recently observed narrow meson states is presented. (auth.)

  6. Construction of tunable peptide nucleic acid junctions.

    Science.gov (United States)

    Duan, Tanghui; He, Liu; Tokura, Yu; Liu, Xin; Wu, Yuzhou; Shi, Zhengshuang

    2018-03-15

    We report here the construction of 3-way and 4-way peptide nucleic acid (PNA) junctions as basic structural units for PNA nanostructuring. The incorporation of amino acid residues into PNA chains makes PNA nanostructures with more structural complexity and architectural flexibility possible, as exemplified by building 3-way PNA junctions with tunable nanopores. Given that PNA nanostructures have good thermal and enzymatic stabilities, they are expected to have broad potential applications in biosensing, drug delivery and bioengineering.

  7. Molecular Diffusion through Cyanobacterial Septal Junctions.

    Science.gov (United States)

    Nieves-Morión, Mercedes; Mullineaux, Conrad W; Flores, Enrique

    2017-01-03

    Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N 2 -fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO 2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP) assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the "septal junctions" (formerly known as "microplasmodesmata") linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans. Although bacteria are frequently considered just as unicellular organisms, there are bacteria that behave as true multicellular organisms. The heterocyst-forming cyanobacteria grow as filaments in which cells communicate. Intercellular molecular exchange is thought to be mediated by septal junctions. Here, we show that intercellular transfer of fluorescent markers in the cyanobacterial filament has the physical properties of simple diffusion. Thus, cyanobacterial septal junctions are functionally analogous to metazoan gap junctions

  8. Spinal Gap Junction Channels in Neuropathic Pain

    OpenAIRE

    Jeon, Young Hoon; Youn, Dong Ho

    2015-01-01

    Damage to peripheral nerves or the spinal cord is often accompanied by neuropathic pain, which is a complex, chronic pain state. Increasing evidence indicates that alterations in the expression and activity of gap junction channels in the spinal cord are involved in the development of neuropathic pain. Thus, this review briefly summarizes evidence that regulation of the expression, coupling, and activity of spinal gap junction channels modulates pain signals in neuropathic pain states induced...

  9. A microfluidic device for the continuous culture and analysis of Caenorhabditis elegans in a toxic aqueous environment

    Science.gov (United States)

    Jung, Jaehoon; Nakajima, Masahiro; Tajima, Hirotaka; Huang, Qiang; Fukuda, Toshio

    2013-08-01

    The nematode Caenorhabditis elegans (C. elegans) receives attention as a bioindicator, and the C. elegans condition has been recently analyzed using microfluidic devices equipped with an imaging system. To establish a method without an imaging system, we have proposed a novel microfluidic device with which to analyze the condition of C. elegans from the capacitance change using a pair of micro-electrodes. The device was designed to culture C. elegans, to expose C. elegans to an external stimulus, such as a chemical or toxicant, and to measure the capacitance change which indicates the condition of C. elegans. In this study, to demonstrate the capability of our device in a toxic aqueous environment, the device was applied to examine the effect of cadmium on C. elegans. Thirty L4 larval stage C. elegans were divided into three groups. One group was a control group and the other groups were exposed to cadmium solutions with concentrations of 5% and 10% LC50 for 24 h. The capacitance change and the body volume of C. elegans as a reference were measured four times and we confirmed the correlation between them. It shows that our device can analyze the condition of C. elegans without an imaging system.

  10. A microfluidic device for the continuous culture and analysis of Caenorhabditis elegans in a toxic aqueous environment

    International Nuclear Information System (INIS)

    Jung, Jaehoon; Tajima, Hirotaka; Fukuda, Toshio; Nakajima, Masahiro; Huang, Qiang

    2013-01-01

    The nematode Caenorhabditis elegans (C. elegans) receives attention as a bioindicator, and the C. elegans condition has been recently analyzed using microfluidic devices equipped with an imaging system. To establish a method without an imaging system, we have proposed a novel microfluidic device with which to analyze the condition of C. elegans from the capacitance change using a pair of micro-electrodes. The device was designed to culture C. elegans, to expose C. elegans to an external stimulus, such as a chemical or toxicant, and to measure the capacitance change which indicates the condition of C. elegans. In this study, to demonstrate the capability of our device in a toxic aqueous environment, the device was applied to examine the effect of cadmium on C. elegans. Thirty L4 larval stage C. elegans were divided into three groups. One group was a control group and the other groups were exposed to cadmium solutions with concentrations of 5% and 10% LC 50 for 24 h. The capacitance change and the body volume of C. elegans as a reference were measured four times and we confirmed the correlation between them. It shows that our device can analyze the condition of C. elegans without an imaging system. (paper)

  11. Ballistic Josephson junctions based on CVD graphene

    Science.gov (United States)

    Li, Tianyi; Gallop, John; Hao, Ling; Romans, Edward

    2018-04-01

    Josephson junctions with graphene as the weak link between superconductors have been intensely studied in recent years, with respect to both fundamental physics and potential applications. However, most of the previous work was based on mechanically exfoliated graphene, which is not compatible with wafer-scale production. To overcome this limitation, we have used graphene grown by chemical vapour deposition (CVD) as the weak link of Josephson junctions. We demonstrate that very short, wide CVD-graphene-based Josephson junctions with Nb electrodes can work without any undesirable hysteresis in their electrical characteristics from 1.5 K down to a base temperature of 320 mK, and their gate-tuneable critical current shows an ideal Fraunhofer-like interference pattern in a perpendicular magnetic field. Furthermore, for our shortest junctions (50 nm in length), we find that the normal state resistance oscillates with the gate voltage, consistent with the junctions being in the ballistic regime, a feature not previously observed in CVD-graphene-based Josephson junctions.

  12. Junction depth measurement using carrier illumination

    International Nuclear Information System (INIS)

    Borden, Peter

    2001-01-01

    Carrier Illumination [trade mark] (CI) is a new method recently developed to meet the need for a non-destructive, high throughput junction depth measurement on patterned wafers. A laser beam creates a quasi-static excess carrier profile in the semiconductor underlying the activated junction. The excess carrier profile is fairly constant below the junction, and drops rapidly in the junction, creating a steep index of refraction gradient at the junction edge. Interference with light reflected from this index gradient provides a signal that is analyzed to determine the junction depth. The paper summarizes evaluation of performance in full NMOS and PMOS process flows, on both bare and patterned wafers. The aims have been to validate (1) performance in the presence of underlying layers typically found at the source/drain (S/D) process steps and (2) measurement on patterned wafers. Correlation of CI measurements to SIMS and transistor drive current are shown. The data were obtained from NMOS structures using As S/D and LDD implants. Correlations to SRP, SIMS and sheet resistance are shown for PMOS structures using B 11 LDD implants. Gage capability measurements are also presented

  13. Dutch pediatricians' views on the use of neuromuscular blockers for dying neonates: a qualitative study

    NARCIS (Netherlands)

    ten Cate, K.; van de Vathorst, S.

    2015-01-01

    To assess Dutch pediatricians' views on neuromuscular blockers for dying neonates. Qualitative study involving in-depth interviews with 10 Dutch pediatricians working with severely ill neonates. Data were analyzed using appropriate qualitative research techniques. Participants explained their view

  14. Impaired voluntary neuromuscular activation limits muscle power in mobility-limited older adults

    Science.gov (United States)

    Background. Age-related alterations of neuromuscular activation may contribute to deficits in muscle power and mobility function. This study assesses whether impaired activation of the agonist quadriceps and antagonist hamstrings, including amplitude- and velocity-dependent characteristics of activa...

  15. Effects of neuromuscular joint facilitation on bridging exercises with respect to deep muscle changes.

    Science.gov (United States)

    Zhou, Bin; Huang, QiuChen; Zheng, Tao; Huo, Ming; Maruyama, Hitoshi

    2015-05-01

    [Purpose] This study examined the effects of neuromuscular joint facilitation on bridging exercises by assessing the cross-sectional area of the multifidus muscle and thickness of the musculus transversus abdominis. [Subjects] Twelve healthy men. [Methods] Four exercises were evaluated: (a) supine resting, (b) bridging resistance exercise involving posterior pelvic tilting, (c) bridging resistance exercise involving anterior pelvic tilting, and (d) bridging resistance exercise involving neuromuscular joint facilitation. The cross-sectional area of the multifidus muscle and thickness of the musculus transversus abdominis were measured during each exercise. [Results] The cross-sectional area of the multifidus muscle and thickness of the musculus transversus abdominis were significantly greater in the neuromuscular joint facilitation group than the others. [Conclusion] Neuromuscular joint facilitation intervention improves the function of deep muscles such as the multifidus muscle and musculus transversus abdominis. Therefore, it can be recommended for application in clinical treatments such as that for back pain.

  16. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults

    DEFF Research Database (Denmark)

    Hristovska, Ana-Marija; Duch, Patricia; Allingstrup, Mikkel

    2017-01-01

    , and undesirable autonomic responses. Sugammadex is a selective relaxant-binding agent specifically developed for rapid reversal of non-depolarizing neuromuscular blockade induced by rocuronium. Its potential clinical benefits include fast and predictable reversal of any degree of block, increased patient safety......, reduced incidence of residual block on recovery, and more efficient use of healthcare resources. OBJECTIVES: The main objective of this review was to compare the efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade caused by non-depolarizing neuromuscular agents......-depolarizing neuromuscular blocking agents for an elective in-patient or day-case surgical procedure. We included all trials comparing sugammadex versus neostigmine that reported recovery times or adverse events. We included any dose of sugammadex and neostigmine and any time point of study drug administration. DATA...

  17. Novel vibration-exercise instrument with dedicated adaptive filtering for electromyographic investigation of neuromuscular activation

    NARCIS (Netherlands)

    Xu, L.; Rabotti, C.; Mischi, M.

    2012-01-01

    Vibration exercise (VE) has been suggested as an effective methodology to improve muscle strength and power performance. Several studies link the effects of vibration training to enhanced neuromuscular demand, typically ascribed to involuntary reflex mechanisms. However, the underlying mechanisms

  18. A Dutch guideline for the treatment of scoliosis in neuromuscular disorders

    NARCIS (Netherlands)

    Mullender, M.G.; Blom, N.; de Kleuver, M.; Fock, J.; Hitters, W.; Horemans, A.; Kalkman, C.; Pruijs, J.; Timmer, R.; Titarsolej, P.; van Haasteren, N.; Jager, M.V.; van Vught, A.; van Royen, B.J.

    2008-01-01

    Background: Children with neuromuscular disorders with a progressive muscle weakness such as Duchenne Muscular Dystrophy and Spinal Muscular Atrophy frequently develop a progressive scoliosis. A severe scoliosis compromises respiratory function and makes sitting more difficult. Spinal surgery is

  19. SLX-1 is required for maintaining genomic integrity and promoting meiotic noncrossovers in the Caenorhabditis elegans germline.

    Directory of Open Access Journals (Sweden)

    Takamune T Saito

    2012-08-01

    Full Text Available Although the SLX4 complex, which includes structure-specific nucleases such as XPF, MUS81, and SLX1, plays important roles in the repair of several kinds of DNA damage, the function of SLX1 in the germline remains unknown. Here we characterized the endonuclease activities of the Caenorhabditis elegans SLX-1-HIM-18/SLX-4 complex co-purified from human 293T cells and determined SLX-1 germline function via analysis of slx-1(tm2644 mutants. SLX-1 shows a HIM-18/SLX-4-dependent endonuclease activity toward replication forks, 5'-flaps, and Holliday junctions. slx-1 mutants exhibit hypersensitivity to UV, nitrogen mustard, and camptothecin, but not gamma irradiation. Consistent with a role in DNA repair, recombination intermediates accumulate in both mitotic and meiotic germ cells in slx-1 mutants. Importantly, meiotic crossover distribution, but not crossover frequency, is altered on chromosomes in slx-1 mutants compared to wild type. This alteration is not due to changes in either the levels or distribution of double-strand breaks (DSBs along chromosomes. We propose that SLX-1 is required for repair at stalled or collapsed replication forks, interstrand crosslink repair, and nucleotide excision repair during mitosis. Moreover, we hypothesize that SLX-1 regulates the crossover landscape during meiosis by acting as a noncrossover-promoting factor in a subset of DSBs.

  20. Chromoanasynthetic Genomic Rearrangement Identified in a N-Ethyl-N-Nitrosourea (ENU Mutagenesis Screen in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Omar A. Itani

    2016-02-01

    Full Text Available Chromoanasynthesis is a recently discovered phenomenon in humans with congenital diseases that is characterized by complex genomic rearrangements (CGRs resulting from aberrant repair of catastrophic chromosomal damage. How these CGRs are induced is not known. Here, we describe the structure and function of dpDp667, a causative CGR that emerged from a Caenorhabditis elegans dauer suppressor screen in which animals were treated with the point mutagen N-ethyl-N-nitrosourea (ENU. dpDp667 comprises nearly 3 Mb of sequence on the right arm of the X chromosome, contains three duplications and one triplication, and is devoid of deletions. Sequences from three out of the four breakpoint junctions in dpDp667 reveal microhomologies that are hallmarks of chromoanasynthetic CGRs. Our findings suggest that environmental insults and physiological processes that cause point mutations may give rise to chromoanasynthetic rearrangements associated with congenital disease. The relatively subtle phenotype of animals harboring dpDp667 suggests that the prevalence of CGRs in the genomes of mutant and/or phenotypically unremarkable animals may be grossly underestimated.