WorldWideScience

Sample records for electrospun polyethersulfone affinity

  1. Electrospun materials for affinity-based engineering and drug delivery

    International Nuclear Information System (INIS)

    Sill, T J; Von Recum, H A

    2015-01-01

    Electrospinning is a process which can quickly and cheaply create materials of high surface to volume and aspect ratios from many materials, however in application toward drug delivery this can be a strong disadvantage as well. Diffusion of drug is proportional to the thickness of that device. In moving from macro to micro to nano-sized electrospun materials drug release rates change to profiles that are too fast to be therapeutically beneficial. In this work we use molecular interactions to further control the rate of release beyond that capable of diffusion alone. To do this we create materials with molecular pockets, which can 'hold' therapeutic drugs through a reversible interaction such as a host/guest complexation. Through these complexes we show we are able to impact delivery of drug from electrospun materials, and also apply them in tissue engineering for the reversible presentation of biomolecules on a fiber surface. (paper)

  2. 21 CFR 177.2440 - Polyethersulfone resins.

    Science.gov (United States)

    2010-04-01

    ... Components of Articles Intended for Repeated Use § 177.2440 Polyethersulfone resins. Polyethersulfone resins identified in paragraph (a) of this section may be safely used as articles or components of articles intended... Petition Control (HFS-215), Center for Food Safety and Applied Nutrition, 1110 Vermont Ave. NW., suite 1200...

  3. Modified polyether-sulfone membrane: a mini review.

    Science.gov (United States)

    Alenazi, Noof A; Hussein, Mahmoud A; Alamry, Khalid A; Asiri, Abdullah M

    2017-01-01

    Polyethersulfone has been widely used as a promising material in medical applications and waste-treatment membranes since it provides excellent mechanical and thermal properties. Hydrophobicity of polyethersulfone is considered one main disadvantage of using this material because hydrophobic surface causes biofouling effects to the membrane which is always thought to be a serious limitation to the use of polyethersulfone in membrane technology. Chemical modification to the material is a promising solution to this problem. More specifically surface modification is an excellent technique to introduce hydrophilic properties and functional groups to the polyethersulfone membrane surface. This review covers chemical modifications of the polyethersulfone and covers different methods used to enhance the hydrophilicity of polyethersulfone membrane. In particular, the addition of amino functional groups to polyethersulfone is used as a fundamental method either to introduce hydrophilic properties or introduce nanomaterials to the surface of polyethersulfone membrane. This work reviews also previous research reports explored the use of amino functionalized polyethersulfone with different nanomaterials to induce biological activity and reduce fouling effects of the fabricated membrane.

  4. In Vivo Study of Ligament-Bone Healing after Anterior Cruciate Ligament Reconstruction Using Autologous Tendons with Mesenchymal Stem Cells Affinity Peptide Conjugated Electrospun Nanofibrous Scaffold

    Directory of Open Access Journals (Sweden)

    Jingxian Zhu

    2013-01-01

    Full Text Available Electrospinning nanofibrous scaffold was commonly used in tissue regeneration recently. Nanofibers with specific topological characteristics were reported to be able to induce osteogenic differentiation of MSCs. In this in vivo study, autologous tendon grafts with lattice-like nanofibrous scaffold wrapping at two ends of autologous tendon were used to promote early stage of ligament-bone healing after rabbit ACL reconstruction. To utilize native MSCs from bone marrow, an MSCs specific affinity peptide E7 was conjugated to nanofibrous meshes. After 3 months, H-E assessment and specific staining of collagen type I, II, and III showed direct ligament-bone insertion with typical four zones (bone, calcified fibrocartilage, fibrocartilage, and ligament in bioactive scaffold reconstruction group. Diameters of bone tunnel were smaller in nanofibrous scaffold conjugated E7 peptide group than those in control group. The failure load of substitution complex also indicated a stronger ligament-bone insertion healing using bioactive scaffold. In conclusion, lattice-like nanofibrous scaffold with specific MSCs affinity peptide has great potential in promoting early stage of ligament-bone healing after ACL reconstruction.

  5. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  6. Polyethersulfone/clay membranes and its water permeability

    International Nuclear Information System (INIS)

    Cavalho, Thamyres Cardoso de; Medeiros, Vanessa da Nobrega; Araujo, Edcleide Maria de; Lira, Helio Lucena; Leite, Amanda Melissa Damiao

    2017-01-01

    Membranes can be considered polymeric or inorganic films that function as a semipermeable barrier to filtration on a molecular scale, separating two phases and restricting, totally or partially, the transportation of one or more chemical species (solute) present in the solution. Therefore, the aim of this work is to produce polyethersulfone membranes (PES) and polyethersulfone/clay by phase inversion technique and evaluate the presence of clay in obtaining membranes for wastewater treatment. The used solvent was dimethylformamide (DMF) and clays were Brasgel PA (MMT) and Cloisite Na (CL Na) in the proportion of 3 to 5% (wt.). By Xray diffraction (XRD), the membranes with 3% of MMT and CL Na clays apparently had partially exfoliated structures. For the composition with 5% of CL Na a small peak was observed, which indicates that this is possibly an intercalated structure or microcomposite. By scanning electron microscopy (SEM), visualizes that the pure surface of the pure PES membrane a structure apparently without pores was observed in the used magnification and without roughness surface when compared to membranes with clay. The measurements of contact angle indicated that the inclusion of clay altered the wetting ability of the membranes. The flow with distilled water for all membranes started high and over time reached a stabilization level. Thus, it can be concluded that the presence and the content of clay altered the morphology of the membrane, contributing to an increase in water flow. (author)

  7. Characterization of antibacterial polyethersulfone membranes using the respiration activity monitoring system (RAMOS)

    NARCIS (Netherlands)

    Kochan, J.; Scheidle, M.; Erkel, J. van; Bikel, M.; Büchs, J.; Wong, J.E.; Melin, T.; Wessling, M.

    2012-01-01

    Membranes with antibacterial properties were developed using surface modification of polyethersulfone ultrafiltration membranes. Three different modification strategies using polyelectrolyte layer-by-layer (LbL) technique are described. The first strategy relying on the intrinsic antibacterial

  8. Immobilization of Mucor miehei Lipase onto Macroporous Aminated Polyethersulfone Membrane for Enzymatic Reactions

    NARCIS (Netherlands)

    Handayani, Nurrahmi; Loos, Katja; Wahyuningrum, Deana; Buchari, [No Value; Zulfikar, Muhammad Ali

    2012-01-01

    Immobilization of enzymes is one of the most promising methods in enzyme performance enhancement, including stability, recovery, and reusability. However, investigation of suitable solid support in enzyme immobilization is still a scientific challenge. Polyethersulfone (PES) and aminated PES

  9. Electrospun complexes - functionalised nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, T.; Wolf, M.; Dreyer, B.; Unruh, D.; Krüger, C.; Menze, M. [Leibniz University Hannover, Institute of Inorganic Chemistry (Germany); Sindelar, R. [University of Applied Science Hannover, Faculty II (Germany); Klingelhöfer, G. [Gutenberg-University, Institute of Inorganic and Analytic Chemistry (Germany); Renz, F., E-mail: renz@acd.uni-hannover.de [Leibniz University Hannover, Institute of Inorganic Chemistry (Germany)

    2016-12-15

    Here we present a new approach of using iron-complexes in electro-spun fibres. We modify poly(methyl methacrylate) (PMMA) by replacing the methoxy group with Diaminopropane or Ethylenediamine. The complex is bound covalently via an imine-bridge or an amide. The resulting polymer can be used in the electrospinning process without any further modifications in method either as pure reagent or mixed with small amounts of not functionalised polymer resulting in fibres of different qualities (Fig. 1).

  10. Electrical conductivity enhancement of polyethersulfone (PES) by ion implantation

    International Nuclear Information System (INIS)

    Bridwell, L.B.; Giedd, R.E.; Wang Yongqiang; Mohite, S.S.; Jahnke, T.; Brown, I.M.

    1991-01-01

    Amorphous polyethersulfone (PES) films have been implanted with a variety of ions (He, B, C, N and As) at a bombarding energy of 50 keV in the dose range 10 16 -10 17 ions/cm 2 . Surface resistance as a function of dose indicates a saturation effect with a significant difference between He and the other ions used. ESR line shapes in the He implanted samples changed from a mixed Gaussian/Lorentzian to a pure Lorentzian and narrowed with increasing dose. Temperature dependent resistivity indicates an electron hopping mechanism for conduction. Infrared results indicate cross-linking or self-cyclization occurred for all implanted ions with further destruction in the case of As. (orig.)

  11. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  12. Electrospun Fibers for Composites Applications

    Science.gov (United States)

    2014-02-01

    in traditional woven mat composites. Nanofibrous interlayers were used to increase the impact and shear performance of a prepregged carbon fiber...Nylon 66 Nanofibrilmat Interleaved Carbon/Epoxy Laminates . Polymer Composites 2011, 32, 1781–1789. 21 13. Chen, Q.; Zhang, L.; Rahman, A.; Zhou...Resistance in Laminated Composites With Electrospun Nano-Interlayers. Comp. Sci. Tech. 2008, 68, 673– 683. 15. Zhang, J.; Lin, T.; Wang, X. Electrospun

  13. Improved human endometrial stem cells differentiation into functional hepatocyte-like cells on a glycosaminoglycan/collagen-grafted polyethersulfone nanofibrous scaffold.

    Science.gov (United States)

    Khademi, Farzaneh; Ai, Jafar; Soleimani, Masoud; Verdi, Javad; Mohammad Tavangar, Seyed; Sadroddiny, Esmaeil; Massumi, Mohammad; Mahmoud Hashemi, Seyed

    2017-11-01

    Liver tissue engineering (TE) is rapidly emerging as an effective technique which combines engineering and biological processes to compensate for the shortage of damaged or destroyed liver tissues. We examined the viability, differentiation, and integration of hepatocyte-like cells on an electrospun polyethersulfone (PES) scaffold, derived from human endometrial stem cells (hEnSCs). Natural polymers were separately grafted on plasma-treated PES nanofibers, that is, collagen, heparan sulfate (HS) and collagen-HS. Galactosilated PES (PES-Gal) nanofibrous were created. The engineering and cell growth parameters were considered and compared with each sample. The cellular studies revealed increased cell survival, attachment, and normal morphology on the bioactive natural polymer-grafted scaffolds after 30 days of hepatic differentiation. The chemical and molecular assays displayed hepatocyte differentiation. These cells were also functional, showing glycogen storage, α-fetoprotein, and albumin secretion. The HS nanoparticle-grafted PES nanofibers demonstrated a high rate of cell proliferation, differentiation, and integration. Based on the observations mentioned above, engineered tissue is a good option in the future, for the commercial production of three-dimensional liver tissues for clinical purposes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2516-2529, 2017. © 2016 Wiley Periodicals, Inc.

  14. Electrospun Fibers of Cyclodextrins and Poly(cyclodextrins

    Directory of Open Access Journals (Sweden)

    Alejandro Costoya

    2017-02-01

    Full Text Available Cyclodextrins (CDs can endow electrospun fibers with outstanding performance characteristics that rely on their ability to form inclusion complexes. The inclusion complexes can be blended with electrospinnable polymers or used themselves as main components of electrospun nanofibers. In general, the presence of CDs promotes drug release in aqueous media, but they may also play other roles such as protection of the drug against adverse agents during and after electrospinning, and retention of volatile fragrances or therapeutic agents to be slowly released to the environment. Moreover, fibers prepared with empty CDs appear particularly suitable for affinity separation. The interest for CD-containing nanofibers is exponentially increasing as the scope of applications is widening. The aim of this review is to provide an overview of the state-of-the-art on CD-containing electrospun mats. The information has been classified into three main sections: (i fibers of mixtures of CDs and polymers, including polypseudorotaxanes and post-functionalization; (ii fibers of polymer-free CDs; and (iii fibers of CD-based polymers (namely, polycyclodextrins. Processing conditions and applications are analyzed, including possibilities of development of stimuli-responsive fibers.

  15. XeCl laser treatment of polyethersulfone membrane in the air and water

    International Nuclear Information System (INIS)

    Panah, A Hashemi; Mollabashi, M; Pazokian, H; Barzin, J

    2015-01-01

    XeCl laser irradiation of Polyethersulfone membranes in air and water were done. The irradiated surface were modified chemically or morphologically depends on the laser parameters and the mediums in which irradiation is done. The results in improving the surface hydrophilicity and biocompatibility for the biological applications were compared

  16. Characterization of polyethersulfone-polyimide hollow fiber membranes by atomic force microscopy and contact angle goniometery

    NARCIS (Netherlands)

    Khulbe, K.C.; Feng, C.; Matsuura, T.; Kapantaidakis, G.; Wessling, Matthias; Koops, G.H.

    2003-01-01

    Asymmetric blend polyethersulfone-polyimide (PES-PI) hollow fiber membranes prepared at different air gap and used for gas separation are characterized by atomic force microscopy (inside and out side surfaces) and by measuring the contact angle of out side surface. The outer surface was entirely

  17. High flux polyethersulfone-polyimide blend hollow fiber membranes for gas separation

    NARCIS (Netherlands)

    Kapantaidakis, G.; Koops, G.H.

    2002-01-01

    In this work, the preparation of gas separation hollow fibers based on polyethersulfone Sumikaexcel (PES) and polyimide Matrimid 5218 (PI) blends, for three different compositions (i.e. PES/PI: 80/20, 50/50 and 20/80 wt.%), is reported. The dry/wet spinning process has been applied to prepare

  18. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  19. Graft-copolymerization of polyethersulfone microporous membrane with electron beam simultaneous irradiation method

    International Nuclear Information System (INIS)

    Han Zhaolei; Meng Fanxia; Wang Yongxia; Liu Xiaoguang; Wang Rong

    2010-01-01

    Polyethersulfone(PES) microporous membrane was grafted with methacrylic acid under electron beam irradiation. Controlling the monomer concentration or the absorbed dose, the relationships of the degree of grafting with the monomer concentration and the absorbed dose were obtained for optimum the monomer concentration and absorbed dose. The grafted membrane was characterized by FT-IR and SEM, and the hydrophilicity contact angle of the membrane was tested. (authors)

  20. Controlling the porosity of a polyethersulfone membrane surface with an XeCl laser

    International Nuclear Information System (INIS)

    Pazokian, Hedieh; Mehrabadi, Adeleh H P; Mollabashi, Mahmoud; Barzin, Jalal

    2016-01-01

    Pure and polyvinyl pyrrolidone blend polyethersulfone (PES) membranes were irradiated by an XeCl laser with various numbers of pulses at different fluences to investigate the changes in the surface morphology and the porosity. The results show that the membrane pore size and distribution on the surface can be modified following irradiation dependent on the laser fluence, the number of pulses and the membrane composition. These changes are very attractive for improving the membrane surface in filtration processes and biological applications. (paper)

  1. Periodic morphological modification developed on the surface of polyethersulfone by XeCl excimer laser photoablation

    International Nuclear Information System (INIS)

    Niino, H.; Nakano, M.; Nagano, S.; Yabe, A.; Miki, T.; Center for Structure Analyses, Teijin Limited, Asahigaoka, Hino, Tokyo, 191 Japan)

    1989-01-01

    Periodic and stable micropatterns appeared on the surface of amorphous polyethersulfone etched with an excimer laser at 308 nm in ambient air and a vacuum. The control of such radiative conditions as fluence and incident angle enables us to modify the spacing and pattern of the microstructures. A topographical investigation with scanning electron microscopy and an experiment with x-ray photoelectron spectroscopy to determine its composition is reported

  2. Electrospun Borneol-PVP Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Li

    2012-01-01

    Full Text Available The present work investigates the validity of electrospun borneol-polyvinylpyrrolidone (PVP nanocomposites in enhancing drug dissolution rates and improving drug physical stability. Based on hydrogen bonding interactions and via an electrospinning process, borneol and PVP can form stable nanofiber-based composites. FESEM observations demonstrate that composite nanofibers with uniform structure could be generated with a high content of borneol up to 33.3% (w/w. Borneol is well distributed in the PVP matrix molecularly to form the amorphous composites, as verified by DSC and XRD results. The composites can both enhance the dissolution profiles of borneol and increase its physical stability against sublimation for long-time storage by immobilization of borneol molecules with PVP. The incorporation of borneol in the PVP matrix weakens the tensile properties of nanofibers, and the mechanism is discussed. Electrospun nanocomposites can be alternative candidates for developing novel nano-drug delivery systems with high performance.

  3. Biomimetic electrospun nanofibers for tissue regeneration

    International Nuclear Information System (INIS)

    Liao, Susan; Li Bojun; Ma Zuwei; Wei He; Chan Casey; Ramakrishna, Seeram

    2006-01-01

    Nanofibers exist widely in human tissue with different patterns. Electrospinning nanotechnology has recently gained a new impetus due to the introduction of the concept of biomimetic nanofibers for tissue regeneration. The advanced electrospinning technique is a promising method to fabricate a controllable continuous nanofiber scaffold similar to the natural extracellular matrix. Thus, the biomedical field has become a significant possible application field of electrospun fibers. Although electrospinning has developed rapidly over the past few years, electrospun nanofibers are still at a premature research stage. Further comprehensive and deep studies on electrospun nanofibers are essential for promoting their biomedical applications. Current electrospun fiber materials include natural polymers, synthetic polymers and inorganic substances. This review briefly describes several typically electrospun nanofiber materials or composites that have great potential for tissue regeneration, and describes their fabrication, advantages, drawbacks and future prospects. (topical review)

  4. Providing affinity

    DEFF Research Database (Denmark)

    Guglielmi, Michel; Johannesen, Hl

    2004-01-01

    , Essex, Hertfordshire, Norfolk and Suffolk. Research found that there was a lack of identity or sense of belonging and nothing anchoring people to the region as a whole. Common affinity is somehow forced to the people of East England and thereby we came to the conclusion that a single landmark...... and potential situations but also virtual events that calls for an undeterminated process of resolution. This process is activated by the user who co-produces the actualisation as an answer to a virtual reality that we defined at the first place. The potential situations or the possible it is a fantomatic real....... The possible is like the real. It is determinated and it only lakes existence. While the possible is already made, the virtual is like a problematic which needs to be resolved and actualized. Our installations are based on high tech interactivity where we use sensors and remote communication to offer a sense...

  5. Laser surface modification of polyethersulfone films: effect of laser wavelength on biocompatibility

    International Nuclear Information System (INIS)

    Pazokian, H; Jelvani, S; Mollabashi, M; Barzin, J

    2013-01-01

    In this paper laser ablation of polyethersulfone (PES) films regarding to the change in biocompatibility of the surface is investigated at 3 different wavelengths of 193nm (ArF), 248 nm (KrF) and 308 nm (XeCl). The optimum laser fluence and number of pulses for the improvement of the surface biocompatibility is found by examination of the surface behavior in contact with platelets and fibroblasts cells at 3 wavelengths. These biological modifications are explained by alteration of the surface morphology and chemistry following irradiation. The results show that the KrF laser is the best choice for treatment of PES in biological applications.

  6. Bifunctional groups grafted polyethersulfone magnetic beads for selective sequestration of plutonium

    International Nuclear Information System (INIS)

    Paul, Sumana; Aggarwal, S.K.; Pandey, A.K.

    2014-01-01

    The present study involves synthesis of polyethersulfone (PES) beads grafted with two different monomers viz. 2-hydroxyethylmethacrylate phosphoric acid ester (HEMP) and 2-acrylamido-2-methyl-1-propane sulphonic acid (AMPS) by photo-induced free radical polymerization method. The selection of bifunctional polymer was based on our previous studies, which indicated its efficacy for selective preconcentration of Pu from 3-4 mol L -1 HNO 3 . The HEMP-co-AMPS grafted PES beads were used for selective extraction of plutonium from dissolver solution

  7. Report: Affinity Chromatography.

    Science.gov (United States)

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  8. Adsorption behavior of cation-exchange resin-mixed polyethersulfone-based fibrous adsorbents with bovine serum albumin

    NARCIS (Netherlands)

    Zhang, Y.; Zhang, Yuzhong; Borneman, Zandrie; Koops, G.H.; Wessling, Matthias

    2006-01-01

    The cation-exchange resin-mixed polyethersulfone (PES)-based fibrous adsorbents were developed to study their adsorption behavior with bovine serum albumin (BSA). A fibrous adsorbent with an open pore surface had much better adsorption behavior with a higher adsorbing rate. The adsorption capacity

  9. Nanomechanics of electrospun phospholipid fiber

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana C., E-mail: anac@food.dtu.dk, E-mail: ioach@food.dtu.dk; Chronakis, Ioannis S., E-mail: anac@food.dtu.dk, E-mail: ioach@food.dtu.dk [Technical University of Denmark, DTU-Food, Søltofts Plads B227, DK-2800, Kgs. Lyngby (Denmark); Nikogeorgos, Nikolaos; Lee, Seunghwan [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2015-06-01

    Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 ± 2.7 μm. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 ± 1 MPa. At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip. The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h.

  10. Nanomechanics of electrospun phospholipid fiber

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Nikogeorgos, Nikolaos; Lee, Seunghwan

    2015-01-01

    Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 +/- 2.7 mu m. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 +/- 1MPa....... At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip....... The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h. (c) 2015 AIP Publishing LLC....

  11. Preparation and characterization of a novel electrospun ammonium molybdophosphate/polyacrylonitrile nanofiber adsorbent for cesium removal

    International Nuclear Information System (INIS)

    Amin Tabatabaeefar; Mohammad Ali Moosavian; Ali Reza Keshtkar

    2015-01-01

    Adsorption of Cs + ion from aqueous solution onto a novel electrospun ammonium molybdophosphate/polyacrylonitrile nanofiber adsorbent with variation in AMP content, adsorbent concentration, pH, contact time, initial concentration and temperature was studied. The physicochemical characterization was performed by FTIR, XRD, BET and SEM analyses. Langmuir, Freundlich and Dubinin-Radushkevich models were used for analysis of equilibrium data. Kinetic results showed that the experimental data best fitted the pseudo-second-order kinetic model. The adsorption affinity of metal ions onto adsorbent was in order of Cs + > Co 2+ > Mg 2+ > Ca 2+ > Sr 2+ . The adsorbent could be easily regenerated after five cycles of adsorption-desorption. (author)

  12. Chitosan surface modified electrospun poly(ε-caprolactone)/carbon nanotube composite fibers with enhanced mechanical, cell proliferation and antibacterial properties.

    Science.gov (United States)

    Wang, Siyu; Li, Yumei; Zhao, Rui; Jin, Toufeng; Zhang, Li; Li, Xiang

    2017-11-01

    The surface modification is one of the most effective methods to improve the bioactivity and cell affinity effect of electrospun poly(ε-caprolactone) (PCL) fibers. In the present study, chitosan (CS), a cationic polysaccharide, was used to modify the surface of electrospun PCL fibers. To obtain strong interaction between CS and PCL fibers, negatively charged PCL fibers were prepared by the incorporation of acid-treated carbon nanotubes (CNTs) into the fibers. In this way, the positively charged chitosan could be immobilized onto the surface of PCL fibers tightly by the electrostatic attraction. Besides, the incorporation of CNTs could significantly improve the mechanical strength of electrospun PCL fibers even after the CS modification, which guaranteed their usability in practical applications. The CS modification could effectively improve the wettability and bioactivity of electrospun PCL fibers. Cultivation of L929 fibroblast cells on the obtained fibers and the antibacterial activity were both evaluated to discuss the influence of chitosan modification. The results indicated that this modification could enhance the cell proliferation and antibacterial ability in comparison to the non-modified groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Colour-Value Based Method for Polydopamine Coating-Stability Characterization on Polyethersulfone Membranes.

    Science.gov (United States)

    Bucher, Thomas; Clodt, Juliana I; Grabowski, Andrej; Hein, Martin; Filiz, Volkan

    2017-12-16

    Porous polyethersulfone membranes as used in oenology were investigated in order to evaluate temperature-dependent permeances in a temperature range from 10 to 35 °C. A temperature correction factor was determined for this type of membrane to get accurate and comparable results for further developments. Moreover, the membranes were modified with a bio-inspired polydopamine coating in order to reduce fouling. The performance of the membranes could be increased with respect to permeance and flux recovery under cross-flow conditions. In order to test the applicability and stability of the coating layer, they were treated with basic and acidic cleaning agents as used in industry for fouled membranes. The chemical stability of the coating layer was studied under basic and acidic conditions, by systematic observation of the colour change of the coated membranes over treatment time.

  14. FABRICATION AND CHARACTERIZATION OF POLYIMIDE/POLYETHERSULFONE-FUMED SILICA MIXED MATRIX MEMBRANE FOR GAS SEPARATION

    Directory of Open Access Journals (Sweden)

    A. F. Ismail

    2012-01-01

    Full Text Available This study is performed primarily to investigate the feasibility of fumed silica as inorganic material towards gas separation performance of mixed matrix membrane. In this study, polyimide/polyethersulfone (PES-fumed silica mixed matrix membranes were casted using dry/wet technique. The results from the FESEM, DSC and FTIR analysis confirmed that the structure and physical properties of membrane is influenced by inorganic filler. FESEM’s cross-section view indicated good compatibility between polymer and fumed silica for all of range fumed silica used in this study. The gas separation performance of the mixed matrix membranes with fumed silica were relatively higher compared to that of the neat PI/PES membrane. PI/PES-fumed silica 5 wt% yielded significant selectivity enhancement of 7.21 and 40.47 for O2/N2, and CO2/CH4, respectively.

  15. KrF laser ablation of a polyethersulfone film: Effect of pulse duration on structure formation

    International Nuclear Information System (INIS)

    Pazokian, Hedieh; Selimis, Alexandros; Stratakis, Emmanuel; Mollabashi, Mahmoud; Barzin, Jalal; Jelvani, Saeid

    2011-01-01

    Polyethersulfone (PES) films were processed with KrF laser irradiation of different pulse durations (τ). Scanning electron microscopy (SEM) and Raman spectroscopy were employed for the examination of the morphology and chemical composition of the irradiated surfaces, respectively. During ablation with 500 fs and 5 ps pulses, localized deformations (beads), micro-ripple and conical structures were observed on the surface depending on the irradiation fluence (F) and the number of pulses (N). In addition, the number density of the structures is affected by the irradiation parameters (τ, F, N). Furthermore, at longer pulse durations (τ = 30 ns), conical structures appear at lower laser fluence values, which are converted into columnar structures upon irradiation at higher fluences. The Raman spectra collected from the top of the structures following irradiation at different pulse durations revealed graphitization of the ns laser treated areas, in contrast to those processed with ultra-short laser pulses.

  16. Hydrophilicity improvement of polyethersulfone powders by grafting acrylic acid with γ-ray simultaneous irradiation method

    International Nuclear Information System (INIS)

    Deng Bo; Hou Zhengchi; Zhang Fengying; Xie Leidong; Li Jing; Yang Haijun

    2005-01-01

    Acrylic acid was grafted to Polyethersulfone (PES) powders by liquid-phase simultaneous irradiation. Effects of grafting conditions, such as absorbed dose, volume fraction of monomer, inhibitor (Cu 2+ ) concentration, and pH of the grafting solution on degree of the grafting were investigated. Combined with gravimetric analysis, a working curve of grafting degree through FT-IR quantitative analysis was obtained. The highest grafting degree was achieved at dose of 25 kGy, volume fraction of monomer of 30% and inhibitor concentration of 0.004 mol/L. Greater degrees of the grafting could be obtained by adding increasing amount of hydrochloric acid to the system. Hydrophilicity of the grafted PES powders increased with higher degrees of the grafting. (authors)

  17. Polyethersulfone/Graphene Oxide Ultrafiltration Membranes from Solutions in Ionic Liquid

    KAUST Repository

    Mahalingam, Dinesh. K.; Kim, DooLi.; Nunes, Suzana. P.

    2017-01-01

    Novel high flux polyethersulfone (PES) ultrafiltration membranes were fabricated by incorporating different amounts of graphene oxide (GO) sheets to PES as nanofillers. The membranes were prepared from solutions in 50/50 1-ethyl-3-methylimidazolium-diethylphosphate/N,N-dimethyl formamide. It was observed that the water permeance increased from 550 to 800 L m-2h-1bar-1, with incorporation of 1 wt% GO, keeping a molecular weight cut-off (MWCO) of approximately 32-34 kg mol-1. Cross-sectional scanning electron microscopy images of GO/PES membranes showed the formation of ultrathin selective layer unlike pristine membranes. Contact angle measurements confirmed the increase of hydrophilicity, by increasing the GO concentration. The rejection of humic acid and bovine serum albumin was demonstrated. The mechanical properties were improved, compared with the pristine membranes. The performance was just above the trade-off relationship between permeance and separation factor for PES membranes reported in the literature.

  18. Polyethersulfone/Graphene Oxide Ultrafiltration Membranes from Solutions in Ionic Liquid

    KAUST Repository

    Mahalingam, Dinesh. K.

    2017-07-18

    Novel high flux polyethersulfone (PES) ultrafiltration membranes were fabricated by incorporating different amounts of graphene oxide (GO) sheets to PES as nanofillers. The membranes were prepared from solutions in 50/50 1-ethyl-3-methylimidazolium-diethylphosphate/N,N-dimethyl formamide. It was observed that the water permeance increased from 550 to 800 L m-2h-1bar-1, with incorporation of 1 wt% GO, keeping a molecular weight cut-off (MWCO) of approximately 32-34 kg mol-1. Cross-sectional scanning electron microscopy images of GO/PES membranes showed the formation of ultrathin selective layer unlike pristine membranes. Contact angle measurements confirmed the increase of hydrophilicity, by increasing the GO concentration. The rejection of humic acid and bovine serum albumin was demonstrated. The mechanical properties were improved, compared with the pristine membranes. The performance was just above the trade-off relationship between permeance and separation factor for PES membranes reported in the literature.

  19. [Effect of sulfonation of polyethersulfone sheets on the adsorption of beta2-microglobulin].

    Science.gov (United States)

    Cheng, Liping; Sun, Shudong; Yue, Yilun; Huang, Jia; Mao, Huayi; Liang, Bo

    2005-06-01

    This study was performed to evaluate the adsorption of beta2-microglobulin(beta2 M) by blood dialysis membrane materials which are polyethersulfone (PES), sulfonated polyethersulfones, (PES-SO3Na-I and PES-SO3Na-I ) in vitro incubated in human serum and radiolabeled beta2M (125I-beta2 M) solution respectively. In these experiments, the materials were incubated in 125I-beta2 M solution and human serum at the appointed time ranging from 15 minutes to four hours at 37 degrees C, and then the amounts of 125I-beta2M and serum beta2M adsorbed by materials were measured by radioimmunoassay (RIA). In the 125I-beta2 M system, amounts of 125I-beta2M adsorbed by the materials decreased in sequence of PES-SO3 Na-II > PES-SO3Na-I > PES. In the serum system, amounts of beta2M adsorbed reached maximums at 30 minutes and the final adsorptions decreased in sequence of PES-SO3Na-II > PES-SO3Na-I > PES. Sulfonated PES removes beta2M more than PES does and the adsorption of beta2M increases with the increase in the degree of sulfonation. Its ability to remove significant amount of beta2M may result in less beta2M available for incorporation into amyloid. The use of PES-SO3Na membranes lessens the likelihood of dialysis-related amyloidosis (DRA) development, which remains a major source of morbidity for patients treated with long-term hemodialysis.

  20. The Electrospun Ceramic Hollow Nanofibers

    Directory of Open Access Journals (Sweden)

    Shahin Homaeigohar

    2017-11-01

    Full Text Available Hollow nanofibers are largely gaining interest from the scientific community for diverse applications in the fields of sensing, energy, health, and environment. The main reasons are: their extensive surface area that increases the possibilities of engineering, their larger accessible active area, their porosity, and their sensitivity. In particular, semiconductor ceramic hollow nanofibers show greater space charge modulation depth, higher electronic transport properties, and shorter ion or electron diffusion length (e.g., for an enhanced charging–discharging rate. In this review, we discuss and introduce the latest developments of ceramic hollow nanofiber materials in terms of synthesis approaches. Particularly, electrospinning derivatives will be highlighted. The electrospun ceramic hollow nanofibers will be reviewed with respect to their most widely studied components, i.e., metal oxides. These nanostructures have been mainly suggested for energy and environmental remediation. Despite the various advantages of such one dimensional (1D nanostructures, their fabrication strategies need to be improved to increase their practical use. The domain of nanofabrication is still advancing, and its predictable shortcomings and bottlenecks must be identified and addressed. Inconsistency of the hollow nanostructure with regard to their composition and dimensions could be one of such challenges. Moreover, their poor scalability hinders their wide applicability for commercialization and industrial use.

  1. Preparation of Two-Layer Anion-Exchange Poly(ethersulfone Based Membrane: Effect of Surface Modification

    Directory of Open Access Journals (Sweden)

    Lucie Zarybnicka

    2016-01-01

    Full Text Available The present work deals with the surface modification of a commercial microfiltration poly(ethersulfone membrane by graft polymerization technique. Poly(styrene-co-divinylbenzene-co-4-vinylbenzylchloride surface layer was covalently attached onto the poly(ethersulfone support layer to improve the membrane electrochemical properties. Followed by amination, a two-layer anion-exchange membrane was prepared. The effect of surface layer treatment using the extraction in various solvents on membrane morphological and electrochemical characteristics was studied. The membranes were tested from the point of view of water content, ion-exchange capacity, specific resistance, permselectivity, FT-IR spectroscopy, and SEM analysis. It was found that the two-layer anion-exchange membranes after the extraction using tetrahydrofuran or toluene exhibited smooth and porous surface layer, which resulted in improved ion-exchange capacity, electrical resistance, and permselectivity of the membranes.

  2. Electrospun nanofibers for energy and environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Bin; Yu, Jianyong (eds.) [Donghua Univ., Shanghai (China). State Key Lab. for Modification of Chemical Fibers and Polymer Materials; Donghua Univ., Shanghai (China). Nanomaterials Research Center

    2014-10-01

    This book offers a comprehensive review of the latest advances in developing functional electrospun nanofibers for energy and environmental applications, which include fuel cells, lithium-ion batteries, solar cells, supercapacitors, energy storage materials, sensors, filtration materials, protective clothing, catalysis, structurally-colored fibers, oil spill cleanup, self-cleaning materials, adsorbents, and electromagnetic shielding.

  3. Electrospun Superhydrophobic Self-Cleaning Materials

    Science.gov (United States)

    Zhao, Yong; Wang, Nü

    In this chapter, we introduce the wettability of electrospinning products. Especially, we concentrate on the fabrication, characteristics, and applications of the electrospun self-cleaning materials. Self-cleaning materials are typical nature-inspired artificial materials learning from such as lotus leaf and many other plants or animals. Self-cleaning materials usually rely on a superhydrophobic surface, which should be of low surface free energy as well as large surface roughness. Electrospinning method is such a method that could facilely shape various hydrophobic polymers into ultrathin fibers with tunable surface microstructures. It means the electrospun products are of very large specific area, which satisfy the two basic conditions in preparing superhydrophobic surfaces. Therefore, in the last decade, scientists put forward a good few of elegant approaches to fabricate superhydrophobic materials by electrospinning. These methods can be generally classified into two routes. One is a direct route that creates superhydrophobic electrospun films from hydrophobic materials. Another is an indirect route that decorates electrospun nanofibers (no matter hydrophobic or hydrophilic) with hydrophobic chemicals. We first introduce some representative works on the fabrication of superhydrophobic self-cleaning materials by electrospinning method. Then we show some applications of these superhydrophobic materials. Finally, we give a brief personal perspective on this area.

  4. Molecular electron affinities

    International Nuclear Information System (INIS)

    Fukuda, E.K.

    1983-01-01

    Molecular electron affinities have historically been difficult quantities to measure accurately. These difficulties arise from differences in structure between the ion and neutral as well as the existence of excited negative ion states. To circumvent these problems, relative electron affinities were determined in this dissertation by studying equilibrium electron transfer reactions using a pulsed ion cyclotron resonance (ICR) spectrometer. Direct measurement of ion and neutral concentrations for reactions of the general type, A - + B = B - + A, allow calculation of the equilibrium constant and, therefore, the free energy change. The free energy difference is related to the difference in electron affinities between A and B. A relative electron affinity scale covering a range of about 45 kcal/mol was constructed with various substituted p-benzoquinones, nitrobenzenes, anhydrides, and benzophenones. To assign absolute electron affinities, various species with accurately known electron affinities are tied to the scale via ion-cyclotron double resonance bracketing techniques. After the relative scale is anchored to these species with well-known electron affinities, the scale is then used as a check on other electron affinity values as well as generating new electron affinity values. Many discrepancies were found between the electron affinities measured using the ICR technique and previous literature determinations

  5. Polyethersulfone flat sheet and hollow fiber membranes from solutions in ionic liquids

    KAUST Repository

    Kim, Dooli

    2017-06-10

    We fabricated flat-sheet and hollow fiber membranes from polyethersulfone (PES) solutions in two ionic liquids: 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP) and 1,3-dimethylimidazolium dimethyl phosphate ([MMIM]DMP). The solvents are non-volatile and less toxic than organic solvents, such as dimethylformamide (DMF). The membranes morphologies were compared with those of membranes prepared from solutions in DMF, using electron microscopy. Water permeance, solute rejection and mechanical strengths were evaluated. Membranes were applied to DNA separation. While membranes based on PES were successfully prepared, polysulfone (PSf) does not dissolve in the same ionic liquids. The discrepancy between PES and PSf could not be explained using classical Flory-Huggins theory, which does not consider the coulombic contributions in ionic liquids. The differences in solubility could be understood, by applying density functional theory to estimate the interaction energy between the different polymers and solvents. The theoretical results were supported by experimental measurements of intrinsic viscosity and dynamic light scattering (DLS).

  6. Surface and anti-fouling properties of a polyampholyte hydrogel grafted onto a polyethersulfone membrane.

    Science.gov (United States)

    Zhang, Wei; Yang, Zhe; Kaufman, Yair; Bernstein, Roy

    2018-05-01

    Zwitterion polymers have anti-fouling properties; therefore, grafting new zwitterions to surfaces, particularly as hydrogels, is one of the leading research directions for preventing fouling. Specifically, polyampholytes, polymers of random mixed charged subunits with a net-electric charge, offer a synthetically easy alternative for studying new zwitterions with a broad spectrum of charged moieties. Here, a novel polyampholyte hydrogel was grafted onto the surface of polyethersulfone membrane by copolymerizing a mixture of vinylsulfonic acid (VSA) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METMAC) as the negatively and positively charged monomers, respectively, using various monomer ratios in the polymerization solution, and with N,N'-methylenebisacrylamide as the crosslinker. The physicochemical, morphological and anti-fouling properties of the modified membranes were systematically investigated. Hydrophilic hydrogels were successfully grafted using monomers at different molar ratios. A thin-film zwitterion hydrogel (∼90 nm) was achieved at a 3:1 [VSA:METMAC] molar ratio in the polymerization solution. Among all examined membranes, the zwitterion polyampholyte-modified membrane demonstrated the lowest adsorption of proteins, humic acid, and sodium alginate. It also had low fouling and high flux recovery following filtration with a protein or with an extracellular polymeric substance solution. These findings suggest that this polyampholyte hydrogel is applicable as a low fouling surface coating. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Corona-induced graft polymerization for surface modification of porous polyethersulfone membranes

    International Nuclear Information System (INIS)

    Zhu Liping; Zhu Baoku; Xu Li; Feng Yongxiang; Liu Fu; Xu Youyi

    2007-01-01

    Graft polymerization of acrylic acid (AA) onto porous polyethersulfone (PES) membrane surfaces was developed using corona discharge in atmospheric ambience as an activation process followed by polymerization of AA in aqueous solution. The effects of the corona parameters and graft polymerization conditions on grafting yield (GY) of AA were investigated. The grafting of AA on the PES membranes was confirmed by ATR-FTIR and X-ray photoelectron spectroscopy (XPS) analysis. Porosimetry measurements indicate the average pore diameters and porosities of the modified membranes decrease with the increase of the GY. The hydrophilicity and surface wetting properties of the original and modified membranes were evaluated by observing the dynamic changes of water contact angles. It is found that the grafting of AA occurs not only on the membrane surfaces, but also on the pore walls of the cells inside the membrane. The permeability experiments of protein solution reveal that the grafting of PAA endows the modified membranes with enhanced fluxes and anti-fouling properties. The optimized GY of AA is in the range of 150-200 μg/cm 2 . In addition, the tensile experiments show the corona discharge treatment with the power lower than 150 W yields little damage to the mechanical strength of the membranes

  8. Effect of Graphene Oxide (GO) on the Surface Morphology & Hydrophilicity of Polyethersulfone (PES)

    Science.gov (United States)

    Junaidi, N. F. D.; Khalil, N. A.; Jahari, A. F.; Shaari, N. Z. K.; Shahruddin, M. Z.; Alias, N. H.; Othman, N. H.

    2018-05-01

    Membrane has been widely used in water and wastewater treatment. One of the major issues related membrane separation is concentration polarization or fouling, which can lead to a decline of flux and premature failure of membrane. However, fouling can be controlled by modification of membrane properties such as morphology and hydrophilicity. In this work, a modification of polymeric membrane, polyethersulfone (PES) was carried out using graphene oxide in order to attain high antifouling characteristics. Graphene oxide (GO) was added at different compositions ranging from (0.1 wt%-1.0 wt%). GO was synthesized using modified Hummers’ method and characterized using XRD and FTIR prior to using it as additive for the PES membrane. The prepared PES-GO composite membranes were characterized using FTIR and SEM, Contact angle measurement and pure water flux test were then conducted to investigate the hydrophilicity of the PES-GO membranes. It was found that the additions of GO has significantly improved the hydrophilicity of the membranes.

  9. Modification of polyethersulfone films by grafting hydrophilic monomers with 60Co γ-rays

    International Nuclear Information System (INIS)

    Hou Zhengchi; Deng Bo; Li Jing

    2006-01-01

    Polyethersulfone (PES), with its high strength, high temperature resistance, corrosion- resistance, oxidation resistance and applicability under wide pH range, is used extensively as ultrafiltration and nanofiltration membrane. However, PES membranes foul easily in such an application because of hydrophobic nature of PES raw materials. Improving the hydrophilicity of PES by grafting hydrophilic monomers onto it is of potential to solve the problem. At present, common approaches to improve hydrophilicity of PES membranes are UV grafting modification, plasma modification, and chemical modification, whereas grafting and modifying PES films by 60 Co γ-rays has rarely been reported. Studies have been carried out in our laboratory to graft hydrophilic monomers onto PES membranes directly or PES powders via simultaneous radiation grafting with the rays. Acrylic acid, methyl acrylic acid or acrylamide was used to study effects of the monomer concentration, irradiation dose and dose rate, solvent, inhibitor and pH of the grafting solution on the degree of grafting. The results showed that hydrophilicity of all the PES membranes could be improved, with the extent of improvement being dependent on the grafting conditions. (authors)

  10. Preparation of polyethersulfone-organophilic montmorillonite hybrid particles for the removal of bisphenol A

    International Nuclear Information System (INIS)

    Cao Fuming; Bai Pengli; Li Haocheng; Ma Yunli; Deng Xiaopei; Zhao Changsheng

    2009-01-01

    Polyethersulfone (PES)-organophilic montmorillonite (OMMT) hybrid particles, with various proportions of OMMT, were prepared by using a liquid-liquid phase separation technique, and then were used for the removal of bisphenol A (BPA) from aqueous solution. The adsorbed BPA amounts increased significantly when the OMMT were embedded into the particles. The structure of the particle was characterized by using scanning electron microscopy (SEM); and these particles hardly release small molecules below 250 deg. C which was testified by using thermogravimetric analysis (TGA). The experimental data of BPA adsorption were adequately fitted with Langmuir equations. Three simplified kinetics model including the pseudo-first-order (Lagergren equation), the pseudo-second-order, and the intraparticle diffusion model were used to describe the adsorption process. Kinetic studies showed that the adsorbed BPA amount reached an equilibrium value after 300 min, and the experimental data could be expressed by the intraparticular mass transfer diffusion model. Furthermore, the adsorbed BPA could be effectively removed by ethanol, which indicated that the hybrid particles could be reused. These results showed that the PES-OMMT hybrid particles have the potential to be used in the environmental application

  11. Aluminum oxide barrier coating on polyethersulfone substrate by atomic layer deposition for barrier property enhancement

    International Nuclear Information System (INIS)

    Kim, Hyun Gi; Kim, Sung Soo

    2011-01-01

    Aluminum oxide layers were deposited on flexible polyethersulfone (PES) substrates via plasma enhanced atomic layer deposition (PEALD) process using trimethylaluminum (TMA) and oxygen as precursor and reactant materials. Several process parameters in PEALD process were investigated in terms of refractive index and layer thickness. Number of process cycle increased the thickness and refractive index of the layer to enhance the barrier properties. Non-physisorbed TMA and unreacted oxygen were purged before and after the plasma reaction, respectively. Identical purge time was applied to TMA and oxygen and it was optimized for 10 s. Thinner and denser layer was formed as substrate temperature increased. However, the PES substrate could be deformed above 120 o C. Aluminum oxide layer formed on PES at optimized conditions have 11.8 nm of thickness and reduced water vapor transmission rate and oxygen transmission rate to below 4 x 10 -3 g/m 2 day and 4 x 10 -3 cm 3 /m 2 day, respectively. Polycarbonate and polyethylene naphthalate films were also tested at optimized conditions, and they also showed quite appreciable barrier properties to be used as plastic substrates.

  12. Graphene immobilized enzyme/polyethersulfone mixed matrix membrane: Enhanced antibacterial, permeable and mechanical properties

    International Nuclear Information System (INIS)

    Duan, Linlin; Wang, Yuanming; Zhang, Yatao; Liu, Jindun

    2015-01-01

    Graphical abstract: - Highlights: • Lysozyme was immobilized on the surface of graphene oxide (GO) and reduced GO (RGO). • The novel hybrid membranes based on lysozyme and graphene were fabricated firstly. • These membranes showed good antibacterial and mechanical performance. - Abstract: Enzyme immobilization has been developed to address lots of issues of free enzyme, such as instability, low activity and difficult to retain. In this study, graphene was used as an ideal carrier for lysozyme immobilization, including graphene oxide (GO) immobilized lysozyme (GO-Ly) and chemically reduced graphene oxide (CRGO) immobilized lysozyme (CRGO-Ly). Herein, lysozyme as a bio-antibacterial agent has excellent antibacterial performance and the products of its catalysis are safety and nontoxic. Then the immobilized lysozyme materials were blended into polyethersulfone (PES) casting solution to prepare PES ultrafiltration membrane via phase inversion method. GO and CRGO were characterized by Fourier transform infrared spectroscopy (FTIR), Ultraviolet–visible spectrum (UV), X-ray diffraction (XRD), and transmission electron microscopy (TEM) and the immobilized lysozyme composites were observed by fluorescent microscopy. The results revealed that GO and CRGO were successfully synthesized and lysozyme was immobilized on their surfaces. The morphology, hydrophilicity, mechanical properties, separation properties and antibacterial activity of the hybrid membranes were characterized in detail. The hydrophilicity, water flux and mechanical strength of the hybrid membranes were significantly enhanced after adding the immobilized lysozyme. In the antibacterial experiment, the hybrid membranes exhibited an effective antibacterial performance against Escherichia coli (E. coli).

  13. Experimental investigation and modeling of industrial oily wastewater treatment using modified polyethersulfone ultrafiltration hollow fiber membranes

    International Nuclear Information System (INIS)

    Salahi, Abdolhamid; Mohammadi, Toraj; Behbahani, Reza Mosayebi; Hemmati, Mahmood

    2015-01-01

    Hollow fiber membranes were prepared from polyethersulfone/additives/NMP and DMSO system via phase inversion induced by precipitation in non-solvent coagulation bath. The interaction effects of polyethylene-glycol (PEG), propionic-acid (PA), Tween-20, PEG molecular weight and polyvinyl-pyrrolidone (PVP) on morphology and performance of synthesized membranes were investigated. Taguchi method (L 16 orthogonal array) was used initially to plan a minimum number of experiments. 32 membranes were synthesized (with two replications) and their permeation flux and TOC rejection properties to oily wastewater treatment were studied. The obtained results indicated that addition of PA to spinning dope decreases flux while it increases TOC rejection of prepared membranes. Also, the result shows that addition of PVP, Tween-20 and PEG content in spinning dope enhances permeation flux while reducing TOC rejection. The obtained results indicated that the synthesized membranes was effective and suitable for treatment of the oily wastewater to achieve up to 92.6, 98.2, and 98.5% removal of TOC, TSS, and OGC, respectively with a flux of 247.19 L/(m 2 h). Moreover, Hermia's models were used for permeation flux decline prediction. Experimental data and models predictions were compared. The results showed that there is reasonable agreement between experimental data and the cake layer model followed by the intermediate blocking model

  14. Polyethersulfone-based ultrafiltration hollow fibre membrane for drinking water treatment systems

    Science.gov (United States)

    Chew, Chun Ming; Ng, K. M. David; Ooi, H. H. Richard

    2017-12-01

    Conventional media/sand filtration has been the mainstream water treatment process for most municipal water treatment plants in Malaysia. Filtrate qualities of conventional media/sand filtration are very much dependent on the coagulation-flocculation process prior to filtration and might be as high as 5 NTU. However, the demands for better quality of drinking water through public piped-water supply systems are growing. Polymeric ultrafiltration (UF) hollow fibre membrane made from modified polyethersulfone (PES) material is highly hydrophilic with high tensile strength and produces excellent quality filtrate of below 0.3 NTU in turbidity. This advanced membrane filtration material is also chemical resistance which allows a typical lifespan of 5 years. Comparisons between the conventional media/sand filtration and PES-based UF systems are carried out in this paper. UF has been considered as the emerging technology in municipal drinking water treatment plants due to its consistency in producing high quality filtrates even without the coagulation-flocculation process. The decreasing cost of PES-based membrane due to mass production and competitive pricing by manufacturers has made the UF technology affordable for industrial-scale water treatment plants.

  15. Experimental investigation and modeling of industrial oily wastewater treatment using modified polyethersulfone ultrafiltration hollow fiber membranes

    Energy Technology Data Exchange (ETDEWEB)

    Salahi, Abdolhamid; Mohammadi, Toraj [Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of); Behbahani, Reza Mosayebi [Petroleum University of Technology (PUT), Ahwaz (Iran, Islamic Republic of); Hemmati, Mahmood [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of)

    2015-06-15

    Hollow fiber membranes were prepared from polyethersulfone/additives/NMP and DMSO system via phase inversion induced by precipitation in non-solvent coagulation bath. The interaction effects of polyethylene-glycol (PEG), propionic-acid (PA), Tween-20, PEG molecular weight and polyvinyl-pyrrolidone (PVP) on morphology and performance of synthesized membranes were investigated. Taguchi method (L{sub 16} orthogonal array) was used initially to plan a minimum number of experiments. 32 membranes were synthesized (with two replications) and their permeation flux and TOC rejection properties to oily wastewater treatment were studied. The obtained results indicated that addition of PA to spinning dope decreases flux while it increases TOC rejection of prepared membranes. Also, the result shows that addition of PVP, Tween-20 and PEG content in spinning dope enhances permeation flux while reducing TOC rejection. The obtained results indicated that the synthesized membranes was effective and suitable for treatment of the oily wastewater to achieve up to 92.6, 98.2, and 98.5% removal of TOC, TSS, and OGC, respectively with a flux of 247.19 L/(m{sup 2}h). Moreover, Hermia's models were used for permeation flux decline prediction. Experimental data and models predictions were compared. The results showed that there is reasonable agreement between experimental data and the cake layer model followed by the intermediate blocking model.

  16. Antithrombogenicity of Fluorinated Diamond-Like Carbon Films Coated Nano Porous Polyethersulfone (PES Membrane

    Directory of Open Access Journals (Sweden)

    Norihisa Miki

    2013-09-01

    Full Text Available A nano porous polyethersulfone (PES membrane is widely used for aspects of nanofiltration, such as purification, fractionation and dialysis. However, the low-blood-compatibility characteristic of PES membrane causes platelets and blood cells to stick to the surface of the membrane and degrades ions diffusion through membrane, which further limits its application for dialysis systems. In this study, we deposited the fluorinated-diamond-like-carbon (F-DLC onto the finger like structure layer of the PES membrane. By doing this, we have the F-DLC films coating the membrane surface without sacrificing the membrane permeability. In addition, we examined antithrombogenicity of the F-DLC/PES membranes using a microfluidic device, and experimentally found that F-DLC drastically reduced the amount of blood cells attached to the surface. We have also conducted long-term experiments for 24 days and the diffusion characteristics were found to be deteriorated due to fouling without any surface modification. On the other hand, the membranes coated by F-DLC film gave a consistent diffusion coefficient of ions transfer through a membrane porous. Therefore, F-DLC films can be a great candidate to improve the antithrombogenic characteristics of the membrane surfaces in hemodialysis systems.

  17. Fouling Characteristics of Dissolved Organic Matter in Papermaking Process Water on Polyethersulfone Ultrafiltration Membranes

    Directory of Open Access Journals (Sweden)

    Wenpeng Su

    2015-07-01

    Full Text Available In the papermaking industry, closure of process water (whitewater circuits has been used to reduce fresh water consumption. Membrane separation technology has potential for use in treating process water for recirculation. The purpose of this study was to reveal the fouling characteristics of a polyethersulfone (PES ultrafiltration membrane caused by dissolved organic matter (DOM in process water. Ultrafiltration membranes (UF and DAX ion exchange resins were applied to characterize the molecular weight (MW and hydrophilicity distribution of DOM. The interactions between various fractions of DOM and a PES ultrafiltration membrane were investigated. The membrane fouling characteristics were elucidated by examining the filtration resistances and linearized Herman’s blocking models. The results demonstrated that the membrane was fouled significantly by much of the MW distribution. The membrane was fouled more significantly by the low MW fraction rather than the high MW fraction. The filtration resistances and the fitted equation of Hermia’s laws indicated that hydrophilic organics were the main foulants. The hydrophilic organics partially block the membrane pores and form intermediate blocking, reducing the effective filtration area, while the hydrophobic organics form a gel layer or cake on the surface of the membrane.

  18. Antithrombogenicity of Fluorinated Diamond-Like Carbon Films Coated Nano Porous Polyethersulfone (PES) Membrane

    Science.gov (United States)

    Prihandana, Gunawan S.; Sanada, Ippei; Ito, Hikaru; Noborisaka, Mayui; Kanno, Yoshihiko; Suzuki, Tetsuya; Miki, Norihisa

    2013-01-01

    A nano porous polyethersulfone (PES) membrane is widely used for aspects of nanofiltration, such as purification, fractionation and dialysis. However, the low-blood-compatibility characteristic of PES membrane causes platelets and blood cells to stick to the surface of the membrane and degrades ions diffusion through membrane, which further limits its application for dialysis systems. In this study, we deposited the fluorinated-diamond-like-carbon (F-DLC) onto the finger like structure layer of the PES membrane. By doing this, we have the F-DLC films coating the membrane surface without sacrificing the membrane permeability. In addition, we examined antithrombogenicity of the F-DLC/PES membranes using a microfluidic device, and experimentally found that F-DLC drastically reduced the amount of blood cells attached to the surface. We have also conducted long-term experiments for 24 days and the diffusion characteristics were found to be deteriorated due to fouling without any surface modification. On the other hand, the membranes coated by F-DLC film gave a consistent diffusion coefficient of ions transfer through a membrane porous. Therefore, F-DLC films can be a great candidate to improve the antithrombogenic characteristics of the membrane surfaces in hemodialysis systems. PMID:28788333

  19. Plasma treatment of polyethersulfone membrane for benzene removal from water by air gap membrane distillation.

    Science.gov (United States)

    Pedram, Sara; Mortaheb, Hamid Reza; Arefi-Khonsari, Farzaneh

    2018-01-01

    In order to obtain a durable cost-effective membrane for membrane distillation (MD) process, flat sheet polyethersulfone (PES) membranes were modified by an atmospheric pressure nonequilibrium plasma generated using a dielectric barrier discharge in a mixture of argon and hexamethyldisiloxane as the organosilicon precursor. The surface properties of the plasma-modified membranes were characterized by water contact angle (CA), liquid entry pressure, X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. The water CA of the membrane was increased from 64° to 104° by depositing a Si(CH 3 )-rich thin layer. While the pristine PES membrane was not applicable in the MD process, the modified PES membrane could be applied for the first time in an air gap membrane distillation setup for the removal of benzene as a volatile organic compound from water. The experimental design using central composite design and response surface methodology was applied to study the effects of feed temperature, concentration, and flow rate as well as their binary interactions on the overall permeate flux and separation factor. The separation factor and permeation flux of the modified PES membrane at optimum conditions were comparable with those of commercial polytetrafluoroethylene membrane.

  20. Evaluation of polyethersulfone performance for the microextraction of polar chlorinated herbicides from environmental water samples.

    Science.gov (United States)

    Prieto, Ailette; Rodil, Rosario; Quintana, José Benito; Cela, Rafael; Möder, Monika; Rodríguez, Isaac

    2014-05-01

    In this work, the suitability of bulk polyethersulfone (PES) for sorptive microextraction of eight polar, chlorinated phenoxy acids and dicamba from environmental water samples is assessed and the analytical features of the optimized method are compared to those reported for other microextraction techniques. Under optimized conditions, extractions were performed with samples (18 mL) adjusted at pH 2 and containing a 30% (w/v) of sodium chloride, using a tubular PES sorbent (1 cm length × 0.7 mm o.d., sorbent volume 8 µL). Equilibrium conditions were achieved after 3h of direct sampling, with absolute extraction efficiencies ranging from 39 to 66%, depending on the compound. Analytes were recovered soaking the polymer with 0.1 mL of ethyl acetate, derivatized and determined by gas chromatography-mass spectrometry (GC-MS). Achieved quantification limits (LOQs) varied between 0.005 and 0.073 ng mL(-1). After normalization with the internal surrogate (IS), the efficiency of the extraction was only moderately affected by the particular characteristics of different water samples (surface and sewage water); thus, pseudo-external calibration, using spiked ultrapure water solutions, can be used as quantification technique. The reduced cost of the PES polymer allowed considering it as a disposable sorbent, avoiding variations in the performance of the extraction due to cross-contamination problems and/or surface modification with usage. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Electrospun polymeric nanofibers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Mahya Rahmani

    2017-04-01

    Full Text Available Conventional transdermal drug delivery systems (TDDS have been designed for drug delivery through the skin. These systems use the permeability property of stratum corneum, the outermost surface layer of the skin. Applying polymeric micro and nanofibers in drug delivery has recently attracted great attention and the electrospinning technique is the preferred method for polymeric micro-nanofibers fabrication with a great potential for drug delivery. More studies in the field of nanofibers containing drug are divided two categories: first, preparation and characterization of nanofibers containing drug and second, investigation of their therapeutic applications. Drugs used in electrospun nanofibers can be categorized into three main groups, including antibiotics and antimicrobial agents, anti-inflammatory agents and vitamins with therapeutic applications. In this paper, we review the application of electrospun polymeric scaffolds in TDDS and also introduce several pharmaceutical and therapeutic agents which have been used in polymer nanofibrous patches.

  2. Electrospun Nanofibrous Materials for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yee-Shuan Lee

    2011-02-01

    Full Text Available The use of biomaterials processed by the electrospinning technique has gained considerable interest for neural tissue engineering applications. The tissue engineering strategy is to facilitate the regrowth of nerves by combining an appropriate cell type with the electrospun scaffold. Electrospinning can generate fibrous meshes having fiber diameter dimensions at the nanoscale and these fibers can be nonwoven or oriented to facilitate neurite extension via contact guidance. This article reviews studies evaluating the effect of the scaffold’s architectural features such as fiber diameter and orientation on neural cell function and neurite extension. Electrospun meshes made of natural polymers, proteins and compositions having electrical activity in order to enhance neural cell function are also discussed.

  3. Measuring Electrospun Nanofibre Diameter: a Novel Approach

    International Nuclear Information System (INIS)

    Ziabari, M.; Mottaghitalab, V.; Haghi, A. K.; McGovern, S. T.

    2008-01-01

    A new method based on image analysis for electrospun nanofibre diameter measurement is presented. First, the SEM micrograph of the nanofibre web obtained by electrospinning process is converted to binary image using local thresholding method. In the next step, skeleton and distance transformed image are generated. Then, the intersection points which bring about untrue measurements are identified and removed from the skeleton. Finally, the resulting skeleton and distance transformed image are used to determine fibre diameter. The method is evaluated by a simulated image with known characteristics generated by ?-randomness procedure. The results indicate that this approach is successful in making fast, accurate automated measurements of electrospun fibre diameters. (cross-disciplinary physics and related areas of science and technology)

  4. Electrospun nanofiber scaffolds: engineering soft tissues

    International Nuclear Information System (INIS)

    Kumbar, S G; Nukavarapu, S P; Laurencin, C T; James, R

    2008-01-01

    Electrospinning has emerged to be a simple, elegant and scalable technique to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetics have been successfully electrospun into nanofiber matrices. Physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters to meet the requirements of a specific application. Such efforts include the fabrication of fiber matrices containing nanofibers, microfibers, combination of nano-microfibers and also different fiber orientation/alignments. Polymeric nanofiber matrices have been extensively investigated for diversified uses such as filtration, barrier fabrics, wipes, personal care, biomedical and pharmaceutical applications. Recently electrospun nanofiber matrices have gained a lot of attention, and are being explored as scaffolds in tissue engineering due to their properties that can modulate cellular behavior. Electrospun nanofiber matrices show morphological similarities to the natural extra-cellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratio, high porosity and variable pore-size distribution. Efforts have been made to modify nanofiber surfaces with several bioactive molecules to provide cells with the necessary chemical cues and a more in vivo like environment. The current paper provides an overlook on such efforts in designing nanofiber matrices as scaffolds in the regeneration of various soft tissues including skin, blood vessel, tendon/ligament, cardiac patch, nerve and skeletal muscle

  5. Electrospun nanofiber scaffolds: engineering soft tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kumbar, S G; Nukavarapu, S P; Laurencin, C T [Department of Orthopaedic Surgery, University of Virginia, VA 22908 (United States); James, R [Department of Biomedical Engineering, University of Virginia, VA 22908 (United States)], E-mail: laurencin@virginia.edu

    2008-09-01

    Electrospinning has emerged to be a simple, elegant and scalable technique to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetics have been successfully electrospun into nanofiber matrices. Physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters to meet the requirements of a specific application. Such efforts include the fabrication of fiber matrices containing nanofibers, microfibers, combination of nano-microfibers and also different fiber orientation/alignments. Polymeric nanofiber matrices have been extensively investigated for diversified uses such as filtration, barrier fabrics, wipes, personal care, biomedical and pharmaceutical applications. Recently electrospun nanofiber matrices have gained a lot of attention, and are being explored as scaffolds in tissue engineering due to their properties that can modulate cellular behavior. Electrospun nanofiber matrices show morphological similarities to the natural extra-cellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratio, high porosity and variable pore-size distribution. Efforts have been made to modify nanofiber surfaces with several bioactive molecules to provide cells with the necessary chemical cues and a more in vivo like environment. The current paper provides an overlook on such efforts in designing nanofiber matrices as scaffolds in the regeneration of various soft tissues including skin, blood vessel, tendon/ligament, cardiac patch, nerve and skeletal muscle.

  6. Waveguiding properties of individual electrospun polymer nanofibers

    Science.gov (United States)

    Ishii, Yuya; Kaminose, Ryohei; Fukuda, Mitsuo

    2013-09-01

    Optical circuits are needed to achieve high-speed, high-capacity information processing. An optical waveguide is an essential element in optical circuits. Electrospun polymer fibers have diameters in the nanometer range and high aspect ratios, so they are prime candidates for small waveguides. In this work, we fabricate uniform electrospun polymer nanofibers and characterize their optical waveguiding properties. Poly(methyl methacrylate) (PMMA) solutions of different concentration that contain a small amount of Nile Blue A perchlorate (NBA) are electrospun. Uniform PMMA/NBA nanofibers are obtained from the 10 wt% solution. The fibers are covered with transparent cladding and their ends cut vertically. A laser beam with a wavelength of 533 nm is irradiated onto the fiber from the direction vertical to the fiber axis so that it scans along the fiber. Photoluminescence (PL) at the end face of individual fibers is then measured. The PL intensity decreases with increasing distance (d) between the end face of a fiber and irradiating point of the laser beam as ~exp(-αd) with a loss coefficient (α). Measurements of five individual fibers reveal α is in the range of 17-75 cm-1.

  7. Biocompatible electrospun polymer blends for biomedical applications.

    Science.gov (United States)

    Munj, Hrishikesh Ramesh; Nelson, M Tyler; Karandikar, Prathamesh Sadanand; Lannutti, John Joseph; Tomasko, David Lane

    2014-10-01

    Blends of natural and synthetic polymers have received considerable attention as biomaterials due to the potential to optimize both mechanical and bioactive properties. Electrospinning of biocompatible polymers is an efficient method producing biomimetic topographies suited to various applications. In the ultimate application, electrospun scaffolds must also incorporate drug/protein delivery for effective cell growth and tissue repair. This study explored the suitability of a ternary Polymethylmethacrylate-Polycaprolactone-gelatin blend in the preparation of electrospun scaffolds for biomedical applications. Tuning the blend composition allows control over scaffold mechanical properties and degradation rate. Significant improvements were observed in the mechanical properties of the blend compared with the individual components. In order to study drug delivery potential, triblends were impregnated with the model compound Rhodamine-B using sub/supercritical CO₂ infusion under benign conditions. Results show significantly distinct release profiles of the impregnated dye from the triblends. Specific factors such as porosity, degradation rate, stress relaxation, dye-polymer interactions, play key roles in impregnation and release. Each polymer component of the triblends shows distinct behavior during impregnation and release process. This affects the aforementioned factors and the release profiles of the dye. Careful control over blend composition and infusion conditions creates the flexibility needed to produce biocompatible electrospun scaffolds for a variety of biomedical applications. © 2014 Wiley Periodicals, Inc.

  8. Continuous affine processes

    DEFF Research Database (Denmark)

    Buchardt, Kristian

    2016-01-01

    Affine processes possess the property that expectations of exponential affine transformations are given by a set of Riccati differential equations, which is the main feature of this popular class of processes. In this paper we generalise these results for expectations of more general transformati...

  9. Microfiltration membranes prepared from polyethersulfone powder grafted with acrylic acid by simultaneous irradiation and their pH dependence

    International Nuclear Information System (INIS)

    Deng Bo; Li Jingye; Hou Zhengchi; Yao Side; Shi Liuqing; Liang Guoming; Sheng Kanglong

    2008-01-01

    Polyethersulfone (PES) powder was grafted with acrylic acid (AAc) by simultaneous γ-ray irradiation. The kinetics of the radiation induced graft polymerization was studied and the grafted PES powder was characterized. Then, microfiltration (MF) membranes were prepared from PES-g-PAAc powder with different degrees of grafting (DG) under phase inversion method. The swelling behavior and the mean pore size of MF membranes were measured, and the filtration property was tested. The results showed that the pore size and the flux of MF membranes increased with the increase in DG. And, MF membranes' properties were dependent on the pH value

  10. Selective extraction of plutonium from nitric acid medium by bifunctional polyethersulfone beads for quantification with thermal ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Paul, Sumana; Aggarwal, S.K.; Pandey, A.K.

    2015-01-01

    Polyethersulfone (PES) magnetic beads were prepared by phase inversion technique. The beads were grafted with two monomers, viz. 2-hydroxyethylmethacrylate phosphoric acid (HEMP) and (3-acrylamidopropyl)trimethyl ammonium chloride (AMAC), by photo-induced free radical polymerization. Effect of different HNO 3 concentrations on the sorption profiles of Am(III) and Pu(IV) was studied using the grafted PES beads. The beads were found to extract plutonium quantitatively from high nitric acid medium (3-8 M). The effect of presence of competing actinide, e.g. U(VI), on the sorption of Pu(IV) was also studied. (author)

  11. Preparation of the Crosslinked Polyethersulfone Films by High Temperature Electron-Beam Irradiation

    International Nuclear Information System (INIS)

    Li, J.

    2006-01-01

    The aromatic polymers, mainly so called engineering plastics, were famed for the good stability under irradiation. However, high temperature irradiation of the aromatic polymers can result the crosslinked structure, due to the improved molecular mobility. Polyethersulfone (PES) is a wide used engineering plastic because of the high performance and high thermal stability. PES films were irradiated by electron-beam under nitrogen atmosphere above the glass transition temperature and then the covalently crosslinked PES (RX-PES) films were obtained. The irradiations were also performed at ambient temperature for comparison. The network structure formation of the RX-PES films was confirmed by the appearance of the gel, which were measured by soaking the irradiated PES films in the N,N-dimethylformamide (DMF) at room temperature. When the PES films were irradiated to 300 kGy, there was gel appeared. The gel percent increased with the increasing in the absorbed dose, and saturated when the absorbed dose exceeded 1200 kGy. However, there was no gel formed for the PES films irradiated at ambient temperature even to 2250 kGy. The G(S) and G(X) were calculated according to the Y-crosslinking mechanism. The results values are consistent in error range. G(S) of 0.10 and G(X) of 0.23 were obtained. As calculated, almost all the macromolecular radicals produced by chain scission were used for crosslinking. Also, the glass transition temperature of the RX-PES films increased with the increasing in the absorbed doses, while the glass transition temperature of the PES films irradiated at ambient temperature decreased with the increasing in the absorbed doses. The blending films of the PES with FEP or ETFE were prepared and the high temperature irradiation effects were also studies

  12. Enhanced biofouling resistance of polyethersulfone membrane surface modified with capsaicin derivative and itaconic acid

    International Nuclear Information System (INIS)

    Wang, Jian; Gao, Xueli; Wang, Qun; Sun, Haijing; Wang, Xiaojuan; Gao, Congjie

    2015-01-01

    Graphical abstract: - Highlights: • PES membrane was modified with a capsaicin derivative. • UV-assisted graft polymerization was carried out on membrane surface. • The capsaicin derivative modified membrane shows better antibiofouling property. - Abstract: The culprit of biofouling is the reproduction of viable microorganisms on the membrane surface. Recently, functionalization of membrane surface with natural antibacterial agents has drawn great attention. This work presents the fabrication of antibiofouling polyethersulfone (PES) ultrafiltration (UF) membranes by UV-assisted photo grafting of capsaicin derivative (N-(4-hydroxy-3-methoxy-benzyl)-acrylamide, HMBA) and itaconic acid (IA) on the surface of PES membrane. Results of FTIR-ATR, water static contact angle (WSCA) and atomic force microscopy (AFM) analysis confirmed the successful grafting of HMBA and IA on the membrane surface. We investigated the antifouling and antibacterial properties of these membranes using BSA and Escherichia coli as the test model, respectively. During a 150-min test, the modified membranes show much lower flux decline (42.7% for PES-g-1H0I, 22.2% for PES-g-1H1I and 7.7% for PES-g-1H5I) when compared with the pristine membrane (flux declined by 77%). The modified membranes exhibit excellent antibacterial activity (nearly 100%) when UV irradiation time was 6 min. The morphological study suggested that the E. coli on the pristine membrane showed a regular and smooth surface while that on the modified membrane was disrupted, which validated the antibacterial activity of the modified membranes.

  13. Enhanced biofouling resistance of polyethersulfone membrane surface modified with capsaicin derivative and itaconic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Gao, Xueli, E-mail: gxl_ouc@126.com [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Wang, Qun; Sun, Haijing; Wang, Xiaojuan [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Gao, Congjie, E-mail: gaocjie@ouc.edu.cn [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China)

    2015-11-30

    Graphical abstract: - Highlights: • PES membrane was modified with a capsaicin derivative. • UV-assisted graft polymerization was carried out on membrane surface. • The capsaicin derivative modified membrane shows better antibiofouling property. - Abstract: The culprit of biofouling is the reproduction of viable microorganisms on the membrane surface. Recently, functionalization of membrane surface with natural antibacterial agents has drawn great attention. This work presents the fabrication of antibiofouling polyethersulfone (PES) ultrafiltration (UF) membranes by UV-assisted photo grafting of capsaicin derivative (N-(4-hydroxy-3-methoxy-benzyl)-acrylamide, HMBA) and itaconic acid (IA) on the surface of PES membrane. Results of FTIR-ATR, water static contact angle (WSCA) and atomic force microscopy (AFM) analysis confirmed the successful grafting of HMBA and IA on the membrane surface. We investigated the antifouling and antibacterial properties of these membranes using BSA and Escherichia coli as the test model, respectively. During a 150-min test, the modified membranes show much lower flux decline (42.7% for PES-g-1H0I, 22.2% for PES-g-1H1I and 7.7% for PES-g-1H5I) when compared with the pristine membrane (flux declined by 77%). The modified membranes exhibit excellent antibacterial activity (nearly 100%) when UV irradiation time was 6 min. The morphological study suggested that the E. coli on the pristine membrane showed a regular and smooth surface while that on the modified membrane was disrupted, which validated the antibacterial activity of the modified membranes.

  14. Structural and optical properties of ZnO rods hydrothermally formed on polyethersulfone substrates

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Mi; Jang, Jin Tak; Kim, Chang Yong; Ryu, Hyuk Hyun [Inje University, Gimhae (Korea, Republic of); Lee, Won Jae [Dong-Eui University, Busan (Korea, Republic of); Chang, Ji Ho [Korea Maritime University, Busan (Korea, Republic of); Son, Chang Sik [Silla University, Busan (Korea, Republic of); Choi, Hee Lack [Pukyong National University, Busan (Korea, Republic of)

    2012-06-15

    Various unique ZnO morphologies, such as cigar-like and belt-like structures and microrod and nanorod structures, were formed on flexible polyethersulfone (PES) substrates by using a low temperature hydrothermal route. The structural properties of ZnO depended highly on the precursor concentration. The effect of a thin ZnO seed layer deposited the on PES substrate by using atomic layer deposition on the structural and the optical properties of ZnO hydrothermally grown on the ZnO seed layer/PES substrates was studied. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and photoluminescence (PL) measurements were employed to analyze the characteristics of hydrothermally-grown ZnO. The diameter of the ZnO nanorods grown on the ZnO seed layer/PES substrates increased with increasing precursor concentration from 0.025 to 0.125 M due to the Ostwald ripening process. ZnO hydrothermally-grown on the ZnO seed layer/PES substrates at a low precursor concentration showed better structural properties than ZnO formed without a seed layer. Well-formed ZnO nanorods deposited on the ZnO seed layer/PES substrates showed two PL peaks, one in the ultraviolet and the other in the visible region, whereas horizontally positioned ZnO formed on the PES substrate in the absence of a seed layer emitted only one broad PL peak in the violet region. The ZnO grown on PES substrates in this work can be used as high-quality transparent electrodes for solar cells fabricated on flexible substrates.

  15. Structural and optical properties of ZnO rods hydrothermally formed on polyethersulfone substrates

    International Nuclear Information System (INIS)

    Shin, Chang Mi; Jang, Jin Tak; Kim, Chang Yong; Ryu, Hyuk Hyun; Lee, Won Jae; Chang, Ji Ho; Son, Chang Sik; Choi, Hee Lack

    2012-01-01

    Various unique ZnO morphologies, such as cigar-like and belt-like structures and microrod and nanorod structures, were formed on flexible polyethersulfone (PES) substrates by using a low temperature hydrothermal route. The structural properties of ZnO depended highly on the precursor concentration. The effect of a thin ZnO seed layer deposited the on PES substrate by using atomic layer deposition on the structural and the optical properties of ZnO hydrothermally grown on the ZnO seed layer/PES substrates was studied. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and photoluminescence (PL) measurements were employed to analyze the characteristics of hydrothermally-grown ZnO. The diameter of the ZnO nanorods grown on the ZnO seed layer/PES substrates increased with increasing precursor concentration from 0.025 to 0.125 M due to the Ostwald ripening process. ZnO hydrothermally-grown on the ZnO seed layer/PES substrates at a low precursor concentration showed better structural properties than ZnO formed without a seed layer. Well-formed ZnO nanorods deposited on the ZnO seed layer/PES substrates showed two PL peaks, one in the ultraviolet and the other in the visible region, whereas horizontally positioned ZnO formed on the PES substrate in the absence of a seed layer emitted only one broad PL peak in the violet region. The ZnO grown on PES substrates in this work can be used as high-quality transparent electrodes for solar cells fabricated on flexible substrates.

  16. Hemocompatible polyethersulfone/polyurethane composite membrane for high-performance antifouling and antithrombotic dialyzer.

    Science.gov (United States)

    Yin, Zehua; Cheng, Chong; Qin, Hui; Nie, Chuanxiong; He, Chao; Zhao, Changsheng

    2015-01-01

    Researches on blood purification membranes are fuelled by diverse clinical needs, such as hemodialysis, hemodiafiltration, hemofiltration, plasmapheresis, and plasma collection. To approach high-performance dialyzer, the integrated antifouling and antithrombotic properties are highly necessary for the design/modification of advanced artificial membranes. In this study, we propose and demonstrate that the physical blend of triblock polyurethane (PU) and polyethersulfone (PES) may advance the performance of hemodialysis membranes with greatly enhanced blood compatibility. It was found that the triblock PU could be blended with PES at high ratio owing to their excellent miscibility. The surfaces of the PES/PU composite membranes were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, water contact angle measurement, and surface ζ-potentials. The results indicated that the membrane surfaces were assembled with hydrophilic segregation layer owing to the migration of amphiphilic PU segments during membrane preparation, which might confer the composite membranes with superior hemocompatibility. The cross-section scanning electron microscopy images of the composite membranes exhibited structure transformation from finger-like structure to sponge-like structure, which indicated that the composite membrane had tunable porosity and permeability. The further ultrafiltration experiments indicated that the composite membranes showed increased permeability and excellent antifouling ability. The blood compatibility observation indicated that PES/PU composite membranes owned decreased protein adsorption, suppressed platelet adhesion, and prolonged plasma recalcification time. These results indicated that the PES/PU composite membranes exhibited enhanced antifouling and antithrombotic properties than the pristine PES membrane. The strategy may forward the fabrication of blood compatible composite membranes for

  17. Affinity in electrophoresis.

    Science.gov (United States)

    Heegaard, Niels H H

    2009-06-01

    The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.

  18. Lectin affinity electrophoresis.

    Science.gov (United States)

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  19. Enhancement of polyethersulfone (PES) membrane performance by modification with rice husk nanosilica for removal of organic matter in water

    Science.gov (United States)

    Mulyati, S.; Armando, M. A.; Mawardi, H.; Azmi, F. A.; Pratiwi, W. P.; Fadzlina, A.; Akbar, R.; Syawaliah

    2018-03-01

    This paper reports the effects of rice husk nanosilica addition on the performance of polyethersulfone (PES) membrane. Polyethersulfone membrane (PES) was fabricated by using N-methyl-2-pyrolidone (NMP) as a solvent and rice husk nanosilica as a modifying agent. The influence of the rice husk nanosilica additive on the characteristics and performance of the membrane has been studied. Scanning Electron Microscopy (SEM) analysis confirmed that the manufactured membrane has an asymmetric morphological structure consisting of two layers. The upper part of the membrane is a thin layer, meanwhile in the bottom side is a porous layer. The addition of 5% nanosilica resulting a PES membrane to have a bigger porous than that of pristine PES. The pure water flux of nanosilica-modified membranes were greater in comparison to the pure water flux of unmodified PES membrane. The performance of all membranes were evaluated on humic acid removal. The highest selectivity was showcased by pure PES membrane. The introduction of rice husk nanosilica additive to the membrane declined the selectivity of the membrane to humic acid in the feed solution. This is caused by the pores enlargement and enhanced hydrophilicity of the membrane after modification with rice husk biosilica.

  20. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive.

    Science.gov (United States)

    Zhao, Yi-Fan; Zhang, Pei-Bin; Sun, Jian; Liu, Cui-Jing; Yi, Zhuan; Zhu, Li-Ping; Xu, You-Yi

    2015-06-15

    Here we describe the development of versatile antifouling polyethersulfone (PES) filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Amphiphilic polyethersulfone-block-poly(2-hydroxyethyl methacrylate) (PES-b-PHEMA) was beforehand designed and used as the blending additive of PES membranes prepared by phase inversion technique. The surface enriched PHEMA blocks on membrane surface acted as an anchor to immobilize the initiating site. Poly(sulfobetaine methacrylate) (PSBMA) were subsequently grafted onto the PES blend membranes by surface-initiated atom transfer radical polymerization (SI-ATRP). The analysis of surface chemistry confirmed the successful grafting of zwitterionic PSBMA brushes on PES membrane surface. The resulted PES-g-PSBMA membranes were capable of separating proteins from protein solution and oil from oil/water emulsion efficiently. Furthermore, the modified membranes showed high hydrophilicity and strongly antifouling properties due to the incorporation of well-defined PSBMA layer. In addition, the PES-g-PSBMA membranes exhibited excellent blood compatibility and durability during the washing process. The developed antifouling PES membranes are versatile and can find their applications in protein filtration, blood purification and oil/water separation, etc. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Development of high performance nano-porous polyethersulfone ultrafiltration membranes with hydrophilic surface and superior antifouling properties

    International Nuclear Information System (INIS)

    Rahimpour, Ahmad; Madaeni, Sayed Siavash; Jahanshahi, Mohsen; Mansourpanah, Yaghoub; Mortazavian, Narmin

    2009-01-01

    Hydrophilic nano-porous polyethersulfone ultrafiltration membranes were developed for milk concentration. The membranes were prepared from new dope solution containing polyethersulfone (PES)/polyvinylpirrolidone (PVP)/polyethyleneglycole (PEG)/cellulose acetate phthalate (CAP)/acrylic acid/Triton X-100 using phase inversion induced by immersion precipitation technique. This casting solution leads to formation of new hydrophilic membranes. The morphological studies were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, the hydrophilicity and performance of membranes were examined by contact angel measurements and cross-flow filtration (pure water flux, milk water permeation, protein rejection and antifouling measurements). The contact angle measurements indicate that a surface with superior hydrophilicity was obtained for PES membranes. Two concentrations of PES (16 and 14.4 wt.%) and two different non-solvents (pure water and mixtures of water and IPA) were used for preparation of membranes. The morphological studies showed that the higher concentration of PES and the presence of IPA in the gelation media results in formation of a membrane with a dense top and sub-layer with small pores on the surface. The pure water flux of membranes was decreased when higher polymer concentration and mixtures of water and IPA were employed for membrane formation. On the other hand, the milk water permeation and protein rejection were increased using mixtures of water and IPA as non-solvent. Furthermore, the fouling analysis of the membranes demonstrated that the membrane surface with fewer tendencies for fouling was obtained.

  2. Polyethersulfone/clay membranes and its water permeability; Membranas de polietersulfona/argila e sua permeabilidade a agua

    Energy Technology Data Exchange (ETDEWEB)

    Cavalho, Thamyres Cardoso de; Medeiros, Vanessa da Nobrega; Araujo, Edcleide Maria de; Lira, Helio Lucena, E-mail: thamyrescc@gmail.com, E-mail: vanismedeiros@gmail.com, E-mail: edcleide.araujo@ufcg.edu.br, E-mail: helio.lira@ufcg.edu.br [Universidade Federal de Campina Grande (UAEMa/CCT/UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Leite, Amanda Melissa Damiao, E-mail: amanda.leite@ect.ufrn.br [Universidade Federal do Rio Grande do Norte (ECT/UFRN), Natal, RN (Brazil). Escola de Ciencia e Tecnologia

    2017-04-15

    Membranes can be considered polymeric or inorganic films that function as a semipermeable barrier to filtration on a molecular scale, separating two phases and restricting, totally or partially, the transportation of one or more chemical species (solute) present in the solution. Therefore, the aim of this work is to produce polyethersulfone membranes (PES) and polyethersulfone/clay by phase inversion technique and evaluate the presence of clay in obtaining membranes for wastewater treatment. The used solvent was dimethylformamide (DMF) and clays were Brasgel PA (MMT) and Cloisite Na (CL Na) in the proportion of 3 to 5% (wt.). By Xray diffraction (XRD), the membranes with 3% of MMT and CL Na clays apparently had partially exfoliated structures. For the composition with 5% of CL Na a small peak was observed, which indicates that this is possibly an intercalated structure or microcomposite. By scanning electron microscopy (SEM), visualizes that the pure surface of the pure PES membrane a structure apparently without pores was observed in the used magnification and without roughness surface when compared to membranes with clay. The measurements of contact angle indicated that the inclusion of clay altered the wetting ability of the membranes. The flow with distilled water for all membranes started high and over time reached a stabilization level. Thus, it can be concluded that the presence and the content of clay altered the morphology of the membrane, contributing to an increase in water flow. (author)

  3. A Generalized Affine Isoperimetric Inequality

    OpenAIRE

    Chen, Wenxiong; Howard, Ralph; Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong

    2004-01-01

    A purely analytic proof is given for an inequality that has as a direct consequence the two most important affine isoperimetric inequalities of plane convex geometry: The Blaschke-Santalo inequality and the affine isoperimetric inequality of affine differential geometry.

  4. Electron affinities: theoretical

    International Nuclear Information System (INIS)

    Kaufman, J.J.

    1976-01-01

    A brief description is given of the conceptual background and formalism of the various ab-initio and semi-ab-initio quantum computational techniques for calculating atomic and molecular electron affinities: Hartree--Fock--Roothaan SCF, configuration interaction (CI), multiconfiguration SCF (MC-SCF), Bethe--Goldstone, superposition of configurations (SOC), ab-initio effective core model potentials, Xα-MS, plus other less common methods. Illustrative and comparative examples of electron affinities calculated by these various methods are presented

  5. Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution

    NARCIS (Netherlands)

    Koops, G.H.; Liu, Y.; Liu, Y.; Strathmann, H.

    2003-01-01

    The preparation of polyethersulfone (PES) hollow fiber membranes has been studied using N-methylpyrrolidone (NMP) as solvent, polyethylene glycol 400 (PEG 400) as weak nonsolvent and water as strong nonsolvent. When PEG 400 is used as polymeric additive to the spinning dope the viscosity of the PES

  6. The Microwave-assisted Synthesis of Polyethersulfone (PES as A Matrix in Immobilization of Candida antarctica Lipase B (Cal-B

    Directory of Open Access Journals (Sweden)

    Khusna Widhyahrini

    2017-10-01

    How to Cite: Widhyahrini, K., Handayani, N., Wahyuningrum, D., Nurbaiti, S., Radiman, C.L. (2017. The Microwave-assisted Synthesis of Polyethersulfone (PES as A Matrix in Immobilization of Candida antarctica Lipase B (Cal-B. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3: 343-350 (doi:10.9767/bcrec.12.3.774.343-350

  7. Electrospun Nanofibres Containing Antimicrobial Plant Extracts

    Directory of Open Access Journals (Sweden)

    Wanwei Zhang

    2017-02-01

    Full Text Available Over the last 10 years great research interest has been directed toward nanofibrous architectures produced by electrospinning bioactive plant extracts. The resulting structures possess antimicrobial, anti-inflammatory, and anti-oxidant activity, which are attractive for biomedical applications and food industry. This review describes the diverse approaches that have been developed to produce electrospun nanofibres that are able to deliver naturally-derived chemical compounds in a controlled way and to prevent their degradation. The efficacy of those composite nanofibres as wound dressings, scaffolds for tissue engineering, and active food packaging systems will be discussed.

  8. Preparation and characterization of kefiran electrospun nanofibers.

    Science.gov (United States)

    Esnaashari, Seyedeh Sara; Rezaei, Sasan; Mirzaei, Esmaeil; Afshari, Hamed; Rezayat, Seyed Mahdi; Faridi-Majidi, Reza

    2014-09-01

    In this study, we report the first successful production of kefiran nanofibers through electrospinning process using distilled water as solvent. For this purpose, kefiran was extracted from cultured kefir grains, and homogenous kefiran solutions with different concentrations were prepared and then electrospun to obtain uniform nanofibers. The effect of main process parameters, including applied voltage, tip-to-collector distance, and feeding rate, on diameter and morphology of produced nanofibers, was studied. Scanning electron microscopy (SEM) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were used to characterize electrospun mats. Rheological behavior of the kefiran solution was evaluated via a cone and plate rheometer too. The results exhibited that diameter of kefiran nanofibers increased with increasing polymer concentration, applied voltage, and polymer feeding rate, while tip-to-collector distance did not have significant effect on nanofiber diameter. ATR-FTIR spectra showed that kefiran has maintained its molecular structure during electrospinning process. Flow curves also demonstrated shear thinning behavior for kefiran solutions. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Flexible all-fiber electrospun supercapacitor

    Science.gov (United States)

    Liu, Xinhua; Naylor Marlow, Max; Cooper, Samuel J.; Song, Bowen; Chen, Xiaolong; Brandon, Nigel P.; Wu, Billy

    2018-04-01

    We present an all-fiber flexible supercapacitor with composite nanofiber electrodes made via electrospinning and an electrospun separator. With the addition of manganese acetylacetonate (MnACAC) to polyacrylonitrile (PAN) as a precursor for the electrospinning process and subsequent heat treatment, the performance of pure PAN supercapacitors was improved from 90 F g-1 to 200 F g-1 (2.5 mV s-1) with possible mass loadings of MnACAC demonstrated as high as 40 wt%. X-ray diffraction measurements showed that after thermal treatment, the MnACAC was converted to MnO, meanwile, the thermal decomposition of MnACAC increased the graphitic degree of the carbonised PAN. Scanning electron microscopy and image processing showed that static electrospinning of pure PAN and PAN-Mn resulted in fiber diameters of 460 nm and 480 nm respectively after carbonisation. Further analysis showed that the fiber orientation exhibited a slight bias which was amplified with the addition of MnACAC. Use of focused ion beam scanning electron microscopy tomography also showed that MnO particles were evenly distributed through the fiber at low MnACAC concentrations, while at a 40 wt% loading the MnO particles were also visible on the surface. Comparison of the electrospun separators showed improved performance relative to a commercial Celgard separator (200 F g-1 vs 141 F g-1).

  10. Properties of PET/PLA Electrospun Blends

    Science.gov (United States)

    Li, Kevin; Cebe, Peggy

    2012-02-01

    Electrospun membranes were fabricated from poly(ethylene terephthalate), PET, co-spun with poly(lactic acid), PLA. The PLA contained 2% of the D-isomer, which served to limit the overall degree of crystallinity. Membranes were deposited from blended solutions of PET/PLA in hexafluoroisopropanol. The PET/PLA composition ranged from 0/100, 75/25, 50/50, 25/75, and 100/0. Electrospun membranes were made using either a static flat plate or a rotating wheel as the counter electrode, yielding unoriented mats or highly oriented tapes, respectively. We report on our investigation of the crystallinity, crystal perfection, and mechanical properties of these materials using differential scanning calorimetry, wide and small angle X-ray scattering, and dynamic mechanical analysis. In particular, we study the ability of one blend component (PET) to crystallize in the presence of existing crystals of the second blend component (PLA) which crystallizes first and at a lower temperature than PET.

  11. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications

    Science.gov (United States)

    Esfahani, Hamid; Ramakrishna, Seeram

    2017-01-01

    Ceramic nanofibers (NFs) have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk) counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined. PMID:29077074

  12. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Hamid Esfahani

    2017-10-01

    Full Text Available Ceramic nanofibers (NFs have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined.

  13. Affine stochastic mortality

    NARCIS (Netherlands)

    Schrager, D.F.

    2006-01-01

    We propose a new model for stochastic mortality. The model is based on the literature on affine term structure models. It satisfies three important requirements for application in practice: analytical tractibility, clear interpretation of the factors and compatibility with financial option pricing

  14. Affine pairings on ARM

    NARCIS (Netherlands)

    Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.

    2011-01-01

    Pairings on elliptic curves are being used in an increasing number of cryptographic applications on many different devices and platforms, but few performance numbers for cryptographic pairings have been reported on embedded and mobile devices. In this paper we give performance numbers for affine and

  15. Affine pairings on ARM

    NARCIS (Netherlands)

    Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.; Abdalla, M.; Lange, T.

    2013-01-01

    We report on relative performance numbers for affine and projective pairings on a dual-core Cortex A9 ARM processor. Using a fast inversion in the base field and doing inversion in extension fields by using the norm map to reduce to inversions in smaller fields, we find a very low ratio of

  16. Development and characterization of polyethersulfone/TiO2 mixed matrix membranes for CO2/CH4 separation

    Science.gov (United States)

    Galaleldin, S.; Mannan, H. A.; Mukhtar, H.

    2017-12-01

    In this study, mixed matrix membranes comprised of polyethersulfone as the bulk polymer phase and titanium dioxide (TiO2) nanoparticles as the inorganic discontinuous phase were prepared for CO2/CH4 separation. Membranes were synthesized at filler loading of 0, 5, 10 and 15 wt % via dry phase inversion method. Morphology, chemical bonding and thermal characteristics of membranes were scrutinized utilizing different techniques, namely: Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform InfraRed (FTIR) spectra and Thermogravimetric analysis (TGA) respectively. Membranes gas separation performance was evaluated for CO2 and CH4 gases at 4 bar feed pressure. The highest separation performance was achieved by mixed matrix membrane (MMM) at 5 % loading of TiO2.

  17. ArF laser surface modification of polyethersulfone film: Effect of laser fluence in improving surface biocompatibility

    International Nuclear Information System (INIS)

    Pazokian, H.; Jelvani, S.; Mollabashi, M.; Barzin, J.; Azizabadi Farahani, G.

    2011-01-01

    ArF laser treatment of polyethersulfone (PES) films was performed to improve biocompatibility of surfaces. For this purpose, the threshold fluence for laser ablation of PES was obtained from experimental measurements and then samples were irradiated at 2 separate ranges of fluences, i.e. below and above the ablation threshold. In order to investigate the physico-chemical changes, the modified surfaces were characterized by attenuated total reflectance (ATR) infrared spectroscopy and contact-angle measurements. The biocompatibility of the treated samples in comparison to those untreated was examined in vitro using a platelet adhesion test. The number of adhered platelets was obtained using the lactate dehydrogenase (LDH) method. For surfaces irradiated below the ablation threshold, a high reduction in the number of the adhered platelets was observed; while this number increased in samples treated at the fluence above the ablation threshold. The change in platelet adhesion was attributed to the change in chemistry and roughness of the irradiated surfaces.

  18. Affine field theories

    International Nuclear Information System (INIS)

    Cadavid, A.C.

    1989-01-01

    The author constructs a non-Abelian field theory by gauging a Kac-Moody algebra, obtaining an infinite tower of interacting vector fields and associated ghosts, that obey slightly modified Feynman rules. She discusses the spontaneous symmetry breaking of such theory via the Higgs mechanism. If the Higgs particle lies in the Cartan subalgebra of the Kac-Moody algebra, the previously massless vectors acquire a mass spectrum that is linear in the Kac-Moody index and has additional fine structure depending on the associated Lie algebra. She proceeds to show that there is no obstacle in implementing the affine extension of supersymmetric Yang-Mills theories. The result is valid in four, six and ten space-time dimensions. Then the affine extension of supergravity is investigated. She discusses only the loop algebra since the affine extension of the super-Poincare algebra appears inconsistent. The construction of the affine supergravity theory is carried out by the group manifold method and leads to an action describing infinite towers of spin 2 and spin 3/2 fields that interact subject to the symmetries of the loop algebra. The equations of motion satisfy the usual consistency check. Finally, she postulates a theory in which both the vector and scalar fields lie in the loop algebra of SO(3). This theory has an expanded soliton sector, and corresponding to the original 't Hooft-Polyakov solitonic solutions she now finds an infinite family of exact, special solutions of the new equations. She also proposes a perturbation method for obtaining an arbitrary solution of those equations for each level of the affine index

  19. Electrospun Nanofibers: New Concepts, Materials, and Applications.

    Science.gov (United States)

    Xue, Jiajia; Xie, Jingwei; Liu, Wenying; Xia, Younan

    2017-08-15

    Electrospinning is a simple and versatile technique that relies on the electrostatic repulsion between surface charges to continuously draw nanofibers from a viscoelastic fluid. It has been applied to successfully produce nanofibers, with diameters down to tens of nanometers, from a rich variety of materials, including polymers, ceramics, small molecules, and their combinations. In addition to solid nanofibers with a smooth surface, electrospinning has also been adapted to generate nanofibers with a number of secondary structures, including those characterized by a porous, hollow, or core-sheath structure. The surface and/or interior of such nanofibers can be further functionalized with molecular species or nanoparticles during or after an electrospinning process. In addition, electrospun nanofibers can be assembled into ordered arrays or hierarchical structures by manipulation of their alignment, stacking, and/or folding. All of these attributes make electrospun nanofibers well-suited for a broad spectrum of applications, including those related to air filtration, water purification, heterogeneous catalysis, environmental protection, smart textiles, surface coating, energy harvesting/conversion/storage, encapsulation of bioactive species, drug delivery, tissue engineering, and regenerative medicine. Over the past 15 years, our group has extensively explored the use of electrospun nanofibers for a range of applications. Here we mainly focus on two examples: (i) use of ceramic nanofibers as catalytic supports for noble-metal nanoparticles and (ii) exploration of polymeric nanofibers as scaffolding materials for tissue regeneration. Because of their high porosity, high surface area to volume ratio, well-controlled composition, and good thermal stability, nonwoven membranes made of ceramic nanofibers are terrific supports for catalysts based on noble-metal nanoparticles. We have investigated the use of ceramic nanofibers made of various oxides, including SiO 2 , TiO 2

  20. Thermal conductivity of electrospun polyethylene nanofibers.

    Science.gov (United States)

    Ma, Jian; Zhang, Qian; Mayo, Anthony; Ni, Zhonghua; Yi, Hong; Chen, Yunfei; Mu, Richard; Bellan, Leon M; Li, Deyu

    2015-10-28

    We report on the structure-thermal transport property relation of individual polyethylene nanofibers fabricated by electrospinning with different deposition parameters. Measurement results show that the nanofiber thermal conductivity depends on the electric field used in the electrospinning process, with a general trend of higher thermal conductivity for fibers prepared with stronger electric field. Nanofibers produced at a 45 kV electrospinning voltage and a 150 mm needle-collector distance could have a thermal conductivity of up to 9.3 W m(-1) K(-1), over 20 times higher than the typical bulk value. Micro-Raman characterization suggests that the enhanced thermal conductivity is due to the highly oriented polymer chains and enhanced crystallinity in the electrospun nanofibers.

  1. Plasma etching of electrospun polymeric nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, Patrick [LSI-PSI-EPUSP, Av. Prof. Luciano Gualberto trav 3, 158, 05508-900 Sao Paulo, SP (Brazil)]. E-mail: verdonck@imec.be; Braga Caliope, Priscila [LSI-PSI-EPUSP, Av. Prof. Luciano Gualberto trav 3, 158, 05508-900 Sao Paulo, SP (Brazil); Moral Hernandez, Emilio del [LSI-PSI-EPUSP, Av. Prof. Luciano Gualberto trav 3, 158, 05508-900 Sao Paulo, SP (Brazil); Silva, Ana Neilde R. da [LSI-PSI-EPUSP, Av. Prof. Luciano Gualberto trav 3, 158, 05508-900 Sao Paulo, SP (Brazil); FATEC-SP, Pca Fernando Prestes, 30 Sao Paulo, SP (Brazil)

    2006-10-25

    Electrospun polymeric nanofibres have several applications because of their high surface area to volume and high length to diameter ratios. This paper investigates the influence of plasma etching on these fibres and the etching mechanisms. For the characterization, SEM analysis was performed to determine the forms and shapes of the fibres and SEM photos were analysed by the technique of mathematical morphology, in order to determine the area on the sample occupied by the fibres and the frequency distribution of the nanofibre diameters. The results showed that the oxygen plasma etches the nanofibres much faster when ion bombardment is present. The form of the fibres is not altered by the etching, indicating the possibility of transport of oxygen atoms over the fibre surface. The most frequent diameter, somewhat surprisingly, is not significantly dependent on the etching process, and remains of the order of 80 nm, indicating that fibres with smaller diameters are etched at high rates.

  2. Characterization of electrospun lignin based carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri [School of Engineering, Thornbrough Building, University of Guelph, Guelph, N1G 2W1, Ontario (Canada); Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, N1G 2W1, Ontario (Canada)

    2015-05-22

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  3. Characterization of electrospun lignin based carbon fibers

    International Nuclear Information System (INIS)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-01-01

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems

  4. Electrospun nanofibres in agriculture and the food industry: a review.

    Science.gov (United States)

    Noruzi, Masumeh

    2016-11-01

    The interesting characteristics of electrospun nanofibres, such as high surface-to-volume ratio, nanoporosity, and high safety, make them suitable candidates for use in a variety of applications. In the recent decade, electrospun nanofibres have been applied to different potential fields such as filtration, wound dressing, drug delivery, etc. and a significant number of review papers have been published in these fields. However, the use of electrospun nanofibres in agriculture is comparatively novel and is still in its infancy. In this paper, the specific applications of electrospun nanofibres in agriculture and food science, including plant protection using pheromone-loaded nanofibres, plant protection using encapsulation of biocontrol agents, preparation of protective clothes for farm workers, encapsulation of agrochemical materials, deoxyribonucleic acid extraction in agricultural research studies, pre-concentration and measurement of pesticides in crops and environmental samples, preparation of nanobiosensors for pesticide detection, encapsulation of food materials, fabrication of food packaging materials, and filtration of beverage products are reviewed and discussed. This paper may help researchers develop the use of electrospun nanofibres in agriculture and food science to address some serious problems such as the intensive use of pesticides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction

    International Nuclear Information System (INIS)

    McManus, Michael; Boland, Eugene; Sell, Scott; Bowen, Whitney; Koo, Harry; Simpson, David; Bowlin, Gary

    2007-01-01

    The purpose of this study was to demonstrate that human bladder smooth muscle cells (HBSM) remodel electrospun fibrinogen mats. Fibrinogen scaffolds were electrospun and disinfected using standard methods. Scaffolds were seeded with 5 x 10 4 HBSM per scaffold. Cultures were supplemented with aprotinin concentrations of 0 KIU ml -1 (no aprotinin), 100 KIU ml -1 or 1000 KIU ml -1 and incubated with twice weekly media changes. Samples were removed for evaluation at 1, 3, 7 and 14 days. Cultured scaffolds were evaluated with a WST-1 cell proliferation assay, scanning electron microscopy and histology. Cell culture demonstrated that HBSM readily migrated into and initiated remodelling of the electrospun fibrinogen scaffolds by deposition of collagen. Proliferation was suppressed during this initial phase with respect to a 2D control due to cell migration. Histology confirmed that proliferation increased during the later stages of remodelling. Remodelling was slower at higher aprotinin concentrations. These results demonstrate that HBSM rapidly remodel an electrospun fibrinogen scaffold and deposit native collagen. The process can be modulated using aprotinin, a protease inhibitor. These initial findings indicate that there is tremendous potential for electrospun fibrinogen as a urologic tissue engineering scaffold with the ultimate goal of producing an implantable acellular product that would promote cellular in-growth and in situ tissue regeneration

  6. Affine and quasi-affine frames for rational dilations

    DEFF Research Database (Denmark)

    Bownik, Marcin; Lemvig, Jakob

    2011-01-01

    In this paper we extend the investigation of quasi-affine systems, which were originally introduced by Ron and Shen [J. Funct. Anal. 148 (1997), 408-447] for integer, expansive dilations, to the class of rational, expansive dilations. We show that an affine system is a frame if, and only if......, the corresponding family of quasi-affine systems are frames with uniform frame bounds. We also prove a similar equivalence result between pairs of dual affine frames and dual quasi-affine frames. Finally, we uncover some fundamental differences between the integer and rational settings by exhibiting an example...

  7. Electrospun Zein/Gelatin Scaffold-Enhanced Cell Attachment and Growth of Human Periodontal Ligament Stem Cells

    Directory of Open Access Journals (Sweden)

    Fanqiao Yang

    2017-10-01

    Full Text Available Periodontitis is a widespread dental disease affecting 10 to 15% of worldwide adult population, yet the current treatments are far from satisfactory. The human periodontal ligament stem cell is a promising potential seed cell population type in cell-based therapy and tissue regeneration, which require appropriate scaffold to provide a mimic extracellular matrix. Zein, a native protein derived from corn, has an excellent biodegradability, and therefore becomes a hotspot on research and application in the field of biomaterials. However, the high hydrophobicity of zein is unfavorable for cell adhesion and thus greatly limits its use. In this study, we fabricate co-electrospun zein/gelatin fiber scaffolds in order to take full advantages of the two natural materials and electrospun fiber structure. Zein and gelatin in four groups of different mass ratios (100:00, 100:20, 100:34, 100:50, and dissolved the mixtures in 1,1,1,3,3,3-hexafluoro-2-propanol, then produced membranes by electrospinning. The results showed that the scaffolds were smooth and homogeneous, as shown in scanning electron micrographs. The diameter of hybrid fibers was increased from 69 ± 22 nm to 950 ± 356 nm, with the proportion of gelatin increase. The cell affinity of zein/gelatin nanofibers was evaluated by using human periodontal ligament stem cells. The data showed that hydrophilicity and cytocompatibility of zein nanofibers were improved by blended gelatin. Taken together, our results indicated that the zein/gelatin co-electrospun fibers had sufficient mechanical properties, satisfied cytocompatibility, and can be utilized as biological scaffolds in the field of tissue regeneration.

  8. Antibody affinity maturation

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise

    Yeast surface display is an effective tool for antibody affinity maturation because yeast can be used as an all-in-one workhorse to assemble, display and screen diversified antibody libraries. By employing the natural ability of yeast Saccharomyces cerevisiae to efficiently recombine multiple DNA...... laboratory conditions. A particular emphasis was put on using molecular techniques in conjunction with microenvironmental measurements (O2, pH, irradiance), a combination that is rarely found but provides a much more detailed understanding of “cause and effect” in complex natural systems...

  9. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  10. Angiogenic potential of human macrophages on electrospun bioresorbable vascular grafts

    Energy Technology Data Exchange (ETDEWEB)

    Garg, K; Sell, S A; Madurantakam, P; Bowlin, G L, E-mail: glbowlin@vcu.ed [Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2009-06-15

    The aim of this study was to investigate macrophage interactions with electrospun scaffolds and quantify the expression of key angiogenic growth factors in vitro. This study will further help in evaluating the potential of these electrospun constructs as vascular grafts for tissue repair and regeneration in situ. Human peripheral blood macrophages were seeded in serum free media on electrospun (10 mm) discs of polydioxanone (PDO), elastin and PDO:elastin blends (50:50, 70:30 and 90:10). The growth factor secretion was analyzed by ELISA. Macrophages produced high levels of vascular endothelial growth factor and acidic fibroblast growth factor. Transforming growth factor beta-1 (TGF-beta1) secretion was relatively low and there was negligible production of basic fibroblast growth factor. Therefore, it can be anticipated that these scaffolds will support tissue regeneration and angiogenesis. (communication)

  11. A review on electrospun nanofibers for oral drug delivery

    Directory of Open Access Journals (Sweden)

    Abbas Akhgari

    2017-10-01

    Full Text Available Nowadays, polymer nanofibers have gained attention due to remarkable characteristics such as high porosity and large surface area to volume ratio. Among their fabrication methods, electrospinning technique has been attracted as a simple and reproducible approach. It is a versatile, simple and cost-effective technique for the production of continuous nanofibers with acceptable characteristics such as high porosity, high surface area to volume ratio, high loading capacity and encapsulation efficiency, delivery of multiple drugs, and enhancement of drug solubility. Due to these properties electrospun nanofibers have been extensively used for different biomedical applications including wound dressing, tissue engineering, enzyme immobilization, artificial organs, and drug delivery. Different synthetic and natural polymers have been successfully electrospun into ultrafine fibers. Using electrospun nanofibers as vehicles for oral drug delivery has been investigated in different release manners- fast, biphasic or sustained release. This article presents a review on application of electrospinning technique in oral drug delivery.

  12. The mechanical properties of dry, electrospun fibrinogen fibers

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Stephen; Sigley, Justin; Helms, Christine C. [Department of Physics, Wake Forest University, Winston-Salem, NC 27109 (United States); Stitzel, Joel [Department of Biomedical Engineering, Wake Forest University Health Sciences, Winston-Salem, NC, 27157 (United States); Berry, Joel; Bonin, Keith [Department of Physics, Wake Forest University, Winston-Salem, NC 27109 (United States); Guthold, Martin, E-mail: gutholdm@wfu.edu [Department of Physics, Wake Forest University, Winston-Salem, NC 27109 (United States)

    2012-02-01

    Due to their low immunogenicity, biodegradability and native cell-binding domains, fibrinogen fibers may be good candidates for tissue engineering scaffolds, drug delivery vehicles and other medical devices. We used a combined atomic force microscope (AFM)/optical microscope technique to study the mechanical properties of individual, electrospun fibrinogen fibers in dry, ambient conditions. The AFM was used to stretch individual fibers suspended over 13.5 {mu}m wide grooves in a transparent substrate. The optical microscope, located below the sample, was used to monitor the stretching process. Electrospun fibrinogen fibers (diameter, 30-200 nm) can stretch to 74% beyond their original length before rupturing at a stress of 2.1 GPa. They can stretch elastically up to 15% beyond their original length. Using incremental stress-strain curves the viscoelastic behavior of these fibers was determined. The total stretch modulus was 4.2 GPa while the relaxed elastic modulus was 3.7 GPa. When held at constant strain, fibrinogen fibers display stress relaxation with a fast and slow relaxation time of 1.2 s and 11 s. In comparison to native and electrospun collagen fibers, dry electrospun fibrinogen fibers are significantly more extensible and elastic. In comparison to wet electrospun fibrinogen fibers, dry fibers are about 1000 times stiffer. - Highlights: Black-Right-Pointing-Pointer Fabricated dry, electrospun, fibrinogen fibers; average diameter, D{sub avg.} = 95 nm. Black-Right-Pointing-Pointer Determined mechanical properties with combined atomic force/optical microscope. Black-Right-Pointing-Pointer Fibers are very extensible ({epsilon}{sub max} = 74%) and elastic ({epsilon}{sub elastic} = 15%). Black-Right-Pointing-Pointer Fiber total modulus, E{sub tot.} = 4.2 GPa; elastic modulus, E{sub el.} = 3.7 GPa. Black-Right-Pointing-Pointer Fiber stress relaxation times: {tau}{sub 1} = 1.2 s and {tau}{sub 2} = 11 s.

  13. The mechanical properties of dry, electrospun fibrinogen fibers

    International Nuclear Information System (INIS)

    Baker, Stephen; Sigley, Justin; Helms, Christine C.; Stitzel, Joel; Berry, Joel; Bonin, Keith; Guthold, Martin

    2012-01-01

    Due to their low immunogenicity, biodegradability and native cell-binding domains, fibrinogen fibers may be good candidates for tissue engineering scaffolds, drug delivery vehicles and other medical devices. We used a combined atomic force microscope (AFM)/optical microscope technique to study the mechanical properties of individual, electrospun fibrinogen fibers in dry, ambient conditions. The AFM was used to stretch individual fibers suspended over 13.5 μm wide grooves in a transparent substrate. The optical microscope, located below the sample, was used to monitor the stretching process. Electrospun fibrinogen fibers (diameter, 30–200 nm) can stretch to 74% beyond their original length before rupturing at a stress of 2.1 GPa. They can stretch elastically up to 15% beyond their original length. Using incremental stress–strain curves the viscoelastic behavior of these fibers was determined. The total stretch modulus was 4.2 GPa while the relaxed elastic modulus was 3.7 GPa. When held at constant strain, fibrinogen fibers display stress relaxation with a fast and slow relaxation time of 1.2 s and 11 s. In comparison to native and electrospun collagen fibers, dry electrospun fibrinogen fibers are significantly more extensible and elastic. In comparison to wet electrospun fibrinogen fibers, dry fibers are about 1000 times stiffer. - Highlights: ► Fabricated dry, electrospun, fibrinogen fibers; average diameter, D avg. = 95 nm. ► Determined mechanical properties with combined atomic force/optical microscope. ► Fibers are very extensible (ε max = 74%) and elastic (ε elastic = 15%). ► Fiber total modulus, E tot. = 4.2 GPa; elastic modulus, E el. = 3.7 GPa. ► Fiber stress relaxation times: τ 1 = 1.2 s and τ 2 = 11 s.

  14. Electrospun polyurethane membranes for Tissue Engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Laís P., E-mail: lagabriel@gmail.com [National Institute of Biofabrication, Campinas (Brazil); Department of Chemical Engineering, University of Campinas, Campinas (Brazil); Rodrigues, Ana Amélia [National Institute of Biofabrication, Campinas (Brazil); Department of Medical Sciences, University of Campinas, Campinas (Brazil); Macedo, Milton; Jardini, André L.; Maciel Filho, Rubens [National Institute of Biofabrication, Campinas (Brazil); Department of Chemical Engineering, University of Campinas, Campinas (Brazil)

    2017-03-01

    Tissue Engineering proposes, among other things, tissue regeneration using scaffolds integrated with biological molecules, growth factors or cells for such regeneration. In this research, polyurethane membranes were prepared using the electrospinning technique in order to obtain membranes to be applied in Tissue Engineering, such as epithelial, drug delivery or cardiac applications. The influence of fibers on the structure and morphology of the membranes was studied using scanning electron microscopy (SEM), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), and the thermal stability was analyzed by thermogravimetry analysis (TGA). In vitro cells attachment and proliferation was investigated by SEM, and in vitro cell viability was studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays and Live/Dead® assays. It was found that the membranes present an homogeneous morphology, high porosity, high surface area/volume ratio, it was also observed a random fiber network. The thermal analysis showed that the membrane degradation started at 254 °C. In vitro evaluation of fibroblasts cells showed that fibroblasts spread over the membrane surface after 24, 48 and 72 h of culture. This study supports the investigation of electrospun polyurethane membranes as biocompatible scaffolds for Tissue Engineering applications and provides some guidelines for improved biomaterials with desired properties.

  15. Electrospun biodegradable polymers loaded with bactericide agents

    Directory of Open Access Journals (Sweden)

    Ramaz Katsarava

    2016-03-01

    Full Text Available Development of materials with an antimicrobial activity is fundamental for different sectors, including medicine and health care, water and air treatment, and food packaging. Electrospinning is a versatile and economic technique that allows the incorporation of different natural, industrial, and clinical agents into a wide variety of polymers and blends in the form of micro/nanofibers. Furthermore, the technique is versatile since different constructs (e.g. those derived from single electrospinning, co-electrospinning, coaxial electrospinning, and miniemulsion electrospinning can be obtained to influence the ability to load agents with different characteristics and stability and to modify the release behaviour. Furthermore, antimicrobial agents can be loaded during the electrospinning process or by a subsequent coating process. In order to the mitigate burst release effect, it is possible to encapsulate the selected drug into inorganic nanotubes and nanoparticles, as well as in organic cyclodextrine polysaccharides. In the same way, processes that involve covalent linkage of bactericide agents during surface treatment of electrospun samples may also be considered. The present review is focused on more recent works concerning the electrospinning of antimicrobial polymers. These include chitosan and common biodegradable polymers with activity caused by the specific load of agents such as metal and metal oxide particles, quaternary ammonium compounds, hydantoin compounds, antibiotics, common organic bactericides, and bacteriophages.

  16. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Yang, Jhe Hao; Tsou, Shu Chun; Ding, Chian Hua; Hsu, Chih Chin; Yang, Kai Chiang; Yang, Chun Chen; Chen, Ko Shao; Chen, Szi Wen; Wang, Jong Shyan

    2016-01-01

    To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1 day seeded. Cell–cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and

  17. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jen Ming, E-mail: jmyang@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC (China); Yang, Jhe Hao [Department of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China); Tsou, Shu Chun; Ding, Chian Hua [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC (China); Hsu, Chih Chin [Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan, ROC (China); School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan, ROC (China); Yang, Kai Chiang [School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, ROC (China); Yang, Chun Chen [Department of Chemical Engineering, Ming-Chi University of Science and Technology, New Taipei City, Taiwan, ROC (China); Chen, Ko Shao [Department of Materials Engineering, Tatung University, Taipei, Taiwan, ROC (China); Chen, Szi Wen [Department of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China); Wang, Jong Shyan [Department of Physical Therapy and the Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan, ROC (China)

    2016-09-01

    To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1 day seeded. Cell–cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and

  18. The solutions of affine and conformal affine Toda field theory

    International Nuclear Information System (INIS)

    Papadopoulos, G.; Spence, B.

    1994-02-01

    We give new formulations of the solutions of the field equations of the affine Toda and conformal affine Toda theories on a cylinder and two-dimensional Minkowski space-time. These solutions are parameterised in terms of initial data and the resulting covariant phase spaces are diffeomorphic to the Hamiltonian ones. We derive the fundamental Poisson brackets of the parameters of the solutions and give the general static solutions for the affine theory. (authors). 10 refs

  19. Facile fabrication of ultrathin hybrid membrane for highly flexible supercapacitors via in-situ phase separation of polyethersulfone

    Science.gov (United States)

    Zhao, Xiaoning; Ran, Fen; Shen, Kuiwen; Yang, Yunlong; Wu, Jiayu; Niu, Xiaoqin; Kong, Lingbin; Kang, Long; Chen, Shaowei

    2016-10-01

    In this article, a facile method based on in-situ phase-separation was developed for the fabrication of ultrathin hybrid membranes for highly flexible supercapacitors. The structures and morphologies of the prepared electrodes were characterized by scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) measurements; and the electrochemical behaviors were examined in 2 M KOH solution. SEM and FTIR characterizations reveal that activated carbon was imbedded into the polymer membrane of polyethersulfone to form a uniform and flexible hybrid membrane. When the thin polymer-carbon membrane (PCM) was used as an electrode material for supercapacitor, a high specific capacitance of 169.4 Fg-1 was obtained at a current density of 0.5 Ag-1 along with good long-term cycle life of 94.6% capacity retention after 2000 charging-discharging cycles. Benefiting from these merits, the as-fabricated PCM//PCM cell shows an excellent electrochemical property. These results suggest a promising route towards the fabrication of highly flexible electrodes for high-performance supercapacitors.

  20. Mussel-inspired chitosan-polyurethane coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes.

    Science.gov (United States)

    Wang, Rui; Song, Xin; Xiang, Tao; Liu, Qiang; Su, Baihai; Zhao, Weifeng; Zhao, Changsheng

    2017-07-15

    A straightforward mussel-inspired approach was proposed to construct chitosan-polyurethane coatings and load Ag nanoparticles (AgNPs) to endow polyethersulfone (PES) membranes with dual-antibacterial and antifouling properties. The macromolecule O-carboxymethyl chitosan (CMC) was directly reacted with catechol in the absence of carbodiimide chemistry to form the coating and load AgNPs via in situ reduction; while lysine (Lys) was used as a representative small molecule for comparison. Then, PEG-based polyurethane (PU) was used for constructing Lys-Ag-PU and CMC-Ag-PU composite coatings, which substantially improved the protein antifouling property of the membranes. Furthermore, the CMC-Ag-PU coating exhibited superior broad-spectrum antibacterial property towards E. coli and S. aureus than Lys-Ag-PU coating. Meanwhile, the CMC-Ag-PU coating showed sustained antifouling property against bacteria and could reload AgNPs to be regenerated as antibacterial and antifouling coating. This approach is believed to have potential to fabricate reusable antifouling and antibacterial coatings on materials surfaces for aquatic industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Proton exchange membranes from sulfonated polyetheretherketone and sulfonated polyethersulfone-cardo blends: Conductivity, water sorption and permeation properties

    International Nuclear Information System (INIS)

    Li, Yongli; Nguyen, Quang Trong; Schaetzel, Pierre; Lixon-Buquet, Camille; Colasse, Laurent; Ratieuville, Vincent

    2013-01-01

    Five blend membranes were prepared by solvent evaporation from solutions of the synthesized sulfonated polyetheretherketone (SPEEK) and sulfonated polyethersulfone-cardo (SPESc). Their ion exchange capacity and degree of sulfonation determined by acid–base titration and by thermogravimetric analysis were consistent. The blends glass transition behavior obtained by differential scanning calorimetry suggests that the two sulfonated polymers are compatible in the whole composition range. The values of the activation energy for proton transport determined by conductivity measurements on the SPEEK-based blend membranes were in the range of 13–34 kJ mol −1 , which suggest a mixed transport mechanism that involves both proton jumps on ionic sites and water of hydration and diffusion of proton–water complex in hydrophilic domains. The water vapor sorption in the membranes exhibits sigmoid-shape isotherms which were well fitted by the “new dual mode sorption” model, and the fitted parameters values were successfully used to model the change in the water permeation flux with the upstream water activity using the first Fick's diffusion equation. The fast increase in the permeation flux beyond a critical value of activity (0.5) was owing to the exponential concentration-dependent diffusion coefficient. These modelings allowed us to show a strong increase in the limit diffusion coefficient of water and a decrease in the water-diffusion plasticization coefficient with the SPEEK content in the polymer blends

  2. Surface Functionalization of Polyethersulfone Membrane with Quaternary Ammonium Salts for Contact-Active Antibacterial and Anti-Biofouling Properties

    Directory of Open Access Journals (Sweden)

    Xiao Hu

    2016-05-01

    Full Text Available Biofilm is a significant cause for membrane fouling. Antibacterial-coated surfaces can inhibit biofilm formation by killing bacteria. In this study, polyethersulfone (PES microfiltration membrane was photografted by four antibiotic quaternary ammonium compounds (QACs separately, which were synthesized from dimethylaminoethyl methacrylate (DMAEMA by quaternization with butyl bromide (BB, octyl bromide (OB, dodecyl bromide (DB, or hexadecyl bromide (HB. XPS, ATR-FTIR, and SEM were used to confirm the surfaces’ composition and morphology. After modification, the pores on PES-g-DMAEMA-BB and PES-g-DMAEMA-OB were blocked, while PES-g-DMAEMA-DB and PES-g-DMAEMA-HB were retained. We supposed that DMAEMA-BB and DMAEMA-OB aggregated on the membrane surface due to the activities of intermolecular or intramolecular hydrogen bonds. Bacteria testing found the antibacterial activities of the membranes increased with the length of the substituted alkyl chain. Correspondingly, little bacteria were observed on PES-g-DMAEMA-DB and PES-g-DMAEMA-HB by SEM. The antifouling properties were investigated by filtration of a solution of Escherichia coli. Compared with the initial membrane, PES-g-DMAEMA-DB and PES-g-DMAEMA-HB showed excellent anti-biofouling performance with higher relative flux recovery (RFR of 88.3% and 92.7%, respectively. Thus, surface functionalization of the PES membrane with QACs can prevent bacteria adhesion and improve the anti-biofouling activity by the contact-active antibacterial property.

  3. Fundamentals of affinity cell separations.

    Science.gov (United States)

    Zhang, Ye; Lyons, Veronica; Pappas, Dimitri

    2018-03-01

    Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. SU-8 photoresist-derived electrospun carbon nanofibres as high ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 40; Issue 3. SU-8 photoresist-derived electrospun carbon nanofibres as high-capacity anode material for lithium ion battery. M KAKUNURI S KAUSHIK A SAINI C S SHARMA. Volume 40 Issue 3 June 2017 pp 435-439 ...

  5. Hemoglobin affinity in Andean rodents

    Directory of Open Access Journals (Sweden)

    HRVOJ OSTOJIC

    2002-01-01

    Full Text Available Blood hemoglobin oxygen affinity (P50 was measured in three Andean species and in the laboratory rat (control, all raised near sea level. Chinchilla lanigera (Molina, 1792 has an altitudinal habitat range from low Andean slopes up to 3000 m., while Chinchilla brevicaudata (Waterhouse, 1848 has an altitudinal range from 3000 to 5000 m. The laboratory type guinea pig, wild type guinea pig (Cavia porcellus, (Waterhouse, 1748, and laboratory rat (Rattus norvegicus were also raised at sea level. The Andean species had high hemoglobin oxygen affinities (low P50 compared with the rat. Chinchilla brevicaudata had a higher affinity than Chinchilla lanigera. The wild type guinea pig had a higher affinity than the laboratory type. As has been shown in other species, this is another example of an inverse correlation between the altitude level and the P50 values. This is the first hemoglobin oxygen affinity study in Chinchilla brevicaudata.

  6. Addition of selenium nanoparticles to electrospun silk scaffolds improves mammalian cell activity while reducing bacterial growth

    Directory of Open Access Journals (Sweden)

    Stanley Chung

    2016-07-01

    Full Text Available Silk possesses many beneficial wound healing properties, and electrospun scaffolds are especially applicable for skin applications, due to their smaller interstices and higher surface areas compared to non-electrospun equivalents. However, purified silk promotes microbial growth. In contrast, selenium nanoparticles have excellent antibacterial properties and are a novel antimicrobial chemistry. Here, electrospun silk scaffolds were doped with selenium nanoparticles to impart antibacterial properties to the silk scaffolds. Results showed significantly improved bacterial inhibition and improvement in human dermal fibroblast metabolic activity. These results suggest that the addition of selenium nanoparticles to electrospun silk is a promising approach to improve wound healing with reduced infection, without relying on antibiotics.

  7. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber.

    Science.gov (United States)

    Yang, Jen Ming; Yang, Jhe Hao; Tsou, Shu Chun; Ding, Chian Hua; Hsu, Chih Chin; Yang, Kai Chiang; Yang, Chun Chen; Chen, Ko Shao; Chen, Szi Wen; Wang, Jong Shyan

    2016-09-01

    To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1day seeded. Cell-cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and

  8. Mapping Affinities in Academic Organizations

    Directory of Open Access Journals (Sweden)

    Dario Rodighiero

    2018-02-01

    Full Text Available Scholarly affinities are one of the most fundamental hidden dynamics that drive scientific development. Some affinities are actual, and consequently can be measured through classical academic metrics such as co-authoring. Other affinities are potential, and therefore do not leave visible traces in information systems; for instance, some peers may share interests without actually knowing it. This article illustrates the development of a map of affinities for academic collectives, designed to be relevant to three audiences: the management, the scholars themselves, and the external public. Our case study involves the School of Architecture, Civil and Environmental Engineering of EPFL, hereinafter ENAC. The school consists of around 1,000 scholars, 70 laboratories, and 3 institutes. The actual affinities are modeled using the data available from the information systems reporting publications, teaching, and advising scholars, whereas the potential affinities are addressed through text mining of the publications. The major challenge for designing such a map is to represent the multi-dimensionality and multi-scale nature of the information. The affinities are not limited to the computation of heterogeneous sources of information; they also apply at different scales. The map, thus, shows local affinities inside a given laboratory, as well as global affinities among laboratories. This article presents a graphical grammar to represent affinities. Its effectiveness is illustrated by two actualizations of the design proposal: an interactive online system in which the map can be parameterized, and a large-scale carpet of 250 square meters. In both cases, we discuss how the materiality influences the representation of data, in particular the way key questions could be appropriately addressed considering the three target audiences: the insights gained by the management and their consequences in terms of governance, the understanding of the scholars’ own

  9. A Comparison on Gas Separation between PES(polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 Mixed Matrix Membranes

    Czech Academy of Sciences Publication Activity Database

    Liang, Ch.-Y.; Uchytil, Petr; Petričkovič, Roman; Lai, Y.-Ch.; Friess, K.; Šípek, M.; Reddy, M.M.; Suen, S.-Y.

    2012-01-01

    Roč. 92, MAY 18 (2012), s. 57-63 ISSN 1383-5866 R&D Projects: GA ČR GCP106/10/J038 Grant - others:NSCT(TW) NSC:99-2911-I-005-002; NSCT(TW) NSC:99-2923-E-005-001-MY2 Institutional research plan: CEZ:AV0Z40720504 Keywords : mixed matrix membrane * polyethersulfone membrane * sodium montmorillonite Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.894, year: 2012

  10. Development of a living membrane comprising a functional human renal proximal tubule cell monolayer on polyethersulfone polymeric membrane.

    Science.gov (United States)

    Schophuizen, Carolien M S; De Napoli, Ilaria E; Jansen, Jitske; Teixeira, Sandra; Wilmer, Martijn J; Hoenderop, Joost G J; Van den Heuvel, Lambert P W; Masereeuw, Rosalinde; Stamatialis, Dimitrios

    2015-03-01

    The need for improved renal replacement therapies has stimulated innovative research for the development of a cell-based renal assist device. A key requirement for such a device is the formation of a "living membrane", consisting of a tight kidney cell monolayer with preserved functional organic ion transporters on a suitable artificial membrane surface. In this work, we applied a unique conditionally immortalized proximal tubule epithelial cell (ciPTEC) line with an optimized coating strategy on polyethersulfone (PES) membranes to develop a living membrane with a functional proximal tubule epithelial cell layer. PES membranes were coated with combinations of 3,4-dihydroxy-l-phenylalanine and human collagen IV (Coll IV). The optimal coating time and concentrations were determined to achieve retention of vital blood components while preserving high water transport and optimal ciPTEC adhesion. The ciPTEC monolayers obtained were examined through immunocytochemistry to detect zona occludens 1 tight junction proteins. Reproducible monolayers were formed when using a combination of 2 mg ml(-1) 3,4-dihydroxy-l-phenylalanine (4 min coating, 1h dissolution) and 25 μg ml(-1) Coll IV (4 min coating). The successful transport of (14)C-creatinine through the developed living membrane system was used as an indication for organic cation transporter functionality. The addition of metformin or cimetidine significantly reduced the creatinine transepithelial flux, indicating active creatinine uptake in ciPTECs, most likely mediated by the organic cation transporter, OCT2 (SLC22A2). In conclusion, this study shows the successful development of a living membrane consisting of a reproducible ciPTEC monolayer on PES membranes, an important step towards the development of a bioartificial kidney. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Fabrication of durable fluorine-free superhydrophobic polyethersulfone (PES) composite coating enhanced by assembled MMT-SiO2 nanoparticles

    Science.gov (United States)

    Zhang, Xiguang; Wang, Huaiyuan; Liu, Zhanjian; Zhu, Yixing; Wu, Shiqi; Wang, Chijia; Zhu, Yanji

    2017-02-01

    A durable fluorine-free polyethersulfone (PES) superhydrophobic composite coating with excellent wear-resistant and anti-corrosion properties has been successfully fabricated by combining sol-gel and spray technology. The robust micro/nano-structures of the prepared surface were established by introducing binary montmorillonite-silica (MMT-SiO2) assembled composite particles, which were formed by in-situ growth of SiO2 on MMT surfaces via sol-gel. Combined with the low surface energy of amino silicon oil (APDMS), the fluorine-free superhydrophoic PES coating was obtained with high water contact angle 156.1 ± 1.1° and low sliding angle 4.8 ± 0.7°. The anti-wear of the final PES/APDMS/MMT-SiO2 superhydrophobic coating can reach up to 60,100 cycles, which is outdistancing the pure PES coating (6800 cycles) and the PES/MMT/SiO2 coating prepared by simple physical mixture (18,200 cycles). The enhanced wear resistance property can be mainly attributed to the lubrication performance of APDMS and stable interface bonding force between the MMT surface and SiO2. Simultaneously, potentiodynamic polarization curves and electrochemical impedance spectroscopy exhibited the outstanding anti-corrosion property of PES/APDMS/MMT-SiO2 composite coating, with low corrosion current (1.6 × 10-10 A/cm2) and high protection efficiency (99.999%) even after 30 d immersion process. These test results show that this durable superhydrophobic PES composite coating can be hopefully to provide the possibility of industrial application.

  12. Comparison of cell behavior on pva/pva-gelatin electrospun nanofibers with random and aligned configuration

    Science.gov (United States)

    Huang, Chen-Yu; Hu, Keng-Hsiang; Wei, Zung-Hang

    2016-12-01

    Electrospinning technique is able to create nanofibers with specific orientation. Poly(vinyl alcohol) (PVA) have good mechanical stability but poor cell adhesion property due to the low affinity of protein. In this paper, extracellular matrix, gelatin is incorporated into PVA solution to form electrospun PVA-gelatin nanofibers membrane. Both randomly oriented and aligned nanofibers are used to investigate the topography-induced behavior of fibroblasts. Surface morphology of the fibers is studied by optical microscopy and scanning electron microscopy (SEM) coupled with image analysis. Functional group composition in PVA or PVA-gelatin is investigated by Fourier Transform Infrared (FTIR). The morphological changes, surface coverage, viability and proliferation of fibroblasts influenced by PVA and PVA-gelatin nanofibers with randomly orientated or aligned configuration are systematically compared. Fibroblasts growing on PVA-gelatin fibers show significantly larger projected areas as compared with those cultivated on PVA fibers which p-value is smaller than 0.005. Cells on PVA-gelatin aligned fibers stretch out extensively and their intracellular stress fiber pull nucleus to deform. Results suggest that instead of the anisotropic topology within the scaffold trigger the preferential orientation of cells, the adhesion of cell membrane to gelatin have substantial influence on cellular behavior.

  13. Compliant electrospun silk fibroin tubes for small vessel bypass grafting.

    Science.gov (United States)

    Marelli, Benedetto; Alessandrino, Antonio; Farè, Silvia; Freddi, Giuliano; Mantovani, Diego; Tanzi, Maria Cristina

    2010-10-01

    Processing silk fibroin (SF) by electrospinning offers a very attractive opportunity for producing three-dimensional nanofibrillar matrices in tubular form, which may be useful for a biomimetic approach to small calibre vessel regeneration. Bypass grafting of small calibre vessels, with a diameter less than 6mm, is performed mainly using autografts, like the saphenous vein or internal mammary artery. At present no polymeric grafts made of SF are commercially available, mainly due to inadequate properties (low compliance and lack of endothelium cells). The aim of this work was to electrospin SF into tubular structures (Ø=6mm) for small calibre vessel grafting, characterize the morphological, chemico-physical and mechanical properties of the electrospun SF structures and to validate their potential to interact with cells. The morphological properties of electrospun SF nanofibres were investigated by scanning electron microscopy. Chemico-physical analyses revealed an increase in the crystallinity of the structure of SF nanofibres on methanol treatment. Mechanical tests, i.e. compliance and burst pressure measurements, of the electrospun SF tubes showed that the inner pressure to radial deformation ratio was linear for elongation up to 15% and pressure up to 400 mm Hg. The mean compliance value between 80 and 120 mm Hg was higher than the values reported for both Goretex(R) and Dacron(R) grafts and for bovine heterografts, but still slightly lower than those of saphenous and umbilical vein, which nowadays represent the gold standard for the replacement of small calibre arteries. The electrospun tubes resisted up to 575+/-17 mmHg, which is more than four times the upper physiological pressure of 120 mmHg and more than twice the pathological upper pressures (range 180-220 mmHg). The in vitro tests showed a good cytocompatibility of the electrospun SF tubes. Therefore, the electrospun SF tubes developed within this work represent a suitable candidate for small calibre

  14. Lp-dual affine surface area

    Science.gov (United States)

    Wei, Wang; Binwu, He

    2008-12-01

    According to the notion of Lp-affine surface area by Lutwak, in this paper, we introduce the concept of Lp-dual affine surface area. Further, we establish the affine isoperimetric inequality and the Blaschke-Santaló inequality for Lp-dual affine surface area. Besides, the dual Brunn-Minkowski inequality for Lp-dual affine surface area is presented.

  15. 2017 Guralp Affinity Digitizer Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J.

    2018-03-01

    Sandia National Laboratories has tested and evaluated two Guralp Affinity digitizers. The Affinity digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self- noise, dynamic range, system noise, response, passband, and timing. The Affinity digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).

  16. The utility of affine variables and affine coherent states

    International Nuclear Information System (INIS)

    Klauder, John R

    2012-01-01

    Affine coherent states are generated by affine kinematical variables much like canonical coherent states are generated by canonical kinematical variables. Although all classical and quantum formalisms normally entail canonical variables, it is shown that affine variables can serve equally well for many classical and quantum studies. This general purpose analysis provides tools to discuss two major applications: (1) the completely successful quantization of a nonrenormalizable scalar quantum field theory by affine techniques, in complete contrast to canonical techniques which only offer triviality; and (2) a formulation of the kinematical portion of quantum gravity that favors affine kinematical variables over canonical kinematical variables, and which generates a framework in which a favorable analysis of the constrained dynamical issues can take place. All this is possible because of the close connection between the affine and the canonical stories, while the few distinctions can be used to advantage when appropriate. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (review)

  17. Improved infiltration of stem cells on electrospun nanofibers

    International Nuclear Information System (INIS)

    Shabani, Iman; Haddadi-Asl, Vahid; Seyedjafari, Ehsan; Babaeijandaghi, Farshad; Soleimani, Masoud

    2009-01-01

    Nanofibrous scaffolds have been recently used in the field of tissue engineering because of their nano-size structure which promotes cell attachment, function, proliferation and infiltration. In this study, nanofibrous polyethersulfone (PES) scaffolds was prepared via electrospinning. The scaffolds were surface modified by plasma treatment and collagen grafting. The surface changes then investigated by contact angle measurements and FTIR-ATR. The results proved grafting of the collagen on nanofibers surface and increased hydrophilicity after plasma treatment and collagen grafting. The cell interaction study was done using stem cells because of their ability to differentiate to different kinds of cell lines. The cells had normal morphology on nanofibers and showed very high infiltration through collagen grafted PES nanofibers. This infiltration capability is very useful and needed to make 3D scaffolds in tissue engineering.

  18. Representations of affine Hecke algebras

    CERN Document Server

    Xi, Nanhua

    1994-01-01

    Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest

  19. Electrospun nanofibrous materials for tissue engineering and drug delivery

    Directory of Open Access Journals (Sweden)

    Wenguo Cui, Yue Zhou and Jiang Chang

    2010-01-01

    Full Text Available The electrospinning technique, which was invented about 100 years ago, has attracted more attention in recent years due to its possible biomedical applications. Electrospun fibers with high surface area to volume ratio and structures mimicking extracellular matrix (ECM have shown great potential in tissue engineering and drug delivery. In order to develop electrospun fibers for these applications, different biocompatible materials have been used to fabricate fibers with different structures and morphologies, such as single fibers with different composition and structures (blending and core-shell composite fibers and fiber assemblies (fiber bundles, membranes and scaffolds. This review summarizes the electrospinning techniques which control the composition and structures of the nanofibrous materials. It also outlines possible applications of these fibrous materials in skin, blood vessels, nervous system and bone tissue engineering, as well as in drug delivery.

  20. Fluorescent and Colorimetric Electrospun Nanofibers for Heavy-Metal Sensing

    Directory of Open Access Journals (Sweden)

    Idelma A. A. Terra

    2017-12-01

    Full Text Available The accumulation of heavy metals in the human body and/or in the environment can be highly deleterious for mankind, and currently, considerable efforts have been made to develop reliable and sensitive techniques for their detection. Among the detection methods, chemical sensors appear as a promising technology, with emphasis on systems employing optically active nanofibers. Such nanofibers can be obtained by the electrospinning technique, and further functionalized with optically active chromophores such as dyes, conjugated polymers, carbon-based nanomaterials and nanoparticles, in order to produce fluorescent and colorimetric nanofibers. In this review we survey recent investigations reporting the use of optically active electrospun nanofibers in sensors aiming at the specific detection of heavy metals using colorimetry and fluorescence methods. The examples given in this review article provide sufficient evidence of the potential of optically electrospun nanofibers as a valid approach to fabricate highly selective and sensitive optical sensors for fast and low-cost detection of heavy metals.

  1. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices.

    Science.gov (United States)

    Shekarforoush, Elhamalsadat; Mendes, Ana C; Baj, Vanessa; Beeren, Sophie R; Chronakis, Ioannis S

    2017-10-17

    Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). ¹H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers as encapsulation and antioxidant systems.

  2. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

    Directory of Open Access Journals (Sweden)

    Elhamalsadat Shekarforoush

    2017-10-01

    Full Text Available Electrospun phospholipid (asolectin microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC and the total phenolic content (TPC of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient and pressures (vacuum, ambient. 1H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers as encapsulation and antioxidant systems.

  3. Contractions of affine spherical varieties

    International Nuclear Information System (INIS)

    Arzhantsev, I V

    1999-01-01

    The language of filtrations and contractions is used to describe the class of G-varieties obtainable as the total spaces of the construction of contraction applied to affine spherical varieties, which is well-known in invariant theory. These varieties are local models for arbitrary affine G-varieties of complexity 1 with a one-dimensional categorical quotient. As examples, reductive algebraic semigroups and three-dimensional SL 2 -varieties are considered

  4. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

    DEFF Research Database (Denmark)

    Shekarforoush, Elhamalsadat; Mendes, Ana Carina Loureiro; Baj, Vanessa

    2017-01-01

    Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant...... capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). ¹H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin...

  5. Antibacterial performance of bovine lactoferrin-fish gelatine electrospun nanocomposites

    OpenAIRE

    Padrão, Jorge; Machado, Raul; Casal, Margarida; Rodrigues, L. R.; Dourado, Fernando; Lanceros-Méndez, S.; Sencadas, V.

    2014-01-01

    Antibacterial performance of bovine lactoferrin-fish gelatine electrospun nanocomposites The alarming increase of antibiotic resistant microorganisms urged the development and synthesis of novel antimicrobial biomaterials, to be employed in a broad range of applications, ranging from food casings to medical devices [1 – 3]. This work describes the processing and characterization of an innovative fully biobased eletrctrospun nanocomposite material displaying antibacterial properties. Its c...

  6. Graphitic nanofibres from electrospun solutions of PAN in dimethylsulphoxide

    OpenAIRE

    Kurban, Zeynep; Lovell, Arthur; Jenkins, Derek; Bennington, Steve; Loader, Ian; Schober, Alex; Skipper, Neal

    2009-01-01

    Homogenous graphitic nanofibres (GNFs) have been synthesised by heat treatment of electrospun polyacrylonitrile in dimethylsulphoxide, offering a new solution route of low toxicity to manufacture sub-60 nm diameter GNFs. Fibre beading resulting from the spinning of low-concentration polymer solutions can be reduced with the addition of surfactant or sodium chloride. Characterisation techniques including X-ray diffraction, scanning- and transmission electron microscopy have been used to quanti...

  7. Electrospun fibers for the prevention of human immunodeficiency virus

    Science.gov (United States)

    Ball, Cameron

    HIV/AIDS education, testing, and treatment have thus far failed to cease the pandemic spread of the HIV virus. HIV prevention is hindered by a lack of protective options beyond the ABC approach of abstinence, being faithful, and using condoms. One approach to address this inadequacy is to develop antiviral products for vaginal or rectal application that provide receptive partner-initiated protection against viral infection during sex. Such products, termed anti-HIV microbicides, can especially empower young women to take control over their sexual health. This work explored a new approach to anti-HIV microbicides: electrospun fibers for the delivery of small-molecule antiretroviral drugs. Electrospun microbicides are nonwoven fabrics made from polymer-based nanofibers. The wide array of polymers available for electrospinning allowed for the incorporation and release of chemically diverse agents. Since electrospun fibers have an extremely high surface area to volume ratio, they serve as excellent delivery systems for rapid drug delivery of both hydrophilic and hydrophobic agents. The flexibility in the design of electrospun fibers afforded by coaxial electrospinning further enabled the formulation of sustained-release microbicides. To demonstrate the power of electrospinning to deliver drugs over multiple timescales, composite microbicide fabrics were created to provide both rapid and sustained drug release from a single device. This work has produced alternative microbicide formulations, while establishing methods for the thorough characterization of these systems and solutions for the needs of people at risk of HIV infection. By addressing problems in both HIV prevention and drug delivery, this work has expanded our capacity to engineer elegant solutions to complex and pressing global health challenges.

  8. Next Generation of Electrospun Textiles for Chemical and Biological Protection and Air Filtration

    Science.gov (United States)

    2009-09-01

    and pump -’ Taylor Cone High Voltage Power Supply Insulated Adjustable Stand Figure 1.10. Electrospinning experimental setup Electrospinning...0 --------- ----------% --- ’F 106’ \\ PTFE Microporous Membrane (Wind Barrier) /PAN Electrospun...Nonwoven Batting (thermal Insulation layer) 10’ 0 .2 .4 .6 .8 1.0 Relative Humidity Figure 1.11. Transport properties of electrospun materials. (a

  9. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Wright, L D; Young, R T; Andric, T; Freeman, J W

    2010-01-01

    Electrospinning is a polymer processing technique that produces fibrous structures comparable to the extracellular matrix of many tissues. Electrospinning, however, has been severely limited in its tissue engineering capabilities because this technique has produced few three-dimensional structures. Sintering of electrospun materials provides a method to fabricate unique architectures and allow much larger structures to be made. Electrospun mats were sintered into strips and cylinders, and their tensile and compressive mechanical properties were measured. In addition, electrospun materials with salt pores (salt embedded within the material and then leached out) were fabricated to improve porosity of the electrospun materials for tissue engineering scaffolds. Sintered electrospun poly(d,l-lactide) and poly(l-lactide) (PDLA/PLLA) materials have higher tensile mechanical properties (modulus: 72.3 MPa, yield: 960 kPa) compared to unsintered PLLA (modulus: 40.36 MPa, yield: 675.5 kPa). Electrospun PDLA/PLLA cylinders with and without salt-leached pores had compressive moduli of 6.69 and 26.86 MPa, respectively, and compressive yields of 1.36 and 0.56 MPa, respectively. Sintering of electrospun materials is a novel technique that improves electrospinning application in tissue engineering by increasing the size and types of electrospun structures that can be fabricated.

  10. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P; Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore (Singapore); Ghasemi-Mobarakeh, Laleh, E-mail: nnimpp@nus.edu.s [Islamic Azad University, Najafabad Branch, Isfahan (Iran, Islamic Republic of)

    2011-10-15

    A bioengineered construct that matches the chemical, mechanical, biological properties and extracellular matrix morphology of native tissue could be suitable as a cardiac patch for supporting the heart after myocardial infarction. The potential of utilizing a composite nanofibrous scaffold of poly(dl-lactide-co-glycolide)/gelatin (PLGA/Gel) as a biomimetic cardiac patch is studied by culturing a population of cardiomyocyte containing cells on the electrospun scaffolds. The chemical characterization and mechanical properties of the electrospun PLGA and PLGA/Gel nanofibers were studied by Fourier transform infrared spectroscopy, scanning electron microscopy and tensile measurements. The biocompatibility of the scaffolds was also studied and the cardiomyocytes seeded on PLGA/Gel nanofibers were found to express the typical functional cardiac proteins such as alpha-actinin and troponin I, showing the easy integration of cardiomyocytes on PLGA/Gel scaffolds. Our studies strengthen the application of electrospun PLGA/Gel nanofibers as a bio-mechanical support for injured myocardium and as a potential substrate for induction of endogenous cardiomyocyte proliferation, ultimately reducing the cardiac dysfunction and improving cardiac remodeling.

  11. Facile modification of electrospun fibrous structures with antifouling zwitterionic hydrogels.

    Science.gov (United States)

    Xu, Tong; Yang, Jing; Zhang, Jiamin; Zhu, Yingnan; Li, Qingsi; Pan, Chao; Zhang, Lei

    2017-12-28

    Electrospinning technology can easily produce different shaped fibrous structures, making them highly valuable to various biomedical applications. However, surface contamination of biomolecules, cells, or blood has emerged as a significant challenge to the success of electrospun devices, especially artificial blood vessels, catheters and wound dressings etc. Many efforts have been made to resist the surface non-specific biomolecules or cells adsorption, but most of them require complex pre-treatment processes, hard-to-remove metal catalysts or rigorous reaction conditions. In addition, the stability of antifouling coatings, especially in complex conditions, is still a major concern. In this work, inspired by the interpenetrating polymer network and reinforced concrete structure, an efficient and facile strategy for modifying hydrophobic electrospun meshes and tubes with antifouling zwitterionic hydrogels has been introduced. The resulting products could efficiently resist the adhesion of proteins, cells, or even fresh whole blood. Meanwhile, they could maintain the shapes and mechanical strength of the original electrospun structures. Furthermore, the hydrogel structures could retain stable in a physiological condition for at least 3 months. This paper provided a general antifouling and hydrophilicity surface modification strategy for various fibrous structures, and could be of great value for many biomedical applications where antifouling properties are critical.

  12. ECM Decorated Electrospun Nanofiber for Improving Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Yong Fu

    2018-03-01

    Full Text Available Optimization of nanofiber surface properties can lead to enhanced tissue regeneration outcomes in the context of bone tissue engineering. Herein, we developed a facile strategy to decorate elctrospun nanofibers using extracellular matrix (ECM in order to improve their performance for bone tissue engineering. Electrospun PLLA nanofibers (PLLA NF were seeded with MC3T3-E1 cells and allowed to grow for two weeks in order to harvest a layer of ECM on nanofiber surface. After decellularization, we found that ECM was successfully preserved on nanofiber surface while maintaining the nanostructure of electrospun fibers. ECM decorated on PLLA NF is biologically active, as evidenced by its ability to enhance mouse bone marrow stromal cells (mBMSCs adhesion, support cell proliferation and promote early stage osteogenic differentiation of mBMSCs. Compared to PLLA NF without ECM, mBMSCs grown on ECM/PLLA NF exhibited a healthier morphology, faster proliferation profile, and more robust osteogenic differentiation. Therefore, our study suggests that ECM decoration on electrospun nanofibers could serve as an efficient approach to improving their performance for bone tissue engineering.

  13. Incorporation of T4 bacteriophage in electrospun fibres.

    Science.gov (United States)

    Korehei, R; Kadla, J

    2013-05-01

    Antibacterial food packaging materials, such as bacteriophage-activated electrospun fibrous mats, may address concerns triggered by waves of bacterial food contamination. To address this, we investigated several efficient methods for incorporating T4 bacteriophage into electrospun fibrous mats. The incorporation of T4 bacteriophage using simple suspension electrospinning led to more than five orders of magnitude decrease in bacteriophage activity. To better maintain bacteriophage viability, emulsion electrospinning was developed where the T4 bacteriophage was pre-encapsulated in an alginate reservoir via an emulsification process and subsequently electrospun into fibres. This resulted in an increase in bacteriophage viability, but there was still two orders of magnitude drop in activity. Using a coaxial electrospinning process, full bacteriophage activity could be maintained. In this process, a core/shell fibre structure was formed with the T4 bacteriophage being directly incorporated into the fibre core. The core/shell fibre encapsulated bacteriophage exhibited full bacteriophage viability after storing for several weeks at +4°C. Coaxial electrospinning was shown to be capable of encapsulating bacteriophages with high loading capacity, high viability and long storage time. These results are significant in the context of controlling and preventing bacterial infections in perishable foods during storage. © 2013 The Society for Applied Microbiology.

  14. Transfer printing and patterning of stretchable electrospun film

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yongqing; Huang, YongAn, E-mail: yahuang@hust.edu.cn; Yin, Zhouping

    2013-10-01

    Electrospinning is an effective method for nanofiber production, but seldom used in the fabrication of patterned structures directly due to the whipping instability of the electrospinning jet. The whipping instability of electrospinning is adopted to fabricate stretchable patterned film by combination with an improved thermal transfer printing. The electrospun film is composed of small-scale wavy/coiled fibers, which make the patterned film highly stretchable. The optimal process parameters of whipping-based electrospinning are investigated to fabricate electrospun film with uniform and compact wavy/coiled fiber. Then the transfer printing and thermal detachment lithography are studied to generate patterned film, including the pressure, temperature, and peeling-off speed. Finally, the stretchability of the patterned electrospun film is studied through experiment and finite element analysis. It may open a cost-effective and high-throughput way for flexible/stretchable electronics fabrication. - Highlights: • Stretchable nonwoven film with small-scale wavy fibers is fabricated. • The film is transferred and patterned by thermal detachment lithography. • The patterned film is validated with high stretchability.

  15. Engineering of Corneal Tissue through an Aligned PVA/Collagen Composite Nanofibrous Electrospun Scaffold.

    Science.gov (United States)

    Wu, Zhengjie; Kong, Bin; Liu, Rui; Sun, Wei; Mi, Shengli

    2018-02-24

    Corneal diseases are the main reason of vision loss globally. Constructing a corneal equivalent which has a similar strength and transparency with the native cornea, seems to be a feasible way to solve the shortage of donated cornea. Electrospun collagen scaffolds are often fabricated and used as a tissue-engineered cornea, but the main drawback of poor mechanical properties make it unable to meet the requirement for surgery suture, which limits its clinical applications to a large extent. Aligned polyvinyl acetate (PVA)/collagen (PVA-COL) scaffolds were electrospun by mixing collagen and PVA to reinforce the mechanical strength of the collagen electrospun scaffold. Human keratocytes (HKs) and human corneal epithelial cells (HCECs) inoculated on aligned and random PVA-COL electrospun scaffolds adhered and proliferated well, and the aligned nanofibers induced orderly HK growth, indicating that the designed PVA-COL composite nanofibrous electrospun scaffold is suitable for application in tissue-engineered cornea.

  16. The Structure of Affine Buildings

    CERN Document Server

    Weiss, Richard M

    2009-01-01

    In The Structure of Affine Buildings, Richard Weiss gives a detailed presentation of the complete proof of the classification of Bruhat-Tits buildings first completed by Jacques Tits in 1986. The book includes numerous results about automorphisms, completions, and residues of these buildings. It also includes tables correlating the results in the locally finite case with the results of Tits's classification of absolutely simple algebraic groups defined over a local field. A companion to Weiss's The Structure of Spherical Buildings, The Structure of Affine Buildings is organized around the clas

  17. Affinity biosensors: techniques and protocols

    National Research Council Canada - National Science Library

    Rogers, Kim R; Mulchandani, Ashok

    1998-01-01

    ..., and government to begin or expand their biosensors research. This volume, Methods in Biotechnology vol. 7: Affinity Biosensors: Techniques and Protocols, describes a variety of classical and emerging transduction technologies that have been interfaced to bioaffinity elements (e.g., antibodies and receptors). Some of the reas...

  18. Preparation and dielectric properties of Ba0.95Ca0.05Ti0.8Zr0.2O3-polyethersulfone composites

    International Nuclear Information System (INIS)

    Wang Fajun; Li Wen; Jiang Hongliu; Xue Mingshan; Lu Jinshan; Yao Junping

    2010-01-01

    We report the preparation and dielectric properties of ceramic-polymer composites using Ba 0.95 Ca 0.05 Ti 0.8 Zr 0.2 O 3 (BCTZ) as a ceramic filler and polyethersulfone (PES) as a polymer matrix. The BCTZ powders were synthesized by a sol-gel method to fabricate BCZT-PES composites. The composites with various BCTZ volume fractions were prepared by a solution mixing and hot-pressing method. The composite with 50 vol % BCTZ showed high dielectric constant (ε=48.80) and low loss (tan δ=0.042) at 1 kHz and room temperature. Such excellent dielectric properties of the composites displayed an acceptable stability within a wide range of temperature (from 20 to 150 deg. C) and frequency (from 100 Hz to 100 kHz). The present work indicates that the BCTZ-PES composite can be a candidate for embedded capacitors.

  19. Thickness Dependence of Optoelectrical Properties of Mo-Doped In2O3 Films Deposited on Polyethersulfone Substrates by Ion-Beam-Assisted Evaporation

    Directory of Open Access Journals (Sweden)

    Chin-Chiuan Kuo

    2010-01-01

    Full Text Available Indium molybdenum oxide (IMO films were deposited onto the polyethersulfone (PES substrates by ion-beam-assisted evaporation (IBAE deposition at low temperature in this study. The effects of film thickness on their optical and electrical properties were investigated. The results show that the deposited IMO films exhibit a preferred orientation of B(222. The electrical resistivity of the deposited film initially reduces then subsequently increases with film thickness. The IMO film with the lowest resistivity of 7.61 × 10−4 ohm-cm has been achieved when the film thickness is 120 nm. It exhibits a satisfactory surface roughness pv of 8.75 nm and an average visible transmittance of 78.7%.

  20. Morphology modification of polyethersulfone membrane from montmorillonite clay presence; Modificacao da morfologia de membrana de polietersulfona a partir da presenca de argila montmorilonita

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, R.S.B.; Oliveira, S.S.L.; Leite, A.M.D.; Araujo, E.M.; Lira, H.L., E-mail: edcleide.araujo@dema.ufcg.edu.br [Universidade Federal de Campina Grande (UAEMa/CCT/UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Universidade Federal do Rio Grande do Norte (ECT/UFRN), Natal, RN (Brazil). Escola de Ciencias e Tecnologia

    2016-07-01

    The objective of this work is to produce hollow fiber membranes of polyethersulfone from the formation of hybrids with montmorillonite national clay (3 and 5% Brasgel PA), with the intention of modifying the morphology and improving the flow properties of the PES membrane. Initially, flat membranes were produced for characterization by X-ray diffraction (XRD) and contact angle. By XRD it was evident that membrane production and clay influenced the crystallinity of the polymer. The measurement of the contact angle indicated that the incorporation of clay promoted a change in membrane hydrophilicity, being more evident for with the 3% of MMT. By means of scanning electron microscopy (SEM) it was evidenced that the clay modified the morphology of the membrane, having a better distribution of the pores and the 'fingers'. The flow measurements showed that the membrane containing 3% of MMT had a higher permeability to distilled water, indicating its potential for the treatment of liquid effluents. (author)

  1. Functional electrospun fibers for the treatment of human skin wounds.

    Science.gov (United States)

    Wang, Jing; Windbergs, Maike

    2017-10-01

    Wounds are trauma induced defects of the human skin involving a multitude of endogenous biochemical events and cellular reactions of the immune system. The healing process is extremely complex and affected by the patient's physiological conditions, potential implications like infectious pathogens and inflammation as well as external factors. Due to increasing incidence of chronic wounds and proceeding resistance of infection pathogens, there is a strong need for effective therapeutic wound care. In this context, electrospun fibers with diameters in the nano- to micrometer range gain increasing interest. While resembling the structure of the native human extracellular matrix, such fiber mats provide physical and mechanical protection (including protection against bacterial invasion). At the same time, the fibers allow for gas exchange and prevent occlusion of the wound bed, thus facilitating wound healing. In addition, drugs can be incorporated within such fiber mats and their release can be adjusted by the material and dimensions of the individual fibers. The review gives a comprehensive overview about the current state of electrospun fibers for therapeutic application on skin wounds. Different materials as well as fabrication techniques are introduced including approaches for incorporation of drugs into or drug attachment onto the fiber surface. Against the background of wound pathophysiology and established therapy approaches, the therapeutic potential of electrospun fiber systems is discussed. A specific focus is set on interactions of fibers with skin cells/tissues as well as wound pathogens and strategies to modify and control them as key aspects for developing effective wound therapeutics. Further, advantages and limitations of controlled drug delivery from fiber mats to skin wounds are discussed and a future perspective is provided. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A novel electrospun silk fibroin/hydroxyapatite hybrid nanofibers

    International Nuclear Information System (INIS)

    Ming, Jinfa; Zuo, Baoqi

    2012-01-01

    A novel electrospinning of silk fibroin/hydroxyapatite hybrid nanofibers with different composition ratios was performed with methanoic acid as a spinning solvent. The silk fibroin/hydroxyapatite hybrids containing up to 30% hydroxyapatite nanoparticles could be electrospun into the continuous fibrous structure. The electrospun silk fibroin/hydroxyapatite hybrid nanofibers showed bigger diameter and wider diameter distribution than pure silk fibroin nanofibers, and the average diameter gradually increased from 95 to 582 nm. At the same time, the secondary structure of silk fibroin/hydroxyapatite nanofibers was characterized by X-ray diffraction, Fourier transform infrared analysis, and DSC measurement. Comparing with the pure silk fibroin nanofibers, the crystal structure of silk fibroin was mainly amorphous structure in the hybrid nanofibers. X-ray diffraction results demonstrated the hydroxyapatite crystalline nature remained as evidenced from the diffraction planes (002), (211), (300), and (202) of the hydroxyapatite crystallites, which was also confirmed by Fourier transform infrared analysis. The thermal behavior of hybrid nanofibers exhibited the endothermic peak of moisture evaporation ranging from 86 to 113 °C, and the degradation peak at 286 °C appeared. The SF/HAp nanofibers mats containing 30% HAp nanoparticles showed higher breaking tenacity and extension at break for 1.1688 ± 0.0398 MPa and 6.55 ± 1.95%, respectively. Therefore, the electrospun silk fibroin/hydroxyapatite hybrid nanofibers should be provided potentially useful options for the fabrication of biomaterial scaffolds for bone tissue engineering. -- Highlights: ► The novel SF/HAp nanofibers were directly prepared by electrospinning method. ► The nanofiber diameter had significant related to the content of HAp. ► The crystal structure of silk fibroin was mainly amorphous structure in the hybrid nanofibers. ► The HAp crystals existing in the hybrid nanofibers were characterized

  3. Nanoclay-Directed Structure and Morphology in PVDF Electrospun Membranes

    Directory of Open Access Journals (Sweden)

    Kyunghwan Yoon

    2014-01-01

    Full Text Available The incorporation of organically modified Lucentite nanoclay dramatically modifies the structure and morphology of the PVDF electrospun fibers. In a molecular level, the nanoclay preferentially stabilizes the all-trans conformation of the polymer chain, promoting an α to β transformation of the crystalline phase. The piezoelectric properties of the β-phase carry great promise for energy harvest applications. At a larger scale, the nanoclay facilitates the formation of highly uniform, bead-free fibers. Such an effect can be attributed to the enhanced conductivity and viscoelasticity of the PVDF-clay suspension. The homogenous distribution of the directionally aligned nanoclays imparts advanced mechanical properties to the nanofibers.

  4. Engineered Polymer Composites Through Electrospun Nanofiber Coating of Fiber Tows

    Science.gov (United States)

    Kohlman, Lee W.; Bakis, Charles; Williams, Tiffany S.; Johnston, James C.; Kuczmarski, Maria A.; Roberts, Gary D.

    2014-01-01

    Composite materials offer significant weight savings in many aerospace applications. The toughness of the interface of fibers crossing at different angles often determines failure of composite components. A method for toughening the interface in fabric and filament wound components using directly electrospun thermoplastic nanofiber on carbon fiber tow is presented. The method was first demonstrated with limited trials, and then was scaled up to a continuous lab scale process. Filament wound tubes were fabricated and tested using unmodified baseline towpreg material and nanofiber coated towpreg.

  5. Functional electrospun polystyrene nanofibers incorporating α-, β-, and γ-cyclodextrins: comparison of molecular filter performance.

    Science.gov (United States)

    Uyar, Tamer; Havelund, Rasmus; Hacaloglu, Jale; Besenbacher, Flemming; Kingshott, Peter

    2010-09-28

    Electrospinning has been used to successfully create polystyrene (PS) nanofibers containing either of three different types of cyclodextrin (CD); α-CD, β-CD, and γ-CD. These three CDs are chosen because they have different sized cavities that potentially allow for selective inclusion complex (IC) formation with molecules of different size or differences in affinity of IC formation with one type of molecule. The CD containing electrospun PS nanofibers (PS/CD) were initially characterized by scanning electron microscopy (SEM) to determine the uniformity of the fibers and their fiber diameter distributions. X-ray photoelectron spectroscopy (XPS) was used to quantitatively determine the concentration of each CD on the different fiber surfaces. Static time-of-flight secondary ion mass spectrometry (static-ToF-SIMS) showed the presence of each type of CD on the PS nanofibers by the detection of both the CD sodium adduct molecular ions (M + Na+) and lower molecular weight oxygen containing fragment ions. The comparative efficiency of the PS/CD nanofibers/nanoweb for removing phenolphthalein, a model organic compound, from solution was determined by UV-vis spectrometry, and the kinetics of phenolphthalein capture was shown to follow the trend PS/α-CD > PS/β-CD > PS/γ-CD. Direct pyrolysis mass spectrometry (DP-MS) was also performed to ascertain the relative binding strengths of the phenolphthalein for the CD cavities, and the results showed the trend in the interaction strength was β-CD > γ-CD > α-CD. Our results demonstrate that nanofibers produced by electrospinning that incorporate cyclodextrins with different sized cavities can indeed filter organic molecules and can potentially be used for filtration, purification, and/or separation processes.

  6. The affine quantum gravity programme

    CERN Document Server

    Klauder, J R

    2002-01-01

    The central principle of affine quantum gravity is securing and maintaining the strict positivity of the matrix left brace g-hat sub a sub b (x)right brace composed of the spatial components of the local metric operator. On spectral grounds, canonical commutation relations are incompatible with this principle, and they must be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the recently developed projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational operator constraints is formulated quite naturally by means of a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. It is anticipated that skills and insight to study this formulation can be developed by studying special, reduced-variable models that sti...

  7. Preparation and characterization of electrospun poly(phthalazinone ether nitrile ketone) membrane with novel thermally stable properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang; Zhang, Hao; Qian, Bingqing [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Wang, Jinyan, E-mail: wangjinyan@dlut.edu.cn [Department of Polymer Science and Materials, Dalian University of Technology, Dalian 116024 (China); Jian, Xigao [Department of Polymer Science and Materials, Dalian University of Technology, Dalian 116024 (China); Qiu, Jieshan, E-mail: jqiu@dlut.edu.cn [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2015-10-01

    Highlights: • Poly (phthalazinone ether nitrile ketone) (PPENK) was used to successfully prepare nanofiber membranes by electrospinning. • Electrospun membrane exhibits a good thermostability. • Electrospun membrane. - Abstract: Electrospun nanofibrous membranes have several applications because of their excellent properties, such as high porosity, small fiber diameter, and large surface area. However, high-temperature resistant electrospun membranes remain a challenge because of the absence of precursors that offer spinnability, scalability, and superior thermal stability. In this study, poly(phthalazinone ether nitrile ketone) (PPENK) was used to successfully prepare nanofiber membranes by electrospinning. Electrospun PPENK membranes were characterized by scanning electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, and tensile stress–strain tests. Results indicated that the prepared electrospun membranes had a very high glass transition temperature, superior chemical resistance, and excellent mechanical strength. These desirable properties broaden their potential application in membranes and treatment of various hot fluid streams without strict temperature control.

  8. Affine invariants of convex polygons.

    Science.gov (United States)

    Flusser, Jan

    2002-01-01

    In this correspondence, we prove that the affine invariants, for image registration and object recognition, proposed recently by Yang and Cohen (see ibid., vol.8, no.7, p.934-46, July 1999) are algebraically dependent. We show how to select an independent and complete set of the invariants. The use of this new set leads to a significant reduction of the computing complexity without decreasing the discrimination power.

  9. Processing and characterization of α-elastin electrospun membranes

    Science.gov (United States)

    Araujo, J.; Padrão, J.; Silva, J. P.; Dourado, F.; Correia, D. M.; Botelho, G.; Gomez Ribelles, J. L.; Lanceros-Méndez, S.; Sencadas, V.

    2014-06-01

    Elastin isolated from fresh bovine ligaments was dissolved in a mixture of 1,1,1,3,3,3-Hexafluoro-2-propanol and water were electrospun into fiber membranes under different processing conditions. Fiber mats of randomly and aligned fibers were obtained with fixed and rotating ground collectors and fibrils were composed by thin ribbons whose width depends on electrospinning conditions; fibrils with 721 nm up to 2.12 μm width were achieved. After cross-linking with glutaraldehyde, α-elastin can uptake as much as 1700 % of PBS solution and a slight increase on fiber thickness was observed. The glass transition temperature of electrospun fiber mats was found to occur at ˜80 °C. Moreover, α-Elastin showed to be a perfect elastomeric material, and no mechanical hysteresis was found in cycle mechanical measurements. The elastic modulus obtained for random and aligned fibers mats in a PBS solution was 330±10 kPa and 732±165 kPa, respectively. Finally, the electrospinning and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Cell culture results showed good cell adhesion and proliferation in the cross-linked elastin fiber mats.

  10. Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts

    Energy Technology Data Exchange (ETDEWEB)

    Sell, S A [Virginia Commonwealth University, Richmond, VA 23298 (United States); McClure, M J [Virginia Commonwealth University, Richmond, VA 23298 (United States); Barnes, C P [Virginia Commonwealth University, Richmond, VA 23298 (United States); Knapp, D C [Virginia Commonwealth University, Richmond, VA 23298 (United States); Walpoth, B H [University Hospital, 1211 Geneva 14 (Switzerland); Simpson, D G [Virginia Commonwealth University, Richmond, VA 23298 (United States); Bowlin, G L [Virginia Commonwealth University, Richmond, VA 23298 (United States)

    2006-06-15

    An electrospun cardiovascular graft composed of polydioxanone (PDO) and elastin has been designed and fabricated with mechanical properties to more closely match those of native arterial tissue, while remaining conducive to tissue regeneration. PDO was chosen to provide mechanical integrity to the prosthetic, while elastin provides elasticity and bioactivity (to promote regeneration in vitro/in situ). It is the elastic nature of elastin that dominates the low-strain mechanical response of the vessel to blood flow and prevents pulsatile energy from being dissipated as heat. Uniaxial tensile and suture retention tests were performed on the electrospun grafts to demonstrate the similarities of the mechanical properties between the grafts and native vessel. Dynamic compliance measurements produced values that ranged from 1.2 to 5.6%/100 mmHg for a set of three different mean arterial pressures. Results showed the 50:50 ratio to closely mimic the compliance of native femoral artery, while grafts that contained less elastin exceeded the suture retention strength of native vessel. Preliminary cell culture studies showed the elastin-containing grafts to be bioactive as cells migrated through their full thickness within 7 days, but failed to migrate into pure PDO scaffolds. Electrospinning of the PDO and elastin-blended composite into a conduit for use as a small diameter vascular graft has extreme potential and warrants further investigation as it thus far compares favorably to native vessel.

  11. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds.

    Science.gov (United States)

    Gomes, S R; Rodrigues, G; Martins, G G; Henriques, C M R; Silva, J C

    2013-04-01

    Gelatin from cold water fish skin was electrospun, crosslinked and investigated as a substrate for the adhesion and proliferation of cells. Gelatin was first dissolved in either water or concentrated acetic acid and both solutions were successfully electrospun. Cross-linking was achieved via three different routes: glutaraldehyde vapor, genipin and dehydrothermal treatment. Solution's properties (surface tension, electrical conductivity and viscosity) and scaffold's properties (chemical bonds, weight loss and fiber diameters) were measured. Cellular viability was analyzed culturing 3T3 fibroblasts plated on the scaffolds and grown up to 7 days. The cells were fixed and observed with SEM or stained for DNA and F-actin and observed with confocal microscopy. In all scaffolds, the cells attached and spread with varying degrees. The evaluation of cell viability showed proliferation of cells until confluence in scaffolds crosslinked by glutaraldehyde and genipin; however the rate of growth in genipin crosslinked scaffolds was slow, recovering only by day five. The results using the dehydrothermal treatment were the less satisfactory. Our results show that glutaraldehyde treated fish gelatin is the most suitable substrate, of the three studied, for fibroblast adhesion and proliferation. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review

    Directory of Open Access Journals (Sweden)

    Roberto Scaffaro

    2017-02-01

    Full Text Available Electrospinning is a versatile process technology, exploited for the production of fibers with varying diameters, ranging from nano- to micro-scale, particularly useful for a wide range of applications. Among these, tissue engineering is particularly relevant to this technology since electrospun fibers offer topological structure features similar to the native extracellular matrix, thus providing an excellent environment for the growth of cells and tissues. Recently, nanocarbons have been emerging as promising fillers for biopolymeric nanofibrous scaffolds. In fact, they offer interesting physicochemical properties due to their small size, large surface area, high electrical conductivity and ability to interface/interact with the cells/tissues. Nevertheless, their biocompatibility is currently under debate and strictly correlated to their surface characteristics, in terms of chemical composition, hydrophilicity and roughness. Among the several nanofibrous scaffolds prepared by electrospinning, biopolymer/nanocarbons systems exhibit huge potential applications, since they combine the features of the matrix with those determined by the nanocarbons, such as conductivity and improved bioactivity. Furthermore, combining nanocarbons and electrospinning allows designing structures with engineered patterns at both nano- and microscale level. This article presents a comprehensive review of various types of electrospun polymer-nanocarbon currently used for tissue engineering applications. Furthermore, the differences among graphene, carbon nanotubes, nanodiamonds and fullerenes and their effect on the ultimate properties of the polymer-based nanofibrous scaffolds is elucidated and critically reviewed.

  13. Stem cell responses to plasma surface modified electrospun polyurethane scaffolds.

    Science.gov (United States)

    Zandén, Carl; Hellström Erkenstam, Nina; Padel, Thomas; Wittgenstein, Julia; Liu, Johan; Kuhn, H Georg

    2014-07-01

    The topographical effects from functional materials on stem cell behavior are currently of interest in tissue engineering and regenerative medicine. Here we investigate the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell (hESC) and rat postnatal neural stem cell (NSC) responses. The plasma gases were found to induce three combinations of fiber surface functionalities and roughness textures. On randomly oriented fibers, plasma treatments lead to substantially increased hESC attachment and proliferation as compared to native fibers. Argon plasma was found to induce the most optimal combination of surface functionality and roughness for cell expansion. Contact guided migration of cells and alignment of cell processes were observed on aligned fibers. Neuronal differentiation around 5% was found for all samples and was not significantly affected by the induced variations of surface functional group distribution or individual fiber topography. In this study the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell and rat postnatal neural stem cell (NSC) responses is studied with the goal of clarifying the potential effects of functional materials on stem cell behavior, a topic of substantial interest in tissue engineering and regenerative medicine. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Lipid-mediated protein functionalization of electrospun polycaprolactone fibers

    Directory of Open Access Journals (Sweden)

    C. Cohn

    2016-05-01

    Full Text Available In this study, electrospun polycaprolactone (PCL fibers are plasma-treated and chemically conjugated with cholesteryl succinyl silane (CSS. In addition to Raman spectroscopy, an immobilization study of DiO as a fluorescent probe of lipid membranes provides evidence supporting the CSS coating of plasma-treated PCL fibers. Further, anti-CD20 antibodies are used as a model protein to evaluate the potential of lipid-mediated protein immobilization as a mechanism to functionalize the CSS-PCL fiber scaffolds. Upon anti-CD20 functionalization, the CSS-PCL fiber scaffolds capture Granta-22 cells 2.4 times more than the PCL control does, although the two fiber scaffolds immobilize a comparable amount of anti-CD20. Taken together, results from the present study demonstrate that the CSS coating and CSS-mediated antibody immobilization offers an appealing strategy to functionalize electrospun synthetic polymer fibers and confer cell-specific functions on the fiber scaffolds, which can be mechanically robust but often lack biological functions.

  15. On the Adhesion performance of a single electrospun fiber

    Science.gov (United States)

    Baji, Avinash; Zhou, Limin; Mai, Yiu-Wing; Yang, Zhifang; Yao, Haimin

    2015-01-01

    The micro- and nano-scale fibrillar structures found on the feet of spiders and geckos function as adhesion devices which allow them to adhere to both molecularly smooth and rough surfaces. This adhesion has been argued to arise from intermolecular forces, such as van der Waals (vdW) force, acting at the interface between any two materials in contact. Thus, it is possible to mimic their adhesion using synthetic nanostructured analogs. Herein, we report the first successful pull-off force measurements on a single electrospun fiber and show the potential of using electrospinning to fabricate adhesive analogs. A single fiber is glued to the atomic force microscope cantilever, and its adhesion to a metal substrate is studied by recording the pull-off force/displacement curves. The measured adhesive force of ~18 nN matches closely that of their biological counterparts. Similar to natural structures, the adhesive mechanism of these electrospun structures is controlled by vdW interactions.

  16. Antibacterial effects of electrospun chitosan/poly(ethylene oxide) nanofibrous membranes loaded with chlorhexidine and silver

    NARCIS (Netherlands)

    Song, J.; Remmers, S.J.; Shao, J.; Kolwijck, E.; Walboomers, X.F.; Jansen, J.A.; Leeuwenburgh, S.C.; Yang, F.

    2016-01-01

    To prevent percutaneous device associated infections (PDAIs), we prepared electrospun chitosan/poly(ethylene oxide) (PEO) nanofibrous membrane containing silver nanoparticles as an implantable delivery vehicle for the dual release of chlorhexidine and silver ions. We observed that the silver

  17. Electrospun fish protein fibers as a biopolymer-based carrier – implications for oral protein delivery

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2014-01-01

    Purpose: Protein-based electrospun fibers have emerged as novel nanostructured materials for tissue engineering and drug delivery due to their unique structural characteristics, biocompatibility and biodegradability. The aim of this study was to explore the use of electrospun fibers based on fish...... sarcoplasmic proteins as an oral delivery platform for biopharmaceuticals, using insulin as a model protein. Methods: Fish sarcoplasmic proteins (FSP) were isolated from fresh cod and electrospun into nanomicrofibers using insulin as a model payload. The morphology of FSP fibers was characterized using...... differentiated Caco-2 cell monolayers was followed by RP-HPLC and ELISA, and the transepithelial electrical resistance (TEER) was measured before and after the experiment. Cell viability was assessed by the MTS/PMS assay. Results: Insulin was encapsulated in the electrospun FSP fibers with high efficiency, high...

  18. Rank Two Affine Manifolds in Genus 3

    OpenAIRE

    Aulicino, David; Nguyen, Duc-Manh

    2016-01-01

    We complete the classification of rank two affine manifolds in the moduli space of translation surfaces in genus three. Combined with a recent result of Mirzakhani and Wright, this completes the classification of higher rank affine manifolds in genus three.

  19. Alternative affinity tools: more attractive than antibodies?

    NARCIS (Netherlands)

    Ruigrok, V.J.B.; Levisson, M.; Eppink, M.H.M.; Smidt, H.; Oost, van der J.

    2011-01-01

    Antibodies are the most successful affinity tools used today, in both fundamental and applied research (diagnostics, purification and therapeutics). Nonetheless, antibodies do have their limitations, including high production costs and low stability. Alternative affinity tools based on nucleic acids

  20. Spectral affinity in protein networks.

    Science.gov (United States)

    Voevodski, Konstantin; Teng, Shang-Hua; Xia, Yu

    2009-11-29

    Protein-protein interaction (PPI) networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to quickly find nodes closest to a queried vertex in any protein

  1. Spectral affinity in protein networks

    Directory of Open Access Journals (Sweden)

    Teng Shang-Hua

    2009-11-01

    Full Text Available Abstract Background Protein-protein interaction (PPI networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. Results We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. Conclusion We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to

  2. Electrospun bioactive mats enriched with Ca-polyphosphate/retinol nanospheres as potential wound dressing

    OpenAIRE

    Müller, Werner E.G.; Tolba, Emad; Dorweiler, Bernhard; Schröder, Heinz C.; Diehl-Seifert, Bärbel; Wang, Xiaohong

    2015-01-01

    Background While electrospun materials have been frequently used in tissue engineering no wound dressings exist that significantly improved wound healing effectively. Methods We succeeded to fabricate three-dimensional (3D) electrospun poly(D,l-lactide) (PLA) fiber mats into which nanospheres, formed from amorphous calcium polyphosphate (polyP) nanoparticles (NP) and encapsulated retinol (“retinol/aCa-polyP-NS” nanospheres [NS]), had been incorporated. Results Experiments with MC3T3-E1 cells ...

  3. Lp-mixed affine surface area

    Science.gov (United States)

    Wang, Weidong; Leng, Gangsong

    2007-11-01

    According to the three notions of mixed affine surface area, Lp-affine surface area and Lp-mixed affine surface area proposed by Lutwak, in this article, we give the concept of ith Lp-mixed affine surface area such that the first and second notions of Lutwak are its special cases. Further, some Lutwak's results are extended associated with this concept. Besides, applying this concept, we establish an inequality for the volumes and dual quermassintegrals of a class of star bodies.

  4. Manifolds with integrable affine shape operator

    Directory of Open Access Journals (Sweden)

    Daniel A. Joaquín

    2005-05-01

    Full Text Available This work establishes the conditions for the existence of vector fields with the property that theirs covariant derivative, with respect to the affine normal connection, be the affine shape operatorS in hypersurfaces. Some results are obtained from this property and, in particular, for some kind of affine decomposable hypersurfaces we explicitely get the actual vector fields.

  5. Affinity Spaces and 21st Century Learning

    Science.gov (United States)

    Gee, James Paul

    2017-01-01

    This article discusses video games as "attractors" to "affinity spaces." It argues that affinity spaces are key sites today where people teach and learn 21st Century skills. While affinity spaces are proliferating on the Internet as interest-and-passion-driven sites devoted to a common set of endeavors, they are not new, just…

  6. Using Affinity Diagrams to Evaluate Interactive Prototypes

    DEFF Research Database (Denmark)

    Lucero, Andrés

    2015-01-01

    our particular use of affinity diagramming in prototype evaluations. We reflect on a decade’s experience using affinity diagramming across a number of projects, both in industry and academia. Our affinity diagramming process in interaction design has been tailored and consists of four stages: creating...

  7. Resorbable electrospun polydioxanone fibres modify the behaviour of cells from both healthy and diseased human tendons

    Directory of Open Access Journals (Sweden)

    A Kendal

    2017-02-01

    Full Text Available Chronic tendinopathy in an active and ageing population represents an increasing burden to healthcare systems. Rotator cuff tendinopathy alone accounts for approximately 70 % of all shoulder pain. Tendinopathic tissue has a disorganised extracellular matrix, altered vasculature, and infiltration of fibroblasts and inflammatory cells. This altered biology may contribute to the limited success of surgical repair strategies. Electrospun resorbable scaffolds can potentially enhance endogenous repair mechanisms by influencing the tissue microenvironment. Polydioxanone (PDO has an established safety profile in patients. We compared the response of healthy and diseased human tendon cells to electrospun PDO fibres using live cell imaging, proliferation, flow cytometry, and gene expression studies. Within 4 h of initial contact with electrospun PDO, healthy tendon cells underwent a marked transformation; elongating along the fibres in a fibre density dependent manner. Diseased tendon cells initially responded at a slower rate, but ultimately underwent a similar morphological change. Electrospun fibres increased the proliferation rate of diseased tendon cells and increased the ratio of type I:IIIcollagenmRNA expression. Flow cytometry revealed decreased expression of CD106, a marker of mesenchymal stem cells, and increased expression of CD10 on healthy versus diseased tendon cells. PDO electrospun scaffolds further promoted CD106negCD10pos expression of healthy tendon cells. Despite their behavioural differences, both healthy and diseased human tendon cells responded to electrospun PDO fibres. This encourages further work establishing their efficacy in augmenting surgical repair of diseased tendons.

  8. Utilizing NaCl to increase the porosity of electrospun materials

    International Nuclear Information System (INIS)

    Wright, L.D.; Andric, T.; Freeman, J.W.

    2011-01-01

    Electrospinning has emerged as a popular method for creating scaffolding materials used in tissue engineering applications to repair or replace damaged tissues. To become a viable scaffold material, however, pore sizes in electrospun materials must be increased to improve cell infiltration. Deposition of NaCl crystals during electrospinning was utilized to help overcome this obstacle. The NaCl crystals are released above the rotating collection mandrel and become incorporated into the poly(L-lactide) electrospun material. The NaCl then leaches out of the electrospun material creating larger pores: average pore diameter of 48.7 μm for PLLA-NaCl electrospinning versus 5.5 μm for PLLA alone electrospinning. Electrospun PLLA scaffolds with NaCl pores have a lower elastic modulus (8.05 MPa) and yield stress (349 kPa) and a higher yield strain (0.04) compared to their traditional counterparts (40.36 MPa, 676 kPa, and 0.0188). Decreased elastic modulus and yield stress would be beneficial to tissue engineering of elastic tissues including skin. The presence of NaCl pores did not significantly affect the cellular proliferation of MC3T3 cells but did allow for cell infiltration into the electrospun material. Therefore, the creation of large pores through NaCl leaching can significantly improve the performance of electrospun materials for tissue engineering applications by improving cellular infiltration.

  9. Morphological and mechanical analysis of electrospun shape memory polymer fibers

    Energy Technology Data Exchange (ETDEWEB)

    Budun, Sinem [Institute of Pure and Applied Science, Marmara University, 34722 Istanbul (Turkey); İşgören, Erkan [Textile Technology, Technical Education Faculty, Marmara University, 34722 Istanbul (Turkey); Erdem, Ramazan, E-mail: ramazanerdem@akdeniz.edu.tr [Textile Technologies, Serik G-S. Sural Vocational School of Higher Education, Akdeniz University, 07500 Antalya (Turkey); Yüksek, Metin [Textile Engineering, Technology Faculty, Marmara University, 34722 Istanbul (Turkey)

    2016-09-01

    Highlights: • Fiber morphology of PU based shape memory fibers varied especially with polymer concentration and applied voltage. • The smallest diameter (381 ± 165 nm) and almost uniform (without bead) fibers were belonged to the sample Y10K30 with a feeding rate of 1 ml/h and an applied voltage of 30 kV at 24.5 cm distance. • All calculated shape fixity results were above 80% and the best value (92 ± 4%) was obtained for Y10K30. • All gained shape recovery results were determined above 100% and the highest measurement (130 ± 4%) was belonged to Y15K39. • The greatest tensile property was obtained for Y10K30 (14.7 ± 3.2 MPa) in machine direction and for Y10K39 (12.9 ± 0.8 MPa) in transverse direction. Y15K39 (411 ± 24%) and Y20K30 (402 ± 34%) possessed the highest elongation results compared with the other electrospun webs. - Abstract: Shape memory block co-polymer Polyurethane (PU) fibers were fabricated by electrospinning technique. Four different solution concentrations (5 wt.%, 10 wt.%, 15 wt.% and 20 wt.%) were prepared by using Tetrahydrofuran (THF)/N,N-dimethylformamide (DMF) (50:50, v/v) as solvents, and three different voltages (30 kV, 35 kV and 38.9 kV) were determined for the electrospinning process. Solution properties were explored in terms of viscosity and electrical conductivity. It was observed that as the polymer concentration increased in the solution, the conductivity declined. Morphological characteristics of the obtained fibers were analyzed through Scanning Electron Microscopy (SEM) measurements. Findings indicated that fiber morphology varied especially with polymer concentration and applied voltage. Obtained fiber diameter ranged from 112 ± 34 nm to 2046 ± 654 nm, respectively. DSC analysis presented that chain orientation of the polymer increased after electrospinning process. Shape fixity and shape recovery calculations were realized. The best shape fixity value (92 ± 4%) was obtained for Y10K30 and the highest shape

  10. The effect of poly (lactic-co-glycolic) acid composition on the mechanical properties of electrospun fibrous mats.

    Science.gov (United States)

    Liu, X; Aho, J; Baldursdottir, S; Bohr, A; Qu, H; Christensen, L P; Rantanen, J; Yang, M

    2017-08-30

    The aim of this study was to investigate the influence of polymer molecular structure on the electrospinnability and mechanical properties of electrospun fibrous mats (EFMs). Polymers with similar molecular weight but different composition ratios (lactic acid (LA) and glycolic acid (GA)) were dissolved in binary mixtures of N,N-dimethylformamide (DMF) and tetrahydrofuran (THF). The intrinsic viscosity and rheological properties of polymer solutions were investigated prior to electrospinning. The morphology and mechanical properties of the resulting EFMs were characterized by scanning electron microscope (SEM) and dynamic mechanical analysis (DMA). Sufficiently high inter-molecular interactions were found to be a prerequisite to ensure the formation of fibers in the electrospinning process, regardless the polymer composition. The higher the amount of GA in the polymer composition, the more ordered and entangled molecules were formed after electrospinning from the solution in THF-DMF, which resulted in higher Young's modulus and tensile strength of the EFMs. In conclusion, this study shows that the mechanical properties of EFMs, which depend on the polymer molecule-solvent affinity, can be predicted by the inter-molecular interactions in the starting polymer solutions and over the drying process of electrospinning. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The affine quantum gravity programme

    International Nuclear Information System (INIS)

    Klauder, John R

    2002-01-01

    The central principle of affine quantum gravity is securing and maintaining the strict positivity of the matrix { g-hat ab (x)} composed of the spatial components of the local metric operator. On spectral grounds, canonical commutation relations are incompatible with this principle, and they must be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the recently developed projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational operator constraints is formulated quite naturally by means of a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. It is anticipated that skills and insight to study this formulation can be developed by studying special, reduced-variable models that still retain some basic characteristics of gravity, specifically a partial second-class constraint operator structure. Although perturbatively nonrenormalizable, gravity may possibly be understood nonperturbatively from a hard-core perspective that has proved valuable for specialized models. Finally, developing a procedure to pass to the genuine physical Hilbert space involves several interconnected steps that require careful coordination

  12. Affine-projective field laws

    International Nuclear Information System (INIS)

    Murphy, G.L.

    1975-01-01

    The general topic of geometric unified field theories is discussed in the first section. Some reasons are given for pursuing such theories, and some criticisms are considered. The second section develops the fundamental equations of a purely affine theory which is invariant under projective transformations of the affine connection. This theory is a generalization of that of Schrodinger. Possible identifications for the space-time metric are considered in Sec. III. Sections IV and V deal with the limits of pure gravitation and electrodynamics. In the symmetric limit, Einstein's vacuum equations with cosmological term are recovered. The theory also contains a generalized electrodynamic set of equations which is very similar to the Born-Infeld set. In the weak-field approximation, a finite mass must be attributed to the photon. The problem of motion for charges is discussed here, and it is argued that criticisms of unified field theories because of a supposed inability to produce the Lorentz force law are probably not justified. Three more speculative sections deal with possible explanations of nuclear forces, the spin-torsion relation, and particle structure

  13. The quintuple-shape memory effect in electrospun nanofiber membranes

    Science.gov (United States)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong

    2013-08-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.

  14. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    International Nuclear Information System (INIS)

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Satyanarayana, N.; Venkateswarlu, M.

    2014-01-01

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl 2 O 4 )] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF 6 in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl 2 O 4 exhibits high ionic conductivity of 2.80 × 10 −3 S/cm at room temperature. The charge-discharge capacity of Li/LiCoO 2 coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl 2 O 4 ] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator

  15. Quasi one dimensional transport in individual electrospun composite nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Avnon, A., E-mail: avnon@phys.fu-berlin.de; Datsyuk, V.; Trotsenko, S. [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Wang, B.; Zhou, S. [Research Center of Microperipheric Technologies, Technische Universität Berlin, TiB4/2-1, Gustav-Meyer-Allee 25, 13355 Berlin (Germany); Grabbert, N.; Ngo, H.-D. [Microsystem Engineering (FB I), University of Applied Sciences, Wilhelminenhofstr. 74 (C 525), 12459 Berlin (Germany)

    2014-01-15

    We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, we calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube α{sub bulk} ∼ 0.06 which agrees with theoretical predictions.

  16. Electrospun composites of PHBV/pearl powder for bone repairing

    Directory of Open Access Journals (Sweden)

    Jingjing Bai

    2015-08-01

    Full Text Available Electrospun fiber has highly structural similarity with natural bone extracelluar matrix (ECM. Many researches about fabricating organic–inorganic composite materials have been carried out in order to mimic the natural composition of bone and enhance the biocompatibility of materials. In this work, pearl powder was added to the poly (3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV and the composite nanofiber scaffold was prepared by electrospinning. Mineralization ability of the composite scaffolds can be evaluated by analyzing hydroxyapatite (HA formation on the surface of nanofiber scaffolds. The obtained composite nanofiber scaffolds showed an enhanced mineralization capacity due to incorporation of pearl powder. The HA formed amount of the composite scaffolds was raised as the increase of pearl powder in composite scaffolds. Therefore, the prepared PHBV/pearl composite nanofiber scaffolds would be a promising candidate as an osteoconductive composite material for bone repairing.

  17. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Gorzelanny, Christian; Halter, Natalia

    2016-01-01

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248 +/- 94 nm to 600 +/- 201 nm, depending on the amount of phospholipids...... used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7 days in Phosphate Buffer...... culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system....

  18. Electrospun nanofibers: New generation materials for advanced applications

    Energy Technology Data Exchange (ETDEWEB)

    Thenmozhi, S. [Inorganic & Nanomaterials Research Laboratory, Department of Chemistry, Bharathiar University, Coimbatore 641 046 (India); DRDO-BU CLS, Bharathiar University Campus, Coimbatore 641 046 (India); Dharmaraj, N., E-mail: dharmaraj@buc.edu.in [Inorganic & Nanomaterials Research Laboratory, Department of Chemistry, Bharathiar University, Coimbatore 641 046 (India); Kadirvelu, K. [DRDO-BU CLS, Bharathiar University Campus, Coimbatore 641 046 (India); Kim, Hak Yong [Department of Textile Engineering, Chonbuk National University, Chonju 561-756 (Korea, Republic of)

    2017-03-15

    Highlights: • A review covering important aspects of electrospinning technique is presented. • Applications of nanofibers in various fields are reviewed. • Possibility to up-scale electrospinning technique to industry also included. - Abstract: Electrospinning (E-spin) is a unique technique to fabricate polymeric as well as metal oxide nanofibers. Research on electrospun nanofibers is a very active field in material science owing to their novel applications in diverse domains. The main focus of this review is to provide an insight into E-spin technique by understanding the working principle, influencing parameters and applications of nanofibers in different walks of life. Several hundreds of papers are published on the preparation, modification and applications of nanofibers produced by E-spin technique in the areas like sensor development, decontamination, energy storage, biomedical and catalysis etc. Details on the industrial scale development of E-spin technique, current scenario and future developments are also covered in this review.

  19. Encapsulation of bacteria and viruses in electrospun nanofibres

    International Nuclear Information System (INIS)

    Salalha, W; Kuhn, J; Dror, Y; Zussman, E

    2006-01-01

    Bacteria and viruses were encapsulated in electrospun polymer nanofibres. The bacteria and viruses were suspended in a solution of poly(vinyl alcohol) (PVA) in water and subjected to an electrostatic field of the order of 1 kV cm -1 . Encapsulated bacteria in this work (Escherichia coli, Staphylococcus albus) and bacterial viruses (T7, T4, λ) managed to survive the electrospinning process while maintaining their viability at fairly high levels. Subsequently the bacteria and viruses remain viable during three months at -20 and -55 deg. C without a further decrease in number. The present results demonstrate the potential of the electrospinning process for the encapsulation and immobilization of living biological material

  20. Oxidative stability of pullulan electrospun fibers containing fish oil

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Damberg, Cecilie; Chronakis, Ioannis S.

    2017-01-01

    The effect of oil content and addition of natural antioxidants on the morphology and oxidative stability of pullulan ultra-thin fibers loaded with fish oil and obtained by electrospinning was investigated. Pullulan sub-micron fibers containing 10 and 30wt% fish oil were prepared and both presented...... into food matrices. These results show the feasibility to encapsulate fish oil in pullulan ultra-thin fibers and to improve their oxidative stability by adding natural antioxidants such as δ-tocopherol and rosemary extract. Therefore, this study might open up new opportunities for further technological...... development in the production of omega-3 nanodelivery systems, which have potential applications in different types of fortified foods. Encapsulation of fish oil in electrospun pullulan fibers stabilized by natural antioxidants....

  1. The quintuple-shape memory effect in electrospun nanofiber membranes

    International Nuclear Information System (INIS)

    Zhang, Fenghua; Zhang, Zhichun; Lu, Haibao; Leng, Jinsong; Liu, Yanju

    2013-01-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future. (paper)

  2. Electrospun fiber surface nanotopography influences astrocyte-mediated neurite outgrowth.

    Science.gov (United States)

    Johnson, Christopher D; D'Amato, Anthony R; Puhl, Devan L; Wich, Douglas M; Vespermann, Amanda; Gilbert, Ryan J

    2018-05-15

    Aligned, electrospun fiber scaffolds provide topographical guidance for regenerating neurons and glia after central nervous system injury. To date, no study has explored how fiber surface nanotopography affects astrocyte response to fibrous scaffolds. Astrocytes play important roles in the glial scar, the blood brain barrier, and in maintaining homeostasis in the central nervous system. In this study, electrospun poly L-lactic acid fibers were engineered with smooth, pitted, or divoted surface nanotopography. Cortical or spinal cord primary rat astrocytes were cultured on the surfaces for either 1 or 3 days to examine the astrocyte response over time. The results showed that cortical astrocytes were significantly shorter and broader on the pitted and divoted fibers compared to those on smooth fibers. However, spinal cord astrocyte morphology was not significantly altered by the surface features. These findings indicate that astrocytes from unique anatomical locations respond differently to the presence of nanotopography. Western Blot results show that the differences in morphology were not associated with significant changes in GFAP or vinculin in either astrocyte population, suggesting that surface pits and divots do not induce a reactive phenotype in either cortical or spinal cord astrocytes. Finally, astrocytes were co-cultured with dorsal root ganglia to determine how the surfaces affected astrocyte-mediated neurite outgrowth. Astrocytes cultured on the fibers for shorter periods of time (1 day) generally supported longer neurite outgrowth. Pitted and divoted fibers restricted spinal cord astrocyte-mediated neurite outgrowth, while smooth fibers increased 3 day spinal cord astrocyte-mediated neurite outgrowth. In total, fiber surface nanotopography can influence astrocyte elongation and influence the capability of astrocytes to direct neurites. Therefore, fiber surface characteristics should be carefully controlled to optimize astrocyte-mediated axonal

  3. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers

    International Nuclear Information System (INIS)

    Quirós, Jennifer; Borges, João P.; Boltes, Karina; Rodea-Palomares, Ismael; Rosal, Roberto

    2015-01-01

    Highlights: • Electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc. • Antimicrobial effect for the bacteria Staphylococcus aureus and Escherichia coli. • Silver strongly reduced colony forming units and bacterial viability. • Silver, copper, and zinc led to a significant increase of non-viable cells on mats. - Abstract: The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals.

  4. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds

    International Nuclear Information System (INIS)

    Gomes, S.R.; Rodrigues, G.; Martins, G.G.; Henriques, C.M.R.; Silva, J.C.

    2013-01-01

    Gelatin from cold water fish skin was electrospun, crosslinked and investigated as a substrate for the adhesion and proliferation of cells. Gelatin was first dissolved in either water or concentrated acetic acid and both solutions were successfully electrospun. Cross-linking was achieved via three different routes: glutaraldehyde vapor, genipin and dehydrothermal treatment. Solution's properties (surface tension, electrical conductivity and viscosity) and scaffold's properties (chemical bonds, weight loss and fiber diameters) were measured. Cellular viability was analyzed culturing 3T3 fibroblasts plated on the scaffolds and grown up to 7 days. The cells were fixed and observed with SEM or stained for DNA and F-actin and observed with confocal microscopy. In all scaffolds, the cells attached and spread with varying degrees. The evaluation of cell viability showed proliferation of cells until confluence in scaffolds crosslinked by glutaraldehyde and genipin; however the rate of growth in genipin crosslinked scaffolds was slow, recovering only by day five. The results using the dehydrothermal treatment were the less satisfactory. Our results show that glutaraldehyde treated fish gelatin is the most suitable substrate, of the three studied, for fibroblast adhesion and proliferation. - Highlights: ► Electrospinning of fish gelatin dissolved in both water or concentrated acetic acid ► Glutaraldehyde, genipin and dehydrothermal treatment effectively crosslink the fish gelatin fibers ► Fibroblasts effectively adhere to and propagate on all scaffolds ► Cell population is highest for glutaraldehyde crosslinked scaffolds ► Cells exhibit more filopodia and stress fibers on glutaraldehyde crosslinked scaffolds

  5. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, S.R. [Centro de Física e Investigação Tecnológica / Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Rodrigues, G.; Martins, G.G. [Centro de Biologia Ambiental / Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, FCUL, 1749-016 Campo Grande, Lisboa (Portugal); Henriques, C.M.R. [Centro de Física e Investigação Tecnológica / Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Silva, J.C., E-mail: jcs@fct.unl.pt [Centro de Física e Investigação Tecnológica / Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2013-04-01

    Gelatin from cold water fish skin was electrospun, crosslinked and investigated as a substrate for the adhesion and proliferation of cells. Gelatin was first dissolved in either water or concentrated acetic acid and both solutions were successfully electrospun. Cross-linking was achieved via three different routes: glutaraldehyde vapor, genipin and dehydrothermal treatment. Solution's properties (surface tension, electrical conductivity and viscosity) and scaffold's properties (chemical bonds, weight loss and fiber diameters) were measured. Cellular viability was analyzed culturing 3T3 fibroblasts plated on the scaffolds and grown up to 7 days. The cells were fixed and observed with SEM or stained for DNA and F-actin and observed with confocal microscopy. In all scaffolds, the cells attached and spread with varying degrees. The evaluation of cell viability showed proliferation of cells until confluence in scaffolds crosslinked by glutaraldehyde and genipin; however the rate of growth in genipin crosslinked scaffolds was slow, recovering only by day five. The results using the dehydrothermal treatment were the less satisfactory. Our results show that glutaraldehyde treated fish gelatin is the most suitable substrate, of the three studied, for fibroblast adhesion and proliferation. - Highlights: ► Electrospinning of fish gelatin dissolved in both water or concentrated acetic acid ► Glutaraldehyde, genipin and dehydrothermal treatment effectively crosslink the fish gelatin fibers ► Fibroblasts effectively adhere to and propagate on all scaffolds ► Cell population is highest for glutaraldehyde crosslinked scaffolds ► Cells exhibit more filopodia and stress fibers on glutaraldehyde crosslinked scaffolds.

  6. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Quirós, Jennifer [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Borges, João P. [CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Boltes, Karina [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares, Madrid (Spain); Rodea-Palomares, Ismael [Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Rosal, Roberto [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares, Madrid (Spain)

    2015-12-15

    Highlights: • Electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc. • Antimicrobial effect for the bacteria Staphylococcus aureus and Escherichia coli. • Silver strongly reduced colony forming units and bacterial viability. • Silver, copper, and zinc led to a significant increase of non-viable cells on mats. - Abstract: The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals.

  7. Microporous dermal-like electrospun scaffolds promote accelerated skin regeneration.

    Science.gov (United States)

    Bonvallet, Paul P; Culpepper, Bonnie K; Bain, Jennifer L; Schultz, Matthew J; Thomas, Steven J; Bellis, Susan L

    2014-09-01

    The goal of this study was to synthesize skin substitutes that blend native extracellular matrix (ECM) molecules with synthetic polymers which have favorable mechanical properties. To this end, scaffolds were electrospun from collagen I (col) and poly(ɛ-caprolactone) (PCL), and then pores were introduced mechanically to promote fibroblast infiltration, and subsequent filling of the pores with ECM. A 70:30 col/PCL ratio was determined to provide optimal support for dermal fibroblast growth, and a pore diameter, 160 μm, was identified that enabled fibroblasts to infiltrate and fill pores with native matrix molecules, including fibronectin and collagen I. Mechanical testing of 70:30 col/PCL scaffolds with 160 μm pores revealed a tensile strength of 1.4 MPa, and the scaffolds also exhibited a low rate of contraction (pores. Keratinocytes formed a stratified layer on the surface of fibroblast-remodeled scaffolds, and staining for cytokeratin 10 revealed terminally differentiated keratinocytes at the apical surface. When implanted, 70:30 col/PCL scaffolds degraded within 3-4 weeks, an optimal time frame for degradation in vivo. Finally, 70:30 col/PCL scaffolds with or without 160 μm pores were implanted into full-thickness critical-sized skin defects. Relative to nonporous scaffolds or sham wounds, scaffolds with 160 μm pores induced accelerated wound closure, and stimulated regeneration of healthy dermal tissue, evidenced by a more normal-appearing matrix architecture, blood vessel in-growth, and hair follicle development. Collectively, these results suggest that microporous electrospun scaffolds are effective substrates for skin regeneration.

  8. Micro-structure, Mechanical Properties and Dielectric Properties of Bisphenol A Allyl Compound-Bismaleimide Modified by Super-Critical Silica and Polyethersulfone Composite

    Science.gov (United States)

    Chen, Yufei; Wang, Botao; Li, Fangliang; Teng, Chengjun

    2017-07-01

    Bisphenol A allyl compound-bismaleimide (MBAE) composite modified by SCE-SiO2 and polyethersulfone (PES) resin has been prepared and researched. SCE-SiO2 was modified by super-critical ethanol and PES thermoplastic resin used as modifiers. The composite was prepared via the hot melting method. The FT-IR measurements indicated that ethanol molecular had adsorbed on the nano-SiO2 surface. SEM images showed that the composite had a multiphase structure, PES and SCE-SiO2 existed as a dispersed phase, and the interaction of the three phases affected each other, such that the bending fracture behavior transformed from brittle fracture to ductile fracture, and the modifiers of SCE-SiO2 and PES resin could improve the mechanical properties. The impact and the bending strength of the composite was 16.5 kJ/mm2 and 150.4 MPa, improved by 68.3% and 56.7% compared with those of the MBAE matrix, respectively, when the content of SCE-SiO2 was 2 wt.% and PES 5 wt.%. The dielectric constant ( ɛ) of the composites was less than 3.9 and decreased with increasing frequency, and the dielectric loss was less than 9 × 10-3 for frequencies between 102 Hz and 105 Hz. These properties could meet the requirement of insulating material.

  9. Transparent SiON/Ag/SiON multilayer passivation grown on a flexible polyethersulfone substrate using a continuous roll-to-roll sputtering system

    Science.gov (United States)

    2012-01-01

    We have investigated the characteristics of a silicon oxynitride/silver/silicon oxynitride [SiON/Ag/SiON] multilayer passivation grown using a specially designed roll-to-roll [R2R] sputtering system on a flexible polyethersulfone substrate. Optical, structural, and surface properties of the R2R grown SiON/Ag/SiON multilayer were investigated as a function of the SiON thickness at a constant Ag thickness of 12 nm. The flexible SiON/Ag/SiON multilayer has a high optical transmittance of 87.7% at optimized conditions due to the antireflection and surface plasmon effects in the oxide-metal-oxide structure. The water vapor transmission rate of the SiON/Ag/SiON multilayer is 0.031 g/m2 day at an optimized SiON thickness of 110 nm. This indicates that R2R grown SiON/Ag/SiON is a promising thin-film passivation for flexible organic light-emitting diodes and flexible organic photovoltaics due to its simple and low-temperature process. PMID:22221400

  10. Integrating seawater desalination and wastewater reclamation forward osmosis process using thin-film composite mixed matrix membrane with functionalized carbon nanotube blended polyethersulfone support layer.

    Science.gov (United States)

    Choi, Hyeon-Gyu; Son, Moon; Choi, Heechul

    2017-10-01

    Thin-film composite mixed matrix membrane (TFC MMM) with functionalized carbon nanotube (fCNT) blended in polyethersulfone (PES) support layer was synthesized via interfacial polymerization and phase inversion. This membrane was firstly tested in lab-scale integrating seawater desalination and wastewater reclamation forward osmosis (FO) process. Water flux of TFC MMM was increased by 72% compared to that of TFC membrane due to enhanced hydrophilicity. Although TFC MMM showed lower water flux than TFC commercial membrane, enhanced reverse salt flux selectivity (RSFS) of TFC MMM was observed compared to TFC membrane (15% higher) and TFC commercial membrane (4% higher), representing membrane permselectivity. Under effluent organic matter (EfOM) fouling test, 16% less normalized flux decline of TFC MMM was observed compared to TFC membrane. There was 8% less decline of TFC MMM compared to TFC commercial membrane due to fCNT effect on repulsive foulant-membrane interaction enhancement, caused by negatively charged membrane surface. After 10 min physical cleaning, TFC MMM displayed higher recovered normalized flux than TFC membrane (6%) and TFC commercial membrane (4%); this was also supported by visualized characterization of fouling layer. This study presents application of TFC MMM to integrated seawater desalination and wastewater reclamation FO process for the first time. It can be concluded that EfOM fouling of TFC MMM was suppressed due to repulsive foulant-membrane interaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Structural and optical properties of ZnO nanostructures electrochemically synthesized on AZO/Ag/AZO-multilayer-film-coated polyethersulfone substrates

    International Nuclear Information System (INIS)

    Oh, Dohyun; Yoo, Chanho; No, Youngsoo; Kim, Suyoun; Kim, Taewhan; Cho, Woonjo; Kim, Jinyoung

    2012-01-01

    ZnO nanostructures were formed on Al-doped ZnO (AZO)/Ag/AZO-multilayer-film-coated flexible polyethersulfone (PES) substrates at low temperature by using an electrochemical deposition method. The resistivity of the AZO/Ag/AZO multilayer films decreased with increasing thickness of the Ag film. X-ray diffraction patterns for the ZnO nanostructures showed that the crystal structure of the ZnO was hexagonal wurtzite and that the orientation was along the c-axis perpendicular to the substrate. Scanning electron microscopy images showed that the ZnO nanostructures grown at current densities of - 1.0 and - 1.5 mA/cm 2 were ZnO nanorods with diameters of 150 nm and ZnO nanoflowers with a planar dimension, respectively. Photoluminescence spectra showed that the band-edge emission peak of the ZnO nanostructures dominantly appeared in the ultraviolet region. These results showed that ZnO nanorods and nanoflowers with high quality were synthesized on AZO/Ag/AZO-multilayer-film-coated PES substrates.

  12. The effect of non-contact heating (microwave irradiation) and contact heating (annealing process) on properties and performance of polyethersulfone nanofiltration membranes

    International Nuclear Information System (INIS)

    Mansourpanah, Y.; Madaeni, S.S.; Rahimpour, A.; Farhadian, A.

    2009-01-01

    In this work the effect of microwave irradiation on morphology and performance of polyethersulfone (PES) membranes was investigated. The membranes were prepared with 20 wt.% of PES by phase inversion method. N,N-dimethylformamide (DMF) and mixture of water and ethyl alcohol (90/10 vol.%) were employed as solvent and coagulant respectively. Polyvinylpirrolidone (PVP) with the concentration of 2 wt.% was selected as pore former. The effects of irradiation time (10, 30, 60, 90, 120 s) and microwave power (180, 360, 720 and 900 W) on structure and performance of membranes were studied. Increasing the irradiation time and power caused variation in permeate flux and ion rejection. Moreover, the effects of annealing processes (60, 70, 80 deg. C) were studied. Transmembrane pressure was selected around 1.5 MPa for all experiments. Scanning electron microscope (SEM) and atomic force microscope (AFM) were employed to describe the surface morphology of the prepared membranes. The effect of microwave irradiation time in different power revealed alterations in membrane surface morphology and AFM images represented that surface parameters (such as surface roughness) have been changed. The membrane exhibited moderate rejection (47%) and low permeate flux (4.5 kg/m 2 h) at 80 deg. C for NaCl solution. The SEM images indicate that the dense skin layer is formed at 80 deg. C annealing.

  13. Flexible indium zinc oxide/Ag/indium zinc oxide multilayer electrode grown on polyethersulfone substrate by cost-efficient roll-to-roll sputtering for flexible organic photovoltaics

    International Nuclear Information System (INIS)

    Park, Yong-Seok; Kim, Han-Ki

    2010-01-01

    The authors describe the preparation and characteristics of flexible indium zinc oxide (IZO)-Ag-IZO multilayer electrodes grown on flexible polyethersulfone (PES) substrates using a roll-to-roll sputtering system for use in flexible organic photovoltaics. By the continuous roll-to-roll sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, they were able to fabricate a high quality IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ε/square, optical transmittance of 87.4%, and figure of merit value of 42.03x10 -3 Ω -1 on the PES substrate. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the roll-to-roll sputter grown single ITO electrode due to the existence of a ductile Ag layer between the IZO layers and stable amorphous structure of the IZO film. Furthermore, the flexible organic solar cells (OSCs) fabricated on the roll-to-roll sputter grown IZO-Ag-IZO electrode showed higher power efficiency (3.51%) than the OSCs fabricated on the roll-to-roll sputter grown single ITO electrode (2.67%).

  14. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation

    KAUST Repository

    Cheng, Zhen Lei; Li, Xue; Liu, Ying Da; Chung, Neal Tai-Shung

    2016-01-01

    This study reports outer-selective thin-film composite (TFC) hollow fiber membranes with extremely low reverse salt fluxes and robustness for harvesting salinity-gradient energy from pressure retarded osmosis (PRO) processes. Almost defect-free polyamide layers with impressive low salt permeabilities were synthesized on top of robust polyethersulfone porous supports. The newly developed TFC-II membrane shows a maximum power density of 7.81 W m−2 using 1 M NaCl and DI water as feeds at 20 bar. Reproducible data obtained in the 2nd and 3rd runs confirm its stability under high hydraulic pressure differences. Comparing to other PRO membranes reported in the literature, the newly developed membrane exhibits not only the smallest slope between water flux decline and ΔPΔP increase but also the lowest ratio of reverse salt flux to water flux. Thus, the effective osmotic driving force could be well maintained even under high pressure operations. For the first time, the effect of feed pressure buildup induced by feed flowrate was evaluated towards PRO performance. A slight increment in feed pressure buildup was found to be beneficial to water flux and power density up to 10.06 W m−2 without comprising the reverse salt flux. We believe this study may open up new perspectives on outer-selective PRO hollow fiber membranes and provide useful insights to understand and design next-generation outer-selective TFC hollow fiber membranes for osmotic power generation.

  15. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation

    KAUST Repository

    Cheng, Zhen Lei

    2016-01-08

    This study reports outer-selective thin-film composite (TFC) hollow fiber membranes with extremely low reverse salt fluxes and robustness for harvesting salinity-gradient energy from pressure retarded osmosis (PRO) processes. Almost defect-free polyamide layers with impressive low salt permeabilities were synthesized on top of robust polyethersulfone porous supports. The newly developed TFC-II membrane shows a maximum power density of 7.81 W m−2 using 1 M NaCl and DI water as feeds at 20 bar. Reproducible data obtained in the 2nd and 3rd runs confirm its stability under high hydraulic pressure differences. Comparing to other PRO membranes reported in the literature, the newly developed membrane exhibits not only the smallest slope between water flux decline and ΔPΔP increase but also the lowest ratio of reverse salt flux to water flux. Thus, the effective osmotic driving force could be well maintained even under high pressure operations. For the first time, the effect of feed pressure buildup induced by feed flowrate was evaluated towards PRO performance. A slight increment in feed pressure buildup was found to be beneficial to water flux and power density up to 10.06 W m−2 without comprising the reverse salt flux. We believe this study may open up new perspectives on outer-selective PRO hollow fiber membranes and provide useful insights to understand and design next-generation outer-selective TFC hollow fiber membranes for osmotic power generation.

  16. Fouling behavior of poly(ether)sulfone ultrafiltration membrane during concentration of whey proteins: Effect of hydrophilic modification using atmospheric pressure argon jet plasma.

    Science.gov (United States)

    Damar Huner, Irem; Gulec, Haci Ali

    2017-12-01

    The aim of the study was to investigate the effects of hydrophilic surface modification via atmospheric pressure jet plasma (ApJPls) on the fouling propensity of polyethersulfone (PES) ultrafiltration (UF) membranes during concentration of whey proteins. The distance from nozzle to substrate surface of 30mm and the exposure period of 5 times were determined as the most effective parameters enabling an increase in ΔG iwi value of the plain membrane from (-) 14.92±0.89mJ/m 2 to (+) 17.57±0.67mJ/m 2 . Maximum hydrophilicity and minimum surface roughness achieved by argon plasma action resulted in better antifouling behavior, while the hydraulic permeability and the initial permeate flux were decreased sharply due to the plasma-induced surface cross-linking. A quite steady state flux was obtained throughout the UF with the ApJPls modified PES membrane. The contribution of R frev to R t , which was 94% for the UF through the plain membrane, decreased to 43% after the plasma treatment. The overall results of this study highlighted the ApJPls modification decreased the fouling propensity of PES membrane without affecting the original protein rejection capability and improved the recovery of initial permeate flux after chemical cleaning. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Antisymmetric tensor generalizations of affine vector fields.

    Science.gov (United States)

    Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro

    2016-02-01

    Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank- p antisymmetric affine tensor fields in n -dimensions is bounded by ( n + 1)!/ p !( n - p )!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.

  18. Coating of hydrophobins on three-dimensional electrospun poly(lactic-co-glycolic acid) scaffolds for cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Hou Sen; Li Xinxin; Li Xiaoyu; Feng Xizeng, E-mail: xzfeng@nankai.edu.c [College of Life Science, Nankai University, Weijin Road 94, Tianjin, 300071 (China)

    2009-09-15

    Surface modification with hydrophobins is very important for cell adhesion in its applications in biosensor fabrication. In this study, we modified the surface of three-dimensional electrospun poly(lactide-co-glycolide) (PLGA) scaffolds with hydrophobin HFBI and collagen, and investigated its applications for cell adhesion. We found that HFBI could not only improve the hydrophilicity of the three-dimensional electrospun PLGA scaffolds but also endow the electrospun PLGA scaffolds with water permeability. This permeability should be attributed to both the hydrophilicity of the modified PLGA surface and the large positive capillary effect induced by the microstructures. Further experiment indicated that HFBI modification could improve collagen immobilization on the electrospun PLGA scaffolds and the HFBI/collagen modified electrospun PLGA scaffolds showed higher efficiency in promoting cell adhesion than the native PLGA scaffolds. This finding should be of potential application in biosensor device fabrication.

  19. Affine LIBOR Models with Multiple Curves

    DEFF Research Database (Denmark)

    Grbac, Zorana; Papapantoleon, Antonis; Schoenmakers, John

    2015-01-01

    are specified following the methodology of the affine LIBOR models and are driven by the wide and flexible class of affine processes. The affine property is preserved under forward measures, which allows us to derive Fourier pricing formulas for caps, swaptions, and basis swaptions. A model specification...... with dependent LIBOR rates is developed that allows for an efficient and accurate calibration to a system of caplet prices....

  20. Selection of imprinted nanoparticles by affinity chromatography.

    Science.gov (United States)

    Guerreiro, António R; Chianella, Iva; Piletska, Elena; Whitcombe, Michael J; Piletsky, Sergey A

    2009-04-15

    Soluble molecularly imprinted nanoparticles were synthesised via iniferter initiated polymerisation and separated by size via gel permeation chromatography. Subsequent fractionation of these particles by affinity chromatography allowed the separation of high affinity fractions from the mixture of nanoparticles. Fractions selected this way possess affinity similar to that of natural antibodies (K(d) 6.6x10(-8)) M and were also able to discriminate between related functional analogues of the template.

  1. A new electrospun graphene-silk fibroin composite scaffolds for guiding Schwann cells.

    Science.gov (United States)

    Zhao, Yahong; Gong, Jiahuan; Niu, Changmei; Wei, Ziwei; Shi, Jiaqi; Li, Guohui; Yang, Yumin; Wang, Hongbo

    2017-12-01

    Graphene (Gr) has been made of various forms used for repairing peripheral nerve injury with favorable electroactivity, however, graphene-based scaffolds in peripheral nerve regeneration are still rarely reported due to the difficulty of realizing uniform dispersion of graphene and electroactive materials at nanoscale as well as lacking biocompatibility. In this paper, graphene-silk fibroin (SF) composite nanofiber membranes with different mass ratios were prepared via electrospinning. Microscopic observation revealed that electrospun Gr/SF membranes had a nanofibrous structure. Electrochemical analysis provided electroactivity characterization of the Gr/SF membranes. The physiochemical results showed that the physiochemical properties of electrospun Gr/SF membranes could be changed by varying Gr concentration. Swelling ratio and contact angle measurements confirmed that electrospun Gr/SF membranes possessed large absorption capacity and hydrophilic surface, and the mechanical property was improved with increasing Gr concentration. Additionally, in-vitro cytotoxicity with L929 revealed that all the electrospun Gr/SF membranes are biocompatible. Moreover, the morphology and quantity showed that the membranes supported the survival and growth of the cultured Schwann cells. Collectively, all of the results suggest that the electrospun Gr/SF membranes combine the excellent electrically conductivity and mechanical strength of the graphene with biocompatibility property of silk to mimic the natural neural cell micro-environment for nerve development.

  2. Controlled biomineralization of electrospun poly(ε-caprolactone) fibers to enhance their mechanical properties.

    Science.gov (United States)

    Xie, Jingwei; Zhong, Shaoping; Ma, Bing; Shuler, Franklin D; Lim, Chwee Teck

    2013-03-01

    Electrospun polymeric fibers have been investigated as scaffolding materials for bone tissue engineering. However, their mechanical properties, and in particular stiffness and ultimate tensile strength, cannot match those of natural bones. The objective of the study was to develop novel composite nanofiber scaffolds by attaching minerals to polymeric fibers using an adhesive material - the mussel-inspired protein polydopamine - as a "superglue". Herein, we report for the first time the use of dopamine to regulate mineralization of electrospun poly(ε-caprolactone) (PCL) fibers to enhance their mechanical properties. We examined the mineralization of the PCL fibers by adjusting the concentration of HCO(3)(-) and dopamine in the mineralized solution, the reaction time and the surface composition of the fibers. We also examined mineralization on the surface of polydopamine-coated PCL fibers. We demonstrated the control of morphology, grain size and thickness of minerals deposited on the surface of electrospun fibers. The obtained mineral coatings render electrospun fibers with much higher stiffness, ultimate tensile strength and toughness, which could be closer to the mechanical properties of natural bone. Such great enhancement of mechanical properties for electrospun fibers through mussel protein-mediated mineralization has not been seen previously. This study could also be extended to the fabrication of other composite materials to better bridge the interfaces between organic and inorganic phases. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats

    Directory of Open Access Journals (Sweden)

    Chunhui Xiang

    2016-04-01

    Full Text Available Tensile strength, Young’s modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber–fiber load sharing. Single-walled carbon nanotubes (CNTs were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young’s modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber–fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young’s modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young’s modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young’s modulus of the electrospun nylon 6 non-woven fiber mats.

  4. Formation and characterization of magnetic barium ferrite hollow fibers with low coercivity via co-electrospun

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gui-fang, E-mail: guifang777@163.com; Zhang, Zi-dong, E-mail: 1986zzd@163.com; Dang, Feng, E-mail: dangfeng@sdu.edu.cn; Cheng, Chuan-bing, E-mail: 807033063@qq.com; Hou, Chuan-xin, E-mail: 710313782@qq.com; Liu, Si-da, E-mail: superliustar@hotmail.com

    2016-08-15

    BaFe{sub 12}O{sub 19} fibers and hollow fibers were successfully prepared by electrospun and co-electrospun. A very interesting result appeared in this study that hollow fibers made by co-electrospun showed low coercivity values of a few hundred oersteds, compared with the coercivity values of more than thousand oersteds for the fibers made by electrospun. So the hollow fibers with high saturation magnetization (M{sub s}) and while comparatively low coercivity (H{sub c}) exhibited strong magnetism and basically showed soft character. And this character for hollow fibers will lead to increase of the permeability for the samples which is favorable for impedance matching in microwave absorption. So these hollow fibers are promised to have use in a number of applications, such as switching and sensing applications, electromagnetic materials, microwave absorber. - Highlights: • BaFe{sub 12}O{sub 19} fibers were prepared via electrospinning successfully. • The coercivity has a value of a few hundred oersteds for the hollow fibers made by coaxial electrospun. • BaFe{sub 12}O{sub 19} with high saturation magnetization and low coercivity shows great potential in microwave absorbing application.

  5. Connections between quantized affine algebras and superalgebras

    International Nuclear Information System (INIS)

    Zhang, R.B.

    1992-08-01

    Every affine superalgebra with a symmetrizable Cartan matrix is closely related to an ordinary affine algebra with the same Cartan matrix. It is shown that the quantum supergroup associated with the former is essentially isomorphic to the quantum group associated with the latter in an appropriate class of representations. At the classical level, each integrable irreducible highest weight representation of the affine superalgebra has a corresponding irreducible representation of the affine algebra, which has the same weight space decomposition. (author). 5 refs, 3 tabs

  6. A Novel Vertex Affinity for Community Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Andy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henson, Van [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  7. Dehydration driven changes in the structure and mechanical behavior of electrospun poly (vinyl alcohol) nanofibers

    International Nuclear Information System (INIS)

    Bansal, Ankita; Sinha, Arvind

    2012-01-01

    Electrospun nanofibers of poly (vinyl alcohol) (PVA) are well known for their possible application in different fields, ranging from packaging to tissue engineering. However, biomedical application of these nanofibers gets limited due to its rapid disintegration in water, causing mechanical instability. Addressing this issue, the present manuscript reports ethanol induced dehydration of electrospun PVA nanofibers, and its effects on the structure and mechanical properties of the electrospun system. A systematic variation in the structure and mechanical stability of nanofibers as a function of PVA concentration has also been established in the both hydrated and dehydrated states. - Highlights: ► Study reports structure-property correlation of dehydrated PVA nanofibers. ► Results confirm symmetrical reversal of properties in two states. ► Experimental results are in confirmation with the fusion model of nanofibers.

  8. Effect of Voltage and Flow Rate Electrospinning Parameters on Polyacrylonitrile Electrospun Fibers

    Science.gov (United States)

    Bakar, S. S. S.; Fong, K. C.; Eleyas, A.; Nazeri, M. F. M.

    2018-03-01

    Currently, electrospinning is a very famous technique and widely used for forming polymer nanofibers. In this paper, the Polyacrylonitrile (PAN) nanofibers were prepared in concentration of 10wt% with varied processing parameters that can affect the properties of PAN fiber in term of fiber diameter and electrical conductivity was presented. Voltage of 10, 15 and 20 kV with PAN flow rate of 1 electrospun PAN fibers were then undergo pyrolysis at 800°C for 30 minutes. The resultant PAN nanofibers were then analysed by SEM, XRD and four point probe test after pyrolysis process. SEM image show continuos uniform and smooth surface fibrous structure of electrospun PAN fibers with average diameter of 1.81 μm. The fiber morphology is controlled by manipulating the processing parameters of electrospinning process. The results showed that the resistance of electrospun PAN fibers decreases as the processing parameter changes by increasing the applied voltage and flow rate of electrospinning.

  9. Mesenchymal stem cell cultivation in electrospun scaffolds: mechanistic modeling for tissue engineering.

    Science.gov (United States)

    Paim, Ágata; Tessaro, Isabel C; Cardozo, Nilo S M; Pranke, Patricia

    2018-03-05

    Tissue engineering is a multidisciplinary field of research in which the cells, biomaterials, and processes can be optimized to develop a tissue substitute. Three-dimensional (3D) architectural features from electrospun scaffolds, such as porosity, tortuosity, fiber diameter, pore size, and interconnectivity have a great impact on cell behavior. Regarding tissue development in vitro, culture conditions such as pH, osmolality, temperature, nutrient, and metabolite concentrations dictate cell viability inside the constructs. The effect of different electrospun scaffold properties, bioreactor designs, mesenchymal stem cell culture parameters, and seeding techniques on cell behavior can be studied individually or combined with phenomenological modeling techniques. This work reviews the main culture and scaffold factors that affect tissue development in vitro regarding the culture of cells inside 3D matrices. The mathematical modeling of the relationship between these factors and cell behavior inside 3D constructs has also been critically reviewed, focusing on mesenchymal stem cell culture in electrospun scaffolds.

  10. Electrospun polymeric dressings functionalized with antimicrobial peptides and collagen type I for enhanced wound healing

    Science.gov (United States)

    Felgueiras, H. P.; Amorim, M. T. P.

    2017-10-01

    Modern wound dressings combine medical textiles with active compounds that stimulate wound healing while protecting against infection. Electrospun wound dressings have been extensively studied and the electrospinning technique recognized as an efficient approach for the production of nanoscale fibrous mats. The unique diverse function and architecture of antimicrobial peptides (AMPs) has attracted considerable attention as a tool for the design of new anti-infective drugs. Functionalizing electrospun wound dressings with these AMPs is nowadays being researched. In the present work, we explore these new systems by highlighting the most important characteristics of electropsun wound dressings, revealing the importance of AMPs to wound healing, and the methods available to functionalize the electrospun mats with these molecules. The combined therapeutic potential of collagen type I and these AMP functionalized dressings will be highlighted as well; the significance of these new strategies for the future of wound healing will be clarified.

  11. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach

    International Nuclear Information System (INIS)

    Uyar, Tansel; Çökeliler, Dilek; Doğan, Mustafa; Koçum, Ismail Cengiz; Karatay, Okan; Denkbaş, Emir Baki

    2016-01-01

    Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling, however, when it is used in prosthetic dentistry, fracturing or cracking problems can be seen due to the relatively low strength issues. Besides, acrylic resin is the still prominent material for denture fabrication due to its handy and low cost features. Numerous proposed fillers that are used to produce PMMA composites, however electrospun polyvinylalcohol (PVA) nanofiber fillers for production of PMMA composite resins are not studied as much as the others. The other focus of the practice is to compare both mechanical properties and efficiency of aligned fibers versus non-aligned PVA nanofibers in PMMA based dental composites. Field-controlled electrospinning system is manufactured and provided good alignment in lab scale as one of contributions. Some novel auxiliary electrodes in controlled structure are augmented to obtain different patterns of alignment with a certain range of fiber diameters. Scanning electron microscopy is used for physical characterization to determine the range of fiber diameters. Non-woven fiber has no unique pattern due to chaotic nature of electrospinning process, but aligned fibers have round pattern or crossed lines. These produced fibers are structured as layer-by-layer form with different features, and these features are used in producing PMMA dental composites with different volume ratios. The maximum flexural strength figure shows that fiber load by weight of 0.25% w/w and above improves in the maximum level. As a result, mechanical properties of PMMA dental composites are improved by using PVA nanofibers as a filler, however the improvement was higher when aligned PVA nanofibers are used. The maximum values were 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), and 170 kJ/m 3 (toughness) in three-point bending test. In addition to the positive results of aligned and non-aligned nanofibers it was found

  12. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach

    Energy Technology Data Exchange (ETDEWEB)

    Uyar, Tansel [Department of Biomedical Engineering, Başkent University Bağlıca Campus, 06530 Ankara (Turkey); Çökeliler, Dilek, E-mail: cokeliler@baskent.edu.tr [Department of Biomedical Engineering, Başkent University Bağlıca Campus, 06530 Ankara (Turkey); Doğan, Mustafa [Department of Electrical and Electronics Engineering, Başkent University, Ankara 06180 (Turkey); Koçum, Ismail Cengiz [Department of Biomedical Engineering, Başkent University Bağlıca Campus, 06530 Ankara (Turkey); Karatay, Okan [Department of Electrical and Electronics Engineering, Başkent University, Ankara 06180 (Turkey); Denkbaş, Emir Baki [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey)

    2016-05-01

    Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling, however, when it is used in prosthetic dentistry, fracturing or cracking problems can be seen due to the relatively low strength issues. Besides, acrylic resin is the still prominent material for denture fabrication due to its handy and low cost features. Numerous proposed fillers that are used to produce PMMA composites, however electrospun polyvinylalcohol (PVA) nanofiber fillers for production of PMMA composite resins are not studied as much as the others. The other focus of the practice is to compare both mechanical properties and efficiency of aligned fibers versus non-aligned PVA nanofibers in PMMA based dental composites. Field-controlled electrospinning system is manufactured and provided good alignment in lab scale as one of contributions. Some novel auxiliary electrodes in controlled structure are augmented to obtain different patterns of alignment with a certain range of fiber diameters. Scanning electron microscopy is used for physical characterization to determine the range of fiber diameters. Non-woven fiber has no unique pattern due to chaotic nature of electrospinning process, but aligned fibers have round pattern or crossed lines. These produced fibers are structured as layer-by-layer form with different features, and these features are used in producing PMMA dental composites with different volume ratios. The maximum flexural strength figure shows that fiber load by weight of 0.25% w/w and above improves in the maximum level. As a result, mechanical properties of PMMA dental composites are improved by using PVA nanofibers as a filler, however the improvement was higher when aligned PVA nanofibers are used. The maximum values were 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), and 170 kJ/m{sup 3} (toughness) in three-point bending test. In addition to the positive results of aligned and non-aligned nanofibers it was

  13. On affine non-negative matrix factorization

    DEFF Research Database (Denmark)

    Laurberg, Hans; Hansen, Lars Kai

    2007-01-01

    We generalize the non-negative matrix factorization (NMF) generative model to incorporate an explicit offset. Multiplicative estimation algorithms are provided for the resulting sparse affine NMF model. We show that the affine model has improved uniqueness properties and leads to more accurate id...

  14. Global affine differential geometry of hypersurfaces

    CERN Document Server

    Li, An-Min; Zhao, Guosong; Hu, Zejun

    2015-01-01

    This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.

  15. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells

    International Nuclear Information System (INIS)

    Zhou, Fang; Jia, Xiaoling; Yang, Yang; Yang, Qingmao; Gao, Chao; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan

    2016-01-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(L-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9 days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. - Highlights: • A series of peptide-modified PELCL electrospun membranes were prepared. • Hemocompatibility of the membranes was greatly improved by the modification. • QK-modified PELCL membrane promoted VECs proliferation more significantly. • REDV-modified PELCL membrane was the most favorable for VEC adhesion.

  16. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fang [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Jia, Xiaoling [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083 (China); Yang, Yang [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Yang, Qingmao; Gao, Chao [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083 (China); Zhao, Yunhui [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Fan, Yubo, E-mail: yubofan@buaa.edu.cn [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083 (China); National Research Center for Rehabilitation Technical Aids, Beijing 100176 (China); Yuan, Xiaoyan, E-mail: yuanxy@tju.edu.cn [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2016-11-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(L-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9 days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. - Highlights: • A series of peptide-modified PELCL electrospun membranes were prepared. • Hemocompatibility of the membranes was greatly improved by the modification. • QK-modified PELCL membrane promoted VECs proliferation more significantly. • REDV-modified PELCL membrane was the most favorable for VEC adhesion.

  17. Improving image segmentation by learning region affinities

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  18. Electrospun Polymer Nanofibers Decorated with Noble Metal Nanoparticles for Chemical Sensing.

    Science.gov (United States)

    Chen, Chen; Tang, Yongan; Vlahovic, Branislav; Yan, Fei

    2017-12-01

    The integration of different noble metal nanostructures, which exhibit desirable plasmonic and/or electrocatalytic properties, with electrospun polymer nanofibers, which display unique mechanical and thermodynamic properties, yields novel hybrid nanoscale systems of synergistic properties and functions. This review summarizes recent advances on how to incorporate noble metal nanoparticles into electrospun polymer nanofibers and illustrates how such integration paves the way towards chemical sensing applications with improved sensitivity, stability, flexibility, compatibility, and selectivity. It is expected that further development of this field will eventually make a wide impact on many areas of research.

  19. Incorporation of ciprofloxacin/laponite in polycaprolactone electrospun nanofibers: drug release and antibacterial studies

    Science.gov (United States)

    Kalwar, Kaleemullah; Zhang, Xuan; Aqeel Bhutto, Muhammad; Dali, Li; Shan, Dan

    2017-12-01

    Electrospun nanofibers with sustained drug release are a challenge but it can be improved by using hydrophobic polymer. Polycaprolactone (PCL) is a hydrophobic and biocompatible polymer. In this work, we have proposed a drug release mechanism by preparation of ciprofloxacin (Cip)/Laponite (LAP) complex and then incorporation in PCL nanofibers through electrospinning technique. In addition, drug incorporation was confirmed by FTIR and morphology of electrospun nanofibers was revealed by SEM. Drug loading was measured by using spectrophotometer. PCL/LAP/Cip NFs proved sustained drug release as compared to PCL NFs and PCL/Cip NFs. Furthermore, PCL/LAP/Cip NFs were used as antimicrobial agent and higher effect measured.

  20. Electrospun Nanofiber Scaffolds with Gradations in Fiber Organization

    Science.gov (United States)

    Khandalavala, Karl; Jiang, Jiang; Shuler, Franklin D.; Xie, Jingwei

    2015-01-01

    The goal of this protocol is to report a simple method for generating nanofiber scaffolds with gradations in fiber organization and test their possible applications in controlling cell morphology/orientation. Nanofiber organization is controlled with a new fabrication apparatus that enables the gradual decrease of fiber organization in a scaffold. Changing the alignment of fibers is achieved through decreasing deposition time of random electrospun fibers on a uniaxially aligned fiber mat. By covering the collector with a moving barrier/mask, along the same axis as fiber deposition, the organizational structure is easily controlled. For tissue engineering purposes, adipose-derived stem cells can be seeded to these scaffolds. Stem cells undergo morphological changes as a result of their position on the varied organizational structure, and can potentially differentiate into different cell types depending on their locations. Additionally, the graded organization of fibers enhances the biomimicry of nanofiber scaffolds so they more closely resemble the natural orientations of collagen nanofibers at tendon-to-bone insertion site compared to traditional scaffolds. Through nanoencapsulation, the gradated fibers also afford the possibility to construct chemical gradients in fiber scaffolds, and thereby further strengthen their potential applications in fast screening of cell-materials interaction and interfacial tissue regeneration. This technique enables the production of continuous gradient scaffolds, but it also can potentially produce fibers in discrete steps by controlling the movement of the moving barrier/mask in a discrete fashion. PMID:25938562

  1. Fabrication and Biocompatibility of Electrospun Silk Biocomposites

    Directory of Open Access Journals (Sweden)

    Ick-Soo Kim

    2011-10-01

    Full Text Available Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM. The water contact angle of silk/tetramethoxysilane (TMOS composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA biocomposites is prepared by means of an effective calcium and phosphate (Ca–P alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering.

  2. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery.

    Science.gov (United States)

    Mendes, Ana C; Gorzelanny, Christian; Halter, Natalia; Schneider, Stefan W; Chronakis, Ioannis S

    2016-08-20

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248±94nm to 600±201nm, depending on the amount of phospholipids used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7days in Phosphate Buffer Saline (PBS) solution. Cytotoxicity studies (WST-1 and LDH assays) demonstrated that the hybrid nanofibers have suitable biocompatibility. Fluorescence microscopy, also suggested that L929 cells seeded on top of the CH/P hybrid have similar metabolic activity comparatively to the cells seeded on tissue culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Tunable engineered skin mechanics via coaxial electrospun fiber core diameter.

    Science.gov (United States)

    Blackstone, Britani Nicole; Drexler, Jason William; Powell, Heather Megan

    2014-10-01

    Autologous engineered skin (ES) offers promise as a treatment for massive full thickness burns. Unfortunately, ES is orders of magnitude weaker than normal human skin causing it to be difficult to apply surgically and subject to damage by mechanical shear in the early phases of engraftment. In addition, no manufacturing strategy has been developed to tune ES biomechanics to approximate the native biomechanics at different anatomic locations. To enhance and tune ES biomechanics, a coaxial (CoA) electrospun scaffold platform was developed from polycaprolactone (PCL, core) and gelatin (shell). The ability of the coaxial fiber core diameter to control both scaffold and tissue mechanics was investigated along with the ability of the gelatin shell to facilitate cell adhesion and skin development compared to pure gelatin, pure PCL, and a gelatin-PCL blended fiber scaffold. CoA ES exhibited increased cellular adhesion and metabolism versus PCL alone or gelatin-PCL blend and promoted the development of well stratified skin with a dense dermal layer and a differentiated epidermal layer. Biomechanics of the scaffold and ES scaled linearly with core diameter suggesting that this scaffold platform could be utilized to tailor ES mechanics for their intended grafting site and reduce graft damage in vitro and in vivo.

  4. Proliferation of Genetically Modified Human Cells on Electrospun Nanofiber Scaffolds

    Directory of Open Access Journals (Sweden)

    Mandula Borjigin

    2012-01-01

    Full Text Available Gene editing is a process by which single base mutations can be corrected, in the context of the chromosome, using single-stranded oligodeoxynucleotides (ssODNs. The survival and proliferation of the corrected cells bearing modified genes, however, are impeded by a phenomenon known as reduced proliferation phenotype (RPP; this is a barrier to practical implementation. To overcome the RPP problem, we utilized nanofiber scaffolds as templates on which modified cells were allowed to recover, grow, and expand after gene editing. Here, we present evidence that some HCT116-19, bearing an integrated, mutated enhanced green fluorescent protein (eGFP gene and corrected by gene editing, proliferate on polylysine or fibronectin-coated polycaprolactone (PCL nanofiber scaffolds. In contrast, no cells from the same reaction protocol plated on both regular dish surfaces and polylysine (or fibronectin-coated dish surfaces proliferate. Therefore, growing genetically modified (edited cells on electrospun nanofiber scaffolds promotes the reversal of the RPP and increases the potential of gene editing as an ex vivo gene therapy application.

  5. Hydrogel-Electrospun Fiber Mat Composite Coatings for Neural Prostheses

    Directory of Open Access Journals (Sweden)

    Ning eHan

    2011-03-01

    Full Text Available Achieving stable, long-term performance of implanted neural prosthetic devices has been challenging because of implantation related neuron loss and a foreign body response that results in encapsulating glial scar formation. To improve neuron-prosthesis integration and form chronic, stable interfaces, we investigated the potential of neurotrophin-eluting hydrogel-electrospun fiber mat (EFM composite coatings. In particular, poly(ethylene glycol-poly(ε-caprolactone (PEGPCL hydrogel- poly(ε-caprolactone (PCL EFM composites were applied as coatings for multielectrode arrays (MEAs. Coatings were stable and persisted on electrode surfaces for over 1 month under an agarose gel tissue phantom and over 9 months in a PBS immersion bath. To demonstrate drug release, a neurotrophin, nerve growth factor (NGF, was loaded in the PEGPCL hydrogel layer, and coating cytotoxicity and sustained NGF release were evaluated using a PC12 cell culture model. Quantitative MTT assays showed that these coatings had no significant toxicity toward PC12 cells, and neurite extension at day 7 and 14 confirmed sustained release of NGF at biologically significant concentrations for at least 2 weeks. Our results demonstrate that hydrogel-EFM composite materials can be applied to neural prostheses as a means to improve neuron-electrode proximity and enhance long-term device performance and function.

  6. Development of Protective Clothing against Nanoparticle Based on Electrospun Nanofibers

    Directory of Open Access Journals (Sweden)

    M. Faccini

    2012-01-01

    Full Text Available In this paper, the development of efficient protective clothing against nanoparticulate aerosols is presented. Nanofibrous mats of polyamide 6 (PA6 were deposited onto a nonwoven viscose substrate by electrospinning technique. The influence of electrospinning parameters, including solution concentration, viscosity, and conductivity, was studied for the production of nonwovens with controlled fiber diameter showing a size distribution ranging from 66 to 195 nm. By varying several process parameters, textiles with different thickness of the nanofiber layer and thus air permeability were obtained. A hot-press lamination process using a thermoplastic resin as glue was applied to improve the adhesion of the nanofiber layer onto the textile support. After 1500 cycles of repeated compression and torsion, the nanofiber layer was still firmly attached to the support, while mechanical damage is visible in some areas. The penetration of NaCl particles with diameter ranging from 15 to 300 nm through the electrospun textiles was found to be strongly dependent on nanofiber layer thickness. A really thin nanofiber coating provides up to 80% retention of 20 nm size particles and over 50% retention of 200 nm size nanoparticles. Increasing the thickness of the nanofiber mat, the filtration efficiency was increased to over 99% along the whole nanoparticle range. The results obtained highlight the potential of nanofibers in the development of efficient personal protective equipments against nanoparticles.

  7. Study on superhydrophobic surfaces of octanol grafted electrospun silica nanofibers

    International Nuclear Information System (INIS)

    Meng, Long-Yue; Han, Shunyu; Jiang, Nanzhe; Meng, Wan

    2014-01-01

    In this work, superhydrophobic surfaces were successfully prepared by grafting of octanol on the surface of electrospun silica nanofibers (SNFs). The chemical compositions and microstructures of the prepared SNFs surfaces were investigated by using N 2 full isotherms, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and contact angle measurements. The results indicate that the surface of SNFs changed from being superhydrophilic to superhydrophobic by octanol surface grafting. The contact angle of the octanol-grafted SNFs was close to 150.2° because their surface was modified by –(CH 2 ) 6 –CH 3 groups. The 3D network of SNFs networks and the low surface energy of the alkyl side chains played important roles in creating the superhydrophobic surface of the SNFs. - Highlights: • Superhydrophobic surface was prepared from electrospinning SNFs and by grafting octanol on their surface. • The surface of SNFs changed from superhydrophilic to superhydrophobic. • The CA of MSNFs became 150.2° because of interactions between grafted octyl groups

  8. Study on superhydrophobic surfaces of octanol grafted electrospun silica nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Long-Yue [Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, Yanji 133002 (China); Department of Chemical Engineering, College of Engineering, Yanbian University, 977 Gongyuan Road, Yanji 133002 (China); Han, Shunyu; Jiang, Nanzhe [Department of Chemical Engineering, College of Engineering, Yanbian University, 977 Gongyuan Road, Yanji 133002 (China); Meng, Wan, E-mail: mengw@ybu.edu.cn [Department of Chemical Engineering, College of Engineering, Yanbian University, 977 Gongyuan Road, Yanji 133002 (China)

    2014-12-15

    In this work, superhydrophobic surfaces were successfully prepared by grafting of octanol on the surface of electrospun silica nanofibers (SNFs). The chemical compositions and microstructures of the prepared SNFs surfaces were investigated by using N{sub 2} full isotherms, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and contact angle measurements. The results indicate that the surface of SNFs changed from being superhydrophilic to superhydrophobic by octanol surface grafting. The contact angle of the octanol-grafted SNFs was close to 150.2° because their surface was modified by –(CH{sub 2}){sub 6}–CH{sub 3} groups. The 3D network of SNFs networks and the low surface energy of the alkyl side chains played important roles in creating the superhydrophobic surface of the SNFs. - Highlights: • Superhydrophobic surface was prepared from electrospinning SNFs and by grafting octanol on their surface. • The surface of SNFs changed from superhydrophilic to superhydrophobic. • The CA of MSNFs became 150.2° because of interactions between grafted octyl groups.

  9. Tunable Engineered Skin Mechanics via Coaxial Electrospun Fiber Core Diameter

    Science.gov (United States)

    Blackstone, Britani Nicole; Drexler, Jason William

    2014-01-01

    Autologous engineered skin (ES) offers promise as a treatment for massive full thickness burns. Unfortunately, ES is orders of magnitude weaker than normal human skin causing it to be difficult to apply surgically and subject to damage by mechanical shear in the early phases of engraftment. In addition, no manufacturing strategy has been developed to tune ES biomechanics to approximate the native biomechanics at different anatomic locations. To enhance and tune ES biomechanics, a coaxial (CoA) electrospun scaffold platform was developed from polycaprolactone (PCL, core) and gelatin (shell). The ability of the coaxial fiber core diameter to control both scaffold and tissue mechanics was investigated along with the ability of the gelatin shell to facilitate cell adhesion and skin development compared to pure gelatin, pure PCL, and a gelatin-PCL blended fiber scaffold. CoA ES exhibited increased cellular adhesion and metabolism versus PCL alone or gelatin-PCL blend and promoted the development of well stratified skin with a dense dermal layer and a differentiated epidermal layer. Biomechanics of the scaffold and ES scaled linearly with core diameter suggesting that this scaffold platform could be utilized to tailor ES mechanics for their intended grafting site and reduce graft damage in vitro and in vivo. PMID:24712409

  10. Aligned and Electrospun Piezoelectric Polymer Fiber Assembly and Scaffold

    Science.gov (United States)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor); Holloway, Nancy M. (Inventor); Leong, Kam W. (Inventor); Kulangara, Karina (Inventor)

    2015-01-01

    A scaffold assembly and related methods of manufacturing and/or using the scaffold for stem cell culture and tissue engineering applications are disclosed which at least partially mimic a native biological environment by providing biochemical, topographical, mechanical and electrical cues by using an electroactive material. The assembly includes at least one layer of substantially aligned, electrospun polymer fiber having an operative connection for individual voltage application. A method of cell tissue engineering and/or stem cell differentiation uses the assembly seeded with a sample of cells suspended in cell culture media, incubates and applies voltage to one or more layers, and thus produces cells and/or a tissue construct. In another aspect, the invention provides a method of manufacturing the assembly including the steps of providing a first pre-electroded substrate surface; electrospinning a first substantially aligned polymer fiber layer onto the first surface; providing a second pre-electroded substrate surface; electrospinning a second substantially aligned polymer fiber layer onto the second surface; and, retaining together the layered surfaces with a clamp and/or an adhesive compound.

  11. Novel Technique for Quantitative Fast Scanning Calorimetry on Electrospun Fibers

    Science.gov (United States)

    Thomas, David; Govinna, Nelaka; Schick, Christoph; Cebe, Peggy

    Fast scanning chip calorimetry allows for the study of polymers which have rapid nucleation and/or crystallization kinetics, or degrade within their melting range. Heating rates used, up to 4000 K/s, allow studies of hetero and homogeneous nucleation at time scales inaccessible with conventional calorimeters, whose rates are typically alcohol (PVA) were chosen in the development of a new methodology to obtain quantitative fast scanning thermal data from electrospun nanofibers using a Flash DSC1. The structure of nanofibers requires special methods to load nanogram-sized samples onto a UFSC1 sensor. Fibers were directly spun onto TEM grids which provide a durable substrate to support bundles of nanofibers and possess excellent thermal conductivity allowing for a strong, repeatable signal and ensure good sample to sensor contact. As spun samples were held isothermally at temperatures ranging from Tg to Tm then heated at 2,000 K/s to assess as-spun crystallinity and cold crystallization behaviors. Above Tm the fibers break up into micro- and nano-droplets. On these samples, melt crystallization experiments were performed to study nucleation and crystallization of polymer confined to nanodroplet morphology. NSF DMR-1608125.

  12. Characterization of Electrospun Nanofibrous Scaffolds for Nanobiomedical Applications

    Science.gov (United States)

    Emul, E.; Saglam, S.; Ates, H.; Korkusuz, F.; Saglam, N.

    2016-08-01

    The electrospinning method is employed in the production of porous fiber scaffolds, and the usage of electrospun scaffolds especially as drug carrier and bone reconstructive material such as implants is promising for future applications in tissue engineering. The number of publications has grown very rapidly in this field through the fabrication of complex scaffolds, novel approaches in nanotechnology, and improvements of imaging methods. Hence, characterization of these materials has also grown significantly important for getting satisfied and accurate results. This advantageous and versatile method is ideal for mimicking bone extracellular matrix, and many biodegradable and biocompatible polymers are preferred in the field of bone reconstruction. In this study, gelatin, gelatin/nanohydroxyapatite (nHAp) and gelatin/PLLA/nHAp scaffolds were fabricated by the electrospinning process. These composite fibers showed clear and continuous morphology according to observation through a scanning electron microscope and their component analyses were also determined by Fourier transform infrared spectrometer analyses. These characterization experiments revealed the great effects of the electrospinning method for biomedical applications and have an especially important role in bone reconstruction and production of implant coating material.

  13. Simultaneous determination of 41 multiclass organic pollutants in environmental waters by means of polyethersulfone microextraction followed by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Mijangos, Leire; Ziarrusta, Haizea; Olivares, Maitane; Zuloaga, Olatz; Möder, Monika; Etxebarria, Nestor; Prieto, Ailette

    2018-01-01

    A new procedure using polyethersulfone (PES) microextraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was developed in this work for the simultaneous determination of 41 multiclass priority and emerging organic pollutants including herbicides, hormones, personal care products, and pharmaceuticals, among others, in seawater, wastewater treatment plant (WWTP) effluents, and estuary samples. The optimization of the analysis included two different chromatographic columns and different variables (polarity, fragmentor voltage, collision energy, and collision cell accelerator) of the mass spectrometer. In the case of PES extraction, ion strength of the water, pH, addition of EDTA, and the amount of the polymeric material were thoroughly investigated. The developed procedure was compared with a previously validated one based on a standard solid-phase extraction (SPE). In contrast to the SPE protocol, the PES method allowed a cost-efficient extraction of complex aqueous samples with lower matrix effect from 120 mL of water sample. Satisfactory and comparable apparent recovery values (80-119 and 70-131%) and method quantification limits (MQLs, 0.4-26 and 0.2-23 ng/L) were obtained for PES and SPE procedures, respectively, regardless of the matrix. Repeatability values lower than 27% were obtained. Finally, the developed methods were applied to the analysis of real samples from the Basque Country and irbesartan, valsartan, acesulfame, and sucralose were the analytes most often detected at the highest concentrations (51-1096 ng/L). Graphical abstract Forty-one multiclass pollutant determination in environmental waters by means of PES/SPE-LC-MS/MS.

  14. The Cutting Edge of Affinity Electrophoresis Technology

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  15. The Cutting Edge of Affinity Electrophoresis Technology.

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-03-18

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years.

  16. Mobile Technology Affinity in Renal Transplant Recipients.

    Science.gov (United States)

    Reber, S; Scheel, J; Stoessel, L; Schieber, K; Jank, S; Lüker, C; Vitinius, F; Grundmann, F; Eckardt, K-U; Prokosch, H-U; Erim, Y

    Medication nonadherence is a common problem in renal transplant recipients (RTRs). Mobile health approaches to improve medication adherence are a current trend, and several medication adherence apps are available. However, it is unknown whether RTRs use these technologies and to what extent. In the present study, the mobile technology affinity of RTRs was analyzed. We hypothesized significant age differences in mobile technology affinity and that mobile technology affinity is associated with better cognitive functioning as well as higher educational level. A total of 109 RTRs (63% male) participated in the cross-sectional study, with an overall mean age of 51.8 ± 14.2 years. The study included the Technology Experience Questionnaire (TEQ) for the assessment of mobile technology affinity, a cognitive test battery, and sociodemographic data. Overall, 57.4% of the patients used a smartphone or tablet and almost 45% used apps. The TEQ sum score was 20.9 in a possible range from 6 (no affinity to technology) to 30 (very high affinity). Younger patients had significantly higher scores in mobile technology affinity. The only significant gender difference was found in having fun with using electronic devices: Men enjoyed technology more than women did. Mobile technology affinity was positively associated with cognitive functioning and educational level. Young adult patients might profit most from mobile health approaches. Furthermore, high educational level and normal cognitive functioning promote mobile technology affinity. This should be kept in mind when designing mobile technology health (mHealth) interventions for RTRs. For beneficial mHealth interventions, further research on potential barriers and desired technologic features is necessary to adapt apps to patients' needs. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The Tissue Response and Degradation of Electrospun Poly(ε-caprolactone/Poly(trimethylene-carbonate Scaffold in Subcutaneous Space of Mice

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2014-01-01

    Full Text Available Due to the advantage of controllability on the mechanical property and the degradation rates, electrospun PCL/PTMC nanofibrous scaffold could be appropriate for vascular tissue engineering. However, the tissue response and degradation of electrospun PCL/PTMC scaffold in vivo have never been evaluated in detail. So, electrospun PCL/PTMC scaffolds with different blend ratios were prepared in this study. Mice subcutaneous implantation showed that the continuous degradation of PCL/PTMC scaffolds induced a lasted macrophage-mediated foreign body reaction, which could be in favor of the tissue regeneration in graft.

  18. Affinity Strings: Enterprise Data for Resource Recommendations

    Directory of Open Access Journals (Sweden)

    Shane Nackerud

    2008-12-01

    Full Text Available The University of Minnesota Libraries have created a MyLibrary portal, with databases and e-journals targeted to users, based on their affiliations. The University's enterprise authentication system provides an "affinity string", now used to personalize the MyLibrary portal. This affinity string automates discovery of a user's relationship to the University--describing a user's academic department and degree program or position at the University. Affinity strings also provide the Libraries with an anonymized view of resource usage, allowing data collection that respects users' privacy and lays the groundwork for automated recommendation of relevant resources based on the practices and habits of their peers.

  19. Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications

    CSIR Research Space (South Africa)

    Annamalai, Perushini

    2017-01-01

    Full Text Available -defined hierarchical pore structure. The study involved encapsulation of highly porous zeolite-templated carbon (ZTC) into electrospun fibres and testing of the resulting composites for hydrogen storage. The hydrogen storage capacity of the composite fibres was 1...

  20. Novel Bonding Process for CBW Protective Electrospun Fabric Laminates Phase 2

    Science.gov (United States)

    2011-12-01

    thane Foam Knit Polyester Fabric Woven C otton Fabric Army C hemical Protective Uniform Polyacrylonitrile Electrospun Membrane Microporous PTFE...deposit more material per unit time, quickly building up an insulating layer beneath the nozzle tip. Again this pushes the fiber deposit outward to

  1. A variable stiffness joint with electrospun P(VDF-TrFE-CTFE) variable stiffness springs

    NARCIS (Netherlands)

    Carloni, Raffaella; Lapp, Valerie I.; Cremonese, Andrea; Belcari, Juri; Zucchelli, Andrea

    This letter presents a novel rotational variable stiffness joint that relies on one motor and a set of variable stiffness springs. The variable stiffness springs are leaf springs with a layered design, i.e., an electro-active layer of electrospun aligned nanofibers of poly(vinylidene

  2. Electrospun Polyurethane Fibers for Absorption of Volatile Organic Compounds from Air

    NARCIS (Netherlands)

    Scholten, E.; Bromberg, L.; Rutledge, G.C.; Hatton, T.A.

    2011-01-01

    Electrospun polyurethane fibers for removal of volatile organic compounds (VOC) from air with rapid VOC absorption and desorption have been developed. Polyurethanes based on 4,4-methylenebis(phenylisocyanate) (MDI) and aliphatic isophorone diisocyanate as the hard segments and butanediol and

  3. Electrospun Fibers as a Dressing Material for Drug and Biological Agent Delivery in Wound Healing Applications

    Science.gov (United States)

    Gizaw, Mulugeta; Thompson, Jeffrey; Faglie, Addison; Lee, Shih-Yu; Neuenschwander, Pierre; Chou, Shih-Feng

    2018-01-01

    Wound healing is a complex tissue regeneration process that promotes the growth of new tissue to provide the body with the necessary barrier from the outside environment. In the class of non-healing wounds, diabetic wounds, and ulcers, dressing materials that are available clinically (e.g., gels and creams) have demonstrated only a slow improvement with current available technologies. Among all available current technologies, electrospun fibers exhibit several characteristics that may provide novel replacement dressing materials for the above-mentioned wounds. Therefore, in this review, we focus on recent achievements in electrospun drug-eluting fibers for wound healing applications. In particular, we review drug release, including small molecule drugs, proteins and peptides, and gene vectors from electrospun fibers with respect to wound healing. Furthermore, we provide an overview on multifunctional dressing materials based on electrospun fibers, including those that are capable of achieving wound debridement and wound healing simultaneously as well as multi-drugs loading/types suitable for various stages of the healing process. Our review provides important and sufficient information to inform the field in development of fiber-based dressing materials for clinical treatment of non-healing wounds. PMID:29382065

  4. Electrospun gelatin biopapers as substrate for in vitro bilayer models of blood-brain barrier tissue.

    Science.gov (United States)

    Bischel, Lauren L; Coneski, Peter N; Lundin, Jeffrey G; Wu, Peter K; Giller, Carl B; Wynne, James; Ringeisen, Brad R; Pirlo, Russell K

    2016-04-01

    Gaining a greater understanding of the blood-brain barrier (BBB) is critical for improvement in drug delivery, understanding pathologies that compromise the BBB, and developing therapies to protect the BBB. In vitro human tissue models are valuable tools for studying these issues. The standard in vitro BBB models use commercially available cell culture inserts to generate bilayer co-cultures of astrocytes and endothelial cells (EC). Electrospinning can be used to produce customized cell culture substrates with optimized material composition and mechanical properties with advantages over off-the-shelf materials. Electrospun gelatin is an ideal cell culture substrate because it is a natural polymer that can aid cell attachment and be modified and degraded by cells. Here, we have developed a method to produce cell culture inserts with electrospun gelatin "biopaper" membranes. The electrospun fiber diameter and cross-linking method were optimized for the growth of primary human endothelial cell and primary human astrocyte bilayer co-cultures to model human BBB tissue. BBB co-cultures on biopaper were characterized via cell morphology, trans-endothelial electrical resistance (TEER), and permeability to FITC-labeled dextran and compared to BBB co-cultures on standard cell culture inserts. Over longer culture periods (up to 21 days), cultures on the optimized electrospun gelatin biopapers were found to have improved TEER, decreased permeability, and permitted a smaller separation between co-cultured cells when compared to standard PET inserts. © 2016 Wiley Periodicals, Inc.

  5. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing

    CSIR Research Space (South Africa)

    Naseria, N

    2014-08-01

    Full Text Available The aim of this study was to develop electrospun chitosan/polyethylene oxide-based randomly oriented fiber mats reinforced with chitin nanocrystals (ChNC) for wound dressing. Microscopy studies showedporous mats of smooth and beadless fibers...

  6. Electrospun Xanthan gum-Chitosan nanofibers as delivery carrier of hydrophobic bioactives

    DEFF Research Database (Denmark)

    Shekarforoush, Elhamalsadat; Ajalloueian, Fatemeh; Zeng, Guanghong

    2018-01-01

    Viscoelastic gels of xanthan gum-chitosan(X-Ch) were electrospun to produce nanofibers, stable in aqueous media, for the encapsulation and release of curcumin (Cu). After 120h, the nanofibers released lower amount of curcumin (∼20%) at pH 2.2 comparatively to the release in neutral media (∼50...

  7. Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber.

    Science.gov (United States)

    Isarankura Na Ayutthaya, Siriorn; Tanpichai, Supachok; Sangkhun, Weradesh; Wootthikanokkhan, Jatuphorn

    2016-04-01

    This research work has concerned the development of volatile organic compounds (VOCs) removal filters from biomaterials, based on keratin extracted from chicken feather waste and poly(lactic acid) (PLA) (50/50%w/w) blend. Clay (Na-montmorillonite) was also added to the blend solution prior to carrying out an electro-spinning process. The aim of this study was to investigate the effect of clay content on viscosity, conductivity, and morphology of the electrospun fibers. Scanning electron micrographs showed that smooth and bead-free fibers were obtained when clay content used was below 2 pph. XRD patterns of the electrospun fibers indicated that the clay was intercalated and exfoliated within the polymers matrix. Percentage crystallinity of keratin in the blend increased after adding the clay, as evidenced from FTIR spectra and DSC thermograms. Transmission electron micrographs revealed a kind of core-shell structure with clay being predominately resided within the keratin rich shell and at the interfacial region. Filtration performance of the electrospun keratin/PLA fibers, described in terms of pressure drop and its capability of removing methylene blue, were also explored. Overall, our results demonstrated that it was possible to improve process-ability, morphology and filtration efficiency of the electrospun keratin fibers by adding a suitable amount of clay. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Electro-spun PLA-PEG-yarns for tissue engineering applications

    NARCIS (Netherlands)

    Kruse, Magnus; Greuel, Marc; Kreimendahl, Franziska; Schneiders, Thomas; Bauer, Benedict; Gries, Thomas; Jockenhoevel, Stefan

    2018-01-01

    Electro-spinning is widely used in tissue-engineered applications mostly in form of non-woven structures. The development of e-spun yarn opens the door for textile fabrics which combine the micro to nanoscale dimension of electro-spun filaments with three-dimensional (3D) drapable textile fabrics.

  9. Affinity purification of recombinant human plasminogen activator ...

    African Journals Online (AJOL)

    Affinity purification of recombinant human plasminogen activator from ... Screening antibody was performed using rhPA milk in an ELISA-elution assay. ... useful for purifying other tPA mutants or other novel recombinant milkderived proteins.

  10. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    Science.gov (United States)

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  11. Quantum deformation of the affine transformation algebra

    International Nuclear Information System (INIS)

    Aizawa, N.; Sato, Haru-Tada

    1994-01-01

    We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators. (orig.)

  12. Dynamics of Open Systems with Affine Maps

    International Nuclear Information System (INIS)

    Zhang Da-Jian; Liu Chong-Long; Tong Dian-Min

    2015-01-01

    Many quantum systems of interest are initially correlated with their environments and the reduced dynamics of open systems are an interesting while challenging topic. Affine maps, as an extension of completely positive maps, are a useful tool to describe the reduced dynamics of open systems with initial correlations. However, it is unclear what kind of initial state shares an affine map. In this study, we give a sufficient condition of initial states, in which the reduced dynamics can always be described by an affine map. Our result shows that if the initial states of the combined system constitute a convex set, and if the correspondence between the initial states of the open system and those of the combined system, defined by taking the partial trace, is a bijection, then the reduced dynamics of the open system can be described by an affine map. (paper)

  13. On the Lp affine isoperimetric inequalities

    Indian Academy of Sciences (India)

    surface area measure on convex bodies. We also establish the reverse version of -Petty projection inequality and an affine isoperimetric inequality of − p K . Author Affiliations. Wuyang Yu1 Gangsong Leng2. Institute of Management Decision ...

  14. A piezoelectric electrospun platform for in situ cardiomyocyte contraction analysis

    Science.gov (United States)

    Beringer, Laura Toth

    Flexible, self-powered materials are in demand for a multitude of applications such as energy harvesting, robotic devices, and lab-on-a chip medical diagnostics. Lab-on-a-chip materials or cell-based biosensors can provide new diagnostic or therapeutic tools for numerous diseases. This dissertation explores the fabrication and characterization of a cell-based sensor termed a nanogenerator with three major aims. The first aim of this research was to fabricate a piezoelectric material that could act as both a cell scaffold and sensor and characterize the response to cell-scale deformation. Electrospinning piezoelectric fluoropolymers into nanofibers can provide both of these functionalities in a facile method. PVDF-TrFe was electrospun in an aligned format and interfaced with a flexible plastic substrate in order to create a platform for voltage response characterization after small force cantilever deformations. Voltage peak signals were an average of +/- 0.4 V, and this response did not change after platform sterilization. However, when placed in cell culture media, piezoelectric response was dampened, which was taken into consideration for the next two aims. An aligned electrospun coaxial fiber system of PVDF-TrFe and collagen was created and interfaced with the nanogenerator for the second aim in order to provide a more biologically favorable surface for cells to adhere to. These nanogenerators were successfully characterized for their piezoelectric response, which was an average of +/- 0.1 V. Additionally, the aligned coaxial collagen/PVDF-TrFe fibers supported both neuron and HeLa cell attachment and growth, demonstrating that they were not cytotoxic. To assess the potential for the nanogenerators to be used as a contractile analysis lab-on-a-chip based device, HeLa cell contraction was induced with potassium chloride and signal response was analyzed. The nanogenerator system was able to detect both the resting state of HeLa cells, a contraction state, and a

  15. Different endothelin receptor affinities in dog tissues

    International Nuclear Information System (INIS)

    Loeffler, B.M.L.; Loehrer, W.

    1991-01-01

    Endothelin (ET) is a long-lasting potent vasoconstrictor-peptide. Here the authors report different binding affinities of endothelin-1 (ET-1) to ET-receptors of various dog tissues. Crude microsomal fractions were prepared after homogenisation of dog tissues in 50 mM Tris/HCl, 20 mM MnCl2, 1 mM EDTA, pH 7.4 by differential centrifugation. Aliquots of microsomal fractions (70 micrograms of protein) were incubated at 25 degrees C for 180 min in the presence of 20 pM 125I-ET-1 and various concentrations of cold ET-1. Four different ET-1 receptor binding affinities were found: adrenals, cerebrum, liver, heart, skeletal muscle and stomach microsomal membranes contained high affinity binding sites (Kd 50 - 80 pM, Bmax 60 - 250 fmol/mg). In cerebellum and spleen medium affinity ET-1 receptors (Kd 350 pM, Bmax 880 and 1200 fmol/mg respectively) were present. In comparison lung and kidney microsomes contained a low affinity ET-1 receptor (Kd 800 and 880 pM, Bmax 1600 and 350 fmol/mg). Receptors of even lower affinity were present in heart, intestine and liver microsomes with Kd values of 3 - 6 nM

  16. Stability of β-carotene in polyethylene oxide electrospun nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Peinado, I., E-mail: irpeipar@upvnet.upv.es [Free University of Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Mason, M.; Romano, A. [Free University of Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Biasioli, F. [Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all ‘Adige, TN (Italy); Scampicchio, M., E-mail: matteo.scampicchio@unibz.it [Free University of Bolzano, Piazza Università 5, 39100 Bolzano (Italy)

    2016-05-01

    Highlights: • β-carotene was incorporated into PEO-nanofibers by electrospinning. • Properties of the fibers were analyzed by SEM, color analysis, and DSC. • TGA coupled to PTR–ms resulted promising to online-monitoring thermal degradation. • Thermal stability of βc increased after encapsulation into the PEO-nanofibers. - Abstract: β-carotene (βc) was successfully incorporated into electrospun nanofibers of poly-(ethylene oxide) (PEO) with the aim of prolonging its shelf life and thermal stability. The physical and thermal properties of the βc-PEO-nanofibers were determined by scanning electron microscopy (SEM), color analysis, and differential scanning calorimetry (DSC). The nanofibers of PEO and βc-PEO exhibited average fiber diameters of 320 ± 46 and 230 ± 21 nm, with colorimetric coordinates L* = 95.7 ± 2.4 and 89.4 ± 4.6 and b* = −0.5 ± 0.1 and 6.2 ± 3.0 respectively. Thermogravimetric analysis coupled with Proton Transfer–Mass Spectroscopy (TGA/PTR–ms) demonstrated that coated βc inside PEO nanofibers increased thermal stability when compared to standard βc in powder form. In addition, β-carotene in the membranes showed higher stability during storage when compared with β-carotene in solution with a decrease in concentration of 57 ± 4% and 70 ± 2% respectively, thus should extend the shelf life of this compound. Also, TGA coupled with PTR–MS resulted in a promising technique to online-monitoring thermal degradation.

  17. Electrospun poly(lactic acid) based conducting nanofibrous networks

    International Nuclear Information System (INIS)

    Patra, S N; Bhattacharyya, D; Ray, S; Easteal, A J

    2009-01-01

    Multi-functionalised micro/nanostructures of conducting polymers in neat or blended forms have received much attention because of their unique properties and technological applications in electrical, magnetic and biomedical devices. Biopolymer-based conducting fibrous mats are of special interest for tissue engineering because they not only physically support tissue growth but also are electrically conductive, and thus are able to stimulate specific cell functions or trigger cell responses. They are effective for carrying current in biological environments and can thus be considered for delivering local electrical stimuli at the site of damaged tissue to promote wound healing. Electrospinning is an established way to process polymer solutions or melts into continuous fibres with diameter often in the nanometre range. This process primarily depends on a number of parameters, including the type of polymer, solution viscosity, polarity and surface tension of the solvent, electric field strength and the distance between the spinneret and the collector. The present research has included polyaniline (PANi) as the conducting polymer and poly(L-lactic acid) (PLLA) as the biopolymer. Dodecylbenzene sulphonic acid (DBSA) doped PANi and PLLA have been dissolved in a common solvent (mixtures of chloroform and dimethyl formamide (DMF)), and the solutions successfully electrospun. DMF enhanced the dielectric constant of the solvent, and tetra butyl ammonium bromide (TBAB) was used as an additive to increase the conductivity of the solution. DBSA-doped PANi/PLLA mat exhibits an almost bead-free network of nanofibres that have extraordinarily smooth surface and diameters in the range 75 to 100 nm.

  18. Electrospun photosensitive nanofibers: potential for photocurrent therapy in skin regeneration.

    Science.gov (United States)

    Jin, Guorui; Prabhakaran, Molamma P; Kai, Dan; Kotaki, Masaya; Ramakrishna, Seeram

    2013-01-01

    Poly(3-hexylthiophene) (P3HT) is one of the most promising photovoltaic (PV) polymers in photocurrent therapy. A novel photosensitive scaffold for skin tissue engineering was fabricated by blending P3HT with polycaprolactone (PCL) and electrospun to obtain composite PCL/P3HT nanofibers with three different weight ratios of PCL : P3HT (w/w) of 150 : 2 [PCL/P3HT(2)], 150 : 10 [PCL/P3HT(10)] and 150 : 20 [PCL/P3HT(20)]. The photosensitive properties of the blend solutions and the composite nanofibers of PCL/P3HT were investigated. The incident photon-to-electron conversion efficiencies of the PCL/P3HT(2), PCL/P3HT(10), PCL/P3HT(20) were identified as 2.0 × 10(-6), 1.6 × 10(-5) and 2.9 × 10(-5), respectively, which confirm the photosensitive ability of the P3HT-containing scaffolds. The biocompatibility of the scaffold was evaluated by culturing human dermal fibroblasts and the results showed that the proliferation of HDFs under light stimulation on PCL/P3HT(10) was 12.8%, 11.9%, and 11.6% (p ≤ 0.05) higher than the cell growth on PCL, PCL/P3HT(2) and PCL/P3HT(20), respectively. Human dermal fibroblasts cultured under light stimulation on PCL/P3HT(10) not only showed better cell proliferation but also retained cell morphology similar to the phenotype observed on tissue culture plates (control). Our experimental results suggest novel and potential application of an optimized amount of P3HT-containing scaffold, especially PCL/P3HT(10) nanofibrous scaffold in photocurrent therapy for skin regeneration.

  19. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells

    International Nuclear Information System (INIS)

    Carlberg, Bjoern; Liu, Johan; Axell, Mathilda Zetterstroem; Kuhn, H Georg; Nannmark, Ulf

    2009-01-01

    Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Hence, tissue engineering scaffolds intended for CNS repair and rehabilitation have been subject to intense research effort. Electrospun porous scaffolds, mimicking the natural three-dimensional environment of the in vivo extracellular matrix (ECM) and providing physical support, have been identified as promising candidates for CNS tissue engineering. The present study demonstrates in vitro culturing and neuronal differentiation of human embryonic stem cells (hESCs) on electrospun fibrous polyurethane scaffolds. Electrospun scaffolds composed of biocompatible polyurethane resin (Desmopan 9370A, Bayer MaterialScience AG) were prepared with a vertical electrospinning setup. Resulting scaffolds, with a thickness of approximately 150 μm, exhibited high porosity (84%) and a bimodal pore size distribution with peaks at 5-6 and 1 μm. The mean fiber diameter was measured to approximately 360 nm with a standard deviation of 80 nm. The undifferentiated hESC line SA002 (Cellartis AB, Goeteborg, Sweden) was seeded and cultured on the produced scaffolds and allowed propagation and then differentiation for up to 47 days. Cultivation of hESC on electrospun fibrous scaffolds proved successful and neuronal differentiation was observed via standard immunocytochemistry. The results indicate that predominantly dopaminergic tyrosine hydroxylase (TH) positive neurons are derived in co-culture with fibrous scaffolds, in comparison to reference cultures under the same differentiation conditions displaying large proportions of GFAP positive cell types. Scanning electron micrographs confirm neurite outgrowth and connection to adjacent cells, as well as cell attachment to individual fibers of the fibrous scaffold. Consequently, electrospun polyurethane scaffolds have been proven feasible as a substrate for hESC propagation and neuronal differentiation. The physical interaction between cells

  20. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, Bjoern; Liu, Johan [BioNano Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Goeteborg, SE-412 96 (Sweden); Axell, Mathilda Zetterstroem; Kuhn, H Georg [Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Goeteborg, SE-413 45 (Sweden); Nannmark, Ulf, E-mail: bjorn.carlberg@chalmers.s, E-mail: mathilda.zetterstrom@neuro.gu.s, E-mail: georg.kuhn@neuro.gu.s, E-mail: ulf.nannmark@anatcell.gu.s, E-mail: jliu@chalmers.s [Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Goeteborg, SE-405 30 (Sweden)

    2009-08-15

    Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Hence, tissue engineering scaffolds intended for CNS repair and rehabilitation have been subject to intense research effort. Electrospun porous scaffolds, mimicking the natural three-dimensional environment of the in vivo extracellular matrix (ECM) and providing physical support, have been identified as promising candidates for CNS tissue engineering. The present study demonstrates in vitro culturing and neuronal differentiation of human embryonic stem cells (hESCs) on electrospun fibrous polyurethane scaffolds. Electrospun scaffolds composed of biocompatible polyurethane resin (Desmopan 9370A, Bayer MaterialScience AG) were prepared with a vertical electrospinning setup. Resulting scaffolds, with a thickness of approximately 150{mu}m, exhibited high porosity (84%) and a bimodal pore size distribution with peaks at 5-6 and 1{mu}m. The mean fiber diameter was measured to approximately 360 nm with a standard deviation of 80 nm. The undifferentiated hESC line SA002 (Cellartis AB, Goeteborg, Sweden) was seeded and cultured on the produced scaffolds and allowed propagation and then differentiation for up to 47 days. Cultivation of hESC on electrospun fibrous scaffolds proved successful and neuronal differentiation was observed via standard immunocytochemistry. The results indicate that predominantly dopaminergic tyrosine hydroxylase (TH) positive neurons are derived in co-culture with fibrous scaffolds, in comparison to reference cultures under the same differentiation conditions displaying large proportions of GFAP positive cell types. Scanning electron micrographs confirm neurite outgrowth and connection to adjacent cells, as well as cell attachment to individual fibers of the fibrous scaffold. Consequently, electrospun polyurethane scaffolds have been proven feasible as a substrate for hESC propagation and neuronal differentiation. The physical interaction between

  1. An in vitro study of bone cells grown on an electrospun scaffold for bone repair and reconstruction

    CSIR Research Space (South Africa)

    Wepener, I

    2012-10-01

    Full Text Available This presentation focuses on the manufacturing of the electrospun scaffold and the in vitro testing of this scaffold by making use of human cells. This scaffold is a possible candidate for repair and reconstruction of bone tissue....

  2. The metric-affine gravitational theory as the gauge theory of the affine group

    International Nuclear Information System (INIS)

    Lord, E.A.

    1978-01-01

    The metric-affine gravitational theory is shown to be the gauge theory of the affine group, or equivalently, the gauge theory of the group GL(4,R) of tetrad deformations in a space-time with a locally Minkowskian metric. The identities of the metric-affine theory, and the relationship between them and those of general relativity and Sciama-Kibble theory, are derived. (Auth.)

  3. Hirota's solitons in the affine and the conformal affine Toda models

    International Nuclear Information System (INIS)

    Aratyn, H.; Constantinidis, C.P.; Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.

    1993-01-01

    We use Hirota's method formulated as a recursive scheme to construct a complete set of soliton solutions for the affine Toda field theory based on an arbitrary Lie algebra. Our solutions include a new class of solitons connected with two different types of degeneracies encountered in Hirota's perturbation approach. We also derive an universal mass formula for all Hirota's solutions to the affine Toda model valid for all underlying Lie groups. Embedding of the affine Toda model in the conformal affine Toda model plays a crucial role in this analysis. (orig.)

  4. Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive microextraction

    International Nuclear Information System (INIS)

    Bagheri, Habib; Aghakhani, Ali

    2012-01-01

    Highlights: ► Polyaniline–polyamide nanofiber mat was fabricated by electrospinning technology. ► Electrospun nanofiber was used for extraction of chlorobenzenes from aquatic media. ► A method based on headspace adsorptive microextraction and GC–MS was developed. - Abstract: A headspace adsorptive microextraction technique was developed using a novel polyaniline-nylon-6 (PANI-N6) nanofiber sheet, fabricated by electrospinning. The homogeneity and the porosity of the prepared PANI-N6 sheet were studied using the scanning electron microscopy (SEM) and nanofibers diameters were found to be around 200 nm. The novel nanofiber sheet was examined as an extracting medium to isolate some selected chlorobenzenes (CBs), as model compounds, from aquatic media. The extracted analytes were desorbed using μL-amounts of solvent and eventually an aliquot of extractant was injected into gas chromatography–mass spectrometry (GC–MS). Various parameters affecting the extraction and desorption processes were optimized. The developed method proved to be convenient and offers sufficient sensitivity and a good reproducibility. Limits of detection achieved for CBs with the developed analytical procedure ranged from 19 to 33 ng L −1 , while limits of quantification were from 50 to 60 ng L −1 . The relative standard deviations (RSD) at a concentration level of 0.1 ng mL −1 and 1 ng mL −1 were in the range of 8–14% and 5–11% (n = 3), respectively. The calibration curves of analytes were investigated in the range of 50–1000 ng L −1 and R 2 between 0.9739 and 0.9932 were obtained. The developed method was successfully applied to the extraction of selected CBs from tap and river water samples. The relative recovery (RR) percentage obtained for the spiked real water samples at 0.1 ng mL −1 and 1 ng mL −1 level were 93–103% and 95–104%, respectively. The whole procedure showed to be conveniently applicable and quite easy to handle.

  5. Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu [Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of); Aghakhani, Ali [Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Polyaniline-polyamide nanofiber mat was fabricated by electrospinning technology. Black-Right-Pointing-Pointer Electrospun nanofiber was used for extraction of chlorobenzenes from aquatic media. Black-Right-Pointing-Pointer A method based on headspace adsorptive microextraction and GC-MS was developed. - Abstract: A headspace adsorptive microextraction technique was developed using a novel polyaniline-nylon-6 (PANI-N6) nanofiber sheet, fabricated by electrospinning. The homogeneity and the porosity of the prepared PANI-N6 sheet were studied using the scanning electron microscopy (SEM) and nanofibers diameters were found to be around 200 nm. The novel nanofiber sheet was examined as an extracting medium to isolate some selected chlorobenzenes (CBs), as model compounds, from aquatic media. The extracted analytes were desorbed using {mu}L-amounts of solvent and eventually an aliquot of extractant was injected into gas chromatography-mass spectrometry (GC-MS). Various parameters affecting the extraction and desorption processes were optimized. The developed method proved to be convenient and offers sufficient sensitivity and a good reproducibility. Limits of detection achieved for CBs with the developed analytical procedure ranged from 19 to 33 ng L{sup -1}, while limits of quantification were from 50 to 60 ng L{sup -1}. The relative standard deviations (RSD) at a concentration level of 0.1 ng mL{sup -1} and 1 ng mL{sup -1} were in the range of 8-14% and 5-11% (n = 3), respectively. The calibration curves of analytes were investigated in the range of 50-1000 ng L{sup -1} and R{sup 2} between 0.9739 and 0.9932 were obtained. The developed method was successfully applied to the extraction of selected CBs from tap and river water samples. The relative recovery (RR) percentage obtained for the spiked real water samples at 0.1 ng mL{sup -1} and 1 ng mL{sup -1} level were 93-103% and 95-104%, respectively. The whole procedure showed

  6. Gecko-Inspired Electrospun Flexible Fiber Arrays for Adhesion

    Science.gov (United States)

    Najem, Johnny F.

    The ability of geckos to adhere to vertical solid surfaces comes from their remarkable feet with millions of projections terminating in nanometer spatulae. We present a simple yet robust method for fabricating directionally sensitive dry adhesives. By using electrospun nylon 6 nanofiber arrays, we create gecko-inspired dry adhesives, that are electrically insulating, and that show shear adhesion strength of 27 N/cm2 on a glass slide. This measured value is 270% that reported of gecko feet and 97-fold above normal adhesion strength of the same arrays. The data indicate a strong shear binding-on and easy normal lifting-off. This anisotropic strength distribution is attributed to an enhanced shear adhesion strength with decreasing fiber diameter (d) and an optimum performance of nanofiber arrays in the shear direction over a specific range of thicknesses. With use of electrospinning, we report the fabrication of nylon 6 nanofiber arrays that show a friction coefficient (mu) of 11.5. These arrays possess significant shear adhesion strength and low normal adhesion strength. Increasing the applied normal load considerably enhances the shear adhesion strength and mu, irrespective of d and fiber arrays thickness (T). Fiber bending stiffness and fiber surface roughness are considerably decreased with diminishing d while fiber packing density is noticeably increased. These enhancements are proposed to considerably upsurge the shear adhesion strength between nanofiber arrays and a glass slide. The latter upsurge is mainly attributed to a sizeable proliferation in van der Waals (vdW) forces. These nanofiber arrays can be alternatively bound-on and lifted-off over a glass slide with a trivial decrease in the initial mu and adhesion strength. By using selective coating technique, we have also created hierarchical structures having closely packed nanofibers with d of 50 nm. We determine the effects of applied normal load, fiber surface roughness, loading angle, d, T, and repeated

  7. On Affine Fusion and the Phase Model

    Directory of Open Access Journals (Sweden)

    Mark A. Walton

    2012-11-01

    Full Text Available A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n Wess-Zumino-Novikov-Witten (WZNW conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.

  8. Affine coherent states and Toeplitz operators

    Science.gov (United States)

    Hutníková, Mária; Hutník, Ondrej

    2012-06-01

    We study a parameterized family of Toeplitz operators in the context of affine coherent states based on the Calderón reproducing formula (= resolution of unity on L_2( {R})) and the specific admissible wavelets (= affine coherent states in L_2( {R})) related to Laguerre functions. Symbols of such Calderón-Toeplitz operators as individual coordinates of the affine group (= upper half-plane with the hyperbolic geometry) are considered. In this case, a certain class of pseudo-differential operators, their properties and their operator algebras are investigated. As a result of this study, the Fredholm symbol algebras of the Calderón-Toeplitz operator algebras for these particular cases of symbols are described. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  9. Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs

    Science.gov (United States)

    Reis, Tiago C.; Correia, Ilídio J.; Aguiar-Ricardo, Ana

    2013-07-01

    The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive electrostatic forces between the positively charged aerial fibers and the already collected ones, which tend to acquire a negatively charged network oriented towards the nozzle. The in situ polarization degree is strengthened by higher amounts of clustered fibers, and therefore the initial high density fibrous regions are the preliminary motifs for the self-assembly mechanism. As such regions increase their in situ polarization electrostatic repulsive forces will appear, favoring a competitive growth of these self-assembled fibrous clusters. Highly polarized regions will evidence higher distances between consecutive micro-assembled fibers (MAFs). Different processing parameters - deposition time, electric field intensity, concentration of polymer solution, environmental temperature and relative humidity - were evaluated in an attempt to control material's design.The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive

  10. The dynamics of metric-affine gravity

    International Nuclear Information System (INIS)

    Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano

    2011-01-01

    Highlights: → The role and the dynamics of the connection in metric-affine theories is explored. → The most general second order action does not lead to a dynamical connection. → Including higher order invariants excites new degrees of freedom in the connection. → f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy

  11. Phosphopeptide enrichment by immobilized metal affinity chromatography

    DEFF Research Database (Denmark)

    Thingholm, Tine E.; Larsen, Martin R.

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively...... charged metal ions such as Fe3+, Ga3+, Al3+, Zr4+, and Ti4+ has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from...

  12. Control and estimation of piecewise affine systems

    CERN Document Server

    Xu, Jun

    2014-01-01

    As a powerful tool to study nonlinear systems and hybrid systems, piecewise affine (PWA) systems have been widely applied to mechanical systems. Control and Estimation of Piecewise Affine Systems presents several research findings relating to the control and estimation of PWA systems in one unified view. Chapters in this title discuss stability results of PWA systems, using piecewise quadratic Lyapunov functions and piecewise homogeneous polynomial Lyapunov functions. Explicit necessary and sufficient conditions for the controllability and reachability of a class of PWA systems are

  13. New unitary affine-Virasoro constructions

    International Nuclear Information System (INIS)

    Halpern, M.B.; Kiritsis, E.; Obers, N.A.; Poratti, M.; Yamron, J.P.

    1990-01-01

    This paper reports on a quasi-systematic investigation of the Virasoro master equation. The space of all affine-Virasoro constructions is organized by K-conjugation into affine-Virasoro nests, and an estimate of the dimension of the space shows that most solutions await discovery. With consistent ansatze for the master equation, large classes of new unitary nests are constructed, including quadratic deformation nests with continuous conformal weights, and unitary irrational central charge nests, which may dominate unitary rational central charge on compact g

  14. Applications of Affine and Weyl geometry

    CERN Document Server

    García-Río, Eduardo; Nikcevic, Stana

    2013-01-01

    Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannia

  15. Crossing Chris: Some Markerian Affinities

    Directory of Open Access Journals (Sweden)

    Adrian Martin

    2010-01-01

    -pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Abstract (E: This essay creatively explores a group of artists, writers, and other special individuals whose work or life story can be described as having an intriguing affinity with the protean career of Chris Marker. Avoiding the ‘usual suspects’ (such as Godard or Sebald, it discusses gossip columnist Milt Machlin, record collector Harry Smith, painter Gianfranco Baruchello, writer-filmmaker Edgardo Cozarinsky, and several others. From this constellation, a particular view of Markerian poetics emerges, touching upon the meanings of anonymity, storytelling, history and archiving.

     

    Abstract (F: Cet essai brosse de manière créative le portrait d’un groupe d'artistes, d'écrivains et d'autres personnes particulières dont le travail ou la biographie peuvent être décrits comme montrant une étrange mais certaine connivence avec la carrière protéiforme de Chris Marker. Evitant les lieux communs (comme Godard ou Sebald, cet article trace des références moins attendues :

  16. Affinity Programs and the Real Estate Brokerage Industry

    OpenAIRE

    G Stacy Sirmans; David A. Macpherson

    2001-01-01

    This study surveys active real estate brokers obtaining information on involvement in affinity programs and referral/relocation networks. Some results regarding affinity involvement are: (a) 13% of respondents reported affinity affilliations, 75% reported no affiliations, and 12% indicated plans to become involved within the next year; (b) about half having affinity affiliations were involved with 2-4 groups; (c) affinity relationships were most often with membership organizations, corporatio...

  17. Polynomials associated with equilibria of affine Toda-Sutherland systems

    International Nuclear Information System (INIS)

    Odake, S; Sasaki, R

    2004-01-01

    An affine Toda-Sutherland system is a quasi-exactly solvable multi-particle dynamics based on an affine simple root system. It is a 'cross' between two well-known integrable multi-particle dynamics, an affine Toda molecule (exponential potential, periodic nearest-neighbour interaction) and a Sutherland system (inverse sine-square interaction). Polynomials describing the equilibrium positions of affine Toda-Sutherland systems are determined for all affine simple root systems

  18. Nitric Oxide-Releasing Silica Nanoparticle-Doped Polyurethane Electrospun Fibers

    Science.gov (United States)

    Koh, Ahyeon; Carpenter, Alexis W.; Slomberg, Danielle L.; Schoenfisch, Mark H.

    2013-01-01

    Electrospun polyurethane fibers doped with nitric oxide (NO)-releasing silica particles are presented as novel macromolecular scaffolds with prolonged NO-release and high porosity. Fiber diameter (119–614 nm) and mechanical strength (1.7–34.5 MPa of modulus) were varied by altering polyurethane type and concentration, as well as the NO-releasing particle composition, size, and concentration. The resulting NO-releasing electrospun nanofibers exhibited ~83% porosity with flexible plastic or elastomeric behavior. The use of N-diazeniumdiolate- or S-nitrosothiol-modified particles yielded scaffolds exhibiting a wide range of NO release totals and durations (7.5 nmol mg−1–0.12 μmol mg−1 and 7 h to 2 weeks, respectively). The application of NO-releasing porous materials as coating for subcutaneous implants may improve tissue biocompatibility by mitigating the foreign body response and promoting cell integration. PMID:23915047

  19. All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Laforgue, Alexis [Functional Polymer Systems Group, Industrial Materials Institute, National Research Council Canada, 75, de Mortagne Blvd, Boucherville, Quebec J4B 6Y4 (Canada)

    2011-01-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers were obtained by the combination of electrospinning and vapor-phase polymerization. The fibers had diameters around 350 nm, and were soldered at most intersections, providing a strong dimensional stability to the mats. The nanofiber mats demonstrated very high conductivity (60 {+-} 10 S cm{sup -1}, the highest value reported so far for polymer nanofibers) as well as improved electrochemical properties, due to the ultraporous nature of the electrospun mats. The mats were incorporated into all-textile flexible supercapacitors, using carbon cloths as the current collectors and electrospun polyacrylonitrile (PAN) nanofibrous membranes as the separator. The textile layers were stacked and embedded in a solid electrolyte containing an ionic liquid and PVDF-co-HFP as the host polymer. The resulting supercapacitors were totally flexible and demonstrated interesting and stable performances in ambient conditions. (author)

  20. Bladder tissue engineering using biocompatible nanofibrous electrospun constructs: feasibility and safety investigation.

    Science.gov (United States)

    Shakhssalim, Nasser; Dehghan, Mohammad Mehdi; Moghadasali, Reza; Soltani, Mohammad Hossein; Shabani, Iman; Soleimani, Masoud

    2012-01-01

    To investigate the feasibility and safety of using biocompatible, nanofibrous electrospun polycaprolactone (PCL) and combination of polylactic acid (PLLA) and PCL mats in a canine model. Plasma-treated electrospun unseeded mats were implanted in three dogs. The first dog was sacrificed after 3 months and the second and third ones after 4 months, and then, the graft was examined macroscopically with subsequent morphological and histochemical evaluation. Both films showed high levels of cell infiltration and tissue formation, but body response to PLLA/PCL mat in comparison to PCL mat was very low. All three implantation models showed the same light microscopic morphology, immunohistochemistry, and scanning electron microscopy results; nevertheless, only the PCL/PLLA model showed favorable clinical results. Based on these data, nanofibrous PLLA/PCL scaffolding could be a suitable material for the bladder tissue engineering; however, it deserves further investigations.

  1. Analysis of the Comprehensive Tensile Relationship in Electrospun Silk Fibroin/Polycaprolactone Nanofiber Membranes.

    Science.gov (United States)

    Yin, Yunlei; Pu, Dandan; Xiong, Jie

    2017-12-07

    The mechanical properties of electrospun nanofiber membranes are critical for their applications. A clear understanding of the mechanical properties that result from the characteristics of the individual fiber and membrane microstructure is vital in the design of fiber composites. In this reported study, silk fibroin (SF)/polycaprolactone (PCL) composite nanofiber membranes were preparedusing an electrostatic spinning technology. The nanofiber orientation distribution (FOD) of the membrane was analyzed using multi-layer image fusion technology, and the results indicated the presence of an approximately uniform distribution of fibers in the electrospun membranes. The relationship between the single nanofiber and the membrane was established by analyzing the geometrical structure of the cell by employing a representative volume element (RVE) analysis method. The mechanical properties of the 272 nm diameter SF/PCL composite fibers were then predicted using the developed model.

  2. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2016-01-01

    , and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties...... such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate......Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing...

  3. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Matveeva, V. G., E-mail: matveeva-vg@mail.ru; Antonova, L. V., E-mail: antonova.la@mail.ru; Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S. [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, 650002 (Russian Federation)

    2015-10-27

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.

  4. Rapid prototyping of nanofluidic systems using size-reduced electrospun nanofibers for biomolecular analysis.

    Science.gov (United States)

    Park, Seung-Min; Huh, Yun Suk; Szeto, Kylan; Joe, Daniel J; Kameoka, Jun; Coates, Geoffrey W; Edel, Joshua B; Erickson, David; Craighead, Harold G

    2010-11-05

    Biomolecular transport in nanofluidic confinement offers various means to investigate the behavior of biomolecules in their native aqueous environments, and to develop tools for diverse single-molecule manipulations. Recently, a number of simple nanofluidic fabrication techniques has been demonstrated that utilize electrospun nanofibers as a backbone structure. These techniques are limited by the arbitrary dimension of the resulting nanochannels due to the random nature of electrospinning. Here, a new method for fabricating nanofluidic systems from size-reduced electrospun nanofibers is reported and demonstrated. As it is demonstrated, this method uses the scanned electrospinning technique for generation of oriented sacrificial nanofibers and exposes these nanofibers to harsh, but isotropic etching/heating environments to reduce their cross-sectional dimension. The creation of various nanofluidic systems as small as 20 nm is demonstrated, and practical examples of single biomolecular handling, such as DNA elongation in nanochannels and fluorescence correlation spectroscopic analysis of biomolecules passing through nanochannels, are provided.

  5. Effect Of Ethylene Oxide, Autoclave and Ultra Violet Sterilizations On Surface Topography Of Pet Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Sebnem DUZYER

    2016-11-01

    Full Text Available The aim of this study to investigate the effects of different sterilization methods on electrospun polyester. Ethylene oxide (EO, autoclave (AU and ultraviolet (UV sterilization methods were applied to electrospun fibers produced from polyethylene terephthalate (PET solutions with concentrations of 10, 15 and 20 wt.%. The surface characteristics of the fibers were examined by scanning electron microscope (SEM, atomic force microscope (AFM, surface pore size studies and contact angle measurements. Differential scanning calorimetry (DSC tests were carried out to characterize the thermal properties. Fourier Transform Infrared spectroscopy (FTIR tests were performed to analyze the micro structural properties. SEM studies showed that different sterilization methods made significant changes on the surfaces of the fibers depending on the PET concentration. Although the effects were decreased with the increasing polymer concentration, the fiber structure was damaged especially with the EO sterilization. The contact angle values were decreased with the UV sterilization method the most.

  6. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages.

    Science.gov (United States)

    Xie, Jingwei; Willerth, Stephanie M; Li, Xiaoran; Macewan, Matthew R; Rader, Allison; Sakiyama-Elbert, Shelly E; Xia, Younan

    2009-01-01

    Due to advances in stem cell biology, embryonic stem (ES) cells can be induced to differentiate into a particular mature cell lineage when cultured as embryoid bodies. Although transplantation of ES cells-derived neural progenitor cells has been demonstrated with some success for either spinal cord injury repair in small animal model, control of ES cell differentiation into complex, viable, higher ordered tissues is still challenging. Mouse ES cells have been induced to become neural progenitors by adding retinoic acid to embryoid body cultures for 4 days. In this study, we examine the use of electrospun biodegradable polymers as scaffolds not only for enhancing the differentiation of mouse ES cells into neural lineages but also for promoting and guiding the neurite outgrowth. A combination of electrospun fiber scaffolds and ES cells-derived neural progenitor cells could lead to the development of a better strategy for nerve injury repair.

  7. Controlled Morphology and Mechanical Characterisation of Electrospun Cellulose Acetate Fibre Webs

    Directory of Open Access Journals (Sweden)

    B. Ghorani

    2013-01-01

    Full Text Available The purpose was to interpret the varying morphology of electrospun cellulose acetate (CA fibres produced from single and binary solvent systems based on solubility parameters to identify processing conditions for the production of defect-free CA fibrous webs by electrospinning. The Hildebrand solubility parameter ( and the radius of the sphere in the Hansen space ( of acetone, acetic acid, water, N,N-dimethylacetamide (DMAc, methanol, and chloroform were examined and discussed for the electrospinning of CA. The Hildebrand solubility parameter ( of acetone and DMAc were found to be within an appropriate range for the dissolution of CA. The suitability of the binary solvent system of acetone: DMAc (2 : 1 for the continuous electrospinning of defect-free CA fibres was confirmed. Electrospun webs exhibited improved tensile strength and modulus after heat and alkali treatment (deacetylation of the as-spun material, and no major fibre morphological degradation occurred during the deacetylation process.

  8. Delivery of Therapeutic Proteins Using Electrospun Fibers-Recent Developments and Current Challenges.

    Science.gov (United States)

    Seif, Salem; Planz, Viktoria; Windbergs, Maike

    2017-10-01

    Proteins play a vital role within the human body by regulating various functions and even serving as structural constituent of many body parts. In this context, protein-based therapeutics have attracted a lot of attention in the last few decades as potential treatment of different diseases. Due to the steadily increasing interest in protein-based therapeutics, different dosage forms were investigated for delivering such complex macromolecules to the human body. Here, electrospun fibers hold a great potential for embedding proteins without structural damage and for controlled release of the protein for therapeutic applications. This review provides a comprehensive overview of the current state of protein-based carrier systems using electrospun fibers, with special emphasis on discussing their potential and key challenges in developing such therapeutic strategies, along with a prospective view of anticipated future directions. © 2017 Deutsche Pharmazeutische Gesellschaft.

  9. Polarized emission from CsPbBr3 nanowire embedded-electrospun PU fibers

    Science.gov (United States)

    Güner, Tuğrul; Topçu, Gökhan; Savacı, Umut; Genç, Aziz; Turan, Servet; Sari, Emre; Demir, Mustafa M.

    2018-04-01

    Interest in all-inorganic halide perovskites has been increasing dramatically due to their high quantum yield, band gap tunability, and ease of fabrication in compositional and geometric diversity. In this study, we synthesized several hundreds of nanometer long and ˜4 nm thick CsPbBr 3 nanowires (NWs). They were then integrated into electrospun polyurethane (PU) fibers to examine the polarization behavior of the composite fiber assembly. Aligned electrospun fibers containing CsPbBr 3 NWs showed a remarkable increase in the degree of polarization from 0.17-0.30. This combination of NWs and PU fibers provides a promising composite material for various applications such as optoelectronic devices and solar cells.

  10. Polarized Emission from CsPbBr3 Nanowires Embedded-Electrospun PU fibers.

    Science.gov (United States)

    Güner, Tugrul; Topçu, Gökhan; Savacı, Umut; Genç, Aziz; Turan, Servet; Sarı, Emre; Demir, Mustafa M

    2018-01-29

    The interest in all-inorganic halide perovskites has been increasing dramatically due to their high quantum yield, band gap tunability, and ease of fabrication in compositional and geometric diversity. In this study, we synthesized µm long and ~4 nm thick CsPbBr3 nanowires (NWs). They were, then, integrated into electrospun polyurethane (PU) fibers to examine polarization behavior of the composite fiber assembly. Aligned electrospun fibers containing CsPbBr3 nanowires show remarkable increase in degree of polarization from 0.17 to 0.30. This combination of NWs and PU fibers provides a promising composite material for various applications such as optoelectronic devices and solar cells. © 2018 IOP Publishing Ltd.

  11. Electrospun nitrocellulose and nylon: Design and fabrication of novel high performance platforms for protein blotting applications

    Directory of Open Access Journals (Sweden)

    Bowlin Gary L

    2007-10-01

    Full Text Available Abstract Background Electrospinning is a non-mechanical processing strategy that can be used to process a variety of native and synthetic polymers into highly porous materials composed of nano-scale to micron-scale diameter fibers. By nature, electrospun materials exhibit an extensive surface area and highly interconnected pore spaces. In this study we adopted a biological engineering approach to ask how the specific unique advantages of the electrospinning process might be exploited to produce a new class of research/diagnostic tools. Methods The electrospinning properties of nitrocellulose, charged nylon and blends of these materials are characterized. Results Nitrocellulose electrospun from a starting concentration of Conclusion The flexibility afforded by electrospinning process makes it possible to tailor blotting membranes to specific applications. Electrospinning has a variety of potential applications in the clinical diagnostic field of use.

  12. Fatty acid and drug binding to a low-affinity component of human serum albumin, purified by affinity chromatography

    DEFF Research Database (Denmark)

    Vorum, H; Pedersen, A O; Honoré, B

    1992-01-01

    Binding equilibria for decanoate to a defatted, commercially available human serum albumin preparation were investigated by dialysis exchange rate determinations. The binding isotherm could not be fitted by the general binding equation. It was necessary to assume that the preparation was a mixture...... of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...... and drug binding abilities of the low-affinity component. The fatty acids decanoate, laurate, myristate and palmitate were bound with higher affinity to the mixture than to the low-affinity component. Diazepam was bound with nearly the same affinity to the low-affinity component as to the albumin mixture...

  13. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.

    Science.gov (United States)

    Kennedy, Kelsey M; Bhaw-Luximon, Archana; Jhurry, Dhanjay

    2017-03-01

    Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and

  14. Compound immobilization and drug-affinity chromatography.

    Science.gov (United States)

    Rix, Uwe; Gridling, Manuela; Superti-Furga, Giulio

    2012-01-01

    Bioactive small molecules act through modulating a yet unpredictable number of targets. It is therefore of critical importance to define the cellular target proteins of a compound as an entry point to understanding its mechanism of action. Often, this can be achieved in a direct fashion by chemical proteomics. As with any affinity chromatography, immobilization of the bait to a solid support is one of the earliest and most crucial steps in the process. Interfering with structural features that are important for identification of a target protein will be detrimental to binding affinity. Also, many molecules are sensitive to heat or to certain chemicals, such as acid or base, and might be destroyed during the process of immobilization, which therefore needs to be not only efficient, but also mild. The subsequent affinity chromatography step needs to preserve molecular and conformational integrity of both bait compound and proteins in order to result in the desired specific enrichment while ensuring a high level of compatibility with downstream analysis by mass spectrometry. Thus, the right choice of detergent, buffer, and protease inhibitors is also essential. This chapter describes a widely applicable procedure for the immobilization of small molecule drugs and for drug-affinity chromatography with subsequent protein identification by mass spectrometry.

  15. Fan Affinity Laws from a Collision Model

    Science.gov (United States)

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  16. It's the peptide-MHC affinity, stupid.

    Science.gov (United States)

    Kammertoens, Thomas; Blankenstein, Thomas

    2013-04-15

    Adoptively transferred T cells can reject large established tumors, but recurrence due to escape variants frequently occurs. In this issue of Cancer Cell, Engels et al. demonstrate that the affinity of the target peptide to the MHC molecule determines whether large tumors will relapse following adoptive T cell therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. General super Virasoro construction on affine G

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-10-01

    We consider a bosonic current algebra and a theory of free fermions and construct a general N = 1 super Virasoro current algebra. We obtain a master-set of equations which comprises the bosonic master equation for general Virasoro construction on affine G. As an illustration we study the case of the group SU(2). (author). 13 refs

  18. Effects of short fiber reinforcement and mean stress on tensile fatigue strength characteristics of polyethersulfone; Tansen`i kyoka porieterusaruhon no hippari hiro tokusei ni oyobosu heikin oryoku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Furue, H.; Nonaka, K. [Mechanical Engineering Lab., Tsukuba, Ibaraki (Japan)

    1996-01-15

    Thermoplastics are often reinforced with short fibers with aims of improvement of their strengths, rigidities and hardness or maintenance of their dimensional stabilities. Such short fiber reinforced plastic materials have more expectation for high performance plastics. Authors already examined of some effects of reinforced fiber and of orientation in injection molding on flexural fatigue characteristics of the injection-molded high performance thermoplastic materials. However, the examination of short fiber reinforced effects on fatigue strength characteristics was not always sufficient. In this study, in order to obtain a guiding principle for fatigue resistant design of the short fiber reinforced injection molding materials, polyethersulfones (PES) was examined on its tensile fatigue strength and an effect of short fiber reinforcement for improvement of its fundamental dynamic properties on its fatigue characteristics. Especially, its fatigue life characteristics was elucidated mainly on relationship of mean stress, stress amplitude and number of repeating fracture in tensile fatigue behavior. 10 refs., 15 figs., 2 tabs.

  19. Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold

    Directory of Open Access Journals (Sweden)

    Esmaeil Mirzaei

    2014-04-01

    Full Text Available   Objective(s: To improve water stability of electrospun chitosan/ Polyethylene oxide (PEO nanofibers, genipin, a biocompatible and nontoxic agent, was used to crosslink chitosan based nanofibers.   Materials and Methods: Different amounts of genipin were added to the chitosan/PEO solutions, chitosan/PEO weight ratio 90/10 in 80 % acetic acid, and the solutions were then electrospun to form nanofibers. The spun nanofibers were exposed to water vapor to complete crosslinking. The nanofibrous membranes were subjected to detailed analysis by scanning electron microscopy (SEM, Fourier transform infrared-attenuated total reflection (FTIR-ATR spectroscopy, swelling test, MTT cytotoxicity, and cell attachment. Results: SEM images of electrospun mats showed that genipin-crosslinked nanofibers retained their fibrous structure after immerging in PBS (pH=7.4 for 24 hours, while the uncrosslinked samples lost their fibrous structure, indicating the water stability of genipin-crosslinked nanofibers. The genipin-crosslinked mats also showed no significant change in swelling ratio in comparison with uncrosslinked ones. FTIR-ATR spectrum of uncrosslinked and genipin-crosslinked chitosan nanofibers revealed the reaction between genipin and amino groups of chitosan. Cytotoxicity of genipin-crosslinked nanofibers was examined by MTT assay on human fibroblast cells in the presence of nanofibers extraction media. The genipin-crosslinked nanofibers did not show any toxic effects on fibroblast cells at the lowest and moderate amount of genipin. The fibroblast cells also showed a good adhesion on genipin-crosslinked nanofibers. Conclusion: This electrospun matrix would be used for biomedical applications such as wound dressing and scaffold for tissue engineering without the concern of toxicity.

  20. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Kim, Hyunryung; Che, Lihua; Ha, Yoon; Ryu, WonHyoung

    2014-01-01

    Electrospun silk fibroin (SF) scaffolds provide large surface area, high porosity, and interconnection for cell adhesion and proliferation and they may replace collagen for many tissue engineering applications. Despite such advantages, electrospun SF scaffolds are still limited as bone tissue replacement due to their low mechanical strengths. While enhancement of mechanical strengths by incorporating inorganic ceramics into polymers has been demonstrated, electrospinning of a mixture of SF and inorganic ceramics such as hydroxyapatite is challenging and less studied due to the aggregation of ceramic particles within SF. In this study, we aimed to enhance the mechanical properties of electrospun SF scaffolds by uniformly dispersing hydroxyapatite (HAp) nanoparticles within SF nanofibers. HAp nanoaprticles were modified by γ-glycidoxypropyltrimethoxysilane (GPTMS) for uniform dispersion and enhanced interfacial bonding between HAp and SF fibers. Optimal conditions for electrospinning of SF and GPTMS-modified HAp nanoparticles were identified to achieve beadless nanofibers without any aggregation of HAp nanoparticles. The MTT and SEM analysis of the osteoblasts-cultured scaffolds confirmed the biocompatibility of the composite scaffolds. The mechanical properties of the composite scaffolds were analyzed by tensile tests for the scaffolds with varying contents of HAp within SF fibers. The mechanical testing showed the peak strengths at the HAp content of 20 wt.%. The increase of HAp content up to 20 wt.% increased the mechanical properties of the composite scaffolds, while further increase above 20 wt.% disrupted the polymer chain networks within SF nanofibers and weakened the mechanical strengths. - Highlights: • Electrospun composite silk fibroin scaffolds were mechanically-reinforced. • GPTMS enhanced hydroxyapatite distribution in silk fibroin nanofibers. • Mechanical property of composite scaffolds increased up to 20% of hydroxyapatite. • Composite

  1. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.

    Science.gov (United States)

    Şenel Ayaz, H Gözde; Perets, Anat; Ayaz, Hasan; Gilroy, Kyle D; Govindaraj, Muthu; Brookstein, David; Lelkes, Peter I

    2014-10-01

    For patients with end-stage heart disease, the access to heart transplantation is limited due to the shortage of donor organs and to the potential for rejection of the donated organ. Therefore, current studies focus on bioengineering approaches for creating biomimetic cardiac patches that will assist in restoring cardiac function, by repairing and/or regenerating the intrinsically anisotropic myocardium. In this paper we present a simplified, straightforward approach for creating bioactive anisotropic cardiac patches, based on a combination of bioengineering and textile-manufacturing techniques in concert with nano-biotechnology based tissue-engineering stratagems. Using knitted conventional textiles, made of cotton or polyester yarns as template targets, we successfully electrospun anisotropic three-dimensional scaffolds from poly(lactic-co-glycolic) acid (PLGA), and thermoplastic polycarbonate-urethane (PCU, Bionate(®)). The surface topography and mechanical properties of textile-templated anisotropic scaffolds significantly differed from those of scaffolds electrospun from the same materials onto conventional 2-D flat-target electrospun scaffolds. Anisotropic textile-templated scaffolds electrospun from both PLGA and PCU, supported the adhesion and proliferation of H9C2 cardiac myoblasts cell line, and guided the cardiac tissue-like anisotropic organization of these cells in vitro. All cell-seeded PCU scaffolds exhibited mechanical properties comparable to those of a human heart, but only the cells on the polyester-templated scaffolds exhibited prolonged spontaneous synchronous contractility on the entire engineered construct for 10 days in vitro at a near physiologic frequency of ∼120 bpm. Taken together, the methods described here take advantage of straightforward established textile manufacturing strategies as an efficient and cost-effective approach to engineering 3D anisotropic, elastomeric PCU scaffolds that can serve as a cardiac patch. Copyright

  2. Mechanical properties of electrospun PCL scaffold under in vitro and accelerated degradation conditions

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Vange, Jakob; Nielsen, Lene Feldskov

    2014-01-01

    Within recent years, researchers have looked into using polycaprolactone (PCL) as a synthetic biodegradable scaffold for tissue engineering purposes. This study investigated the mechanical properties of an electrospun PCL, while being exposed to physiological fluids at 37C (in vitro conditions) w...... in buffer (pH 12). The accelerated study showed a linear decrease in both elastic modulus and yield stress as a function of degradation time....

  3. An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite

    Science.gov (United States)

    Unal, Betul; Yalcinkaya, Esra Evrim; Demirkol, Dilek Odaci; Timur, Suna

    2018-06-01

    Diagnostic techniques based on biomolecules have huge a potential to be applied in the application in various areas such as food/beverage industries, diseases diagnostics, monitoring of bio-processes and environmental pollutants. Immobilization of biomolecules on a transducer is the key parameter to being able to prepare a highly stable diagnostic tests. Electrospun nanofibers are a good alternative to immobilize biomolecules. Here, electrospun nanofibers based on an organoclay were used to design the first generation amperometric enzyme biosensor. PAMAM G2 dendrimers were used to intercalate montmorillonite clay (Mt) and then the modification of Mt by PAMAM was characterized using FTIR, XRD, TGA and zeta potential measurements. After that nanofibers were prepared by electrospinning Mt and PAMAM-Mt using poly(vinyl) alcohol (PVA) as an auxiliary polymer and the formed PVA/PAMAM-Mt electrospun nanofibers were proved by SEM, TEM and AFM techniques. Finally, pyranose oxidases (PyOx) were immobilized on a glassy carbon electrode surface, which was modified using the PVA/PAMAM-Mt electrospun nanofibers. Amperometric measurements were carried out using buffer solution at -0.7 V under stirring conditions. The linear response for glucose was from 0.005 mM to 0.25 mM using PVA/Mt/PyOx and PVA/PAMAM-Mt/PyOx biosensors. The limit of detection was 0.7 μM glucose with PVA/PAMAM-Mt/PyOx biosensor. To detect glucose in real sample, measurements were carried out using soft drink cola as a substrate instead of glucose.

  4. Evaluation of proanthocyanidin-crosslinked electrospun gelatin nanofibers for drug delivering system

    International Nuclear Information System (INIS)

    Huang, Chiung-Hua; Chi, Chin-Ying; Chen, Yueh-Sheng; Chen, Kuo-Yu; Chen, Pei-Lain; Yao, Chun-Hsu

    2012-01-01

    Electrospun nanofibers are excellent candidates for various biomedical applications. We successfully fabricated proanthocyanidin‐crosslinked gelatin electrospun nanofibers. Proanthocyanidin, a low cytotoxic collagen crosslinking reagent, increased the gelatin crosslinking percentage in the nanofibers from 53% to 64%. The addition of proanthocyanidin kept the nanofibers from swelling, and, thus, made the fibers more stable in the aqueous state. The compatibility and the release behavior of the drug in the nanofibers were examined using magnesium ascorbyl phosphate as the model drug. Proanthocyanidin also promoted drug loading and kept the drug release rate constant. These properties make the proanthocyanidin‐crosslinked gelatin nanofibers an excellent material for drug delivery. In the cell culture study, L929 fibroblast cells had a significantly higher proliferation rate when cultured with the gelatin/proanthocyanidin blended nanofibers. This characteristic showed that proanthocyanidin‐crosslinked gelatin electrospun nanofibers could potentially be employed as a wound healing material by increasing cell spreading and proliferation. - Highlights: ► Proanthocyanidin‐crosslinked gelatin nanofibers (GEL/PA) is synthesized. ► Proanthocyanidin promoted drug loading and kept the drug release rate constant. ► The GEL/PA nanofibers accelerate fibroblast cell proliferation. ► The GEL/PA nanofibers increase the drug loading efficiency.

  5. Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy.

    Science.gov (United States)

    Yang, Haoqi; Jiang, Shaohua; Fang, Hong; Hu, Xiaowu; Duan, Gaigai; Hou, Haoqing

    2018-07-05

    Quantitative explanation on the improved mechanical properties of aligned electrospun polyimide (PI) nanofibers as the increased imidization temperatures is highly required. In this work, polarized FT-IR spectroscopy is applied to solve this problem. Based on the polarized FT-IR spectroscopy and the molecular model in the fibers, the length of the repeat unit of PI molecule, the angle between the fiber axis and the symmetric stretching direction of carbonyl group on the imide ring, and the angle between the PI molecular axis and fiber axis are all investigated. The Mark-Howink equation is used to calculate the number-average molar mass of PI molecules. The orientation states of PI molecules in the electrospun nanofibers are studied from the number-average molar mass of PI molecules and the average fiber diameter. Quantitative analysis of the orientation factor of PI molecules in the electrospun nanofibers is performed by polarized FT-IR spectroscopy. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. In vivo evaluation of electrospun polycaprolactone graft for anterior cruciate ligament engineering.

    Science.gov (United States)

    Petrigliano, Frank A; Arom, Gabriel A; Nazemi, Azadeh N; Yeranosian, Michael G; Wu, Benjamin M; McAllister, David R

    2015-04-01

    The anterior cruciate ligament (ACL) is critical for the structural stability of the knee and its injury often requires surgical intervention. Because current reconstruction methods using autograft or allograft tissue suffer from donor-site morbidity and limited supply, there has been emerging interest in the use of bioengineered materials as a platform for ligament reconstruction. Here, we report the use of electrospun polycaprolactone (PCL) scaffolds as a candidate platform for ACL reconstruction in an in vivo rodent model. Electrospun PCL was fabricated and laser cut to facilitate induction of cells and collagen deposition and used to reconstruct the rat ACL. Histological analysis at 2, 6, and 12 weeks postimplantation revealed biological integration, minimal immune response, and the gradual infiltration of collagen in both the bone tunnel and intra-articular regions of the scaffold. Biomechanical testing demonstrated that the PCL graft failure load and stiffness at 12 weeks postimplantation (13.27±4.20N, 15.98±5.03 N/mm) increased compared to time zero testing (3.95±0.33N, 1.95±0.35 N/mm). Taken together, these results suggest that electrospun PCL serves as a biocompatible graft for ACL reconstruction with the capacity to facilitate collagen deposition.

  7. Preliminary investigation of airgap electrospun silk-fibroin-based structures for ligament analogue engineering.

    Science.gov (United States)

    Sell, S A; McClure, M J; Ayres, C E; Simpson, D G; Bowlin, G L

    2011-01-01

    The process of electrospinning has proven to be highly beneficial for use in a number of tissue-engineering applications due to its ease of use, flexibility and tailorable properties. There have been many publications on the creation of aligned fibrous structures created through various forms of electrospinning, most involving the use of a metal target rotating at high speeds. This work focuses on the use of a variation known as airgap electrospinning, which does not use a metal collecting target but rather a pair of grounded electrodes equidistant from the charged polymer solution to create highly aligned 3D structures. This study involved a preliminary investigation and comparison of traditionally and airgap electrospun silk-fibroin-based ligament constructs. Structures were characterized with SEM and alignment FFT, and underwent porosity, permeability, and mechanical anisotropy evaluation. Preliminary cell culture with human dermal fibroblasts was performed to determine the degree of cellular orientation and penetration. Results showed airgap electrospun structures to be anisotropic with significantly increased porosity and cellular penetration compared to their traditionally electrospun counterparts.

  8. Braided and Stacked Electrospun Nanofibrous Scaffolds for Tendon and Ligament Tissue Engineering.

    Science.gov (United States)

    Rothrauff, Benjamin B; Lauro, Brian B; Yang, Guang; Debski, Richard E; Musahl, Volker; Tuan, Rocky S

    2017-05-01

    Tendon and ligament injuries are a persistent orthopedic challenge given their poor innate healing capacity. Nonwoven electrospun nanofibrous scaffolds composed of polyesters have been used to mimic the mechanics and topographical cues of native tendons and ligaments. However, nonwoven nanofibers have several limitations that prevent broader clinical application, including poor cell infiltration, as well as tensile and suture-retention strengths that are inferior to native tissues. In this study, multilayered scaffolds of aligned electrospun nanofibers of two designs-stacked or braided-were fabricated. Mechanical properties, including structural and mechanical properties and suture-retention strength, were determined using acellular scaffolds. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on scaffolds for up to 28 days, and assays for tenogenic differentiation, histology, and biochemical composition were performed. Braided scaffolds exhibited improved tensile and suture-retention strengths, but reduced moduli. Both scaffold designs supported expression of tenogenic markers, although the effect was greater on braided scaffolds. Conversely, cell infiltration was superior in stacked constructs, resulting in enhanced cell number, total collagen content, and total sulfated glycosaminoglycan content. However, when normalized against cell number, both designs modulated extracellular matrix protein deposition to a similar degree. Taken together, this study demonstrates that multilayered scaffolds of aligned electrospun nanofibers supported tenogenic differentiation of seeded MSCs, but the macroarchitecture is an important consideration for applications of tendon and ligament tissue engineering.

  9. Fabrication of continuous electrospun filaments with potential for use as medical fibres.

    Science.gov (United States)

    Mouthuy, Pierre-Alexis; Zargar, Nasim; Hakimi, Osnat; Lostis, Emilie; Carr, Andrew

    2015-05-19

    Soft tissue injuries represent a substantial and growing social and economic burden. Medical fibres are commonly used to repair these injuries during surgery. Patient's outcomes are, however, not promising with around 40% of surgical repairs failing within the first few months after surgery due to poor tissue regeneration. The application of nanofibrous filaments and yarns as medical fibres and scaffolds has been suggested to improve soft tissue regeneration and enhance the quality of the repair. However, due to a lack of robustness and reliability of the current fabrication methods, continuous nanofibrous filaments cannot be manufactured and scaled up in industrial settings and are not currently available for clinical use. We have developed a robust and automated method that enables the manufacture of continuous electrospun filaments and which has the potential to be integrated into existing textile production lines. The technology uses a wire guide to form submicrofibres in a dense, narrow mesh which can be detached as a long and continuous thread. The thread can then be stretched and used to create multifilament yarns which can imitate the hierarchical architecture of tissues such as tendons and ligaments. Electrospun polydioxanone yarns produced by this method showed improved cellular proliferation and adhesion when compared to medical monofilament fibres in current clinical use. In vivo, the electrospun yarns showed a good safety profile with mild foreign body reaction and complete degradation within 5 months after implantation. These results suggest that this filament collection method has the potential to become a useful platform for the fabrication of future medical textiles.

  10. Light-induced antibacterial activity of electrospun chitosan-based material containing photosensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Severyukhina, A.N., E-mail: severyuhina_alexandra@mail.ru [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Petrova, N.V.; Yashchenok, A.M. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Bratashov, D.N. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Department of Nano- and Biomedical Technologies, Saratov State University, 410012 Saratov (Russian Federation); Smuda, K. [Institute of Transfusion Medicine, Charité-Universitätsmedizin, 10117 Berlin (Germany); Mamonova, I.A. [Institute of Traumatology and Orthopedics, 410002 Saratov (Russian Federation); Yurasov, N.A. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Puchinyan, D.M. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Institute of Traumatology and Orthopedics, 410002 Saratov (Russian Federation); Georgieva, R. [Institute of Transfusion Medicine, Charité-Universitätsmedizin, 10117 Berlin (Germany); Department of Medical Physics, Biophysics and Radiology, Medical Faculty, Trakia University, 6000 Stara Zagora (Bulgaria); Bäumler, H. [Institute of Transfusion Medicine, Charité-Universitätsmedizin, 10117 Berlin (Germany); Lapanje, A. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Josef Stefan Institute, 1000 Ljubljana (Slovenia); Gorin, D.A. [Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov (Russian Federation); Department of Nano- and Biomedical Technologies, Saratov State University, 410012 Saratov (Russian Federation)

    2017-01-01

    Increasing antimicrobial resistance requires the development of novel materials and approaches for treatment of various infections. Utilization of photodynamic therapy represents an advanced alternative to antibiotics and metal-based agents. Here, we report the fabrication of electrospun material that possesses benefits of both topical antimicrobial and photodynamic therapies. This material combines chitosan, as a biocompatible polymer, and a second generation photosensitizer. The incorporation of photosensitizer doesn't affect the material morphology and its nearly uniform distribution in fibers structure was observed by confocal Raman microscopy. Owing to photosensitizer the prepared material exhibits the light-induced and spatially limited antimicrobial activity that was demonstrated against Staphylococcus aureus, an important etiological infectious agent. Such material can be potentially used in antibacterial therapy of chronic wounds, infections of diabetic ulcers, and burns, as well as rapidly spreading and intractable soft-tissue infections caused by resistant bacteria. - Highlights: • Chitosan with a phthalocyanine photosensitizer was electrospun into fibers. • Photosensitizer was uniformly distributed in the electrospun material. • The incorporation of photosensitizer does not affect the fiber morphology. • Chitosan/photosensitizer composites possess light-induced antibacterial activity. • The antibacterial activity of the material is limited to the area of irradiation.

  11. Preformulation Studies of Furosemide-Loaded Electrospun Nanofibrous Systems for Buccal Administration

    Directory of Open Access Journals (Sweden)

    Andrea Kovács

    2017-11-01

    Full Text Available Furosemide loaded electrospun fibers were prepared for buccal administration, with the aim of improving the oral bioavailability of the poorly soluble and permeable crystalline drug, which can be achieved by the increased solubility and by the circumvention of the intensive first pass metabolism. The water soluble hydroxypropyl cellulose (HPC was chosen as a mucoadhesive polymer. In order to improve the electrospinnability of HPC, poly (vinylpyrrolidone (PVP was used. During the experiments, the total polymer concentration was kept constant at 15% (w/w, and only the ratio of the two polymers (HPC-PVP = 5:5, 6:4, 7:3, 8:2, 9:1 was changed. A combination of rheological measurements with scanning electron microscopic morphological images of electrospun samples was applied for the determination of the optimum composition of the gels for fiber formation. The crystalline–amorphous transition of furosemide was tracked by Fourier transform infrared spectroscopy. A correlation was found between the rheological properties of the polymer solutions and their electrospinnability, and the consequent morphology of the resultant samples. With decreasing HPC ratio of the system, a transition from the spray-dried droplets to the randomly oriented fibrous structures was observed. The results enable the determination of the polymer ratio for the formation of applicable quality of electrospun fibers.

  12. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Yang, Sung Yeun; Hwang, Tae Heon; Ryu, WonHyoung; Che, Lihua; Oh, Jin Soo; Ha, Yoon

    2015-01-01

    Electrospun silk fibroin (SF) scaffolds have drawn much attention because of their resemblance to natural tissue architecture such as extracellular matrix, and the biocompatibility of SF as a candidate material to replace collagen. However, electrospun scaffolds lack the physical integrity of bone tissue scaffolds, which require resistance to mechanical loadings. In this work, we propose membrane-reinforced electrospun SF scaffolds by a serial process of electrospinning and freeze-drying of SF solutions in two different solvents: formic acid and water, respectively. After wet electrospinning followed by replacement of methanol with water, SF nanofibers dispersed in water were mixed with aqueous SF solution. Freeze-drying of the mixed solution resulted in 3D membrane-connected SF nanofibrous scaffolds (SF scaffolds) with a thickness of a few centimeters. We demonstrated that the SF concentration of aqueous SF solution controlled the degree of membrane reinforcement between nanofibers. It was also shown that both increase in degree of membrane reinforcement and inclusion of hydroxyapatite (HAP) nanoparticles resulted in higher resistance to compressive loadings of the SF scaffolds. Culture of human osteoblasts on collagen, SF, and SF-HAP scaffolds showed that both SF and SF-HAP scaffolds had biocompatibility and cell proliferation superior to that of the collagen scaffolds. SF-HAP scaffolds with and without BMP-2 were used for in vivo studies for 4 and 8 weeks, and they showed enhanced bone tissue formation in rat calvarial defect models. (paper)

  13. Crosslinked electrospun PVA nanofibrous membranes: elucidation of their physicochemical, physicomechanical and molecular disposition

    International Nuclear Information System (INIS)

    Shaikh, Rubina P; Kumar, Pradeep; Choonara, Yahya E; Du Toit, Lisa C; Pillay, Viness

    2012-01-01

    The effects of modifying electrospun poly(vinyl alcohol) (PVA) nanofibers through crosslinking using glutaraldehyde (GA) are explored in this paper. Various concentrations of PVA solutions containing model drugs rifampicin (RIF) and isoniazid (INH) were electrospun and thereafter crosslinked using GA vapors. PVA nanofibers demonstrated high drug entrapment efficiency of 98.77% ± 1.384% and 95.07% ± 1.988% for the INH- and RIF-loaded PVA nanofibers, respectively. The surface morphology, molecular vibrational transitions, tensile attributes and in vitro drug release were characterized and supported by in silico molecular mechanics simulations. Results indicated that crosslinking caused a significant reduction in the rate of drug release where 81.11% ± 2.35% of INH and 59.31% ± 2.57% of RIF were released after 12 h. Tensile properties such as the ultimate strength and Young's modulus increased after crosslinking, caused by crosslinks forming between PVA nanofibers as was revealed through scanning electron microscopy analysis. Fourier Transform infrared analysis was conducted to further support the mode of crosslinking. Additionally, image processing analysis was carried out to quantify the effect of formulation variables on the morphology of nanofibers. Furthermore, the effect of GA-induced crosslinking and addition of drugs on the performance of electrospun fibers was further elucidated and conceptualized using a molecular mechanics assisted model building and energy refinement approach via molecular mechanics energy relationships by exploring the spatial disposition of energy-minimized molecular structures of the polymer, crosslinker and the drugs. (paper)

  14. Evaluating protein incorporation and release in electrospun composite scaffolds for bone tissue engineering applications.

    Science.gov (United States)

    Briggs, Tonye; Matos, Jeffrey; Collins, George; Arinzeh, Treena Livingston

    2015-10-01

    Electrospun polymer/ceramic composites have gained interest for use as scaffolds for bone tissue engineering applications. In this study, we investigated methods to incorporate Platelet Derived Growth Factor-BB (PDGF-BB) in electrospun polycaprolactone (PCL) or PCL prepared with polyethylene oxide (PEO), where both contained varying levels (up to 30 wt %) of ceramic composed of biphasic calcium phosphates, hydroxyapatite (HA)/β-tricalcium phosphate (TCP). Using a model protein, lysozyme, we compared two methods of protein incorporation, adsorption and emulsion electrospinning. Adsorption of lysozyme on scaffolds with ceramic resulted in minimal release of lysozyme over time. Using emulsion electrospinning, lysozyme released from scaffolds containing a high concentration of ceramic where the majority of the release occurred at later time points. We investigated the effect of reducing the electrostatic interaction between the protein and the ceramic on protein release with the addition of the cationic surfactant, cetyl trimethylammonium bromide (CTAB). In vitro release studies demonstrated that electrospun scaffolds prepared with CTAB released more lysozyme or PDGF-BB compared with scaffolds without the cationic surfactant. Human mesenchymal stem cells (MSCs) on composite scaffolds containing PDGF-BB incorporated through emulsion electrospinning expressed higher levels of osteogenic markers compared to scaffolds without PDGF-BB, indicating that the bioactivity of the growth factor was maintained. This study revealed methods for incorporating growth factors in polymer/ceramic scaffolds to promote osteoinduction and thereby facilitate bone regeneration. © 2015 Wiley Periodicals, Inc.

  15. Immobilization and Application of Electrospun Nanofiber Scaffold-based Growth Factor in Bone Tissue Engineering.

    Science.gov (United States)

    Chen, Guobao; Lv, Yonggang

    2015-01-01

    Electrospun nanofibers have been extensively used in growth factor delivery and regenerative medicine due to many advantages including large surface area to volume ratio, high porosity, excellent loading capacity, ease of access and cost effectiveness. Their relatively large surface area is helpful for cell adhesion and growth factor loading, while storage and release of growth factor are essential to guide cellular behaviors and tissue formation and organization. In bone tissue engineering, growth factors are expected to transmit signals that stimulate cellular proliferation, migration, differentiation, metabolism, apoptosis and extracellular matrix (ECM) deposition. Bolus administration is not always an effective method for the delivery of growth factors because of their rapid diffusion from the target site and quick deactivation. Therefore, the integration of controlled release strategy within electrospun nanofibers can provide protection for growth factors against in vivo degradation, and can manipulate desired signal at an effective level with extended duration in local microenvironment to support tissue regeneration and repair which normally takes a much longer time. In this review, we provide an overview of growth factor delivery using biomimetic electrospun nanofiber scaffolds in bone tissue engineering. It begins with a brief introduction of different kinds of polymers that were used in electrospinning and their applications in bone tissue engineering. The review further focuses on the nanofiber-based growth factor delivery and summarizes the strategies of growth factors loading on the nanofiber scaffolds for bone tissue engineering applications. The perspectives on future challenges in this area are also pointed out.

  16. Effect of micropatterning induced surface hydrophobicity on drug release from electrospun cellulose acetate nanofibers

    Science.gov (United States)

    Adepu, Shivakalyani; Gaydhane, Mrunalini K.; Kakunuri, Manohar; Sharma, Chandra S.; Khandelwal, Mudrika; Eichhorn, Stephen J.

    2017-12-01

    Sustained release and prevention of burst release for low half-life drugs like Diclofenac sodium is crucial to prevent drug related toxicity. Electrospun nanofibers have emerged recently as potential carrier materials for controlled and sustained drug release. Here, we present a facile method to prevent burst release by tuning the surface wettability through template assisted micropatterning of drug loaded electrospun cellulose acetate (CA) nanofibers. A known amount of drug (Diclofenac sodium) was first mixed with CA and then electrospun in the form of a nanofabric. This as-spun network was hydrophilic in nature. However, when electrospinning was carried out through non-conducting templates, viz nylon meshes with 50 and 100 μm size openings, two kinds of hydrophobic micro-patterned CA nanofabrics were produced. In vitro transdermal testing of our nanofibrous mats was carried out; these tests were able to show that it would be possible to create a patch for transdermal drug release. Further, our results show that with optimized micro-patterned dimensions, a zero order sustained drug release of up to 12 h may be achieved for the transdermal system when compared to non-patterned samples. This patterning caused a change in the surface wettability, to a hydrophobic surface, resulting in a controlled diffusion of the hydrophilic drug. Patterning assisted in controlling the initial burst release, which is a significant finding especially for low half-life drugs.

  17. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Shi, Xiangyang, E-mail: xshi@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); CQM - Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal (Portugal)

    2012-04-15

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  18. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Ma, Hui; Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan; Shi, Xiangyang

    2012-01-01

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  19. Incorporating Platelet-Rich Plasma into Electrospun Scaffolds for Tissue Engineering Applications

    Science.gov (United States)

    Wolfe, Patricia S.; Ericksen, Jeffery J.; Simpson, David G.; Bowlin, Gary L.

    2011-01-01

    Platelet-rich plasma (PRP) therapy has seen a recent spike in clinical interest due to the potential that the highly concentrated platelet solutions hold for stimulating tissue repair and regeneration. The aim of this study was to incorporate PRP into a number of electrospun materials to determine how growth factors are eluted from the structures, and what effect the presence of these factors has on enhancing electrospun scaffold bioactivity. PRP underwent a freeze-thaw-freeze process to lyse platelets, followed by lyophilization to create a powdered preparation rich in growth factors (PRGF), which was subsequently added to the electrospinning process. Release of protein from scaffolds over time was quantified, along with the quantification of human macrophage and adipose-derived stem cell (ADSC) chemotaxis and proliferation. Protein assays demonstrated a sustained release of protein from PRGF-containing scaffolds at up to 35 days in culture. Scaffold bioactivity was enhanced as ADSCs demonstrated increased proliferation in the presence of PRGF, whereas macrophages demonstrated increased chemotaxis to PRGF. In conclusion, the work performed in this study demonstrated that the incorporation of PRGF into electrospun structures has a significant positive influence on the bioactivity of the scaffolds, and may prove beneficial in a number of tissue engineering applications. PMID:21679135

  20. Recent advances of basic materials to obtain electrospun polymeric nanofibers for medical applications

    Science.gov (United States)

    Manea, L. R.; Hristian, L.; Leon, A. L.; Popa, A.

    2016-08-01

    The most important applications of electrospun polymeric nanofibers are by far those from biomedical field. From the biological point of view, almost all the human tissues and organs consist of nanofibroas structures. The examples include the bone, dentine, cartilage, tendons and skin. All these are characterized through different fibrous structures, hierarchically organized at nanometer scale. Electrospinning represents one of the nanotechnologies that permit to obtain such structures for cell cultures, besides other technologies, such as selfassembling and phase separation technologies. The basic materials used to produce electrospun nanofibers can be natural or synthetic, having polymeric, ceramic or composite nature. These materials are selected depending of the nature and structure of the tissue meant to be regenerated, namely: for the regeneration of smooth tissues regeneration one needs to process through electrospinning polymeric basic materials, while in order to obtain the supports for the regeneration of hard tissues one must mainly use ceramic materials or composite structures that permit imbedding the bioactive substances in distinctive zones of the matrix. This work presents recent studies concerning basic materials used to obtain electrospun polymeric nanofibers, and real possibilities to produce and implement these nanofibers in medical bioengineering applications.

  1. Improvement of Polylactide Properties through Cellulose Nanocrystals Embedded in Poly(Vinyl Alcohol) Electrospun Nanofibers.

    Science.gov (United States)

    López de Dicastillo, Carol; Garrido, Luan; Alvarado, Nancy; Romero, Julio; Palma, Juan Luis; Galotto, Maria Jose

    2017-05-11

    Electrospun nanofibers of poly (vinyl alcohol) (PV) were obtained to improve dispersion of cellulose nanocrystals (CNC) within hydrophobic biopolymeric matrices, such as poly(lactic acid) (PLA). Electrospun nanofibers (PV/CNC) n were successfully obtained with a final concentration of 23% ( w / w ) of CNC. Morphological, structural and thermal properties of developed CNC and electrospun nanofibers were characterized. X-ray diffraction and thermal analysis revealed that the crystallinity of PV was reduced by the electrospinning process, and the incorporation of CNC increased the thermal stability of biodegradable nanofibers. Interactions between CNC and PV polymer also enhanced the thermal stability of CNC and improved the dispersion of CNC within the PLA matrix. PLA materials with CNC lyophilized were also casted in order to compare the properties with materials based on CNC containing nanofibers. Nanofibers and CNC were incorporated into PLA at three concentrations: 0.5%, 1% and 3% (CNC respect to polymer weight) and nanocomposites were fully characterized. Overall, nanofibers containing CNC positively modified the physical properties of PLA materials, such as the crystallinity degree of PLA which was greatly enhanced. Specifically, materials with 1% nanofiber 1PLA(PV/CNC) n presented highest improvements related to mechanical and barrier properties; elongation at break was enhanced almost four times and the permeation of oxygen was reduced by approximately 30%.

  2. A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions.

    Science.gov (United States)

    Ngadiman, Nor Hasrul Akhmal; Noordin, M Y; Idris, Ani; Kurniawan, Denni

    2017-07-01

    The potential of electrospinning process to fabricate ultrafine fibers as building blocks for tissue engineering scaffolds is well recognized. The scaffold construct produced by electrospinning process depends on the quality of the fibers. In electrospinning, material selection and parameter setting are among many factors that contribute to the quality of the ultrafine fibers, which eventually determine the performance of the tissue engineering scaffolds. The major challenge of conventional electrospun scaffolds is the nature of electrospinning process which can only produce two-dimensional electrospun mats, hence limiting their applications. Researchers have started to focus on overcoming this limitation by combining electrospinning with other techniques to fabricate three-dimensional scaffold constructs. This article reviews various polymeric materials and their composites/blends that have been successfully electrospun for tissue engineering scaffolds, their mechanical properties, and the various parameters settings that influence the fiber morphology. This review also highlights the secondary processes to electrospinning that have been used to develop three-dimensional tissue engineering scaffolds as well as the steps undertaken to overcome electrospinning limitations.

  3. Fabrication and characterization of electrospun osteon mimicking scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Andric, T. [Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Sampson, A.C. [Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Freeman, J.W., E-mail: jwfreeman@vt.edu [Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2011-01-01

    Skeletal loss and bone deficiencies are a major worldwide problem with over 600,000 procedures performed in the US alone annually, making bone one of the most transplanted tissues, second to blood only. Bone is a composite tissue composed of organic matrix, inorganic bone mineral, and water. Structurally bone is organized into two distinct types: trabecular (or cancellous) and cortical (or compact) bones. Trabecular bone is characterized by an extensive interconnected network of pores. Cortical bone is composed of tightly packed units, called osteons, oriented parallel along to the axis of the bone. While the majority of scaffolds attempt to replicate the structure of the trabecular bone, fewer attempts have been made to create scaffolds to mimic the structure of cortical bone. The aim of this study was to develop a technique to fabricate scaffolds that mimic the organization of an osteon, the structural unit of cortical bone. We successfully built a rotating stage for PGA fibers and utilized it for collecting electrospun nanofibers and creating scaffolds. Resulting scaffolds consisted of concentric layers of electrospun PLLA or gelatin/PLLA nanofibers wrapped around PGA microfiber core with diameters that ranged from 200 to 600 {mu}m. Scaffolds were mineralized by incubation in 10x simulated body fluid, and scaffolds composed of 10%gelatin/PLLA had significantly higher amounts of calcium phosphate. The electrospun scaffolds also supported cellular attachment and proliferation of MC3T3 cells over the period of 28 days.

  4. Synthesis and characterization of curcumin loaded PLA-Hyperbranched polyglycerol electrospun blend for wound dressing applications.

    Science.gov (United States)

    Perumal, Govindaraj; Pappuru, Sreenath; Chakraborty, Debashis; Maya Nandkumar, A; Chand, Dillip Kumar; Doble, Mukesh

    2017-07-01

    This study is aimed to develop curcumin (Cur) incorporated electrospun nanofibers of a blend of poly (lactic acid) (PLA) and hyperbranched polyglycerol (HPG) for wound healing applications. Both the polymers are synthesized and fabricated by electrospinning technique. The produced nanofibers were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Colorimetry (DSC) and Thermogravimetric Analysis (TGA). Electrospun scaffolds (PLA/HPG/Cur) exhibits very high hydrophilicity, high swelling and drug uptake and promotes better cell viability, adhesion and proliferation when compared to PLA/Cur electrospun nanofibers. Biodegradation study revealed that the morphology of the nanofibers were unaffected even after 14days immersion in Phosphate Buffered Saline. In vitro scratch assay indicates that migration of the cells in the scratch treated with PLA/HPG/Cur is complete within 36h. These results suggest that PLA/HPG/Cur nanofibers can be a potential wound patch dressing for acute and chronic wound applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. CONTROL OF DIMENSIONAL STABILITY AND DEGRADATION RATE IN ELECTROSPUN COMPOSITE SCAFFOLDS COMPOSED OF POLY(D,L-LACTIDE-CO-GLYCOLIDE)AND POLY(Ε-CAPROLACTONE)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The purpose of this study is to investigate the effect of composition poly(D,L-lactide-co-glycolide)/poly(ε-caprolactone)(PLGA/PCL)blending on the morphology,shrinkage and degradation behaviors of the electrospun fibers.With the increase of PLGA content in the composite fibers,the average diameter of the electrospun fibers increased from 1.35 μm to 1.95μm.The serious shrinking of the electrospun PLGA meshes could be circumvented by adding 20% PCL in the fibers,resulting from the semi-crystalline nature of PCL.The degradation rate of the electrospun meshes could be modulated by PLGA/PCL composition.In addition,the electrospun meshes containing 20% PCL displayed stable dimensional morphology with degradation.

  6. Electrospun fibers for high performance anodes in microbial fuel cells. Optimizing materials and architecture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuiliang

    2010-04-15

    A novel porous conducting nanofiber mat (PCNM) with nanostructured polyaniline (nanoPANi) on the fiber surface was successfully prepared by simple oxidative polymerization. The composite PCNM displayed a core/shell structure with highly rough surface. The thickness and the morphology of PANi layer on the electrospun polyamide (PA) fiber surface could be controlled by varying aniline concentration and temperature. The combination of the advantages of electrospinning technique and nanostructured PANi, let the PA/PANi composite PCNM possess more than five good properties, i.e. high conductivity of 6.759 S.m{sup -1}, high specific surface area of 160 m2.g{sup -1}, good strength of 82.88 MPa for mat and 161.75 MPa for highly aligned belts, good thermal properties with 5% weight loss temperature up to 415 C and excellent biocompatibility. In the PA/PANi composite PCNM, PANi is the only conducting component, its conductivity of 6.759 S.m{sup -1} which is measured in dry-state, is not enough for electrode. Moreover, the conductivity decreases in neutral pH environment due to the de-doping of proton. However, the method of spontaneous growth of nanostructured PANi on electrospun fiber mats provides an effective method to produce porous electrically conducting electrospun fiber mats. The combination advantages of nanostructured PANi with the electrospun fiber mats, extends the applications of PANi and electrospun nanofibers, such as chemical- and bio-sensors, actuators, catalysis, electromagnetic shielding, corrosion protection, separation membranes, electro-optic devices, electrochromic devices, tissue engineering and many others. The electrical conductivity of electrospun PCNM with PANi as the only conducting component is too low for application of as anode in microbial fuel cells (MFCs). So, we turn to electrospun carbon fiber due to its high electrical conductivity and environmental stability. The current density is greatly dependent on the microorganism density of anode

  7. Staircase Models from Affine Toda Field Theory

    CERN Document Server

    Dorey, P; Dorey, Patrick; Ravanini, Francesco

    1993-01-01

    We propose a class of purely elastic scattering theories generalising the staircase model of Al. B. Zamolodchikov, based on the affine Toda field theories for simply-laced Lie algebras g=A,D,E at suitable complex values of their coupling constants. Considering their Thermodynamic Bethe Ansatz equations, we give analytic arguments in support of a conjectured renormalisation group flow visiting the neighbourhood of each W_g minimal model in turn.

  8. Calculation of protein-ligand binding affinities.

    Science.gov (United States)

    Gilson, Michael K; Zhou, Huan-Xiang

    2007-01-01

    Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.

  9. 2D Affine and Projective Shape Analysis.

    Science.gov (United States)

    Bryner, Darshan; Klassen, Eric; Huiling Le; Srivastava, Anuj

    2014-05-01

    Current techniques for shape analysis tend to seek invariance to similarity transformations (rotation, translation, and scale), but certain imaging situations require invariance to larger groups, such as affine or projective groups. Here we present a general Riemannian framework for shape analysis of planar objects where metrics and related quantities are invariant to affine and projective groups. Highlighting two possibilities for representing object boundaries-ordered points (or landmarks) and parameterized curves-we study different combinations of these representations (points and curves) and transformations (affine and projective). Specifically, we provide solutions to three out of four situations and develop algorithms for computing geodesics and intrinsic sample statistics, leading up to Gaussian-type statistical models, and classifying test shapes using such models learned from training data. In the case of parameterized curves, we also achieve the desired goal of invariance to re-parameterizations. The geodesics are constructed by particularizing the path-straightening algorithm to geometries of current manifolds and are used, in turn, to compute shape statistics and Gaussian-type shape models. We demonstrate these ideas using a number of examples from shape and activity recognition.

  10. Excited state electron affinity calculations for aluminum

    Science.gov (United States)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  11. Affinity functions for modeling glass dissolution rates

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States)

    1997-07-01

    Glass dissolution rates decrease dramatically as glass approach ''saturation'' with respect to the leachate solution. Most repository sites are chosen where water fluxes are minimal, and therefore the waste glass is most likely to dissolve under conditions close to ''saturation''. The key term in the rate expression used to predict glass dissolution rates close to ''saturation'' is the affinity term, which accounts for saturation effects on dissolution rates. Interpretations of recent experimental data on the dissolution behaviour of silicate glasses and silicate minerals indicate the following: 1) simple affinity control does not explain the observed dissolution rate for silicate minerals or glasses; 2) dissolution rates can be significantly modified by dissolved cations even under conditions far from saturation where the affinity term is near unity; 3) the effects of dissolved species such as Al and Si on the dissolution rate vary with pH, temperature, and saturation state; and 4) as temperature is increased, the effect of both pH and temperature on glass and mineral dissolution rates decrease, which strongly suggests a switch in rate control from surface reaction-based to diffusion control. Borosilicate glass dissolution models need to be upgraded to account for these recent experimental observations. (A.C.)

  12. Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin.

    Directory of Open Access Journals (Sweden)

    Johan Nilvebrant

    Full Text Available The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein.

  13. An Overview on Application of Natural Substances Incorporated with Electrospun Nanofibrous Scaffolds to Development of Innovative Wound Dressings.

    Science.gov (United States)

    Pilehvar-Soltanahmadi, Younes; Dadashpour, Mehdi; Mohajeri, Abbas; Fattahi, Amir; Sheervalilou, Roghayeh; Zarghami, Nosratollah

    2018-02-14

    Conventional dressings are cost-effective and highly absorbent, but not effectual enough to promote hemostasis, adherence and in holding a moist wound bed. Thanks to the developments in the field of nanotechnology and bioengineering, one of the promising current trends is to move progress of innovative wound dressings, merging the application of traditional healing agents and modern products/ practices, such as hydrocolloids, hydrogels, films and nanofibers. This review surveys on potentials of electrospun nanofibrous mats for wound dressing applications. Furthermore, loading of bioactive molecules and therapeutic agents into the nanofibrous mats especially natural compounds with the aim of fabrication novel bioactive electrospun nanofibrous mats for skin substitutes and wound dressings are discussed. Systematic literature search was conducted to review all recent progress toward the potential of natural substances incorporated with electrospun nanofibrous scaffolds for wound dressing applications. The electrospun nanofibers webs can provide the essential parameters require for wound dressing to heal wounds including absorptivity, oxygen permeability, and non-adherence to the healing tissue, barrier to bacteria, bioactivity and occlusivity. The modern wound dressings materials made of electrospun nanofibers contain various traditional healing agents such as plant derived compounds could be beneficial to the healing of wounds. Natural substances have been used in skin wound care for many years because of their therapeutic properties, including antimicrobial, antioxidant, anti-inflammatory and mitogenic activities. A screening of natural substances with plant or animal sources having high wound healer activities and cooperating with electrospun nanofiber are an important step toward producing innovative bioactive wound dressings. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Affine fractal functions as bases of continuous funtions | Navascues ...

    African Journals Online (AJOL)

    The objective of the present paper is the study of affine transformations of the plane, which provide self-affine curves as attractors. The properties of these curves depend decisively of the coefficients of the system of affinities involved. The corresponding functions are continuous on a compact interval. If the scale factors are ...

  15. Single-step affinity purification for fungal proteomics.

    Science.gov (United States)

    Liu, Hui-Lin; Osmani, Aysha H; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B; De Souza, Colin P; Osmani, Stephen A

    2010-05-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  16. Single-Step Affinity Purification for Fungal Proteomics ▿ †

    OpenAIRE

    Liu, Hui-Lin; Osmani, Aysha H.; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B.; De Souza, Colin P.; Osmani, Stephen A.

    2010-01-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  17. Characterization and Modification of Electrospun Fiber Mats for Use in Composite Proton Exchange Membranes

    Science.gov (United States)

    Mannarino, Matthew Marchand

    Electrostatic fiber formation, or electrospinning, offers a particularly simple and robust method to create polymeric nanofibers of various sizes and morphologies. In electrospinning, a viscoelastic fluid is charged so that a liquid jet is ejected from the surface of the fluid (typically in the form of a drop supplied by a needle or spinneret) and collected on a grounded plate, creating a nonwoven fiber mat. Modification of the diameter of the fibers as well as the porosity, specific surface area, and mechanical properties of the mat allows one to tailor electrospun mats for specific applications. Despite the widespread and rapidly growing use of electrospinning in the fabrication of novel nanomaterials, there are no simple, universal methods of predicting, a priori, the properties of electrospun fibers from knowledge of the polymer solution properties and electrospinning operating conditions alone. Changing a single fluid or processing parameter can affect the jet and fiber formation through several mechanisms. For example, using a different solvent can change several properties of the electrospinning fluid, such as the dielectric constant, conductivity, surface tension, and solute-solvent interaction. The work in this thesis seeks to develop a simple relation for predicting terminal jet diameter during electrospinning, which accounts for solution viscoelasticity as well as solution conductivity and operating parameters that can be easily measured and controlled. The mechanical and tribological properties of electrospun fiber mats are of paramount importance to their utility as components in a variety of applications. Although some mechanical properties of these mats have been investigated previously, reports of their tribological properties are essentially nonexistent. In this thesis, electrospun nanofiber mats of poly(trimethyl hexamethylene terephthalamide) (PA 6(3)T) and poly(hexamethylene adipamide) (PA 6,6) are characterized mechanically and tribologically

  18. Affine Fullerene C60 in a GS-Quasigroup

    Directory of Open Access Journals (Sweden)

    Vladimir Volenec

    2014-01-01

    Full Text Available It will be shown that the affine fullerene C60, which is defined as an affine image of buckminsterfullerene C60, can be obtained only by means of the golden section. The concept of the affine fullerene C60 will be constructed in a general GS-quasigroup using the statements about the relationships between affine regular pentagons and affine regular hexagons. The geometrical interpretation of all discovered relations in a general GS-quasigroup will be given in the GS-quasigroup C(1/2(1+5.

  19. On the structure of self-affine convex bodies

    Energy Technology Data Exchange (ETDEWEB)

    Voynov, A S [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2013-08-31

    We study the structure of convex bodies in R{sup d} that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for d = 2 by Richter in 2011. In the present paper we disprove the conjecture for all d≥3 and derive a detailed description of self-affine bodies in R{sup 3}. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.

  20. Production and cross-sectional characterization of aligned co-electrospun hollow microfibrous bulk assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Feng-Lei [Centre for Imaging Sciences, The University of Manchester, Manchester M13 9PT (United Kingdom); The School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester (United Kingdom); Parker, Geoff J.M., E-mail: geoff.parker@manchester.ac.uk [Centre for Imaging Sciences, The University of Manchester, Manchester M13 9PT (United Kingdom); CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester (United Kingdom); Eichhorn, Stephen J. [College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom); Hubbard Cristinacce, Penny L. [Centre for Imaging Sciences, The University of Manchester, Manchester M13 9PT (United Kingdom); School of Psychological Sciences, University of Manchester, Manchester M13 9PT (United Kingdom)

    2015-11-15

    The development of co-electrospun (co-ES) hollow microfibrous assemblies of an appreciable thickness is critical for many practical applications, including filtration membranes and tissue-mimicking scaffolds. In this study, thick uniaxially aligned hollow microfibrous assemblies forming fiber bundles and strips were prepared by co-ES of polycaprolactone (PCL) and polyethylene oxide (PEO) as shell and core materials, respectively. Hollow microfiber bundles were deposited on a fixed rotating disc, which resulted in non-controllable cross-sectional shapes on a macroscopic scale. In comparison, fiber strips were produced with tuneable thickness and width by additionally employing an x–y translation stage in co-ES. Scanning electron microscopy (SEM) images of cross-sections of fiber assemblies were analyzed to investigate the effects of production time (from 0.5 h to 12 h), core flow rate (from 0.8 mL/h to 2.0 mL/h) and/or translation speed (from 0.2 mm/s to 5 mm/s) on the pores and porosity. We observed significant changes in pore size and shape with core flow rate but the influence of production time varied; five strips produced under the same conditions had reasonably good size and porosity reproducibility; pore sizes didn't vary significantly from strip bottom to surface, although the porosity gradually decreased and then returned to the initial level. - Highlights: • Hollow microfibrous assemblies based on co-electrospinning are demonstrated. • The thickness and width of co-electrospun strips were controllable. • Cross-sections of fibres had non-normally distributed pore sizes and shapes. • Cross-sections were significantly influenced by production time and flow rate. • Co-electrospun strips had reasonably good reproducible cross-sections.

  1. Enhanced Osteogenic Differentiation of Mesenchymal Stem Cells on Electrospun PES/PVA/PRP Nanofibrous Scaffolds.

    Science.gov (United States)

    Kashef-Saberi, Mahshid Sadat; Roodbari, Nasim Hayati; Parivar, Kazem; Vakilian, Saeid; Hanee-Ahvaz, Hana

    2018-03-28

    Over the last few decades, great advancements have been achieved in the field of bone tissue engineering (BTE). Containing a great number of growth factors needed in the process of osteogenesis, platelet rich plasma (PRP) has gained a great deal of attention. However, due to the contradictory results achieved in different studies, its effectiveness remains a mystery. Therefore, in this study, we investigated in vitro performance of co-electrospun PRP/poly ether sulfone/poly(vinyl) alcohol (PRP/PES/PVA) composite scaffolds for the osteogenic differentiation of human adipose-derived mesenchymal stem cells. The activated PRP was mixed with PVA solution to be used alongside PES solution for the electrospinning process. Fourier transform infrared spectroscopy, scanning electron microscopy and tensile tests were performed to evaluate the scaffolds. After confirmation of sustained release of protein, osteogenic potential of the co-electrospun PRP/polymer scaffolds was evaluated by measuring relative gene expression, calcium content, and alkaline phosphatase (ALP) activity. Alizarin red and Hematoxylin and Eosin staining were performed as well. The results of ALP activity and calcium content demonstrated the effectiveness of PRP when combined with PRP-incorporated scaffold in comparison with the other tested groups. In addition, the results of tensile mechanical testing indicated that addition of PRP improves the mechanical properties. Taking these results into account, it appears PES/PVA/PRP scaffold treated with PRP 5% enhances osteogenic differentiation most. In conclusion, incorporation of PRP into electrospun PES/PVA scaffold in this study had a positive influence on osteogenic differentiation of AdMSCs, and thus it may have great potential for BTE applications.

  2. Effects of Neutralization and Crosslinking Agents on the Morphology of Chitosan Electrospun Scaffolds

    Directory of Open Access Journals (Sweden)

    Maryam Mashayekhi

    2017-01-01

    Full Text Available Chitosan, a natural polymer derived from chitin by deacetylation process of chitin, has gained an enormous interest in tissue engineering due to its unique features such as antibacterial activity and wound healing properties. Electrospinning of acidified chitosan solution is one of the most widely-used approaches in fabrication of 3D scaffolds. Although there are some reports addressing morphology tailoring of the chitosan nanofibers through solution electrospinning, there is no comparative report concerning the neutralization and stabilization conditions of chitosan electrospun fibers. Therefore, this article compares the effects of different neutralizing agents such as aqueous solutions of sodium carbonate (Na2CO3 and potassium carbonate (K2CO3, and crosslinking reagents including glutaraldehyde (GA and genipin on morphology of electrospun chitosan fibers. After neutralization and stabilization processes, Fourier transform infrared spectroscopy (FTIR was employed to investigate the morphology of fibers. Furthermore, the influence of the aforementioned parameters on stability of fibers was probed using scanning electron microscopy. SEM images illustrated that the scaffold resulting from electrospinning of 4 wt% chitosan solution in a mixture of trifluoroacetic acid (TFA and dichloromethane (DCM possessed a well-formed nanofibrous structure. Afterwards, different methods for neutralization and stabilization of the electrospun chitosan nanofiber mats were performed. In this respect, aqueous solutions of both Na2CO3 and K2CO3 salts (1M were employed as neutralization agents and GA and genipin were used as two different crosslinking agents. Based on SEM analysis, the chitosan fibers, crosslinked with genipin, showed better morphology than a scaffold which was crosslinked with glutaraldehyde

  3. Enhancing surface properties of breast implants by using electrospun silk fibroin.

    Science.gov (United States)

    Valencia-Lazcano, A A; Román-Doval, R; De La Cruz-Burelo, E; Millán-Casarrubias, E J; Rodríguez-Ortega, A

    2017-08-24

    In the present study, a new electrospun silk fibroin coating of silicone breast implants with improved biocompatibility and mechanical properties was obtained. Fibrous scaffolds were produced by electrospinning a solution containing silk fibroin, derived from Bombyx mori cocoons, and polyethylene oxide (PEO) to be used as a coating of breast implants. A randomly oriented structure of fibroin/PEO was electrospun on implants as assessed by SEM analysis, roughness measurements and ATR-FTIR spectroscopy. The scaffold showed 0.25 µm diameter fibres, 0.76 µm size superficial pores, arithmetic roughness of 0.632 ± 0.12 µm and texture aspect ratio of 0.893 ± 0.04. ATR-FTIR spectroscopy demonstrates the presence of PEO and fibroin in the coating. The mechanical characterisation of the implants before and after being coated with fibroin/PEO demonstrated that the fibroin/PEO scaffold contributes to the increase in the elastic modulus from 0.392 ± 0.02 to 0.560 ± 0.03 MPa and to a more elastic behaviour of the breast implants. Using the fibroin/PEO coating, human fibroblasts seeded on this matrix increased viability up to 30% compared to conventional breast implants. Electrospun silk fibroin could represent a clinically compatible, viable form to coat breast implants. Low cytotoxicity by the fibroin coating and its physico-chemical and mechanical properties may find application in improving breast implants biocompatibility. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  4. Ibuprofen-loaded poly(trimethylene carbonate-co-ε-caprolactone) electrospun fibres for nerve regeneration.

    Science.gov (United States)

    Pires, Liliana R; Guarino, Vincenzo; Oliveira, Maria J; Ribeiro, Cristina C; Barbosa, Mário A; Ambrosio, Luigi; Pêgo, Ana Paula

    2016-03-01

    The development of scaffolds that combine the delivery of drugs with the physical support provided by electrospun fibres holds great potential in the field of nerve regeneration. Here it is proposed the incorporation of ibuprofen, a well-known non-steroidal anti-inflammatory drug, in electrospun fibres of the statistical copolymer poly(trimethylene carbonate-co-ε-caprolactone) [P(TMC-CL)] to serve as a drug delivery system to enhance axonal regeneration in the context of a spinal cord lesion, by limiting the inflammatory response. P(TMC-CL) fibres were electrospun from mixtures of dichloromethane (DCM) and dimethylformamide (DMF). The solvent mixture applied influenced fibre morphology, as well as mean fibre diameter, which decreased as the DMF content in solution increased. Ibuprofen-loaded fibres were prepared from P(TMC-CL) solutions containing 5% ibuprofen (w/w of polymer). Increasing drug content to 10% led to jet instability, resulting in the formation of a less homogeneous fibrous mesh. Under the optimized conditions, drug-loading efficiency was above 80%. Confocal Raman mapping showed no preferential distribution of ibuprofen in P(TMC-CL) fibres. Under physiological conditions ibuprofen was released in 24 h. The release process being diffusion-dependent for fibres prepared from DCM solutions, in contrast to fibres prepared from DCM-DMF mixtures where burst release occurred. The biological activity of the drug released was demonstrated using human-derived macrophages. The release of prostaglandin E2 to the cell culture medium was reduced when cells were incubated with ibuprofen-loaded P(TMC-CL) fibres, confirming the biological significance of the drug delivery strategy presented. Overall, this study constitutes an important contribution to the design of a P(TMC-CL)-based nerve conduit with anti-inflammatory properties. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Trends in polymeric electrospun fibers and their use as oral biomaterials.

    Science.gov (United States)

    Meireles, Agnes B; Corrêa, Daniella K; da Silveira, João Vw; Millás, Ana Lg; Bittencourt, Edison; de Brito-Melo, Gustavo Ea; González-Torres, Libardo A

    2018-05-01

    Electrospinning is one of the techniques to produce structured polymeric fibers in the micro or nano scale and to generate novel materials for biomedical proposes. Electrospinning versatility provides fibers that could support different surgical and rehabilitation treatments. However, its diversity in equipment assembly, polymeric materials, and functional molecules to be incorporated in fibers result in profusion of recent biomaterials that are not fully explored, even though the recognized relevance of the technique. The present article describes the main electrospun polymeric materials used in oral applications, and the main aspects and parameters of the technique. Natural and synthetic polymers, blends, and composites were identified from the available literature and recent developments. Main applications of electrospun fibers were focused on drug delivery systems, tissue regeneration, and material reinforcement or modification, although studies require further investigation in order to enable direct use in human. Current and potential usages as biomaterials for oral applications must motivate the development in the use of electrospinning as an efficient method to produce highly innovative biomaterials, over the next few years. Impact statement Nanotechnology is a challenge for many researchers that look for obtaining different materials behaviors by modifying characteristics at a very low scale. Thus, the production of nanostructured materials represents a very important field in bioengineering, in which the electrospinning technique appears as a suitable alternative. This review discusses and provides further explanation on this versatile technique to produce novel polymeric biomaterials for oral applications. The use of electrospun fibers is incipient in oral areas, mainly because of the unfamiliarity with the technique. Provided disclosure, possibilities and state of the art are aimed at supporting interested researchers to better choose proper materials

  6. Crosslinking of electrospun poly (VDF-co-HFP) nanofibrous membranes by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Kim, Yun Hye; Lim, Youn Mook; Choi, Jae Hak; An, Sung Jun; Park, Jong Seok; Nho, Young Chang

    2008-01-01

    Poly (VDF-co-HFP)/PEGDMA nanofibrous membranes (NFMs) have been prepared by an electrospinning process. Since electrospun NFMs have a nanoporous structure, they have a potential application for a polymer electrolyte or a separator. Poly (VDF-co-HFP) is a polymer electrolyte binder. In order to improve their mechanical properties, poly (VDF-co-HFP)/PEGDMA NFMs were crosslinked by a gamma-ray irradiation. Then the crosslinked NFMs were characterized through an electrolyte uptake, IR structural analysis, and SEM morphological investigation

  7. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering

    International Nuclear Information System (INIS)

    Jia, Lin; Prabhakaran, Molamma P.; Qin, Xiaohong; Ramakrishna, Seeram

    2013-01-01

    Nanotechnology has enabled the engineering of a variety of materials to meet the current challenges and requirements in vascular tissue regeneration. In our study, poly-L-lactide (PLLA) and hybrid PLLA/collagen (PLLA/Coll) nanofibers (3:1 and 1:1) with fiber diameters of 210 to 430 nm were fabricated by electrospinning. Their morphological, chemical and mechanical characterizations were carried out using scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR), and tensile instrument, respectively. Bone marrow derived mesenchymal stem cells (MSCs) seeded on electrospun nanofibers that are capable of differentiating into vascular cells have great potential for repair of the vascular system. We investigated the potential of MSCs for vascular cell differentiation in vitro on electrospun PLLA/Coll nanofibrous scaffolds using endothelial differentiation media. After 20 days of culture, MSC proliferation on PLLA/Coll(1:1) scaffolds was found 256% higher than the cell proliferation on PLLA scaffolds. SEM images showed that the MSC differentiated endothelial cells on PLLA/Coll scaffolds showed cobblestone morphology in comparison to the fibroblastic type of undifferentiated MSCs. The functionality of the cells in the presence of ‘endothelial induction media’, was further demonstrated from the immunocytochemical analysis, where the MSCs on PLLA/Coll (1:1) scaffolds differentiated to endothelial cells and expressed the endothelial cell specific proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1 or CD31) and Von Willebrand factor (vWF). From the results of the SEM analysis and protein expression studies, we concluded that the electrospun PLLA/Coll nanofibers could mimic the native vascular ECM environment and might be promising substrates for potential application towards vascular regeneration. - Highlights: • PLLA and PLLA/Coll nanofibers were electrospun. • Incorporation of collagen reduced fiber

  8. The potential applications of fibrin-coated electrospun polylactide nanofibers in skin tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Bačáková, Markéta; Musílková, Jana; Riedel, Tomáš; Stránská, D.; Brynda, Eduard; Žaloudková, Margit; Bačáková, Lucie

    2016-01-01

    Roč. 11, č. 2016 (2016), s. 771-789 E-ISSN 1178-2013 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 ; RVO:61389013 ; RVO:67985891 Keywords : electrospun nanofibers * nanocoating * skin tissue engineering * fibroblasts * fibrin Subject RIV: EI - Biotechnology ; Bionics; CD - Macromolecular Chemistry (UMCH-V); JI - Composite Materials (USMH-B) Impact factor: 4.300, year: 2016

  9. Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh.

    Directory of Open Access Journals (Sweden)

    Alessandra Zonari

    Full Text Available Tissue engineering is based on the association of cultured cells with structural matrices and the incorporation of signaling molecules for inducing tissue regeneration. Despite its enormous potential, tissue engineering faces a major challenge concerning the maintenance of cell viability after the implantation of the constructs. The lack of a functional vasculature within the implant compromises the delivery of nutrients to and removal of metabolites from the cells, which can lead to implant failure. In this sense, our investigation aims to develop a new strategy for enhancing vascularization in tissue engineering constructs. This study's aim was to establish a culture of human adipose tissue-derived stem cells (hASCs to evaluate the biocompatibility of electrospun fiber mesh made of polyhydroxybutyrate (PHB and its copolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV and to promote the differentiation of hASCs into the endothelial lineage. Fiber mesh was produced by blending 30% PHB with 70% PHB-HV and its physical characterization was conducted using scanning electron microscopy analysis (SEM. Using electrospinning, fiber mesh was obtained with diameters ranging 300 nm to 1.3 µm. To assess the biological performance, hASCs were extracted, cultured, characterized by flow cytometry, expanded and seeded onto electrospun PHB/PHB-HV fiber mesh. Various aspects of the cells were analyzed in vitro using SEM, MTT assay and Calcein-AM staining. The in vitro evaluation demonstrated good adhesion and a normal morphology of the hASCs. After 7, 14 and 21 days of seeding hASCs onto electrospun PHB/PHB-HV fiber mesh, the cells remained viable and proliferative. Moreover, when cultured with endothelial differentiation medium (i.e., medium containing VEGF and bFGF, the hASCs expressed endothelial markers such as VE-Cadherin and the vWF factor. Therefore, the electrospun PHB/PHB-HV fiber mesh appears to be a suitable material that can be used in

  10. Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh.

    Science.gov (United States)

    Zonari, Alessandra; Novikoff, Silviene; Electo, Naira R P; Breyner, Natália M; Gomes, Dawidson A; Martins, Albino; Neves, Nuno M; Reis, Rui L; Goes, Alfredo M

    2012-01-01

    Tissue engineering is based on the association of cultured cells with structural matrices and the incorporation of signaling molecules for inducing tissue regeneration. Despite its enormous potential, tissue engineering faces a major challenge concerning the maintenance of cell viability after the implantation of the constructs. The lack of a functional vasculature within the implant compromises the delivery of nutrients to and removal of metabolites from the cells, which can lead to implant failure. In this sense, our investigation aims to develop a new strategy for enhancing vascularization in tissue engineering constructs. This study's aim was to establish a culture of human adipose tissue-derived stem cells (hASCs) to evaluate the biocompatibility of electrospun fiber mesh made of polyhydroxybutyrate (PHB) and its copolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV) and to promote the differentiation of hASCs into the endothelial lineage. Fiber mesh was produced by blending 30% PHB with 70% PHB-HV and its physical characterization was conducted using scanning electron microscopy analysis (SEM). Using electrospinning, fiber mesh was obtained with diameters ranging 300 nm to 1.3 µm. To assess the biological performance, hASCs were extracted, cultured, characterized by flow cytometry, expanded and seeded onto electrospun PHB/PHB-HV fiber mesh. Various aspects of the cells were analyzed in vitro using SEM, MTT assay and Calcein-AM staining. The in vitro evaluation demonstrated good adhesion and a normal morphology of the hASCs. After 7, 14 and 21 days of seeding hASCs onto electrospun PHB/PHB-HV fiber mesh, the cells remained viable and proliferative. Moreover, when cultured with endothelial differentiation medium (i.e., medium containing VEGF and bFGF), the hASCs expressed endothelial markers such as VE-Cadherin and the vWF factor. Therefore, the electrospun PHB/PHB-HV fiber mesh appears to be a suitable material that can be used in combination with

  11. Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yue-E.; Zhu Hong; Chen Dan; Wang Ruiyu [State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Tjiu, Weng Weei [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Liu Tianxi, E-mail: txliu@fudan.edu.cn [State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China)

    2012-06-15

    Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on a combination of LDH-IBU with two kinds of biopolymers (i.e. PCL and PLA), to act as effective drug delivery systems. Ibuprofen (IBU) is chosen as a model drug, which is intercalated in MgAl-LDH by coprecipitation. Poly(oxyethylene-b-oxypropylene-b-oxyethylene) (Pluronic) is also added into PLA-based fibers as hydrophilicity enhancer and release modulator. LDH-IBU nanoparticles are uniformly dispersed throughout the nanocomposite fibers, as evidenced by transmission electron microscopy (TEM) observations. In vitro drug release studies show that initial IBU liberation from LDH-IBU/PCL composite fibers is remarkably slower than that from IBU/PCL fibers due to the sustained release property of LDH-IBU and heterogeneous nucleation effect of LDH-IBU on PCL chain segments. Surprisingly, the initial IBU release from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers is faster than that from the corresponding IBU/PLA and IBU/PLA/Pluronic fibers. This effect can be attributed to the strong interaction between alkyl groups in IBU molecules and methyl substituent groups of PLA as well as the hydrophilicity of LDH-IBU, which lead to an easier diffusion of water with a faster release of IBU from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers. - Graphical abstract: Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on the combination of LDHs with two kinds of biopolymers (i.e. PCL and PLA). LDH-IBU nanoparticles are uniformly dispersed throughout all the electrospun nanocomposite fibers even at a high loading level of 5 wt%. By combining the tunable drug release property of LDHs and electrospinning technique, the new drug delivery system is anticipated for effective loading and sustained release of drugs

  12. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Lin [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Center for Nanofibers and Nanotechnology, E3-05-14, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Center for Nanofibers and Nanotechnology, E3-05-14, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Qin, Xiaohong, E-mail: xhqin@dhu.edu.cn [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Ramakrishna, Seeram [Center for Nanofibers and Nanotechnology, E3-05-14, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2013-12-01

    Nanotechnology has enabled the engineering of a variety of materials to meet the current challenges and requirements in vascular tissue regeneration. In our study, poly-L-lactide (PLLA) and hybrid PLLA/collagen (PLLA/Coll) nanofibers (3:1 and 1:1) with fiber diameters of 210 to 430 nm were fabricated by electrospinning. Their morphological, chemical and mechanical characterizations were carried out using scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR), and tensile instrument, respectively. Bone marrow derived mesenchymal stem cells (MSCs) seeded on electrospun nanofibers that are capable of differentiating into vascular cells have great potential for repair of the vascular system. We investigated the potential of MSCs for vascular cell differentiation in vitro on electrospun PLLA/Coll nanofibrous scaffolds using endothelial differentiation media. After 20 days of culture, MSC proliferation on PLLA/Coll(1:1) scaffolds was found 256% higher than the cell proliferation on PLLA scaffolds. SEM images showed that the MSC differentiated endothelial cells on PLLA/Coll scaffolds showed cobblestone morphology in comparison to the fibroblastic type of undifferentiated MSCs. The functionality of the cells in the presence of ‘endothelial induction media’, was further demonstrated from the immunocytochemical analysis, where the MSCs on PLLA/Coll (1:1) scaffolds differentiated to endothelial cells and expressed the endothelial cell specific proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1 or CD31) and Von Willebrand factor (vWF). From the results of the SEM analysis and protein expression studies, we concluded that the electrospun PLLA/Coll nanofibers could mimic the native vascular ECM environment and might be promising substrates for potential application towards vascular regeneration. - Highlights: • PLLA and PLLA/Coll nanofibers were electrospun. • Incorporation of collagen reduced fiber

  13. Polycaprolactone-Polydiacetylene Electrospun Fibers for Colorimetric Detection of Fake Gasoline

    Directory of Open Access Journals (Sweden)

    Shamshad Ali

    2016-04-01

    Full Text Available PCDA (Pentacosadiynoic Acid monomers were successfully embedded in PCL (Poly ?-Caprolactone polymer matrix by electrospinning process for the first time. The resultant EFM (Electrospun Fibers Mat was photo-polymerized under 254 nm UV light that enables colorimetric detection of fake gasoline. Results revealed that the fake gasoline develops a red color mat within 5 sec. FE-SEM images showed that the fake gasoline treatment dissolved the PCL EFM that give access to interact with PDA polymer. The proposed litmus-type sensor based on PCL-PDA EFM is highly sensitive to fake gasoline and can be fabricated easily

  14. Electrospun Zeolite/Cellulose Acetate Fibers for Ion Exchange of Pb2+

    Directory of Open Access Journals (Sweden)

    Daniel N. Tran

    2014-12-01

    Full Text Available The ion exchange capability of electrospun cellulose acetate (CA fibers containing zeolite A nanoparticles is reported. Solid and porous CA fibers were used to make a zeolite-embedded filter paper, which was then used to ion exchange Na+ with Cu2+ and Pb2+. The composite Linde Type A (LTA zeolite CA fibers exchanged 0.39 mmol/g more Pb2+ than LTA nanoparticles in the solid CA fibers. These fibers could provide a simple and effective method for heavy metal ion removal in water.

  15. Process parameter and surface morphology of pineapple leaf electrospun nanofibers (PALF)

    Science.gov (United States)

    Surip, S. N.; Aziz, F. M. A.; Bonnia, N. N.; Sekak, K. A.; Zakaria, M. N.

    2017-09-01

    In recent times, nanofibers have attracted the attention of researchers due to their pronounced micro and nano structural characteristics that enable the development of advanced materials that have sophisticated applications. The production of nanofibers by the electrospinning process is influenced both by the electrostatic forces and the viscoelastic behavior of the polymer. Process parameters, like solution feed rate, applied voltage, nozzle-collector distance, and spinning environment, and material properties, like solution concentration, viscosity, surface tension, conductivity, and solvent vapor pressure, influence the structure and properties of electrospun nanofibers. Significant work has been done to characterize the properties of PALF nanofibers as a function of process and material parameters.

  16. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections

    Directory of Open Access Journals (Sweden)

    Amadio Stefano

    2008-04-01

    Full Text Available Abstract Background Although many nerve prostheses have been proposed in recent years, in the case of consistent loss of nervous tissue peripheral nerve injury is still a traumatic pathology that may impair patient's movements by interrupting his motor-sensory pathways. In the last few decades tissue engineering has opened the door to new approaches;: however most of them make use of rigid channel guides that may cause cell loss due to the lack of physiological local stresses exerted over the nervous tissue during patient's movement. Electrospinning technique makes it possible to spin microfiber and nanofiber flexible tubular scaffolds composed of a number of natural and synthetic components, showing high porosity and remarkable surface/volume ratio. Results In this study we used electrospun tubes made of biodegradable polymers (a blend of PLGA/PCL to regenerate a 10-mm nerve gap in a rat sciatic nerve in vivo. Experimental groups comprise lesioned animals (control group and lesioned animals subjected to guide conduits implantated at the severed nerve stumps, where the tubular scaffolds are filled with saline solution. Four months after surgery, sciatic nerves failed to reconnect the two stumps of transected nerves in the control animal group. In most of the treated animals the electrospun tubes induced nervous regeneration and functional reconnection of the two severed sciatic nerve tracts. Myelination and collagen IV deposition have been detected in concurrence with regenerated fibers. No significant inflammatory response has been found. Neural tracers revealed the re-establishment of functional neuronal connections and evoked potential results showed the reinnervation of the target muscles in the majority of the treated animals. Conclusion Corroborating previous works, this study indicates that electrospun tubes, with no additional biological coating or drug loading treatment, are promising scaffolds for functional nervous regeneration. They

  17. Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems

    International Nuclear Information System (INIS)

    Miao, Yue-E.; Zhu Hong; Chen Dan; Wang Ruiyu; Tjiu, Weng Weei; Liu Tianxi

    2012-01-01

    Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on a combination of LDH-IBU with two kinds of biopolymers (i.e. PCL and PLA), to act as effective drug delivery systems. Ibuprofen (IBU) is chosen as a model drug, which is intercalated in MgAl-LDH by coprecipitation. Poly(oxyethylene-b-oxypropylene-b-oxyethylene) (Pluronic) is also added into PLA-based fibers as hydrophilicity enhancer and release modulator. LDH-IBU nanoparticles are uniformly dispersed throughout the nanocomposite fibers, as evidenced by transmission electron microscopy (TEM) observations. In vitro drug release studies show that initial IBU liberation from LDH-IBU/PCL composite fibers is remarkably slower than that from IBU/PCL fibers due to the sustained release property of LDH-IBU and heterogeneous nucleation effect of LDH-IBU on PCL chain segments. Surprisingly, the initial IBU release from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers is faster than that from the corresponding IBU/PLA and IBU/PLA/Pluronic fibers. This effect can be attributed to the strong interaction between alkyl groups in IBU molecules and methyl substituent groups of PLA as well as the hydrophilicity of LDH-IBU, which lead to an easier diffusion of water with a faster release of IBU from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers. - Graphical abstract: Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on the combination of LDHs with two kinds of biopolymers (i.e. PCL and PLA). LDH-IBU nanoparticles are uniformly dispersed throughout all the electrospun nanocomposite fibers even at a high loading level of 5 wt%. By combining the tunable drug release property of LDHs and electrospinning technique, the new drug delivery system is anticipated for effective loading and sustained release of drugs

  18. High affinity hemoglobin and Parkinson's disease.

    Science.gov (United States)

    Graham, Jeffrey; Hobson, Douglas; Ponnampalam, Arjuna

    2014-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain. Oxidative damage in this region has been shown to play an important role in the pathogenesis of this disease. Human neurons have been discovered to contain hemoglobin, with an increased concentration seen in the neurons of the SN. High affinity hemoglobin is a clinical entity resulting from mutations that create a functional increase in the binding of hemoglobin to oxygen and an inability to efficiently unload it to tissues. This can result in a number of metabolic compensatory changes, including an elevation in circulating hemoglobin and an increase in the molecule 2,3-diphosphoglycerate (2,3-DPG). Population based studies have revealed that patients with PD have elevated hemoglobin as well as 2,3-DPG levels. Based on these observations, we hypothesize that the oxidative damage seen in PD is related to an underlying high affinity hemoglobin subtype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Aspects of affine Toda field theory

    International Nuclear Information System (INIS)

    Braden, H.W.; Corrigan, E.; Dorey, P.E.; Sasaki, R.

    1990-05-01

    The report is devoted to properties of the affine Toda field theory, the intention being to highlight a selection of curious properties that should be explicable in terms of the underlying group theory but for which in most cases there are no explanation. The motivation for exploring the ideas contained in this report came principally from the recent work of Zamolodchikov concerning the two dimensional Ising model at critical temperature perturbed by a magnetic field. Hollowood and Mansfield pointed out that since Toda field theory is conformal the perturbation considered by Zamolodchikov might well be best regarded as a perturbation of a Toda field theory. This work made it seem plausible that the theory sought by Zamolodchikov was actually affine E 8 Toda field theory. However, this connection required an imaginary value of the coupling constant. Investigations here concerning exact S-matrices use a perturbative approach based on real coupling and the results differ in various ways from those thought to correspond to perturbed conformal field theory. A further motivation is to explore the connection between conformal and perturbed conformal field theories in other contexts using similar ideas. (N.K.)

  20. From affine Hecke algebras to boundary symmetries

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2005-01-01

    Motivated by earlier works we employ appropriate realizations of the affine Hecke algebra and we recover previously known non-diagonal solutions of the reflection equation for the U q (gl n -bar ) case. The corresponding N site spin chain with open boundary conditions is then constructed and boundary non-local charges associated to the non-diagonal solutions of the reflection equation are derived, as coproduct realizations of the reflection algebra. With the help of linear intertwining relations involving the aforementioned solutions of the reflection equation, the symmetry of the open spin chain with the corresponding boundary conditions is exhibited, being essentially a remnant of the U q (gl n -bar ) algebra. More specifically, we show that representations of certain boundary non-local charges commute with the generators of the affine Hecke algebra and with the local Hamiltonian of the open spin chain for a particular choice of boundary conditions. Furthermore, we are able to show that the transfer matrix of the open spin chain commutes with a certain number of boundary non-local charges, depending on the choice of boundary conditions

  1. Gravitational Goldstone fields from affine gauge theory

    Science.gov (United States)

    Tresguerres, Romualdo; Mielke, Eckehard W.

    2000-08-01

    In order to facilitate the application of standard renormalization techniques, gravitation should be described, in the pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincaré or the affine group. This embodies the translational as well as the linear connection. However, the coframe is not the standard Yang-Mills-type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring this ``hidden'' piece within the framework of nonlinear realizations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. We claim that nonlinear realizations provide the general mathematical scheme for the foundation of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the affine group, tetrads become identified with nonlinear translational connections; the anholonomic metric no longer constitutes an independent gravitational potential, since its degrees of freedom reveal a correspondence to eliminateable Goldstone bosons. This may be an important advantage for quantization.

  2. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    Science.gov (United States)

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  3. Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs

    Science.gov (United States)

    Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt

    2006-05-01

    Mats of PVA nanofibres were successfully prepared by the electrospinning process and were developed as carriers of drugs for a transdermal drug delivery system. Four types of non-steroidal anti-inflammatory drug with varying water solubility property, i.e. sodium salicylate (freely soluble in water), diclofenac sodium (sparingly soluble in water), naproxen (NAP), and indomethacin (IND) (both insoluble in water), were selected as model drugs. The morphological appearance of the drug-loaded electrospun PVA mats depended on the nature of the model drugs. The 1H-nuclear magnetic resonance results confirmed that the electrospinning process did not affect the chemical integrity of the drugs. Thermal properties of the drug-loaded electrospun PVA mats were analysed by differential scanning calorimetry and thermogravimetric analysis. The molecular weight of the model drugs played a major role on both the rate and the total amount of drugs released from the as-prepared drug-loaded electrospun PVA mats, with the rate and the total amount of the drugs released decreasing with increasing molecular weight of the drugs. Lastly, the drug-loaded electrospun PVA mats exhibited much better release characteristics of the model drugs than drug-loaded as-cast films.

  4. Antibacterial poly(lactic acid) (PLA) films grafting electrospun PLA/Ally isothioscyanate (AITC) fibers for food packaging

    Science.gov (United States)

    Poly(lactic acid) (PLA) fibers of submicron sizes encapsulating allyl isothiocyanate (AITC) (PfA) were made and electrospun onto the surfaces of PLA films (PfA-g-film). SEM examination confirmed that the fibers were grafted to the PLA film after the (PfA-g-film) underwent air blowing and water washi...

  5. Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct

    Directory of Open Access Journals (Sweden)

    Erh-Hsuin Lim

    2013-11-01

    Full Text Available BackgroundTo overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-β1 (LTGF into an electrospun poly(L-lactide scaffold.MethodsThe electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats.ResultsChemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen.ConclusionsWe have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.

  6. The effect of poly (lactic-co-glycolic) acid composition on the mechanical properties of electrospun fibrous mats

    DEFF Research Database (Denmark)

    Liu, Xiaoli; Aho, Johanna; Baldursdottir, Stefania G.

    2017-01-01

    The aim of this study was to investigate the influence of polymer molecular structure on the electrospinnability and mechanical properties of electrospun fibrous mats (EFMs). Polymers with similar molecular weight but different composition ratios (lactic acid (LA) and glycolic acid (GA)) were dis...

  7. Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast Fourier transform

    Science.gov (United States)

    Ayres, Chantal; Bowlin, Gary L.; Henderson, Scott C.; Taylor, Leander; Shultz, Jackie; Alexander, John; Telemeco, Todd A.; Simpson, David G.

    2010-01-01

    We describe the use of the fast Fourier transform (FFT) in the measurement of anisotropy in electrospun scaffolds of gelatin as a function of the starting conditions. In electrospinning, fiber alignment and overall scaffold anisotropy can be manipulated by controlling the motion of the collecting mandrel with respect to the source electrospinning solution. By using FFT to assign relative alignment values to an electrospun matrix it is possible to systematically evaluate how different processing variables impact the structure and material properties of a scaffold. Gelatin was suspended at varying concentrations (80, 100, 130, 150 mg/ml) and electrospun from 2,2,2 trifluoroethanol onto rotating mandrels (200–7000 RPM). At each starting concentration, fiber diameter remained constant over a wide range of mandrel RPM. Scaffold anisotropy developed as a function of fiber diameter and mandrel RPM. The induction of varying degrees of anisotropy imparted distinctive material properties to the electrospun scaffolds. The FFT is a rapid method for evaluating fiber alignment in tissue-engineering materials. PMID:16859744

  8. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications

    International Nuclear Information System (INIS)

    Sell, Scott A; Garg, Koyal; McClure, Michael J; Bowlin, Gary L; Francis, Michael P; Simpson, David G

    2008-01-01

    The purpose of this study was to enhance the mechanical properties and slow the degradation of an electrospun fibrinogen scaffold, while maintaining the scaffold's high level of bioactivity. Three different cross-linkers were used to achieve this goal: glutaraldehyde vapour, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in ethanol and genipin in ethanol. Scaffolds with a fibrinogen concentration of 120 mg ml -1 were electrospun and cross-linked with one of the aforementioned cross-linkers. Mechanical properties were determined through uniaxial tensile testing performed on scaffolds incubated under standard culture conditions for 1 day, 7 days and 14 days. Cross-linked scaffolds were seeded with human foreskin fibroblasts (BJ-GFP-hTERT) and cultured for 7, 14 and 21 days, with histology and scanning electron microscopy performed upon completion of the time course. Mechanical testing revealed significantly increased peak stress and modulus values for the EDC and genipin cross-linked scaffolds, with significantly slowed degradation. However, cross-linking with EDC and genipin was shown to have some negative effect on the bioactivity of the scaffolds as cell migration throughout the thickness of the scaffold was slowed.

  9. Effects of substrate on piezoelectricity of electrospun poly(vinylidene fluoride)-nanofiber-based energy generators.

    Science.gov (United States)

    Lee, Byoung-Sun; Park, Boongik; Yang, Ho-Sung; Han, Jin Woo; Choong, Chweelin; Bae, Jihyun; Lee, Kihwan; Yu, Woong-Ryeol; Jeong, Unyong; Chung, U-In; Park, Jong-Jin; Kim, Ohyun

    2014-03-12

    We report the effects of various substrates and substrate thicknesses on electrospun poly(vinylidene fluoride) (PVDF)-nanofiber-based energy harvesters. The electrospun PVDF nanofibers showed an average diameter of 84.6 ± 23.5 nm. A high relative β-phase fraction (85.2%) was achieved by applying high voltage during electrospinning. The prepared PVDF nanofibers thus generated considerable piezoelectric potential in accordance with the sound-driven mechanical vibrations of the substrates. Slide glass, poly(ethylene terephthalate), poly(ethylene naphthalate), and paper substrates were used to investigate the effects of the intrinsic and extrinsic substrate properties on the piezoelectricity of the energy harvesters. The thinnest paper substrate (66 μm) with a moderate Young's modulus showed the highest voltage output (0.4885 V). We used high-performance 76, 66, and 33 μm thick papers to determine the effect of paper thickness on the output voltage. The thinnest paper substrate resulted in the highest voltage output (0.7781 V), and the numerical analyses of the sound-driven mechanical deformation strongly support the hypothesis that substrate thickness has a considerable effect on piezoelectric performance.

  10. Superhydrophobic surfaces of electrospun block copolymer fibers with low content of fluorosilicones

    International Nuclear Information System (INIS)

    Tian, Xiaoping; Yi, Lingmin; Meng, Xiaomei; Xu, Kai; Jiang, Tengteng; Lai, Dongzhi

    2014-01-01

    A series of well-defined poly[methyl(3,3,3-trifluoropropyl)siloxane]-b-poly(methyl methacrylate) (PMTFPS-b-PMMA) diblock copolymers with low content of PMTFPS were synthesized by atom transfer radical polymerization (ATRP) of MMA from PMTFPS macroinitiators (PMTFPS-Br). The polymerization result reveals that the ATRP of MMA from PMTFPS-Br is fist-order with respect to MMA under different polymerization conditions, demonstrating a typical characteristic of living polymerization. The results also show that PMTFPS-b-PMMA diblock copolymers can exhibit a total surface tension (γ S ) varying from 25.28 mN/m to 21.87 mN/m with the change of PMTFPS contents from 2.6 wt% to 22.2 wt%. Moreover, the water contact angles of electrospun PMTFPS-b-PMMA surfaces could be higher than 150° with water roll-off angles less than 10°, which denotes a superhydrophobic property. However, the electronspinning conditions, especially the concentration of spinning solution, would have important effect on the surface morphology, surface composition and wetting behavior of electrospun films. It was found that bead-free fibers with uniform diameter as well as good superhydrophobic property could be prepared on condition that the polymer concentration of spinning solution was as high as 32 wt% in the mixed solvent of DMF and THF.

  11. Superhydrophobic surfaces of electrospun block copolymer fibers with low content of fluorosilicones

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Xiaoping [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Yi, Lingmin, E-mail: lmyi@zstu.edu.cn [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Meng, Xiaomei; Xu, Kai [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Jiang, Tengteng; Lai, Dongzhi [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-07-01

    A series of well-defined poly[methyl(3,3,3-trifluoropropyl)siloxane]-b-poly(methyl methacrylate) (PMTFPS-b-PMMA) diblock copolymers with low content of PMTFPS were synthesized by atom transfer radical polymerization (ATRP) of MMA from PMTFPS macroinitiators (PMTFPS-Br). The polymerization result reveals that the ATRP of MMA from PMTFPS-Br is fist-order with respect to MMA under different polymerization conditions, demonstrating a typical characteristic of living polymerization. The results also show that PMTFPS-b-PMMA diblock copolymers can exhibit a total surface tension (γ{sub S}) varying from 25.28 mN/m to 21.87 mN/m with the change of PMTFPS contents from 2.6 wt% to 22.2 wt%. Moreover, the water contact angles of electrospun PMTFPS-b-PMMA surfaces could be higher than 150° with water roll-off angles less than 10°, which denotes a superhydrophobic property. However, the electronspinning conditions, especially the concentration of spinning solution, would have important effect on the surface morphology, surface composition and wetting behavior of electrospun films. It was found that bead-free fibers with uniform diameter as well as good superhydrophobic property could be prepared on condition that the polymer concentration of spinning solution was as high as 32 wt% in the mixed solvent of DMF and THF.

  12. Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering

    International Nuclear Information System (INIS)

    Agheb, Maria; Dinari, Mohammad; Rafienia, Mohammad; Salehi, Hossein

    2017-01-01

    In natural cartilage tissues, chondrocytes are linked to extracellular matrix (ECM) through cell-surface binding proteins. Surface modification of gelatin can provide a new generation of biopolymers and fibrous scaffolds with chemical, mechanical, and biological properties. In this study tyrosine protein and 1,2,3-triazole ring were utilized to functionalize gelatin without Cu catalyst. Their molecular structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy ( 1 HNMR). Chemical cross-linkers such as glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysulfosuccinimide (NHS) were used to electrospin the modified gelatin. The modification of gelatin and cross-linking effects were confirmed by scanning electron microscopy (SEM), contact angle measurement, and mechanical tests. MTT assay using chondrocyte cells showed cell viability of electrospun modified gelatin scaffolds. In vitro cell culture studies showed that electrospun engineered protein scaffolds would support the attachment and growth of cells. The results also showed that cross-linked nanofibers with EDC/NHS could be considered excellent matrices in cell adhesion and proliferation before electrospinning process and their potential substrate in tissue engineering applications, especially in the field of cartilage engineering.

  13. Crystallinity of Electrospun and Centrifugal Spun Polycaprolactone Fibers: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Eva Kuzelova Kostakova

    2017-01-01

    Full Text Available Crystalline properties of semicrystalline polymers are very important parameters that can influence the application area. The internal structure, like the mentioned crystalline properties, of polymers can be influenced by the production technology itself and by changing technology parameters. The present work is devoted to testing of electrospun and centrifugal spun fibrous and nanofibrous materials and compare them to foils and granules made from the same raw polymer. The test setup reveals the structural differences caused by the production technology. Effects of average molecular weight are also exhibited. The applied biodegradable and biocompatible polymer is polycaprolactone (PCL as it is a widespread material for medical purposes. The crystallinity of PCL has significant effect on rate of degradation that is an important parameter for a biodegradable material and determines the applicability. The results of differential scanning calorimetry (DSC showed that, at the degree of crystallinity, there is a minor difference between the electrospun and centrifugal spun fibrous materials. However, the significant influence of polymer molecular weight was exhibited. The morphology of the fibrous materials, represented by fiber diameter, also did not demonstrate any connection to final measured crystallinity degree of the tested materials.

  14. Electrospun Poly(lactic acid-co-glycolic acid) Scaffolds for Skin Tissue Engineering

    Science.gov (United States)

    Kumbar, Sangamesh G.; Nukavarapu, Syam Prasad; James, Roshan; Nair, Lakshmi S.; Laurencin, Cato T.

    2008-01-01

    Electrospun fiber matrices composed of scaffolds of varying fiber diameters were investigated for potential application of severe skin loss. Few systematic studies have been performed to examine the effect of varying fiber diameter electrospun fiber matrices for skin regeneration. The present study reports the fabrication of poly[lactic acid-co-glycolic acid] (PLAGA) matrices with fiber diameters of 150–225, 200–300, 250–467, 500–900, 600–1200, 2500–3000 and 3250–6000 nm via electrospinning. All fiber matrices found to have a tensile modulus from 39.23 ± 8.15 to 79.21 ± 13.71 MPa which falls in the range for normal human skin. Further, the porous fiber matrices have porosity between 38–60 % and average pore diameters between 10–14µm. We evaluated the efficacy of these biodegradable fiber matrices as skin substitutes by seeding them with human skin fibroblasts (hSF). Human skin fibroblasts acquired a well spread morphology and showed significant progressive growth on fiber matrices in the 350–1100 nm diameter range. Collagen type III gene expression was significantly up-regulated in hSF seeded on matrices with fiber diameters in the range of 350–1100 nm. Based on the need, the proposed fiber skin substitutes can be successfully fabricated and optimized for skin fibroblast attachment and growth. PMID:18639927

  15. Electrospun water-stable zein/ethyl cellulose composite nanofiber and its drug release properties

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hangyi; Wang, Qingqing; Li, Guohui [Key Laboratory of Eco-textiles, Jiangnan University, Wuxi (China); Qiu, Yuyu [Key Laboratory of Eco-textiles, Jiangnan University, Wuxi (China); Laboratory of Natural Medicine, Wuxi Medical School, Jiangnan University (China); Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn [Key Laboratory of Eco-textiles, Jiangnan University, Wuxi (China)

    2017-05-01

    A simple and cost-effective way to prepare water-stable zein-based nanofibers for potential drug delivery was presented in this article. Corn protein zein was co-electrospun with hydrophobic ethyl cellulose. Indomethacin, as a model drug, was incorporated in situ into the composite nanofibers. Scanning electron microscopy and element mapping revealed the morphologies of drug-loaded nanofibers and drug distribution, respectively. Fourier transform infrared spectra confirmed the physical blending among the components. Differential scanning calorimetry and X-ray diffraction demonstrated the physical state of drug and polymers in the nanofiber matrix. The composite nanofibers showed a sustained diffusion-controlled release according to the results of in vitro dissolution tests. - Highlights: • A simple, non-toxic and cost-effective way to improve water stability of zein nanofibers was proposed. • Electrospun zein/ethyl cellulose nanofibers with improved water stability and mechanical strength were prepared. • Indomethacin was homogeneously distributed in the zein/ethyl cellulose nanofibers with no aggregation or cluster. • The zein/ethyl cellulose nanofibers presented a sustained drug release profile, following Fickican diffusion mechanism.

  16. Electrospun TiO{sub 2} nanofibers decorated Ti substrate for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Dumitriu, Cristina [Åbo Akademi University, Process Chemistry Centre, Laboratory of Analytical Chemistry, Biskopsgatan 8, Åbo-Turku FI-20500 (Finland); Politehnica University Bucharest, Faculty of Applied Chemistry and Materials Science, Department of General Chemistry, 1-7 Polizu, Bucharest Ro-011061 (Romania); Stoian, Andrei Bogdan [Politehnica University Bucharest, Faculty of Applied Chemistry and Materials Science, Department of General Chemistry, 1-7 Polizu, Bucharest Ro-011061 (Romania); Titorencu, Irina; Pruna, Vasile; Jinga, Victor V. [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B. P. Hasdeu, district 5, Bucharest Ro-050568 (Romania); Latonen, Rose-Marie; Bobacka, Johan [Åbo Akademi University, Process Chemistry Centre, Laboratory of Analytical Chemistry, Biskopsgatan 8, Åbo-Turku FI-20500 (Finland); Demetrescu, Ioana, E-mail: i_demetrescu@chim.upb.ro [Politehnica University Bucharest, Faculty of Applied Chemistry and Materials Science, Department of General Chemistry, 1-7 Polizu, Bucharest Ro-011061 (Romania)

    2014-12-01

    Various TiO{sub 2} nanofibers on Ti surface have been fabricated via electrospinning and calcination. Due to different elaboration conditions the electrospun fibers have different surface feature morphologies, characterized by scanning electronic microscopy, surface roughness, and contact angle measurements. The results have indicated that the average sample diameters are between 32 and 44 nm, roughness between 61 and 416 nm, and all samples are hydrophilic. As biological evaluation, cell culture with MG63 cell line originally derived from a human osteosarcoma was performed and correlation between nanofibers elaboration, properties and cell response was established. The cell adherence and growth are more evident on Ti samples with more aligned fibers, higher roughness and strong hydrophilic character and such fibers have been elaborated with a high speed rotating cylinder collector, confirming the idea that nanostructure elaboration conditions guide the cells' growth. - Highlights: • Processing Ti surface via electrospinning and calcination leads to TiO{sub 2} nanofibers. • The TiO{sub 2} electrospun fibers on Ti have diameters between 10 and 100 nm. • Elaboration with high speed rotating cylinder collector leads to aligned fibers. • The samples have roughness between 61 and 416 nm and all of them are hydrophilic. • Cell adherence and viability is more evident on Ti samples with aligned fibers.

  17. Urea impedimetric biosensing using electrospun nanofibers modified with zinc oxide nanoparticles

    Science.gov (United States)

    Migliorini, Fernanda L.; Sanfelice, Rafaela C.; Mercante, Luiza A.; Andre, Rafaela S.; Mattoso, Luiz H. C.; Correa, Daniel. S.

    2018-06-01

    Reliable analytical techniques to evaluate dairy products, including milk, are of outmost importance to ensure food safety against contaminants. Among possible substances employed as adulterants in milk, urea raises deep concern due to its harmful effects to consumer's health. In the present study, a biosensing platform was developed to be applied in the electrochemical detection of urea. The sensing platform was fabricated using polymeric electrospun nanofibers of polyamide 6 (PA6) and polypyrrole (PPy) deposited onto fluorine doped tin oxide (FTO) electrodes, which were then modified with zinc oxide nanoparticles (ZnO). This material showed excellent properties for the immobilization of urease enzyme, conferring the FTO/PA6/PPy/ZnO/urease electrode high sensitivity for urea detection within the concentration range between 0.1 and 250 mg dL-1 with a limit of detection of 0.011 mg dL-1. The results achieved evidence the potential of electrospun nanofibers-based electrodes for applications in biosensors aiming at dairy products analysis.

  18. Electrospun Magnetic Nanoparticle-Decorated Nanofiber Filter and Its Applications to High-Efficiency Air Filtration.

    Science.gov (United States)

    Kim, Juyoung; Chan Hong, Seung; Bae, Gwi Nam; Jung, Jae Hee

    2017-10-17

    Filtration technology has been widely studied due to concerns about exposure to airborne dust, including metal oxide nanoparticles, which cause serious health problems. The aim of these studies has been to develop mechanisms for the continuous and efficient removal of metal oxide dusts. In this study, we introduce a novel air filtration system based on the magnetic attraction force. The filtration system is composed of a magnetic nanoparticle (MNP)-decorated nanofiber (MNP-NF) filter. Using a simple electrospinning system, we fabricated continuous and smooth electrospun nanofibers with evenly distributed Fe 3 O 4 MNPs. Our electrospun MNP-NF filter exhibited high particle collection efficiency (∼97% at 300 nm particle size) compared to the control filter (w/o MNPs, ∼ 68%), with a ∼ 64% lower pressure drop (∼17 Pa) than the control filter (∼27 Pa). Finally, the filter quality factors of the MNP-NF filter were 4.7 and 11.9 times larger than those of the control filter and the conventional high-efficiency particulate air filters (>99% and ∼269 Pa), respectively. Furthermore, we successfully performed a field test of our MNP-NF filter using dust from a subway station tunnel. This work suggests that our novel MNP-NF filter can be used to facilitate effective protection against hazardous metal oxide dust in real environments.

  19. Magnesium Oxide Nanoparticles Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Improved Physical Properties

    Directory of Open Access Journals (Sweden)

    R. T. De Silva

    2017-01-01

    Full Text Available Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol (PVA polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm at a predetermined concentration (10% (w/w, is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P<0.05. In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues.

  20. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation

    International Nuclear Information System (INIS)

    Diaz-Gomez, Luis; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Silva, Maite; Dominguez, Fernando; Sheikh, Faheem A.; Cantu, Travis; Desai, Raj; Garcia, Vanessa L.; Macossay, Javier

    2014-01-01

    Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSCs) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in a uniform sponge-like coating of 2.85 (S.D. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical properties (Young's modulus, tensile stress and tensile strain), sustained release of total protein and growth factors (PDGF-BB, TGF-β1 and VEGF), and hemocompatibility. MSC seeded on the PRP–PCL nanofibers showed an increased adhesion and proliferation compared to pristine PCL fibers. Moreover, the adsorbed PRP enabled angiogenesis features observed as neovascularization in a chicken chorioallantoic membrane (CAM) model. Overall, these results suggest that PRP–PCL scaffolds hold promise for tissue regeneration applications. - Highlights: • Platelet-rich plasma (PRP) can be adsorbed on electrospun fibers via lyophilization. • PRP coating enhanced mesenchymal stem cell adhesion and proliferation on scaffolds. • PRP-coated scaffolds showed sustained release of growth factors. • Adsorbed PRP provided angiogenic features. • PRP-poly(ε-caprolactone) scaffolds hold promise for tissue regeneration applications

  1. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhuoyue [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Song, Yue [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Zhang, Jing [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province, 710069 (China); Liu, Wei [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Cui, Jihong, E-mail: cjh@nwu.edu.cn [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province, 710069 (China); and others

    2017-03-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2 months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. - Highlights: • We laminated the nHA/PHB layers to obtain a scaffold for bone tissue engineering. • The laminated scaffold performed optimized cell-loading capacity. • MSCs exhibited osteogenic phenotypes on the laminated scaffold. • Osteoid tissue formed throughout the laminated scaffold after 2 months in vivo. The laminated bio-composite scaffolds can be applied to bone regeneration.

  2. Lithography-free centimeter-long nanochannel fabrication method using an electrospun nanofiber array

    International Nuclear Information System (INIS)

    Park, Suk Hee; Shin, Hyun-Jun; Lee, Sangyoup; Kim, Yong-Hwan; Yang, Dong-Yol; Lee, Jong-Chul

    2012-01-01

    Novel cost-effective methods for polymeric and metallic nanochannel fabrication have been demonstrated using an electrospun nanofiber array. Like other electrospun nanofiber-based nanofabrication methods, our system also showed high throughput as well as cost-effective performances. Unlike other systems, however, our fabrication scheme provides a pseudo-parallel nanofiber array a few centimeters long at a speed of several tens of fibers per second based on our unique inclined-gap fiber collecting system. Pseudo-parallel nanofiber arrays were used either directly for the PDMS molding process or for the metal lift-off process followed by the SiO 2 deposition process to produce the nanochannel array. While the PDMS molding process was a simple fabrication based on one-step casting, the metal lift-off process followed by SiO 2 deposition allowed finetuning on height and width of nanogrooves down to subhundred nanometers from a few micrometers. Nanogrooves were covered either with cover glass or with PDMS slab and nanochannel connectivity was investigated with a fluorescent dye. Also, nanochannel arrays were used to investigate mobility and conformations of λ-DNA. (paper)

  3. Incorporation of Rutin in Electrospun Pullulan/PVA Nanofibers for Novel UV-Resistant Properties.

    Science.gov (United States)

    Qian, Yongfang; Qi, Mengjie; Zheng, Laijiu; King, Martin W; Lv, Lihua; Ye, Fang

    2016-06-23

    This study aimed to investigate the incorporation of rutin into electrospun pullulan and poly(vinyl alcohol) (PVA) nanofibers to obtain ultraviolet (UV)-resistant properties. The effect of weight ratios between pullulan and PVA, and the addition of rutin on the nanofibers' morphology and diameters were studied and characterized by scanning electron microscopy (SEM). Fourier transform infrared (FTIR) analysis was utilized to investigate the interaction between pullulan and PVA, as well as with rutin. The results showed that the inclusion of PVA results in the increase in the fiber's diameter. The addition of rutin had no obvious effect on the fibers' average diameters when the content of rutin was less than 7.41%. FTIR results indicated that a hydrogen bond formed between pullulan and PVA, also between these polymers and rutin. Moreover, the addition of rutin could enhance the mechanical properties due to its stiff structure and could decrease the transmittance of UVA and UVB to be fewer than 5%; meanwhile, the value of ultraviolet protection factor (UPF) reached more than 40 and 50 when the content of rutin was 4.46% and 5.67%, respectively. Therefore, the electrospun pullulan/PVA/rutin nanofibrous mats showed excellent UV resistance and have potential applications in anti-ultraviolet packaging and dressing materials.

  4. Electrospun single-walled carbon nanotube/polyvinyl alcohol composite nanofibers: structure-property relationships

    International Nuclear Information System (INIS)

    Naebe, Minoo; Lin Tong; Wang Xungai; Staiger, Mark P; Dai Liming

    2008-01-01

    Polyvinyl alcohol (PVA) nanofibers and single-walled carbon nanotube (SWNT)/PVA composite nanofibers have been produced by electrospinning. An apparent increase in the PVA crystallinity with a concomitant change in its main crystalline phase and a reduction in the crystalline domain size were observed in the SWNT/PVA composite nanofibers, indicating the occurrence of a SWNT-induced nucleation crystallization of the PVA phase. Both the pure PVA and SWNT/PVA composite nanofibers were subjected to the following post-electrospinning treatments: (i) soaking in methanol to increase the PVA crystallinity, and (ii) cross-linking with glutaric dialdehyde to control the PVA morphology. Effects of the PVA morphology on the tensile properties of the resultant electrospun nanofibers were examined. Dynamic mechanical thermal analyses of both pure PVA and SWNT/PVA composite electrospun nanofibers indicated that SWNT-polymer interaction facilitated the formation of crystalline domains, which can be further enhanced by soaking the nanofiber in methanol and/or cross-linking the polymer with glutaric dialdehyde

  5. Tailoring degradation of AZ31 alloy by surface pre-treatment and electrospun PCL fibrous coating

    Energy Technology Data Exchange (ETDEWEB)

    Hanas, T. [Medical Materials Laboratory, Indian Institute of Technology Madras, Chennai 600036 (India); School of Nano Science and Technology, National Institute of Technology Calicut, Calicut, Kerala 673601 (India); Sampath Kumar, T.S., E-mail: tssk@iitm.ac.in [Medical Materials Laboratory, Indian Institute of Technology Madras, Chennai 600036 (India); Perumal, Govindaraj; Doble, Mukesh [Department of Biotechnology - Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-08-01

    AZ31 magnesium alloy was coated with polycaprolactone (PCL) nano-fibrous layer using electrospinning technique so as to control degradation in physiological environment. Before coating, the alloy was treated with HNO{sub 3} to have good adhesion between the coating and substrate. To elucidate the role of pre-treatment and coating, samples only with PCL coating as well as HNO{sub 3} treatment only were prepared for comparison. Best coating adhesion of 4B grade by ASTM D3359–09 tape test was observed for pre-treated samples. The effect of coating on in vitro degradation and biomineralization was studied using supersaturated simulated body fluid (SBF 5 ×). The weight loss and corrosion results obtained by immersion test showed that the combination of HNO{sub 3} pre-treatment and PCL coating is very effective in controlling the degradation rate and improving bioactivity. Cytotoxicity studies using L6 cells showed that PCL coated sample has better cell adhesion and proliferation compared to uncoated samples. Nano-fibrous PCL coating combined with prior acid treatment seems to be a promising method to tailor degradation rate with enhanced bioactivity of Mg alloys. - Highlights: • PCL electrospun coating on HNO{sub 3} pre-treated AZ31 alloy controls biodegradation. • Acid pre-treatment stabilizes the substrate - coating interface. • Electrospun porous coating improves biomineralization. • Coating similar to extracellular matrix enhances cell adhesion.

  6. Theoretical modeling and experimental validation of transport and separation properties of carbon nanotube electrospun membrane distillation

    KAUST Repository

    Lee, Jung Gil; Lee, Eui-Jong; Jeong, Sanghyun; Guo, Jiaxin; An, Alicia Kyoungjin; Guo, Hong; Kim, Joonha; Leiknes, TorOve; Ghaffour, NorEddine

    2016-01-01

    Developing a high flux and selective membrane is required to make membrane distillation (MD) a more attractive desalination process. Amongst other characteristics membrane hydrophobicity is significantly important to get high vapor transport and low wettability. In this study, a laboratory fabricated carbon nanotubes (CNTs) composite electrospun (E-CNT) membrane was tested and has showed a higher permeate flux compared to poly(vinylidene fluoride-co-hexafluoropropylene) (PH) electrospun membrane (E-PH membrane) in a direct contact MD (DCMD) configuration. Only 1% and 2% of CNTs incorporation resulted in an enhanced permeate flux with lower sensitivity to feed salinity while treating a 35 and 70 g/L NaCl solutions. Experimental results and the mechanisms of E-CNT membrane were validated by a proposed new step-modeling approach. The increased vapor transport in E-CNT membranes could not be elucidated by an enhancement of mass transfer only at a given physico-chemical properties. However, the theoretical modeling approach considering the heat and mass transfers simultaneously enabled to explain successfully the enhanced flux in the DCMD process using E-CNT membranes. This indicates that both mass and heat transfers improved by CNTs are attributed to the enhanced vapor transport in the E-CNT membrane.

  7. Design and Characterization of Electrospun Polyamide Nanofiber Media for Air Filtration Applications

    Directory of Open Access Journals (Sweden)

    Jonas Matulevicius

    2014-01-01

    Full Text Available Electrospun polyamide 6 (PA 6 and polyamide 6/6 (PA 6/6 nanofibers were produced in order to investigate their experimental characteristics with the goal of obtaining filtration relevant fiber media. The experimental design model of each PA nanofibers contained the following variables: polymer concentration, ratio of solvents, nanofiber media collection time, tip-to-collector distance, and the deposition voltage. The average diameter of the fibers, their morphology, basis weight, thickness, and resulting media solidity were investigated. Effects of each variable on the essential characteristics of PA 6/6 and PA 6 nanofiber media were studied. The comparative analysis of the obtained PA 6/6 and PA 6 nanofiber characteristics revealed that PA 6/6 had higher potential to be used in filtration applications. Based on the experimental results, the graphical representation—response surfaces—for obtaining nanofiber media with the desirable fiber diameter and basis weight characteristics were derived. Based on the modelling results the nanofiber filter media (mats were fabricated. Filtration results revealed that nanofiber filter media electrospun from PA6/6 8% (w/vol solutions with the smallest fiber diameters (62–66 nm had the highest filtration efficiency (PA6/6_30 = 84.9–90.9% and the highest quality factor (PA6/6_10 = 0.0486–0.0749 Pa−1.

  8. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Gomez, Luis [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Alvarez-Lorenzo, Carmen, E-mail: carmen.alvarez.lorenzo@usc.es [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Concheiro, Angel [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Silva, Maite [Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Dominguez, Fernando [Fundación Publica Galega de Medicina Xenómica, Santiago de Compostela (Spain); Sheikh, Faheem A.; Cantu, Travis; Desai, Raj; Garcia, Vanessa L. [Department of Chemistry, University of Texas Pan American, Edinburg, TX 78541 (United States); Macossay, Javier, E-mail: jmacossay@utpa.edu [Department of Chemistry, University of Texas Pan American, Edinburg, TX 78541 (United States)

    2014-07-01

    Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSCs) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in a uniform sponge-like coating of 2.85 (S.D. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical properties (Young's modulus, tensile stress and tensile strain), sustained release of total protein and growth factors (PDGF-BB, TGF-β1 and VEGF), and hemocompatibility. MSC seeded on the PRP–PCL nanofibers showed an increased adhesion and proliferation compared to pristine PCL fibers. Moreover, the adsorbed PRP enabled angiogenesis features observed as neovascularization in a chicken chorioallantoic membrane (CAM) model. Overall, these results suggest that PRP–PCL scaffolds hold promise for tissue regeneration applications. - Highlights: • Platelet-rich plasma (PRP) can be adsorbed on electrospun fibers via lyophilization. • PRP coating enhanced mesenchymal stem cell adhesion and proliferation on scaffolds. • PRP-coated scaffolds showed sustained release of growth factors. • Adsorbed PRP provided angiogenic features. • PRP-poly(ε-caprolactone) scaffolds hold promise for tissue regeneration applications.

  9. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    Energy Technology Data Exchange (ETDEWEB)

    Papa, Antonio [Institute for Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), V.le Kennedy 54, Naples 80125 (Italy); IMAST SCaRL, Piazza Bovio 22, 80133 Naples (Italy); Guarino, Vincenzo, E-mail: vincenzo.guarino@cnr.it; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi [Institute for Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), V.le Kennedy 54, Naples 80125 (Italy)

    2015-12-17

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.

  10. Electrospun composite matrices of poly(ε-caprolactone)-montmorillonite made using tenside free Pickering emulsions

    International Nuclear Information System (INIS)

    Samanta, Archana; Takkar, Sonam; Kulshreshtha, Ritu; Nandan, Bhanu; Srivastava, Rajiv K.

    2016-01-01

    The production of composite electrospun matrices of poly(ε-caprolactone) (PCL) using an emulsifier-free emulsion, made with minimal organic solvent, as precursor is reported. Pickering emulsions of PCL were prepared using modified montmorillonite (MMT) clay as the stabilizer. Hydrophobic tallow group of the modified MMT clay resulted in analogous interaction of clay with oil and aqueous phase and its adsorption at the interface to provide stability to the resultant emulsion. Composite fibrous matrices of PCL and MMT were produced using electrospinning under controlled conditions. The fiber fineness was found to alter with PCL concentration and volume fraction of the aqueous and oil phases. A higher tensile strength and modulus was obtained with inclusion of MMT in PCL electrospun matrix in comparison to a matrix made using neat PCL. The presence of clay in the fibrous matrix did not change the cell proliferation efficiency in comparison to neat PCL matrix. Composite fibrous matrices of PCL/MMT bearing enhanced tensile properties may find applications in areas other than tissue engineering for example food packaging and filtration. - Highlights: • Tenside free, clay stabilized Pickering emulsion of PCL is made with minimal organic solvent. • Organic–inorganic composite fibrous matrices were produced via emulsion electrospinning. • Fiber fineness was efficiently controlled by variation in emulsion formulation. • Fibrous matrices of high tensile strength and modulus were obtained in comparison to neat PCL matrix. • PCL/clay matrices showed effective cell proliferation as a neat PCL matrix.

  11. Electrospun composite matrices of poly(ε-caprolactone)-montmorillonite made using tenside free Pickering emulsions.

    Science.gov (United States)

    Samanta, Archana; Takkar, Sonam; Kulshreshtha, Ritu; Nandan, Bhanu; Srivastava, Rajiv K

    2016-12-01

    The production of composite electrospun matrices of poly(ε-caprolactone) (PCL) using an emulsifier-free emulsion, made with minimal organic solvent, as precursor is reported. Pickering emulsions of PCL were prepared using modified montmorillonite (MMT) clay as the stabilizer. Hydrophobic tallow group of the modified MMT clay resulted in analogous interaction of clay with oil and aqueous phase and its adsorption at the interface to provide stability to the resultant emulsion. Composite fibrous matrices of PCL and MMT were produced using electrospinning under controlled conditions. The fiber fineness was found to alter with PCL concentration and volume fraction of the aqueous and oil phases. A higher tensile strength and modulus was obtained with inclusion of MMT in PCL electrospun matrix in comparison to a matrix made using neat PCL. The presence of clay in the fibrous matrix did not change the cell proliferation efficiency in comparison to neat PCL matrix. Composite fibrous matrices of PCL/MMT bearing enhanced tensile properties may find applications in areas other than tissue engineering for example food packaging and filtration. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Gelatin-GAG electrospun nanofibrous scaffold for skin tissue engineering: fabrication and modeling of process parameters.

    Science.gov (United States)

    Pezeshki-Modaress, Mohamad; Mirzadeh, Hamid; Zandi, Mojgan

    2015-03-01

    Electrospinning is a very useful technique for producing polymeric nanofibers by applying electrostatic forces. In this study, fabrication of novel gelatin/GAG nanofibrous mats and also the optimization of electrospinning process using response surface methodology were reported. At optimization section, gelatin/GAG blend ratio, applied voltage and feeding rate, their individual and interaction effects on the mean fiber diameter (MFD) and standard deviation of fiber diameter (SDF) were investigated. The obtained model for MFD has a quadratic relationship with gelatin/GAG blend ratio, applied voltage and feeding rate. The interactions of blend ratio and applied voltage and also applied voltage and flow rate were found significant but the interactions of blend ratio and flow rate were ignored. The optimum condition for gelatin/GAG electrospinning was also introduced using the model obtained in this study. The potential use of optimized electrospun mat in skin tissue engineering was evaluated using culturing of human dermal fibroblast cells (HDF). The SEM micrographs of HDF cells on the nanofibrous structure show that fibroblast cells can highly attach, grow and populate on the fabricated scaffold surface. The electrospun gelatin/GAG nanofibrous mats have a potential for using as scaffold for skin, cartilage and cornea tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Farooq, Ariba [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shahzadi, Lubna; Khan, Abdul Samad [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2016-07-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5 h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. - Highlights: • NSAIDs releasing scaffolds for periodontal regeneration applications • Meloxicam immobilized biodegradable nanocomposite electrospun membranes and films • Good swelling properties • Controlled drug release • VERO cells were very well proliferated and synthesized materials were found to be non-cytotoxic.

  14. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications

    International Nuclear Information System (INIS)

    Yar, Muhammad; Farooq, Ariba; Shahzadi, Lubna; Khan, Abdul Samad; Mahmood, Nasir; Rauf, Abdul; Chaudhry, Aqif Anwar; Rehman, Ihtesham ur

    2016-01-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5 h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. - Highlights: • NSAIDs releasing scaffolds for periodontal regeneration applications • Meloxicam immobilized biodegradable nanocomposite electrospun membranes and films • Good swelling properties • Controlled drug release • VERO cells were very well proliferated and synthesized materials were found to be non-cytotoxic.

  15. Biocidal Activity of Plasma Modified Electrospun Polysulfone Mats Functionalized with Polyethyleneimine-Capped Silver Nanoparticles

    KAUST Repository

    Schiffman, Jessica D.

    2011-11-01

    The incorporation of silver nanoparticles (AgNPs) into polymeric nanofibers has attracted a great deal of attention due to the strong antimicrobial activity that the resulting fibers exhibit. However, bactericidal efficacy of AgNP-coated electrospun fibrous mats has not yet been demonstrated. In this study, polysulfone (PSf) fibers were electrospun and surface-modified using an oxygen plasma treatment, which allowed for facile irreversible deposition of cationically charged polyethyleneimine (PEI)-AgNPs via electrostatic interactions. The PSf-AgNP mats were characterized for relative silver concentration as a function of plasma treatment time using ICP-MS and changes in contact angle. Plasma treatment of 60 s was the shortest time required for maximum loss of bacteria (Escherichia coli) viability. Time-dependent bacterial cytotoxicity studies indicate that the optimized PSf-AgNP mats exhibit a high level of inactivation against both Gram negative bacteria, Escherichia coli, and Gram positive bacteria, Bacillus anthracis and Staphylococcus aureus. © 2011 American Chemical Society.

  16. Recent progress concerning the production of controlled highly oriented electrospun nanofibrous arrays

    Science.gov (United States)

    Manea, L. R.; Hristian, L.; Leon, A. L.; Popa, A.

    2016-08-01

    Among the foreground domains of all the research-development programs at national and international level, a special place is occupied by that concerning the nanosciences, nanotechnologies, new materials and technologies. Electrospinning found a well-deserved place in this space, offering the preparation of nanomaterials with distinctive properties and applications in medicine, environment, photonic sensors, filters, etc. These multiple applications are generated by the fact that the electrospinning technology makes available the production of nanofibers with controllable characteristics (length, porosity, density, and mechanical characteristics), complexity and architecture. The apparition of 3D printing technology favors the production of complex nanofibrous structures, controlled assembly, self-assembly of electrospun nanofibers for the production of scaffolds used in various medical applications. The architecture of fibrous deposits has a special influence on the subsequent development of the cells of the reconstructed organism. The present work proposes to study of recent progress concerning the production of controlled highly oriented electrospun nanofibrous arrays and progress in research on the production of complex 2D and 3D structures.

  17. Elastic Evaluation of Poly(Lactic Acid) Electrospun Membranes Using the Pulsed Photoacoustic Technique

    Science.gov (United States)

    Navarrete, M.; Vera-Graziano, R.; Maciel-Cerda, A.; Sánchez-Arévalo, F. M.; Godínez, F. A.

    2017-08-01

    Fibrous membranes manufactured by electrospinning possess unique features such as a high porosity and large specific surface area, making them suitable for applications in tissue engineering. However, the determination of their mechanical behavior under different loading conditions remains one of the most difficult technical problems for researchers to overcome. While the tensile properties of this kind of membrane are commonly reported in the literature, few explorations of their properties in other directions have been reported. In this paper, the pulsed photoacoustic technique is employed to obtain the elastic constants of electrospun non-woven membranes, specifically in two directions ( L, T). The electrospun samples are hybrid fiber membranes of poly(lactic acid) and hydroxyapatite (HA) nanoparticles at different concentrations. It is found that the concentration of HA nanoparticles determines the mechanical response of the membrane, where the nanoparticles act either as a reinforcement or as a mesh defect. The elastic constants (EL, ET, GL, GT, vL, ν T) are obtained through velocity waves related to the stress-strain equations, using samples with two different geometries and considering the electrospinning mats as a transversely isotropic material. These values are compared to those acquired using macro-tensile testing equipment according to the ASTM D1708 standard.

  18. Electrospun composite matrices of poly(ε-caprolactone)-montmorillonite made using tenside free Pickering emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Archana [Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Takkar, Sonam; Kulshreshtha, Ritu [Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Nandan, Bhanu [Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Srivastava, Rajiv K., E-mail: rajiv@textile.iitd.ac.in [Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2016-12-01

    The production of composite electrospun matrices of poly(ε-caprolactone) (PCL) using an emulsifier-free emulsion, made with minimal organic solvent, as precursor is reported. Pickering emulsions of PCL were prepared using modified montmorillonite (MMT) clay as the stabilizer. Hydrophobic tallow group of the modified MMT clay resulted in analogous interaction of clay with oil and aqueous phase and its adsorption at the interface to provide stability to the resultant emulsion. Composite fibrous matrices of PCL and MMT were produced using electrospinning under controlled conditions. The fiber fineness was found to alter with PCL concentration and volume fraction of the aqueous and oil phases. A higher tensile strength and modulus was obtained with inclusion of MMT in PCL electrospun matrix in comparison to a matrix made using neat PCL. The presence of clay in the fibrous matrix did not change the cell proliferation efficiency in comparison to neat PCL matrix. Composite fibrous matrices of PCL/MMT bearing enhanced tensile properties may find applications in areas other than tissue engineering for example food packaging and filtration. - Highlights: • Tenside free, clay stabilized Pickering emulsion of PCL is made with minimal organic solvent. • Organic–inorganic composite fibrous matrices were produced via emulsion electrospinning. • Fiber fineness was efficiently controlled by variation in emulsion formulation. • Fibrous matrices of high tensile strength and modulus were obtained in comparison to neat PCL matrix. • PCL/clay matrices showed effective cell proliferation as a neat PCL matrix.

  19. Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Qiujun; Song, Wei-Li; Wang, Luning; Song, Yu; Shi, Qiao; Fan, Li-Zhen

    2014-01-01

    Polymer electrolytes based on electrospun polyimide (PI) membranes are incorporated with electrolyte solution containing 1 mol L −1 LiPF 6 /ethylene carbonate/ethylmethyl carbonate/dimethyl carbonate to examine their potential application for lithium ion batteries. The as-electrospun non-woven membranes demonstrate a uniformly interconnected structure with an average fiber diameter of 800 nm. The membranes, showing superior thermal stability and flame retardant property compared to the commercial Celgard® membranes, exhibit high porosity and high uptake when activated with the liquid electrolyte. The resulting PI electrolytes (PIs) have a high ionic conductivity up to 2.0 × 10 −3 S cm −1 at 25 °C, and exhibit a high electrochemical stability potential more than 5.0 V (vs. Li/Li + ). They also possess excellent charge/discharge performance and capacity retention. The initial discharge capacities of the Li/PIs/Li 4 Ti 5 O 12 cells are 178.4, 167.4, 160.3, 148.3 and 135.9 mAh g −1 at the charge/discharge rates of 0.2 C, 1 C, 2 C, 5 C and 10 C, respectively. After 200 cycles at 5 C, a capacity around ∼146.8 mAh g −1 can be still achieved. The PI-based polymer electrolytes with strong mechanical properties and good electrochemical performance are proved to be promising electrolytes for lithium ion batteries

  20. Theoretical modeling and experimental validation of transport and separation properties of carbon nanotube electrospun membrane distillation

    KAUST Repository

    Lee, Jung Gil

    2016-12-27

    Developing a high flux and selective membrane is required to make membrane distillation (MD) a more attractive desalination process. Amongst other characteristics membrane hydrophobicity is significantly important to get high vapor transport and low wettability. In this study, a laboratory fabricated carbon nanotubes (CNTs) composite electrospun (E-CNT) membrane was tested and has showed a higher permeate flux compared to poly(vinylidene fluoride-co-hexafluoropropylene) (PH) electrospun membrane (E-PH membrane) in a direct contact MD (DCMD) configuration. Only 1% and 2% of CNTs incorporation resulted in an enhanced permeate flux with lower sensitivity to feed salinity while treating a 35 and 70 g/L NaCl solutions. Experimental results and the mechanisms of E-CNT membrane were validated by a proposed new step-modeling approach. The increased vapor transport in E-CNT membranes could not be elucidated by an enhancement of mass transfer only at a given physico-chemical properties. However, the theoretical modeling approach considering the heat and mass transfers simultaneously enabled to explain successfully the enhanced flux in the DCMD process using E-CNT membranes. This indicates that both mass and heat transfers improved by CNTs are attributed to the enhanced vapor transport in the E-CNT membrane.

  1. Prevention of intra-abdominal adhesion by bi-layer electrospun membrane.

    Science.gov (United States)

    Jiang, Shichao; Wang, Wei; Yan, Hede; Fan, Cunyi

    2013-06-04

    The aim of this study was to compare the anti-adhesion efficacy of a bi-layer electrospun fibrous membrane consisting of hyaluronic acid-loaded poly(ε-caprolactone) (PCL) fibrous membrane as the inner layer and PCL fibrous membrane as the outer layer with a single-layer PCL electrospun fibrous membrane in a rat cecum abrasion model. The rat model utilized a cecal abrasion and abdominal wall insult surgical protocol. The bi-layer and PCL membranes were applied between the cecum and the abdominal wall, respectively. Control animals did not receive any treatment. After postoperative day 14, a visual semiquantitative grading scale was used to grade the extent of adhesion. Histological analysis was performed to reveal the features of adhesion tissues. Bi-layer membrane treated animals showed significantly lower adhesion scores than control animals (p compared with the PCL membrane. Histological analysis of the bi-layer membrane treated rat rarely demonstrated tissue adhesion while that of the PCL membrane treated rat and control rat showed loose and dense adhesion tissues, respectively. Bi-layer membrane can efficiently prevent adhesion formation in abdominal cavity and showed a significantly decreased adhesion tissue formation compared with the control.

  2. A Review on the Fabrication of Electrospun Polymer Electrolyte Membrane for Direct Methanol Fuel Cell

    Directory of Open Access Journals (Sweden)

    Hazlina Junoh

    2015-01-01

    Full Text Available Proton exchange membrane (PEM is an electrolyte which behaves as important indicator for fuel cell’s performance. Research and development (R&D on fabrication of desirable PEM have burgeoned year by year, especially for direct methanol fuel cell (DMFC. However, most of the R&Ds only focus on the parent polymer electrolyte rather than polymer inorganic composites. This might be due to the difficulties faced in producing good dispersion of inorganic filler within the polymer matrix, which would consequently reduce the DMFC’s performance. Electrospinning is a promising technique to cater for this arising problem owing to its more widespread dispersion of inorganic filler within the polymer matrix, which can reduce the size of the filler up to nanoscale. There has been a huge development on fabricating electrolyte nanocomposite membrane, regardless of the effect of electrospun nanocomposite membrane on the fuel cell’s performance. In this present paper, issues regarding the R&D on electrospun sulfonated poly (ether ether ketone (SPEEK/inorganic nanocomposite fiber are addressed.

  3. Electrospun Polyhydroxybutyrate and Poly(L-lactide-co-ε-caprolactone Composites as Nanofibrous Scaffolds

    Directory of Open Access Journals (Sweden)

    Donraporn Daranarong

    2014-01-01

    Full Text Available Electrospinning can produce nanofibrous scaffolds that mimic the architecture of the extracellular matrix and support cell attachment for tissue engineering applications. In this study, fibrous membranes of polyhydroxybutyrate (PHB with various loadings of poly(L-lactide-co-ε-caprolactone (PLCL were successfully prepared by electrospinning. In comparison to PLCL scaffolds, PLCL blends with PHB exhibited more irregular fibre diameter distributions and higher average fibre diameters but there were no significant differences in pore size. PLCL/PHB scaffolds were more hydrophilic (<120° with significantly reduced tensile strength (ca. 1 MPa compared to PLCL scaffolds (150.9±2.8∘ and 5.8±0.5 MPa. Increasing PLCL loading in PHB/PLCL scaffolds significantly increased the extension at break, (4–6-fold. PLCL/PHB scaffolds supported greater adhesion and proliferation of olfactory ensheathing cells (OECs than those exhibiting asynchronous growth on culture plates. Mitochondrial activity of cells cultivated on the electrospun blended membranes was enhanced compared to those grown on PLCL and PHB scaffolds (212, 179, and 153%, resp.. Analysis showed that PLCL/PHB nanofibrous membranes promoted cell cycle progression and reduced the onset of necrosis. Thus, electrospun PLCL/PHB composites promoted adhesion and proliferation of OECs when compared to their individual PLCL and PHB components suggesting potential in the repair and engineering of nerve tissue.

  4. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering

    International Nuclear Information System (INIS)

    Chen, Zhuoyue; Song, Yue; Zhang, Jing; Liu, Wei; Cui, Jihong

    2017-01-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2 months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. - Highlights: • We laminated the nHA/PHB layers to obtain a scaffold for bone tissue engineering. • The laminated scaffold performed optimized cell-loading capacity. • MSCs exhibited osteogenic phenotypes on the laminated scaffold. • Osteoid tissue formed throughout the laminated scaffold after 2 months in vivo. The laminated bio-composite scaffolds can be applied to bone regeneration.

  5. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering.

    Science.gov (United States)

    Chen, Zhuoyue; Song, Yue; Zhang, Jing; Liu, Wei; Cui, Jihong; Li, Hongmin; Chen, Fulin

    2017-03-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Double emulsion electrospun nanofibers as a growth factor delivery vehicle for salivary gland regeneration

    Science.gov (United States)

    Foraida, Zahraa I.; Sharikova, Anna; Peerzada, Lubna N.; Khmaladze, Alexander; Larsen, Melinda; Castracane, James

    2017-08-01

    Sustained delivery of growth factors, proteins, drugs and other biologically active molecules is necessary for tissue engineering applications. Electrospun fibers are attractive tissue engineering scaffolds as they partially mimic the topography of the extracellular matrix (ECM). However, they do not provide continuous nourishment to the tissue. In search of a biomimetic scaffold for salivary gland tissue regeneration, we previously developed a blend nanofiber scaffold composed of the protein elastin and the synthetic polymer polylactic-co-glycolic acid (PLGA). The nanofiber scaffold promoted in vivo-like salivary epithelial cell tissue organization and apicobasal polarization. However, in order to enhance the salivary cell proliferation and biomimetic character of the scaffold, sustained growth factor delivery is needed. The composite nanofiber scaffold was optimized to act as a growth factor delivery system using epidermal growth factor (EGF) as a model protein. The nanofiber/EGF hybrid nanofibers were synthesized by double emulsion electrospinning where EGF is emulsified within a water/oil/water (w/o/w) double emulsion system. Successful incorporation of EGF was confirmed using Raman spectroscopy. EGF release profile was characterized using enzyme-linked immunosorbent assay (ELIZA) of the EGF content. Double emulsion electrospinning resulted in slower release of EGF. We demonstrated the potential of the proposed double emulsion electrospun nanofiber scaffold for the delivery of growth factors and/or drugs for tissue engineering and pharmaceutical applications.

  7. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    International Nuclear Information System (INIS)

    Papa, Antonio; Guarino, Vincenzo; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi

    2015-01-01

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response

  8. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    Science.gov (United States)

    Papa, Antonio; Guarino, Vincenzo; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi

    2015-12-01

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.

  9. Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Agheb, Maria [Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 81744176 (Iran, Islamic Republic of); Dinari, Mohammad [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Rafienia, Mohammad, E-mail: m_rafienia@med.mui.ac.ir [Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 81744176 (Iran, Islamic Republic of); Salehi, Hossein [Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 81744176 (Iran, Islamic Republic of)

    2017-02-01

    In natural cartilage tissues, chondrocytes are linked to extracellular matrix (ECM) through cell-surface binding proteins. Surface modification of gelatin can provide a new generation of biopolymers and fibrous scaffolds with chemical, mechanical, and biological properties. In this study tyrosine protein and 1,2,3-triazole ring were utilized to functionalize gelatin without Cu catalyst. Their molecular structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy ({sup 1}HNMR). Chemical cross-linkers such as glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysulfosuccinimide (NHS) were used to electrospin the modified gelatin. The modification of gelatin and cross-linking effects were confirmed by scanning electron microscopy (SEM), contact angle measurement, and mechanical tests. MTT assay using chondrocyte cells showed cell viability of electrospun modified gelatin scaffolds. In vitro cell culture studies showed that electrospun engineered protein scaffolds would support the attachment and growth of cells. The results also showed that cross-linked nanofibers with EDC/NHS could be considered excellent matrices in cell adhesion and proliferation before electrospinning process and their potential substrate in tissue engineering applications, especially in the field of cartilage engineering.

  10. Chondroitin sulfate immobilization at the surface of electrospun nanofiber meshes for cartilage tissue regeneration approaches

    Science.gov (United States)

    Piai, Juliana Francis; da Silva, Marta Alves; Martins, Albino; Torres, Ana Bela; Faria, Susana; Reis, Rui L.; Muniz, Edvani Curti; Neves, Nuno M.

    2017-05-01

    Aiming at improving the biocompatibility of biomaterial scaffolds, surface modification presents a way to preserve their mechanical properties and to improve the surface bioactivity. In this work, chondroitin sulfate (CS) was immobilized at the surface of electrospun poly(caprolactone) nanofiber meshes (PCL NFMs), previously functionalized by UV/O3 exposure and aminolysis. Contact angle, SEM, optical profilometry, FTIR, X-ray photoelectron spectroscopy techniques confirmed the success of CS-immobilization in PCL NFMs. Furthermore, CS-immobilized PCL NFMs showed lower roughness and higher hydrophilicity than the samples without CS. Human articular chondrocytes (hACs) were cultured on electrospun PCL NFMs with or without CS immobilization. It was observed that hACs proliferated through the entire time course of the experiment in both types of nanofibrous scaffolds, as well as for the production of glycosaminoglycans. Quantitative-PCR results demonstrated over-expression of cartilage-related genes such as Aggrecan, Collagen type II, COMP and Sox9 on both types of nanofibrous scaffolds. Morphological observations from SEM and LSCM revealed that hACs maintained their characteristic round shape and cellular agglomeration exclusively on PCL NFMs with CS immobilization. In conclusion, CS immobilization at the surface of PCL NFMs was achieved successfully and provides a valid platform enabling further surface functionalization methods in scaffolds to be developed for cartilage tissue engineering.

  11. BioMimic fabrication of electrospun nanofibers with high-throughput

    International Nuclear Information System (INIS)

    He Jihuan; Liu Yong; Xu Lan; Yu Jianyong; Sun Gang

    2008-01-01

    Spider-spun fiber is of extraordinary strength and toughness comparable to those of electrospun fiber, the later needs a very high voltage (from several thousands voltage to several ten thousands voltages) applied to water-soluble protein 'soup' that was produced by a spider, furthermore, its mechanical strength dramatically decreases comparable to spider silk. A possible mechanism in spider-spinning process is given, the distinct character in spider-spinning is that its spinneret consists of millions of nano scale tubes, and a bubble can be produced at the apex of each nano-tube. The surface tension of each bubble is extremely small such that it can be spun into nanofibers with an awfully small force, either by the spider's body weight or tension created by the rear legs. We mimic the spider-spinning in electrospinning using an aerated solution, which leads to various small bubbles on surface with very small surface tension, as a result the bubble can be easily electrospun into nanofibers with low applied voltage. This fabrication process possesses features of high productivity, versatility, in addition, the minimum diameter of nanofibers produced by this process can reach as small as 50 nm

  12. Sub-nanomolar sensing of ionic mercury with polymeric electrospun nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Kacmaz, Sibel [University of Dokuz Eylul, The Graduate School of Natural and Applied Sciences, Department of Chemistry, 35160 Izmir (Turkey); Ertekin, Kadriye, E-mail: kadriye.ertekin@deu.edu.tr [University of Dokuz Eylul, Faculty of Sciences, Department of Chemistry, 35160 Izmir (Turkey); University of Dokuz Eylul, Center for Fabrication and Application of Electronic Materials (EMUM), 35160 Izmir (Turkey); Suslu, Aslihan [University of Dokuz Eylul, The Graduate School of Natural and Applied Sciences, Department of Chemistry, 35160 Izmir (Turkey); University of Dokuz Eylul, Faculty Engineering, Department of Metallurgical and Materials Engineering, 35160 Izmir (Turkey); Ergun, Yavuz [University of Dokuz Eylul, Faculty of Sciences, Department of Chemistry, 35160 Izmir (Turkey); Celik, Erdal [University of Dokuz Eylul, Center for Fabrication and Application of Electronic Materials (EMUM), 35160 Izmir (Turkey); University of Dokuz Eylul, Faculty Engineering, Department of Metallurgical and Materials Engineering, 35160 Izmir (Turkey); Cocen, Umit [University of Dokuz Eylul, Faculty Engineering, Department of Metallurgical and Materials Engineering, 35160 Izmir (Turkey)

    2012-03-15

    Ethyl cellulose (EC) based electrospun nanofibers were exploited for sub-nanomolar level optical chemical sensing of ionic mercury. An azomethine ionophore was used as Hg (I) and Hg (II) sensing material. Ethyl cellulose nanofibers with varying amounts of the ionic liquid; 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF{sub 4}) were prepared and characterized. The nanofibers were fabricated by electrospinning technique. The offered chemosensor allow determination of mercury ions in a large linear working range between 1.0 Multiplication-Sign 10{sup -10} and 1.0 Multiplication-Sign 10{sup -4} mol L{sup -1}. Limit of detection was found to be 0.07 nM which makes this technique alternative to cold-vapor atomic absorption spectrometry (CV-AAS), flame emission methods and to inductively coupled plasma-mass spectrometry (ICP-MS). The electrospun nanofibers exhibited excellent sensitivity for Hg (II) with respect to the continuous thin films prepared with same composition. The observed high sensitivity can be attributed to the high surface area of the nanofibrous materials and enhanced diffusibility of the mercury ions to the ionophore.

  13. Electro-spun PLA-PEG-yarns for tissue engineering applications.

    Science.gov (United States)

    Kruse, Magnus; Greuel, Marc; Kreimendahl, Franziska; Schneiders, Thomas; Bauer, Benedict; Gries, Thomas; Jockenhoevel, Stefan

    2018-06-27

    Electro-spinning is widely used in tissue-engineered applications mostly in form of non-woven structures. The development of e-spun yarn opens the door for textile fabrics which combine the micro to nanoscale dimension of electro-spun filaments with three-dimensional (3D) drapable textile fabrics. Therefore, the aim of the study was the implementation of a process for electro-spun yarns. Polylactic acid (PLA) and polyethylene glycol (PEG) were spun from chloroform solutions with varying PLA/PEG ratios (100:0, 90:10, 75:25 and 50:50). The yarn samples produced were analyzed regarding their morphology, tensile strength, water uptake and cytocompatibility. It was found that the yarn diameter decreased when the funnel collector rotation was increasd, however, the fiber diameter was not influenced. The tensile strength was also found to be dependent on the PEG content. While samples composed of 100% PLA showed a tensile strength of 2.5±0.7 cN/tex, the tensile strength increased with a decreasing PLA content (PLA 75%/PEG 25%) to 6.2±0.5 cN/tex. The variation of the PEG content also influenced the viscosity of the spinning solutions. The investigation of the cytocompatibility with endothelial cells was conducted for PLA/PEG 90:10 and 75:25 and indicated that the samples are cytocompatible.

  14. Data Stream Clustering With Affinity Propagation

    KAUST Repository

    Zhang, Xiangliang; Furtlehner, Cyril; Germain-Renaud, Cecile; Sebag, Michele

    2014-01-01

    Data stream clustering provides insights into the underlying patterns of data flows. This paper focuses on selecting the best representatives from clusters of streaming data. There are two main challenges: how to cluster with the best representatives and how to handle the evolving patterns that are important characteristics of streaming data with dynamic distributions. We employ the Affinity Propagation (AP) algorithm presented in 2007 by Frey and Dueck for the first challenge, as it offers good guarantees of clustering optimality for selecting exemplars. The second challenging problem is solved by change detection. The presented StrAP algorithm combines AP with a statistical change point detection test; the clustering model is rebuilt whenever the test detects a change in the underlying data distribution. Besides the validation on two benchmark data sets, the presented algorithm is validated on a real-world application, monitoring the data flow of jobs submitted to the EGEE grid.

  15. Data Stream Clustering With Affinity Propagation

    KAUST Repository

    Zhang, Xiangliang

    2014-07-09

    Data stream clustering provides insights into the underlying patterns of data flows. This paper focuses on selecting the best representatives from clusters of streaming data. There are two main challenges: how to cluster with the best representatives and how to handle the evolving patterns that are important characteristics of streaming data with dynamic distributions. We employ the Affinity Propagation (AP) algorithm presented in 2007 by Frey and Dueck for the first challenge, as it offers good guarantees of clustering optimality for selecting exemplars. The second challenging problem is solved by change detection. The presented StrAP algorithm combines AP with a statistical change point detection test; the clustering model is rebuilt whenever the test detects a change in the underlying data distribution. Besides the validation on two benchmark data sets, the presented algorithm is validated on a real-world application, monitoring the data flow of jobs submitted to the EGEE grid.

  16. Self-affinity and nonextensivity of sunspots

    International Nuclear Information System (INIS)

    Moret, M.A.

    2014-01-01

    In this paper we study the time series of sunspots by using two different approaches, analyzing its self-affine behavior and studying its distribution. The long-range correlation exponent α has been calculated via Detrended Fluctuation Analysis and the power law vanishes to values greater than 11 years. On the other hand, the distribution of the sunspots obeys a q-exponential decay that suggests a non-extensive behavior. This observed characteristic seems to take an alternative interpretation of the sunspots dynamics. The present findings suggest us to propose a dynamic model of sunspots formation based on a nonlinear Fokker–Planck equation. Therefore its dynamic process follows the generalized thermostatistical formalism.

  17. Electrospun PVA/HAp nanocomposite nanofibers: biomimetics of mineralized hard tissues at a lower level of complexity.

    Science.gov (United States)

    Kim, Gyeong-Man; Asran, Ashraf Sh; Michler, Georg H; Simon, Paul; Kim, Jeong-Sook

    2008-12-01

    Based on the biomimetic approaches the present work describes a straightforward technique to mimic not only the architecture (the morphology) but also the chemistry (the composition) of the lowest level of the hierarchical organization of bone. This technique uses an electrospinning (ES) process with polyvinyl alcohol (PVA) and hydroxyapatite (HAp) nanoparticles. To determine morphology, crystalline structures and thermal properties of the resulting electrospun fibers with the pure PVA and PVA/HAp nanocomposite (NC) before electrospinning various techniques were employed, including transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, FT-IR spectroscopy was carried out to analyze the complex structural changes upon undergoing electrospinning as well as interactions between HAp and PVA. The morphological and crystallographic investigations revealed that the rod-like HAp nanoparticles exhibit a nanoporous morphology and are embedded within the electrospun fibers. A large number of HAp nanorods are preferentially oriented parallel to the longitudinal direction of the electrospun PVA fibers, which closely resemble the naturally mineralized hard tissues of bones. Due to abundant OH groups present in PVA and HAp nanorods, they strongly interact via hydrogen bonding within the electrospun PVA/HAp NC fibers, which results in improved thermal properties. The unique physiochemical features of the electrospun PVA/HAp NC nanofibers prepared by the ES process will open up a wide variety of future applications related to hard tissue replacement and regeneration (bone and dentin), not limited to coating implants.

  18. Electrospun PVA/HAp nanocomposite nanofibers: biomimetics of mineralized hard tissues at a lower level of complexity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyeong-Man; Asran, Ashraf Sh; Michler, Georg H [Institute of Physics, Martin-Luther-University Halle-Wittenberg, D-06099 Halle/S (Germany); Simon, Paul [Max-Planck Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, D-01187 Dresden (Germany); Kim, Jeong-Sook [Department of Dental Technology, Daegu Health College, 702-722 Daegu (Korea, Republic of)], E-mail: gyeong.kim@physik.uni-halle.de

    2008-12-01

    Based on the biomimetic approaches the present work describes a straightforward technique to mimic not only the architecture (the morphology) but also the chemistry (the composition) of the lowest level of the hierarchical organization of bone. This technique uses an electrospinning (ES) process with polyvinyl alcohol (PVA) and hydroxyapatite (HAp) nanoparticles. To determine morphology, crystalline structures and thermal properties of the resulting electrospun fibers with the pure PVA and PVA/HAp nanocomposite (NC) before electrospinning various techniques were employed, including transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, FT-IR spectroscopy was carried out to analyze the complex structural changes upon undergoing electrospinning as well as interactions between HAp and PVA. The morphological and crystallographic investigations revealed that the rod-like HAp nanoparticles exhibit a nanoporous morphology and are embedded within the electrospun fibers. A large number of HAp nanorods are preferentially oriented parallel to the longitudinal direction of the electrospun PVA fibers, which closely resemble the naturally mineralized hard tissues of bones. Due to abundant OH groups present in PVA and HAp nanorods, they strongly interact via hydrogen bonding within the electrospun PVA/HAp NC fibers, which results in improved thermal properties. The unique physiochemical features of the electrospun PVA/HAp NC nanofibers prepared by the ES process will open up a wide variety of future applications related to hard tissue replacement and regeneration (bone and dentin), not limited to coating implants.

  19. Multiprocessor Real-Time Scheduling with Hierarchical Processor Affinities

    OpenAIRE

    Bonifaci , Vincenzo; Brandenburg , Björn; D'Angelo , Gianlorenzo; Marchetti-Spaccamela , Alberto

    2016-01-01

    International audience; Many multiprocessor real-time operating systems offer the possibility to restrict the migrations of any task to a specified subset of processors by setting affinity masks. A notion of " strong arbitrary processor affinity scheduling " (strong APA scheduling) has been proposed; this notion avoids schedulability losses due to overly simple implementations of processor affinities. Due to potential overheads, strong APA has not been implemented so far in a real-time operat...

  20. Fabrication of electrospun HPGL scaffolds via glycidyl methacrylate cross-linker: Morphology, mechanical and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Baratéla, Fernando José Costa; Zazuco Higa, Olga [Biotechnology Center, Institute of Energy and Nuclear Research (IPEN), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Duarte dos Passos, Esdras [PostGraduate Program in Materials for Engineering, Federal University of Itajubá (UNIFEI), Av. BPS 1303, 37500-903 Itajubá, MG (Brazil); Alencar de Queiroz, Alvaro Antonio, E-mail: alencar@unifei.edu.br [Physics and Chemistry Institute (IFQ), Federal University of Itajubá (UNIFEI), Av. BPS 1303, 37500-903 Itajubá, MG (Brazil); High Voltage Laboratory (LAT-EFEI), Federal University of Itajubá (UNIFEI), Av. BPS 1303, 37500-903 Itajubá, MG (Brazil)

    2017-04-01

    Electrospinning is a suitable method to produce scaffolds composed of nanoscale to microscale fibers, which are comparable to the extracellular matrix (ECM). Hyperbranched polyglycerol (HPGL) is a highly biocompatible polyether polyol potentially useful for the design of fibrous scaffolds mimicking the ECM architecture. However, scaffolds developed from HPGL have poor mechanical properties and morphological stability in the aqueous environments required for tissue engineering applications. This work reports the production of stable electrospun HPGL scaffolds (EHPGLS) using glycidyl methacrylate (GMA) as cross-linker to enhance the water stability and mechanical property of electrospun HPGL. The diameter and morphology of the produced EHPGLS were analyzed by scanning electron microscopy (SEM). It was observed that electrical fields in the range of 0.2 kV·cm{sup −1} to 1.0 kV·cm{sup −1} decrease the average fiber diameter of EHPGLS. The increase in porosity of EHPGLS with GMA concentration indicates the in situ formation of a heterogeneous structure resultant from the phase separation during crosslinking of HPGL by GMA. EHPGLS containing 20% (w/w) GMA concentration possessed highest tensile strength (295.4 ± 11.32 kPa), which is approximately 58 times higher than that of non-crosslinked EHPGLS (5.1 ± 2.12 kPa). The MTS cell viability results showed that the EHPGLS have no significant cytotoxicity effect on Chinese hamster ovary (CHO-K1) cells. Scanning electron microscopy (SEM) indicates that the cultured BALB/3T3 fibroblasts cells were able to keep contact each other's, thus forming a homogeneous monolayer on the internal surface of the EHPGLS. - Highlights: • A hyperbranched polyglycerol (HPGL) scaffold with elastic modulus of 295.4 ± 11.32 kPa was developed for soft tissue repair. • HPGL scaffold was prepared by electrospinning method. • The porosity of HPGL scaffolds can be tuned by selecting the degree of GMA in HPGL. • Electrospun HPGL

  1. Constitutive modeling of an electrospun tubular scaffold used for vascular tissue engineering.

    Science.gov (United States)

    Hu, Jin-Jia

    2015-08-01

    In this study, we sought to model the mechanical behavior of an electrospun tubular scaffold previously reported for vascular tissue engineering with hyperelastic constitutive equations. Specifically, the scaffolds were made by wrapping electrospun polycaprolactone membranes that contain aligned fibers around a mandrel in such a way that they have microstructure similar to the native arterial media. The biaxial stress-stretch data of the scaffolds made of moderately or highly aligned fibers with three different off-axis fiber angles α (30°, 45°, and 60°) were fit by a phenomenological Fung model and a series of structurally motivated models considering fiber directions and fiber angle distributions. In particular, two forms of fiber strain energy in the structurally motivated model for a linear and a nonlinear fiber stress-strain relation, respectively, were tested. An isotropic neo-Hookean strain energy function was also added to the structurally motivated models to examine its contribution. The two forms of fiber strain energy did not result in significantly different goodness of fit for most groups of the scaffolds. The absence of the neo-Hookean term in the structurally motivated model led to obvious nonlinear stress-stretch fits at a greater axial stretch, especially when fitting data from the scaffolds with a small α. Of the models considered, the Fung model had the overall best fitting results; its applications are limited because of its phenomenological nature. Although a structurally motivated model using the nonlinear fiber stress-strain relation with the neo-Hookean term provided fits comparably as good as the Fung model, the values of its model parameters exhibited large within-group variations. Prescribing the dispersion of fiber orientation in the structurally motivated model, however, reduced the variations without compromising the fits and was thus considered to be the best structurally motivated model for the scaffolds. It appeared that the

  2. In vitro evaluation of electrospun chitosan mats crosslinked with genipin as guided tissue regeneration barrier membranes

    Science.gov (United States)

    Norowski, Peter Andrew, Jr.

    Guided tissue regeneration (GTR) is a surgical technique commonly used to exclude bacteria and soft tissues from bone graft sites in oral/maxillofacial bone graft sites by using a barrier membrane to maintain the graft contour and space. Current clinical barrier membrane materials based on expanded polytetrafluoroethylene (ePTFE) and bovine type 1 collagen are non-ideal and experience a number of disadvantages including membrane exposure, bacterial colonization/biofilm formation and premature degradation, all of which result in increased surgical intervention and poor bone regeneration. These materials do not actively participate in tissue regeneration, however bioactive materials, such as chitosan, may provide advantages such as the ability to stimulate wound healing and de novo bone formation. Our hypothesis is that electrospun chitosan GTR membranes will support cell attachment and growth but prevent cell infiltration/penetration of membrane, demonstrate in vitro degradation predictive of 4--6 month in vivo functionality, and will deliver antibiotics locally to prevent/inhibit periopathogenic complications. To test this hypothesis a series of chitosan membranes were electrospun, in the presence or absence of genipin, a natural crosslinking agent, at concentrations of 5 and 10 mM. These membranes were characterized by scanning electron microscopy, tensile testing, suture pullout testing, Fourier transform infrared spectroscopy, X-ray diffraction, and gel permeation chromatography, and in vitro biodegradation for diameter/morphology of fibers, membrane strengths, degree of crosslinking, crystallinity, molecular weight, and degradation kinetics, respectively. Cytocompability of membranes was evaluated in osteoblastic, fibroblastic and monocyte cultures. The activity of minocycline loaded and released from the membranes was determined in zone of inhibition tests using P. gingivalis microbe. The results demonstrated that genipin crosslinking extended the in vitro

  3. Investigating the use of curcumin-loaded electrospun filaments for soft tissue repair applications

    Directory of Open Access Journals (Sweden)

    Mouthuy PA

    2017-05-01

    Full Text Available Pierre-Alexis Mouthuy,1,2 Maja Somogyi Škoc,3 Ana Čipak Gašparović,1 Lidija Milković,1 Andrew J Carr,2 Neven Žarković1 1Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia; 2Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Science Division, University of Oxford, Oxford, UK; 3Department of Materials, Fibres and Textile Testing, University of Zagreb, Zagreb, Croatia Abstract: Electrospun filaments represent a new generation of medical textiles with promising applications in soft tissue repair. A potential strategy to improve their design is to combine them with bioactive molecules. Curcumin, a natural compound found in turmeric, is particularly attractive for its antioxidant, anti-inflammatory, and antimicrobial properties. However, investigating the range of relevant doses of curcumin in materials designed for tissue regeneration has remained limited. In this paper, a wide range of curcumin concentrations was explored and the potential of the resulting materials for soft tissue repair applications was assessed. Polydioxanone (PDO filaments were prepared with various amounts of curcumin: 0%, 0.001%, 0.01%, 0.1%, 1%, and 10% (weight to weight ratio. The results from the present study showed that, at low doses (≤0.1%, the addition of curcumin has no influence on the spinning process or on the physicochemical properties of the filaments, whereas higher doses lead to smaller fiber diameters and improved mechanical properties. Moreover, filaments with 0.001% and 0.01% curcumin stimulate the metabolic activity and proliferation of normal human dermal fibroblasts (NHDFs compared with the no-filament control. However, this stimulation is not significant when compared to the control filaments (0%. Highly dosed filaments induce either the inhibition of proliferation (with 1% or cell apoptosis (with 10% as a result of the concentrations of curcumin found in the

  4. Cambrian trilobites with Siberian affinities, southwestern Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.R.; Egbert, R.M.; Sullivan, R.; Knoth, J.S.

    1985-02-01

    Cambrian trilobites occur in two levels (about 7 m apart) in the core of a large, complex anticlinal structure in the area between the Taylor Mountains and the Hoholitna River in southwestern Alaska. The lower collection contains Erbia, Macannaia (a species close to Soviet forms described as Pagetia ferox Lermontova), two species of Kootenia (including one perhaps cospecific with forms from the central Brooks range), and several species of ptychoparioid trilobites. It is clear that biogeographic affinities are with the transitional facies of the eastern Siberian platform and the south Siberian foldbelt. In Soviet terms, the age of the collection falls in a disputed interval called latest Early Cambrian (Tojonian) by some authors, and earliest Middle Cambrian (Amgan) by others. In North American terms, Macannaia is known only from early Middle Cambrian beds. The younger collection contains abundant agnostids, a variety of conocoryphids, Paradoxides, and several species of ptychoparioid trilobites. This is an assemblage of undoubted late Middle Cambrian age, comparable to faunas described from the Maya State of the Siberian platform and the Paradoxides paradoxissimus Stage of the Baltic region. Both faunas are from ocean-facing or outer shelf environments. None of the key non-agnostid or non-pagetiid elements have been seen previously in deposits of Cambrian North America.

  5. Set-Membership Proportionate Affine Projection Algorithms

    Directory of Open Access Journals (Sweden)

    Stefan Werner

    2007-01-01

    Full Text Available Proportionate adaptive filters can improve the convergence speed for the identification of sparse systems as compared to their conventional counterparts. In this paper, the idea of proportionate adaptation is combined with the framework of set-membership filtering (SMF in an attempt to derive novel computationally efficient algorithms. The resulting algorithms attain an attractive faster converge for both situations of sparse and dispersive channels while decreasing the average computational complexity due to the data discerning feature of the SMF approach. In addition, we propose a rule that allows us to automatically adjust the number of past data pairs employed in the update. This leads to a set-membership proportionate affine projection algorithm (SM-PAPA having a variable data-reuse factor allowing a significant reduction in the overall complexity when compared with a fixed data-reuse factor. Reduced-complexity implementations of the proposed algorithms are also considered that reduce the dimensions of the matrix inversions involved in the update. Simulations show good results in terms of reduced number of updates, speed of convergence, and final mean-squared error.

  6. [Separation of osteoclasts by lectin affinity chromatography].

    Science.gov (United States)

    Itokazu, M; Tan, A; Tanaka, S

    1991-09-01

    Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.

  7. Affine connection form of Regge calculus

    Science.gov (United States)

    Khatsymovsky, V. M.

    2016-12-01

    Regge action is represented analogously to how the Palatini action for general relativity (GR) as some functional of the metric and a general connection as independent variables represents the Einstein-Hilbert action. The piecewise flat (or simplicial) spacetime of Regge calculus is equipped with some world coordinates and some piecewise affine metric which is completely defined by the set of edge lengths and the world coordinates of the vertices. The conjugate variables are the general nondegenerate matrices on the three-simplices which play the role of a general discrete connection. Our previous result on some representation of the Regge calculus action in terms of the local Euclidean (Minkowsky) frame vectors and orthogonal connection matrices as independent variables is somewhat modified for the considered case of the general linear group GL(4, R) of the connection matrices. As a result, we have some action invariant w.r.t. arbitrary change of coordinates of the vertices (and related GL(4, R) transformations in the four-simplices). Excluding GL(4, R) connection from this action via the equations of motion we have exactly the Regge action for the considered spacetime.

  8. Affinity of serum apolipoproteins for lipid monolayers

    International Nuclear Information System (INIS)

    Ibdah, J.A.

    1987-01-01

    The effects of lipid composition and packing as well as the structure of the protein on the affinities of apolipoproteins for lipid monolayers have been investigated. The adsorption of 14 C-reductively methylated human apolipoproteins A-I and A-II at saturating subphase concentrations to monolayers prepared with synthetic lipids or lipoprotein surface lipids spread at various initial surface pressures has been studied. The adsorption of apolipoproteins is monitored by following the surface radioactivity using a gas flow counter and Wilhelmy plate, respectively. The physical states of the lipid monolayers are evaluated by measurement of the surface pressure-molecular area isotherms using a Langmuir-Adam surface balance. The probable helical regions in various apolipoproteins have been predicted using a secondary structure analysis computer program. The mean residue hydrophobicity and mean residue hydrophobic moment for the predicted helical segments have been calculated. The surface properties of synthetic peptides which are amphipathic helix analogs have been investigated at the air-water and lipid-water interfaces

  9. Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly(lactide-co-glycolide fibrous membranes

    Directory of Open Access Journals (Sweden)

    Zhao S

    2014-05-01

    Full Text Available Song Zhao,1,* Jingwen Zhao,3,* Shikui Dong,1 Xiaoqiao Huangfu,1 Bin Li,2,3 Huilin Yang,2,3 Jinzhong Zhao,1 Wenguo Cui2,31Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 2Orthopedic Institute, Soochow University, Suzhou, Jiangsu, 3Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China *These authors contributed equally to this work Abstract: Clinically, rotator cuff tear (RCT is among the most common shoulder pathologies. Despite significant advances in surgical techniques, the re-tear rate after rotator cuff (RC repair remains high. Insufficient healing capacity is likely the main factor for reconstruction failure. This study reports on a basic fibroblast growth factor (bFGF-loaded electrospun poly(lactide-co-glycolide (PLGA fibrous membrane for repairing RCT. Implantable biodegradable bFGF–PLGA fibrous membranes were successfully fabricated using emulsion electrospinning technology and then characterized and evaluated with in vitro and in vivo cell proliferation assays and repairs of rat chronic RCTs. Emulsion electrospinning fabricated ultrafine fibers with a core-sheath structure which secured the bioactivity of bFGF in a sustained manner for 3 weeks. Histological observations showed that electrospun fibrous membranes have excellent biocompatibility and biodegradability. At 2, 4, and 8 weeks after in vivo RCT repair surgery, electrospun fibrous membranes significantly increased the area of glycosaminoglycan staining at the tendon–bone interface compared with the control group, and bFGF–PLGA significantly improved collagen organization, as measured by birefringence under polarized light at the healing enthesis compared with the control and PLGA groups. Biomechanical testing showed that the electrospun fibrous membrane groups had a greater ultimate load-to-failure and stiffness than the control group at 4

  10. Theoretical determination of proton affinity differences in zeolites

    NARCIS (Netherlands)

    Kramer, G.J.; Santen, van R.A.

    1993-01-01

    An important factor in zeolite catalysis is the proton affinity, i.e., the energy required to remove a proton from the zeolite lattice. Differences in proton affinity are expected to influence the catalytic activity of acid sites, making the catalytically active sites inhomogeneous (within one

  11. Capillary electrophoresis-based assessment of nanobody affinity and purity

    NARCIS (Netherlands)

    Haselberg, Rob; Oliveira, Sabrina; van der Meel, Roy; Somsen, Govert W; de Jong, Gerhardus J

    2014-01-01

    Drug purity and affinity are essential attributes during development and production of therapeutic proteins. In this work, capillary electrophoresis (CE) was used to determine both the affinity and composition of the biotechnologically produced "nanobody" EGa1, the binding fragment of a

  12. Generalized Warburg impedance on realistic self-affine fractals ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... We analyse the problem of impedance for a diffusion controlled charge transfer process across an irregular interface. These interfacial irregularities are characterized as two class of random fractals: (i) a statistically isotropic self-affine fractals and (ii) a statistically corrugated self-affine fractals.

  13. Polynomial Primal-Dual Cone Affine Scaling for Semidefinite Programming

    NARCIS (Netherlands)

    A.B. Berkelaar (Arjan); J.F. Sturm; S. Zhang (Shuzhong)

    1996-01-01

    textabstractIn this paper we generalize the primal--dual cone affine scaling algorithm of Sturm and Zhang to semidefinite programming. We show in this paper that the underlying ideas of the cone affine scaling algorithm can be naturely applied to semidefinite programming, resulting in a new

  14. Affine group formulation of the Standard Model coupled to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China); Ita, Eyo, E-mail: ita@usna.edu [Department of Physics, US Naval Academy, Annapolis, MD (United States); Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China)

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  15. Fermionic construction of vertex operators for twisted affine algebras

    International Nuclear Information System (INIS)

    Frappat, L.; Sorba, P.; Sciarrino, A.

    1988-03-01

    We construct vertex operator representations of the twisted affine algebras in terms of fermionic (or parafermionic in some cases) elementary fields. The folding method applied to the extended Dynkin diagrams of the affine algebras allows us to determine explicitly these fermionic fields as vertex operators

  16. Generalized Warburg impedance on realistic self-affine fractals

    Indian Academy of Sciences (India)

    We analyse the problem of impedance for a diffusion controlled charge transfer process across an irregular interface. These interfacial irregularities are characterized as two class of random fractals: (i) a statistically isotropic self-affine fractals and (ii) a statistically corrugated self-affine fractals. The information about the ...

  17. Pseudo-affinity chromatography of rumen microbial cellulase on ...

    African Journals Online (AJOL)

    Pseudo-affinity chromatography of rumen microbial cellulase on Sepharose- Cibacron Blue F3GA. ... African Journal of Biotechnology ... Pseudo affinity adsorption of bioproducts on Sepharose-cibacron blue F3-GA was subjected to rumen microbial enzyme evaluation through batch binding and column chromatography of ...

  18. Self-affine roughness influence on redox reaction charge admittance

    NARCIS (Netherlands)

    Palasantzas, G

    2005-01-01

    In this work we investigate the influence of self-affine electrode roughness on the admittance of redox reactions during facile charge transfer kinetics. The self-affine roughness is characterized by the rms roughness amplitude w, the correlation length xi and the roughness exponent H (0

  19. Affine Toda equations and solutions in the homogeneous grading

    Czech Academy of Sciences Publication Activity Database

    Zuevsky, Alexander

    2018-01-01

    Roč. 542, April 1 (2018), s. 149-161 ISSN 0024-3795 Institutional support: RVO:67985840 Keywords : affine Lie gebras * affine Toda modes * solitons Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.973, year: 2016 https://www.sciencedirect.com/science/article/pii/S0024379517302100

  20. Online identification of continuous bimodal and trimodal piecewise affine systems

    NARCIS (Netherlands)

    Le, Q.T.; van den Boom, A.J.J.; Baldi, S.; Rantzer, Anders; Bagterp Jørgensen, John; Stoustrup, Jakob

    2016-01-01

    This paper investigates the identification of continuous piecewise affine systems in state space form with jointly unknown partition and subsystem matrices. The partition of the system is generated by the so-called centers. By representing continuous piecewise affine systems in the max-form and

  1. Duals of Affine Grassmann Codes and Their Relatives

    DEFF Research Database (Denmark)

    Beelen, P.; Ghorpade, S. R.; Hoholdt, T.

    2012-01-01

    Affine Grassmann codes are a variant of generalized Reed-Muller codes and are closely related to Grassmann codes. These codes were introduced in a recent work by Beelen Here, we consider, more generally, affine Grassmann codes of a given level. We explicitly determine the dual of an affine...... Grassmann code of any level and compute its minimum distance. Further, we ameliorate the results by Beelen concerning the automorphism group of affine Grassmann codes. Finally, we prove that affine Grassmann codes and their duals have the property that they are linear codes generated by their minimum......-weight codewords. This provides a clean analogue of a corresponding result for generalized Reed-Muller codes....

  2. Exploring Girls' Science Affinities Through an Informal Science Education Program

    Science.gov (United States)

    Todd, Brandy; Zvoch, Keith

    2017-10-01

    This study examines science interests, efficacy, attitudes, and identity—referred to as affinities, in the context of an informal science outreach program for girls. A mixed methods design was used to explore girls' science affinities before, during, and after participation in a cohort-based summer science camp. Multivariate analysis of survey data revealed that girls' science affinities varied as a function of the joint relationship between family background and number of years in the program, with girls from more affluent families predicted to increase affinities over time and girls from lower income families to experience initial gains in affinities that diminish over time. Qualitative examination of girls' perspectives on gender and science efficacy, attitudes toward science, and elements of science identities revealed a complex interplay of gendered stereotypes of science and girls' personal desires to prove themselves knowledgeable and competent scientists. Implications for the best practice in fostering science engagement and identities in middle school-aged girls are discussed.

  3. DAYA ANTIBAKTERI EKSTRAK ETANOL DAUN SENGGANI (Melastoma affine D. Don

    Directory of Open Access Journals (Sweden)

    Ika Trisharyanti Dian Kusumowati

    2014-08-01

    Full Text Available Melastoma affine D. Don had some activities such as anthelmintic, antibacteria, antiinfiammation, antifungal, and antitumor. The aims of this research was determine antibacteria activity of ethanolic extract of Melastoma affine D. Don. The antimicrobial activity was tested by solid dilution method to get Minimum Inhibition Concentration (MIC. The compounds in Melastoma affine D. Don was analyzed by tube test method and Thin Layer Chromatography (TLC with chloroform : methanol : formic acid (8,5:1,5:0,5 as mobile phase and silica gel GF254 as stationary phase. The result showed ethanolic extract of Melastoma affine D. Don contains alkaloid, polyphenol, fiavonoid, saponin, and essential oil. The MIC of Senggani against Staphylococcus aureus was 2% and 3% against Escherichia coli and the extract could not inhibit Staphylococcus aureus and Escherichia coli multiresistant until concentration 7% extract ethanol. Keywords: Melastoma affine D. Don, Staphylococcus aureus, Escherichia coli

  4. Efficient second harmonic generation by para-nitroaniline embedded in electro-spun polymeric nanofibres

    Science.gov (United States)

    Gonçalves, Hugo; Saavedra, Inês; Ferreira, Rute AS; Lopes, PE; de Matos Gomes, Etelvina; Belsley, Michael

    2018-03-01

    Intense well polarized second harmonic light was generated by poly(methyl methacrylate) nanofibres with embedded para-nitroaniline nanocrystals. Subwavelength diameter fibres were electro-spun using a 1:2 weight ratio of chromophore to polymer. Analysis of the generated second harmonic light indicates that the para-nitroaniline molecules, which nominally crystalize in the centrosymmetric space group, were organized into noncentrosymmetric structures leading to a second order susceptibility dominated by a single tensor element. Under the best deposition conditions, the nanofibrers display an effective nonlinear optical susceptibility approximately two orders of magnitude greater than that of potassium dihydrogen phosphate. Generalizing this approach to a broad range of organic molecules with strong individual molecular second order nonlinear responses, but which nominally form centrosymmetric organic crystals, could open a new pathway for the fabrication of efficient sub-micron sized second harmonic light generators.

  5. Denaturing of single electrospun fibrinogen fibers studied by deep ultraviolet fluorescence microscopy.

    Science.gov (United States)

    Kim, Jeongyong; Song, Hugeun; Park, Inho; Carlisle, Christine R; Bonin, Keith; Guthold, Martin

    2011-03-01

    Deep ultraviolet (DUV) microscopy is a fluorescence microscopy technique to image unlabeled proteins via the native fluorescence of some of their amino acids. We constructed a DUV fluorescence microscope, capable of 280 nm wavelength excitation by modifying an inverted optical microscope. Moreover, we integrated a nanomanipulator-controlled micropipette into this instrument for precise delivery of picoliter amounts of fluid to selected regions of the sample. In proof-of-principle experiments, we used this instrument to study, in situ, the effect of a denaturing agent on the autofluorescence intensity of single, unlabeled, electrospun fibrinogen nanofibers. Autofluorescence emission from the nanofibers was excited at 280 nm and detected at ∼350 nm. A denaturant solution was discretely applied to small, select sections of the nanofibers and a clear local reduction in autofluorescence intensity was observed. This reduction is attributed to the dissolution of the fibers and the unfolding of proteins in the fibers. Copyright © 2010 Wiley-Liss, Inc.

  6. Carbon Microfibers with Hierarchical Porous Structure from Electrospun Fiber-Like Natural Biopolymer

    Science.gov (United States)

    Liang, Yeru; Wu, Dingcai; Fu, Ruowen

    2013-01-01

    Electrospinning offers a powerful route for building one-dimensional (1D) micro/nanostructures, but a common requirement for toxic or corrosive organic solvents during the preparation of precursor solution has limited their large scale synthesis and broad applications. Here we report a facile and low-cost way to prepare 1D porous carbon microfibers by using an electrospun fiber-like natural product, i.e., silk cocoon, as precursor. We surprisingly found that by utilizing a simple carbonization treatment, the cocoon microfiber can be directly transformed into 1D carbon microfiber of ca. 6 μm diameter with a unique three-dimensional porous network structure composed of interconnected carbon nanoparticles of 10~40 nm diameter. We further showed that the as-prepared carbon product presents superior electrochemical performance as binder-free electrodes of supercapacitors and good adsorption property toward organic vapor.

  7. A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: Morphology and physicochemical properties.

    Science.gov (United States)

    Aydogdu, Ayca; Sumnu, Gulum; Sahin, Serpil

    2018-02-01

    The objective of this study was to fabricate and characterize Hydroxypropyl methylcellulose (HPMC) -based homogenous nanofibers by using electrospinning method. As the concentrations of the solutions increased, viscosity and electrical conductivity of the solutions increased. The morphology of the fibers changed from the beaded structure to the uniform fiber structure by increasing the concentrations of the solutions. Water vapor permeability (WVP) of electrospun HPMC nanofibers decreased with increasing polymer concentration. The shift in wavelengths, the change in intensity of FTIR peaks and melting point depression were the evidence of miscibility of HPMC/PEO blends. Nanofibers showing both melting temperature (T m ) and glass transition temperature (T g ) had semicrystalline structure. By combining PEO with HPMC, the thermal stability of nanofibers was increased. Hence, this study suggests homogenous biopolymer-based nanofibers with low WVP and high thermal stability which can have potential applications in food packaging field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Magnetoelectric investigations on poly (vinylidene fluoride)/CoFe2O4 flexible electrospun membranes

    Science.gov (United States)

    Durgaprasad, P.; Hemalatha, J.

    2018-02-01

    Flexible and free standing magnetoelectric polymer nanocomposite electrospun membranes, which exhibit both ferroelectric and magnetic orderings simultaneously, are fabricated. CoFe2O4 nanoparticles of different weight percentages are embedded as fillers in poly (vinylidene fluoride) (PVDF) matrix. The percentage of electroactive β phase is analysed using XRD and FTIR studies. Investigations on the effect of filler on the structural, functional, morphological properties are discussed. CoFe2O4 content in PVDF plays a main role in controlling the α and β phase conformations and makes significant effect on the ferroelectric and ferromagnetic properties of PVDF/CoFe2O4 membranes. The domain switching behaviour of these ferroelectric membranes is confirmed through DC-EFM studies. In addition to the coexistence of ferroelectric and ferromagnetic orderings, the cross coupling between them have been proved.

  9. Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available A novel kind of shape memory polyurethane (SMPU nanofibers with core-shell nanostructure is fabricated using coaxial electrospinning. Transmission electron microscopy (TEM and scanning electron microscopy (SEM results show that nanofibers with core-shell structure or bead-on-string structure can be electrospun successfully from the core solution of polycaprolactone based SMPU (CLSMPU and shell solution of pyridine containing polyurethane (PySMPU. In addition to the excellent shape memory effect with good shape fixity, excellent antibacterial activity against both gramnegative bacteria and gram-positive bacteria are achieved in the CLSMPU-PySMPU core-shell nanofiber. Finally, it is proposed that the antibacterial mechanism should be resulted from the PySMPU shell materials containing amido group in γ position and the high surface area per unit mass of nanofibers. Thus, the CLSMPU-PySMPU core shell nanofibers can be used as both shape memory nanomaterials and antibacterial nanomaterials.

  10. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    Science.gov (United States)

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Hong, Mei; Wu, Jingshen

    2016-12-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes.

  11. Ultrasound-assisted preparation of electrospun carbon nanofiber/graphene composite electrode for supercapacitors

    Science.gov (United States)

    Dong, Qiang; Wang, Gang; Hu, Han; Yang, Juan; Qian, Bingqing; Ling, Zheng; Qiu, Jieshan

    2013-12-01

    Electrospun carbon nanofiber/graphene (CNF/G) composites are prepared by in situ electrospinning polymeric nanofibers with simultaneous spraying graphene oxide, followed by heat treatment. The freestanding carbon nanofiber web acts as a framework for sustaining graphene, which helps to prevent the agglomeration of graphene and to provide a high conductivity for the efficient charge transfer to the pores. The as-obtained CNF/G composite exhibits a specific capacitance of 183 F g-1, which is approximately 1.6 times higher than that of the pristine CNF. The results have demonstrated that the high performance of the CNF/G composite is due to the novel structure and the synergic effect of graphene and the carbon nanofibers.

  12. Supercapacitors based on 3D network of activated carbon nanowhiskers wrapped-on graphitized electrospun nanofibers

    Science.gov (United States)

    He, Shuijian; Chen, Linlin; Xie, Chencheng; Hu, Huan; Chen, Shuiliang; Hanif, Muddasir; Hou, Haoqing

    2013-12-01

    Due to their cycling stability and high power density, the supercapacitors bridge the power/energy gap between traditional dielectric capacitors and batteries/fuel cells. Electrode materials are key components for making high performance supercapacitors. An activated carbon nanowhiskers (ACNWs) wrapped-on graphitized electrospun nanofiber (GENF) network (ACNWs/GENFN) with 3D porous structure is prepared as a new type of binder-free electrode material for supercapacitors. The supercapacitor based on the ACNWs/GENFN composite material displays an excellent performance with a specific capacitance of 176.5 F g-1 at current density of 0.5 A g-1, an ultrahigh power density of 252.8 kW kg-1 at current density of 800 A g-1 and an outstanding cycling stability of no capacitance loss after 10,000 charge/discharge cycles.

  13. Synthesis and Process Optimization of Electrospun PEEK-Sulfonated Nanofibers by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Carlo Boaretti

    2015-07-01

    Full Text Available In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate and material (sulfonation degree variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers.

  14. Phospholipid electrospun nanofibers: effect of solvents and co-axial processing on morphology and fiber diameter

    DEFF Research Database (Denmark)

    Jørgensen, Lars; Qvortrup, Klaus; Chronakis, Ioannis S.

    2015-01-01

    Asolectin phospholipid nano-microfibers were prepared using electrospinning processing. The asolectin fibers were studied by scanning electron microscopy, and the fiber morphology was found to be strongly dependent on the phospholipid concentration and the solvents used. The solvents studied were...... chloroform : dimethylformamide (CHCl3 : DMF, 3 : 2 v/v), isooctane, cyclohexane and limonene, producing phospholipid fibers with average diameters in the range of 2.57 +/- 0.59 mu m, similar to 3-8 mu m, similar to 4-5 mu m and 14.3 +/- 2.7 mu m, respectively. The diameter of asolectin electrospun fibers...... solvent and the inner needle contains the asolectin solution in CHCl3: DMF, a substantial reduction in the average fiber diameter was observed. In particular, the average diameter of the fibers when DMF (a solvent with a high dielectric constant) was used as a sheath solvent was reduced by a factor...

  15. Early adhesive behavior of bone-marrow-derived mesenchymal stem cells on collagen electrospun fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Casey K; Liao, Susan; Lareu, Ricky R; Raghunath, Michael [Division of Bioengineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574 (Singapore); Li, Bojun; Ramakrishna, S [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Larrick, James W, E-mail: doschanc@nus.edu.s [Panorama Research Institute, 2462 Wyandotte Street, Mountain View, CA 94043 (United States)

    2009-06-15

    A bioabsorbable nanofibrous scaffold was developed for early adhesion of mesenchymal stem cells (MSCs). Collagen nanofibers with diameters of 430 +- 170 nm were fabricated by electrospinning. Over 45% of the MSC population adhered to this collagen nanofiber after 30 min at room temperature. Remarkably, collagen-coated P(LLA-CL) electrospun nanofibers were almost as efficient as collagen nanofibers whereas collagen cast film did not enhance early capture when it was applied on cover slips. The adhesive efficiency could be further increased to over 20% at 20 min and over 55% at 30 min when collagen nanofibers were grafted with monoclonal antibodies recognizing CD29 or CD49a. These data demonstrate that the early adhesive behavior is highly dependent on both the surface texture and the surface chemistry of the substrate. These findings have potential applications for early capture of MSCs in an ex vivo setting under time constraints such as in a surgical setting.

  16. Simultaneous Delivery of Highly Diverse Bioactive Compounds from Blend Electrospun Fibers for Skin Wound Healing.

    Science.gov (United States)

    Peh, Priscilla; Lim, Natalie Sheng Jie; Blocki, Anna; Chee, Stella Min Ling; Park, Heyjin Chris; Liao, Susan; Chan, Casey; Raghunath, Michael

    2015-07-15

    Blend emulsion electrospinning is widely perceived to destroy the bioactivity of proteins, and a blend emulsion of water-soluble and nonsoluble molecules is believed to be thermodynamically unstable to electrospin smoothly. Here we demonstrate a method to retain the bioactivity of disparate fragile biomolecules when electrospun. Using bovine serum albumin as a carrier protein; water-soluble vitamin C, fat soluble vitamin D3, steroid hormone hydrocortisone, peptide hormone insulin, thyroid hormone triiodothyronine (T3), and peptide epidermal growth factor (EGF) were simultaneously blend-spun into PLGA-collagen nanofibers. Upon release, vitamin C maintained the ability to facilitate Type I collagen secretion by fibroblasts, EGF stimulated skin fibroblast proliferation, and insulin potentiated adipogenic differentiation. Transgenic cell reporter assays confirmed the bioactivity of vitamin D3, T3, and hydrocortisone. These factors concertedly increased keratinocyte and fibroblast proliferation while maintaining keratinocyte basal state. This method presents an elegant solution to simultaneously deliver disparate bioactive biomolecules for wound healing applications.

  17. Early adhesive behavior of bone-marrow-derived mesenchymal stem cells on collagen electrospun fibers

    International Nuclear Information System (INIS)

    Chan, Casey K; Liao, Susan; Lareu, Ricky R; Raghunath, Michael; Li, Bojun; Ramakrishna, S; Larrick, James W

    2009-01-01

    A bioabsorbable nanofibrous scaffold was developed for early adhesion of mesenchymal stem cells (MSCs). Collagen nanofibers with diameters of 430 ± 170 nm were fabricated by electrospinning. Over 45% of the MSC population adhered to this collagen nanofiber after 30 min at room temperature. Remarkably, collagen-coated P(LLA-CL) electrospun nanofibers were almost as efficient as collagen nanofibers whereas collagen cast film did not enhance early capture when it was applied on cover slips. The adhesive efficiency could be further increased to over 20% at 20 min and over 55% at 30 min when collagen nanofibers were grafted with monoclonal antibodies recognizing CD29 or CD49a. These data demonstrate that the early adhesive behavior is highly dependent on both the surface texture and the surface chemistry of the substrate. These findings have potential applications for early capture of MSCs in an ex vivo setting under time constraints such as in a surgical setting.

  18. Charge transport in the electrospun nanofiber composite membrane's three-dimensional fibrous structure

    Science.gov (United States)

    DeGostin, Matthew B.; Peracchio, Aldo A.; Myles, Timothy D.; Cassenti, Brice N.; Chiu, Wilson K. S.

    2016-03-01

    In this paper, a Fiber Network (FN) ion transport model is developed to simulate the three-dimensional fibrous microstructural morphology that results from the electrospinning membrane fabrication process. This model is able to approximate fiber layering within a membrane as well as membrane swelling due to water uptake. The discrete random fiber networks representing membranes are converted to resistor networks and solved for current flow and ionic conductivity. Model predictions are validated by comparison with experimental conductivity data from electrospun anion exchange membranes (AEM) and proton exchange membranes (PEM) for fuel cells as well as existing theories. The model is capable of predicting in-plane and thru-plane conductivity and takes into account detailed membrane characteristics, such as volume fraction, fiber diameter, fiber conductivity, and membrane layering, and as such may be used as a tool for advanced electrode design.

  19. Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications.

    Science.gov (United States)

    Mao, Xianwen; Tian, Wenda; Hatton, T Alan; Rutledge, Gregory C

    2016-02-01

    Electrochemical sensing is an efficient and inexpensive method for detection of a range of chemicals of biological, clinical, and environmental interest. Carbon materials-based electrodes are commonly employed for the development of electrochemical sensors because of their low cost, biocompatibility, and facile electron transfer kinetics. Electrospun carbon fibers (ECFs), prepared by electrospinning of a polymeric precursor and subsequent thermal treatment, have emerged as promising carbon systems for biosensing applications since the electrochemical properties of these carbon fibers can be easily modified by processing conditions and post-treatment. This review addresses recent progress in the use of ECFs for sensor fabrication and analyte detection. We focus on the modification strategies of ECFs and identification of the key components that impart the bioelectroanalytical activities, and point out the future challenges that must be addressed in order to advance the fundamental understanding of the ECF electrochemistry and to realize the practical applications of ECF-based sensing devices.

  20. The fabrication and testing of electrospun silica nanofiber membranes for the detection of proteins

    International Nuclear Information System (INIS)

    Tsou, P-H; Kameoka, J; Chou, C-K; Saldana, S M; Hung, M-C

    2008-01-01

    In this study, we fabricated electrospun silica nanofiber membranes and investigated their use in biomolecular sensing. The diameter, porosity and surface-to-volume ratio of nanofiber membranes were investigated under different fabrication conditions. Using this type of nanofiber membrane, enzyme-linked immunosorbent assay (ELISA) was performed, and the results were compared with those obtained with conventional ELISA using polystyrene well plates. The minimum detectable concentration was determined as 0.19 ng ml -1 (1.6 pM), which is 32 times lower than that of conventional ELISA. In addition, the detection time for all processes for the nanofiber membrane was reduced to 1 h, compared with 1 day for conventional ELISA. The increased sensitivity, faster reaction time, and affordability of the nanofiber membrane make it well suited for bio-chip use.

  1. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres

    KAUST Repository

    An, Alicia Kyoungjin; Lee, Eui-Jong; Guo, Jiaxin; Jeong, Sanghyun; Lee, Jung Gil; Ghaffour, NorEddine

    2017-01-01

    To ascertain membrane distillation (MD) as an emerging desalination technology to meet the global water challenge, development of membranes with ideal material properties is crucial. Functionalized carbon nanotubes (CNTs) were anchored to nanofibres of electrospun membranes. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer membrane, resulting in well-aligned CNTs inside crystalline fibres with superhydrophobicity. Consideration for the chemical/physical properties of the CNT composite membranes and calculation of their theoretical fluxes revealed the mechanism of MD: CNTs facilitated the repulsive force for Knudsen and molecular diffusions, reduced the boundary-layer effect in viscous flow, and assisted surface diffusion, allowing for fast vapor transport with anti-wetting. This study shows that the role of CNTs and an optimal composite ratio can be used to reduce the gap between theoretical and experimental approaches to desalination.

  2. VOCs Air Pollutant Cleaning with Polyacrylonitrile/Fly Ash Nanocomposite Electrospun Nanofibrous Membranes

    Science.gov (United States)

    Cong Ge, Jun; Wang, Zi Jian; Kim, Min Soo; Choi, Nag Jung

    2018-01-01

    Volatile organic compounds (VOCs) as an environmental pollution, which have many kinds of chemical structures, and many of them are very toxic. Therefore, controlling and reducing the presence of VOCs has become a hot topic among researchers for many years. In this study, the VOCs adsorption capacity of polyacrylonitrile/fly ash (PAN/FA) nanocomposite electrospun nanofibrous membranes were investigated. The results indicated that the PAN with different contents of FA powder (20%, 40%, 60%, 80%, and 100% compared with PAN by weight) could be spun well by electrospinning. The diameter of the fiber was very fine and its arrangement was irregular. The PAN nanofibrous membrane containing 60 wt% FA powder had the highest VOCs absorption capacity compared with other nanofibrous membranes due to its large specific surface area.

  3. Electrospun polyvinyl alcohol–collagen–hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells

    International Nuclear Information System (INIS)

    Song Wei; Shi Tong; Ren Weiping; Markel, David C; Wang Sunxi; Mao Guangzhao

    2012-01-01

    The failure of prosthesis after total joint replacement is due to the lack of early implant osseointegration. In this study polyvinyl alcohol–collagen–hydroxyapatite (PVA-Col-HA) electrospun nanofibrous meshes were fabricated as a biomimetic bone-like extracellular matrix for the modification of orthopedic prosthetic surfaces. In order to reinforce the PVA nanofibers, HA nanorods and Type I collagen were incorporated into the nanofibers. We investigated the morphology, biodegradability, mechanical properties and biocompatibility of the prepared nanofibers. Our results showed these inorganic–organic blended nanofibers to be degradable in vitro. The encapsulated nano-HA and collagen interacted with the PVA content, reinforcing the hydrolytic resistance and mechanical properties of nanofibers that provided longer lasting stability. The encapsulated nano-HA and collagen also enhanced the adhesion and proliferation of murine bone cells (MC3T3) in vitro. We propose the PVA-Col-HA nanofibers might be promising modifying materials on implant surfaces for orthopedic applications. (paper)

  4. Preparation of Electrospun Polymer Fibers Using a Copper Wire Electrode in a Capillary Tube

    Science.gov (United States)

    Shinbo, Kazunari; Onozuka, Shintaro; Hoshino, Rikiya; Mizuno, Yoshinori; Ohdaira, Yasuo; Baba, Akira; Kato, Keizo; Kaneko, Futao

    2010-04-01

    Polymer fibers were prepared by an electrospinning method utilizing a copper wire electrode in a capillary tube. The morphology of electrospun poly(vinyl alcohol) (PVA) fibers was observed, and was found to be dependent on the wire electrode tip position in the capillary tube, the concentration of the polymer solution, the distance between the electrodes, and the applied voltage. By using the wire electrode, the experimental setup is simple and the distance between the electrodes and the applied voltage can be easily reduced. Furthermore, the preparation of poly(3-hexylthiophene) (P3HT) fibers was carried out. P3HT fibers were successfully prepared by mixing poly(ethylene oxide) (PEO) in P3HT solution. Orientation control was also carried out by depositing the fibers on a rotating collector electrode, and the alignment of the P3HT:PEO fibers was confirmed. Anisotropy of the optical absorption spectra was also observed for the aligned fibers.

  5. 3D X-Ray Nanotomography of Cells Grown on Electrospun Scaffolds.

    Science.gov (United States)

    Bradley, Robert S; Robinson, Ian K; Yusuf, Mohammed

    2017-02-01

    Here, it is demonstrated that X-ray nanotomography with Zernike phase contrast can be used for 3D imaging of cells grown on electrospun polymer scaffolds. The scaffold fibers and cells are simultaneously imaged, enabling the influence of scaffold architecture on cell location and morphology to be studied. The high resolution enables subcellular details to be revealed. The X-ray imaging conditions were optimized to reduce scan times, making it feasible to scan multiple regions of interest in relatively large samples. An image processing procedure is presented which enables scaffold characteristics and cell location to be quantified. The procedure is demonstrated by comparing the ingrowth of cells after culture for 3 and 6 days. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering.

    Science.gov (United States)

    Zhao, Wen; Li, Jiaojiao; Jin, Kaixiang; Liu, Wenlong; Qiu, Xuefeng; Li, Chenrui

    2016-02-01

    Electrospun PLGA-based scaffolds have been applied extensively in biomedical engineering, such as tissue engineering and drug delivery system. Due to lack of the recognition sites on cells, hydropholicity and single-function, the applications of PLGA fibrous scaffolds are limited. In order to tackle these issues, many works have been done to obtain functional PLGA-based scaffolds, including surface modifications, the fabrication of PLGA-based composite scaffolds and drug-loaded scaffolds. The functional PLGA-based scaffolds have significantly improved cell adhesion, attachment and proliferation. Moreover, the current study has summarized the applications of functional PLGA-based scaffolds in wound dressing, vascular and bone tissue engineering area as well as drug delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention.

    Science.gov (United States)

    Samprasit, Wipada; Kaomongkolgit, Ruchadaporn; Sukma, Monrudee; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2015-03-06

    The mucoadhesive electrospun nanofibre mats were developed using chitosan (CS) and thiolated chitosan (CS-SH) as mucoadhesive polymers. Garcinia mangostana (GM) extract was incorporated into nanofibre mats. The antibacterial activity in the single and combined agents was evaluated against dental caries pathogens. The morphology of mats was observed using SEM. The mats were evaluated for GM extract amount, mucoadhesion, in vitro release, antibacterial activity and cytotoxicity. The mucoadhesion and antibacterial activity were determined in healthy human volunteers. The prepared mats were in nanoscale with good physical and mucoadhesive properties. The CS-SH caused the higher mucoadhesion. All mats rapidly released active substances, which had the synergistic antibacterial activity. In addition, the reduction of bacteria and good mucoadhesion in the oral cavity occurred without cytotoxicity. The results suggest that mats have the potential to be mucoadhesive dosage forms to maintain oral hygiene by reducing the bacterial growth that causes the dental caries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres

    KAUST Repository

    An, Alicia Kyoungjin

    2017-01-30

    To ascertain membrane distillation (MD) as an emerging desalination technology to meet the global water challenge, development of membranes with ideal material properties is crucial. Functionalized carbon nanotubes (CNTs) were anchored to nanofibres of electrospun membranes. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer membrane, resulting in well-aligned CNTs inside crystalline fibres with superhydrophobicity. Consideration for the chemical/physical properties of the CNT composite membranes and calculation of their theoretical fluxes revealed the mechanism of MD: CNTs facilitated the repulsive force for Knudsen and molecular diffusions, reduced the boundary-layer effect in viscous flow, and assisted surface diffusion, allowing for fast vapor transport with anti-wetting. This study shows that the role of CNTs and an optimal composite ratio can be used to reduce the gap between theoretical and experimental approaches to desalination.

  9. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2016-01-01

    , and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties...... such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate......), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts...

  10. Electrospun magnetic nanofibre mats – A new bondable biomaterial using remotely activated magnetic heating

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yi [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai (China); Leung, Victor; Yuqin Wan, Lynn [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Dutz, Silvio [Institut für Biomedizinische Technik und Informatik, Technische Universität Ilmenau (Germany); Department of Nano Biophotonics, Leibniz Institute of Photonic Technology, Jena (Germany); Ko, Frank K., E-mail: frank.ko@ubc.ca [Department of Materials Engineering, University of British Columbia, Vancouver (Canada); Häfeli, Urs O., E-mail: urs.hafeli@ubc.ca [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver (Canada)

    2015-04-15

    A solvothermal process was adopted to produce hydrophilic magnetite (Fe{sub 3}O{sub 4}) nanoparticles which were subsequently emulsified with a chloroform/methanol (70/30 v/v) solution of poly(caprolactone) (PCL) and then electrospun into a 0.2 mm thick PCL mat. The magnetic heating of the mats at a field amplitude of 25 kA/m and frequency of 400 kHz exhibited promising efficiency for magnetic hyperthermia, with a specific absorption rate of about 40 W/g for the magnetic mat. The produced heat was used to melt the magnetic mat onto the surrounding non-magnetic polymer mat from within, without destroying the nanostructure of the non-magnetic polymer more than 0.5 mm away. Magnetic nanofibre mats might thus be useful for internal heat sealing applications, and potentially also for thermotherapy.

  11. Superoleophillic electrospun polystrene/exofoliated graphite fibre for selective removal of crude oil from water

    Science.gov (United States)

    Alayande, S. Oluwagbemiga; Dare, Enock O.; Olorundare, F. O. Grace; Nkosi, D.; Msagati, Titus A. M.; Mamba, B. B.

    2016-04-01

    During oil spills, the aquatic environment is greatly endangered because oil floats on water making the penetration of sunlight difficult therefore primary productivity is compromised, birds and aquatic organisms are totally eliminated within a short period. It is therefore essential to remove the oil from the water bodies after the spillage. This work reports on the fabrication of oil loving electrospun polystyrene-exofoliated graphite fibre with hydrophobic and oleophillic surface properties. The fibre was applied for the selective adsorption of crude oil from simulated crude oil spillage on water. The maximum oil adsorption capacity of the EPS/EG was 1.15 kg/g in 20 min while the lowest oil adsorption capacity was 0.81 kg/g in 10 min. Cheap oil adsorbent was developed with superoleophillic and superhydrophobic properties.

  12. Fabrication and Characterization of Electrospun Wool Keratin/Poly(vinyl alcohol Blend Nanofibers

    Directory of Open Access Journals (Sweden)

    Shuai Li

    2014-01-01

    Full Text Available Wool keratin/poly(vinyl alcohol (PVA blend nanofibers were fabricated using the electrospinning method in formic acid solutions with different weight ratios of keratin to PVA. The resultant blend nanofibers were characterized by scanning electron microscopy (SEM, Fourier transform infrared (FTIR, X-ray diffraction (XRD, thermal gravimetric analysis (TGA, and tensile test. SEM images showed that the diameter of the blend nanofibers was affected by the content of keratin in blend solution. FTIR and XRD analyses data demonstrated that there were good interactions between keratin and PVA in the blended nanofibers caused by possibly hydrogen bonds. The TGA study revealed that the thermal stability of the blend nanofibers was between those of keratin and PVA. Tensile test indicated that the addition of PVA was able to improve the mechanical properties of the electrospun nanofibers.

  13. Electrospun Composites of Polycaprolactone and Porous Silicon Nanoparticles for the Tunable Delivery of Small Therapeutic Molecules

    Directory of Open Access Journals (Sweden)

    Steven J. P. McInnes

    2018-03-01

    Full Text Available This report describes the use of an electrospun composite of poly(ε-caprolactone (PCL fibers and porous silicon (pSi nanoparticles (NPs as an effective system for the tunable delivery of camptothecin (CPT, a small therapeutic molecule. Both materials are biodegradable, abundant, low-cost, and most importantly, have no known cytotoxic effects. The composites were treated with and without sodium hydroxide (NaOH to investigate the wettability of the porous network for drug release and cell viability measurements. CPT release and subsequent cell viability was also investigated. We observed that the cell death rate was not only affected by the addition of our CPT carrier, pSi, but also by increasing the rate of dissolution via treatment with NaOH. This is the first example of loading pSi NPs as a therapeutics nanocarrier into electronspun PCL fibers and this system opens up new possibilities for the delivery of molecular therapeutics.

  14. Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Ariba [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Khan, Abdul Samad; Shahzadi, Lubna; Siddiqi, Saadat Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, University of Health Sciences, Lahore (Pakistan); Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Qureshi, Zafar-ul-Ahsan [Veterinary Research Institute, Lahore (Pakistan); Manzoor, Faisal; Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2015-11-01

    Development of biodegradable composites having the ability to suppress or eliminate the pathogenic micro-biota or modulate the inflammatory response has attracted great interest in order to limit/repair periodontal tissue destruction. The present report includes the development of non-steroidal anti-inflammatory drug encapsulated novel biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) electro-spun (e-spun) composite nanofibrous mats and films and study of the effect of heat treatment on fibers and films morphology. It also describes comparative in-vitro drug release profiles from heat treated and control (non-heat treated) nanofibrous mats and films containing varying concentrations of piroxicam (PX). Electrospinning was used to obtain drug loaded ultrafine fibrous mats. The physical/chemical interactions were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy. The morphology, structure and pore size of the materials were investigated by scanning electron microscopy (SEM). The thermal behavior of the materials was investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Control (not heat treated) and heat treated e-spun fibers mats and films were tested for in vitro drug release studies at physiological pH 7.4 and initially, as per requirement burst release patterns were observed from both fibers and films and later sustained release profiles were noted. In vitro cytocompatibility was performed using VERO cell line of epithelial cells and all the synthesized materials were found to be non-cytotoxic. The current observations suggested that these materials are potential candidates for periodontal regeneration. - Highlights: • Novel non-steroidal anti-inflammatory drug encapsulated biodegradable electrospun nanocomposite scaffolds were synthesized. • Heat treatment displayed great influence on the morphology of scaffolds. • Fiber diameter was decreased and pore size was increased after heat

  15. Electrospun nanofiber based colorimetric probe for rapid detection of Fe{sup 2+} in water

    Energy Technology Data Exchange (ETDEWEB)

    Ondigo, D.A. [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa); Tshentu, Z.R. [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa); Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth, 6031 (South Africa); Torto, N., E-mail: N.Torto@ru.ac.za [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa)

    2013-12-04

    Graphical abstract: -- Highlights: •Colorimetric probe for the detection of Fe{sup 2+} was developed. •Polymeric electrospun nanofibers were used as host for the signaling reagent. •The functionalized electrospun nanofibers exhibited a selective color change in the presence of Fe{sup 2+}. •The mechanism was based on spin crossover (SCO) from high spin Fe{sup 2+} to low spin Fe{sup 2+} upon interaction with the embedded ligand. -- Abstract: An imidazole derivative, 2-(2′-pyridyl)imidazole (PIMH), was developed as a colorimetric probe for the qualitative analysis of Fe{sup 2+} in aqueous solution. PIMH was then used to post-functionalize poly(vinylbenzyl chloride) (PVBC) nanofibers after electrospinning so as to afford a solid state colorimetric probe. Upon treatment with Fe{sup 2+} the probe displayed a distinctive color change both in liquid and solid platforms. The linear dynamic range for the colorimetric determination of Fe{sup 2+} was 0.0988–3.5 μg mL{sup −1}. The ligand showed a high chromogenic selectivity for Fe{sup 2+} over other cations with a detection limit of 0.102 μg mL{sup −1} in solution (lower than the WHO drinking water guideline limit of 2 mg L{sup −1}), and 2 μg mL{sup −1} in the solid state. The concentration of Fe{sup 2+} in a certified reference material (Iron, Ferrous, 1072) was found to be 2.39 ± 0.01 mg L{sup −1}, which was comparable with the certified value of 2.44 ± 0.12 mg L{sup −1}. Application of the probe to real samples spiked with Fe{sup 2+} achieved recoveries of over 97% confirming accuracy of the method and its potential for on-site monitoring.

  16. * Hierarchically Structured Electrospun Scaffolds with Chemically Conjugated Growth Factor for Ligament Tissue Engineering.

    Science.gov (United States)

    Pauly, Hannah M; Sathy, Binulal N; Olvera, Dinorath; McCarthy, Helen O; Kelly, Daniel J; Popat, Ketul C; Dunne, Nicholas J; Haut Donahue, Tammy Lynn

    2017-08-01

    The anterior cruciate ligament (ACL) of the knee is vital for proper joint function and is commonly ruptured during sports injuries or car accidents. Due to a lack of intrinsic healing capacity and drawbacks with allografts and autografts, there is a need for a tissue-engineered ACL replacement. Our group has previously used aligned sheets of electrospun polycaprolactone nanofibers to develop solid cylindrical bundles of longitudinally aligned nanofibers. We have shown that these nanofiber bundles support cell proliferation and elongation and the hierarchical structure and material properties are similar to the native human ACL. It is possible to combine multiple nanofiber bundles to create a scaffold that attempts to mimic the macroscale structure of the ACL. The goal of this work was to develop a hierarchical bioactive scaffold for ligament tissue engineering using connective tissue growth factor (CTGF)-conjugated nanofiber bundles and evaluate the behavior of mesenchymal stem cells (MSCs) on these scaffolds in vitro and in vivo. CTGF was immobilized onto the surface of individual nanofiber bundles or scaffolds consisting of multiple nanofiber bundles. The conjugation efficiency and the release of conjugated CTGF were assessed using X-ray photoelectron spectroscopy, assays, and immunofluorescence staining. Scaffolds were seeded with MSCs and maintained in vitro for 7 days (individual nanofiber bundles), in vitro for 21 days (scaled-up scaffolds of 20 nanofiber bundles), or in vivo for 6 weeks (small scaffolds of 4 nanofiber bundles), and ligament-specific tissue formation was assessed in comparison to non-CTGF-conjugated control scaffolds. Results showed that CTGF conjugation encouraged cell proliferation and ligament-specific tissue formation in vitro and in vivo. The results suggest that hierarchical electrospun nanofiber bundles conjugated with CTGF are a scalable and bioactive scaffold for ACL tissue engineering.

  17. Evaluation of polyacrylonitrile electrospun nano-fibrous mats as leukocyte removal filter media.

    Science.gov (United States)

    Pourbaghi, Raha; Zarrebini, Mohammad; Semnani, Dariush; Pourazar, Abbasali; Akbari, Nahid; Shamsfar, Reihaneh

    2017-09-13

    Removal of leukocytes from blood products is the most effective means for elimination of undesirable side effects and prevention of possible reactions in recipients. Micro-fibrous mats are currently used for removal of leukocytes from blood. In this study, samples of electrospun nano-fibrous mats were produced. The performance of the produced electrospun nano-fibrous mats as means of leukocytes removal from fresh whole blood was both evaluated and compared with that of commercially available micro-fibrous mats. In order to produce the samples, polyacrylonitrile (PAN) nano-fibrous mats were made under different electrospinning conditions. Mean fiber diameter, pore characterization and surface roughness of the PAN nano-fibrous mats were determined using image processing technique. In order to evaluate the surface tension of the fabricated mats, water contact angle was measured. The leukocyte removal performance, erythrocytes recovery percent and hemolysis rate of the nano-fibrous mats were compared. The effectiveness of nano-fibrous mats in removing leukocyte was established using both scanning electron microscope and optical microscope. Results showed that for given weight, the fabricated nano-fibrous mats were not only more efficient but also more cost-effective than their commercial counterparts. Results confirmed that changes in mean fiber diameter, the number of layer and weight of each layer in the absence of any chemical reaction or physical surface modification, the fabricated nano-fibrous mats were able to remove 5-log of leukocytes. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  18. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Vinoy [Center for Nanoscale Materials and Biointegration (CNMB), Department of Physics, University of Alabama at Birmingham (UAB), AL 35294 (United States); Zhang Xing [Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham (UAB), AL 35294 (United States); Catledge, Shane A [Center for Nanoscale Materials and Biointegration (CNMB), Department of Physics, University of Alabama at Birmingham (UAB), AL 35294 (United States); Vohra, Yogesh K [Center for Nanoscale Materials and Biointegration (CNMB), Department of Physics, University of Alabama at Birmingham (UAB), AL 35294 (United States)

    2007-12-15

    Electrospun tubular scaffolds (4 mm inner diameter) based on bio-artificial blends of polyglyconate (Maxon (registered) ) and proteins such as gelatin and elastin having a spatially designed multilayer structure were prepared for use as vascular tissue scaffolds. Scanning electron microscopy analysis of scaffolds showed a random nanofibrous morphology with fiber diameter in the range of 200-400 nm for protein-blended Maxon, which mimics the nanoscale dimensions of collagen (50-500 nm). The scaffolds have a well interconnected pore structure and porosity up to 82%, with protein blending and multi-layering in contrast to electrospun Maxon (registered) scaffolds (67%). Fourier-transform infrared spectroscopy, x-ray diffraction and differential scanning calorimetry results confirmed the blended composition and crystallinity of fibers. Uniaxial tensile testing revealed a strength of 14.46 {+-} 0.42 MPa and a modulus of 15.44 {+-} 2.53 MPa with a failure strain of 322.5 {+-} 10% for a pure Maxon (registered) scaffold. The blending of polyglyconate with biopolymers decreased the tensile properties in general, with an exception of the tensile modulus (48.38 {+-} 2 MPa) of gelatin/Maxon mesh, which was higher than that of the pure Maxon (registered) scaffold. Trilayered tubular scaffolds of gelatin/elastin, gelatin/elastin/Maxon and gelatin/Maxon (GE-GEM-GM) that mimic the complex trilayer matrix structure of natural artery have been prepared by sequential electrospinning. Tensile testing under dry conditions revealed a tensile strength of 2.71 {+-} 0.2 MPa and a modulus of 20.4 {+-} 3 MPa with a failure strain of 140 {+-} 10%. However, GE-GEM-GM scaffolds tested under wet conditions after soaking in a phosphate buffered saline medium at 37 {sup 0}C for 24 h exhibited mechanical properties (2.5 MPa tensile strength and 9 MPa tensile modulus) comparable to those of native femoral artery.

  19. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration

    International Nuclear Information System (INIS)

    Thomas, Vinoy; Zhang Xing; Catledge, Shane A; Vohra, Yogesh K

    2007-01-01

    Electrospun tubular scaffolds (4 mm inner diameter) based on bio-artificial blends of polyglyconate (Maxon (registered) ) and proteins such as gelatin and elastin having a spatially designed multilayer structure were prepared for use as vascular tissue scaffolds. Scanning electron microscopy analysis of scaffolds showed a random nanofibrous morphology with fiber diameter in the range of 200-400 nm for protein-blended Maxon, which mimics the nanoscale dimensions of collagen (50-500 nm). The scaffolds have a well interconnected pore structure and porosity up to 82%, with protein blending and multi-layering in contrast to electrospun Maxon (registered) scaffolds (67%). Fourier-transform infrared spectroscopy, x-ray diffraction and differential scanning calorimetry results confirmed the blended composition and crystallinity of fibers. Uniaxial tensile testing revealed a strength of 14.46 ± 0.42 MPa and a modulus of 15.44 ± 2.53 MPa with a failure strain of 322.5 ± 10% for a pure Maxon (registered) scaffold. The blending of polyglyconate with biopolymers decreased the tensile properties in general, with an exception of the tensile modulus (48.38 ± 2 MPa) of gelatin/Maxon mesh, which was higher than that of the pure Maxon (registered) scaffold. Trilayered tubular scaffolds of gelatin/elastin, gelatin/elastin/Maxon and gelatin/Maxon (GE-GEM-GM) that mimic the complex trilayer matrix structure of natural artery have been prepared by sequential electrospinning. Tensile testing under dry conditions revealed a tensile strength of 2.71 ± 0.2 MPa and a modulus of 20.4 ± 3 MPa with a failure strain of 140 ± 10%. However, GE-GEM-GM scaffolds tested under wet conditions after soaking in a phosphate buffered saline medium at 37 0 C for 24 h exhibited mechanical properties (2.5 MPa tensile strength and 9 MPa tensile modulus) comparable to those of native femoral artery

  20. Electrospun silk-elastin-like fibre mats for tissue engineering applications

    International Nuclear Information System (INIS)

    Machado, Raul; Da Costa, André; Padrão, Jorge; Gomes, Andreia; Casal, Margarida; Sencadas, Vitor; Costa, Carlos M; Lanceros-Méndez, Senentxu; Garcia-Arévalo, Carmen; Rodríguez-Cabello, José Carlos

    2013-01-01

    Protein-based polymers are present in a wide variety of organisms fulfilling structural and mechanical roles. Advances in protein engineering and recombinant DNA technology allow the design and production of recombinant protein-based polymers (rPBPs) with an absolute control of its composition. Although the application of recombinant proteins as biomaterials is still an emerging technology, the possibilities are limitless and far superior to natural or synthetic materials, as the complexity of the structural design can be fully customized. In this work, we report the electrospinning of two new genetically engineered silk-elastin-like proteins (SELPs) consisting of alternate silk- and elastin-like blocks. Electrospinning was performed with formic acid and aqueous solutions at different concentrations without addition of further agents. The size and morphology of the electrospun structures was characterized by scanning electron microscopy showing its dependence on the concentration and solvent used. Treatment with methanol-saturated air was employed to stabilize the structure and promote water insolubility through a time-dependent conversion of random coils into β-sheets (FTIR). The resultant methanol-treated electrospun mats were characterized for swelling degree (570–720%), water vapour transmission rate (1083 g/m 2 /day) and mechanical properties (modulus of elasticity ∼126 MPa). Furthermore, the methanol-treated SELP fibre mats showed no cytotoxicity and were able to support adhesion and proliferation of normal human skin fibroblasts. Adhesion was characterized by a filopodia-mediated mechanism. These results demonstrate that SELP fibre mats can provide promising solutions for the development of novel biomaterials suitable for tissue engineering applications. (paper)