WorldWideScience

Sample records for electroplating industry wastewater

  1. The Survey of Melia Azaderach L. ash in Removal of Hexavalent Chromium from Synthetic Electroplating Industry Wastewater

    Directory of Open Access Journals (Sweden)

    MT Ghaneian

    2014-11-01

    Conclusion: Melia azedarach ash is an effective adsorbent in removal of hexavalent chromium from synthetic electroplating industries wastewater. In addition, the use of this biosorbent in preparation and application aspects is simple and cheap compared to many other natural and man-made adsorbent.

  2. Purification of heavy metal loaded wastewater from electroplating industry under synthesis of delafossite (ABO2) by "Lt-delafossite process".

    Science.gov (United States)

    John, Melanie; Heuss-Aßbichler, Soraya; Ullrich, Aladin; Rettenwander, Daniel

    2016-09-01

    In this study we present a new, environmental friendly and economic method, called Lt-delafossite process to treat industrial wastewater (initial Cu(2+)-concentrations of 1-15.6 g/l) by subsequent synthesis of nano-crystalline (doped) delafossite (CuFeO2) solely by precipitation and ageing at temperatures between 50 °C and 90 °C. The reached water purification rates are exclusively ≥99.99% for both wastewater models and wastewaters from electroplating industry. We succeeded to synthesize a mixture of 3R and 2H delafossite at 50 °C after 90 h and ≥70 °C after 16 h of ageing directly from industrial wastewater without any additional phases. In all cases green rust (GR), a Fe(II-III) layered double hydroxysulphate, Cu2O (cuprite) and Fe10O14(OH)2 (ferrihydrite) precipitates first. During ageing of the residues the metastable phases transform to delafossite. The residues are characterized by XRD, FTIR, SEM, TEM, VFTB and Mößbauer measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Removal of heavy metals from electroplating wastewater by membrane

    Directory of Open Access Journals (Sweden)

    Galaya Srisuwan

    2002-11-01

    Full Text Available This research was to study the treatment of heavy metals in electroplating wastewater using membranes. Two selected membrane types, cellulose acetate microfiltration membrane with pore size 0.2 μm and polysulfone ultrafiltration membrane with MWCO of 30 kDa were used in this study. Synthetic and factory electroplating wastewater were used as the samples. The experiments were performed by chemical precipitating both synthetic and factory wastewater in the first step and membrane filtrating of supernatant at the pressure of 50, 100 and 200 kPa in the second step. The concentration of chromium, copper, nickel and zinc of treated water were compared with standard values given by the Ministry of Industry (MOI, Thailand. The experimental results showed that flux was highest at the pressure of 200 kPa and decreased as the pressure decreased. The rejection was highest at the pressure of 50 kPa and decreased as pressure increased. The results from synthetic wastewater were better than those from factory wastewater. Thecapability of heavy metal removal of microfiltration and ultrafiltration membrane was the same, but microfiltration gave more flux. The heavy metal removal efficiency of microfiltration of synthetic electroplating wastewater of four processes of chromium, copper, nickel and zinc electroplating , each was higher than that from factory wastewater but slightly lower than the removal efficiency obtained from composite synthetic wastewater. The removal efficiency of chromium, copper, nickel and zinc from composite synthetic wastewater was higher than those from composite factory wastewater for both microfiltration and ultrafiltration processes. The results from the study of membrane surface washing showed little flux increase after washing the membrane by stirring with a propeller at a distance of 2 mm above membrane surface at 400 rpm for 30 minutes.

  4. Chemical oxygen demand removal from electroplating wastewater by purified and polymer functionalized carbon nanotubes adsorbents

    National Research Council Canada - National Science Library

    M.T. Bankole; A.S. Abdulkareem; J.O. Tijani; S.S. Ochigbo; A.S. Afolabi; W.D. Roos

    2017-01-01

    This study investigated the removal of chemical oxygen demand (COD) from electroplating industry wastewater via batch adsorption by purified and polymers functionalized carbon nanotubes (CNTs) as nano-adsorbents...

  5. Fabrication uniform hollow Bi2S3 nanospheres via Kirkendall effect for photocatalytic reduction of Cr(VI) in electroplating industry wastewater.

    Science.gov (United States)

    Luo, Sheng; Qin, Fan; Ming, Yin'an; Zhao, Huiping; Liu, Yunling; Chen, Rong

    2017-10-15

    Hazardous hexavalent chromium removal from wastewater is an urgent issue in industry environmental pollution. In this work, hollow Bi2S3 nanospheres have been successfully synthesized from unique Bi2O3 porous nanospheres via Kirkendall effect through hydrothermal process. It was found that the sulfur source and the initial Bi2O3 templates played key roles in the formation of the uniform morphologies and structures through an anion exchange process. Compared with other Bi2S3 samples, the synthesized hollow Bi2S3 nanospheres exhibited much enhanced photocatalytic ability for Cr(VI) photoreduction. XPS analysis demonstrated that Cr(VI) was reduced to less harmful Cr(III) species over hollow Bi2S3 nanospheres under visible-light irradiation. More importantly, the hollow Bi2S3 nanospheres remained high efficiency and good stability in the recycling Cr(VI) photoreduction, and exhibited remarkable Cr(VI) removal ability in actual electroplating industry wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Influence of voltage input to heavy metal removal from electroplating wastewater using electrocoagulation process

    Science.gov (United States)

    Wulan, D. R.; Cahyaningsih, S.; Djaenudin

    2017-03-01

    In medium capacity, electroplating industry usually treats wastewater until 5 m3 per day. Heavy metal content becomes concern that should be reduced. Previous studies performed electrocoagulation method on laboratory scale, either batch or continuous. This study was aimed to compare the influence of voltage input variation into heavy metal removal in electroplating wastewater treatment using electrocoagulation process on laboratory-scale in order to determine the optimum condition for scaling up the reactor into pilot-scale. The laboratory study was performed in 1.5 L glass reactor in batch system using wastewater from electroplating industry, the voltage input varied at 20, 30 and 40 volt. The electrode consisted of aluminium 32 cm2 as sacrifice anode and copper 32 cm2 as cathode. During 120 min electrocoagulation process, the pH value was measured using pH meter, whereas the heavy metal of chromium, copper, iron, and zinc concentration were analysed using Atomic Absorption Spectrophotometer (AAS). Result showed that removal of heavy metals from wastewater increased due to the increasing of voltage input. Different initial concentration of heavy metals on wastewater, resulted the different detention time. At pilot-scale reactor with 30 V voltage input, chromium, iron, and zinc reached removal efficiency until 89-98%, when copper reached 79% efficiency. At 40V, removal efficiencies increased on same detention time, i.e. chromium, iron, and zinc reached 89-99%, whereas copper reached 85%. These removal efficiencies have complied the government standard except for copper that had higher initial concentration in wastewater. Kinetic rate also calculated in this study as the basic factor for scaling up the process.

  7. Assessment of the effectiveness of orange (Citrus reticulata) peel in the recovery of nickel from electroplating wastewater.

    Science.gov (United States)

    Hussein, Rim A

    2014-12-01

    Wastewater discharged from electroplating industry contains different concentrations of heavy metals, which when released into the environment pose a health hazard to human beings. The aim of this study was to assess the effectiveness of orange peel as an adsorbent in the recovery of Nickel (Ni) from electroplating wastewater. The effectiveness of orange peel as an adsorbent was assessed by determining the optimum conditions of adsorption (adsorbent dose, pH, and contact time), calculating the recovery percentage, and characterizing the orange peel sludge resulting from adsorption/desorption process as being hazardous or not. Under optimum conditions for adsorption, orange peel was found to be an effective adsorbent of Ni from electroplating wastewater. It achieved 59.28% removal of the metal from a solution containing 528 mg/l, at a dose of 60 g/l, at pH 7, and for 1-h contact time. The nickel uptake capacity of orange peel was calculated to be 5.2 mg/g. Using HCl for desorption of adsorbed Ni, a recovery of 44.46% of Ni discharged in the wastewater could be reached. Orange peel resulting from the adsorption/desorption process was characterized as being nonhazardous. Orange peel was found to be effective in the recovery of nearly half of the amount of Ni discharged in electroplating wastewater. Further studies are required to determine (a) the impact of the recovered NiCl2 solution on the quality of the plated product, (b) the effect of activation of orange peel on the adsorption process, and (c) the number of cycles during which orange peel can be reused as an effective adsorbent.

  8. Wastewater Industrial Contributors

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Industrial contributors to municipal wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES) program.

  9. A Green Microbial Fuel Cell-Based Biosensor for In Situ Chromium (VI) Measurement in Electroplating Wastewater.

    Science.gov (United States)

    Wu, Li-Chun; Tsai, Teh-Hua; Liu, Man-Hai; Kuo, Jui-Ling; Chang, Yung-Chu; Chung, Ying-Chien

    2017-10-27

    The extensive use of Cr(VI) in many industries and the disposal of Cr(VI)-containing wastes have resulted in Cr(VI)-induced environmental contamination. Cr(VI) compounds are associated with increased cancer risks; hence, the detection of toxic Cr(VI) compounds is crucial. Various methods have been developed for Cr(VI) measurement, but they are often conducted offsite and cannot provide real-time toxicity monitoring. A microbial fuel cell (MFC) is an eco-friendly and self-sustaining device that has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Exiguobacterium aestuarii YC211, a facultatively anaerobic, Cr(VI)-reducing, salt-tolerant, and exoelectrogenic bacterium, was isolated and inoculated into an MFC to evaluate its feasibility as a Cr(VI) biosensor. The Cr(VI) removal efficiency of E. aestuarii YC211 was not affected by the surrounding environment (pH 5-9, 20-35 °C, coexisting ions, and salinity of 0-15 g/L). The maximum power density of the MFC biosensor was 98.3 ± 1.5 mW/m² at 1500 Ω. A good linear relationship (r² = 0.997) was observed between the Cr(VI) concentration (2.5-60 mg/L) and the voltage output. The developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater that is generated from different electroplating units within 30 min with low deviations (-6.1% to 2.2%). After treating the actual electroplating wastewater with the MFC, the predominant family in the biofilm was found to be Bacillaceae (95.3%) and was further identified as the originally inoculated E. aestuarii YC211 by next generation sequencing (NGS). Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents from different electroplating units, and it can potentially help in preventing the violation of effluent regulations.

  10. A Green Microbial Fuel Cell-Based Biosensor for In Situ Chromium (VI Measurement in Electroplating Wastewater

    Directory of Open Access Journals (Sweden)

    Li-Chun Wu

    2017-10-01

    Full Text Available The extensive use of Cr(VI in many industries and the disposal of Cr(VI-containing wastes have resulted in Cr(VI-induced environmental contamination. Cr(VI compounds are associated with increased cancer risks; hence, the detection of toxic Cr(VI compounds is crucial. Various methods have been developed for Cr(VI measurement, but they are often conducted offsite and cannot provide real-time toxicity monitoring. A microbial fuel cell (MFC is an eco-friendly and self-sustaining device that has great potential as a biosensor for in situ Cr(VI measurement, especially for wastewater generated from different electroplating units. In this study, Exiguobacterium aestuarii YC211, a facultatively anaerobic, Cr(VI-reducing, salt-tolerant, and exoelectrogenic bacterium, was isolated and inoculated into an MFC to evaluate its feasibility as a Cr(VI biosensor. The Cr(VI removal efficiency of E. aestuarii YC211 was not affected by the surrounding environment (pH 5–9, 20–35 °C, coexisting ions, and salinity of 0–15 g/L. The maximum power density of the MFC biosensor was 98.3 ± 1.5 mW/m2 at 1500 Ω. A good linear relationship (r2 = 0.997 was observed between the Cr(VI concentration (2.5–60 mg/L and the voltage output. The developed MFC biosensor is a simple device that can accurately measure Cr(VI concentrations in the actual electroplating wastewater that is generated from different electroplating units within 30 min with low deviations (−6.1% to 2.2%. After treating the actual electroplating wastewater with the MFC, the predominant family in the biofilm was found to be Bacillaceae (95.3% and was further identified as the originally inoculated E. aestuarii YC211 by next generation sequencing (NGS. Thus, the MFC biosensor can measure Cr(VI concentrations in situ in the effluents from different electroplating units, and it can potentially help in preventing the violation of effluent regulations.

  11. Remediation of lead from lead electroplating industrial effluent using sago waste.

    Science.gov (United States)

    Jeyanthi, G P; Shanthi, G

    2007-01-01

    Heavy metals are known toxicants, which inflict acute disorders to the living beings. Electroplating industries pose great threat to the environment through heavy load of metals in the wastewater discharged on land and water sources. In the present study, sago processing waste, which is both a waste and a pollutant, was used to adsorb lead ions from lead electroplating industrial effluent. Two types of sago wastes, namely, coarse sago waste and fine sago waste were used to study their adsorption capacity with the batch adsorption and Freundlich adsorption isotherm. The parameters that were considered for batch adsorption were pH (4, 5 and 6), time of contact (1, 2 and 3 hrs), temperature (30, 37 and 45 degrees C) and dosage of the adsorbent (2,4 and 6 g/L). The optimal condition for the effective removal of lead was found to be pH 5, time of contact 3 hrs, temperature 30 degrees C and dosage 4 g/L with coarse sago waste than fine sago waste.

  12. Chromate reduction by waste iron from electroplating wastewater using plug flow reactor.

    Science.gov (United States)

    Chen, Shiao-Shing; Hsu, Bao-Chrung; Hung, Li-Wei

    2008-04-15

    Waste iron was used to treat high concentration chromate (534 mg/L as Cr) from electroplating wastewater by plug flow reactor (PFR) due to the following reasons: (1) two wastes are treated simultaneously, (2) low pH of the electroplating wastewater ( approximately 2) benefits the reaction between these two wastes, (3) effluent pH is elevated in the PFR, reducing the base requirement to meet the pH discharge standard for wastewater (pH 6-9). Complete chromate reductions were achieved at pH 1.7 for hydraulic retention time (HRT) of 98 min, pH 1.5 for HRT of 40 min and pH 1.3 for HRT of 20 min. Consequently, optimum HRT for complete chromate reduction was obtained for different pHs. Although more acids were used to lower influent pH to reduce HRT, effluent pH was higher due to more hydrogen ion reacting with chromate. Eventually, fewer bases are required to fulfill the discharge pH requirement of wastewater. Effluent pH 3-5 was observed with high turbidity, indicating the precipitations of chromium oxide and hydroxide were enhanced by the dissolved iron coagulation. X-ray diffraction was conducted to examine the remaining species. Other than chromium oxide and hydroxide species, an iron-chromium complex (Cr2FeO4) was also observed.

  13. Biohydrogen production from industrial wastewaters.

    Science.gov (United States)

    Moreno-Andrade, Iván; Moreno, Gloria; Kumar, Gopalakrishnan; Buitrón, Germán

    2015-01-01

    The feasibility of producing hydrogen from various industrial wastes, such as vinasses (sugar and tequila industries), and raw and physicochemical-treated wastewater from the plastic industry and toilet aircraft wastewater, was evaluated. The results showed that the tequila vinasses presented the maximum hydrogen generation potential, followed by the raw plastic industry wastewater, aircraft wastewater, and physicochemical-treated wastewater from the plastic industry and sugar vinasses, respectively. The hydrogen production from the aircraft wastewater was increased by the adaptation of the microorganisms in the anaerobic sequencing batch reactor.

  14. The Effective Electrolytic Recovery of Dilute Copper from Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Teng-Chien Chen

    2013-01-01

    Full Text Available Electroplating copper industry was discharged huge amount wastewater and cause serious environmental and health damage in Taiwan. This research applied electrical copper recovery system to recover copper metal. In this work, electrotreatment of a industrial copper wastewater ([Cu] = 30000 mg L−1 was studied with titanium net coated with a thin layer of RuO2/IrO2 (DSA reactor. The optimal result for simulated copper solution was 99.9% copper recovery efficiency in current density 0.585 A/dm2 and no iron ion. Due to high concentration of iron and chloride ions in real industrial wastewater, the copper recovery efficiency was down to 60%. Although, the copper recovery efficiency was not high as simulated copper solution, high environmental economic value was included in the technology. The possibility of pretreating the wastewater with iron is the necessary step, before the electrical recovery copper system.

  15. Accumulation of Metals and Boron in Phragmites australis Planted in Constructed Wetlands Polishing Real Electroplating Wastewater.

    Science.gov (United States)

    Sochacki, Adam; Guy, Bernard; Faure, Olivier; Surmacz-Górska, Joanna

    2015-01-01

    The concentration of metals (Al, Cu, Fe, Mn, Ni, Zn) and B were determined in the above- and belowground biomass of Phragmites australis collected from the microcosm constructed wetland system used for the polishing of real electroplating wastewater. Translocation factor and bioconcentration factor were determined. Pearson correlation test was used to determine correlation between metal concentration in substrate and above- and belowground parts of Phragmites australis. The obtained results suggested that Phragmites australis did not play a major role as an accumulator of metals. It was observed also that the substrate could have exerted an effect on the translocation of Ni, Cu, Zn and Mn. The analysed concentrations of metals and B in biomass were in the range or even below the concentrations reported in the literature with the exception of Ni. The aboveground biomass was found suitable as a composting input in terms of metals concentrations.

  16. Effect of electroplating industrial waste on “available phosphorus” of ...

    African Journals Online (AJOL)

    Administrator

    2008-09-15

    Sep 15, 2008 ... electroplating, rolling-pickling and textiles industries. The others are rubber, plastic, soap, electronic goods etc. The entire area was divided into ... A solution of soil and double distilled water is prepared in the ratio of 1:10 in a 100 ml beaker by stirring it with a magnetic stirrer for 10 minutes and pH values ...

  17. Biological removal of cyanide compounds from electroplating wastewater (EPWW) by sequencing batch reactor (SBR) system

    Energy Technology Data Exchange (ETDEWEB)

    Sirianuntapiboon, Suntud [Department of Environmental Technology, School of Energy Environment and Materials, King Mongkut' s University of Technology Thonburi, Bangmod, Thung-kru, Bangkok 10140 (Thailand)], E-mail: suntud.sir@kmutt.ac.th; Chairattanawan, Kanidta [Department of Applied Science, Office of General Education, Sripatum University, Phahonyothin Road, Chatuchak, Bangkok 10900 (Thailand); Rarunroeng, Methinee [Department of Environmental Technology, School of Energy Environment and Materials, King Mongkut' s University of Technology Thonburi, Bangmod, Thung-kru, Bangkok 10140 (Thailand)

    2008-06-15

    Biological treatment system especially, sequencing batch reactor (SBR) system could not be applied to treat the raw electroplating wastewater (EPWW) due to the low organic matter concentration of 10 {+-} 3 mg-BOD{sub 5}/L and toxic of high cyanide concentration of 23.0 {+-} 2.2 mg-CN/L. However, EPWW could be used as the nitrogen source for the bio-sludge of SBR system. And 10% of EPWW (the final cyanide concentration of 2.3 {+-} 0.2 mg/L) was most suitable to supplement into the wastewater as the nitrogen source. SBR system showed the highest COD, BOD{sub 5}, TKN and cyanide removal efficiencies of 79 {+-} 2%, 85 {+-} 3%, 49.0 {+-} 2.1% and 97.7 {+-} 0.7%, respectively with 4-times diluted Thai-rice noodle wastewater (TRNWW) containing 10% EPWW and 138 mg/L NH{sub 4}Cl (BOD{sub 5}: TN of 100:10) at SRT of 72 {+-} 13 days (under organic and cyanide loadings of 0.40 kg-BOD{sub 5}/m{sup 3} d and 0.0023 kg-CN/m{sup 3} d, respectively). However, the effluent ammonia was still high of 22.6 {+-} 0.4 mg-N/L while the effluent nitrate and nitrite was only 9.9 {+-} 0.4 and 1.2 {+-} 0.9 mg-N/L, respectively. And SVI and effluent SS of the system were higher than 95 and 75 mg/L, respectively.

  18. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater.

    Science.gov (United States)

    You, Shao-Hong; Zhang, Xue-Hong; Liu, Jie; Zhu, Yi-Nian; Gu, Chen

    2014-01-01

    As a low-cost treatment technology for effluent, the constructed wetlands can be applied to remove the heavy metals from wastewater. Leersia hexandra Swartz is a metal-accumulating hygrophyte with great potential to remove heavy metal from water. In this study, two pilot-scale constructed wetlands planted with L. hexandra (CWL) were set up in greenhouse to treat electroplating wastewater containing Cr, Cu and Ni. The treatment performance of CWL under different hydraulic loading rates (HLR) and initial metal concentrations were also evaluated. The results showed that CWL significantly reduced the concentrations of Cr, Cu and Ni in wastewater by 84.4%, 97.1% and 94.3%, respectively. High HLR decreased the removal efficiencies of Cr, Cu and Ni; however, the heavy metal concentrations in effluent met Emission Standard of Pollutants for Electroplating in China (ESPE) at HLR less than 0.3 m3/m2 d. For the influent of 5 mg/L Cr, 10 mg/L Cu and 8 mg/L Ni, effluent concentrations were below maximum allowable concentrations in ESPE, indicating that the removal of Cr, Cu and Ni by CWL was feasible at considerably high influent metal concentrations. Mass balance showed that the primary sink for the retention of contaminants within the constructed wetland system was the sediment, which accounted for 59.5%, 83.5%, and 73.9% of the Cr, Cu and Ni, respectively. The data from the pilot wetlands support the view that CWL could be used to successfully remove Cr, Cu and Ni from electroplating wastewater.

  19. Biosynthesis of Cr(III) nanoparticles from electroplating wastewater using chromium-resistant Bacillus subtilis and its cytotoxicity and antibacterial activity.

    Science.gov (United States)

    Kanakalakshmi, A; Janaki, V; Shanthi, K; Kamala-Kannan, S

    2017-11-01

    The aim of this study was to synthesize and characterize Cr(III) nanoparticles using wastewater from electroplating industries and chromium-resistant Bacillus subtilis. Formation of Cr(III) nanoparticles was confirmed by UV-visible (UV-Vis) spectroscopy at 300 nm. The size of the nanoparticles varied from 4 to 50 nm and energy dispersive spectroscopy profile shows strong Cr peak approximately at 4.45 and 5.2 keV. The nanoparticles inhibited the growth of pathogenic bacteria Staphylococcus aureus and Escherichia coli. The cytotoxic effect of the synthesized Cr(III) nanoparticle was studied using HEK 293 cells, and the cell viability was found to decrease with increasing concentration of Cr(III) nanoparticles.

  20. The modern resource saving system for the electroplating industry wastewater treatment and reuse Современная ресурсосберегающая система оборотного водоснабжения гальванического производства

    Directory of Open Access Journals (Sweden)

    Pavlov Denis Vladimirovich

    2013-09-01

    Full Text Available The article presents the authors’ analysis of the industrial wastewater treatment and recycling technologies based on conventional technologies. It is pointed out that conventional electroplating waste water treatment plants in Russian Federation have several disadvantages, such relatively high operating costs and low wastewater processing efficiency. Thus electroplating wastewater treatment plants have to be modernized according to Best Available Technologies (BAT.A modern electroplating wastewater treatment and recycling technology based on BAT such as electroflotation, ultrafiltration and industrial reverse osmosis has been developed and successfully implemented at several RF industrial enterprises. The represented system is free from the disadvantages such as conventional wastewater processing technologies have. It allows to achieve integrated treatment of electroplating wastewater from heavy metal ions down to 0,04 mg/l and from oil products down to 0,05 mg/l within low power and chemicals consumptions with further water reuse, significantly reducing water disposal and WWTPs operating costs and thus ensuring the profitability of WWTPs usage and as a result electroplating industry in general.Разработана и успешно внедряется на всей территории РФ современная ресурсосберегающая технология очистки сточных вод и оборотного водоснабжения гальванических производств. Представленная технология лишена недостатков традиционных очистных сооружений, позволяет добиться глубокой очистки сточных вод сложного состава, значительно сократить водоотведение и эксплуатационные затраты и, следовательно,

  1. Removal of nickel ion from electroplating wastewater using double chamber electrodeposition cell (DCEC) reactor partitioned with water hyacinth (Eichhornia crassipes) leaves

    Science.gov (United States)

    Djaenudin; Widyarani; Hariyadi, H. R.; Wulan, D. R.; Cahyaningsih, S.

    2017-03-01

    Nickel is a heavy metal present in many types of industrial wastewater, and its contamination to the water bodies should be prevented. The objective of this research was to study the performance of Double Chamber Electrodeposition Cell (DCEC) for nickel ion removal. Water hyacinth (Eichhornia crassipes) leaves were used to separate the two chambers. The experiment was performed with synthetic electroplating wastewater in a batch system for 72 h. Changes of pH, electric current, and nickel ion concentration in the catholyte were monitored. An experiment with Single Chamber Electrodeposition Cell (SCEC) was also performed as comparison. After 72 h operation of DCEC, nickel ion concentration in the catholyte decreased from 2200 g.m-3 to 0.4 g.m-3, equivalent to 99.98% removal. DCEC reactor performed better than the SCEC reactor that only achieved 59% removal. The results show that an almost-complete removal of nickel ion can be achieved with DCEC. Water hyacinth leaves can be used as low-cost alternatives for industrial membranes.

  2. [Heavy metal pollution characteristics and ecological risk analysis for soil around Haining electroplating industrial park].

    Science.gov (United States)

    Li, Jiong-Hui; Weng, Shan; Fang, Jing; Huang, Jia-Lei; Lu, Fang-Hua; Lu, Yu-Hao; Zhang, Hong-Ming

    2014-04-01

    The pollution status and potential ecological risks of heavy metal in soils around Haining electroplating industrial park were studied. Hakanson index approach was used to assess the ecological hazards of heavy metals in soils. Results showed that average concentrations of six heavy metals (Cu, Ni, Pb, Zn, Cd and Cr) in the soils were lower than the secondary criteria of environmental quality standard for soils, indicating limited harmful effects on the plants and the environment in general. Though the average soil concentrations were low, heavy metal concentrations in six sampling points located at the side of road still exceeded the criteria, with excessive rate of 13%. Statistic analysis showed that concentrations of Cu and Cd in roadside soils were significantly higher than those in non-roadside soils, indicating that the excessive heavy metal accumulations in the soil closely related with traffic transport. The average potential ecological hazard index of soils around Haining electroplating industrial park was 46.6, suggesting a slightly ecological harm. However, the potential ecological hazard index of soils with excessive heavy metals was 220-278, suggesting the medium ecological hazards. Cd was the most seriously ecological hazard factor.

  3. Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    G. Sibi

    2016-07-01

    Full Text Available Hexavalent chromium [Cr(VI] is a toxic oxidized form and an important metal pollutant in the water bodies. Biosorption of chromium(VI offers a potential alternative to conventional metal removal methods. Dried biomass of Chlorella vulgaris was used as biosorbent for the removal of Cr(VI from electroplating and galvanizing industry effluents as a function of biosorbent dosage, contact time, pH, salinity and initial metal ion concentration. Batch experiments were conducted for biosorption and the optimum conditions were 1 g/L biomass, 4 h contact time, pH 2 and 2.893 mS/cm of electrical conductivity. The chromium biosorption was strictly pH dependent with a maximum Cr removal of 63.2 mg/L at pH 2. Highest Cr removal at a concentration of 81.3 mg/L was observed at Electrical conductivity (EC value of 2.893 mS/cm. A comparison of Langmuir and Freundlich isotherm models revealed that Freundlich isotherm model fitted the experimental data based on R2, qmax and standard error values. The results suggest that C. vulgaris biomass could be considered a promising low-cost biosorbent for the removal of Cr(VI from electroplating and galvanizing industry effluents. Keywords: Biosorption, Chlorella vulgaris, Microalgae, Hexavalent chromium

  4. SUBSTITUTION OF CADMIUM CYANIDE ELECTROPLATING WITH ZINC CHLORIDE ELECTROPLATING

    Science.gov (United States)

    The study evaluated the zinc chloride electroplating process as a substitute for cadmium cyanide electroplating in the manufacture of industrial connectors and fittings at Aeroquip Corporation. The process substitution eliminates certain wastes, specifically cadmium and cyanide, ...

  5. Biosorption of Nickel from Industrial Wastewater using Zygnema sp.

    Science.gov (United States)

    Sivaprakash, Kanchana; Blessi T. L., Adlin; Madhavan, Jeyanthi

    2015-12-01

    Contamination of water sources with heavy metals is a very important pollution problem in the current scenario. Biosorption is an effective method for the removal of heavy metal ions from wastewaters. In this study, the removal of Nickel(II) ions from electroplating industrial wastewater using biosorbent prepared from fresh water algal biomass Zygnema was investigated under batch mode. The sorption efficiency of nickel on Zygnema sp. was evaluated as a function of time, pH and sorbent dosage. The Nickel(II) uptake was dependent on initial pH with pH 3 being the optimum value. For 100 mg/L initial Nickel(II) concentration, sorption equilibrium was attained at a contact time of 100 min. The sorbent dosage affected the biosorption efficiency and maximum removal of 76.4 % was obtained at a dosage of 7.5 g/L. From the performance studies, algal biosorbent Zygnema is found to be a valuable material for the removal of Nickel from industrial wastewater and a better substitute for the conventional adsorbents.

  6. Lung cancer risk in the electroplating industry in Lombardy, Italy, using the Italian occupational cancer monitoring (OCCAM) information system.

    Science.gov (United States)

    Panizza, Celestino; Bai, Edoardo; Oddone, Enrico; Scaburri, Alessandra; Massari, Stefania; Modonesi, Carlo; Contiero, Paolo; Marinaccio, Alessandro; Crosignani, Paolo

    2012-01-01

    Occupational Cancer Monitoring (OCCAM) is an Italian organization that monitors occupational cancers, by area and industrial sector, by retrieving cases and employment history from official databases. OCCAM previously estimated a relative risk (RR) of lung cancer of about 1.32 among "metal treatment" workers in Lombardy, northern Italy, potentially exposed to chrome and nickel. In the present study, lung cancer risk was estimated among electroplating workers only. Lombardy electroplating companies were identified from descriptions in Social Security files. Lung cancer risk was evaluated from 2001 to 2008 incident cases identified from hospital discharge records. The RR for lung cancer among electroplating workers was 2.03 (90% CI 1.33-3.10, 18 cases) for men; 3.00 (90% CI 1.38-9.03, 4 cases) for women. Electroplaters had higher risks than "metal treatment" workers. Although the risks were due to past exposure, case histories and recent acute effects indicate a present carcinogenic hazard in some Lombardy electroplating factories. Copyright © 2011 Wiley Periodicals, Inc.

  7. Technical note Biological treatment of industrial wastewater ...

    African Journals Online (AJOL)

    The biological treatment of wastewater from an aminoplastic resin-producing industry was studied in a pre-denitrification system. This study reports results on the removal of organic matter and nitrogen compounds from wastewater which contained high levels of formaldehyde and formic acid. The formaldehyde ...

  8. Cultivation of microalgae in industrial wastewaters

    DEFF Research Database (Denmark)

    van Wagenen, Jonathan Myerson

    that has many potential uses. Unfortunately, the current high costs of cultivation have limited the development and exploitation of such systems, resulting in only a few full-scale algae wastewater treatment installations and a small industry based mostly around food and pigments. This thesis contributes...... to autotrophic controls. Industrial wastewater was used as cultivation medium of Chlorella sorokiniana. The culture was able to grow at high rates upto a density of 4 g L-1. The deceleration-stat technique was used to create a series of pseudo-steady states to give information about the expected results...... to a growing body of knowledge with the aim to make algae cultivation viable for the production of sustainable products. Specific contributions include: improvement in the methods of screening the growth potential of different microalgae species; identification of an industrial wastewater that allows good...

  9. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  10. Removal efficiency of nickel and lead from industrial wastewater using microbial desalination cell

    Science.gov (United States)

    Mirzaienia, Fariba; Asadipour, Ali; Jafari, Ahmad Jonidi; Malakootian, Mohammad

    2017-11-01

    Microbial desalination cell (MDC) is a new method of desalination. Its energy is supplied through microbial metabolism of organic materials. In this study, synthetic samples were provided with concentration of 25, 50, 75, 100 mg/L Ni and Pb. Removal efficiency of each metal was analyzed after 60, 90, 120 min, psychrophilic, mesophilic, thermophilic and 3-4, 4-5, 5-6 mg/L dissolved oxygen. Optimum conditions for removing Ni and Pb were achieved in 100, 4.5 and 4.6 mg/L dissolved oxygen, respectively, 26 °C and 120 min. Nickel and led were removed from wastewaters of Isfahan electroplating industry and steel company. The maximum removal efficiencies of Ni and Pb in real samples were 68.81 and 70.04%. MDC can be considered as a good choice for removing Ni and Pb from industrial wastewater. Due to microorganisms for decomposing organic material in municipal wastewater, metals from industrial wastewater can be removed simultaneously.

  11. Whole effluent assessment of industrial wastewater for determination of BAT compliance. Part 2: metal surface treatment industry.

    Science.gov (United States)

    Gartiser, Stefan; Hafner, Christoph; Hercher, Christoph; Kronenberger-Schäfer, Kerstin; Paschke, Albrecht

    2010-06-01

    Toxicity testing has become a suitable tool for wastewater evaluation included in several reference documents on best available techniques of the Integrated Pollution Prevention and Control (IPPC) Directive. The IPPC Directive requires that for direct dischargers as well as for indirect dischargers, the same best available techniques should be applied. Within the study, the whole effluent assessment approach of OSPAR has been applied for determining persistent toxicity of indirectly discharged wastewater from the metal surface treatment industry. Twenty wastewater samples from the printed circuit board and electroplating industries which indirectly discharged their wastewater to municipal wastewater treatment plants (WWTP) have been considered in the study. In all factories, the wastewater partial flows were separated in collecting tanks and physicochemically treated in-house. For assessing the behaviour of the wastewater samples in WWTPs, all samples were biologically pretreated for 7 days in the Zahn-Wellens test before ecotoxicity testing. Thus, persistent toxicity could be discriminated from non-persistent toxicity caused, e.g. by ammonium or readily biodegradable compounds. The fish egg test with Danio rerio, the Daphnia magna acute toxicity test, the algae test with Desmodesmus subspicatus, the Vibrio fischeri assay and the plant growth test with Lemna minor have been applied. All tests have been carried out according to well-established DIN or ISO standards and the lowest ineffective dilution (LID) concept. Additionally, genotoxicity was tested in the umu assay. The potential bioaccumulating substances (PBS) were determined by solid-phase micro-extraction and referred to the reference compound 2,3-dimethylnaphthalene. The chemical oxygen demand (COD) and total organic carbon (TOC) values of the effluents were in the range of 30-2,850 mg L(-1) (COD) and 2-614 mg L(-1) (TOC). With respect to the metal concentrations, all samples were not heavily polluted. The

  12. Priorities for toxic wastewater management in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, A. [Sustainable Development Policy Institute, Islamabad (Pakistan)

    1996-12-31

    This study assesses the number of industries in Pakistan, the total discharge of wastewater, the biological oxygen demand (BOD) load, and the toxicity of the wastewater. The industrial sector is a major contributor to water pollution, with high levels of BOD, heavy metals, and toxic compounds. Only 30 industries have installed water pollution control equipment, and most are working at a very low operational level. Priority industrial sectors for pollution control are medium- to large-scale textile industries and small-scale tanneries and electroplating industries. Each day the textile industries discharge about 85,000 m{sup 3} of wastewater with a high BOD, while the electroplating industries discharge about 23,000 m{sup 3} of highly toxic and hazardous wastewater. Various in-plant modifications can reduce wastewater discharges. Economic incentives, like tax rebates, subsidies, and soft loans, could be an option for motivating medium- to large-scale industries to control water pollution. Central treatment plants may be constructed for treating wastewater generated by small-scale industries. The estimated costs for the treatment of textile and electroplating wastewater are given. The legislative structure in Pakistan is insufficient for control of industrial pollution; not only do existing laws need revision, but more laws and regulations are needed to improve the state of affairs, and enforcement agencies need to be strengthened. 15 refs., 1 fig., 9 tabs.

  13. Industrial reuse and recycle of wastewaters: Literature review

    Science.gov (United States)

    Matthews, J. E.

    1980-12-01

    The literature on reuse/recycle of wastewaters by industry is presented. The principal time period reviewed was 1967 to 1978. A total of 912 references are cited. The most prominant references for nine different industrial categories are cited. In addition, sections on industrial use of municipal wastewater, reclamation processes, and economics of water reuse/recycle are included.

  14. Treatment of industrial and agro-industrial wastewater using constructed wetlands

    OpenAIRE

    Sultana, Mar-Yam

    2014-01-01

    Environmental pollution from untreated wastewater disposal is one of the most serious environmental issues. Hexavalent chromium, Cr(VI), is known to be a very toxic compound, frequently found in polluted industrial wastewaters, and causes major environmental problems. On the other hand, among the agro-industrial wastewaters, dairy wastewaters can also cause serious environmental pollution due to their high organic loads. Specifically, when untreated dairy wastewater is deposited into surface ...

  15. Discussion on Wastewater Treatment Process of Coal Chemical Industry

    Science.gov (United States)

    Zhao, Dongyan; Lun, Weijie; Wei, Junjie

    2017-12-01

    Coal chemical wastewater has such characteristics as high concentration of oil, ammonia nitrogen and COD. In this paper, treatment process of coal chemical industry is described mainly, such as pretreatment process, biochemical treatment process and polishing process. Through the recovery of phenol and ammonia and the treatment of wastewater from abroad, the new technology of wastewater treatment in coal chemical industry was expounded. Finally, The development of coal chemical wastewater treatment technology is prospected, and the pretreatment technology is emphasized. According to the diversification and utilization of water, zero discharge of coal chemical wastewater will be fulfilled.

  16. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    Directory of Open Access Journals (Sweden)

    Boguniewicz-Zabłocka Joanna

    2017-01-01

    Full Text Available During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions pollution removal occurs mostly with higher efficiency.

  17. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    Science.gov (United States)

    Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel

    2017-10-01

    During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.

  18. Effect of electroplating industrial waste on “available phosphorus” of ...

    African Journals Online (AJOL)

    Unorganized land disposal of industrial wastes contaminates land and ground water. The Wazirpur Industrial area of Delhi, a metropolitan city, generates highly acidic (pH 2 - 3.8) and toxic waste, and disposal remains a perpetual problem. This waste contains a high quantity of macronutrients as well as heavy metals ...

  19. Nitrification performance in a membrane bioreactor treating industrial wastewater.

    Science.gov (United States)

    Dvořák, Lukáš; Svojitka, Jan; Wanner, Jiří; Wintgens, Thomas

    2013-09-01

    The influence of industrial (pharmaceutical and chemical) wastewater composition on membrane bioreactor (MBR) performance was investigated in a pilot-scale installation. The study focussed on nitrification performance, which was evaluated based on influent and effluent parameters as well as batch nitrification rate tests. The industrial wastewater was pumped into the MBR in a mixture with municipal wastewater at constant flow rate. The loading of the MBR with industrial wastewater was increased stepwise from 0 to 75% share in the mixed influent to study the adaptation of nitrifying bacteria. Stable nitrification performance was observed until the content of industrial wastewater in the influent reached 40%, with effluent values of around 0.56 mg L(-1) NH4-N and 98.3% ammonia removal. Breakdown of nitratation was observed at a 40% industrial wastewater dose and breakdown of nitritation at a 50% dose, respectively. However, after several months of adaptation, both processes recovered. No nitrification was observed when the industrial wastewater share exceeded 50%. Adaptation of nitrifying bacteria in the MBR was also confirmed by results of kinetic tests. The inhibition effect of the concentrated industrial wastewater to the MBR sludge decreased substantially after several months of exposure, while the inhibition of referential activated sludge remained constant. Copyright © 2013. Published by Elsevier Ltd.

  20. [Source identification of toxic wastewaters in a petrochemical industrial park].

    Science.gov (United States)

    Yang, Qian; Yu, Yin; Zhou, Yue-Xi; Chen, Xue-Min; Fu, Xiao-Yong; Wang, Miao

    2014-12-01

    Petrochemical wastewaters have toxic impacts on the microorganisms in biotreatment processes, which are prone to cause deterioration of effluent quality of the wastewater treatment plants. In this study, the inhibition effects of activated sludge's oxygen consumption were tested to evaluate the toxicity of production wastewaters in a petrochemical industrial park. The evaluation covered the wastewaters from not only different production units in the park, but also different production nodes in each unit. No direct correlation was observed between the toxicity effects and the organic contents, suggesting that the toxic properties of the effluents could not be predicted by the organic contents. In view of the variation of activated sludge sensitivity among different tests, the toxicity data were standardized according to the concentration-effect relationships of the standard toxic substance 3, 5-dichlorophenol on each day, in order to improve the comparability among the toxicity data. Furthermore, the Quality Emission Load (QEL) of corresponding standard toxic substance was calculated by multiplying the corresponding 3, 5-dichlorophenol concentration and the wastewater flow quantity, to indicate the toxicity emission contribution of each wastewater to the wastewater treatment plant. According to the rank list of the toxicity contribution of wastewater from different units and nodes, the sources of toxic wastewater in the petrochemical industrial park were clearly identified. This study provides effective guidance for source control of wastewater toxicity in the large industrial park.

  1. Recovery of copper and water from copper-electroplating wastewater by the combination process of electrolysis and electrodialysis.

    Science.gov (United States)

    Peng, Changsheng; Liu, Yanyan; Bi, Jingjing; Xu, Huizhen; Ahmed, Abou-Shady

    2011-05-30

    In this paper, a laboratory-scale process which combined electrolysis (EL) and electrodialysis (ED) was developed to treat copper-containing wastewater. The feasibility of such process for copper recovery as well as water reuse was determined. Effects of three operating parameters, voltage, initial Cu(2+) concentration and water flux on the recovery of copper and water were investigated and optimized. The results showed that about 82% of copper could be recovered from high concentration wastewater (HCW, >400mg/L) by EL, at the optimal conditions of voltage 2.5 V/cm and water flux 4 L/h; while 50% of diluted water could be recycled from low concentration wastewater (LCW, water flux 4 L/h. However, because of the limitation of energy consumption (EC), LCW for EL and HCW for ED could not be treated effectively, and the effluent water of EL and concentrated water of ED should be further treated before discharged. Therefore, the combination process of EL and ED was developed to realize the recovery of copper and water simultaneously from both HCW and LCW. The results of the EL-ED process showed that almost 99.5% of copper and 100% of water could be recovered, with the energy consumption of EL ≈ 3 kW h/kg and ED ≈ 2 kW h/m(3). According to SEM and EDX analysis, the purity of recovered copper was as high as 97.9%. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Genotoxic effects of industrial wastewater on Allium cepa L.

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... and outgoing in central biological and chemical wastewater treatment plant in Manisa (Turkey) organized industrial ... It was determined that wastewater reduced the rate of the mitotic division of different concentrations and ..... insecticide cypermethrin on the root meristems of Allium cepa L. Turk. J. Biol.

  3. Removal Of Heavy Metals From Industrial Wastewaters Using Local ...

    African Journals Online (AJOL)

    Wastewater samples from battery, paint and textile industries were treated with different doses of locally available alum, aluminum sulphate and ferric chloride in order to determine and compare their effectiveness in removing heavy metal contents from the wastewaters. The percentage removal of the metals from the ...

  4. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    OpenAIRE

    Dorota Krzemińska; Ewa Neczaj; Gabriel Borowski

    2015-01-01

    High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC), Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s) are characterized by a common chemical feature: the capability of exploiting...

  5. 40 CFR 413.20 - Applicability: Description of the electroplating of precious metals subcategory.

    Science.gov (United States)

    2010-07-01

    ... electroplating of precious metals subcategory. 413.20 Section 413.20 Protection of Environment ENVIRONMENTAL... Electroplating of Precious Metals Subcategory § 413.20 Applicability: Description of the electroplating of precious metals subcategory. The provisions of this subpart apply to discharges of process wastewaters...

  6. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  7. Improving the Efficiency of a Coagulation-Flocculation Wastewater Treatment of the Semiconductor Industry through Zeta Potential Measurements

    Directory of Open Access Journals (Sweden)

    Eduardo Alberto López-Maldonado

    2014-01-01

    Full Text Available Efficiency of coagulation-flocculation process used for semiconductor wastewater treatment was improved by selecting suitable conditions (pH, polyelectrolyte type, and concentration through zeta potential measurements. Under this scenario the zeta potential, ζ, is the right parameter that allows studying and predicting the interactions at the molecular level between the contaminants in the wastewater and polyelectrolytes used for coagulation-flocculation. Additionally, this parameter is a key factor for assessing the efficiency of coagulation-flocculation processes based on the optimum dosages and windows for polyelectrolytes coagulation-flocculation effectiveness. In this paper, strategic pH variations allowed the prediction of the dosage of polyelectrolyte on wastewater from real electroplating baths, including the isoelectric point (IEP of the dispersions of water and commercial polyelectrolytes used in typical semiconductor industries. The results showed that there is a difference between polyelectrolyte demand required for the removal of suspended solids, turbidity, and organic matter from wastewater (23.4 mg/L and 67 mg/L, resp.. It was also concluded that the dose of polyelectrolytes and coagulation-flocculation window to achieve compliance with national and international regulations as EPA in USA and SEMARNAT in Mexico is influenced by the physicochemical characteristics of the dispersions and treatment conditions (pH and polyelectrolyte dosing strategy.

  8. Nutrients requirements in biological industrial wastewater treatment ...

    African Journals Online (AJOL)

    It was found that for anaerobic treatment of olive mills wastewater COD:N:P ratio of about 900:5:1.7 was able to achieve more than 80% COD removal. The observed biomass yield was about 0.06 kg VSS per kg of COD degraded. For extended aeration aerobic treatment of pulp and paper mill wastewater COD:N:P ratio of ...

  9. Wastewater treatment of pulp and paper industry: a review.

    Science.gov (United States)

    Kansal, Ankur; Siddiqui, Nihalanwar; Gautam, Ashutosh

    2011-04-01

    Pulp and paper industries generate varieties of complex organic and inorganic pollutants depending upon the type of the pulping process. A state-of-art of treatment processes and efficiencies of various wastewater treatment is presented and critically reviewed in this paper. Process description, source of wastewater and their treatment is discussed in detail. Main emphasis is given to aerobic and anaerobic wastewater treatment. In pulp and paper mill wastewater treatment aerobic treatment includes activated sludge process, aerated lagoons and aerobic biological reactors. UASB, fluidized bed, anaerobic lagoon and anaerobic contact reactors are the main technologies for anaerobic wastewater treatment. It is found that the combination of anaerobic and aerobic treatment processes is much efficient in the removal of soluble biodegradable organic pollutants. Color can be removed effectively by fungal treatment, coagulation, chemical oxidation, and ozonation. Chlorinated phenolic compounds and adsorable organic halides (AOX) can be efficiently reduced by adsorption, ozonation and membrane filtration techniques.

  10. Treatability study of pesticide-based industrial wastewater.

    Science.gov (United States)

    Shah, Kinnari; Chauhan, L I; Galgale, A D

    2012-10-01

    This paper finds out appropriate treatment methods for wastewater of an Organophosphorus viz, chloropyrifos pesticide manufacturing industry. The characterization of wastewater generated during trial production of chloropyrifos was carried out. Based on the characterization of wastewater, various treatability studies were conducted. The most desirable results were obtained with treatment scheme employing acidification, chlorination with NaOCl, suspended growth biological treatment, chemical precipitation for phosphorous removal and activated carbon treatment. Acidification of wastewater helps in by-product recovery as well as reduction in COD upto 36.26%. Chlorination followed by biological treatment was found to be effective to reduce the COD level by 62.06%. To comply with permissible limits prescribed by Effluent Channel Project Ltd.(ECPL)* and Gujarat Pollution Control Board (GPCB) for discharge of industrial effluent into channel, further treatment in the form of chemical precipitation (for phosphorous removal) and granular activated carbon is suggested.

  11. Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment

    National Research Council Canada - National Science Library

    Zhang, Tong; Wang, Xiaoguang; Zhang, Xiwang

    2014-01-01

      The current paper reviews the application of TiO2-mediated solar photocatalysis for industrial wastewater treatment, starting with a brief introduction on the background of industrial wastewater...

  12. Tertiary activated carbon treatment of paper and board industry wastewater

    NARCIS (Netherlands)

    Temmink, B.G.; Grolle, K.C.F.

    2005-01-01

    The feasibility of activated carbon post-treatment of (biologically treated) wastewater from the paper and board industry was investigated, the goal being to remove refractory organic pollutants and produce water that can be re-used in the production process. Because closing water-circuits in the

  13. Local textile industry wastewater effect on freshwater fish species ...

    African Journals Online (AJOL)

    The effect of local tie-dye textile industry wastewater on two selected fish species (Clarias gariepinus and Oreochromis niloticus) of economic importance was investigated using static renewal bioassay method to determine the acute and sub-lethal effects on the test fish species. The physico-chemical parameters of the ...

  14. Genotoxic effects of industrial wastewater on Allium cepa L. | Sik ...

    African Journals Online (AJOL)

    The aim of this research is to study the effects of different concentrations of water on both incoming and outgoing in central biological and chemical wastewater treatment plant in Manisa (Turkey) organized industrial zone (MOIZ) on the Allium cepa L. root meristems, having been rooted in distilled water for 48 h. The union ...

  15. Membrane filtration and sonication for industrial wastewater reuse.

    Science.gov (United States)

    Caretti, C; Coppini, E; Fatarella, E; Lubello, C

    2011-01-01

    This paper presents an experimental study aimed at estimating the efficiency of the innovative process of ultrafiltration (UF) combined with sonication (Son.) for the refinement of treated effluent to be reused in wet textile processes. Such a novel approach, which has not yet been employed on a full industrial scale, has been experienced at pilot scale on the secondary effluent of the Baciacavallo wastewater treatment plant (WWTP), which treats part of the effluent from one of the largest textile industry districts in Italy. The combined treatment efficiency was assessed both on ozonated and non-ozonated Baciacavallo secondary effluent. The membrane filtration process was optimized in terms of running time, backwash, chemical addition and cleaning procedures. The sonication treatment was optimized on laboratory-scale with synthetic solutions (demineralized water added with dyestuffs) in terms of hydroxyl radicals formation rate, frequency, acoustic power, hydrogen peroxide addition, contact time and pH. The optimal conditions have been applied on the pilot-scale sonicator which was used in combination with the UF treatment. According to the experimental results, the best configuration within the Baciacavallo WWTP was the sonication of non-ozonated wastewater followed by the UF. The combined treatment guaranteed the compliance with the target values for wastewater reuse in wet textile industries. This study is part of the Research Project PURIFAST (Purification of industrial and mixed wastewater by combined membrane filtration and sonochemical technologies) LIFE + ENV/IT/000439.

  16. Removal of heavy metal from industrial wastewater using hydrogen ...

    African Journals Online (AJOL)

    The batch removal of heavy metals lead (Pb), zinc (Zn) and copper (Cu) from industrial wastewater effluent under different experimental conditions using hydrogen peroxide was investigated. Experimental results indicated that at pH 6.5, pre-treatment analysis gave the following values: Pb 57.63 mg/l, Zn 18.9 mg/l and Cu ...

  17. Treatment of wastewater from rubber industry in Malaysia

    African Journals Online (AJOL)

    GREGORY

    2010-09-20

    Sep 20, 2010 ... Review. Treatment of wastewater from rubber industry in. Malaysia. Mitra Mohammadi1, Hasfalina Che Man2*, Mohd Ali Hassan1 and Phang Lai Yee1. 1Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400. UPM Serdang, Selangor ...

  18. Zinc abatement from simulated and industrial wastewaters using ...

    African Journals Online (AJOL)

    The use of heavy metals and their compounds in industrial applications has resulted in their occurrence in various environmental media including water bodies. Conventional methods of heavy metal removal from wastewaters are very expensive, when available, especially in developing countries. This study therefore ...

  19. Industrial wastewater treatment using natural material as adsorbent ...

    African Journals Online (AJOL)

    Attempts were made to compare the adsorption efficiency of coconut shell-based granular activated carbon with the adsorption efficiency of commercial carbon, Calgon carbon F-300, with respect to adsorption of organic matter from a beverage industrial wastewater. Freundlich adsorption isotherm was used to analyze the ...

  20. Regulating industrial wastewater discharged to public wastewater treatment plants - A conceptual approach

    DEFF Research Database (Denmark)

    Grüttner, Henrik

    1997-01-01

    The paper describes some of the basic principles behind the DEPA Guidelines for discharge of industrial wastewater to public sewers set in operation in 1995 and evaluates some of the experiences with the implementation. It is described how such guidelines support the approach of pollution...

  1. Electrochemical treatment of pharmaceutical and industrial wastewater by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Menapace, H. M.; Fellerer, M.; Treschnitzer, M.

    2009-07-01

    In modern medicine pharmaceuticals play a decisive role: because of an increased life expectancy and intensive care medicine an increasing amount of pharmaceuticals is produced. thus these substances are consumed in a mass of tons per year in industrialized countries. Wastewater effluents from sewage treatment plants (STP) are important point sources for residues of pharmaceuticals and complexing agents in the aquatic environment. For this reason a research project, which started in December 2006, was established to eliminate pharmaceutical substances and complexing agents found in wastewater as micropollutants. (Author)

  2. Removal of Alkylphenols from Industrial and Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    J. Derco

    2017-07-01

    Full Text Available The results of the study of removal of nonylphenol, octylphenol and their ethoxylates from real industrial and municipal wastewater are presented. Industrial wastewater was pre-treated by coagulation with FeCl3 and adsorption on zeolite, before discharging into municipal sewer system. Their removal efficiencies in primary sedimentation tank of municipal WWTP were very low. From the practical point of view, the highest and the most significant removal efficiencies within the whole WWTP were observed for nonylphenol and nonylphenol ethoxylates. Dominancy of abiotic mechanisms of alkylphenols removal follows from adsorption measurements. Activated sludge cultivated in lab-scale extended aeration tank accounted for relatively high adsorption affinity to these substances. Activated sludge sampled from municipal wastewater treatment plant (MWWTP receiving industrial wastewater containing alkylphenols accounted for very low adsorption affinity to these pollutants. Significantly higher removal efficiency of octylphenol ethoxylates was observed with the O3/granular active carbon (GAC process compared to the ozonation process alone. Lower toxicity impact of intermediates and products of ozonation treatment on Vibrio fischeri was measured in comparison to the O3/GAC process. Actually, the municipal WWTP effluent discharge concentration values complies with EQS values, including nonylphenols.

  3. Semi-industrial production of methane from textile wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Opwis, Klaus; Mayer-Gall, Thomas; Gutmann, Jochen S. [Deutsches Textilforschungszentrum Nord-West e.V., Krefeld (DE)] (and others)

    2012-12-15

    The enzymatic desizing of starch-sized cotton fabrics leads to wastewaters with an extremely high chemical oxygen demand due to its high sugar content. Nowadays, these liquors are still disposed without use, resulting in a questionable ecological pollution and high emission charges for cotton finishing manufacturers. In this paper, an innovative technology for the production of energy from textile wastewaters from cotton desizing was developed. Such desizing liquors were fermented by methane-producing microbes to biogas. For this purpose, a semi-industrial plant with a total volume of more than 500 L was developed and employed over a period of several weeks. The robust and trouble-free system produces high amounts of biogas accompanied by a significant reduction of the COD of more than 85%. With regard to growing standards and costs for wastewater treatment and disposal, the new process can be an attractive alternative for textile finishing enterprises in wastewater management, combining economic and ecological benefits. Moreover, the production of biogas from textile wastewaters can help to overcome the global energy gap within the next decades, especially with respect to the huge dimension of cotton pretreatment and, therefore, huge desizing activities worldwide.

  4. Wastewater Treatment of Stone Cutting Industries by Coagulation Process

    Directory of Open Access Journals (Sweden)

    Mohammad Fahiminia

    2013-09-01

    Full Text Available Background & Aims of the Study: The wastewater created as a result of stone cutting industries enters some pools for re-consumption so that its suspended solids settle by gravity. By taking to account the high volume of water and sludge, treatment of wastewater and removal of sludge cause many problems for stone cutting units. The objective of this study was to determine the quality of wastewater and to investigate the effects of coagulants on suspended solids removal efficiency from wastewater of some stone cutting industries (Qom, Iran. Materials & Methods: In this experimental study, the effects of different doses of coagulants including Alum, poly aluminum chloride, Polymer, Ferric chloride (Fecl3 and Lime on Turbidity, “total suspended solids” (TSS and “total solids” (TS removal were investigated by Jar Test. Removal efficiency of different coagulates was estimated. Results: The results indicated that lime in dose 100 PPM is the best coagulant for turbidity removal and the highest efficiency for TS removal is related to using Alum in dose 100 PPM. Conclusions: Considering the findings of this study, it can be concluded that using coagulants causes reduction in settling time and speeds up the return of water to the consumption cycle of stone cutting factories, and also increases turbidity removal efficiency.

  5. Industrial wastewater treatment plant of sugar production

    OpenAIRE

    Čad, Luka

    2016-01-01

    Sugar as product in our every day’s life’s been consumed in enormous quantities as one of main resources in food and drink industry. Production processes of sugar from sugar beet bring significant environmental impacts with it’s waste waters as the biggest pollutant. The thesis deals with sugar production waste water’s treatment process by presenting an example of waste water treatment plant of sugar factory, therefor presenting the production processes in sugar factories and their environmen...

  6. wastewater

    African Journals Online (AJOL)

    Mtui-Combined chemical and biological treatment of recalcitrant industrial effluets. Tzitzi M, Vayenas DV and Lyberatos G 1994 Pretreatment of textile industry wastewater with ozone. Water Sci. Tech. 29(9): 151-160. Walter RH and Sherman RM 1974 Ozonation of lactic acid fermentation effluent. J. Water Poll. Control Fed.

  7. Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2014-01-01

    Full Text Available The current paper reviews the application of TiO2-mediated solar photocatalysis for industrial wastewater treatment, starting with a brief introduction on the background of industrial wastewater and the development of wastewater treatment processes, especially advanced oxidation processes (AOPs. We, then, discuss the application of solar TiO2 photocatalysis in treating different kinds of industrial wastewater, such as paper mill wastewater, textile wastewater, and olive mill wastewater. In the end, we compare solar TiO2 photocatalysis with other AOPs in terms of effectiveness, energy, and chemical consumption. Personal perspectives are also given, which may provide new insights to the future development of TiO2 photocatalysis for industrial wastewater.

  8. The Frequency and Antibiotic Resistance of Chromate Tolerating Microorganisms in Qom Industrial wastewater

    Directory of Open Access Journals (Sweden)

    MR Zolfaghary

    2012-07-01

    Full Text Available

    Background and Objectives: Chromium is one of the major sources of environmental pollution and a potent occupational carcinogen. The hexavalent chromium compounds are more toxic than those of trivalent. Recent studies have suggested that reduction of Cr(VI to its lower oxidation states and related free radical reactions play an important role in carcinogenic, genotoxic and immunotoxic effects in human and animals.

     This paper reports occurrence of chromium tolerant and antibiotic resistant organism of four industrial wastewaters including electroplating, textile, galvanization, and dye manufacturing in Qom.

     

    Methods: In this study 241 isolates including 23 gram positive coccus, 3 gram negative bacilli and 215 gram positive bacilli were obtained by using of LB Agar plus determined concentration of potassium chromate.

     

    Results: A gram positive coccus, chromate reducing bacteria strain isolated from effluent of chromo plaiting could tolerate up to 760mM concentration in 34°c and pH=7 within 24h and showed resistance to some antibiotics. Biochemical, physiological, morphological and 16SrRNA tests showed this bacteria belongs to staphylococcus arlettae strain R1-7A.

     

    Conclusion: the result indicates that the indigenous microbial isolates can be useful for hexavalent chromium detoxification of chromium contamination environment and reduction of its pathogenicity and carcinogenicity, on the other hand the control of these bacteria is important from the medical view.

     

  9. Process model economics of xanthan production from confectionery industry wastewaters.

    Science.gov (United States)

    Bajić, Bojana Ž; Vučurović, Damjan G; Dodić, Siniša N; Grahovac, Jovana A; Dodić, Jelena M

    2017-12-01

    In this research a process and cost model for a xanthan production facility was developed using process simulation software (SuperPro Designer ® ). This work represents a novelty in the field for two reasons. One is that xanthan gum has been produced from several wastes but never from wastewaters from confectionery industries. The other more important is that the aforementioned software, which in intended exclusively for bioprocesses, is used for generating a base case, i.e. starting point for transferring the technology to industrial scales. Previously acquired experimental knowledge about using confectionery wastewaters from five different factories as substitutes for commercially used cultivation medium have been incorporated into the process model in order to obtain an economic viability of implementing such substrates. A lower initial sugar content in the medium based on wastewater (28.41 g/L) compared to the synthetic medium (30.00 g/L) gave a lower xanthan content at the end of cultivation (23.98 and 26.27 g/L, respectively). Although this resulted in somewhat poorer economic parameters, they were still in the range of being an investment of interest. Also the possibility of utilizing a cheap resource (waste) and reducing pollution that would result from its disposal has a positive effect on the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Bioconversion of industrial wastewater and wastewater sludge into Bacillus thuringiensis based biopesticides in pilot fermentor.

    Science.gov (United States)

    Yezza, A; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2006-10-01

    Starch industry wastewater (SWW), slaughterhouse wastewater (SHWW) and secondary sludges from three different wastewater treatment plants (Jonquière--JQS, Communauté Urbaine de Québec--CUQS and Black lake-BLS) were used as raw materials for the production of Bacillus thuringiensis (Bt) based biopesticides in a pilot scale fermentor (100 L working volume). The slaughterhouse wastewater exhibited the lowest Bt growth and entomotoxcity (Tx) potential (measured against spruce budworm) due to low availability of carbon, nitrogen and other nutrients. Performance variation (growth, sporulation, proteolytic activity and Tx potential) within the three types of sludges was directly related to the availability of nitrogen and carbohydrates, which could change with sludge origin and methods employed for its generation. The Tx potential of Bt obtained in different secondary sludges (JQS: 12 x 10(9) SBU/L; CUQS: 13 x 10(9) SBU/L and BLS: 16 x 10(9) SBU/L) and SWW (18 x 10(9) SBU/L) was higher than the soybean based synthetic medium (10 x 10(9) SBU/L). The maximum protease activity was obtained in CUQ secondary sludge (4.1 IU/mL) due to its high complex protein concentration. Nevertheless, high carbohydrate concentration in SWW repressed enzyme production. The secondary sludges and SWW were found to be suitable raw materials for high potency Bt biopesticide production.

  11. Removal of arsenic and COD from industrial wastewaters by electrocoagulation

    Directory of Open Access Journals (Sweden)

    H. POIROT

    2011-08-01

    Full Text Available The paper deals with the treatment of arsenic-containing industrial wastewaters by electrocoagulation. The waste issued from a paper mill industry downstream of the biological treatment by activated sludge was enriched with arsenic salts for the purpose of investigation of the treatment of mixed pollution. First, the treatment of single polluted waters, i.e. containing either the regular organic charge from the industrial waste or arsenic salts only, was studied. In the case of arsenic-containing waters, a broad selection of experimental data available in the literature was compiled and interpreted using an adsorption model developed previously. The same technique was used in the case of industrial waste. Arsenic-enriched paper mill wastewaters with various amounts of As salts were then treated by electrocoagulation with Fe electrodes. The set of data obtained were interpreted by a model developed on the basis of the separate models. The agreement between predicted and experimental variations of the As concentrations ranging from 0.3 µg/L to 730 µg/L showed that both the organic matter and As salt can be removed from the liquid independently from each other.

  12. 40 CFR 35.2125 - Treatment of wastewater from industrial users.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Treatment of wastewater from industrial... Treatment of wastewater from industrial users. (a) Grant assistance shall not be provided for a project... collector sewers constructed exclusively, or almost exclusively, to serve industrial users; or (2) Costs for...

  13. Pollution control of industrial wastewater from soap and oil industries: a case study.

    Science.gov (United States)

    Abdel-Gawad, S; Abdel-Shafy, M

    2002-01-01

    Industrial wastewater from soap and oil industries represents a heavy pollution source on their receiving water body. This paper studies a case of pollution control at Tanta Soap and Oil Company, Banha Factory, Egypt. The factory production includes soap, edible oil, and animal fodder. About 4,347 m3/day of industrial wastewater effluent was discharged via gravity sewers to the public sewerage system. Most of the effluent was cooling water because the cooling process in the factory was open circle. In spite of the huge quantity of cooling water being disposed of, disposal of wastewater was violating pertinent legislation. Three procedures were used for controlling the pollution at the Banha Factory. Firstly, all open circuit cooling systems were converted to closed circuit thus reducing the quantity of the discharged wastewater down to 767 m3/day. Secondly, the heavily polluted oil and grease (O&G) wastewater from the refinery unit is treated via two gravity oil separator (GOS) units, dissolved air floatation (DAF), and biological units in order to reduce the high levels of O&G, BOD, COD, and SS to the allowable limits. Thirdly, the heavily polluted waste effluent from the 'red water' saponification unit is treated separately by acidification to convert the emulsified fatty acid to free form in order to be separated through an oil separation unit. The effluent is then passed to liming stage to neutralize excess acidity and precipitate some of the dissolved matters. The mixture is finally clarified and the pH is adjusted to the allowable limits. The effluent wastewater from the three processes is collected and mixed in a final equalization tank for discharging effluent to the public sewerage system. The characteristics of the effluent water are very good with respect to the allowable Egyptian limits for discharging effluent to the public sewerage system.

  14. Potential of constructed wetland systems for treating tannery industrial wastewater.

    Science.gov (United States)

    Kaseva, Mengiseny E; Mbuligwe, Stephen E

    2010-01-01

    This paper reports on findings of a study on the performance of two units of a Horizontal Sub-Surface Flow Constructed Wetland (HSSFCW) units in treating wastewater effluent from a tannery industry. One of the HSSFCW units was planted with macrophytes, while the other was used as a control (without plants). Wastewater was fed into the wetland units at the mean flow rate of 0.045+/-0.005 m(3)/day. The studied parameters were chromium, turbidity, salinity, Total Dissolved Solids (TDS), Electric Conductivity (EC), pH and temperature. The mean Hydraulic Retention Time (HRT) was 1.60 days (in the control) and 1.80 days (in the vegetated) units, obtained as a ratio of the volume of the wastewater and the volumetric flow rate of wastewater through the units while taking into consideration the porosity of the media. The vegetated HSSFCW exhibited higher chromium removal efficiency (99.83%), than the control unit with the removal efficiency of 92.53%. High chromium removal was associated with both high temperature as well as high pH values in the HSSFCW units. The reduction in turbidity was found to be 71% in the vegetated wetland unit while the corresponding value for the control unit was 66%. Results obtained indicated low reduction efficiencies of both EC (0.3% in the vegetated unit and 1.6% in the control unit) and salinity (11% in the vegetated unit and 22% in the control unit) in the two mesocosms. Generally, however, the study demonstrated that constructed wetlands can be used as an option for improving the quality of tannery effluents especially in the removal of chromium. Chromium removal might have been effected by, among others, gravitational settling of solids and formation of co-precipitation with insoluble compounds as well as adsorption on the substrates and plant surfaces.

  15. Electrochemical oxidation of textile industry wastewater by graphite electrodes.

    Science.gov (United States)

    Bhatnagar, Rajendra; Joshi, Himanshu; Mall, Indra D; Srivastava, Vimal C

    2014-01-01

    In the present article, studies have been performed on the electrochemical (EC) oxidation of actual textile industry wastewater by graphite electrodes. Multi-response optimization of four independent parameters namely initial pH (pHo): 4-10, current density (j): 27.78-138.89 A/m(2), NaCl concentration (w): 0-2 g/L and electrolysis time (t): 10-130 min have been performed using Box-Behnken (BB) experimental design. It was aimed to simultaneously maximize the chemical oxygen demand (COD) and color removal efficiencies and minimize specific energy consumption using desirability function approach. Pareto analysis of variance (ANOVA) showed a high coefficient of determination value for COD (R(2) = 0.8418), color (R(2) = 0.7010) and specific energy (R(2) = 0.9125) between the experimental values and the predicted values by a second-order regression model. Maximum COD and color removal and minimum specific energy consumed was 90.78%, 96.27% and 23.58 kWh/kg COD removed, respectively, were observed at optimum conditions. The wastewater, sludge and scum obtained after treatment at optimum condition have been characterized by various techniques. UV-visible study showed that all azo bonds of the dyes present in the wastewater were totally broken and most of the aromatic rings were mineralized during EC oxidation with graphite electrode. Carbon balance showed that out of the total carbon eroded from the graphite electrodes, 27-29.2% goes to the scum, 71.1-73.3% goes into the sludge and rest goes to the treated wastewater. Thermogravimetric analysis showed that the generated sludge and scum can be dried and used as a fuel in the boilers/incinerators.

  16. INTELLIGENT DECISION SUPPORT FOR WASTE MINIMIZATION IN ELECTROPLATING PLANTS. (R824732)

    Science.gov (United States)

    AbstractWastewater, spent solvent, spent process solutions, and sludge are the major waste streams generated in large volumes daily in electroplating plants. These waste streams can be significantly minimized through process modification and operational improvement. I...

  17. The sustainable utilization of malting industry wastewater biological treatment sludge

    Science.gov (United States)

    Vasilenko, T. A.; Svintsov, A. V.; Chernysh, I. V.

    2018-01-01

    The article deals with the research of using the sludge from malting industry wastewater’s biological treatment and the calcium carbonate slurry as organo-mineral fertilizing additives. The sludge, generated as a result of industrial wastewater biological treatment, is subject to dumping at solid domestic waste landfills, which has a negative impact on the environment, though its properties and composition allow using it as an organic fertilizer. The physical and chemical properties of both wastes have been studied; the recommendations concerning the optimum composition of soil mix, containing the above-mentioned components, have been provided. The phytotoxic effect on the germination capacity and sprouts of cress (Lepidium sativum), barley (Hordéum vulgáre) and oats (Avena sativa) in soil mixes has been determined. The heavy metals and arsenic contents in the sludge does not exceed the allowable level; it is also free of pathogenic flora and helminthes.

  18. Starch industry wastewater-based stable Bacillus thuringiensis liquid formulations.

    Science.gov (United States)

    Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2005-12-01

    Liquid formulations were developed from Bacillus thuringiensis (Bt)-fermented broths of starch industry wastewater (SIW) and of soya medium. Stability studies were carried out for 1 yr. Storage stability was tested by studying various physical and chemical (e.g., viscosity, particle size, corrosion, and suspendibility) and biological (e.g., microbial contamination, viable spores, and entomotoxicity) parameters at different pH levels and temperatures. Three suspending agents, sorbitol, sodium monophosphate, and sodium metabisulfite, were added to fermented broth in different concentrations. Sorbitol and sodium monophosphate in the ratio 3:1 was the best suspending agent combination for both formulations. Starch industry wastewater fermentation yielded cell and viable spore counts 10- and 4-fold greater than those from soya medium, respectively, and a 1.7-fold increase in entomotoxicity. However, both formulations started deteriorating at pH 6 and 6.5 and 40 and 50 degrees C. There were no signs of corrosion and microbial contamination in both types of formulations.

  19. 2016 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    Cafferty, Kara Grace [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, Modification 1, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2015, through October 31, 2016.

  20. The status of wastewater management in Shokuhieh industrial park (A case study of Qom province

    Directory of Open Access Journals (Sweden)

    Mohammad Fahiminia

    2015-12-01

    Full Text Available Background: Water resource management is a strategic issue in Qom city. Water scarcity is one of the most critical concerns of industrial estates. This study aimed to evaluate wastewater management in the Shokuhieh industrial park of Qom province in 2013. Methods: This is a descriptive cross-sectional study done by visiting the industrial units in person, completing questionnaires and analyzing the results. The questionnaire had 25 questions, including general information, the status of water supply, treatment and consumption, wastewater production, reuse or discharge of produced wastewater and the status of wastewater treatment and discharge of effluent. The industrial units evaluated were active with over 50 personnel and numbered 44 in total. Results: The water suppliers in the industries included network (70.5%, network and reverse osmosis (RO (22.5%, network and tanker (2.4% and tanker (4.6%. 63.63% of the industries had water treatment systems. 19.5% reused wastewater and 31.8% performed pretreatment before discharge of wastewater. The discharge sites of water treatment units’ effluent included the absorption well (17%, greenbelt (18% and sewer (65%. Discharge sites of sanitary wastewater in 50% of the industries was sewer and in 50%, it was absorption well. The discharge sites of processed wastewater was reuse (2%, sewer (52% and absorption well (46%. Discharge sites of exiting effluent from pretreatment units in the industrial park, included sewer (85.5%, transport by tanker (7.1% and absorption well (7.1%. The type of pretreatment process in 35.7% of the industries was chemical and in 64.3%, it was septic tank. Conclusion: The results of this study showed that pre-treatment is not done in most industries and wastewater reuse is performed in few industries. The main method of wastewater disposal in industries was by discharge into the sewer and absorbent well.

  1. BIOREMOVAL OF LEAD IN INDUSTRIAL WASTEWATER BY MICROALGAE

    Directory of Open Access Journals (Sweden)

    M. RANITHA

    2016-07-01

    Full Text Available The removal of heavy metals from our environment especially wastewater is now shifting from the use of conventional removal method such as chemical precipitation, coagulation and membrane filtration to the use of bioremoval method. The presence of heavy metals in the environment is of major concern because of their toxicity, bioaccumulating tendency, and threat to human life and the environment. In recent years, many low cost sorbents such as microalgae, fungi bacteria and lignocellulosic agricultural by-products have been investigated for their biosorption capacity towards heavy metals. In this project, the focus is on bioremoval of heavy metals in wastewater using marine microalgae. The study will be emphasize on the efficiency of two marine microalgae named Nannochloropsis oculata and Tetraselmis chuii in treating the Lead (Pb content in industrial wasterwater. An experiment on the effect of various Pb concentration (10/20/40/60/80/100mg/L towards the microalgae has been studied. The obtained result showed that the content of chlorophyll-A in the microalgae sample, after 7 days of exposures to Pb, decreased as the Pb concentration increased. Besides that, Tetraselmis chuii was found to be more sensitive compared to Nannochloropsis oculata where both were able to tolerate the Pb concentration of up to only 20mg/L and 60mg/L, respectively.

  2. Whole effluent assessment of industrial wastewater for determination of bat compliance: Part 1: Paper manufacturing industry.

    Science.gov (United States)

    Gartiser, Stefan; Hafner, Christoph; Hercher, Christoph; Kronenberger-Schäfer, Kerstin; Paschke, Albrecht

    2010-05-01

    elimination 85% in 7 days). Thus, the algae toxicity of the respective paper mill cannot be explained with the TMP partial stream; presumably other raw materials such as biocides might be the source of algae toxicity. Comparative data from wastewater surveillance of authorities confirmed the range of ecotoxicity observed in the study. Wastewater from paper mills generally has no or a moderate ecotoxicity (median LID 1 and 2) while the maximum LID values, especially for the algae and daphnia tests, are considerably elevated (LIDA up to 128, LIDD up to 48). Wastewater from paper mills generally is low to moderately ecotoxic to aquatic organisms in acute toxicity tests. Some samples show effects in the chronic algae growth inhibition test which cannot be explained exclusively with colouration of the samples. The origin of elevated algae ecotoxicity could not be determined. In the algae test, often flat dose-response relationships and growth promotion at higher dilution factors have been observed, indicating that several effects are overlapping. At least one bioassay should be included in routine wastewater control of paper mills because the paper manufacturing industry is among the most water consuming. Although the algae test was the most sensitive test, it might not be the most appropriate test because of the complex relationship of colouration and inhibition and the smooth dose-effect relationship or even promotion of algae growth often observed. The Lemna test would be a suitable method which also detects inhibitors of photosynthesis and is not disturbed by wastewater colouration.

  3. Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater.

    Science.gov (United States)

    Güneş, Elçin; Çifçi, Deniz İzlen; Çelik, Suna Özden

    2017-04-11

    The present study aims to explore the characterization of industrial container and drum cleaning (ICDC) industry wastewater and treatment alternatives of this wastewater using Fenton and adsorption processes. Wastewater derived from ICDC industry is usually treated by chemical coagulation and biological treatment in Turkey and then discharged in a centralized wastewater treatment facility. It is required that the wastewater COD is below 1500 mg/L to treat in a centralized wastewater treatment facility. The wastewater samples were characterized for parameters of pH, conductivity, COD, BOD5, TSS, NH3-N, TN, TOC, TP, Cd, Cr, Cu, Fe, Ni, Pb, Zn, and Hg. Initial COD values were in the range of 11,300-14,200 mg/L. The optimum conditions for Fenton treatment were 35-40 g/L for H2O2, 2-5 g/L for Fe(2+), and 13-36 for H2O2/Fe(2+) molar ratio. The optimum conditions of PAC doses and contact times in adsorption studies were 20-30 g/L and 5-12 h, respectively. Removal efficiencies of characterized parameters for the three samples were compared for both Fenton and adsorption processes under optimum conditions. The results suggest that these wastewaters are suitable for discharge to a centralized wastewater treatment plant.

  4. Industrial Implementation of Environmentally Friendly Nanometal Electroplating Process for Chromium and Copper Beryllium Replacement using Low Cost Pulse Current Power Supplies

    Science.gov (United States)

    2014-09-10

    nanostructured cobalt - alloy bushing, and (b) a micrograph of the hardness indents from measurements made across the cross-section. .... 68 Figure 4-21...Vickers Microhardnes measurements as a function of the distance across the cross- section of the large scale electroformed Nanostructured cobalt - alloy ...Nanometal Electroplating Process for Chromium and Copper-Beryllium Replacement using Low Cost Pulse Current Power Supplies.” Nanostructured alloys are

  5. Emerging energy-efficient technologies for the Californian wastewater industry

    NARCIS (Netherlands)

    Slaa, Jan Willem

    2011-01-01

    SUMMARY Wastewater treatment is of vital importance for protecting human health and minimizing the environmental impact of polluted water. Since the beginning of the 20th century public facilities have been installed globally which treat wastewater at a

  6. Regulating specific organic substances and heavy metals in industrial wastewater discharged to municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Grüttner, Henrik; Munk, L.; Pedersen, F.

    1994-01-01

    Due to the extension of wastewater treatment plants to nutrient removal and the development towards reuse of sludge m agriculture, new guidelines for regulating industrial discharges m Denmark were needed. The paper describes how a concept for regulating the discharge of specific organic substances...... and heavy metals has been developed during the past two years. The concept is based on guidelines that are made according to considerations of me environment and the treatment plant system, and that encourage the introduction of a cleaner technology and integrated preventive measures. For most organic...... substances, present knowledge of fate and effects in biological treatment plants is too scarce to underpin the setting of general standards. Therefore, it has been decided to base the developed priority system on the data used in the EEC-system for classification of hazardous chemicals. This includes ready...

  7. Effect of industrial wastewater ontotal protein and the peroxidase ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Sarıçay River water and Tekel wastewater, respectively. In P. vulgaris which was treated with Dardanel wastewater, the total protein amount increased by 84% compared to control plants. After the wastewater treatment, the peroxidase activity decreased in all plants. The largest peroxidase decrease.

  8. Synthesis of BiOCl using Cl source from industrial wastewater and its application for wastewater treatment.

    Science.gov (United States)

    Yao, Kun; Jia, Manke; Wu, Huanhuan; Li, Yonggang; Chen, Chuncheng; Huang, Yingping

    2017-11-03

    Cl- in industrial wastewater from glyphosate production has been used as Cl source to synthesize BiOCl photocatalyst via a simple solvothermal route. The crystalline, morphology, specific surface area and optical properties of photocatalysts prepared under various conditions have been investigated. BiOCl photocatalyst prepared in acidic solution shows the highest crystallinity and without impurities and microcellular structure. The degradation of industrial wastewater contaminants demonstrates the possibility of this BiOCl used in industrial wastewater treatment and phosphorus recycling through the subsequent phosphorus recovery processes. This study not only sheds light on the possibility of photocatalysts' preparation in situ using industrial wasterwater as raw materials and the feasibility of using photocatalysis technology in wastewater treatment area, but also the chloride ions have been removed as an available resource and the corrosion to treatment facilities has been slowed down. The phosphorus and nitrogen resources can be recycled by other subsequent recycle recoveries. It offers a novel way for the wastewater treatment process in succession from photocatalysts' manufacture to contaminants disposal.

  9. Performance evaluation of membrane bioreactor for treating industrial wastewater: A case study in Isfahan Mourchekhurt industrial estate

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2016-01-01

    Conclusion: The MBR technology was used to treat the combined industrial wastewater was efficient, and its effluent can be perfectly used for water reuse. The MBR performance was improved by applying an anaerobic pretreatment unit.

  10. Cu II Removal from Industrial Wastewater Using Low Cost Adsorbent

    Directory of Open Access Journals (Sweden)

    Salwa Hadi Ahmed

    2018-01-01

    Full Text Available Study the possibility of utilization of waste tires rubber ash (WTRA as a low-cost adsorbent and are available as a type of solid waste for the removal of copper ions from industrial wastewater. Depending on batch adsorption experiments, the effect of different parameters including pH, adsorbent dosage WTRA, contact time, initial concentration of the ion and shacking speed were studied. Results showed that the highest removal Cu+2 ions was 97.8% at pH equal to 6, 120 min contact time, dose WTRA 1.5 g/L, shacking speed 150 rpm. The experimental data were analyzed using the Freundlich and Langmuir isotherm models showed great compatibility with Langmuir model (R2=0.923. Adsorption kinetics was studied and the data was showed agree with Pseudo-first-order equation where the value of (kt=0.5115/min. The study also showed the possibility of using WTRA efficiently as adsorbent and low cost in the removal of copper ions from industrial waste water. DOI: http://dx.doi.org/10.25130/tjes.24.2017.17

  11. Electricity Production and Characterization of High-Strength Industrial Wastewaters in Microbial Fuel Cell.

    Science.gov (United States)

    Cetinkaya, Afsin Y; Ozdemir, Oguz Kaan; Demir, Ahmet; Ozkaya, Bestami

    2017-06-01

    Microbial fuel cells (MFCs) convert electrochemical energy into electrical energy immediately and have a big potential usage for the same time wastewater treatment and energy recovery via electro-active microorganisms. However, MFCs must be efficiently optimized due to its limitations such as high cost and low power production. Finding new materials to increase the cell performance and reduce cost for MFC anodes is mandatory. In the first step of this study, different inoculation sludges such as anaerobic gum industry wastewater, anaerobic brewery wastewater and anaerobic phosphate were tested, and MFC that was set up with anaerobic gum industry wastewater inoculation sludge exhibited the highest performance. In the second step of this study, various wastewaters such as chocolate industry, gum industry and slaughterhouse industry were investigated for anode bacteria sources. Several electrochemical techniques have been employed to elucidate how wastewaters affect the MFCs' performance. Among all the mentioned wastewaters, the best performance was achieved by the MFCs fed with slaughterhouse wastewater; this device produced a maximum power density of 267 mW·m-2.

  12. Photocatalytic treatment of spent caustic wastewater in petrochemical industries

    Directory of Open Access Journals (Sweden)

    Aَli Haghighi Asl

    2017-04-01

    Full Text Available In this study, the photocatalytic method was used for treating the spent caustic in the wastewater of Olefin units used in petrochemical industries which contain large amounts of total dissolved solids (TDS. By using the synthetic photocatalyst of suspended titanium dioxide and measuring the chemical oxygen demand (COD which was reduced in the photocatalyst (lbc process, the values of COD were modeled and evaluated by means of the Box-Behnken (BBD and the artificial neural network (ANN using experimental tests in a double-cylindrical-shell photo reactor. According to the applied calculations, it was found that the artificial neural network was a more suitable method than the experimental design in modeling and forecasting the amount of COD removal. The modeling employed in this research showed that increasing the concentration of the photocatalyst in a state of neutral pH enhanced the COD removal up to the optimal amount of 1.31 g/L without restrictions and 2 g/L with restrictions at the rate of 81% and 79%, respectively. In addition, the study of the parameter effects including oxidizer amount, aeration rate, pH, and the amount of loaded catalyst indicated that all factors except pH  had a positive effect on the model; furthermore, if the interactions were neglected, the COD removal efficiency would increase by increasing each of these factors (except pH. In addition, there was no interaction between the aeration and the concentration of the photocatalyst, and the acidic pH was more suitable at low concentrations of the photocatalyst. Besides that, by increasing the pH, the efficiency of removal was reduced when the oxidant was at its low level. The results showed that photolysis and adsorption adoptions had a very small effect on the efficiency of the removal of COD compared to the photocatalyst adoptions, and it was insignificant. In addition, the photocatalytic method had an acceptable capacity for removing the phenol in the wastewater

  13. Wastewater Management in Shale Gas Industry: Alternatives for Water Reuse and Recycling, Challenges and Perspectives

    OpenAIRE

    Onishi, Viviani C.; Reyes-Labarta, Juan A.; Caballero, José A.; Antunes, Carlos H.

    2017-01-01

    18th European Meeting on Environmental Chemistry (EMEC). Poster (#22) http://emec18.eventos.chemistry.pt/ Wastewater management is nowadays one of the major concerns faced by the shale gas industry to improve its cost-effectiveness, while preserving the human health and environment. Horizontal drilling and hydraulic fracturing operations usually demand excessive freshwater consumption and generate large wastewater volumes. The highly polluting nature of shale gas wastewater impels the appl...

  14. Preparation of activated carbon from walnut shell and its application in industrial wastewater

    Science.gov (United States)

    Jiang, Yilin

    2017-05-01

    With the development of China's industry, the content of heavy metal ions in wastewater is increasing. In this paper, analyzed the performance of activated carbon prepared from walnut shell by chemical activation method, and conduct the experimental research on the factors influencing the performance of activated carbon by using the control variable method. The best method for preparing activated carbon from walnut shell was put forward. In the industrial wastewater treatment technology to lay the foundation for the application. Lay the foundation for the promotion of industrial wastewater treatment technology.

  15. A national discharge load of perfluoroalkyl acids derived from industrial wastewater treatment plants in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee-Young; Seok, Hyun-Woo [Department of Civil and Environmental Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Kwon, Hye-Ok; Choi, Sung-Deuk [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919 (Korea, Republic of); Seok, Kwang-Seol [Chemical Research Division, National Institute of Environmental Research, Incheon 22689 (Korea, Republic of); Oh, Jeong Eun [Department of Civil and Environmental Engineering, Pusan National University, Busan 46241 (Korea, Republic of)

    2016-09-01

    Levels of 11 perfluoroalkyl acids (PFAAs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were measured in wastewater (influent and effluent) and sludge samples collected from 25 industrial wastewater treatment plants (I-WWTPs) in five industrial sectors (chemicals, electronics, metals, paper, and textiles) in South Korea. The highest ∑{sub 11}PFAAs concentrations were detected in the influent and effluent from the paper (median: 411 ng/L) and textile (median: 106 ng/L) industries, and PFOA and PFOS were the predominant PFAAs (49–66%) in wastewater. Exceptionally high levels of PFAAs were detected in the sludge associated with the electronics (median: 91.0 ng/g) and chemical (median: 81.5 ng/g) industries with PFOS being the predominant PFAA. The discharge loads of 11 PFAAs from I-WWTP were calculated that total discharge loads for the five industries were 0.146 ton/yr. The textile industry had the highest discharge load with 0.055 ton/yr (PFOA: 0.039 ton/yr, PFOS: 0.010 ton/yr). Municipal wastewater contributed more to the overall discharge of PFAAs (0.489 ton/yr) due to the very small industrial wastewater discharge compared to municipal wastewater discharge, but the contribution of PFAAs from I-WWTPs cannot be ignored. - Highlights: • 11 PFAAs in wastewater and sludge from 5 industrial sectors were investigated. • PFOA and PFOS were the dominant in wastewater while PFOS was predominant in sludge. • The total discharge loads from 5 industrial sectors 0.146 ton/yr. • The textile industry showed the highest discharge load with 0.055 ton/yr.

  16. Effect of salinity on biological treatment of wastewater from oil industry

    OpenAIRE

    Andriamasinoro, Herimisa

    2009-01-01

    Master's thesis in Environmental technology High salinity may affect biological wastewater negative by reducing the growth rate of microorganisms. Wastewater from oil industry often contains high salinity which could be problematic to treat. This thesis is to evaluate the effect of salinity on biological treatment by performing laboratory test with variable salinities. In addition, microbiological investigation performed with microscopy and growth culture.

  17. BIOREMOVAL OF LEAD IN INDUSTRIAL WASTEWATER BY MICROALGAE

    National Research Council Canada - National Science Library

    M. RANITHA; M. NURLIDIA; S. MUHAMMAD RASHID; U. YOSHIMITSU

    2016-01-01

    The removal of heavy metals from our environment especially wastewater is now shifting from the use of conventional removal method such as chemical precipitation, coagulation and membrane filtration...

  18. Fungal treatment of humic-rich industrial wastewater : application of white rot fungi in remediation of food-processing wastewater

    NARCIS (Netherlands)

    Zahmatkesh, M.; Spanjers, H.L.F.M.; van Lier, J.B.

    2017-01-01

    This paper presents the results of fungal treatment of a real industrial wastewater (WW), providing insight into the main mechanisms involved and clarifying some ambiguities and uncertainties in the previous reports. In this regard, the mycoremediation potentials of four strains of white rot

  19. Food industrial wastewater reuse by membrane bio-reactor

    Directory of Open Access Journals (Sweden)

    Patthanant Natpinit

    2007-11-01

    Full Text Available The objective of this investigation was to study the possibility and performance of treating food industrial wastewater by Membrane BioReactor (MBR. In addition, the effluent of MBR was treated by Reverse Osmosis system (RO to reuse in boiler or cooling tower. The membranes of hollow fiber type were filled in the aerobic tank with aerobe bacteria. The total area of membrane 6 units was 630 m2 so the flux of the operation was 0.25 m/d or 150 m3/d. The spiral wound RO was operated at 100 m3/d of influent and received 72 m3/d of permeate. The sludge volume (MLSS of MBR was maintained at 8,000-10,000 mg/l. The average COD and SS of MBR influent were 600 mg/l and 300 mg/l respectively. After treating by MBR, COD and SS of effluent were maintained at less than 100 mg/l and less than 10 mg/l respectively. In the same way, COD and SS of RO permeate were less than 10 mg/l and less than 5 mg/l respectively.

  20. TOXICITY EVALUATION OF THROUGH FISH BIOASSAY RAW BULK DRUG INDUSTRY WASTEWATER AFTER ELECTROCHEMICAL TREATMENT

    National Research Council Canada - National Science Library

    A M Deshpande; S Satyanarayan

    2011-01-01

    ... the discharge standards. Therefore, in this study the toxic effects of high strength bulk drug industry wastewater before and after electrochemical treatment on common fish Lebistes reticulatus-(peter...

  1. Construction and Operation Costs of Wastewater Treatment and Implications for the Paper Industry in China.

    Science.gov (United States)

    Niu, Kunyu; Wu, Jian; Yu, Fang; Guo, Jingli

    2016-11-15

    This paper aims to develop a construction and operation cost model of wastewater treatment for the paper industry in China and explores the main factors that determine these costs. Previous models mainly involved factors relating to the treatment scale and efficiency of treatment facilities for deriving the cost function. We considered the factors more comprehensively by adding a regional variable to represent the economic development level, a corporate ownership factor to represent the plant characteristics, a subsector variable to capture pollutant characteristics, and a detailed-classification technology variable. We applied a unique data set from a national pollution source census for the model simulation. The major findings include the following: (1) Wastewater treatment costs in the paper industry are determined by scale, technology, degree of treatment, ownership, and regional factors; (2) Wastewater treatment costs show a large decreasing scale effect; (3) The current level of pollutant discharge fees is far lower than the marginal treatment costs for meeting the wastewater discharge standard. Key implications are as follows: (1) Cost characteristics and impact factors should be fully recognized when planning or making policies relating to wastewater treatment projects or technology development; (2) There is potential to reduce treatment costs by centralizing wastewater treatment via industrial parks; (3) Wastewater discharge fee rates should be increased; (4) Energy efficient technology should become the future focus of wastewater treatment.

  2. The role of natural wood constituents on the anaerobic treatability of forest industry wastewaters

    OpenAIRE

    Sierra - Alvarez, R.

    1990-01-01

    Anaerobic treatment has been shown to be an efficient and energy conserving method for treating various types of readily biodegradable non-inhibitory forest industry wastewaters. However, the high toxicity of paper mill effluents derived from chemical wood processing operations has hampered the wide spread application of anaerobic treatment in the forest industry.

    This dissertation describes research on the anaerobic treatment of inhibitory wastewaters from the forest industr...

  3. Process Integration Design Methods for Water Conservation and Wastewater Reduction in Industry

    DEFF Research Database (Denmark)

    Overcash, Michael; Russell, Dunn; Wenzel, Henrik

    2002-01-01

    ” or “warehouses”) to process water users (referred to as “sinks”, “demands” or “customers”). A detailed case study of industrial significance, highlighting land treatment technology, is included to illustrate the proposed methodology and various process scenarios are evaluated within this case study......This paper addresses operational techniques for applying mass integration design in industry with special focus on water conservation and wastewater reduction. This paper presents a design technique for any number of wastewater streams containing multiple contaminants. The technique comprises...... a single non-linear optimization program to minimize the wastewater discharged (or maximize the amount of recycled wastewater). This program is developed based on general water allocation principles and uses the transshipment model theory to allow the “shipment” of wastewater (referred to as “sources...

  4. Continuous electrochemical treatment of simulated industrial textile wastewater from industrial components in a tubular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koerbahti, Bahadir K., E-mail: korbahti@mersin.edu.tr [Faculty of Engineering, Department of Chemical Engineering, University of Mersin, Ciftlikkoey, 33343 Mersin (Turkey); Tanyolac, Abdurrahman, E-mail: tanyolac@hacettepe.edu.tr [Faculty of Engineering, Department of Chemical Engineering, Hacettepe University, Beytepe, 06800 Ankara (Turkey)

    2009-10-30

    The continuous electrochemical treatment of industrial textile wastewater in a tubular reactor was investigated. The synthetic wastewater was based on the real process information of pretreatment and dyeing stages of the industrial mercerized and non-mercerized cotton and viscon production. The effects of residence time on chemical oxygen demand (COD), color and turbidity removals and pH change were studied under response surface optimized conditions of 30 deg. C, 25 g/L electrolyte concentration and 3505 mg/L COD feed concentration with 123.97 mA/cm{sup 2} current density. Increasing residence time resulted in steady profiles of COD and color removals with higher treatment performances. The best column performance was realized at 3 h of residence time as 53.5% and 99.3% for COD and color removals, respectively, at the expense of 193.1 kWh/kg COD with a mass transfer coefficient of 9.47 x 10{sup -6} m/s.

  5. Use of nanofiltration membrane technology for ceramic industry wastewater treatment

    Directory of Open Access Journals (Sweden)

    Moliner-Salvador, R.

    2012-04-01

    Full Text Available A study has been undertaken of an advanced wastewater treatment approach using polymer nanofiltration membranes, in an attempt to obtain water of sufficient quality to allow it to be reused in the same production process or, alternatively, to be discharged without any problems. The study has initially focused on the removal of organic matter (reduction of COD and the most representative ions present in the wastewater, such as Na+, Mg2+, Cl- y SO42-. In a first part of the study, with a view to optimising the experimental phase, a simulation has been performed of the nanofiltration process using the NanoFlux software. Among other things, the simulation allows the most suitable membranes to be selected as a function of the permeate flow rate and desired level of retention in the substances to be removed. The subsequent experimentation was carried out in a laboratory tangential filtration system that works with flat membranes. It was found that retention values of about 90% were obtained for the studied substances, with a good permeate flow rate, using low operating pressures. These results demonstrate the feasibility of the studied technology and its potential as a treatment for improving ceramic industry wastewater quality.

    Este estudio ha sido emprendido con el fin de acercar la nanofiltración a través de membranas poliméricas al tratamiento de las aguas residuales industriales de la industria cerámica, esperando obtener un agua con la suficiente calidad como para ser reutilizada en el propio proceso productivo o, alternativamente, poder verterla. El estudio se ha centrado en la eliminación de materia orgánica (reducción de D.Q.O y algunos iones presentes en las aguas residuales, tales como Na+, Mg2+, Cl- y SO42-. En primer lugar, se ha realizado una simulación del proceso de nanofiltración usando el software Nano

  6. Effects of reactive filters based on modified zeolite in dairy industry wastewater treatment process

    Directory of Open Access Journals (Sweden)

    Kolaković Srđan

    2013-01-01

    Full Text Available Application of adsorbents based on organo-zeolites has certain advantages over conventional methods applied in food industry wastewater treatment process. The case study presented in this paper examines the possibilities and effects of treatment of dairy industry wastewater by using adsorbents based on organo-zeolites. The obtained results indicate favorable filtration properties of organo-zeolite, their high level of adsorption of organic matter and nitrate nitrogen in the analyzed wastewater. This paper concludes with recommendations of optimal technical and technological parameters for the application of these filters in practice.

  7. Monolith electroplating process

    Science.gov (United States)

    Agarrwal, Rajev R.

    2001-01-01

    An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.

  8. Adsorption of Heavy Metals in Industrial Wastewater by Magnetic Nano-particles

    Science.gov (United States)

    Tu, Y.; You, C.

    2010-12-01

    Industrial wastewater containing heavy metals is of great concern because of their toxic impact to living species and environments. Removal of metal ions from industrial effluent using nano-particles is an area of extensive research. This study collected wastewaters and effluents from 11 industrial companies in tanning, electronic plating, printed circuit board manufacturing, semi-conductor, and metal surface treatment industry and studied in detailed the major and trace element compositions to develop potential fingerprinting technique for pollutant source identification. The results showed that electronic plating and metal surface treatment industry produce high Fe, Mn, Cr, Zn, Ni and Mo wastewater. The tanning industry and the printed circuit board manufacturing industry released wastewater with high Fe and Cr, Cu and Ni, respectively. For semi-conductor industry, significant dissolved In was detected in wastewater. The absorption experiments to remove heavy metals in waters were conducted using Fe3O4 nano-particles. Under optimal conditions, more than 99 % dissolved metals were removed in a few minutes.

  9. Influence of wastewater characteristics on methane potential in food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa; Baun, Anders; Angelidaki, Irini

    2008-01-01

    yields; on the other hand, it was found that they were affected positively by concentrations of total inorganic carbon when wastewaters were 25% and 50% diluted and affected negatively by concentrations of total acetate when wastewaters were undiluted. Carbohydrate and protein concentrations affected...

  10. Energy efficient--advanced oxidation process for treatment of cyanide containing automobile industry wastewater.

    Science.gov (United States)

    Mudliar, R; Umare, S S; Ramteke, D S; Wate, S R

    2009-05-30

    Destruction of cyanide (CN) from an automobile industry wastewater by advance oxidation process (AOP) has been evaluated. The operating conditions (in an indigenously designed photoreactor) for three different treatment strategies have been optimized. The treatment strategies involved use of, ultra violet light (UV), hydrogen peroxide (H(2)O(2)) and ozone (O(3)) in various combinations. Treatment of automobile industry wastewater (250 mg/L CN) showed fastest CN destruction, which was significantly (Pindustrial wastewater discharges to the receiving water bodies. The specific energy consumption by the photoreactor following this treatment was comparable to that obtained by conventional treatments, which use photocatalyst. Since the present treatment does not use catalyst, it provides an excellent energy efficient and economical option for treatment and safe disposal of CN containing industrial wastewater.

  11. Biotreatment of industrial tannery wastewater using Botryosphaeria rhodina

    National Research Council Canada - National Science Library

    MARIA CLAUDIA HASEGAW; ANELI M. BARBOS; KEIKO TAKASHIMA

    2011-01-01

    The treatment of a tannery wastewater was performed on the laboratory scale using the ascomyceteous fungus Botryosphaeria rhodina MAMB-05, a ligninolytic and a constitutive producer of laccases (EC: 1.10.3.2...

  12. Phytoremediation of industrial mines wastewater using water hyacinth.

    Science.gov (United States)

    Saha, Priyanka; Shinde, Omkar; Sarkar, Supriya

    2017-01-02

    The wastewater at Sukinda chromite mines (SCM) area of Orissa (India) showed high levels of toxic hexavalent chromium (Cr VI). Wastewater from chromium-contaminated mines exhibit potential threats for biotic community in the vicinity. The aim of the present investigation is to develop a suitable phytoremediation technology for the effective removal of toxic hexavalent chromium from mines wastewater. A water hyacinth species Eichhornia crassipes was chosen to remediate the problem of Cr (VI) pollution from wastewater. It has been observed that this plant was able to remove 99.5% Cr (VI) of the processed water of SCM in 15 days. This aquatic plant not only removed hexavalent Cr, but is also capable of reducing total dissolved solids (TDS), biological oxygen demand (BOD), chemical oxygen demand (COD), and other elements of water also. Large-scale experiment was also performed using 100 L of water from SCM and the same removal efficiency was achieved.

  13. Continuous treatment of coloured industry wastewater using immobilized Phanerochaete chrysosporium in a rotating biological contactor reactor.

    Science.gov (United States)

    Pakshirajan, Kannan; Kheria, Sumeet

    2012-06-30

    Coloured industry wastewaters often contain dyes and other toxic ingredients, and, therefore, pose serious threat to the receiving environment. Among the available methods the eco-friendly biological method has gained maximum attention due to its many advantages over the traditional methods. In the present study, continuous biological treatment of coloured wastewater from a textile dyeing industry was investigated using the white rot fungus Phanerochaete chrysosporium in a rotating biological contactor (RBC) reactor. The raw wastewater was diluted with an equal volume of either distilled water or media containing glucose at varying concentrations to study its effect on the decolourization process. Results revealed that the wastewater could be decolourized to an extent of more than 64% when diluted with media containing glucose; and, a maximum decolourization efficiency of 83% was obtained with 10 g/l glucose concentration. COD removal efficiencies were also found to be consistent with the decolourization efficiencies of the wastewaters. Further, the results were correlated with the enzyme activities of manganese peroxidase (MnP) and lignin peroxidase (LiP) by the fungus, which were found to play some significant role in decolourization of the wastewater. Results of replacing the costly carbon source glucose in the decolourization media with the more cheap molasses, however, revealed very high COD removal efficiency, but low decolourization efficiency of the industry wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. A study on the treatment process of industrial wastewater related to heavy metal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Kim, M. J.; Son, J. S.; Park, H. S

    1999-08-01

    The supernatant from metal wastewater by using magnesium hydroxide and dolomite was used to treat dyeing wastewater. In the case of magnesium hydroxide. In the case of magnesium hydroxide, the optimum dosage was 10 % (v/v) for supernatant A and 3 % (v/v) for separation B. Color turbidity and COD removal was 99 to 100 % , 85 to 97 % and 43 to 53 %, respectively. In the case of dolomite, the optimum dosage was 30 % (v/v) for supernatant A and 3% for supernatant B. Color, turbidity and COD removal was 96 to 99 %, 62 to 91 % and 52 to 53 %, respectively. In dyeing wastewater treatment by using supernatant from metal wastewater, the cost of chemicals was reduced by about 80 %.

  15. Reducing the Anaerobic Digestion Model No. 1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater

    OpenAIRE

    García-Diéguez, Carlos; Bernard, Olivier; Roca, Enrique

    2013-01-01

    International audience; The Anaerobic Digestion Model No. 1 (ADM1) is a complex model which is widely accepted as a common platform for anaerobic process modeling and simulation. However, it has a large number of parameters and states that hinder its calibration and use in control applications. A principal component analysis (PCA) technique was extended and applied to simplify the ADM1 using data of an industrial wastewater treatment plant processing winery effluent. The method shows that the...

  16. Membrane Distillation Bioreactor (MDBR) - A lower Green-House-Gas (GHG) option for industrial wastewater reclamation.

    Science.gov (United States)

    Goh, Shuwen; Zhang, Jinsong; Liu, Yu; Fane, Anthony G

    2015-12-01

    A high-retention membrane bioreactor system, the Membrane Distillation Bioreactor (MDBR) is a wastewater reclamation process which has the potential to tap on waste heat generated in industries to produce high quality product water. There are a few key factors which could make MDBR an attractive advanced treatment option, namely tightening legal requirements due to increasing concerns on the micropollutants in industrial wastewater effluents as well as concerns over the electrical requirement of pressurized advanced treatment processes and greenhouse gas emissions associated with wastewater reclamation. This paper aims to provide a consolidated review on the current state of research for the MDBR system and to evaluate the system as a possible lower Green House Gas (GHG) emission option for wastewater reclamation using the membrane bioreactor-reverse osmosis (MBR-RO) system as a baseline for comparison. The areas for potential applications and possible configurations for MDBR applications are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Utilization of Paper Sludge Wastes for Treatment of Wastewater from Food Processing Industries

    Directory of Open Access Journals (Sweden)

    Tohru Suzuki

    2012-12-01

    Full Text Available The food processing industries usually produced large amount of wastewater containing fine and small particles. It takes long time for complete settlement of the fine and small particles in the wastewater. The coagulation method appears to become one of the useful treatments. New inorganic coagulant named “Agoclean‒P” has been developed from paper sludge ash. The treatment by coagulation and flocculation were carried out for the wastewater from three different food processing industries namely soup, tofu, and natto. “Hi‒Biah‒System”, which is an in‒situ solidification system, was used for the continuous treatment of wastewater. The parameters for the water quality were pH, five‒day biochemical oxygen demand (BOD5, chemical oxygen demand (COD, total suspended solids (TSS, total nitrogen (TN and total phosphorus (TP. These parameters after the treatment became much lower values relative to those obtained before the treatment.

  18. The use of low-cost adsorbents for wastewater purification in mining industries.

    Science.gov (United States)

    Iakovleva, Evgenia; Sillanpää, Mika

    2013-11-01

    Recently, great attention has been paid to the environmental problems in mining industry. At present there are different ways of mineral processing, as well as various methods of wastewater treatment, most of them are expensive. Work is ongoing to find low-cost treatments. In this article, low-cost adsorbents, potentially useful for wastewater treatment on mining and metallurgical plants, are reviewed; their characteristics, advantages, and disadvantages of their application are compared. Also adsorption of different metals and radioactive compounds from acidic environment similar to composition of mining and metallurgical wastewaters is considered.

  19. Industrial wastewater treatment network based on recycling and rerouting strategies for retrofit design schemes

    DEFF Research Database (Denmark)

    Sueviriyapan, Natthapong; Suriyapraphadilok, Uthaiporn; Siemanond, Kitipat

    2015-01-01

    is employed to solve a network superstructure-based optimization problem formulated as Mixed Integer Linear and/or Non-Linear Programming (MILP/MINLP). Data from a petroleum refinery effluent treatment plant together with special design constraints are employed to formulate different design schemes based...... a generic model-based synthesis and design framework for retrofit wastewater treatment networks (WWTN) of an existing industrial process. The developed approach is suitable for grassroots and retrofit systems and adaptable to a wide range of wastewater treatment problems. A sequential solution procedure...... for the future development of the existing wastewater treatment process....

  20. Combined Industrial Wastewater Treatment in Anaerobic Bioreactor Posttreated in Constructed Wetland

    Directory of Open Access Journals (Sweden)

    Bibi Saima Zeb

    2013-01-01

    Full Text Available Constructed wetland (CW with monoculture of Arundo donax L. was investigated for the posttreatment of anaerobic bioreactor (ABR treating combined industrial wastewater. Different dilutions of combined industrial wastewater (20, 40, 60, and 80 and original wastewater were fed into the ABR and then posttreated by the laboratory scale CW. The respective removal efficiencies of COD, BOD, TSS, nitrates, and ammonia were 80%, 78–82%, 91.7%, 88–92%, and 100% for original industrial wastewater treated in ABR. ABR was efficient in the removal of Ni, Pb, and Cd with removal efficiencies in the order of Cd (2.7% > Ni (79% > Pb (85%. Posttreatment of the ABR treated effluent was carried out in lab scale CW containing A. donax L. CW was effective in the removal of COD and various heavy metals present in ABR effluents. The posttreatment in CW resulted in reducing the metal concentrations to 1.95 mg/L, 0 mg/L, and 0.004 mg/L for Ni, Pb, and Cd which were within the permissible water quality standards for industrial effluents. The treatment strategy was effective and sustainable for the treatment of combined industrial wastewater.

  1. Anaerobic microbial fuel cell treating combined industrial wastewater: Correlation of electricity generation with pollutants.

    Science.gov (United States)

    Abbasi, Umara; Jin, Wang; Pervez, Arshid; Bhatti, Zulfiqar Ahmad; Tariq, Madiha; Shaheen, Shahida; Iqbal, Akhtar; Mahmood, Qaisar

    2016-01-01

    Microbial fuel cell (MFC) is a new technology that not only generates energy but treats wastewater as well. A dual chamber MFC was operated under laboratory conditions. Wastewater samples from vegetable oil industries, metal works, glass and marble industries, chemical industries and combined industrial effluents were collected and each was treated for 98h in MFC. The treatment efficiency for COD in MFC was in range of 85-90% at hydraulic retention time (HRT) of 96h and had significant impact on wastewater treatment as well. The maximum voltage of 890mV was generated when vegetable oil industries discharge was treated with columbic efficiency of 5184.7C. The minimum voltage was produced by Glass House wastewater which was 520mV. There was positive significant co-relation between COD concentration and generated voltage. Further research should be focused on the organic contents of wastewater and various ionic species affecting voltage generation in MFC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Combined Industrial Wastewater Treatment in Anaerobic Bioreactor Posttreated in Constructed Wetland

    Science.gov (United States)

    Zeb, Bibi Saima; Mahmood, Qaisar; Jadoon, Saima; Pervez, Arshid; Irshad, Muhammad; Bilal, Muhammad; Bhatti, Zulfiqar Ahmad

    2013-01-01

    Constructed wetland (CW) with monoculture of Arundo donax L. was investigated for the posttreatment of anaerobic bioreactor (ABR) treating combined industrial wastewater. Different dilutions of combined industrial wastewater (20, 40, 60, and 80) and original wastewater were fed into the ABR and then posttreated by the laboratory scale CW. The respective removal efficiencies of COD, BOD, TSS, nitrates, and ammonia were 80%, 78–82%, 91.7%, 88–92%, and 100% for original industrial wastewater treated in ABR. ABR was efficient in the removal of Ni, Pb, and Cd with removal efficiencies in the order of Cd (2.7%) > Ni (79%) > Pb (85%). Posttreatment of the ABR treated effluent was carried out in lab scale CW containing A. donax L. CW was effective in the removal of COD and various heavy metals present in ABR effluents. The posttreatment in CW resulted in reducing the metal concentrations to 1.95 mg/L, 0 mg/L, and 0.004 mg/L for Ni, Pb, and Cd which were within the permissible water quality standards for industrial effluents. The treatment strategy was effective and sustainable for the treatment of combined industrial wastewater. PMID:24396832

  3. MICROALGAE BIOMASS PRODUCTION BASED ON WASTEWATER FROM DAIRY INDUSTRY

    Directory of Open Access Journals (Sweden)

    Marcin Dębowski

    2016-05-01

    Full Text Available The goal of this study was to determine the feasibility of culturing high-oil algae biomass based on wastewater from dairy processing plants. The experiments were conducted in laboratory scale with tubular photobioreactor using. The best technological properties were demonstrated for eluates from an anaerobic reactor treating dairy wastewater. The use of a substrate of this type yielded algae biomass concentration at a level of 3490 mg d.m./dm3, with the mean rate of algae biomass growth at 176 mg d.m./dm3∙d. The mean content of oil in the proliferated biomass of algae approximated 20%.

  4. Synthesis and Characterization of Iron Oxide Nanoparticles and Applications in the Removal of Heavy Metals from Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Zuolian Cheng

    2012-01-01

    Full Text Available This study investigated the applicability of maghemite (γ-Fe2O3 nanoparticles for the selective removal of toxic heavy metals from electroplating wastewater. The maghemite nanoparticles of 60 nm were synthesized using a coprecipitation method and characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM equipped with energy dispersive X-ray spectroscopy (EDX. Batch experiments were carried out for the removal of Pb2+ ions from aqueous solutions by maghemite nanoparticles. The effects of contact time, initial concentration of Pb2+ ions, solution pH, and salinity on the amount of Pb2+ removed were investigated. The adsorption process was found to be highly pH dependent, which made the nanoparticles selectively adsorb this metal from wastewater. The adsorption of Pb2+ reached equilibrium rapidly within 15 min and the adsorption data were well fitted with the Langmuir isotherm.

  5. Hexavalent chromium removal in a tannery industry wastewater using rice husk silica

    Directory of Open Access Journals (Sweden)

    D. Sivakumar

    2015-01-01

    Full Text Available Present study dealt the removal of Cr(VI in a tannery industry wastewater using rice husk silica powder as an adsorbent.The experimental investigations have been carried out by using rice husk silica powder for different adsorption dosage, different contact time and different pH against the initial Cr(VI concentration of 292 mg/L. The maximum percentage removal of Cr(VI in the tannery industrial wastewater (88.3 % was found at an optimum adsorbent dosage of 15 g, contact time of 150 min., and pH of 4.  Further, the experimental data on removal of Cr(VI from tannery industry wastewater was validated with the Cr(VI aqueous solution of same initial concentration of tannery industry waster against the optimum process parameters. The results of the validation experiment showed that the experiments conducted for the removal of Cr(VI in a tannery industry wastewater may be reproducing capability for analyzing various parameters along with Cr(VI based water and industry wastewater.  The experimental data were fitted to Langmuir and Freundlich isotherm models.  Isotherm models result indicated that the equilibrium data fitted well with the Langmuir isotherm than Freundlich isotherm, because of higher correlation created between dependent and independent variables. Thus, the adsorption method using rice husk silica powder was used effectively for removing Cr(VI in the tannery industrial wastewater, seems to be an economical and worthwhile alternative over other conventional methods, because of their abundant source, low price, multi-purposes and antimicrobial properties.

  6. Biotreatment of industrial tannery wastewater using Botryosphaeria rhodina

    Directory of Open Access Journals (Sweden)

    MARIA CLAUDIA HASEGAW

    2011-03-01

    Full Text Available The treatment of a tannery wastewater was performed on the laboratory scale using the ascomyceteous fungus Botryosphaeria rhodina MAMB-05, a ligninolytic and a constitutive producer of laccases (EC: 1.10.3.2. The wastewater samples were collected in the retanning and dyeing steps and presented high values of chemical oxygen demand, COD (15,023±60.0 mg L-1, fifth-day biochemical oxygen demand, BOD5 (4374±0.1 mg L-1, total solids (28500±2.0 mg L-1, total organic carbon, TOC (4685 mg L-1, and chloride ion concentration (2911±0.3 mg L-1. The fungus was inoculated and after five days under agitation at 180 rpm at 28 °C, the COD was reduced by 91 %. The total organic carbon also decreased from 4685 to 375.0 mg L-1 and the turbidity from 331.0 to 6.5 NTU, indicating that the biological treatment was efficient as the fungus consumed almost all the organic compounds present in the wastewater. It was not necessary to add an additional carbon source for the treatment, indicating that the concentration of organic compounds presented in the tannery wastewater effluent were sufficient for microorganism growth, during which the COD and TOC were reduced by about 91 and 93 %, respectively.

  7. Oil removal from industrial wastewater using flotation in a ...

    African Journals Online (AJOL)

    This paper investigates the flotation of oil from wastewater in a laboratory-scale mechanically agitated flotation cell. Mechanical flotation cells are used commercially for oil flotation but, to the authors' best knowledge, there are no studies on their flotation performance in the literature. Some researchers have suggested that ...

  8. Treatment of wastewater from rubber industry in Malaysia

    African Journals Online (AJOL)

    GREGORY

    2010-09-20

    Sep 20, 2010 ... producing the biogas as a useful energy sources are some advantages of anaerobic wastewater treatment system (Kantachote et al., 2008). However, this treatment results in the formation of H2S due to consumption of sulphate instead of oxygen by sulphate-reducing bacteria. H2S is toxic and increases ...

  9. Phytoremediation of Zinc, Cadmium, Copper and Chrome from Industrial Wastewater by Eichhornia Crassipes

    Directory of Open Access Journals (Sweden)

    Séka YAPOGA

    2013-03-01

    Full Text Available Eichhornia crassipes was tested for its high capacity to bioconcentrate four heavy metals (Zn, Cd, Cu, and Cr commonly found in wastewater from industries. Young plants of equal size were cultured in plastic tub containing industrial wastewater. Therefore, control experimental sets contained only mining effluent without any plants. The digested samples were analyzed for four metals (Zn, Cu, Cd and Cr by a Perkin Elmer 3000DV Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES. Eichhornia crassipes removed appreciable amount of heavy metals during a 15 days experiment. Maximum removal of metals was recorded on the 10th day of exposure. Roots of Eichhornia crassipes proved better accumulator of the metals than leaves. Eichhornia crassipes can be used to serve as a phytoremediation plant in the cleaning up of Zn, Cd, Cu and Cr from industrial wastewater.

  10. Recent advances and industrial viewpoint for biological treatment of wastewaters by oleaginous microorganisms.

    Science.gov (United States)

    Huang, Chao; Luo, Mu-Tan; Chen, Xue-Fang; Xiong, Lian; Li, Xiao-Mei; Chen, Xin-De

    2017-05-01

    Recently, technology of using oleaginous microorganisms for biological treatment of wastewaters has become one hot topic in biochemical and environmental engineering for its advantages such as easy for operation in basic bioreactor, having potential to produce valuable bio-products, efficient wastewaters treatment in short period, etc. To promote its industrialization, this article provides some comprehensive analysis of this technology such as its advances, issues, and outlook especially from industrial viewpoint. In detail, the types of wastewaters can be treated and the kinds of oleaginous microorganisms used for biological treatment are introduced, the potential of industrial application and issues (relatively low COD removal, low lipid yield, cost of operation, and lack of scale up application) of this technology are presented, and some critical outlook mainly on co-culture method, combination with other treatments, process controlling and adjusting are discussed systematically. By this article, some important information to develop this technology can be obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Process Integration Design Methods for Water Conservation and Wastewater Reduction in Industry. Part 3: Experience of Industrial Application

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Dunn, Russell; Gottrup, Lene

    2002-01-01

    This paper is Part 3 in a three part series of papers addressing operational techniques for applying mass integration principles to design in industry with special focus on water conservation and wastewater reduction. The presented techniques derive from merging US and Danish experience with indu...

  12. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2013 through October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Groundwater monitoring data; Status of special compliance conditions; Noncompliance issues; and Discussion of the facility’s environmental impacts During the 2014 reporting year, an estimated 10.11 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.

  13. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    David B. Frederick

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  14. Wastewaters from pulp industry: trends and challengers; Los residuos liquidos en la industrial de celulosa: avances y desafios

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, C.; Vidal, G.

    2003-07-01

    This paper shows the strategy used by the pulp industry in order to reduce the wastewater impact in the environment. The changes in the process technologies has been used as a main strategy by this industry. Also, it has been introduced the primary and secondary treatment. However, environmental impact due to specific compounds like resinic acids,sterols, colour and nutrients are not solved yet: tertiary treatment should be implemented for their solution. (Author) 49 refs.

  15. The use of constructed wetlands for the treatment of industrial wastewater

    Directory of Open Access Journals (Sweden)

    Skrzypiecbcef Katarzyna

    2017-09-01

    Full Text Available Constructed wetlands are characterized by specific conditions enabling simultaneous various physical and biochemical processes. This is the result of specific environment for the growth of microorganisms and hydrophytes (aquatic and semiaquatic plants which are capable of living in aerobic, anaerobic and facultative anaerobic conditions. Their interaction contributes to the intensification of oxidation and reduction responsible for the removal and retention of pollutants. These processes are supported by sorption, sedimentation and assimilation. Thanks to these advantages, treatment wetland systems have been used in communal management for over 50 years. In recent years, thanks to its advantages, low operational costs and high removal efficiency, there is growing interest in the use of constructed wetlands for the treatment or pre-treatment of various types of industrial wastewater. The study analyzes current use of these facilities for the treatment of industrial wastewater in the world. The conditions of use and efficiency of pollutants removal from readily and slowly biodegradable wastewater, with special emphasis on specific and characteristic pollutants of particular industries were presented. The use of subsurface horizontal flow beds for the treatment of industrial wastewater, among others from crude oil processing, paper production, food industry including wineries and distillery, olive oil production and coffee processing was described. In Poland constructed wetlands are used for the treatment of sewage and sludge from milk processing in pilot scale or for dewatering of sewage sludge produced in municipal wastewater treatment plant treating domestic sewage with approximately 40% share of wastewater from dairy and fish industry. In all cases, constructed wetlands provided an appropriate level of treatment and in addition the so-called ecosystem service.

  16. Joint aerobic biodegradation of wastewater from table olive manufacturing industries and urban wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, F.J.; Beltran, F.J.; Alvarez, P.; Frades, J.; Gimeno, O. [Univ. de Extremadura, Badajoz (Spain). Dept. of Ingenieria Quimica y Energetica

    2000-09-01

    Wastewater generated in the elaboration of table olives has been treated using activated sludge from a municipal wastewater plant after adequate acclimation. To avoid bactericide properties of some chemical structures present in this type of effluents, synthetic urban wastewater has been used to dilute the original wastewater. The main parameters affecting efficiency of biological processes have been studied. Thus, initial biomass concentration, temperature up to 303 K (upper working temperature limit = 313 K) and initial substrate concentration exerted a positive influence on COD degradation rate. The optimum pH was found to be around 7, experiencing a slight inhibition on cell activity at pH 4. Under the experimental conditions investigated other parameters like polyphenol content, absorbance at 254 nm and total organic carbon were also reduced to some extent. Only nitrates amount was increased after the biological process took place.A kinetic model based on Monod equation was proposed and applied to experimental results. The maximum specific growth rate was calculated by means of the aforementioned kinetic model. The value of this parameter as a function of temperature was fitted to an Arrhenius expression, {mu}{sub max} = 9.43 x 10{sup 10} exp(72021/RT) h{sup -1} (R in J mol{sup -1} K{sup -1}283 K < T < 303 K, pH {approx} 7-10). (orig.)

  17. Hexavalent chromium removal in a tannery industry wastewater using rice husk silica

    OpenAIRE

    Sivakumar, D

    2015-01-01

    Present study dealt the removal of Cr(VI) in a tannery industry wastewater using rice husk silica powder as an adsorbent.The experimental investigations have been carried out by using rice husk silica powder for different adsorption dosage, different contact time and different pH against the initial Cr(VI) concentration of 292 mg/L. The maximum percentage removal of Cr(VI) in the tannery industrial wastewater (88.3 %) was found at an optimum adsorbent dosage of 15 g, contact time of 150 min.,...

  18. Sustainable Agro-Food Industrial Wastewater Treatment Using High Rate Anaerobic Process

    Directory of Open Access Journals (Sweden)

    Yung-Tse Hung

    2013-03-01

    Full Text Available This review article compiles the various advances made since 2008 in sustainable high-rate anaerobic technologies with emphasis on their performance enhancement when treating agro-food industrial wastewater. The review explores the generation and characteristics of different agro-food industrial wastewaters; the need for and the performance of high rate anaerobic reactors, such as an upflow anaerobic fixed bed reactor, an upflow anaerobic sludge blanket (UASB reactor, hybrid systems etc.; operational challenges, mass transfer considerations, energy production estimation, toxicity, modeling, technology assessment and recommendations for successful operation

  19. Separation of Mercury Resistant Bacteria from Wastewater of Milk, Detergent and Ceramic Industry

    Directory of Open Access Journals (Sweden)

    M. Moghbeli , F. Shakeri and H. Hashemi-Moghaddam

    2011-09-01

    Full Text Available Use of microorganisms for removing mercury is an effective technology for the treatment of industrial wastewaters and can become an effective tool for the remediation of man-impacted coastal ecosystems with this metal. In this study, seven types of mercury resistant bacteria were separated from industrial waste and minimum inhibitory concentration (MIC, were determined for these bacteria. Results showed that two strains of bacteria, which isolated from waste water detergent plants, are more resistant to mercury and able to grow at the presence of 52 ppm of mercuric chloride. These bacteria could be used for biological treatment of mercury in contaminated wastewater.

  20. Reducing the Anaerobic Digestion Model No. 1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater.

    Science.gov (United States)

    García-Diéguez, Carlos; Bernard, Olivier; Roca, Enrique

    2013-03-01

    The Anaerobic Digestion Model No. 1 (ADM1) is a complex model which is widely accepted as a common platform for anaerobic process modeling and simulation. However, it has a large number of parameters and states that hinder its calibration and use in control applications. A principal component analysis (PCA) technique was extended and applied to simplify the ADM1 using data of an industrial wastewater treatment plant processing winery effluent. The method shows that the main model features could be obtained with a minimum of two reactions. A reduced stoichiometric matrix was identified and the kinetic parameters were estimated on the basis of representative known biochemical kinetics (Monod and Haldane). The obtained reduced model takes into account the measured states in the anaerobic wastewater treatment (AWT) plant and reproduces the dynamics of the process fairly accurately. The reduced model can support on-line control, optimization and supervision strategies for AWT plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Toxicity Evaluation of Through Fish Bioassay Raw Bulk Drug Industry Wastewater After Electrochemical Treatment

    Directory of Open Access Journals (Sweden)

    S Satyanarayan

    2011-10-01

    Full Text Available Considering the high pollution potential that the synthetic Bulk Drug industry Wastewater (BDW possesses due to the presence of variety of refractory organics, toxicity evaluation is of prime importance in assessing the efficiency of the applied wastewater treatment system and in establishing the discharge standards. Therefore, in this study the toxic effects of high strength bulk drug industry wastewater before and after electrochemical treatment on common fish Lebistes reticulatus-(peter were studied under laboratory conditions. Results indicated that wastewater being very strong in terms of color, COD and BOD is found to be very toxic to the studied fish. The LC50 values for raw wastewater and after electrochemical treatment with carbon and aluminium electrodes for 24, 48, 72 and 96 hours ranged between, 2.5-3.6%, 6.8-8.0%, 5.0-5.8% respectively. Carbon electrode showed marginally better removals for toxicity than aluminium electrode. It was evident from the studies that electrochemical treatment reduces toxicity in proportion to the removal efficiency shown by both the electrodes. The reduction in toxicity after treatment indicates the intermediates generated are not toxic than the parent compounds. Furthermore, as the electrochemical treatment did not result in achieving disposal standards it could be used only as a pre-treatment and the wastewater needs further secondary treatment before final disposal.

  2. Comparison of the composition of wastewater from fruit and vegetables as well as dairy industry

    Directory of Open Access Journals (Sweden)

    Puchlik Monika

    2017-01-01

    Full Text Available The aim of the study was to compare the composition of wastewater from the facility producing fruit and vegetable juices and dairy processing plant in Podlasie province. Their composition is also influenced by processes of washing and disinfecting of production lines. The washing process moves solid, colloidal, and dissolved impurities to the wastewater, depending on the type of raw material processed and the technological process used. At the same time, cleaning and disinfecting components at the amounts difficult to determine, penetrate the wastewater. The seasonal oscillations in the quantity and quality of sewage composition originating from fruit-vegetable and dairy processing became a problem for many conventional wastewater treatment plants, to where they are discharged. Based on the survey, it was found that wastewater from the fruit and vegetable industry as well as dairy industry contained large amounts of organic matter expressed in BOD5 (fruits and vegetables processing from 860 to 3 200mg O2/dm3, dairy from 1 410 to 3 850 mgO2/dm3 and COD (fruits and vegetables processing from 919 to 3 700 mgO2/dm3, dairy from 1 680 to 5 420 mgO2/dm3. Significant differences were found in concentrations of nitrogen and phosphorus in compared raw wastewater.

  3. Opportunities and Challenges for Water and Wastewater Industries to Provide Exchangeable Services

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hunsberger, Randolph [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-13

    Water and wastewater treatment plants and distribution systems use significant amounts of energy, around 2 - 4% of the total electricity used in the US, and their energy use is projected to increase as populations increase and regulations become more stringent. Water and wastewater systems have largely been disconnected from the electric utilities' efforts to improve energy efficiency and provide energy efficiency and provide grid services, likely because their core mission is to provide clean water and treated wastewater. Energy efficiency has slowly crept into the water and wastewater industry as the economic benefit has become more apparent, but there is still potential for significant improvement. Some of the larger, more progressive water utilities are starting to consider providing grid services; however, it remains a foreign concept to many. This report explores intrinsic mechanisms by which the water and wastewater industries can provide exchangeable services, the benefit to the parties involved, and the barriers to implementation. It also highlights relevant case studies and next steps. Although opportunities for increasing process efficiencies are certainly available, this report focuses on the exchangeable services that water and wastewater loads can provide to help maintain grid reliability, keep overall costs down, and increase the penetration of distributed renewables on the electric grid. These services have potential to provide water utilities additional value streams, using existing equipment with modest or negligible upgrade cost.

  4. Biosorption of hexavalent chromium in a tannery industry wastewater using fungi species

    Directory of Open Access Journals (Sweden)

    D. Sivakumar

    2016-03-01

    Full Text Available The isolated fungi species of different kinds from chromium contaminated soil sites located in Nagalkeni, Chennai were used for reducing chromium(VI in a tannery industry wastewater of Nagalkeni, Chennai.  The experiments were conducted to know biosorption potential of isolated fungi species for removing chromium(VI in a tannery industry wastewater against the different pH, fungi biomass and chromium(VI concentration (dilution ratio.  The results of this study indicated that the order of maximum removal of chromium(VI by an isolated fungi species at an optimum pH of 3, fungi biomass of 4g andan initial chromium(VI concentration of 18.125 mg/L (dilution ratio 4is A. niger > A. flavus > A. fumigatus > A. nidulans > A. heteromorphus > A. foetidus > A. viridinutans.  This study found that the maximum removal of chromium(VI was achieved by Aspergillus niger (96.3 % than other fungi species at chromium(VI concentration of 18.125 mg/Lin a tannery industry wastewater. The chromium removal from tannery industry wastewater was validated by checking chromium removal in an aqueous solution and by checking the removal efficiency of other parameters in a tannery industry wastewater using same isolated A. niger.  Biosorption model was proposed to simulate the experimental condition for removing chromium(VI in a tannery industry wastewater by all isolated fungi species. The R2 and  values of the proposed model predicted that the proposed biosorption model is very much useful for predicting the trend of reduction potential of chromium(VI in a tannery industry wastewater by all isolated fungi species.  This study suggested that one could select the type of fungi species, ion concentration level, selection of treatment period, quantity of biomass to be used, and pH level of the medium, to achieve the highest reduction of any toxic metals from any contaminated water, wastewater and soil environment.

  5. Constructed wetlands in the treatment of agro-industrial wastewater: A review

    Directory of Open Access Journals (Sweden)

    Sultana Mar-Yam

    2015-01-01

    Full Text Available Due to their simplicity and low operation cost, constructed wetlands are becoming more prevalent in wastewater treatment all over the world. Their range of applications is no longer limited to municipal wastewater but has expanded to the treatment of heavily polluted wastewaters such as agro-industrial effluents. This paper provides a comprehensive literature review of the application of constructed wetlands in treating a variety of agro-industrial wastewaters, and discusses pollutant surface loads and the role of constructed wetland type, prior-treatment stages and plant species in pollutant removal efficiency. Results indicate that constructed wetlands can tolerate high pollutant loads and toxic substances without losing their removal ability, thus these systems are very effective bio-reactors even in hostile environments. Additionally, the review outlines issues that could improve pollutant treatment efficiency and proposes design and operation suggestions such as suitable vegetation, porous media and constructed wetland plain view. Finally, a decision tree for designing constructed wetlands treating agro-industrial wastewaters provides an initial design tool for scientists and engineers.

  6. Decontamination of industrial wastewater from sugarcane crops by combining solar photo-Fenton and biological treatments.

    Science.gov (United States)

    Mendoza-Marín, Claudia; Osorio, Paula; Benítez, Norberto

    2010-05-15

    The department of Valle del Cauca is the region with the largest sugarcane production in Colombia. This agricultural activity uses high quantities of herbicides, mainly Diuron and 2,4-Dichlorophenoxyacetic acid. Wastewater generated in the washing process of spray equipment and empty pesticide containers must be treated to keep natural water sources from being polluted with these pesticides when these effluents are disposed off. Conventional biological treatments are not able to remove recalcitrant substances like Diuron and 2,4-Dichlorophenoxyacetic acid; therefore, it is essential to have alternative treatment systems. In recent years, photocatalytic processes have been proven efficient methods in treating polluted water with recalcitrant organic substances. This study sought to evaluate the efficiency of a coupled treatment constituted for a solar photo-Fenton treatment and a biological system like an immobilized biological reactor to treat industrial wastewater containing pesticides (2,4-Dichlorophenoxyacetic acid and Diuron). The mineralization and degradation of pesticides were followed by measuring the dissolved organic carbon and pesticide concentrations. The results revealed that industrial wastewaters with high Diuron and 2,4-Dichlorophenoxyacetic acid concentrations can be successfully treated by a combined solar photo-Fenton-biological system, achieving mineralization of 79.8% in prepared wastewater and 82.5% in real industrial wastewater by using low Fe(2+) and H(2)O(2) concentrations. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Decontamination of industrial wastewater from sugarcane crops by combining solar photo-Fenton and biological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Marin, Claudia; Osorio, Paula [Department of Chemistry, Faculty of Science, Universidad del Valle, A.A. 25360 Cali (Colombia); Benitez, Norberto, E-mail: lubenite@univalle.edu.co [Department of Chemistry, Faculty of Science, Universidad del Valle, A.A. 25360 Cali (Colombia)

    2010-05-15

    The department of Valle del Cauca is the region with the largest sugarcane production in Colombia. This agricultural activity uses high quantities of herbicides, mainly Diuron and 2,4-Dichlorophenoxyacetic acid. Wastewater generated in the washing process of spray equipment and empty pesticide containers must be treated to keep natural water sources from being polluted with these pesticides when these effluents are disposed off. Conventional biological treatments are not able to remove recalcitrant substances like Diuron and 2,4-Dichlorophenoxyacetic acid; therefore, it is essential to have alternative treatment systems. In recent years, photocatalytic processes have been proven efficient methods in treating polluted water with recalcitrant organic substances. This study sought to evaluate the efficiency of a coupled treatment constituted for a solar photo-Fenton treatment and a biological system like an immobilized biological reactor to treat industrial wastewater containing pesticides (2,4-Dichlorophenoxyacetic acid and Diuron). The mineralization and degradation of pesticides were followed by measuring the dissolved organic carbon and pesticide concentrations. The results revealed that industrial wastewaters with high Diuron and 2,4-Dichlorophenoxyacetic acid concentrations can be successfully treated by a combined solar photo-Fenton-biological system, achieving mineralization of 79.8% in prepared wastewater and 82.5% in real industrial wastewater by using low Fe{sup 2+} and H{sub 2}O{sub 2} concentrations.

  8. Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater.

    Science.gov (United States)

    Kothari, Richa; Prasad, Ravindra; Kumar, Virendra; Singh, D P

    2013-09-01

    This study involves a process of phyco-remediation of dairy industry wastewater by algal strain Chlamydomonas polypyrenoideum. The results of selected algal strain indicated that dairy industry wastewater was good nutrient supplement for algal growth in comparable with BG-11 growth medium. Alga grown on dairy industry wastewater reduced the pollution load of nitrate (90%), nitrite (74%), phosphate (70%), chloride (61%), fluoride (58%), and ammonia (90%) on 10th day of its growth as compared to that of uninoculated wastewater. The lipid content of algal biomass grown on dairy wastewater on 10th day (1.6g) and 15th day (1.2 g) of batch experiment was found to be higher than the lipid content of algal biomass grown in BG-11 growth medium on 10th day (1.27 g) and 15th day (1.0 g) of batch experiment. The results on FTIR analysis of the extracted bio-oil through transesterification reaction was comparable with bio-oil obtained from other sources. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Photo-Fenton and Fenton Oxidation of Recalcitrant Wastewater from the Wooden Floor Industry.

    Science.gov (United States)

    Hansson, Henrik; Kaczala, Fabio; Marques, Marcia; Hogland, William

    2015-06-01

    There is a need for development of on-site wastewater treatment technologies suitable to "dry-process" industries, such as the wooden floor sector. Due to the nature of their activities, these industries generate low volumes of highly polluted and recalcitrant wastewaters due to washing and cleaning surfaces and machinery. Advanced oxidation processes such as Fenton and photo-Fenton are potentially feasible options for the treatment of wastewaters with not easily biodegradable pollutants. The wastewater from a wooden floor industry with initial COD value of 4956 mg/L and TOC value of 2730 mg/L was treated with Fenton (Fe/H2O2) and photo-Fenton (Fe/H2O2/UV) applying a 2-level full-factorial experimental design. The highest removals of COD and TOC (79% and 62% respectively) were achieved when photo-Fenton was applied. In conclusion, Fenton and photo-Fenton are promising treatment options for these highly recalcitrant wastewaters, photo-Fenton being a more promising option according to the results.

  10. Treatment of wastewater from rubber industry in Malaysia ...

    African Journals Online (AJOL)

    Presently, Malaysia is the third largest rubber producer in the world, whereby the rubber industry is an economically and socially significant industry. Rubber industry consumes large volumes of water, uses chemicals and other utilities and produces enormous amounts of wastes and effluent. Discharge of untreated rubber ...

  11. Bioassay and use in irrigation of untreated and treated wastewaters from phosphate fertilizer industry.

    Science.gov (United States)

    Gouider, Mbarka; Feki, Mongi; Sayadi, Sami

    2010-07-01

    Wastewater from phosphate fertilizer industry that contains essentially a significant amount of both fluoride and phosphate was treated by separative precipitation of fluoride ions with hydrated lime. Thus, a phosphate-rich effluent with low content of fluoride was obtained. The microtoxicity of the treated wastewater was then monitored by LUMIStox and its phytotoxicity was investigated on tomato (Lycopersicon esculentum), wheat (Triticum aestivum), maize (Zea mays), ryegrass (Lolium perenne), and alfalfa (Medicago sativa) seed germination and plant growth. The cress (Lepidium sativum) was used as a standard species for the germination index and phytotoxicity evaluation. Seedlings of four species (namely wheat, maize, ryegrass, and alfalfa) were grown in pots, which were irrigated with untreated wastewater, treated wastewater, aqueous solution of triple superphosphate fertilizer (TSP) or with tap water as control. LUMIStox tests showed that lime treatment allowed a significant toxicity removal. The treated water displayed beneficial fertilizing effect on plants. An increase in the germination index from 100% to 119% was observed. However, the untreated wastewater inhibited the species germination even when diluted 10 times. Neither plants mortality nor growth inhibition was observed after 90 days of treated wastewater application. Moreover, an improvement in plant growth, leaf number and a root development were noticed in these plants when compared with those irrigated with tap water or with fertilizer. In contrast, leaf necrosis and growth inhibition were observed in plants amended with raw wastewater. The irrigation with treated wastewater also improved soil labile P content. Indeed, soils amended with treated wastewater had more a double labile P concentration (38.15 mg kg(-1)) in comparison with control soil (15.53 mg kg(-1)). Copyright (c) 2009 Elsevier Inc. All rights reserved.

  12. Treatment of leather industrial wastewater via combined advanced oxidation and membrane filtration.

    Science.gov (United States)

    Abdel-Shafy, Hussein I; El-Khateeb, Mohamed A; Mansour, Mona S M

    The liming/unhairing operation is among the important processes of the leather industry. It generates large amounts of effluent that are highly loaded with organic hazard wastes. Such effluent is considered one of the most obnoxious materials in the leather industry, causing serious environmental pollution and health risks. The effluent is characterized by high concentrations of the pollution parameters. Conventional chemical and/or biological treatment of such wastewater is inefficient to meet the required limits of standard specifications, due to the presence of resistant and toxic compounds. The present investigation deals with an effective treatment approach for the lime/unhair effluent using the Fenton reaction followed by membrane filtration. The experiment was extended to a laboratory pilot-scale in a continuous treatment study. In this study the raw wastewater was treated with the predetermined Fenton's optimum dose followed by membrane filtration. The wastewater was efficiently treated and the final effluent met the standards for unrestricted water reuse.

  13. Integrating the Anaerobic Process with Ultrafiltration in Meat Industry Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Kwarciak-Kozłowska Anna

    2014-12-01

    Full Text Available The aim of this paper was to study meat industry wastewater treatment efficiency during fermentation process in ASBR reactor and post-treatment in UF process. The anaerobic process obtained a considerable degree of the removal of organic pollutants from raw wastewater designated as COD (73.3%, BOD (71.4% and TOC (83.2%. The concentrations of COD and BOD were 435 and 443 mg/dm3, respectively. The value of TOC reached a level of 136 mg/dm3. Generated biogas in the methane fermentation process of wastewater from meat industry plants was characterized by high methane content (80.9% vol.. In the final part of the experiment, the UF process was used in order to post-treating effluent from ASBR reactor. During the UF process, COD, BOD and TOC parameters were removed at 67.2%, 68% and 70.4%, respectively.

  14. Seasonal changes in quality of wastewater from fruit and vegetable industry

    Science.gov (United States)

    Puchlik, Monika; Ignatowicz, Katarzyna

    2017-11-01

    The paper aimed at evaluating the seasonal changes in quality of wastewater from facilities producing fruit and vegetable juices, processed and frozen products, and vegetable concentrates. The study revealed that wastewater from fruit and vegetable industry contain large amounts of organic substances expressed as BOD5 (minimum - 500 mgO2/dm3, maximum - 6 100 mgO2/dm3) and COD (minimum - 806 mg O2/dm3, maximum - 7 732 mg O2/dm3), while is deficient in nitrogen and phosphorus. Considerable seasonal oscillations in sewage load disposed by industry to sewerage, were observed. An increase of 50%-60% wastewater concentrations was found between June and October in 2013-2016 as compared to the remaining months.

  15. Virtual industrial water usage and wastewater generation in the Middle East/North African region

    Science.gov (United States)

    Sakhel, S. R.; Geissen, S.-U.; Vogelpohl, A.

    2013-01-01

    This study deals with the quantification of volumes of water usage, wastewater generation, virtual water export, and wastewater generation from export for eight export relevant industries present in the Middle East/North Africa (MENA). It shows that about 3400 million m3 of water is used per annum while around 793 million m3 of wastewater is generated from products that are meant for domestic consumption and export. The difference between volumes of water usage and wastewater generation is due to water evaporation or injecting underground (oil wells pressure maintenance). The wastewater volume generated from production represents a population equivalent of 15.5 million in terms of wastewater quantity and 30.4 million in terms of BOD. About 409 million m3 of virtual water flows from MENA to EU27 (resulting from export of eight commodities) which is equivalent to 12.1% of the water usage of those industries and Libya is the largest virtual water exporter (about 87 million m3). Crude oil and refined petroleum products represent about 89% of the total virtual water flow, fertilizers represent around 10% and 1% remaining industries. EU27 poses the greatest indirect pressure on the Kuwaiti hydrological system where the virtual water export represents about 96% of the actual renewable water resources in this country. The Kuwaiti crude oil water use in relation to domestic water withdrawal is about 89% which is highest among MENA countries. Pollution of water bodies, in terms of BOD, due to production is very relevant for crude oil, slaughterhouses, refineries, olive oil, and tanneries while pollution due to export to EU27 is most relevant for crude oil industry and olive oil mills.

  16. A review on characterization and bioremediation of pharmaceutical industries' wastewater: an Indian perspective

    Science.gov (United States)

    Rana, Rajender Singh; Singh, Prashant; Kandari, Vikash; Singh, Rakesh; Dobhal, Rajendra; Gupta, Sanjay

    2017-03-01

    During the past few decades, pharmaceutical industries have registered a quantum jump contributing to high economic growth, but simultaneously it has also given rise to severe environmental pollution. Untreated or allegedly treated pharmaceutical industrial wastewater (PIWW) creates a need for time to time assessment and characterization of discharged wastewater as per the standards provided by the regulatory authorities. To control environmental pollution, pharmaceutical industries use different treatment plans to treat and reuse wastewater. The characterization of PIWW using advanced and coupled techniques has progressed to a much advanced level, but in view of new developments in drug manufacture for emerging diseases and the complexities associated with them, better sophisticated instrumentation and methods of treatment are warranted. The bioremediation process to treat PIWW has undergone more intense investigation in recent decade. This results in the complete mineralization of pharmaceutical industries' wastewater and no waste product is obtained. Moreover, high efficiency and low operation cost prove it to be an effective tool for the treatment of PIWW. The present review focuses on the characterization as well as bioremediation aspects of PIWW.

  17. A Tool to Support Optimal Industrial Wastewater Treatment Design and Analysis

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Pennati, Alessandra; Bozkurt, Hande

    2013-01-01

    Industrial Wastewater Treatment Plant (IWWTP) design is often based on in-house expert knowledge and experience. Because of time and resources constraints, only a small number of alternative treatment configurations and ideas are evaluated while designing an IWWTP. Consequently, the selected design...

  18. The role of natural wood constituents on the anaerobic treatability of forest industry wastewaters

    NARCIS (Netherlands)

    Sierra - Alvarez, R.

    1990-01-01

    Anaerobic treatment has been shown to be an efficient and energy conserving method for treating various types of readily biodegradable non-inhibitory forest industry wastewaters. However, the high toxicity of paper mill effluents derived from chemical wood processing operations has hampered

  19. Evaluation of an ASM1 Model Calibration Precedure on a Municipal-Industrial Wastewater Treatment Plant

    DEFF Research Database (Denmark)

    Petersen, Britta; Gernaey, Krist; Henze, Mogens

    2002-01-01

    The purpose of the calibrated model determines how to approach a model calibration, e.g. which information is needed and to which level of detail the model should be calibrated. A systematic model calibration procedure was therefore defined and evaluated for a municipal–industrial wastewater trea...

  20. ETV REPORT: EVALUATION OF HYDROMETRICS, INC., HIGH EFFICIENCY REVERSE OSMOSIS (HERO™) INDUSTRIAL WASTEWATER TREATMENT SYSTEM

    Science.gov (United States)

    Hydrometrics, founded in 1979 and located in Helena, MT, manufactures a commercial-ready High Efficiency Reverse Osmosis (HERO™) industrial wastewater treatment system. The system uses a three-stage reverse osmosis process to remove and concentrate metals for recovery while prod...

  1. Pilot-scale testing membrane bioreactor for wastewater reclamation in industrial laundry

    DEFF Research Database (Denmark)

    Andersen, Martin; Kristensen, Gert Holm; Brynjolf, M.

    2002-01-01

    A pilot-scale study of membrane bioreactor treatment for reclamation of wastewater from Berendsen Textile Service industrial laundry in Søborg, Denmark was carried out over a 4 month period. A satisfactory COD degradation was performed resulting in a low COD in the permeate (

  2. Wastewater quality control at Sarnia (Ontario, Canada) petrochemical industries

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, Arlinda C. [Servico Nacional de Aprendizagem Industrial (SENAI), Salvador, BA (Brazil); Souza, Eliane S.; Himmelman, William [Lambton College, Sarnia, ON (Canada)

    1993-12-31

    Ontario industries are required by law to meet strict regulations under the provinces under MISA initiative (Municipal-Industrial Strategy for Abatement). The petroleum-petrochemical area was selected as a leader in the development of new environmental objectives, and monitoring and training programs. Sarnia has become a world leader in industrial environmental control systems and the approach toward zero emissions. 4 refs., 6 figs., 2 tabs.

  3. Perspectives on the feasibility of using microalgae for industrial wastewater treatment.

    Science.gov (United States)

    Wang, Yue; Ho, Shih-Hsin; Cheng, Chieh-Lun; Guo, Wan-Qian; Nagarajan, Dillirani; Ren, Nan-Qi; Lee, Duu-Jong; Chang, Jo-Shu

    2016-12-01

    Although microalgae can serve as an appropriate alternative feedstock for biofuel production, the high microalgal cultivation cost has been a major obstacle for commercializing such attempts. One of the feasible solution for cost reduction is to couple microalgal biofuel production system with wastewater treatment, as microalgae are known to effectively eliminate a variety of nutrients/pollutants in wastewater, such as nitrogen/phosphate, organic carbons, VFAs, pharmaceutical compounds, textile dye compounds, and heavy metals. This review aims to critically discuss the feasibility of microalgae-based wastewater treatment, including the strategies for strain selection, the effect of wastewater types, photobioreactor design, economic feasibility assessment, and other key issues that influence the treatment performance. The potential of microalgae-bacteria consortium for treatment of industrial wastewaters is also discussed. This review provides useful information for developing an integrated wastewater treatment with microalgal biomass and biofuel production facilities and establishing efficient co-cultivation for microalgae and bacteria in such systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Bioaugmentation: An Emerging Strategy of Industrial Wastewater Treatment for Reuse and Discharge.

    Science.gov (United States)

    Nzila, Alexis; Razzak, Shaikh Abdur; Zhu, Jesse

    2016-08-25

    A promising long-term and sustainable solution to the growing scarcity of water worldwide is to recycle and reuse wastewater. In wastewater treatment plants, the biodegradation of contaminants or pollutants by harnessing microorganisms present in activated sludge is one of the most important strategies to remove organic contaminants from wastewater. However, this approach has limitations because many pollutants are not efficiently eliminated. To counterbalance the limitations, bioaugmentation has been developed and consists of adding specific and efficient pollutant-biodegrading microorganisms into a microbial community in an effort to enhance the ability of this microbial community to biodegrade contaminants. This approach has been tested for wastewater cleaning with encouraging results, but failure has also been reported, especially during scale-up. In this review, work on the bioaugmentation in the context of removal of important pollutants from industrial wastewater is summarized, with an emphasis on recalcitrant compounds, and strategies that can be used to improve the efficiency of bioaugmentation are also discussed. This review also initiates a discussion regarding new research areas, such as nanotechnology and quorum sensing, that should be investigated to improve the efficiency of wastewater bioaugmentation.

  5. Bioaugmentation: An Emerging Strategy of Industrial Wastewater Treatment for Reuse and Discharge

    Directory of Open Access Journals (Sweden)

    Alexis Nzila

    2016-08-01

    Full Text Available A promising long-term and sustainable solution to the growing scarcity of water worldwide is to recycle and reuse wastewater. In wastewater treatment plants, the biodegradation of contaminants or pollutants by harnessing microorganisms present in activated sludge is one of the most important strategies to remove organic contaminants from wastewater. However, this approach has limitations because many pollutants are not efficiently eliminated. To counterbalance the limitations, bioaugmentation has been developed and consists of adding specific and efficient pollutant-biodegrading microorganisms into a microbial community in an effort to enhance the ability of this microbial community to biodegrade contaminants. This approach has been tested for wastewater cleaning with encouraging results, but failure has also been reported, especially during scale-up. In this review, work on the bioaugmentation in the context of removal of important pollutants from industrial wastewater is summarized, with an emphasis on recalcitrant compounds, and strategies that can be used to improve the efficiency of bioaugmentation are also discussed. This review also initiates a discussion regarding new research areas, such as nanotechnology and quorum sensing, that should be investigated to improve the efficiency of wastewater bioaugmentation.

  6. wastewaters

    African Journals Online (AJOL)

    DRINIE

    2003-10-04

    Oct 4, 2003 ... system without affecting the biochemical reactions in the reactor, whereas .... Results of inert COD experiment for the Study A. Time. Reactor 1. Reactor 2. Fed with raw. Fed with filtered wastewater wastewater. (COD, mg·l-1). (COD .... rate limiting process component for heterotrophic growth in the. IIDWTP.

  7. Wastewater and sludge control-technology options for synfuels industries

    Energy Technology Data Exchange (ETDEWEB)

    Castaldi, F.J.; Harrison, W.; Ford, D.L.

    1981-02-01

    The options examined were those of zero discharge, partial water reuse with restricted discharge of treated effluents, and unrestricted discharge of treated effluents. Analysis of cost data and performance-analyses data for several candidate secondary-wastewater-treatment unit processes indicated that combined activated-sludge/powdered-activated-carbon (AS/PAC) treatment incorporating wet-air-oxidation carbon regeneration is the most cost-effective control technology available for the removal of organic material from slagging, fixed-bed process wastewaters. Bench-scale treatability and organic-constituent removal studies conducted on process quench waters from a pilot-scale, slagging, fixed-bed gasifer using lignite as feedstock indicated that solvent extraction followed by AS/PAC treatment reduces levels of extractable and chromatographable organics to less than 1 ..mu..g/L in the final effluent. Levels of conventional pollutants also were effectively reduced by AS/PAC to the minimum water-quality standards for most receiving waters. The most favored and most cost-effective treatment option is unrestricted discharge of treated effluents with ultimate disposal of biosludges and landfilling of gasifier ash and slag. This option requires a capital expenditure of $8,260,000 and an annual net operating cost of $2,869,000 in 1978 dollars, exclusive of slag disposal. The net energy requirement of 19.6 x 10/sup 6/ kWh/year, or 15.3 kWh/1000 gal treated, is less than 6% of the equivalent energy demand associated with the zero-discharge option.

  8. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation

    Directory of Open Access Journals (Sweden)

    Mingming Luan

    2017-02-01

    Full Text Available Wet air oxidation (WAO is one of the most economical and environmentally-friendly advanced oxidation processes. It makes a promising technology for the treatment of refractory organic pollutants in industrial wastewaters. In wet air oxidation aqueous waste is oxidized in the liquid phase at high temperatures (125–320 °C and pressures (0.5–20 MPa in the presence of an oxygen-containing gas (usually air. The advantages of the process include low operating costs and minimal air pollution discharges. The present review is concerned about the literature published in the treatment of refractory organic pollutants in industrial wastewaters, such as dyes. Phenolics were taken as model pollutants in most cases. Reports on effect of treatment for the WAO of refractory organic pollutants in industrial wastewaters are reviewed, such as emulsified wastewater, TNT red water, etc. Discussions are also made on the mechanism and kinetics of WAO and main technical parameters influencing WAO. Finally, development direction of WAO is summed up.

  9. Membrane filtration of agro-industrial wastewaters and isolation of organic compounds with high added values.

    Science.gov (United States)

    Zagklis, Dimitris P; Paraskeva, Christakis A

    2014-01-01

    The aim of the current study was the exploitation of agro-industrial wastes or by-products such as olive mill wastewater (OMW) and defective wines. A cost-effective system for their maximum exploitation is suggested, using a combined process of membrane filtration and other physicochemical processes. Wastewaters are first treated in a membrane system (prefiltration, ultrafiltration, nanofiltration, and reverse osmosis) where pure water and other organic fractions (by-products) are obtained. Organic fractions, called hereafter byproducts and not wastes, are further treated for the separation of organic compounds and isolation of high added value products. Experiments were performed with OMW and defective wines as characteristic agro-industrial wastewaters. Profit from the exploitation of agro-industrial wastewaters can readily help the depreciation of the indeed high cost process of membrane filtration. The simple phenolic fraction of the OMW was successfully isolated from the rest of the waste, and problems occurring during winemaking, such as high volatile acidity and odours, were tackled.

  10. Potential use of industrial wastewater in irrigation - case study of ...

    African Journals Online (AJOL)

    4, Cl, K, heavy metals and trace elements. Results indicate that majority of the effluents from these industries have high relative conformity with irrigation water because of their relative conformity with FAO recommended (FAO 1992) standards.

  11. Physico-chemical Investigation of Semiconductor Industrial Wastewater

    OpenAIRE

    Wong, Y.C.; V. Moganaragi; N.A. Atiqah

    2014-01-01

    The treated and untreated effluents samples from semiconductor industry were collected and thier physical characteristics such as temperature, pH, turbidity, total suspended solid (TSS), conductivity and chemical characteristics such as salinity, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), chlorine dioxide, and heavy metal were analyzed. The results obtained showed that the semiconductor industry fulfilled the standard of law that was established in or...

  12. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    Directory of Open Access Journals (Sweden)

    Joe A. Lemire

    2015-10-01

    Full Text Available Moving bed biofilm reactors (MBBRs are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR carriers (biofilm support materials, allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that mixed-species biofilms can be harvested from an industrial wastewater inoculum [oil sands process water (OSPW] using the Calgary Biofilm Device (CBD. Moreover, the resultant biofilm communities had the capacity to degrade organic toxins (naphthenic acids—NAs that are found in OSPW. Therefore, we hypothesized that harnessing microbial communities from industrial wastewater, as biofilms, on MBBR carriers may be an effective method to bioremediate industrial wastewater.Here, we detail our methodology adapting the workflow employed for using the CBD, to generate inoculant carriers to seed an MBBR.In this study, OSPW-derived biofilm communities were successfully grown, and their efficacy evaluated, on commercially available MBBR carriers affixed within a modified CBD system. The resultant biofilms demonstrated the capacity to transfer biomass to recipient carriers within a scaled MBBR. Moreover, MBBR systems inoculated in this manner were fully active 2 days post-inoculation, and readily degraded a select population of NAs. Together, these findings suggest that harnessing microbial communities on carriers affixed within a modified CBD system may represent a facile and rapid method for obtaining functional inoculants for use in wastewater MBBR treatment systems.

  13. Experimental and computational investigation of polyacrylonitrile ultrafiltration membrane for industrial oily wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Adib Hooman; Hassanajili, Shadi; Sheikhi-Kouhsar, Mohammad Reza [Shiraz University, Shiraz (Iran, Islamic Republic of); Salahi, Abdolhamid; Mohammadi, Toraj [Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of)

    2015-01-15

    An experimental study on separation of industrial oil from oily wastewater has been done. A polyacrylonitrile membrane with a molecular weight cut-off (MWCO) of 20 kDa was used and an outlet wastewater of API unit of Tehran refinery was employed. The main purpose of this study was to develop a support vector machine model for permeation flux decline and fouling resistance in a cross-flow hydrophilic polyacrylonitrile membrane during ultrafiltration. The operating conditions which have been applied to develop a support vector machine model were transmembrane pressure (TMP), operating temperature, cross flow velocity (CFV), pH values of oily wastewater, permeation flux decline and fouling resistance. The testing results obtained by the support vector machine models are in very good agreement with experimental data. The calculated squared correlation coefficients for permeation flux decline and fouling resistance were both 0.99. Based on the results, the support vector machine proved to be a reliable accurate estimation method.

  14. Characterization of membrane foulants at ambient temperature anaerobic membrane bioreactor treating low-strength industrial wastewater

    DEFF Research Database (Denmark)

    Zarebska, Agata; Kjerstadius, Hamse; Petrinic, Irena

    2016-01-01

    The large volume of industrial low-strength wastewaters has a potential for biogas production through conventional anaerobic digestion (AD), limited though by the need of heating and concentrating of the wastewaters. The use of anaerobic membrane bioreactor (AnMBR) combining membrane filtration...... with anaerobic biological treatment at low temperature could not only reduce the operational cost of AD, but also alleviate environmental problems. However, at low temperature the AnMBR may suffer more fouling due to the increased extracellular polymeric substances production excreted by bacteria hampering...... understanding of organic and biofouling in AnMBR. An AnMBR consisting of external PVDF membrane was operated at 25°C and fed with synthetic dairy wastewater. Intensity, morphology and composition of foulants were determined using Scanning Electron Microscopy coupled with X-ray Energy Dispersive Spectrometry...

  15. Energy optimization of water and wastewater management for municipal and industrial applications conference

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    These proceedings document the presentations given at the Energy Optimization of Water and Wastewater Management for Municipal and Industrial Applications, Conference, sponsored by the Department of Energy (DOE). The conference was organized and coordinated by Argonne National Laboratory. The conference focused on energy use on conservation in water and wastewater. The General Session also reflects DOE's commitment to the support and development of waste and wastewater systems that are environmentally acceptable. The conference proceedings are divided into two volumes. Volume 1 contains the General Session and Sessions 1 to 5. Volume 2 covers Sessions 6 to 12. Separate abstracts are prepared for each item within the scope of the Energy Data Base.

  16. Enzymatic removal of phenolic compounds from real industrial wastewaters using horseradish peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, B.; Bewtra, J.K.; Biswas, N. [Windsor Univ., ON (Canada). Dept. of Civil and Environmental Engineering; Taylor, K.E. [Windsor Univ., ON (Canada). Dept. of Chemistry

    1995-12-31

    Phenolic compounds are present in the wastewater streams of industries such as petroleum refining, metal casting, coal-conversion, resins, and plastics. Various enzymes can catalyze the polymerization and precipitation of aromatic compounds from wastewaters in the presence of hydrogen peroxide. A study was conducted which achieved at least 95% removal of phenols from wastewater using horseradish peroxidase (HRP). Experimental results showed that a buffer had no effect on phenol removal, but an excess of H{sub 2}O{sub 2} beyond the optimum concentration resulted in enzyme inactivation, thus reducing the phenol removal efficiency. Increasing the enzyme polyethylene glycol or reaction time beyond the optimum values resulted in only a marginal increase in removal efficiency. 12 refs., 1 tab., 4 figs.

  17. Energy optimization of water and wastewater management for municipal and industrial applications conference

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    These proceedings document the presentations given at the Energy Optimization of Water and Wastewater Management for Municipal and Industrial Applications Conference, sponsored by the Department of Energy (DOE). The conference was organized and coordinated by Argonne National Laboratory. The conference focused on energy use and conservation in water and wastewater. The General Session also reflects DOE's commitment to the support and development of waste and wastewater systems that are environmentally acceptable. The conference proceedings are divided into two volumes. Volume 1 contains the General Session and Sessions 1 to 5. Volume 2 covers Sessions 6 to 12. Separate abstracts are prepared for each item within the scope of the Energy Data Base.

  18. Oil industry wastewater treatment with fouling resistant membranes containing amphiphilic comb copolymers.

    Science.gov (United States)

    Asatekin, Ayse; Mayes, Anne M

    2009-06-15

    The oil industry produces large volumes of wastewater, including oil well produced water brought to the surface during oil drilling, and refinery wastewater. These streams are difficult to treat due to large concentrations of oil. Ultrafiltration (UF) is very promising for their treatment to remove oil, but has been limited by economic obstacles due to severe membrane fouling. In a recent study, novel UF membranes incorporating the amphiphilic comb copolymer additive polyacrylonitrile-graft-poly(ethylene oxide), PAN-g-PEO, were found to exhibit complete resistance to irreversible fouling by several classes of organic foulants (J. Membr. Sci. 2007, 298, 136-146). The current work focuses on application of these novel UF membranes to the treatment of oily wastewater feed streams, employing three industrial samples of oil well produced water and refinery wastewater. UF membranes cast with 20 wt % PAN-g-PEO in PAN achieved removals of dispersed and free oils of over 96% based on chemical oxygen demand (COD) for produced water samples, comparable to a PAN UF commercial membrane control. For refinery wastewater treatment the COD removal values were substantially lower, between 41 and 44%, due to higher contents of dissolved organics. Comb copolymer modified membranes showed significantly better fouling resistance than controls, recovering fully their initial fluxes after a simulated backwash for each of the three wastewater samples tested. The results indicate that UF membranes incorporating PAN-g-PEO can be cleaned completely by physical methods alone, which should extend membrane lifetimes substantially and improve the process economics for treatment of oil-contaminated waters.

  19. California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

    2009-09-09

    Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

  20. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong

    2015-02-02

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×105 counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.

  1. Reuse the pulp and paper industry wastewater by using fashionable technology

    Science.gov (United States)

    Sudarshan, K.; Maruthaiya, K.; Kotteeswaran, P.; Murugan, A.

    2017-10-01

    This proposed method is a promising way, which can be implemented in pulp and paper industries by effective removal of the color and chemical oxygen demand (COD) and the resulting treated water may surely reuse to the other streams. Fourier Transformer Infra Red spectra confirmed the presence of the respective functional groups in the removed pollutants from the wastewater. The efficiency of Non-ferric Alum (NF Alum) and cationic polyacrylamide (C-PAM) with and without power boiler fly ash was also studied. The reduction efficiency of color and chemical oxygen demand (COD) is evaluated at the optimum dosage of NF Alum, fly ash, and C-PAM. At the optimized pH attained from these coagulants using to treat the wastewater, the flocs formation/settling and the pollutant removal efficiency are encouraging and the resulting color of the wastewater is to 40 PtCo units from 330 PtCo units and COD to 66 mg/L from 218 mg/L. While using NF Alum alone with C-PAM for the treatment of wastewater, the highest reduction efficiency of COD is 97 mg/L from 218 mg/L and the color is 60 from 330 PtCo units at pH 4.8 was noted. From these observations, NF Alum and power boiler fly ash with C-PAM can effectively remove the pollutants from the pulp and paper mill wastewater and the water can be reused for other streams.

  2. Potential use of industrial wastewater in irrigation - case study of ...

    African Journals Online (AJOL)

    ... Quality Foods Manufacturing Company, Askar Paints Nigeria Limited and West African Batteries Limited. The analysis of the effluents from these industries were undertaken to determine the chemical and physical characteristics such as alkalinity, pH. Temperature 0C, colour, total dissolved solids, sodium adsorption ratio, ...

  3. Genotoxic effects of industrial wastewater on Allium cepa L.

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... If these plants are consumed as food, it may influence human health adversely. The chemicals profile of plants grown on such fields could give rise to serious consequences such as ... The effect of the waste caused by industrial plants on ... Acetoorceine was used as chromosome dye and 10 mitosis.

  4. Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater.

    Science.gov (United States)

    Abma, W R; Driessen, W; Haarhuis, R; van Loosdrecht, M C M

    2010-01-01

    The Olburgen sewage treatment plant has been upgraded to improve the effluent quality by implementing a separate and dedicated treatment for industrial (potato) wastewater and reject water. The separate industrial treatment has been realized within a beneficial public-private partnership. The separate treatment of the concentrated flows of industrial wastewater and sludge treatment effluent proved to be more cost-efficient and area and energy efficient than a combined traditional treatment process. The industrial wastewater was first treated in a UASB reactor for biogas production. The UASB reactor effluent was combined with the reject water and treated in a struvite reactor (Phospaq process) followed by a one stage granular sludge nitritation/anammox process. For the first time both reactors where demonstrated on full scale and have been operated stable over a period of 3 years. The recovered struvite has been tested as a suitable substitute for commercial fertilizers. Prolonged exposure of granular anammox biomass to nitrite levels up to 30 mg/l did not result in inhibition of the anammox bacteria in this reactor configuration. The chosen option required a 17 times smaller reactorvolume (20,000 m(3) less volume) and saves electric power by approximately 1.5 GWh per year.

  5. Anaerobic treatment of agro-industrial wastewaters for COD removal in expanded granular sludge bed bioreactor

    Directory of Open Access Journals (Sweden)

    Abumalé Cruz-Salomón

    2017-12-01

    Full Text Available Untreated agro-industrial wastewaters are undesirable in the aquatic environment due to the presence of high organic matter contents. However, they may constitute a large potential for biogas production. The present investigation is focused on three laboratory-scale anaerobic expanded granular sludge bed (EGSB bioreactors, continuously operated for 60 d under mesophilic condition with the aim of exploring the feasibility of treating three most significant agro-industrial wastewaters in Chiapas, Mexico (i.e., cheese whey, vinasse, and coffee-processing wastewater. The EGSB bioreactors were operated with a hydraulic retention time (HRT of 6 d under stable conditions (i.e., buffer index (BI of 0.31, 0.34, and 0.03, generating a maximum chemical oxygen demand (COD removal efficiency of 91, 74, and 96% with an average methane production of 340, 245, and 300 mL/g COD∙d for cheese whey, vinasse, and coffee-processing wastewater, respectively. According to the obtained results, the EGSB bioreactors could be a sustainable alternative to simultaneously solve the environmental problems and to produce bioenergy.

  6. Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, Ugur [Yildiz Technical University, Environmental Engineering Department, 34349 Istanbul (Turkey)]. E-mail: ukurt@yildiz.edu.tr; Apaydin, Omer [Yildiz Technical University, Environmental Engineering Department, 34349 Istanbul (Turkey)]. E-mail: apaydin@yildiz.edu.tr; Gonullu, M. Talha [Yildiz Technical University, Environmental Engineering Department, 34349 Istanbul (Turkey)]. E-mail: gonul@yildiz.edu.tr

    2007-05-08

    Advanced oxidation processes (AOPs) have led the way in the treatment of aqueous waste and are rapidly becoming the chosen technology for many applications. In this paper, COD reduction potential of leather tanning industry wastewaters by Electro-Fenton (EF) oxidation, as one of the AOPs, was experimentally evaluated. The wastewater sample was taken from an outlet of an equalization basin in a common treatment plant of an organized tannery industrial region in Istanbul, Turkey. Treatment of the wastewater was carried out by an electrochemical batch reactor equipped with two iron electrodes, which were connected parallel to each other. The oxidation process was studied for optimization of H{sub 2}O{sub 2} and the electricity consumptions were observed at different contact times under different pH conditions (3.0, 5.0 and 7.2). In each case, electricity consumption for decreased COD mass was estimated. In this process, COD was reduced by 60-70% within 10 min. By taking into consideration the local sewerage discharge limit, applicability of EF process for the tannery wastewaters was evaluated.

  7. Removal of heavy metal from industrial wastewater using hydrogen ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-02-05

    Feb 5, 2007 ... Experimental results indicated that at pH 6.5, pre-treatment analysis gave the following values: Pb. 57.63 mg/l, Zn 18.9 mg/l and Cu 13.9 mg/l. ... has to be treated before its reuse or disposal in water bodies. Industrial processes ..... Waters by Means of Natural Zeolites” Wat. Res. 18:1501. Blanco AB, Sanz B, ...

  8. Influence of wastewater characteristics on handling food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa

    fem sammensatte spildevandsprøver fra fire industrier viste at et vist indhold af acetat medførte hæmning af den hydrolytiske og methanogene aktivitet i spildevand fra grøntsags- og produktion af vegetabilske olier. Dette spildevand indeholdt bemærkelsesværdigt nok ikke nogen lipider, og når det blev...

  9. Industrial reuse of regenerated of wastewater; Reutilizacion industrial de aguas residuales regeneradas

    Energy Technology Data Exchange (ETDEWEB)

    Cortacans Torre, J.A.

    1998-12-01

    The reuse of treated wastewater is a realistic possibility not only for agricultural irrigation or in recreational uses (golf greens), but for other purposes which require a better quality. In the wastewater plant of Monclova the effluent must be of a high quality in order to reuse it in the processes of the existing steel-mill. To achieve this quality a biological process including nitrification and denitrification is followed by a tertiary treatment including a physico-chemical treatment with flotation, chemical precipitation of phosphorus, pressure filtration and chlorination. (Author)

  10. Influence of vegetation and gravel mesh on the tertiary treatment of wastewater from a cosmetics industry.

    Science.gov (United States)

    Vlyssides, Apostolos G; Mai, Sofia T H; Barampouti, Elli Maria P; Loukakis, Haralampos N

    2009-07-01

    To estimate the influence of gravel mesh (fine and coarse) and vegetation (Phragmites and Arundo) on the efficiency of a reed bed, a pilot plant was included after the wastewater treatment plant of a cosmetic industry treatment system according to a 22 factorial experimental design. The maximum biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total phosphorous (TP) reduction was observed in the reactor, where Phragmites and fine gravel were used. In the reactor with Phragmites and coarse gravel, the maximum total Kjeldahl nitrogen (TKN) and total suspended solids (TSS) reduction was observed. The maximum total solids reduction was measured in the reed bed, which was filled with Arundo and coarse gravel. Conclusively, the treatment of a cosmetic industry's wastewater by reed beds as a tertiary treatment method is quite effective.

  11. Benchmarking the scientific output of industrial wastewater research in Arab world by utilizing bibliometric techniques.

    Science.gov (United States)

    Zyoud, Shaher H; Al-Rawajfeh, Aiman E; Shaheen, Hafez Q; Fuchs-Hanusch, Daniela

    2016-05-01

    Rapid population growth, worsening of the climate, and severity of freshwater scarcity are global challenges. In Arab world countries, where water resources are becoming increasingly scarce, the recycling of industrial wastewater could improve the efficiency of freshwater use. The benchmarking of scientific output of industrial wastewater research in the Arab world is an initiative that could support in shaping up and improving future research activities. This study assesses the scientific output of industrial wastewater research in the Arab world. A total of 2032 documents related to industrial wastewater were retrieved from 152 journals indexed in the Scopus databases; this represents 3.6 % of the global research output. The h-index of the retrieved documents was 70. The total number of citations, at the time of data analysis, was 34,296 with an average citation of 16.88 per document. Egypt, with a total publications of 655 (32.2 %), was ranked the first among the Arab countries followed by Saudi Arabia 300 (14.7 %) and Tunisia 297 (14.6 %). Egypt also had the highest h-index, assumed with Saudi Arabia, the first place in collaboration with other countries. Seven hundred fifteen (35.2 %) documents with 66 countries in Arab/non-Arab country collaborations were identified. Arab researchers collaborated mostly with researchers from France 239 (11.7 %), followed by the USA 127 (6.2 %). The top active journal was Desalination 126 (6.2 %), and the most productive institution was the National Research Center, Egypt 169 (8.3 %), followed by the King Abdul-Aziz University, Saudi Arabia 75 (3.7 %). Environmental Science was the most prevalent field of interest 930 (45.8 %). Despite the promising indicators, there is a need to close the gap in research between the Arab world and the other nations. Optimizing the investments and developing regional experiences are key factors to promote the scientific research.

  12. Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal

    OpenAIRE

    Saifuddin M,Nomanbhay; Kumaran,Palanisamy

    2005-01-01

    This research focuses on understanding biosorption process and developing a cost effective technology for treatment of heavy metals-contaminated industrial wastewater. A new composite biosorbent has been prepared by coating chitosan onto acid treated oil palm shell charcoal (AOPSC). Chitosan loading on the AOPSC support is about 21% by weight. The shape of the adsorbent is nearly spherical with particle diameter ranging 100~150 µm. The adsorption capacity of the composite biosorbent was...

  13. Spatial Assessment of Cancer Incidences and the Risks of Industrial Wastewater Emission in China

    Directory of Open Access Journals (Sweden)

    Yingru Li

    2016-05-01

    Full Text Available China’s rapid economic growth and social transitions have deteriorated environmental conditions and caused further public health issues in last three decades. This study examines the complex mechanisms of how socioeconomic transitions and physical environmental conditions impact public health, especially with respect to increasing cancer incidences in mainland China from a spatial-temporal perspective. Specifically, (1 spatial variations of seven types of cancer incidences were analyzed in relation to heavy metal emissions from industrial wastewater at the prefecture-level city scale from 2004 to 2009. Additionally; (2 spatial statistical methods were employed to explore the associations between health outcome, heavy metal emissions from industrial wastewater (arsenic, chromium, cadmium, mercury, lead, as well as socioeconomic transitions (industrialization, urbanization, globalization and physical environmental factors (hydrology and vegetation coverage. Results showed a significant increase of cancer incidences between 2004 and 2009. Consistent with the spatial pattern of heavy metal emissions, cancer patient clusters were identified in both traditional industrial bases and newly industrialized economic zones, especially in major cities located at downstream watersheds, including Beijing, Shanghai, Guangzhou, Shenyang, and Wuhan. The results also revealed the double-edged effects of industrialization, economic growth, and urbanization on natural environment and human health. The findings provide informative knowledge of heavy metal pollution and cancer outbreaks in China and therefore offer valuable reference for authorities formulating regulations.

  14. Isolation of lipase and citric acid producing yeasts from agro-industrial wastewater.

    Science.gov (United States)

    Mafakher, Ladan; Mirbagheri, Maryam; Darvishi, Farshad; Nahvi, Iraj; Zarkesh-Esfahani, Hamid; Emtiazi, Giti

    2010-09-30

    Production of agro-industrial waste pollutants has become a major problem for many industries. However, agro-industrial wastes also can provide alternative substrates for industry and their utilization in this manner may help solve pollution problems. The aim of this study was to isolate yeasts from wastewater treatment plants that could be used to remove pollutants such as glycerol, paraffin and crude oil from the agro-industrial wastewater. In this study a total of 300 yeast isolates were obtained from samples of agro-industrial wastes, and two strains (M1 and M2) were investigated for their ability to produce valuable products such as lipase and citric acid. Identification tests showed that these isolates belonged to the species Yarrowia lipolytica. The Y. lipolytica M1 and M2 strains produced maximum levels of lipase (11 and 8.3 U/ml, respectively) on olive oil, and high levels of citric acid (27 and 8 g/l, respectively) on citric acid fermentation medium. Copyright 2010 Elsevier B.V. All rights reserved.

  15. APPLICATION OF ELECTROCHEMICAL METHODS FOR DECREASING OF CHEMICAL OXYGEN DEMAND (COD AND TOTAL SUSPENDED SOLID (TSS OF TOFU INDUSTRIAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    Suyata

    2015-05-01

    Full Text Available Tofu industrial wastewater has high COD and TSS level, which it cause an environmental pollution. Therefore, it is necessary to decrease the value of COD and TSS of tofu industrial wastewater before discharge into the water body. Decreasing of COD and TSS values can be carried out using an electrochemical method. The purpose of this research was to determine the effect of potential, electrode distance, pH, and time to decrease of COD and TSS value of the tofu industrial wastewater. The experiment has been performed by electrolysis tofu industrial wastewater using PbO2 as anode and Pb as cathode. The result of the research showed that under the optimum conditions of 12 V voltage, 1 cm electrode distance, pH 1, and electrolysis time of 120 minutes, decreasing COD and TSS of 96.33% and 87.87% respectively

  16. Industrial wastewater municipal normative as tools to obtain a better control of industrial pollution to public sewage network systems; Ordenanzas de vertidos como herramienta para lograr un mas eficaz control de vertidos a las redes de saneamiento publico

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.; Mantecon Pascual, R.; Diaz de Durana Uriarte, B.

    2006-07-01

    This paper claims and assesses about the renewal and actualisation of the Spanish industrial wastewater municipal normative, by applying the experience that about these activities has been accumulated by the administration, by the organisms occupied of the management of the control, inspection and treatment of industrial wastewater and, so, by the industries. The main conclusion has been to evidence that the better form to give solution to the problem of industrial wastewater in our cities, can be to go up to an integrated management system which joints the following; control of network systems, control of industrial wastewaters and control of wastewater treatment plants. (Author) 7 refs.

  17. [AOX Pollution in Wastewater Treatment Process of Dyeing and Dyestuff Chemical Industries].

    Science.gov (United States)

    Shen, Yang-yang; Liu, Rui; Xu, Can-can; Shu, Xiao-ming; Xu, Jiang-jun; Lan, Ya-qiong; Chen, Lü-jun

    2015-09-01

    Selecting six large-scale dyeing factories and four large-scale dyestuff chemical factories in the well-developed Yangtze River Delta region, this study aimed to investigate the AOX pollution status in the raw wastewater as well as in the activated sludge treatment system. The components of AOX were characterized by GC-MS. Results showed that AOX concentration was low in wastewater from the six dyeing enterprises, ranging 0. 15-1. 62 mg.L-1 in the raw wastewater and 0. 06-1. 30 mg.L-1 in the biologically treated effluent. All the biologically treated effluent met the emission limits of 8 mg.L-1 in the Discharge Standard of Water Pollutants for Dyeing and Finishing of Textile Industry. Sludge in five factories with AOX was below 621 mg.kg-1, only one factory was with high AOX concentration of 3 280 mg.kg-1. By comparison, AOX concentration greatly varied between the wastewater from dyestuff chemical factories, was 1. 70 mg.L-1 to 78. 72 mg.L-1 in the raw wastewater and was 1. 88 mg.L-1 to 33. 11 mg.L-1 in the biologically treated effluent. AOX concentration in the activated sludge was as high as 960-2,297 mg.kg-1. Chlorobenzenes, chloronitrobenzenes, chloroanilines, chlorine nitroanilines and halophenols were typical TOX components detectable in the dyestuff chemical wastewater. Halophenols and chlorine nitroanilines could be efficiently removed. Single chloroanilines and single chloronitrobenzenes seemed to be easier removable than polychlorinated anilines and polychlorinated nitrobenzenes. Polychlorinated benzenes were also easily removal but the products chlorobenzene was hard to remove.

  18. Efficiency of compost in the removal of heavy metals from the industrial wastewater

    Science.gov (United States)

    Kocasoy, Günay; Güvener, Zeynep

    2009-03-01

    Authorities have been applying very strict regulations for the treatment of industrial wastewater recently because of the threatening level of the environmental pollution faced. Industrial wastewater containing heavy metals is a threat to the public health because of the accumulation of the heavy metals in the aquatic life which is transferred to human bodies through the food chain. Therefore, recently, researchers have been oriented toward the practical use of adsorbents for the treatment of wastewater polluted by heavy metals. The aim of this research was to determine the retention capacity of compost for copper, zinc, nickel and chromium. For this purpose, experiments in batch-mixing reactors with initial metal concentrations ranging from 100 to 1,000 mg/l were carried. It was also observed that compost could repeatedly be used in metal sorption processes. The experiments conducted indicated that compost has high retention capacities for copper, zinc and nickel, but not for chromium. Thus, compost has been approved as a potential sorbent for copper, zinc and nickel and may find place in industrial applications. Thus, solid waste which is another source of significant environmental pollution will be reduced by being converted into a beneficial product compost.

  19. Mathematical modeling of simultaneous carbon-nitrogen-sulfur removal from industrial wastewater.

    Science.gov (United States)

    Xu, Xi-Jun; Chen, Chuan; Wang, Ai-Jie; Ni, Bing-Jie; Guo, Wan-Qian; Yuan, Ye; Huang, Cong; Zhou, Xu; Wu, Dong-Hai; Lee, Duu-Jong; Ren, Nan-Qi

    2017-01-05

    A mathematical model of carbon, nitrogen and sulfur removal (C-N-S) from industrial wastewater was constructed considering the interactions of sulfate-reducing bacteria (SRB), sulfide-oxidizing bacteria (SOB), nitrate-reducing bacteria (NRB), facultative bacteria (FB), and methane producing archaea (MPA). For the kinetic network, the bioconversion of C-N by heterotrophic denitrifiers (NO 3 - →NO 2 - →N 2 ), and that of C-S by SRB (SO 4 2- →S 2- ) and SOB (S 2- →S 0 ) was proposed and calibrated based on batch experimental data. The model closely predicted the profiles of nitrate, nitrite, sulfate, sulfide, lactate, acetate, methane and oxygen under both anaerobic and micro-aerobic conditions. The best-fit kinetic parameters had small 95% confidence regions with mean values approximately at the center. The model was further validated using independent data sets generated under different operating conditions. This work was the first successful mathematical modeling of simultaneous C-N-S removal from industrial wastewater and more importantly, the proposed model was proven feasible to simulate other relevant processes, such as sulfate-reducing, sulfide-oxidizing process (SR-SO) and denitrifying sulfide removal (DSR) process. The model developed is expected to enhance our ability to predict the treatment of carbon-nitrogen-sulfur contaminated industrial wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Electrodialytic removal of fluoride and calcium ions to recover phosphate from fertilizer industry wastewater

    Directory of Open Access Journals (Sweden)

    Arseto Yekti Bagastyo

    2017-09-01

    Full Text Available The fertilizer industry generates wastewater rich in phosphate and fluoride content, with concentration as high as 4540 and 9720 mg L−1, respectively. The untreated wastewater may enhance the growth of algae, promote eutrophication, and create serious effects on environmental health and aquatic life. Therefore, this wastewater has to be treated before releasing into the environment. This study evaluates the performance of a three-compartment electrodialysis reactor to remove fluoride and calcium ions, and recover phosphate present in the wastewater, for possible further use in the fertilizer industry. The experiments were conducted in a batch system at room temperature. A 4 L of wastewater was electrodialysed using three different electrical current (i.e., 0.5, 0.75, and 1.0 A and two different membrane surface areas (i.e., 100 and 200 cm2. The highest removal of fluoride ions was up to 260 mg L−1 (2.7% by applying 1 A of current and 100 cm2 membrane area. No substantial increase of fluoride and calcium removal was observed for 200 cm2 membrane area. Interestingly, the amount of the remaining phosphate was high (i.e., only 1% removal, implying a very efficient recovery in the feed. The energy required for fluoride ion transfer was much lower than for phosphate ion, i.e., up to 6 vs. 0.12 mol kWh−1, suggesting that a higher removal of fluoride can possibly be achieved by limiting migration of phosphate ion through the membrane.

  1. Inhibition of the nitrification process in municipal wastewater treatment plants by industrial discharges

    DEFF Research Database (Denmark)

    Grüttner, Henrik; Winther-Nielsen, M.; Jorgensen, L.

    1994-01-01

    More than three years of pilot-plant operation has documented that inhibition of nitrification was found to influence the dimensioning of the largest Danish wastewater treatment plant, which serves a major part of Copenhagen. Hence, a program for investigating the sources of substances inhibitory...... of inhibitory substances are to be found among the industries, and that nearly all of the industries investigated exhibited some kind of inhibitory effect. Further, is was demonstrated that the toxic unit calculation might be used in the quantification of the sources, and that the observed effects could...

  2. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2012 through October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2013 reporting year, an estimated 9.64 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.

  3. The potential of biodiesel production from Botryococcus sp. biomass after phycoremediation of domestic and industrial wastewater

    Science.gov (United States)

    Gani, P.; Sunar, N. M.; Matias-Peralta, H. M.; Latiff, A. A. A.; Parjo, U. K.; Embong, Z.; Khalid, A.; Tajudin, S. A. A.

    2016-11-01

    The aim of the present work is to investigate the capability of microalgae, known as Botryococcus sp. for wastewater phycoremediation and potential biodiesel production. The vertical closed photobioreactors (PBR) were employed and supplemented with domestic wastewater (DW) and food industry wastewater (FW) at different batch of study. The cultivation was conducted under natural outdoor condition for 12 days. The results revealed that the removal of pollutant and nutrients presence in both wastewaters with constantly decrease proportionate to the increase in cultivation time. The chemical oxygen demand (COD), total phosphorus (TP) and total organic carbon (TOC) were successfully removed up to 84.9%, 69.3% and 93.3%, respectively in DW while 96.1%, 35.5% and 87.2%, respectively in FW. The result on FT-IR analysis of microalgae oil was shown comparable with conventional palm oil based biodiesel in term of IR spectra. This study suggests that Botryococcus sp. has tremendous potential in pollutants removal and biodiesel production for renewable energy development.

  4. PERFORMANCE EVALUATION OF AN ANAEROBIC BAFFLED REACTOR TREATING WHEAT FLOUR STARCH INDUSTRY WASTEWATER

    Directory of Open Access Journals (Sweden)

    H. Movahedyan, A. Assadi, A. Parvaresh

    2007-04-01

    Full Text Available Feasibility of the anaerobic baffled reactor process was investigated for the treatment of wheat flour starch wastewater. After removal of suspended solids by simple gravity settling, starch wastewater was used as a feed. Start-up of a reactor (with a volume of 13.5 L and five compartments with diluted feed of approximately 4500 mg/L chemical oxygen demand was accomplished in about 9 weeks using seed sludge from anaerobic digester of municipal wastewater treatment plant. The reactor with hydraulic retention time of 72h at 35°C and initial organic loading rate of 1.2 kgCOD/m3.d showed 61% COD removal efficiency. The best performance of reactor was observed with an organic loading rate of 2.5 kgCOD/m3.d or hydraulic retention time of 2.45 d and the COD conversion of 67% was achieved. The system also showed very high solids retention with effluent suspended solids concentration of about 50 mg/L for most organic and hydraulic loadings studied. Based on these observations, the ABR process has potential to treat food industrial wastewater as a pretreatment and is applicable for extreme environmental conditions.

  5. The Potential of Indigenous Bacteria for Removing Cadmium from Industrial Wastewater in Lawang, East Java

    Directory of Open Access Journals (Sweden)

    Agung Pambudiono

    2018-01-01

    Full Text Available Heavy metals have been used in various areas around the world especially in the industrial sector. Heavy metals contamination is very dangerous for ecosystem because of its toxicity for some organisms. Cadmium (Cd is a dangerous metal pollutant that can cause remarkable diverse of toxic effects, in particular for humans and animals. The use of bacteria as bioremediation agents has been widely studied because more efficient, less cost, and environmentally friendly strategy. This present study aimed to isolate and identify Cd-resistant bacteria from the industrial disposal site. Wastewater samples were collected from disposal site of agar flour industry in Lawang Malang, East Java. The collected wastewater effluent was analyzed for physicochemical properties. Isolation of Cd-resistant bacteria was carried out using serial dilution. Bacterial isolates were observed and tested for their effects on the content of Cd. The content of Cd was tested daily using Atomic Absorption Spectroscopy (AAS for seven consecutive days. Data was analyzed using one-way ANOVA (p < 0.05 and Tukey test. Characterization of potential bacterium was performed using bacterial identification kit. Four bacteria isolates have been successfully isolated from the wastewater sample. There was a statistically significant difference between groups as determined by one-way ANOVA (F = 1229.62, p = 0.00. A Tukey post hoc test revealed that all conditions are significantly different from each other. The content of Cd in wastewater sample was statistically significantly lower after taking the A isolate (3.39 mg/L, p = 0.00, B Isolate (1.47 mg/L, p = 0.00, C Isolate (1.15 mg/L, p = 0.00, and D isolate (1.95 mg/L, p = 0.00 compared to the control treatment (5.11 mg/L, p = 0.00. Two of the most potential isolates identified as Pseudomonas flourescens (C isolate and Enterobacter agglomerans (B isolate.

  6. Treatment and Reuse of Wastewaters Discharged by Petroleum Industries (HMD/Algeria)

    Energy Technology Data Exchange (ETDEWEB)

    Sellami, MH, E-mail: sellami2000dz@gmail.com [Process Engineering Department, Laboratory of Process Engineering, Ouargla University (Algeria); Loudiyi, K [Renewable Energies Laboratory (REL) Al Akhawayne University, Ifrane (Morocco); Boubaker, MC; Habbaz, H [Process Engineering Department, Laboratory of Process Engineering, Ouargla University (Algeria)

    2015-12-23

    Industrial wastewaters discharged by petroleum industries contains: oil, heavy metals and chemicals used in the process of oil separation and treatment. These waters are a source of soil, water and air pollution, and lead a mortal danger to the ecosystem. Our aim in this work has an aspect that can contribute to the collective effort to address the enormous amount of water purges storage bins and reuse them to avoid any environmental damage. This was achieved by chemical treating of these wastewaters discharged from three different locations of Hassi Messaoud (HMD) petroleum field by flocculation with (C-5563) followed by coagulation with (C-2061) using two different acids as sequestering namely: Ascorbic and Citric acid. After experiments, the results showed that the wastewater can be treated without sequestering by adding 40 ppm of activated silicates. The best result was obtained by addition of 160 ppm of Ascorbic acid as sequestering agent and 20 ppm of activated silicates; resulting in removal of 92.81 % of suspended matter and 95.53 % of turbidity. Finally we concluded that this wastewater was satisfactorily treated and we recommend either inject it for enhanced oil recovery in industrial closest field (North field) to maintain the reservoir pressure and the improved rate recovery of oil reserves or reuse it in garden irrigation. In order to see the impact of the treated water on plants, irrigation tests have conducted on two types of plants (date palm and shaft apocalyptic) for one year. The tests showed that the thick layer of 5 cm and 0.08mm of particles diameter of dune sand removes most of remaining oil. The sand layer that fills the basin surrounding the shaft is removed and replaced every 06 months. So, Dune sand plays the role of natural filter. The garden plants appear and grow normally.

  7. Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells

    KAUST Repository

    Tenca, Alberto

    2013-02-01

    Microbial electrolysis cells (MECs) can be used to treat wastewater and produce hydrogen gas, but low cost cathode catalysts are needed to make this approach economical. Molybdenum disulfide (MoS2) and stainless steel (SS) were evaluated as alternative cathode catalysts to platinum (Pt) in terms of treatment efficiency and energy recovery using actual wastewaters. Two different types of wastewaters were examined, a methanol-rich industrial (IN) wastewater and a food processing (FP) wastewater. The use of the MoS2 catalyst generally resulted in better performance than the SS cathodes for both wastewaters, although the use of the Pt catalyst provided the best performance in terms of biogas production, current density, and TCOD removal. Overall, the wastewater composition was more of a factor than catalyst type for accomplishing overall treatment. The IN wastewater had higher biogas production rates (0.8-1.8 m3/m3-d), and COD removal rates (1.8-2.8 kg-COD/m3-d) than the FP wastewater. The overall energy recoveries were positive for the IN wastewater (3.1-3.8 kWh/kg-COD removed), while the FP wastewater required a net energy input of -0.7 - 1.2 kWh/kg-COD using MoS 2 or Pt cathodes, and -3.1 kWh/kg-COD with SS. These results suggest that MoS2 is the most suitable alternative to Pt as a cathode catalyst for wastewater treatment using MECs, but that net energy recovery will be highly dependent on the specific wastewater. © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  8. Application of the removal of pollutants from textile industry wastewater in constructed wetlands using fuzzy logic.

    Science.gov (United States)

    Dogdu, Gamze; Yalcuk, Arda; Postalcioglu, Seda

    2017-02-01

    There are more than a hundred textile industries in Turkey that discharge large quantities of dye-rich wastewater, resulting in water pollution. Such effluents must be treated to meet discharge limits imposed by the Water Framework Directive in Turkey. Industrial treatment facilities must be required to monitor operations, keep them cost-effective, prevent operational faults, discharge-limit infringements, and water pollution. This paper proposes the treatment of actual textile wastewater by vertical flow constructed wetland (VFCW) systems operation and monitoring effluent wastewater quality using fuzzy logic with a graphical user interface. The treatment performance of VFCW is investigated in terms of chemical oxygen demand and ammonium nitrogen (NH4-N) content, color, and pH parameters during a 75-day period of operation. A computer program was developed with a fuzzy logic system (a decision- making tool) to graphically present (via a status analysis chart) the quality of treated textile effluent in relation to the Turkish Water Pollution Control Regulation. Fuzzy logic is used in the evaluation of data obtained from the VFCW systems and for notification of critical states exceeding the discharge limits. This creates a warning chart that reports any errors encountered in a reactor during the collection of any sample to the concerned party.

  9. Adsorption of Oxyanions from Industrial Wastewater using Perlite-Supported Magnetite.

    Science.gov (United States)

    Verbinnen, Bram; Block, Chantal; Vandecasteele, Carlo

    2016-05-01

    Most studies on oxyanion adsorption focus on their removal from synthetic solutions. It is often claimed that the considered adsorbents can be used to treat real (industrial) wastewaters, but this is seldom tested. Perlite-supported magnetite was characterized first by determining its specific surface area, magnetite content and by examining the coating. Tests on a synthetic solution showed that at the ideal pH values (pH 3 to 5), the order of adsorption is Mo(VI) > As(V) > Sb(V) > Cr(VI) > Se(VI). Most oxyanions can be removed for more than 75% with an adsorbent dosage of 1 g/l. Furthermore, perlite-supported magnetite has a higher removal efficiency for oxyanions than commercially available adsorbents and comparable adsorbents described in literature. Perlite-supported magnetite is suitable for treating real wastewaters: it can remove several oxyanions simultaneously from the considered industrial wastewater, but the adsorption order changes due to the presence of interfering anions.

  10. Autotrophic denitrification and chemical phosphate removal of agro-industrial wastewater by filtration with granular medium.

    Science.gov (United States)

    Tanaka, Yasuo; Yatagai, Atsushi; Masujima, Hiroshi; Waki, Miyoko; Yokoyama, Hiroshi

    2007-03-01

    A novel granular medium consisting (1.5-5 mm in diameter) of inert perlite particles as nuclei and an effective surface layer containing sulfur, CaCO3 and Mg(OH)2 was developed for advanced treatment of agro-industrial wastewater. The performance of the medium was examined with a laboratory-scale down-flow fixed-bed column reactor using piggery wastewater, which had been treated by an upflow anaerobic sludge blanket reactor and a trickling filter. The removal efficiency of NOx- -N was more than 70% with a NOx- -N loading rate of less than approximately 0.3 kg Nm(-3) d(-1); the removal efficiency dropped due to the accumulation of nitrite when the loading rate exceeded that value. A significant drop of phosphate and Mg2+ concentrations occurred when the effluent pH exceeded 7.9. Ammonium was removed with an average removal efficiency of 12.4%. These results indicated that the crystalline reaction of PO4(3-), Mg2+ and NH4+ (MAP reaction) under alkaline conditions contributed to the removal of phosphate. This medium could be useful for the simultaneous reduction of nitrogenous and phosphorus compounds in biologically treated agro-industrial wastewater.

  11. Industrial wastewater advanced treatment via catalytic ozonation with an Fe-based catalyst.

    Science.gov (United States)

    Li, Xufang; Chen, Weiyu; Ma, Luming; Wang, Hongwu; Fan, Jinhong

    2018-03-01

    An Fe-based catalyst was used as a heterogeneous catalyst for the ozonation of industrial wastewater, and key operational parameters (pH and catalyst dosage) were studied. The results indicated that the Fe-based catalyst significantly improved the mineralization of organic pollutants in wastewater. TOC (total organic carbon) removal was high, at 78.7%, with a catalyst concentration of 200 g/L, but only 31.6% with ozonation alone. The Fe-based catalyst significantly promoted ozone decomposition by 70% in aqueous solution. Hydroxyl radicals (·OH) were confirmed to be existed directly via EPR (electron paramagnetic resonance) experiments, and ·OH were verified to account for about 34.4% of TOC removal with NaHCO 3 as a radical scavenger. Through characterization by SEM-EDS (field emission scanning electron microscope with energy-dispersive spectrometer), XRD (X-ray powder diffraction) and XPS (X-ray photoelectron spectroscopy), it was deduced that FeOOH on the surface of the catalyst was the dominant contributor to the catalytic efficiency. The catalyst was certified as having good stability and excellent reusability based on 50 successive operations and could be used as a filler simultaneously. Thereby, it is a promising catalyst for practical industrial wastewater advanced treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluation of mutagenicity of wastewater in the vicinity of pesticide industry.

    Science.gov (United States)

    Anjum, Reshma; Malik, Abdul

    2013-03-01

    Pesticide industrial wastewater samples were taken from the Chinhat industrial area nearby Lucknow city, India. GC-MS analysis revealed the presence of pesticides lindane, α-endosulfan, β-endosulfan, chlorpyriphos, monocrotophos, dimethoate and malathion. A pesticide mixture and wastewater extracts were studied to determine the mutagenicity by Ames Salmonella test, survival of DNA repair defective E. coli K-12 mutants and bacteriophage λ systems. Wastewater samples were concentrated with XAD-resins as an adsorbent and liquid-liquid extraction procedure. The XAD concentrated sample exhibited maximum mutagenic activity in comparison to liquid-liquid extracted sample. TA98 strain was the most responsive strain for both test samples with (+S9) and without (-S9) metabolic activation, while other strains exhibited weak response. A significant decline of DNA repair defective E. coli K-12 mutants, bacteriophage λ was observed with test samples in the survival. The intracellular damage was highest when treated with XAD concentrated sample as compared to liquid-liquid extract after 6h treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Why use a thermophilic aerobic membrane reactor for the treatment of industrial wastewater/liquid waste?

    Science.gov (United States)

    Collivignarelli, Maria Cristina; Abbà, Alessandro; Bertanza, Giorgio

    2015-01-01

    This paper describes the advantages of thermophilic aerobic membrane reactor (TAMR) for the treatment of high strength wastewaters. The results were obtained from the monitoring of an industrial and a pilot scale plant. The average chemical oxygen demand (COD) removal yield was equal to 78% with an organic loading rate (OLR) up to 8-10 kgCOD m(-3) d(-1) despite significant scattering of the influent wastewater composition. Total phosphorus (TP) was removed with a rate of 90%, the most important removal mechanism being chemical precipitation (as hydroxyapatite, especially), which is improved by the continuous aeration that promotes phosphorus crystallization. Moreover, surfactants were removed with efficiency between 93% and 97%. Finally, the experimental work showed that thermophilic processes (TPPs) are complementary with respect to mesophilic treatments.

  14. CHARACTERIZATION AND PERFORMANCE EVALUATION OF REUSED WABE AS FLOCCULANTS AGENT TO TREAT INDUSTRIAL PAPER MILL WASTEWATER

    Directory of Open Access Journals (Sweden)

    MUHAMMAD H. J. KHADIDI

    2016-05-01

    Full Text Available The present research mainly to explore the performance of customize flocculants agent made by reusable waste (WABE to treat actual wastewater from different industry. The effect of mixing rate (10, 20, 30, 150, 175 and 200 rpm, sedimentation time (5, 15 and 30 min, initial pH (5, 6, 7 and original pH of initial wastewater and flocculation dosage (2, 5 and 10% v/v were investigated based on turbidity removal. WABE characterized by Inductively Coupled Plasma Mass Spectrometry (ICP-MS and Fourier Transform Infrared Spectroscopy (FTIR. The result shows flocculants agents have high turbidity removal up to 90% at optimum condition. This study also provides strong evident WABE can be developed as flocculants agent at low cost and low maintenance.

  15. Potential of single and double-combined adsorbents in removing chromium from an industrial wastewater

    Directory of Open Access Journals (Sweden)

    Mousavi S.F.

    2014-07-01

    Full Text Available Nowadays, there is much attention in using low-cost methods for removing heavy metals’ pollution from wastewaters. In this research, the ability of different adsorbents including zeolite, peat, activated carbon, cationic resin and anionic resin (in single and double-combined forms in decreasing Cr(III and Cr(VI concentration to below the legal limits from an industrial wastewater was investigated. The results showed that for single-adsorbent treatments, all adsorbents were more effective in reducing Cr(VI concentration than Cr(III. The highest removal efficiency (Er=100% was obtained by anionic resin. Presence of anionic resin in each double-adsorbent caused an improvement of chromium removal. Among the double-adsorbents treatments, combination of peat and activated carbon was the most proper treatment in removing chromium.

  16. Removal of metals from industrial wastewater and urban runoff by mineral and bio-based sorbents.

    Science.gov (United States)

    Gogoi, Harshita; Leiviskä, Tiina; Heiderscheidt, Elisangela; Postila, Heini; Tanskanen, Juha

    2018-03-01

    The study was performed to evaluate chemically modified biosorbents, hydrochloric acid treated peat (HCl-P) and citric acid treated sawdust (Citric acid-SD) for their metal removal capacity from dilute industrial wastewater and urban runoff and compare their efficiency with that of commercially available mineral sorbents (AQM PalPower M10 and AQM PalPower T5M5 magnetite). Batch and column experiments were conducted using real water samples to assess the sorbents' metal sorption capacity. AQM PalPower M10 (consisting mainly of magnesium, iron and silicon oxides) exhibited excellent Zn removal from both industrial wastewater and spiked runoff water samples even at low dosages (0.1 g/L and 0.05 g/L, respectively). The high degree of Zn removal was associated with the release of hydroxyl ions from the sorbent and subsequent precipitation of zinc hydroxide. The biosorbents removed Ni and Cr better than AQM PalPower M10 from industrial wastewater and performed well in removing Cr and Cu from spiked runoff water, although at higher dosages (0.3-0.75 g/L). The main mechanism of sorption by biosorbents was ion exchange. The sorbents required a short contact time to reach equilibrium (15-30 min) in both tested water samples. AQM PalPower T5M5 magnetite was the worst performing sorbent, leaching Zn into both industrial and runoff water and Ni into runoff water. Column tests revealed that both HCl-P and AQM PalPower M10 were able to remove metals, although some leaching was witnessed, especially As from AQM PalPower M10. The low hydraulic conductivity observed for HCl-P may restrict the possibilities of using such small particle size peat material in a filter-type passive system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A Comprehensive Study on the Application of Reverse Osmosis (RO Technology for the Petroleum Industry Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Shahryar Jafarinejad

    2017-10-01

    Full Text Available Large quantities of oily wastewaters can be generated from the activities and processes in the petroleum industry which draining of these effluents not only pollutes the environment but also reduces the yield of oil and water. Therefore, development of treatment processes for petroleum industry wastewaters is vital in order to prevent serious environmental damage and provide a source of water for beneficial use. Reverse osmosis (RO can be the most common membrane process used for desalination from oily wastewater and can produce water suitable for reuse at the petroleum industry. In this study, the application of RO technology for the petroleum industry wastewater treatment in different laboratory, pilot, field, and industrial scales have been reviewed. In addition, membrane fouling control, performance efficiency, treatment system configurations, pretreatment methods, quality of treated water, and economic issues have been investigated. With mixtures as complex as petroleum industry wastewaters, membrane fouling becomes a significant hurdle to implement the RO-based purification system. Operating the system within the critical flux range or adding chemicals, and/or pretreatment can usually control membrane fouling. Salt rejection of RO membranes can be 99% or higher.

  18. [Characteristic research of shortcut denitrification in synthetic ammonia industrial wastewater treatment process].

    Science.gov (United States)

    Li, Yan; Li, Ze-Bing; Ma, Jia-Xuan; Wang, Xiao-Yi; Zhao, Bai-Hang; Li, Jun

    2012-06-01

    Active sludge was from a pilot-scale synthetic ammonia industrial wastewater treatment plant with a strengthen anoxic-oxic (A/O) technology. The zero order kinetic model was suit for describing shortcut and complete denitrification process. Experimental results showed that shortcut denitrification could reduce 14.1% carbon source consumption and 55.7% denitrification time, respectively, comparing with complete denitrification. The maximum specific denitrification rate was 0.509 g x (g x d)(-1) with an initial NO2(-) -N concentration of 36.82 mg x L(-1) and pH 7.5. In the industrial practice, it must be avoided pH higher than 9.0 in anoxic zone for industrial treatment. Replication-selective denitrifying bacteria showed a strong adaptability to methanol and ethanol, but showed maladaptation to other small molecular and easily biodegradable organics, such as glucose and acetic acid.

  19. Wastewater generated during cleaning/washing procedures in a wood-floor industry: toxicity on the microalgae Desmodesmus subspicatus.

    Science.gov (United States)

    Laohaprapanon, S; Kaczala, F; Salomon, P S; Marques, M; Hogland, W

    2012-01-01

    In industries based on dry processes, such as wood floor and wood furniture manufacture, wastewater is mainly generated after cleaning of surfaces, storage tanks and machinery. Owing to the small volumes, onsite treatment options and potential environmental risks posed to aquatic ecosystems due to discharge of these wastewaters are seldom investigated. In the present study, the effects of cleaning wastewater streams generated at two wood floor production lines on Desmodesmus subspicatus were investigated. The microalgae was exposed to different wastewater concentrations (100, 50, 25, 12.5 and 6.25% v:v) and the algae growth evaluation was based on in vivo chlorophyll fluorescence, cell density, cell size (number of cells/colony) and cell ratio (length/width). Inhibitory effects of the tested wastewaters on the microalgae were positively related to concentration and negatively related to exposure time. The EC50,24 h of blade cleaning wastewater (BCW) and floor cleaning wastewater (FCW) were 3.36 and 5.87% (v:v), respectively. No negative effect on cell colony formation was caused by BCW, whereas an increase of 90% unicellular cells was observed in FCW concentrations below 50% (v:v). At the lowest concentration (3.13% v:v) where no growth inhibition was observed, both wastewater streams caused changes in cell dimensions by increasing cell length and width. To conclude, wastewaters generated during cleaning procedures in the wood floor industries can have severe environmental impacts on aquatic organisms, even after high dilution. Therefore, these wastewaters must be treated before being discharged into water bodies.

  20. Anaerobic wastewater treatment in the food processing industry: two case studies

    Energy Technology Data Exchange (ETDEWEB)

    Campos, J.R.; Foresti, E.; Camacho, R.D.P.

    1986-01-01

    This article relates two experiments with wastewater treatment in the food processing industry. One of them refers to the use of an anaerobic filter (meat processing industry) and the other to the use of an upflow anaerobic sludge blanket reactor-UASB (vegetable and fruit processing industry). In the first case, the study describes the performance of an anaerobic filter which has been working for 6 years and provides COD removal efficiency (including primary treatment) equal or better than 80% with an organic loading of 1.4 kg of COD/cubic m/day. The reactor has a bed of broken stones with size of 0.75 m having a medium hydraulic retention time of 13 hours. Discharges of accumulated sludge in a false bottom below the filter are made at intervals of 2 or 3 months. In the second case, the study describes the performance of an upflow anaerobic sludge blanket reactor (88 cubic m) during 255 days of operation including the adaptation phase or startup. This reactor receives wastewater from vegetable and fruit processing including tomato, corn, guava and peach. At the end of each operational phase studied, the COD removal efficiency was about 80%. In the last phase (7.5 hours hydraulic retention time), the organic loading was 1.4 kg of COD/cubic m/day and the hydraulic loading was 3.2 cubic m/cubic m/day. (Refs. 11).

  1. Isolation, Identification, and Characterization of Cadmium Resistant Pseudomonas sp. M3 from Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Syed Zaghum Abbas

    2014-01-01

    Full Text Available The present study deals with the isolation, identification, and characterization of the cadmium resistant bacteria from wastewater collected from industrial area of Penang, Malaysia. The isolate was selected based on high level of the cadmium and antibiotic resistances. On the basis of morphological, biochemical characteristics, 16S rDNA gene sequencing and phylogeny analysis revealed that the strain RZCd1 was authentically identified as Pseudomonas sp. M3. The industrial isolate showed more than 70% of the cadmium removal in log phase. The cadmium removal capacity of strain RZCd1 was affected by temperature and pH. At pH 7.0 and 35°C, strain RZCd1 showed maximum cadmium removal capacity. The minimal inhibitory concentration of strain RZCd1 against the cadmium was 550 µg/mL. The resistance against the cadmium was associated with resistance to multiple antibiotics: amoxicillin, penicillin, cephalexin, erythromycin, and streptomycin. The strain RZCd1 also gave thick bands of proteins in front of 25 kDa in cadmium stress condition after 3 h of incubation. So the identified cadmium resistant bacteria may be useful for the bioremediation of cadmium contaminated industrial wastewater.

  2. Effects of treated agro-industrial wastewater irrigation on tomato processing quality

    Directory of Open Access Journals (Sweden)

    Giuseppe Gatta

    2015-06-01

    Full Text Available This study was designed to determine the qualitative and microbiological impact of two different sources of irrigation water on tomato fruit: groundwater (GW, as the control, and treated agro-industrial wastewater (SW. The mean tomato fruit quality parameters of dry matter, weight, diameter, colour index, pH, soluble solids content, titratable acidity, Ca2+ and Na+ content were not significantly affected by the different water treatments. Conversely, NO3– contents was significantly higher with GW use, than with SW (2.21 vs 1.62 mg 100 g–1, respectively; P≤0.05. The microbial quality of the tomato fruit was not significantly different across the GW and SW treatments, with no Salmonella spp. isolated from any of the fruit, and the faecal indicators always below 10 CFU g–1. These data show that agro-industrial treated wastewater can be used for irrigation for industrial tomato production once the long-term effects on the agroecosystem have been defined.

  3. APPLICATION OF PAN/PANI COMPOSITE MEMBRANES IN PURIFICATION OF INDUSTRIAL WASTEWATER GENERATED DURING PROCESSING OF METALS

    Directory of Open Access Journals (Sweden)

    Beata Fryczkowska

    2017-04-01

    Full Text Available The paper presents results of research on the use of composite membranes of polyacrylonitrile (PAN doped polyaniline (PANI to remove contaminations of industrial wastewater generated during the processing of metals. Wastewater obtained from industry was pre-treated with the flocculant Magnafloc®336, and then the supernatant solution was introduced into the ultrafiltration cell, AMICON (Millipore equipped in the previously prepared polymer membrane. Using spectrophotometer UV-Vis (HACH and atomic absorption spectrometry (AAS pollution indicators was marked before and after the integrated purification proces, to determine the degree of removal of selected ions from wastewater. As a result of flocculation from wastewater there have been removed phosphates (79%, chlorides (11-14%, sulfates (2-10% and iron (36-92%, cobalt (~ 80%, cadmium (~ 31% and nickel (~ 25%. However, the pressure membrane process almost completely removed zinc, copper and cadmium (~ 100%, iron (by a further 43-69% and phosphate anions, which was a little.

  4. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation

    OpenAIRE

    Mingming Luan; Guolin Jing; Yongjian Piao; Debin Liu; Lifeng Jin

    2017-01-01

    Wet air oxidation (WAO) is one of the most economical and environmentally-friendly advanced oxidation processes. It makes a promising technology for the treatment of refractory organic pollutants in industrial wastewaters. In wet air oxidation aqueous waste is oxidized in the liquid phase at high temperatures (125–320 °C) and pressures (0.5–20 MPa) in the presence of an oxygen-containing gas (usually air). The advantages of the process include low operating costs and minimal air pollution dis...

  5. COD reduction of petrochemical industry wastewater using Fenton's oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, P.; Samanta, A.N.; Ray, S. [Indian Inst. of Technology, Kharagpur, West Bengal (India). Dept. of Chemical Engineering

    2010-12-15

    This paper discussed experimental batch tests that were undertaken to determine the optimum process conditions for maximizing the reduction in chemical oxygen demand (COD) value of wastewater in the petrochemical industry using Fenton's oxidation process (FOP). The process parameters investigated were pH, hydrogen peroxide (H{sub 2}O{sub 2}) dosage, ferrous iron dosage, the ratio of H{sub 2}O{sub 2} to ferrous iron, and temperature. To determine the influence of process parameters, only one parameter was varied at a time. It was determined that the initial pH of the solution, the temperature, the amount of H{sub 2}O{sub 2}, and the iron salt and their molar ratio influence the degree of COD reduction in the wastewater. The optimum conditions were found to be a pH of 3, an H{sub 2}O{sub 2} concentration of 3 molar, a ferrous iron concentration of 0.06 molar, and a temperature of 30 degrees Celsius, at which FOP was found to reduce the COD by 97.5 percent in 100 minutes. FOP is a low cost and simple alternative to biological processes for treating wastewater, and it turns pollutants into innocuous compounds. 29 refs., 2 tabs., 7 figs.

  6. Use of nano filtration membrane technology for ceramic industry wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Moliner-Salvador, R.; Deratani, A.; Palmeri, J.; Sanchez, E.

    2012-07-01

    A study has been undertaken of an advanced wastewater treatment approach using polymer nano filtration membranes, in an attempt to obtain water of sufficient quality to allow it to be reused in the same production process or, alternatively, to be discharged without any problems. The study has initially focused on the removal of organic matter (reduction of COD) and the most representative ions present in the wastewater, such as Na{sup +}, Mg{sup 2}+, Cl{sup -}, and SO{sub 4}{sup 2}. In a first part of the study, with a view to optimising the experimental phase, a simulation has been performed of the nano filtration process using the Nano Flux software. Among other things, the simulation allows the most suitable membranes to be selected as a function of the permeate flow rate and desired level of retention in the substances to be removed. The subsequent experimentation was carried out in a laboratory tangential filtration system that works with flat membranes. It was found that retention values of about 90% were obtained for the studied substances, with a good permeate flow rate, using low operating pressures. These results demonstrate the feasibility of the studied technology and its potential as a treatment for improving ceramic industry wastewater quality.

  7. PERFORMANCE OF NEWLY CONFIGURED SUBMERGED MEMBRANE BIOREACTOR FOR AEROBIC INDUSTRIAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    I Gede Wenten

    2012-02-01

    Full Text Available The application of membrane to replace secondary clarifier of conventional activated sludge, known as membrane bioreactor, has led to a small footprint size of treatment with excellent effluent quality. The use of MBR eliminates almost all disadvantages encountered in conventional wastewater treatment plant such as low biomass concentration and washout of fine suspended solids. However, fouling remains as a main drawback. To minimize membrane fouling, a new configuration of submerged membrane bioreactor for aerobic industrial wastewater treatment has been developed. For the new configuration, a bed of porous particle is applied to cover the submerged ends-free mounted ultrafiltration membrane. Membrane performance was assessed based on flux productivity and selectivity. By using tapioca wastewater containing high organic matter as feed solution, reasonably high and stable fluxes around 11 l/m2.h were achieved with COD removal efficiency of more than 99%. The fouling analysis also shows that the newly configured ends-free membrane bioreactor exhibits lower irreversible resistance compared with the submerged one. In addition, the performance of pilot scale system, using a membrane module  with 10 m2 effective area and reactor tank with 120 L volume, was also assessed. The flux achieved from the pilot scale system around 8 l/m2.h with COD removal of more than 99%. Hence, this study has demonstrated the feasibility of the newly configured submerged ends-free MBR at larger scale.

  8. Removal and transformation of polycyclic aromatic hydrocarbons during electrocoagulation treatment of an industrial wastewater.

    Science.gov (United States)

    Gong, Chenhao; Shen, Gang; Huang, Haiou; He, Peiran; Zhang, Zhongguo; Ma, Baoqing

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are an important class of water pollutants because of their known ecological and human toxicity. Electrocoagulation (EC) is a promising technology for mitigating industrial wastewater pollution, but the removal and transformation of PAHs during EC treatment has not yet been understood. Therefore, a paper-making wastewater effluent (PMWW) was employed in this study to investigate the relationship between PAHs' removal and transformation during EC treatment. The results show that 86% of PAHs were effectively removed not only by the electro-oxidation reactions, but also by adsorption onto Fe hydroxide flocs. The removal and transformation of PAHs were related to the number of rings in their structures. Some PAHs composed of two aromatic rings (e.g., naphthaline and dimethylnaphthalene) were produced from humic acid-like and fulvic acid-like organics in PMWW, while PAHs with three to four rings were degraded, thus being removed efficiently. Therefore, PAH transformation during EC treatment exerted double-sided effects on the removal of PAHs; the net effect appeared to be positive. Overall, this study revealed the existence and importance of PAH transformation during EC treatment and provided useful guidance for pulp and paper mills to improve the design and operation of wastewater treatment facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. An integrated mechanical-enzymatic reverse osmosis treatment of dairy industry wastewater and milk protein recovery as a fat replacer: a closed loop approach

    National Research Council Canada - National Science Library

    Sarghini, F; Sorrentino, A; Di Pierro, P

    2013-01-01

    .... Moreover, correct dismissal of dairy industry wastewater is sometimes neglected by the operators , increasing the environmental impact due to the chemical and biological characteristics of such effluents...

  10. An ecological new approach for treating Cr(VI)-containing industrial wastewater: Photochemical reduction.

    Science.gov (United States)

    Liu, Jie; Huang, Kun; Xie, Keng; Yang, Ying; Liu, Huizhou

    2016-04-15

    An ecological new approach for photochemical reduction of Cr(VI) in aqueous solution by adding into water-soluble copolymer, polyethylene glycol (PEG), was investigated. Various influences including light intensity, initial solution pH value, PEG molecular weight and initial concentration ratio of PEG to Cr(VI) on photochemical reduction of Cr(VI) were discussed, and a possible reaction mechanism was proposed. Experimental results revealed that Cr(VI) could be reduced to Cr(III) by PEG under sunlight irradiation. The photo-reduction rate of Cr(VI) increased with the decrease of solution pH and PEG molecular weight, but increased with the light intensity. The reduction percentage of Cr(VI) increased with the initial concentration ratio of PEG to Cr(VI). When the initial solution pH value was below 3.0, almost all of Cr(VI) was completely reduced to Cr(III) within 20 min of 50 × 10(3) lux solar irradiation in the presence of PEG. After photo-reduction, PEG and Cr(III) in aqueous solutions could be recovered by adding into a high-concentrated Na2SO4 aqueous solution to induce the formation of a stable PEG-based aqueous biphasic system. By doing so, Na2SO4 in aqueous solution could also be removed. The present work highlights a promising new route for treating the industrial wastewater containing toxic Cr(VI) ions by adding into environmental-friendly PEG for photo-reduction of Cr(VI) to Cr(III), and then salting-out recovery of PEG and removal of Cr(III) in wastewater by adding into another high-salt wastewater, so that the high-salt wastewater could also be treated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Influence of ozonation and biodegradation on toxicity of industrial textile wastewater.

    Science.gov (United States)

    Paździor, Katarzyna; Wrębiak, Julita; Klepacz-Smółka, Anna; Gmurek, Marta; Bilińska, Lucyna; Kos, Lech; Sójka-Ledakowicz, Jadwiga; Ledakowicz, Stanisław

    2017-06-15

    The textile industry demands huge volumes of high quality water which converts into wastewater contaminated by wide spectrum of chemicals. Estimation of textile wastewater influence on the aquatic systems is a very important issue. Therefore, closing of the water cycle within the factories is a promising method of decreasing its environmental impact as well as operational costs. Taking both reasons into account, the aim of this work was to establish the acute toxicity of the textile wastewater before and after separate chemical, biological as well as combined chemical-biological treatment. For the first time the effects of three different combinations of chemical and biological methods were investigated. The acute toxicity analysis were evaluated using the Microtox® toxicity test. Ozonation in two reactors of working volume 1 dm3 (stirred cell) and 20 dm3 (bubble column) were tested as chemical process, while biodegradation was conducted in two, different systems - Sequence Batch Reactors (SBR; working volume 1.5 dm3) and Horizontal Continuous Flow Bioreactor (HCFB; working volume 12 dm3). The untreated wastewater had the highest toxicity (EC50 value in range: 3-6%). Ozonation caused lower reduction of the toxicity than biodegradation. In the system with SBR the best results were obtained for the biodegradation followed by the ozonation and additional biodegradation - 96% of the toxicity removal. In the second system (with HCFB) two-stage treatment (biodegradation followed by the ozonation) led to the highest toxicity reduction (98%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Anaerobic treatment of wastewater from the household and personal products industry in a hybrid bioreactor

    Directory of Open Access Journals (Sweden)

    D. J. Araujo

    2008-09-01

    Full Text Available The anaerobic treatment of wastewater from the household and personal products industry was studied using a 16.3 L hybrid reactor (UASB and biofilter. The top of the UASB reactor was filled with coconut shells to act as the support material for the biofilter. The wastewater was characterized in terms of pH (1.0 - 12.0, COD (1,000 - 5,000 mg/L, BOD5 (700 - 1,500 mg/L, chloride (55 - 850 mg/L, ammonia nitrogen (0.4 - 0.9 mg/L, total Kjeldahl nitrogen (22.1 - 34.0 mg/L, phosphorus (2.0 - 2.5 mg/L, anionic surfactants (100 - 600 mg/L, turbidity (115 - 300 NTU and total suspended solids (450 - 1,440 mg/L. The bioreactor was operated continuously for 120 days at room temperature (26 ± 5ºC with hydraulic retention times of 50, 40 and 60 h. COD and BOD removals and biogas production were evaluated in order to analyze process efficiency. The average removal efficiencies for COD (77%, 72% and 80% and BOD5 (approximately 90% were obtained with HRTs of 50, 40 and 60 h, respectively. The average specific biogas production was 0.32 L/g COD (at standard temperature and pressure for the three experimental runs. These data indicate good reactor efficiency and suggest the possibility of using this system to treat wastewater generated by the household and personal products industry.

  13. Revealing the factors influencing a fermentative biohydrogen production process using industrial wastewater as fermentation substrate.

    Science.gov (United States)

    Boboescu, Iulian Zoltan; Ilie, Mariana; Gherman, Vasile Daniel; Mirel, Ion; Pap, Bernadett; Negrea, Adina; Kondorosi, Eva; Bíró, Tibor; Maróti, Gergely

    2014-01-01

    Biohydrogen production through dark fermentation using organic waste as a substrate has gained increasing attention in recent years, mostly because of the economic advantages of coupling renewable, clean energy production with biological waste treatment. An ideal approach is the use of selected microbial inocula that are able to degrade complex organic substrates with simultaneous biohydrogen generation. Unfortunately, even with a specifically designed starting inoculum, there is still a number of parameters, mostly with regard to the fermentation conditions, that need to be improved in order to achieve a viable, large-scale, and technologically feasible solution. In this study, statistics-based factorial experimental design methods were applied to investigate the impact of various biological, physical, and chemical parameters, as well as the interactions between them on the biohydrogen production rates. By developing and applying a central composite experimental design strategy, the effects of the independent variables on biohydrogen production were determined. The initial pH value was shown to have the largest effect on the biohydrogen production process. High-throughput sequencing-based metagenomic assessments of microbial communities revealed a clear shift towards a Clostridium sp.-dominated environment, as the responses of the variables investigated were maximized towards the highest H2-producing potential. Mass spectrometry analysis suggested that the microbial consortium largely followed hydrogen-generating metabolic pathways, with the simultaneous degradation of complex organic compounds, and thus also performed a biological treatment of the beer brewing industry wastewater used as a fermentation substrate. Therefore, we have developed a complex optimization strategy for batch-mode biohydrogen production using a defined microbial consortium as the starting inoculum and beer brewery wastewater as the fermentation substrate. These results have the potential

  14. Removal of Phenol from Synthetic and Industrial Wastewater by Potato Pulp Peroxidases.

    Science.gov (United States)

    Kurnik, Katarzyna; Treder, Krzysztof; Skorupa-Kłaput, Monika; Tretyn, Andrzej; Tyburski, Jarosław

    Plant peroxidases have strong potential utility for decontamination of phenol-polluted wastewater. However, large-scale use of these enzymes for phenol depollution requires a source of cheap, abundant, and easily accessible peroxidase-containing material. In this study, we show that potato pulp, a waste product of the starch industry, contains large amounts of active peroxidases. We demonstrate that potato pulp may serve as a tool for peroxidase-based remediation of phenol pollution. The phenol removal efficiency of potato pulp was over 95 % for optimized phenol concentrations. The potato pulp enzymes maintained their activity at pH 4 to 8 and were stable over a wide temperature range. Phenol solutions treated with potato pulp showed a significant reduction in toxicity compared with untreated phenol solutions. Finally we determined that this method may be employed to remove phenol from industrial effluent with over 90 % removal efficiency under optimal conditions.

  15. Solutions for the disposal of industrial and rain wastewater of transport enterprises in Moscow

    Directory of Open Access Journals (Sweden)

    Varyushina Galina

    2018-01-01

    Full Text Available The article gives results of the surveys water management systems, auto repair companies, bus compamies, taxis, fleets of trucks, production and technical enterprises. Studied technological processes of primary production: cleaning engines, flushing of radiators and parts of batteries, testing of fuel tanks, cleaning of parts and units, exterior washing and painting of motor vehicles. There were carried out field examinations of local industrial wastewater treatment facilities industrial wastewater and onsite construction runoff, the laboratory-production work to identify quantitative and qualitative indicators of the incoming and treated effluents, including petroleum products, suspended matter, salinity, synthetic surfactants, heavy metals etc. Proposed sustainable solutions for the improvement of the work of treatment facilities of rain sewage by mechanical and physical and chemical methods, including horizontal sand catchers, septic tanks – oil separator, a cascade of pressure filters with granular mineral over-loading and high-performance sorption materials, the effectiveness of treatment meets the requirements of water for its re-use for technical needs, and discharge to water bodies.

  16. Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: a review.

    Science.gov (United States)

    Ben Rebah, F; Prévost, D; Yezza, A; Tyagi, R D

    2007-12-01

    Inoculating legumes with commercial rhizobial inoculants is a common agriculture practice. Generally, inoculants are sold in liquid or in solid forms (mixed with carrier). The production of inoculants involves a step in which a high number of cells are produced, followed by the product formulation. This process is largely governed by the cost related to the medium used for rhizobial growth and by the availability of a carrier source (peat) for production of solid inoculant. Some industrial and agricultural by-products (e.g. cheese whey, malt sprouts) contain growth factors such as nitrogen and carbon, which can support growth of rhizobia. Other agro-industrial wastes (e.g. plant compost, filtermud, fly-ash) can be used as a carrier for rhizobial inoculant. More recently, wastewater sludge, a worldwide recyclable waste, has shown good potential for inoculant production as a growth medium and as a carrier (dehydrated sludge). Sludge usually contains nutrient elements at concentrations sufficient to sustain rhizobial growth and heavy metals are usually below the recommended level. In some cases, growth conditions can be optimized by a sludge pre-treatment or by the addition of nutrients. Inoculants produced in wastewater sludge are efficient for nodulation and nitrogen fixation with legumes as compared to standard inoculants. This new approach described in this review offers a safe environmental alternative for both waste treatment/disposal and inoculant production.

  17. SYNTHESIS OF MAGNETITE NANOPARTICLES AND EVALUATION OF ITS EFFICIENCY FOR ARSENIC REMOVAL FROM SIMULATED INDUSTRIAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    A. Khodabakhshi

    2011-09-01

    Full Text Available In this study the efficiency of magnetic nanoparticles for removal of trivalent arsenic from synthetic industrial wastewater was evaluated. The nanoparticles was prepared by sol-gel method and characterized by X-ray methods including XRD, XRF, and SEM, and vibrating sample magnetometer (VSM. The results showed that synthesized nanoparticles were in the size range of 40-300 nm, purity of about 90%, and magnetization of nanoparticles was 36.5emu/g. In initial conditions including: pH=7, As(III concentration of 10 mg/L, nanomagnetite concentration of 1g/L, shaking speed of 250 rpm and 20 minute retention time, 82% of As (III was removed. Competition from common coexisting ions such as Na+, Ni2+, Cu2+, SO42-, and Cl- was ignorable but for NO3- was significant. The adsorption data of magnetite nanoparticles fit well with Freundlich isotherm equations. The adsorption capacity of the Fe3O4 for As (III at pH=7 was obtained as 23.8 mg/g. It was concluded that magnetite nanoparticles have considerable potential in removal of As(III from synthetic industrial wastewaters.

  18. Evolution of industrial wastewater pollution in the Barcelona Metropolitan Area; Evolucion de la contaminacion industrial en las aguas residuales del area metropolitana de Barcelona

    Energy Technology Data Exchange (ETDEWEB)

    Mantecon Pascual, R.

    2005-07-01

    The Environmental Agency of the Barcelona Metropolitan Area has full powers regarding sewerage. Industrial wastewater emptied into the public sewer system has been monitored and analysed since 1988. the data showing the evolution of the pollution in industrial wastewater are presented, broken down by activities and parameters. These data are based on the analysis of 14,528 samples taken during 19,555 inspections of 5,655 factories. It was found that there has been a gradual improvement in the quality of the effluents. Failure to meet the requirements concerning one or more of the physico-chemical parameters fell from 71% to 39% of the samples analysed. (Author)

  19. Using cement, lignite fly ash and baghouse filter waste for solidification of chromium electroplating treatment sludge

    Directory of Open Access Journals (Sweden)

    Wantawin, C.

    2004-02-01

    Full Text Available The objective of the study is to use baghouse filter waste as a binder mixed with cement and lignite fly ash to solidify sludge from chromium electroplating wastewater treatment. To save cost of solidification, reducing cement in binder and increasing sludge in the cube were focused on. Minimum percent cement in binder of 20 for solidification of chromium sludge was found when controlling lignite fly ash to baghouse filter waste at the ratio of 30:70, sludge to binder ratio of 0.5, water to mixer ratio of 0.3 and curing time of 7 days. Increase of sludge to binder ratio from 0.5 to 0.75 and 1 resulted in increase in the minimum percent cement in binder up to 30 percent in both ratios. With the minimum percent cement in binder, the calculated cement to sludge ratios for samples with sludge to binder ratios of 0.5, 0.75 and 1 were 0.4, 0.4 and 0.3 respectively. Leaching chromium and compressive strength of the samples with these ratios could achieve the solidified waste standard by the Ministry of Industry. For solidification of chromium sludge at sludge to binder ratio of 1, the lowest cost binder ratio of cement to lignite fly ash and baghouse filter waste in this study was 30:21:49. The cost of binder in this ratio was 718 baht per ton dry sludge.

  20. The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation.

    Science.gov (United States)

    Ciardelli, G; Ranieri, N

    2001-02-01

    Two different oxidation treatments, ozonation and electroflocculation, were experimented on a pilot scale to test their efficiency in removing polluting substances from wastewaters of textile industries. Both pilot plants used reproduced very closely a full-scale treatment in order to obtain indications about the feasibility of a transfer on industrial scale. By means of ozone treatment very high colour removal (95-99%) was achieved and treated waters were reused satisfactorily in dyeing even with light colours. This evidence despite the fact that the chemical oxygen demand of treated waters was still in a range (75-120 mg/l, a decrease up to 60%) that was usually considered to be too high for recycling purposes, especially for dyeing light colours. Treating plants working at the above-mentioned conditions should guarantee low operating costs. A biological pre-treatment and a sand filtration are absolutely essential. The transfer on industrial scale of the treatment is currently under development under an already financed European project. Electrochemical treatment showed to be very efficient in removing colour (80-100%) and chemical oxygen demand (70-90%). Moreover, a sensible decrease of chloride and sulphate ions was detected. Removal of flocculated material (post-treatment) must be, however, perfected in order to establish a correct costs-to-benefits ratio and therefore, propose an implementation of the technique on an industrial scale.

  1. Production of chlorothalonil hydrolytic dehalogenase from agro-industrial wastewater and its application in raw food cleaning.

    Science.gov (United States)

    He, Qin; Xu, Xi-Hui; Zhang, Fan; Tai, Yu-Kai; Luo, Yan-Fei; He, Jian; Hong, Qing; Jiang, Jian-Dong; Yan, Xin

    2017-06-01

    To reduce the fermentation cost for industrialization of chlorothalonil hydrolytic dehalogenase (Chd), agro-industrial wastewaters including molasses, corn steep liquor (CSL) and fermentation wastewater were used to substitute for expensive carbon and nitrogen sources and fresh water for lab preparation. The results showed that molasses and CSL could replace 5% carbon source and 100% organic nitrogen source respectively to maintain the same fermentation level. Re-fermentation from raffinate of ultra-filtered fermentation wastewater could achieve 61.03% of initial Chd activity and reach 96.39% activity when cultured in a mixture of raffinate and 50% of original medium constituent. Typical raw foods were chosen to evaluate the chlorothalonil removal ability of Chd. After Chd treatment for 2 h at room temperature, 97.40 and 75.55% of 30 mg kg-1 chlorothalonil on cherry tomato and strawberry respectively and 60.29% of 50 mg kg-1 chlorothalonil on Chinese cabbage were removed. Furthermore, the residual activity of the enzyme remained at 78-82% after treatment, suggesting its potential for reuse. This study proved the cost-feasibility of large-scale production of Chd from agro-industrial wastewater and demonstrated the potential of Chd in raw food cleaning. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Preliminary Assessment of Growth Rates on Different Concentration of Microalgae Scenedesmus sp. in Industrial Meat Food Processing Wastewater

    Directory of Open Access Journals (Sweden)

    Latiffi Nur Atikah Ahmad

    2017-01-01

    Full Text Available This study is aimed to evaluate and access the growth rates and biomass productivity in different concentrations of microalgae Scenedesmus sp. using Industrial Meat Food Processing Wastewater as a media. The focus of this study is to determine the best concentrations of microalgae Scenedesmus sp. in raw wastewater in terms of kinetics of cells growth rates. The study verified that concentration of 1×106 cells/ml of microalgae gives the highest specific growth rates of biomass at 0.4488 day-1 and 1720 cells/ml/day compare to the other concentrations, while the lowest occurred at concentration of 1×103 cells/ml at 0.4108 day-1 and 14.9 cells/ml/day. The result shows the different concentration of microalgae Scenedesmus sp. culturing in Industrial Food Processing Wastewater influence the cells growth of biomass and the optimum were obtained at concentration of 1×106 cells/ml which suggested use for Industrial Meat Food Processing Wastewater Treatment purposed. With this finding, it should be seemly to adopt and applied efficiently in treating the wastewater especially for Scenedesmus sp. type of microalgae.

  3. Genotoxicity assessments of alluvial soil irrigated with wastewater from a pesticide manufacturing industry.

    Science.gov (United States)

    Anjum, Reshma; Krakat, Niclas

    2015-10-01

    In this study, organochlorine pesticides (OCP) and heavy metals were analyzed from wastewater- and groundwater- irrigated soils (control samples) by gas chromatography (GC) and atomic absorption spectrophotometry (AAS), respectively. Gas chromatographic analysis revealed the presence of high concentration of pesticides in soil irrigated with wastewater (WWS). These concentrations were far above the maximum residue permissible limits indicating that alluvial soils have high binding capacity of OCP. AAS analyses revealed higher concentration of heavy metals in WWS as compared to groundwater (GWS). Also, the DNA repair (SOS)-defective Escherichia coli K-12 mutant assay and the bacteriophage lambda system were employed to estimate the genotoxicity of soils. Therefore, soil samples were extracted by hexane, acetonitrile, methanol, chloroform, and acetone. Both bioassays revealed that hexane-extracted soils from WWS were most genotoxic. A maximum survival of 15.2% and decline of colony-forming units (CFUs) was observed in polA mutants of DNA repair-defective E. coli K-12 strains when hexane was used as solvent. However, the damage of polA (-) mutants triggered by acetonitrile, methanol, chloroform, and acetone extracts was 80.0, 69.8, 65.0, and 60.7%, respectively. These results were also confirmed by the bacteriophage λ test system as hexane extracts of WWS exhibited a maximum decline of plaque-forming units for lexA mutants of E. coli K-12 pointing to an elevated genotoxic potential. The lowest survival was observed for lexA (12%) treated with hexane extracts while the percentage of survival was 25, 49.2, 55, and 78% with acetonitrile, methanol, chloroform, and acetone, respectively, after 6 h of treatment. Thus, our results suggest that agricultural soils irrigated with wastewater from pesticide industries have a notably high genotoxic potential.

  4. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Boutheina Gargouri

    2015-01-01

    Full Text Available Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  5. Anaerobic treatment of a simulated high-strength industrial wastewater containing chlorophenols

    Energy Technology Data Exchange (ETDEWEB)

    Flora, J.R.V.; Suidan, M.T.; Wuellner, A.M.; Boyer, T.K.

    1994-01-01

    An anaerobic fluidized-bed granular activated carbon (GAC) reactor employing carbon replacement was evaluated for the treatment of a simulated high strength industrial wastewater containing inhibitory concentrations of chlorophenols. The reactor was fed 2000-5900 mg/l acetic acid, 1000-3000 mg/l phenol, 1200 mg/l ortho-chlorophenol (2-CP), 600 mg/l 2,4-dichlorophenol (2,4-DCP), and 150 mg/l 2,4,6-trichlorophenol (2,4,6-TCP). The effects of varying the carbon replacement rate, the bulk operating pH, and the organic loading on reactor performance were investigated. The system was highly effective for treating the wastewater and an overall chemical oxygen demand (COD) removal greater than 98% was achieved. Carbon replacement resulting in a GAC solids mean retention time (SMRT) of 100 days was necessary to control the build-up of an inhibitory degradation by-product, para-chlorophenol (4-CP).

  6. Evaluation of potential for reuse of industrial wastewater using metal-immobilized catalysts and reverse osmosis.

    Science.gov (United States)

    Choi, Jeongyun; Chung, Jinwook

    2015-04-01

    This report describes a novel technology of reusing the wastewater discharged from the display manufacturing industry through an advanced oxidation process (AOP) with a metal-immobilized catalyst and reverse osmosis (RO) in the pilot scale. The reclaimed water generated from the etching and cleaning processes in display manufacturing facilities was low-strength organic wastewater and was required to be recycled to secure a water source. For the reuse of reclaimed water to ultrapure water (UPW), a combination of solid-phase AOP and RO was implemented. The removal efficiency of TOC by solid-phase AOP and RO was 92%. Specifically, the optimal acid, pH, and H2O2 concentrations in the solid-phase AOP were determined. With regard to water quality and operating costs, the combination of solid-phase AOP and RO was superior to activated carbon/RO and ultraviolet AOP/anion polisher/coal carbon. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Mullite ceramic membranes for industrial oily wastewater treatment: experimental and neural network modeling.

    Science.gov (United States)

    Shokrkar, H; Salahi, A; Kasiri, N; Mohammadi, T

    2011-01-01

    In this paper, results of an experimental and modeling of separation of oil from industrial oily wastewaters (desalter unit effluent of Seraje, Ghom gas wells, Iran) with mullite ceramic membranes are presented. Mullite microfiltration symmetric membranes were synthesized from kaolin clay and alpha-alumina powder. The results show that the mullite ceramic membrane has a high total organic carbon and chemical oxygen demand rejection (94 and 89%, respectively), a low fouling resistance (30%) and a high final permeation flux (75 L/m2 h). Also, an artificial neural network, a predictive tool for tracking the inputs and outputs of a non-linear problem, is used to model the permeation flux decline during microfiltration of oily wastewater. The aim was to predict the permeation flux as a function of feed temperature, trans-membrane pressure, cross-flow velocity, oil concentration and filtration time, using a feed-forward neural network. Finally the structure of hidden layers and nodes in each layer with minimum error were reported leading to a 4-15 structure which demonstrated good agreement with the experimental measurements with an average error of less than 2%.

  8. EVALUATION OF INDUSTRIAL DYEING WASTEWATER TREATMENT WITH COAGULANTS AND POLYELECTROLYTE AS A COAGULANT AID

    Directory of Open Access Journals (Sweden)

    G. R. Nabi Bidhendi;A. Torabian;H. Ehsani;N. Razmkhah

    2007-01-01

    Full Text Available Textile industry is the major source of water consumption and wastewater pollution. There are various treatment techniques to remove textile wastewater pollution. Coagulation-flocculation is a widely used process to remove pollution due to suspended particles. In this research, different coagulants like Alum, Lime, FeCl3, FeSO4 and MgCl2 were applied to select the suitable ones with optimum removal efficiency. Settling characteristics of flocs formed in the coagulation process were studied in a laboratory scale settling column unit. Parameters such as color, COD, TSS, turbidity and settled sludge volume have been evaluated. The optimum coagulant dose and pH value were determined by comparing the effectiveness of these coagulants. Results showed other coagulants except lime could eliminate color and COD successfully. In this case, FeSO4 was chosen as an optimum coagulant for color removal because of the lowest required coagulant dose, minimum settled sludge volume and maximum decolorization.

  9. Removal of potentially toxic elements from aqueous solutions and industrial wastewater using activated carbon.

    Science.gov (United States)

    Sajjad, Muhammad; Khan, Sardar; Ali Baig, Shams; Munir, Saduf; Naz, Alia; Ahmad, Sheikh Saeed; Khan, Anwarzeb

    2017-06-01

    Water contamination with potentially toxic elements (PTEs) has become one of the key issues in recent years that threatens human health and ecological systems. The present study is aimed at removing PTEs like cadmium (Cd), chromium (Cr), copper (Cu) and lead (Pb) from aqueous solutions and industrial wastewater using activated carbon (AC) as an adsorbent through different batch and column experiments. Results demonstrated that the removal of PTEs from aqueous solutions was highly pH dependent, except for Cr, and the maximum removal (>78%) was recorded at pH 6.0. However, maximum Cr removal (82.8%) was observed at pH 3.0. The adsorption reached equilibrium after 60 min with 2 g of adsorbent. Coefficient (R 2 ) values suggested by the Langmuir isotherm model were 0.97, 0.96, 0.93 and 0.95 for Cd, Cr, Cu and Pb, respectively, indicating the fit to this model. In column experiments, the maximum removal of PTEs was observed at an adsorbent bed height of 20 cm with the optimal flow rate of 3.56 mL/min. Furthermore, PTEs removal by AC was observed in the order of Cu > Cd > Pb > Cr. Findings from this study suggest that AC could be used as a promising adsorbent for simultaneously removing several PTEs from wastewaters.

  10. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater.

    Science.gov (United States)

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  11. Biogas and biohydrogen production potential of high strength automobile industry wastewater during anaerobic degradation.

    Science.gov (United States)

    Bajaj, Mini; Winter, Josef

    2013-10-15

    High strength automobile industry wastewater, collected from decanters (DECA) of the pre-treatment plant after oil, grease and sludge separation, was investigated for production of methane in the absence and presence of glucose or excess aerobic sludge (AS) from a lab scale suspension reactor as co-substrates. The highest methane production from DECA wastewater was 335.4 L CH4/kg CODsoluble removal which decreased in the presence of the co-substrates to 232.5 (with 2 g/L glucose) and to 179 (with 40% AS) L CH4/kg CODsoluble removal, respectively. Around 95% of total methane was produced within 5 days of incubation of DECA at 37 °C when no co-substrate was added. Addition of co-substrates did not improve biodegradation of DECA but overall methane production from DECA + co-substrates was increased due to co-substrate biodegradation. The anaerobic inoculum, capable of producing 2.4 mol of hydrogen/mol of glucose under zinc induced inhibitory conditions, was unable to produce hydrogen from DECA as substrate under the same conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Boundary layer separation method for recycling of sodium ions from industrial wastewater.

    Science.gov (United States)

    Petho, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-12-01

    The most effective technological solution for waste treatment is recycling. We have developed a new method for the treatment of industrial wastewaters and have called it the boundary layer separation method (BLSM). We have used the phenomenon that, on the surface of an electrically charged electrode, ions can be enriched in the boundary layer, as compared with the inside of the phase. The essence of the method is that, with an appropriately chosen velocity, the boundary layer can be removed from the wastewater, and the boundary layer, which is rich in ions, can be recycled. The BLSM can be executed as a cyclic procedure. The capacitance of the boundary layer was examined. The best mass transport can be achieved with the use of 1000 and 1200 mV polarization potentials in the examined system, with its value being 1200 mg/m2 per cycle. The necessary operation times were determined by the examination of the velocity of the electrochemical processes. When using 1000 mV polarization potential, the necessary adsorption time is at least 25 seconds, and the desorption time at least 300 seconds. The advantage of the procedure is that it does not use dangerous chemicals, only inert electrodes. The drawback is that it is not selective to ions, the achievable separation in one step is low, and the hydrogen that emerges during the electrolysis might be dangerous.

  13. APPLICATION OF CONSTRUCTED WETLANDS FOR TREATMENT OF WASTEWATER FROM FRUIT AND VEGETABLE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Monika Puchlik

    2016-01-01

    Full Text Available About 2000 plants are involved in fruit and vegetable processing in Poland, they are mostly located in non-urbanized areas and without any access to sewerage and sewage treatment facilities. In 2014, they produced more than 10 hm3 of wastewater requiring treatment, which was discharged directly into surface waters or into the ground. The aim of the study was to evaluate the efficiency of the constructed wetland for treating the sewage from fruit and vegetable industry. The analyzed constructed wetland with vertical flow reveled a reduction in the value of BOD5 to 68.2%, and CODCr to 79.3%. The model was characterized by 60.2% efficiency of total phosphorus removal.

  14. Evaluation of membrane bioreactor for advanced treatment of industrial wastewater and reverse osmosis pretreatment

    Science.gov (United States)

    2013-01-01

    The evaluation of a membrane bioreactor (MBR) for pretreatment of reverse osmosis (RO) in order to reuse and reclamation of industrial town wastewater treatment plant was investigated in this study. Performance of MBR effluent through water quality in term of parameters such as chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN) and total coliform (TC) were measured. Also Silt density index (SDI) was used as indicator for RO feed water. The results of this study demonstrated that MBR produce a high quality permeate water. Approximately 75%, 98%, 74% and 99.9% removal of COD, TSS, TN and TC were recorded, respectively. Also SDI of the permeate effluent from membrane was below 3 for most of the times. It means that pilot yield a high quality treated effluent from the membrane module which can be used as RO feed water. PMID:24355199

  15. Treatment of automotive industry oily wastewater by electrocoagulation: statistical optimization of the operational parameters.

    Science.gov (United States)

    GilPavas, Edison; Molina-Tirado, Kevin; Gómez-García, Miguel Angel

    2009-01-01

    An electrocoagulation process was used for the treatment of oily wastewater generated from an automotive industry in Medellín (Colombia). An electrochemical cell consisting of four parallel electrodes (Fe and Al) in bipolar configuration was implemented. A multifactorial experimental design was used for evaluating the influence of several parameters including: type and arrangement of electrodes, pH, and current density. Oil and grease removal was defined as the response variable for the statistical analysis. Additionally, the BOD(5), COD, and TOC were monitored during the treatment process. According to the results, at the optimum parameter values (current density = 4.3 mA/cm(2), distance between electrodes = 1.5 cm, Fe as anode, and pH = 12) it was possible to reach a c.a. 95% oils removal, COD and mineralization of 87.4% and 70.6%, respectively. A final biodegradability (BOD(5)/COD) of 0.54 was reached.

  16. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR to Treat Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Laura C. Zuluaga

    2015-06-01

    Full Text Available A Computational Fluid Dynamics (CFD simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i reactor and (ii membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, whereas for the ceramic membrane, it was the shear stress over the membrane surface. Results show that the reactor's mixing process was adequate and that the membrane presented higher shear stress in the 'triangular' channel.

  17. Solidification and stabilization of the incinerated wastewater sludge from textile industry

    Science.gov (United States)

    Aziz, Hamidi Abdul; Ghazali, Miskiah Fadzilah; Omran, Abdelnaser; Umar, Muhammad

    2017-10-01

    This paper describes the investigation of solidification and stabilization (S/S) process for the safe disposal of incinerated wastewater sludge produced from a textile industry in Penang, Malaysia. Physical and chemical properties of the samples were first characterized. Various ratios of ordinary Portland cement (OPC) as a binder were used to immobilize the metals. The leachability of metals in these cement-based waste materials was studied by standard toxicity characteristic leaching procedure (TCLP) and the mechanical strength was tested by a compressive strength test. TCLP results showed the ability of OPC to immobilize various metals such as Zn, Cu, Fe, Al, Ti, and K within the limits set by USEPA and Malaysia Environment Quality Act, 1974. However, the strength of the solidified matrixes was generally lower than the control specimens, ranging from 1-23 Mpa, which was well above the specified limit of 414 kPa for such matrices for their disposal in landfills.

  18. [Mechanism of membrane fouling and filtration characteristics in a membrane bioreactor for industrial wastewater treatment].

    Science.gov (United States)

    Fan, Ju-Hong; Yu, Su-Lin; Zhang, Pei-Shuai; Lan, Ya-Qiong; Liu, Rui; Chen, Liu-Jun

    2013-03-01

    The influence of mixed liquor suspended solids (MLSS), soluble microbial product (SMP), extracellular polymeric substance (EPS), colloidal particles and other factors contributed to membrane fouling was analyzed in this pilot test by membrane bioreactor (MBR) process for the leather printing and dyeing industrial park mixed wastewater treatment. The results showed that slight membrane fouling occurred after 120-day experiment with an observable increase in membrane resistance R20 from 1.5 x 10(12) m(-1) to 1.8 x 10(12) m(-1). Also, a linear correlation was found between the proportion of colloidal particles concentration in TOC of MBR former solution and membrane filtration resistance change. However, the change of MLSS, SMP, EPS and other factors was not correlated with the membrane filtration resistance change. Therefore, the colloidal particle was considered to be the main factor causing membrane fouling, which attached to the membrane surface and deposited to block the membrane pore.

  19. Hydrodynamic cavitation applied to industrial wastewater; Tratamiento de efluentes industriales mediante cavitacion hidrodinamica

    Energy Technology Data Exchange (ETDEWEB)

    Benito, Y.; Arrojo, S.

    2006-07-01

    The use environmental technology of the phenomenon known as cavitation has opened in the last new years alternatives for the treatment especially for industrial effluents. CIEMAT has designed and constructed a plant of cavitation hydrodynamics to take to end experiments that it allows us to show the possibilities of this technology as process of advanced oxidation of low cost. The experimentation has been made with water contaminated by substances like toluene and some derivatives, chloride organic compounds, xylenes, ammonia, wastewater from the ended of leather sector, there being achieved important reductions of the DQO (of the order of 60%) in short times. This work shows the results obtained in the experimentation of waters contaminated with toluene and p-nitrophenol. (Author)

  20. Anaerobic treatment of wastewater. Application for food industry; Depuracion anaerobia del aguas residuales. Se aplicacion en la industria alimentaria

    Energy Technology Data Exchange (ETDEWEB)

    Carceller Rosa, J. M.

    2005-07-01

    Activated sludge aerobic reactors is a wide spread system in waste water treatment plants. Excessive proliferations of filamentous microorganisms give rise to bulking and foaming problems. Wastewater from food and drink industries as well as paper mill and related industries has severe risk of bulking episodes. Incorporation of anaerobic pre-treatment previous to existing aerobic treatment previous to existing aerobic treatment avoids bulking problems. Anaerobic systems are therefore indicated in waste waters with high concentrations of ready biodegradable organic substrates, such us waste waters from breweries, distilleries, soft drinks, paper mill industries, vegetable processing industries, etc. Basic principles of anaerobic wastewater treatment are exposed in this paper, with special reference to the most wide spread anaerobic systems: UASB, EGSB e IC reactors. Operational parameters of anaerobic and aerobic systems are compared, as well as investment and management costs, including biogas recovery. (Author) 7 refs.

  1. Emergence of competitive dominant ammonia-oxidizing bacterial populations in a full-scale industrial wastewater treatment plant.

    Science.gov (United States)

    Layton, Alice C; Dionisi, Hebe; Kuo, H-W; Robinson, Kevin G; Garrett, Victoria M; Meyers, Arthur; Sayler, Gary S

    2005-02-01

    Ammonia-oxidizing bacterial populations in an industrial wastewater treatment plant were investigated with amoA and 16S rRNA gene real-time PCR assays. Nitrosomonas nitrosa initially dominated, but over time RI-27-type ammonia oxidizers, also within the Nitrosomonas communis lineage, increased from below detection to codominance. This shift occurred even though nitrification remained constant.

  2. Emergence of Competitive Dominant Ammonia-Oxidizing Bacterial Populations in a Full-Scale Industrial Wastewater Treatment Plant

    OpenAIRE

    Layton, Alice C.; Dionisi, Hebe; Kuo, H.-W.; Robinson, Kevin G.; Garrett, Victoria M.; Meyers, Arthur; Sayler, Gary S.

    2005-01-01

    Ammonia-oxidizing bacterial populations in an industrial wastewater treatment plant were investigated with amoA and 16S rRNA gene real-time PCR assays. Nitrosomonas nitrosa initially dominated, but over time RI-27-type ammonia oxidizers, also within the Nitrosomonas communis lineage, increased from below detection to codominance. This shift occurred even though nitrification remained constant.

  3. Effect of a high strength chemical industry wastewater on microbial community dynamics and mesophilic methane generation.

    Science.gov (United States)

    Venkatakrishnan, Harish; Tan, Youming; Majid, Maszenan Bin Abdul; Pathak, Santosh; Sendjaja, Antonius Yudi; Li, Dongzhe; Liu, Jerry Jian Lin; Zhou, Yan; Ng, Wun Jern

    2014-04-01

    A high strength chemical industry wastewater was assessed for its impact on anaerobic microbial community dynamics and consequently mesophilic methane generation. Cumulative methane production was 251 mL/g total chemical oxygen demand removed at standard temperature and pressure at the end of 30 days experimental period with a highest recorded methane percentage of 80.6% of total biogas volume. Volatile fatty acids (VFAs) analysis revealed that acetic acid was the major intermediate VFAs produced with propionic acid accumulating over the experimental period. Quantitative analysis of microbial communities in the test and control groups with quantitative real time polymerase chain reaction highlighted that in the test group, Eubacteria (96.3%) was dominant in comparison with methanogens (3.7%). The latter were dominated by Methanomicrobiales and Methanobacteriales while Methanosarcinaceae in test groups increased over the experimental period, reaching a maximum on day 30. Denaturing gradient gel electrophoresis profile was performed, targeting the 16S rRNA gene of Eubacteria and Archaea, with the DNA samples extracted at 3 different time points from the test groups. A phylogenetic tree was constructed for the sequences using the neighborhood joining method. The analysis revealed that the presence of organisms resembling Syntrophomonadaceae could have contributed to increased production of acetic and propionic acid intermediates while decrease of organisms resembling Pelotomaculum sp. could have most likely contributed to accumulation of propionic acid. This study suggested that the degradation of organic components within the high strength industrial wastewater is closely linked with the activity of certain niche microbial communities within eubacteria and methanogens. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  4. Treatment of real industrial wastewater using the combined approach of advanced oxidation followed by aerobic oxidation.

    Science.gov (United States)

    Ramteke, Lokeshkumar P; Gogate, Parag R

    2016-05-01

    Fenton oxidation and ultrasound-based pretreatment have been applied to improve the treatment of real industrial wastewater based on the use of biological oxidation. The effect of operating parameters such as Fe(2+) loading, contact time, initial pH, and hydrogen peroxide loading on the extent of chemical oxygen demand (COD) reduction and change in biochemical oxygen demand (BOD5)/COD ratio has been investigated. The optimum operating conditions established for the pretreatment were initial pH of 3.0, Fe(2+) loading of 2.0, and 2.5 g L(-1) for the US/Fenton/stirring and Fenton approach, respectively, and temperature of 25 °C with initial H2O2 loading of 1.5 g L(-1). The use of pretreatment resulted in a significant increase in the BOD5/COD ratio confirming the production of easily digestible intermediates. The effect of the type of sludge in the aerobic biodegradation was also investigated based on the use of primary activated sludge (PAS), modified activated sludge (MAS), and activated sludge (AS). Enhanced removal of the pollutants as well as higher biomass yield was observed for MAS as compared to PAS and AS. The use of US/Fenton/stirring pretreatment under the optimized conditions followed by biological oxidation using MAS resulted in maximum COD removal at 97.9 %. The required hydraulic retention time for the combined oxidation system was also significantly lower as compared to only biological oxidation operation. Kinetic studies revealed that the reduction in the COD followed a first-order kinetic model for advanced oxidation and pseudo first-order model for biodegradation. The study clearly established the utility of the combined technology for the effective treatment of real industrial wastewater.

  5. Personal care product preservatives: risk assessment and mixture toxicities with an industrial wastewater.

    Science.gov (United States)

    Carbajo, Jose B; Perdigón-Melón, Jose A; Petre, Alice L; Rosal, Roberto; Letón, Pedro; García-Calvo, Eloy

    2015-04-01

    The aquatic toxicity of eight preservatives frequently used in personal care products (PCPs) (iodopropynyl butylcarbamate, bronopol, diazolidinyl urea, benzalkonium chloride, zinc pyrithione, propylparaben, triclosan and a mixture of methylchloroisothiazolinone and methylisothiazolinone) was assessed by means of two different approaches: a battery of bioassays composed of single species tests of bacteria (Vibrio fischeri and Pseudomonas putida) and protozoa (Tetrahymena thermophila), and a whole biological community resazurin-based assay using activated sludge. The tested preservatives showed considerable toxicity in the studied bioassays, but with a marked difference in potency. In fact, all biocides except propylparaben and diazolidinyl urea had EC50 values lower than 1 mg L(-1) in at least one assay. Risk quotients for zinc pyrithione, benzalkonium chloride, iodopropynyl butylcarbamate and triclosan as well as the mixture of the studied preservatives exceeded 1, indicating a potential risk for the process performance and efficiency of municipal sewage treatment plants (STPs). These four single biocides explained more than 95% of the preservative mixture risk in all bioassays. Each individual preservative was also tested in combination with an industrial wastewater (IWW) from a cosmetics manufacturing facility. The toxicity assessment was performed on binary mixtures (preservative + IWW) and carried out using the median-effect principle, which is a special case of the concept of Concentration Addition (CA). Almost 70% of all experiments resulted in EC50 values within a factor of 2 of the values predicted by the median-effect principle (CI values between 0.5 and 2). The rest of the mixtures whose toxicity was mispredicted by CA were assessed with the alternative concept of Independent Action (IA), which showed higher predictive power for the biological community assay. Therefore, the concept used to accurately predict the toxicity of mixtures of a preservative

  6. Development of biochar and chitosan blend for heavy metals uptake from synthetic and industrial wastewater

    Science.gov (United States)

    Hussain, Athar; Maitra, Jaya; Khan, Kashif Ali

    2017-08-01

    Heavy metals are usually released into water bodies from industrial/domestic effluents such as metal plating industries, mining and tanneries. Adsorption is a fundamental process in the physiochemical treatment of wastewaters because of its low cost. Great efforts have been made to use the economically efficient and unconventional adsorbents to adsorb heavy metals from aqueous solutions, such as plant wastes and agricultural waste. Biochar mixed with chitosan after crosslinking can be casted into membranes, beads and solutions which can be effectively utilized as an adsorbent for metal ion uptake. Keeping these facts into consideration, the present study was undertaken with the objective to determine the effect of various proportions of biochar-modified chitosan membranes on the sorption characteristics of different heavy metals like Cu, Pb, As and Cd along with comparison of sorption characteristics between industrial waste water samples containing multi-metals and standard synthetic stock solution containing a particular metal. It is apparent from the results that the bioadsorbent prepared from biochar and chitosan are low-cost efficacious resource due to its easy availability. It is also eco-friendly material for making adsorbent for abstraction of heavy metals from aqueous solution. This adsorbent can be best utilized for adsorption of heavy metals.

  7. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission.

    Science.gov (United States)

    Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz

    2015-08-01

    Pulp-and-paper mills produce various types of contaminants and a significant amount of wastewater depending on the type of processes used in the plant. Since the generated wastewaters can be potentially polluting and very dangerous, they should be treated in wastewater treatment plants before being released to the environment. This paper reviews different wastewater treatment processes used in the pulp-and-paper industry and compares them with respect to their contaminant removal efficiencies and the extent of greenhouse gas (GHG) emission. It also evaluates the impact of operating parameters on the performance of different treatment processes. Two mathematical models were used to estimate GHG emission in common biological treatment processes used in the pulp-and-paper industry. Nutrient removal processes and sludge treatment are discussed and their associated GHG emissions are calculated. Although both aerobic and anaerobic biological processes are appropriate for wastewater treatment, their combination known as hybrid processes showed a better contaminant removal capacity at higher efficiencies under optimized operating conditions with reduced GHG emission and energy costs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Biochars made from agro-industrial by-products remove chlorine from water and wastewater

    Science.gov (United States)

    Tzachristas, Andreas; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.

    2017-04-01

    Chlorination is the most common disinfection process for water and wastewater. For the industrial use of water in food production, chlorine can add undesired taste and odor to the final product. For this reason, dechlorination is desired for food industries that use municipal tap water. For treated wastewater discharge or reuse, chlorine can be toxic to the receiving aqueous systems and to the irrigated plants. In both the above cases, dechlorination is also required. Traditionally activated carbon has been used as the ideal material for the removal of chlorine. The main mechanisms that describe the interaction between activated carbon and HOCl or OCl- are described by the following equations (AWWA, 1990): HOCl + C* → C*O + H+ + Cl- (1), OCl- + C* → C*O + Cl- (2) Where C* and C*O represent the activated carbon surface and a surface oxide, respectively. The present study proposes the use of agro-industrial by-products for the production of biochars that will be used for dechlorination of tap-water used for food-industry production. Different raw materials such as malt spent rootlets, coffee residue, olive and grape seeds, etc. are used for the production of biochar. Various temperatures and air-to-solid ratios are tested for optimizing biochar production. Batch tests as well as a column test are employed to study the dechlorination kinetics of the different raw and biochar materials as well as those of commercial activated carbons. The removal kinetics are faster during the first hour; then, removal continues but with a slower rate. Most of the biochars tested (with 3 mg of solid in 20 mL of chlorine solution at initial concentration Co=1.5 mg/L) demonstrated removal efficiencies with an average of 9.4 ± 0.5 mg/g. For the two commercial activated carbons, removal efficiencies were 11.4 ± 0.2 mg/g. The first-order constant k1 ranged between 0.001 and 0.014 (min-1) for the biosorbents and the biochars and it was equal to 0.017 (min-1) for the commercial

  9. Toxicity Appraisal of Untreated Dyeing Industry Wastewater Based on Chemical Characterization and Short Term Bioassays.

    Science.gov (United States)

    Akhtar, Muhammad Furqan; Ashraf, Muhammad; Javeed, Aqeel; Anjum, Aftab Ahmad; Sharif, Ali; Saleem, Ammara; Akhtar, Bushra; Khan, Abdul Muqeet; Altaf, Imran

    2016-04-01

    Characterizing wastewaters only on a chemical basis may be insufficient owing to their complex nature. The purpose of this study was to assess toxicity of textile dyeing wastewater based on analytical techniques and short term toxicity based bioassays. In this study, screening of the fractionated wastewater through GC-MS showed the presence of phenols, phthalic acid derivatives and chlorpyrifos. Metal analysis revealed that chromium, arsenic and mercury were present in amounts higher than the wastewater discharge limits. Textile dyeing wastewater was found to be highly mutagenic in the Ames test. DNA damage in sheep lymphocytes decreased linearly with an increase in the dilution of wastewater. MTT assay showed that 8.3 percent v/v wastewater decreased cell survival percentage to 50 %. It can be concluded from this study that short term toxicity tests such as Ames test, in vitro comet assay, and cytotoxicity assays may serve as useful indicators of wastewater pollution along with their organic and inorganic chemical characterizations.

  10. Energy from wastewater - a feasibility study and guide for: Technology developers and researchers, industry and wastewater generators and policy makers

    CSIR Research Space (South Africa)

    Burton, S

    2012-07-01

    Full Text Available to provide opportunities for consultation with stakeholders in the fields of wastewater treatment and technology development, in order to determine areas where technical and application problems might exist (WRC report no1732/1/09). This guide makes...

  11. Application of wastewater from paper and food seasoning industries with green manure to increase soil organic carbon: a laboratory study.

    Science.gov (United States)

    Lin, Chin-Ching; Arun, A B; Rekha, P D; Young, Chiu-Chung

    2008-09-01

    This laboratory scale experiment was designed to study the suitability of organic wastes from paper and food seasoning industries to improve the soil organic carbon for rice cultivation. Lignin-rich wastewater from paper industry and nitrogen-rich effluent from a food industry at suitably lower concentrations were used at two levels of green manure to enhance the soil organic carbon fraction over time. Both the groups of soils with or without Sesbania were incubated under submerged condition at 25 degrees C for 15 days. Wastewaters from paper industry (WP), food industry (WS), and a combination of WP+WS were added separately to both the treatment groups in flasks. After 103 days of incubation, from all the three treatments and control, total organic carbon and alkali-soluble organic carbon fractions were analyzed. Results indicated that in all the three treatments containing green manure amended with industrial wastewaters, the organic carbon content increased significantly. The alkali-soluble organic carbon fraction was increased by 59% in the soil amended with green manure containing WS and by 31% in the treatment without green manure compared to control. The paper mill waste water namely, WP, increased the organic carbon only in the soil containing green manure by 63%. The combined treatment of WP+WS with green manure increased alkali-soluble organic carbon fraction by 90% compared to control, while in the treatment without green manure, the organic carbon increase was 71%. Overall, the combined treatment WP+WS with green manure could increase the alkali-soluble organic carbon fraction more than all other treatments. Hence, wastewater rich in organics from paper and food industries can be efficiently used to temporarily increase the soil organic carbon content.

  12. Industrial wastewater treatment using higher aquatic vegetation in the former mining company of the Far Eastern Federal district

    Science.gov (United States)

    Krupskaya, L. T.; Zvereva, V. P.; Gula, K. E.; Gul', L. P.; Golubev, D. A.; Filatova, M. Yu.

    2017-09-01

    The article describes the results of studying the problems of industrial wastewater treatment using higher aquatic vegetation (hydrophytes) in the former mining enterprise of the Far Eastern Federal District (FEFD). They are aimed at reducing the negative environment impact of toxic tin ore wastes. The material of research were drainage, mine and slime waters as well as Lemna minor and Common reed grass (Phragmites communis). In the work conventional modern physico-chemical, chemical, biological and mathematical-statistical methods were used, as well as in the process of research the methods of atomic absorption spectrophotometry for AAS and mass spectrometry with inductively coupled plasma on ISP-MS ELASN DRS II PerkinElmer was applied. The data obtained in the course of the experiment (2015-2016), indicate that a degree of wastewater treatment, using Lemna minor, is high. Virtually, all compounds of toxic chemical elements contained in industrial wastewater (zinc, cobalt, nickel, cadmium, iron, manganese, lead, etc.) were fully absorbed by a hydrophyte. Pollutant extraction was almost 95%. The obtained results of the study in laboratory conditions proved the possibility of effective use of the Lemna minor for the purification of drainage and mine waters. A key contribution of this paper is the relationship between possible toxic metals contained in industrial wastewater and a higher degree of absorption by their higher aquatic vegetation. These hydrophytes absorb these possible toxic metals in an aqueous medium and are contaminated with these heavy metals.

  13. Research and development regarding the retaining mechanism of lead ions in industrial wastewaters using natural matter with remarkable properties

    Science.gov (United States)

    Pop, A.; Iepure, G.

    2017-05-01

    The paper shows the studying of the retaining mechanism of lead ions in industrial wastewaters through static and dynamic ion exchange mechanisms. In the experimental determinations of the lead metallic ion retention, metallurgical industry wastewaters have been used on samples of volcanic zeolite tuff (from Barsana, Maramures), samples that show a high concentration of lead ions and an acidic pH. The results showed that both the static and the dynamic ion exchanges ended with good results and they were consistent with other studies conducted on clinoptilolite zeolite tuff. Knowing that the industrial sector is an important source of environment pollution and degradation and being aware of what a serious threat the heavy metal pollution is, due to their high toxicity and stability, the experiment may find applicability in different aspects, both in the Maramures mining basing as well as in the worldwide controlling and directing of the polluting processes.

  14. Absorbtion Activity of Cassava Peel (Manihot utilissima as Chromium (VI Metal Biosorbent in Electroplating Waste

    Directory of Open Access Journals (Sweden)

    Iin Candrawati

    2017-05-01

    Full Text Available Electroplating is a process of metal veneering with another metal using the electric energy. The water waste of electroplating industry contains many kinds of heavy metal ions, especially chromium (Cr6+ which might cause pollutions if it's not processed and it presents above the threshold allowed . The use of cellulose can be a solution, because it has the functional groups which form bonding with the metal ions. Cassava peel is one of the sources of cellulose which contains 80-85% of cellulose. This proves that cassava peel (Manihot utilissimaI has the potential as the heavy metal biosorbent of chromium metal in electroplating waste. The methodology of the research is conducted in a series including analysis of heavy metal concentrations of chromium (VI in electroplating waste, biosorption treatment of cassava peel (Manihot utilissimaI biosorbent activated by HNO3 1.5 M in electroplating waste with batch method, and analysis of heavy metal concentrations of chromium (VI in electroplating waste after biosorbtion process. Variation of biosorbent’s mass are (0.1, 0.2, 0.3, 0.4, 0.5 grams, and variation of biosorbent’s contact time are (10, 20, 30, 40, 50 minutes. The result of the AAS (Atomic Absorbtion Spectrophotometry shows that the level of total chromium in electroplating waste reaches 2.0777 ± 0.2785 ppm, so the chromium test solution used in this research is 2 ppm to know the optimum conditions of % chromium (VI absorbed with variation of mass and contact time. From the results of this research, the optimum mass and contact time of cassava peel biosorbent activated by HNO3 1.5 M in % chromium (VI absorbed are 0.1 gram and 40 minute. Finally, the optimum mass and contact time of cassava peel biosorbent activated by HNO3 1.5 M is applied to electroplating waste. The average of % chromium absorbed in electroplating waste with the addition of cassava peel biosorbent activated by HNO3 1.5 M is 61.72%.

  15. Assessment of combined toxicity of heavy metals from industrial wastewaters on Photobacterium phosphoreum T3S

    Science.gov (United States)

    Zeb, BibiSaima; Ping, Zheng; Mahmood, Qaisar; Lin, Qiu; Pervez, Arshid; Irshad, Muhammad; Bilal, Muhammad; Bhatti, Zulfiqar Ahmad; Shaheen, Shahida

    2017-07-01

    This research work is focusing on the toxicities of heavy metals of industrial origin to anaerobic digestion of the industrial wastewater. Photobacterium phosphoreum T3S was used as an indicator organism. The acute toxicities of heavy metals on P. phosphoreum T3S were assessed during 15-min half inhibitory concentration (IC50) as indicator at pH 5.5-6. Toxicity assays involved the assessment of multicomponent mixtures using TU and MTI approaches. The results of individual toxicity indicated that the toxicity of Cd, Cu and Pb on P. phosphoreum increased with increasing concentrations and there was a linear correlation. The 15-min IC50 values of Cd, Cu and Pb were 0.537, 1.905 and 1.231 mg/L, respectively, and their toxic order was Cd > Pb > Cu. The combined effects of Cd, Cu and Pb were assayed by equivalent concentration mixing method. The results showed that the combined effects of Cd + Cu, Cd + Pb, Cu + Pb, Cd + Cu + Pb were antagonistic, antagonistic and partly additive. The combined effect of three heavy metals was partly additive.

  16. Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration

    Science.gov (United States)

    2012-01-01

    Currently, biological method has been utilized in the treatment of wastewater -containing synthetic dyes used by textile industries in Iraq. The present work was devoted to study the operating feasibility using reverse osmosis (RO) and nanofiltration (NF) membrane systems as an alternative treatment method of wastewater discharged from Iraqi textile mills. Acid red, reactive black and reactive blue dyes were selected, based on the usage rate in Iraq. Effects of dye concentration, pH of solution, feed temperature, dissolved salts and operating pressure on permeate flux and dye rejection were studied. Results at operating conditions of dye concentration = 65 mg/L, feed temperature = 39°C and pressure = 8 bar showed the final dye removal with RO membrane as 97.2%, 99.58% and 99.9% for acid red, reactive black and reactive blue dyes, respectively. With NF membrane, the final dye removal were as 93.77%, 95.67%, and 97% for red, black and blue dyes, respectively. The presence of salt (particularly NaCl) in the dye solution resulted in a higher color removal with a permeate flux decline. It was confirmed that pH of solution had a positive impact on dye removal while feed temperature showed a different image. A comparison was made between the results of dye removal in biological and membrane methods. The results showed that membrane method had higher removal potential with lower effective cost. The present study indicates that the use of NF membrane in dye removal from the effluent of Iraqi textile mills is promising. PMID:23369335

  17. Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process.

    Science.gov (United States)

    Hutnik, Nina; Kozik, Anna; Mazienczuk, Agata; Piotrowski, Krzysztof; Wierzbowska, Boguslawa; Matynia, Andrzej

    2013-07-01

    Continuous DT MSMPR (Draft Tube Mixed Suspension Mixed Product Removal) crystallizer was provided with typical wastewater from phosphorus mineral fertilizers industry (pH < 4, 0.445 mass % of PO4(3-), inorganic impurities presence), dissolved substrates (magnesium and ammonium chlorides) and solution alkalising the environment of struvite MgNH4PO4·6H2O reaction crystallization process. Research ran in constant temperature 298 K assuming stoichiometric proportions of substrates or 20% excess of magnesium ions. Influence of pH (8.5-10) and mean residence time (900-3600 s) on product size distribution, its chemical composition, crystals shape, size-homogeneity and process kinetics was identified. Crystals of mean size ca. 25-37 μm and homogeneity CV 70-83% were produced. The largest crystals, of acceptable homogeneity, were produced using 20% excess of magnesium ions, pH 9 and mean residence time 3600 s. Under these conditions nucleation rate did not exceed 9 × 10(7) 1/(s m(3)) according to SIG (Size Independent Growth) MSMPR kinetic model. Linear crystal growth rate was 4.27 × 10(-9) m/s. Excess of magnesium ions influenced struvite reaction crystallization process yield advantageously. Concentration of phosphate(V) ions decreased from 0.445 to 9.2 × 10(-4) mass %. This can be regarded as a very good process result. In product crystals, besides main component - struvite, all impurities from wastewater were detected analytically. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration

    Directory of Open Access Journals (Sweden)

    Abid Mohammad Fadhil

    2012-12-01

    Full Text Available Abstract Currently, biological method has been utilized in the treatment of wastewater -containing synthetic dyes used by textile industries in Iraq. The present work was devoted to study the operating feasibility using reverse osmosis (RO and nanofiltration (NF membrane systems as an alternative treatment method of wastewater discharged from Iraqi textile mills. Acid red, reactive black and reactive blue dyes were selected, based on the usage rate in Iraq. Effects of dye concentration, pH of solution, feed temperature, dissolved salts and operating pressure on permeate flux and dye rejection were studied. Results at operating conditions of dye concentration = 65 mg/L, feed temperature = 39°C and pressure = 8 bar showed the final dye removal with RO membrane as 97.2%, 99.58% and 99.9% for acid red, reactive black and reactive blue dyes, respectively. With NF membrane, the final dye removal were as 93.77%, 95.67%, and 97% for red, black and blue dyes, respectively. The presence of salt (particularly NaCl in the dye solution resulted in a higher color removal with a permeate flux decline. It was confirmed that pH of solution had a positive impact on dye removal while feed temperature showed a different image. A comparison was made between the results of dye removal in biological and membrane methods. The results showed that membrane method had higher removal potential with lower effective cost. The present study indicates that the use of NF membrane in dye removal from the effluent of Iraqi textile mills is promising.

  19. Experimental Study of Dye Removal from Industrial Wastewater by Membrane Technologies of Reverse Osmosis and Nanofiltration

    Directory of Open Access Journals (Sweden)

    Mohammad Fadhil Abid

    2012-12-01

    Full Text Available Currently, biological method has been utilized in the treatment of wastewater -containing synthetic dyes used by textile industries in Iraq. The present work was devoted to study the operating feasibility using reverse osmosis (RO and nanofiltration (NF membrane systems as an alternative treatment method of wastewater discharged from Iraqi textile mills. Acid red, reactive black and reactive blue dyes were selected, based on the usage rate in Iraq. Effects of dye concentration, pH of solution, feed temperature, dissolved salts and operating pressure on permeate flux and dye rejection were studied. Results at operating conditions of dye concentration?=?65 mg/L, feed temperature?=?39?C and pressure?=?8 bar showed the final dye removal with RO membrane as 97.2%, 99.58% and 99.9% for acid red, reactive black and reactive blue dyes, respectively. With NF membrane, the final dye removal were as 93.77%, 95.67%, and 97% for red, black and blue dyes, respectively. The presence of salt (particularly NaCl in the dye solution resulted in a higher color removal with a permeate flux decline. It was confirmed that pH of solution had a positive impact on dye removal while feed temperature showed a different image. A comparison was made between the results of dye removal in biological and membrane methods. The results showed that membrane method had higher removal potential with lower effective cost. The present study indicates that the use of NF membrane in dye removal from the effluent of Iraqi textile mills is promising.

  20. A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry

    DEFF Research Database (Denmark)

    Petrinic, Irena; Korenak, Jasmina; Povodnik, Damijan

    2015-01-01

    studied the technical and economic feasibilities of adding an ultrafiltration process as a pre-treatment for removing dissolved and colloidal contaminants >0.4μm, and to eliminate membrane fouling before a final reverse osmosis process resulting in permeate that would meet reuse criteria. The results show...... that the ultrafiltration-reverse osmosis treatment removed between 91.3% and 99.8% of the contaminants from the effluent, such as metal elements, organic, and inorganic compounds. Contaminants such as suspended solids, nickel, ammonium nitrogen, sulphate nitrogen, chemical oxygen demand, and biochemical oxygen demand were...... completely removed, the concentrations in the permeate being under the detection limits, thus the quality of the ultrafiltration-reverse osmosis process met the reuse criteria. This demonstrates the technological feasibility of wastewater reuse during electro-plating processes and the pre-treatment of powder...

  1. A Study on Membrane Bioreactor for Water Reuse from the Effluent of Industrial Town Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Majid Hosseinzadeh

    2014-03-01

    Full Text Available Background: Considering the toxic effects of heavy metals and microbial pathogens in industrial wastewaters, it is necessary to treat metal and microbial contaminated wastewater prior to disposal in the environment. The purpose of this study is to assess the removal of heavy metals pollution and microbial contamination from a mixture of municipal and industrial wastewater using membrane bioreactor. Methods: A pilot study with a continuous stream was conducted using a 32-L-activated sludge with a flat sheet membrane. Actual wastewater from industrial wastewater treatment plant was used in this study. Membrane bioreactor was operated with a constant flow rate of 4 L/hr and chemical oxygen demand, suspended solids concentration, six heavy metals concentration, and total coliform amounts were recorded during the operation. Results: High COD, suspended solids, heavy metals, and microbial contamination removal was measured during the experiment. The average removal percentages obtained by the MBR system were 81% for Al, 53% for Fe, 94% for Pb, 91% for Cu, 59% for Ni, and 49% for Cr which indicated the presence of Cu, Ni, and Cr in both soluble and particle forms in mixed liquor while Al, Fe, and Pb were mainly in particulate form. Also, coliforms in the majority of the samples were <140 MPN/100mL that showed that more than 99.9% of total coliform was removed in MBR effluent. Conclusion: The Membrane Biological Reactor (MBR showed a good performance to remove heavy metals and microbial matters as well as COD and suspended solids. The effluent quality was suitable for reusing purposes.

  2. Baseline water quality of municipal ponds and metal removal ability of Typha latifolia L. from sewage and industrial wastewaters.

    Science.gov (United States)

    Bokhari, Syeda Huma; Mahmood-Ul-Hassan, Muhammad; Riaz, Yousaf; Munir, Anjum; Ali, Zeshan

    2017-12-02

    Municipal effluent of three rural settings of Islamabad was assessed for physicochemical and microbiological parameters by collecting wastewater from inlet and center of ponds. Results showed that water quality was comparatively better at the center as Typha latifolia plants were growing toward the center of ponds. In another study, the wastewater treatment ability of T. latifolia was investigated by growing them in industrial and municipal effluent under greenhouse conditions. Water and plant samples were collected periodically (3rd, 10th, 17th, 24th, and 31st day after transplanting) for the measurement of Pb, Cu, and Cd concentrations. A decrease in heavy metal concentration of both effluents was observed as the experiment progressed and metal removal percentages ranged between 81% and 96%. Complementary the increase in metal concentration in plant tissues was observed over experimental period. Among plant tissues, metal concentration of Pb was highest i.e. 362 mg kg-1 in roots and 313 mg kg-1 in shoots at end of experiment. Pb, Cu, and Cd concentrations were higher in roots than shoots and hence translocation factors were less than 1.0. Metal removal efficiency was better from industrial wastewater and was in order of Pb > Cu > Cd. T. latifolia can be used for remediation of heavy metal-polluted wastewater.

  3. Biologically Induced Deposition of Fine Suspended Particles by Filter-Feeding Bivalves in Land-Based Industrial Marine Aquaculture Wastewater

    Science.gov (United States)

    Zhou, Yi; Zhang, Shaojun; Liu, Ying; Yang, Hongsheng

    2014-01-01

    Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67±0.99 cm) and M. galloprovincialis (shell height: 4.43±0.98 cm) was 77.84±7.77 and 6.37±0.67 mg ind−1•d−1, respectively. The total solid suspension (TSS) deposition rates of oyster and mussel treatments were 3.73±0.27 and 2.76±0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (Paquaculture wastewater, and simultaneously yield value-added biological products. PMID:25250730

  4. Biologically induced deposition of fine suspended particles by filter-feeding bivalves in land-based industrial marine aquaculture wastewater.

    Science.gov (United States)

    Zhou, Yi; Zhang, Shaojun; Liu, Ying; Yang, Hongsheng

    2014-01-01

    Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67 ± 0.99 cm) and M. galloprovincialis (shell height: 4.43 ± 0.98 cm) was 77.84 ± 7.77 and 6.37 ± 0.67 mg ind(-1) • d(-1), respectively. The total solid suspension (TSS) deposition rates of oyster and mussel treatments were 3.73 ± 0.27 and 2.76 ± 0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P treatments were significantly lower than those in the sediments of the control (P aquaculture wastewater, and simultaneously yield value-added biological products.

  5. Hepatoprotective effects of polysaccharide isolated from Agaricus bisporus industrial wastewater against CCl₄-induced hepatic injury in mice.

    Science.gov (United States)

    Huang, Jiafu; Ou, Yixin; Yew, Tai Wai David; Liu, Jingna; Leng, Bo; Lin, Zhichao; Su, Yi; Zhuang, Yuanhong; Lin, Jiaofen; Li, Xiumin; Xue, Yu; Pan, Yutian

    2016-01-01

    During the industrial production of canned mushroom (Agaricus bisporus), a large quantity of wastewater is produced. In this study, the wastewater generated during the canning of mushroom was analyzed. From this wastewater, four polysaccharide components (Abnp1001, Abnp1002, Abap1001, and Abap1002) with hepatic-protective activity were isolated by ultrafiltration, DEAE cellulose-52 chromatography and Sephadex G-200 size-exclusion chromatography. Results of ultraviolet spectra analysis and molecular weight determination showed that Abnp1001, Abnp1002, Abap1001 and Abap1002 were uniform with average molecular weights of 336, 12.8, 330 and 15.8kDa, respectively. The monosaccharide composition analysis using gas chromatography (GC) showed that the four fractions were heteropolysaccharides and mainly composed of glucose. Fourier transform-infrared (FT-IR) analysis showed that the isolated fractions were all composed of β-glycoside linkages. Additionally, the potential hepatoprotective activities of these polysaccharides against CCl4-induced hepatic injury in mice were studied. Notably, Abnp1002 and Abap1002 could lower the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) concentrations in serum in a dose dependent manner and reduce the hepatocellular degeneration and necrosis, as well as inflammatory infiltration. These results indicate that these two polysaccharides had protective effects on acute hepatic injury induced by CCl4 in mice and suggest that the polysaccharides extracted from A. bisporus industrial wastewater might have potential in therapeutics of acute hepatic injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents

    Energy Technology Data Exchange (ETDEWEB)

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi [Laboratoire des Bioprocedes Environnementaux, Pole d' Excellence Regional AUF-LBPE, Centre de Biotechnologie de Sfax, Universite de Sfax, BP 1117, 3018 Sfax (Tunisia); Sayadi, Sami, E-mail: sami.sayadi@cbs.rnrt.tn [Laboratoire des Bioprocedes Environnementaux, Pole d' Excellence Regional AUF-LBPE, Centre de Biotechnologie de Sfax, Universite de Sfax, BP 1117, 3018 Sfax (Tunisia)

    2011-05-15

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l{sup -1} to 8 mg TPH l{sup -1}. Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.

  7. The startup performance and microbial distribution of an anaerobic baffled reactor (ABR) treating medium-strength synthetic industrial wastewater.

    Science.gov (United States)

    Jiang, Hao; Nie, Hong; Ding, Jiangtao; Stinner, Walter; Sun, Kaixuan; Zhou, Hongjun

    2018-01-02

    In this study, an anaerobic baffled reactor (ABR) with seven chambers was applied to treat medium-strength synthetic industrial wastewater (MSIW). The performance of startup and shock test on treating MSIW was investigated. During the acclimation process, the chemical oxygen demand (COD) of MSIW gradually increased from 0 to 2,000 mg L -1 , and the COD removal finally reached 90%. At shock test, the feeding COD concentration increased by one-fifth and the reactor adapted very well with a COD removal of 82%. In a stable state, Comamonas, Smithella, Syntrophomonas and Pseudomonas were the main populations of bacteria, while the predominant methanogen was Methanobacterium. The results of chemical and microbiological analysis indicated the significant advantages of ABR, including buffering shocks, separating stages with matching microorganisms and promoting syntrophism. Meanwhile, the strategies for acclimation and operation were of great importance. Further work can test reactor performance in the treatment of actual industrial wastewater.

  8. Combined electrocoagulation and electro-oxidation of industrial textile wastewater treatment in a continuous multi-stage reactor.

    Science.gov (United States)

    GilPavas, Edison; Arbeláez-Castaño, Paula; Medina, José; Acosta, Diego A

    2017-11-01

    A combined electrocoagulation (EC) and electrochemical oxidation (EO) industrial textile wastewater treatment potential is evaluated in this work. A fractional factorial design of experiment showed that EC current density, followed by pH, were the most significant factors. Conductivity and number of electrooxidation cells did not affect chemical oxygen demand degradation (DCOD). Aluminum and iron anodes performed similarly as sacrificial anodes. Current density, pH and conductivity were chosen for a Box-Behnken design of experiment to determine optimal conditions to achieve a high DCOD minimizing operating cost (OC). The optimum to achieve a 70% DCOD with an OC of USD 1.47/m 3 was: pH of 4, a conductivity of 3.7 mS/cm and a current density of 4.1 mA/cm 2 . This study also shows the applicability of a combined EC/EO treatment process of a real complex industrial wastewater.

  9. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ongen, Atakan, E-mail: aongen@istanbul.edu.tr; Kurtulus Ozcan, H.; Arayıcı, Semiha

    2013-12-15

    Highlights: • We model calorific value of syn-gas from tannery industry treatment sludge. • We monitor variation of gas composition in produced gas. • Heating value of produced gas is around 1500 kcal/m{sup 3}. • Model predictions are in close accordance with real values. -- Abstract: This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity.

  10. Starch industry wastewater for production of biopesticides--ramifications of solids concentrations.

    Science.gov (United States)

    Vu, Khanh Dang; Tyagi, R D; Brar, S K; Valéro, J R; Surampalli, R Y

    2009-04-01

    Total solids (TS) concentrations ranging from 15 to 66 g L(-1) of starch industry wastewater (SIW) were tested as raw material for the production of Bacillus thuringiensis var. kurstaki HD-1 (Btk) biopesticide in shake flasks and a 15 L bench-scale fermenter. Shake flask studies revealed a higher delta-endotoxin concentration of Btk at 30 g L(-1) TS concentration and 2.5% (v v(-1)) volume of pre-culture. The fermenter experiments conducted using SIW at 30 g L(-1) TS concentration under controlled conditions of temperature, pH and dissolved oxygen showed higher spore count, enzyme production (protease and amylase) and delta-endotoxin concentration as compared with those of SIW at 15 g L(-1) TS concentration. The entomotoxicity, at the end of fermentation, with SIW at 30 g L(-1) solids concentration (17.8 x 10(9) SBU L(-1), measured against spruce budworm) was considerably higher as compared with entomotoxicity at 15 g L(-1) solids concentration (15.3 x 10(9) SBU L(-1)) and semi-synthetic medium (11.7 x 10(9) SBU L(-1)). The pellet, comprising spores and delta-endotoxin complex obtained after centrifugation and followed by resuspension (in supernatant) in one-tenth of the original volume, of SIW at 30 g L(-1) solids concentration media registered the highest potential for application (to protect forests against spruce budworm) than other media in term of entomotoxicity.

  11. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review.

    Science.gov (United States)

    Kim, Kyoung-Hun; Ihm, Son-Ki

    2011-02-15

    Catalytic wet air oxidation (CWAO) is one of the most economical and environmental-friendly advanced oxidation process. It makes a promising technology for the treatment of refractory organic pollutants in industrial wastewaters. Various heterogeneous catalysts including noble metals and metal oxides have been extensively studied to enhance the efficiency of CWAO. The present review is concerned about the literatures published in this regard. Phenolics, carboxylic acids, and nitrogen-containing compounds were taken as model pollutants in most cases, and noble metals such as Ru, Rh, Pd, Ir, and Pt as well as oxides of Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and Ce were applied as heterogeneous catalysts. Reports on their characterization and catalytic performances for the CWAO of aqueous pollutants are reviewed. Discussions are also made on the reaction mechanisms and kinetics proposed for heterogeneous CWAO and also on the typical catalyst deactivations in heterogeneous CWAO, i.e. carbonaceous deposits and metal leaching. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. The efficiency of electrocoagulation using aluminum electrodesin treating wastewater from a dairy industry

    Directory of Open Access Journals (Sweden)

    Gerson de Freitas Silva Valente

    2015-09-01

    Full Text Available This research deals with the investigation of electrocoagulation (EC treatment of wastewater from a dairy plant using aluminum electrodes. Electrolysis time, pH, current density and distance between electrodes were considered to assess the removal efficiency of chemical oxygen demand (COD, total solids (TS and their fractions and turbidity. Samples were collected from the effluent of a dairy plant using a sampling methodology proportional to the flow. The treatments were applied according to design factorial of half fraction with two levels of treatments and 3 repetitions at the central point. The optimization of parameters for treating dairy industry effluent by electrocoagulation using aluminum electrodes showed that electric current application for 21 minutes, an initial sample pH near 5.0 and a current density of 61.6A m-2 resulted in a significant reduction in COD by 57%; removal of turbidity by 99%, removal of total suspended solids by 92% and volatile suspended solids by 97%; and a final treated effluent pH of approximately 10. Optimum operating condition was used for cost calculations show that operating cost is approximately 3.48R$ m-3.

  13. Microalgal biomass generation by phycoremediation of dairy industry wastewater: An integrated approach towards sustainable biofuel production.

    Science.gov (United States)

    Chokshi, Kaumeel; Pancha, Imran; Ghosh, Arup; Mishra, Sandhya

    2016-12-01

    Dairy wastewater collected from local dairy industry was used as a growth media (without any pre-treatment) for the cultivation of microalgae Acutodesmus dimorphus. The level of COD reduced over 90% (from 2593.33±277.37 to 215±7.07mg/L) after 4days of cultivation; whereas, ammoniacal nitrogen was consumed completely (277.4±10.75mg/L) after 6days of cultivation. Dry biomass of 840 and 790mg/L was observed after 4 and 8days of cultivation, respectively, which is about 5-6 times more than that of BG-11 grown culture (149mg/L after 8days). This biomass contains around 25% lipid and 30% carbohydrate, which can be further converted into biodiesel and bioethanol, respectively. Theoretical calculations based on the recently reported conversion yield suggest that 1kg biomass of A. dimorphus might produce around 195g of biodiesel and 78g of bioethanol, which sums up to 273g of biofuels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A full-scale biological treatment system application in the treated wastewater of pharmaceutical industrial park.

    Science.gov (United States)

    Lei, Ge; Ren, Hongqiang; Ding, Lili; Wang, Feifei; Zhang, Xingsong

    2010-08-01

    A full-scale combined biological system is used for the treatment of treated wastewater discharged from a pharmaceutical industrial park. This treated water is rich in NH(4)(+)-N (average in 86.4 mg/L), low in COD/NH(4)(+)-N (average in 3.4) and low in BOD(5)/COD ratio (average in 0.24) with pH varying from 7.16 to 7.78. The final effluent of the combined treatment process was stably below 100mg/L COD and 20mg/L NH(4)(+)-N, separately, with organic loading rate of 4954 kg COD/d and 92.5 kg NH(4)(+)-N/d. It is found that the BOD(5)/COD ratio could be raised from 0.24 to 0.35, and the production of total VFAs account for 9.57% of the total COD via the treatment of hydrolysis/acidification. MBBR and oxidation ditch represent 35.4% and 60.7% of NH(4)(+)-N removal, 30.2% and 61.5% of COD removal, separately, of the total treatment process. PCR-DGGE is used for microbial community analysis of MBBR and oxidation ditch. (c) 2010. Published by Elsevier Ltd. All rights reserved.

  15. Production from Activated Sludge Process of Sago Industry Wastewater Using Central Composite Design

    Directory of Open Access Journals (Sweden)

    B. Subha

    2012-01-01

    Full Text Available Sago industries effluent containing large amounts of organic content produced excess sludge which is a serious problem in wastewater treatment. In this study ozonation has been employed for the reduction of excess sludge production in activated sludge process. Central composite design is used to study the effect of ozone treatment for the reduction of excess sludge production in sago effluent and to optimise the variables such as pH, ozonation time, and retention time. ANOVA showed that the coefficient determination value (R2 of VSS and COD reduction were 0.9689 and 0.8838, respectively. VSS reduction (81% was achieved at acidic pH 6.9, 12 minutes ozonation, and retention time of 10 days. COD reduction (87% was achieved at acidic pH 6.7, 8 minutes of ozonation time, and retention time of 6 days. Low ozonation time and high retention time influence maximum sludge reduction, whereas low ozonation time with low retention time was effective for COD reduction.

  16. Minimization of organic content in simulated industrial wastewater by Fenton type processes: a case study.

    Science.gov (United States)

    Grcić, Ivana; Vujević, Dinko; Sepcić, Josip; Koprivanac, Natalija

    2009-10-30

    Pre-treatment of simulated industrial wastewaters (SIM1, SIM2 and SIM3) containing organic and inorganic compounds (1,2-dichloroethane, sodium formate, sodium hydrogen carbonate, sodium carbonate and sodium chloride) by oxidative degradation using homogeneous Fenton type processes (Fe2+/H2O2 and Fe3+/H2O2) has been evaluated. The effects of initial Fe2+ and Fe3+ concentrations, [Fe2+/3+], type of iron salt (ferrous sulfate vs. ferric chloride), initial hydrogen peroxide concentration, [H2O2], on mineralization extent, i.e., total organic content (TOC) removal, were studied. Response surface methodology (RSM), particularly Box-Behnken design (BBD) was used as modelling tool, and obtained predictive function was used to optimize the overall process by the means of desirability function approach (DFA). Up to 94% of initial TOC was removed after 120 min. Ferrous sulfate was found to be the most appropriate reagent, and the optimal doses of Fe2+ and H2O2 for reducing the pollutant content, in terms of final TOC and sludge production were assessed.

  17. Magnetic heterogeneous catalytic ozonation: a new removal method for phenol in industrial wastewater

    Science.gov (United States)

    2014-01-01

    In this study, a new strategy in catalytic ozonation removal method for degradation of phenol from industrial wastewater was investigated. Magnetic carbon nano composite as a novel catalyst was synthesized, characterized and then used in the catalytic ozonation process (COP) and compared with the single ozonation process (SOP). The influential parameters were all investigated. The results showed that the removal efficiency of phenol and COD (chemical oxygen demand) in COP (98.5%, 69.8%) was higher than those of SOP (78.7%, 50.5%) and the highest catalytic potential was achieved at optimal neutral pH. First order modeling demonstrated that the reactions were dependent on the concentration of catalyst, with kinetic constants varying from 0.023 1/min (catalyst = 0 g/L) to 0.071 1/min (catalyst = 4 g/L), whereby the optimum dosage of catalyst was found to be 2 g/L. Furthermore, the catalytic properties of the catalyst remained almost unchanged after 5-time reuse. The results regarding the biodegradability of the effluent showed that a 5-min reaction time in COP reduced the concentrations of phenol and COD to the acceptable levels for the efficient post-treatment in the SBR in a 4-h cycle period. Finally, this combined system is proven to be a technically effective method for treating phenolic contaminants. PMID:24572145

  18. TRATAMIENTO DE AGUAS RESIDUALES DE UNA INDUSTRIA PROCESADORA DE PESCADO EN REACTORES ANAERÓBICOS DISCONTINUOS/WASTEWATER TREATMENT OF A FISH PROCESSING INDUSTRY IN BATCH ANAEROBIC REACTORS

    National Research Council Canada - National Science Library

    Julio César Marín Leal; Carlos Aníbal Chinga Panta; Abrahan Isaac Velásquez Ferrín; Pierre Andrés González Cabo; Luz María Zambrano Rodríguez

    2015-01-01

      In this paper, the treatment of wastewater from a fish processing industry (Manta, Ecuador) in batch anaerobic reactors was evaluated and its adjustment to current environmental standards for discharge was established...

  19. Bioremediation of domestic and industrial wastewaters integrated with enhanced biodiesel production using novel oleaginous microalgae.

    Science.gov (United States)

    Arora, Neha; Patel, Alok; Sartaj, Km; Pruthi, Parul A; Pruthi, Vikas

    2016-10-01

    The study illustrates the synergistic potential of novel microalgal, Chlamydomonas debaryana IITRIND3, for phycoremediation of domestic, sewage, paper mill and dairy wastewaters and then subsequent utilisation of its biomass for biodiesel production. Among these wastewaters, maximum lipid productivity (87.5 ± 2.3 mg L-1 day-1) was obtained in dairy wastewater with removal efficiency of total nitrogen, total phosphorous, chemical oxygen demand and total organic carbon to be 87.56, 82.17, 78.57 and 85.97 %, respectively. Metal ions such as sodium, calcium, potassium and magnesium were also removed efficiently from the wastewaters tested. Pigment analysis revealed loss of chlorophyll a while increase in carotenoid content in algal cells cultivated in different wastewaters. Biochemical data of microalgae grown in different wastewaters showed reduction in protein content with an increase in carbohydrate and lipid contents. The major fatty acids in algal cells grown in dairy wastewater were C14:0, C16:0, C16:1, C18:0, C18:2 and C18:3. The physical properties of biodiesel derived from microalgae grown in dairy wastewater were in compliance with the ASTM D6751 and EN 14214 fuel standards and were comparable to plant oil methyl esters.

  20. Matching agricultural freshwater supply and demand: using industrial and domestic treated wastewater for sub-irrigation purposes

    Science.gov (United States)

    Bartholomeus, Ruud; van den Eertwegh, Gé; Worm, Bas; Cirkel, Gijsbert; van Loon, Arnaut; Raat, Klaasjan

    2017-04-01

    Agricultural crop yields depend largely on soil moisture conditions in the root zone. Climate change leads to more prolonged drought periods that alternate with more intensive rainfall events. With unaltered water management practices, reduced crop yield due to drought stress will increase. Therefore, both farmers and water management authorities search for opportunities to manage risks of decreasing crop yields. Available groundwater sources for irrigation purposes are increasingly under pressure due to the regional coexistence of land use functions that are critical to groundwater levels or compete for available water. At the same time, treated wastewater from industries and domestic wastewater treatment plants are quickly discharged via surface waters towards sea. Exploitation of these freshwater sources may be an effective strategy to balance regional water supply and agricultural water demand. We present results of two pilot studies in drought sensitive regions in the Netherlands, concerning agricultural water supply through reuse of industrial and domestic treated wastewater. In these pilots, excess wastewater is delivered to the plant root zone through sub-irrigation by drainage systems. Sub-irrigation is a subsurface irrigation method that can be more efficient than classical, aboveground irrigation methods using sprinkler installations. Domestic wastewater treatment plants in the Netherlands produce annually 40-50mm freshwater. A pilot project has been setup in the eastern part of the Netherlands, in which treated wastewater is applied to a corn field by sub-irrigation during the growing seasons of 2015 and 2016, using a climate adaptive drainage system. The chemical composition of treated domestic wastewater is different from infiltrating excess rainfall water and natural groundwater. In the pilot project, the bromide-chloride ratio and traces of pharmaceuticals in the treated wastewater are used as a tracer to describe water and solute transport in the

  1. Design of an anaerobic hybrid reactor for industrial wastewater treatment; Diseno de reactores hibridos anaerobios para el tratamiento de aguas residuales industriales

    Energy Technology Data Exchange (ETDEWEB)

    Soroa del Campo, S.; Lopetegui Garnika, J.; Almandoz Peraita, A.; Garcia de las Heras, J. L.

    2005-07-01

    The application of the European legislation has promoted different strategies aimed at minimizing the biological sludge production during wastewater treatment. Anaerobic biological treatment is the clearest choice from a technical and economical point of view regarding industrial wastewater. In this context, a semi-industrial anaerobic hybrid reactor has been developed as an alternative technology to other anaerobic systems well-established in the market for the treatment of slaughterhouse wastewater. The The results have demonstrated that it is an effective, robust and easy to operate system. The sludge production has been reduced below 0.12 kg VS/kg COD removed, for COD removal efficiencies above 95%. (Author) 12 refs.

  2. Removal of nitrogen and phosphorus from industrial wastewaters by phytoremediation using water hyacinth (Eichhornia crassipes (Mart.) Solms).

    Science.gov (United States)

    Jayaweera, M W; Kasturiarachchi, J C

    2004-01-01

    This paper elucidates the phytoremediation potential of water hyacinth (Eichhornia crassipes [Mart.] Solms) for TN and TP rich industrial wastewaters determined for 15 weeks under different set-ups of 2-fold (56 TN mg/l and 15.4 TP mg/l), 1-fold, 1/2-fold, 1/4-fold and 1/8-fold and a control with no nutrients in duplicate. A mass balance was conducted to evaluate the phytoremediation efficiencies and to identify the key mechanisms of nutrient removal from the wastewaters. Our results manifested that water hyacinth is a promising candidate for a batch removal of TN and TP from wastewaters. 100% removal of both TN and TP was observed at the end of the 9th week in all the set-ups mainly due to assimilation and the period between 6-9weeks became the optimum period after which complete harvesting is recommended. Plants having an age of 6 weeks are ideal to commence the free-floating wetland and 21 days hydraulic retention time (HRT) is recommended for optimum removal of TN and TP. Assimilation and denitrification were the key mechanisms of TN removal while assimilation and sorption became the prominent mechanisms in the removal of TP from wastewaters.

  3. Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis.

    Science.gov (United States)

    Calheiros, Cristina S C; Rangel, António O S S; Castro, Paula M L

    2009-07-01

    Industrial wastewater treatment comprises several processes to fulfill the discharge permits or to enable the reuse of wastewater. For tannery wastewater, constructed wetlands (CWs) may be an interesting treatment option. Two-stage series of horizontal subsurface flow CWs with Phragmites australis (UP series) and Typha latifolia (UT series) provided high removal of organics from tannery wastewater, up to 88% of biochemical oxygen demand (BOD(5)) (from an inlet of 420 to 1000 mg L(-1)) and 92% of chemical oxygen demand (COD) (from an inlet of 808 to 2449 mg L(-1)), and of other contaminants, such as nitrogen, operating at hydraulic retention times of 2, 5 and 7 days. No significant (P<0.05) differences in performance were found between both the series. Overall mass removals of up to 1294 kg COD ha(-1)d(-1) and 529 kg BOD(5)ha(-1)d(-1) were achieved for a loading ranging from 242 to 1925 kg COD ha(-1)d(-1) and from 126 to 900 kg BOD(5)ha(-1)d(-1). Plants were resilient to the conditions imposed, however P. australis exceeded T. latifolia in terms of propagation.

  4. Characterization and application of dried plants to remove heavy metals, nitrate, and phosphate ions from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Chiban, Mohamed; Soudani, Amina; Sinan, Fouad [Department of Chemistry, Faculty of Sciences, Agadir (Morocco); Tahrouch, Saida [Department of Biology, Faculty of Sciences, Agadir (Morocco); Persin, Michel [European Membrane Institute, CRNS, Montpellier (France)

    2011-04-15

    Low cost adsorbents were prepared from dried plants for the removal of heavy metals, nitrate, and phosphate ions from industrial wastewaters. The efficiency of these adsorbents was investigated using batch adsorption technique at room temperature. The dried plant particles were characterized by N{sub 2} at 77 K adsorption, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and phytochemical screening. The adsorption experiments showed that the microparticles of the dried plants presented a good adsorption of heavy metals, phosphate, and nitrate ions from real wastewaters. This adsorption increased with increasing contact time. The equilibrium time was found to be 30 min for heavy metals and nitrate ions and 240 min for phosphate ions. After the adsorption process, the Pb(II) concentrations, as well as those of Cd(II), Cu(II), and Zn(II) were below the European drinking water norms concentrations. The percentage removal of heavy metals, nitrates, and phosphates from industrial wastewaters by dried plants was {proportional_to}94% for Cd{sup 2+}, {proportional_to}92% for Cu{sup 2+}, {proportional_to}99% for Pb{sup 2+}, {proportional_to}97% for Zn{sup 2+}, {proportional_to}100% for NO{sub 3}{sup -} and {proportional_to}77% for PO{sub 4}{sup 3-} ions. It is proved that dried plants can be one alternative source for low cost absorbents to remove heavy metals, nitrate, and phosphate ions from municipal and industrial wastewaters. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Biologically induced deposition of fine suspended particles by filter-feeding bivalves in land-based industrial marine aquaculture wastewater.

    Directory of Open Access Journals (Sweden)

    Yi Zhou

    Full Text Available Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67 ± 0.99 cm and M. galloprovincialis (shell height: 4.43 ± 0.98 cm was 77.84 ± 7.77 and 6.37 ± 0.67 mg ind(-1 • d(-1, respectively. The total solid suspension (TSS deposition rates of oyster and mussel treatments were 3.73 ± 0.27 and 2.76 ± 0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P < 0.001. Furthermore, organic matter and C, N in the sediments of bivalve treatments were significantly lower than those in the sediments of the control (P < 0.05. It was suggested that the filter feeders C. gigas and M. galloprovincialis had considerable potential to filter and accelerate the deposition of suspended particles from industrial aquaculture wastewater, and simultaneously yield value-added biological products.

  6. Potential of Basidiomycetous Fungi Isolated from Gunung Barus Forest North Sumatera in Decolorization of Wastewater of Textile Industry

    Science.gov (United States)

    Munir, E.; Priyani, N.; Suryanto, D.; Naimah, Z.

    2017-03-01

    A study of basidiomycetous fungi in decolorization of wastewater of textile industry has been started in our laboratory. The objective of this study was to obtain potential isolates and to examine their decolorization acitity. The fungi were isolated from local forest, Gunung Barus Forest, in North Sumatera and screened their ligninolytic activity qualitatively by bavendam method and the waste was obtained from local textile industry in Medan. Nineteen fungal isolates grew on plate agar medium containing 100% of waste supplemented with 2% glucose, and 6 of those exhibited good growth when glucose in the media was reduced to 1%. Surprisingly, these six potential isolates grew, although relatively at lower rate, when glucose was not included in the media. Meanwhile, there was no substantial decolorization of media could be observed on all plates cultures. Analyses of decolorization on liquid condition containing 25% of wastewater and no glucose showed that fungal grew at the bottom culture flask. All 6 isolates exhibited decolorization activity. Interestingly, mass of mycelia growth at the bottom absorbed dyes and dissolved suspended solid which was seemingly separated from very clean solution medium surrounding. These results indicated that the cultures utilized carbon source from waste and the extracellular matrixes produced by fungal isolates might involve in decolorization of textile wastewater.

  7. Effect of Membrane Type for the Treatment of Organized Industrial Zone (OIZ Wastewater with a Membrane Bioreactor (MBR: Batch Experiments

    Directory of Open Access Journals (Sweden)

    Oktay Özkan

    2017-08-01

    Full Text Available Organized industrial zone (OIZ wastewater is a mixed wastewater that is contributed by both municipal use and from different industrial sectors. Since MBR has advantages over conventional treatment plants, membrane types and fouling become the most important parameters in the treatment of this kind of wastewater. In this study, six different membrane types were used to find the most suitable membrane with the least resistivity to fouling. Three different microfiltration (MF and ultrafiltration (UF membranes were operated to estimate their (i membrane, (ii cake, (iii pore, and (iv total resistances. The highest total resistance was observed in a polyethersulfone (PES membrane (3.8 × 1010 m−1, while the lowest one was a UF polyvinylidene fluoride (PVDF membrane with approximately 20 times lower resistance than the highest one. PVDF membranes showed lower total resistances than PES membranes. An MF or a 250 kDa UF membrane could be operated long-term in a membrane bioreactor with the least fouling potential.

  8. Enrichment of anammox bacteria from three sludge sources for the startup of monosodium glutamate industrial wastewater treatment system.

    Science.gov (United States)

    Li-dong, Shen; An-hui, Hu; Ren-cun, Jin; Dong-qing, Cheng; Ping, Zheng; Xiang-yang, Xu; Bao-lan, Hu

    2012-01-15

    Three activated sludges from a landfill leachate treatment plant (S1), a municipal sewage treatment plant (S2) and a monosodium glutamate (MSG) wastewater treatment plant (S3) were used as inocula to enrich anaerobic ammonium oxidation (anammox) bacteria for the startup of MSG industrial wastewater treatment system. After 360 days of cultivation using MSG wastewater, obvious anammox activity was observed in all three cultures. The maximum specific anammox activities of cultures S1, S2 and S3 were 0.11 kg N kg(-1) VSS day(-1), 0.09 kg N kg(-1) VSS day(-1) and 0.16 kg N kg(-1) VSS day(-1), respectively. Brownish-red anammox granules having diameters in the range of 0.2-1.0mm were visible in cultures S1 and S2, and large red granules having diameters in the range of 0.5-2.5mm were formed in culture S3 after 420 days of cultivation. Phylogenetic analysis of 16S rRNA genes showed that Kuenenia organisms were the dominant anammox species in all three cultures. The copy numbers of 16S rRNA genes of anammox bacteria in cultures S1, S2 and S3 were 6.8 × 10(7) copies mL(-1), 9.4 × 10(7) copies mL(-1) and 7.5 × 10(8) copies mL(-1), respectively. The results of this study demonstrated that anammox cultivation from conventional activated sludges was highly possible using MSG wastewater. Thus the anammox process has possibility of applying to the nitrogen removal from MSG wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Using cement, lignite fly ash and baghouse filter waste for solidification of chromium electroplating treatment sludge

    OpenAIRE

    Wantawin, C.; Chobthiangtham, P.

    2004-01-01

    The objective of the study is to use baghouse filter waste as a binder mixed with cement and lignite fly ash to solidify sludge from chromium electroplating wastewater treatment. To save cost of solidification, reducing cement in binder and increasing sludge in the cube were focused on. Minimum percent cement in binder of 20 for solidification of chromium sludge was found when controlling lignite fly ash to baghouse filter waste at the ratio of 30:70, sludge to binder ratio of 0.5, water to m...

  10. Analysis and treatment of industrial wastewater through chemical coagulation-adsorption process-A case study of Clariant Pakistan limited

    Science.gov (United States)

    Ali Shah, Syed Farman; Shah, Abdul Karim; Mehdi, Ahmad; Memon, Aziza Aftab; Harijan, Khanji; Ali, Zeenat M.

    2012-05-01

    Textile dye manufacture processes are known as the most polluting chemical processes of industrial sectors of the world. Colored wastewaters along with many polluting agents are troublesome. They are heavily polluted with dyes, textile auxiliaries and chemicals. Current study applies a coupled technology for wastewater treatment. Combined coagulation-adsorption process was utilized for treatment of complex nature effluents of dyes, binder emulsion, pigments and textile chemicals plants at Clariant Pakistan. Cost effective coagulant and adsorbent was selected by using waste material from a power generation unit of Water and Power Development Authority (WAPDA), Pakistan. The treated effluent could be reused. Alum+ Activated Carbon, Ferrous sulfate+ Activated Carbon, Ferric chloride + Activated Carbon. Almost complete decolourization was achieved along with reduction in COD up to 65%. Pre and post treatment, TDS, COD, Turbidity and suspended solids were improved.

  11. Alternative Treatment Technologies for Low-Cost Industrial and Municipal Wastewater Management

    OpenAIRE

    Hodges, Alan J.

    2017-01-01

    Roughly the same volume of water that rushes over the Niagara Falls is produced as wastewater in North America. This wastewater is treated through a variety of means to ensure that it can be safely returned to the natural ecosystem. This thesis examines two novel means for this treatment, one biological and one physical-chemical in nature, namely, Rotating Algae Biofilm Reactor treatment and expanded shale augmented coagulation-flocculation. Rotating algae biofilm reactors (RABRs) support ...

  12. Performance of Multilevel Contact Oxidation in the Treatment of Wastewater from Automobile Painting Industry

    Science.gov (United States)

    Zhu, Tong; Zhu, Yufang; Fienko, Udo; Yuanhua, Xie; Kuo, Zhang

    2017-01-01

    A multilevel contact oxidation system was applied in a pilot-scale experiment to treat the automobile painting wastewater, which had poor biodegradability and contained high concentration of Chemical Oxygen Demand (COD). The wastewater used for this experiment study was the actual painting wastewater which had been pre-treated by the physic-chemical process, and its Biological Oxygen Demand (BOD5)/COD was less than 0.1,COD concentration was 800∼1500mg/L. The results showed that the multilevel contact oxidation system could efficiently degrade the COD of the painting wastewater. When the experimental system kept stable operation, the total removal rate of COD and suspended solid (SS) were 84% and 82.5% respectively with the Hydraulic Retention Time (HRT) of 8 hours. Meanwhile, this system had a strong ability to resist the impact of COD concentration change. The COD concentration of final treated wastewater was less than 500 mg/L, which could reach the factory discharge requirement for the paint shop. Besides, this system with simple structure was able to reduce the excess sludge production greatly, which would reduce much cost for the treatment of painting wastewater.

  13. Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants

    Science.gov (United States)

    Krishnan, S.; Rawindran, H.; Sinnathambi, C. M.; Lim, J. W.

    2017-06-01

    Due to the scarcity of water, it has become a necessity to improve the quality of wastewater that is discharged into the environment. Conventional wastewater treatment can be either a physical, chemical, and/or biological processes, or in some cases a combination of these operations. The main purpose of wastewater treatment is to eliminate nutrients, solids, and organic compounds from effluents. Current wastewater treatment technologies are deemed ineffective in the complete removal of pollutants, particularly organic matter. In many cases, these organic compounds are resistant to conventional treatment methods, thus creating the necessity for tertiary treatment. Advanced oxidation process (AOP), constitutes as a promising treatment technology for the management of wastewater. AOPs are characterised by a common chemical feature, where they utilize the highly reactive hydroxyl radicals for achieving complete mineralization of the organic pollutants into carbon dioxide and water. This paper delineates advanced oxidation processes currently used for the remediation of water and wastewater. It also provides the cost estimation of installing and running an AOP system. The costs are separated into three categories: capital, operational, and operating & maintenance.

  14. Process evaluation and treatability study of wastewater in a textile dyeing industry

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Debabrata [Civil Engineering Department, Bengal Engineering and Science University, Shibpur, P.O. - Botanic Garden, Horah, West Bengal - 711 103 (India)

    2011-07-01

    The process was investigated in a textile dying unit and subsequently wastewater generation profile was studied for the development of a viable treatment. The dyeing unit under the study generated a considerable volume of wastewater containing inorganic chemicals and organic reactive green dye. Chemical oxygen demand (COD) resulting from all the chemically oxidizible substances and the residual color of the dye were targeted for removal. The wastewater samples were collected from different sub-processes and then characterized for the parameters viz. pH, Total solid, Suspended solid, Dissolved solid, COD and Alkalinity. A composite wastewater sample was prepared according to the measured wastewater discharge from various unit operations and used for treatability study. In the first stage, coagulation-flocculation with alum and chemical oxidation with bleaching powder were performed separately. Subsequently, adsorption study was conducted with crushed burnt coal (C.B.C.) on the composite wastewater, initially treated with 10% bleaching powder solution. After several trials, this combination was found to be effective for a C.B.C. content of 10% under a contact period of 90 minutes, which showed 100% colour and about 95% COD removal.

  15. Generation and energy utilization of methane form industrial wastewater; Produccion y aprovechamiento energetico de metano a partir de agua residual industrial

    Energy Technology Data Exchange (ETDEWEB)

    Lebek, M.

    2009-07-01

    At the production site of a natural ingredients manufacturer for the food industry was necessary the adjustment of the WWTP to the enlargement of the production and its complement with a pre-treatment. The core of the treatment plan tis an UASB (Upflow Anaerobic Sludge Blanket) reactor where the wastewater is removed under anaerobic conditions. The main advantages of this treatment ar the operation stability and the high methane production. The biogas generated is cleaned before it is used during the production process as an energy resource. (Author)

  16. Direct electroplating of plastic for advanced electrical applications

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2017-01-01

    for direct electroplating of plastic eliminating the need for slow and expensive processes like electroless metal deposition, PVD coating, painting with conductive inks etc. The results obtained from the test demonstrate the potential of direct electroplating of plastic to enhance the electrical conductivity......Electrodeposition or electroplating is predominantly applied to metallic components. Electroplating of plastics is possible in some cases where an initial electroless plating layer of nickel or copper is made to provide a conductive surface on the plastic part. This paper proposes a method...

  17. Pilot-scale biopesticide production by Bacillus thuringiensis subsp. kurstaki using starch industry wastewater as raw material.

    Science.gov (United States)

    Ndao, Adama; Sellamuthu, Balasubramanian; Gnepe, Jean R; Tyagi, Rajeshwar D; Valero, Jose R

    2017-09-02

    Pilot-scale Bacillus thuringiensis based biopesticide production (2000 L bioreactor) was conducted using starch industry wastewater (SIW) as a raw material using optimized operational parameters obtained in 15 L and 150 L fermenters. In pilot scale fermentation process the oxygen transfer rate is a major limiting factor for high product yield. Thus, the volumetric mass transfer coefficient (KLa) remains a tool to determine the oxygen transfer capacity [oxygen utilization rate (OUR) and oxygen transfer rate (OTR)] to obtain better bacterial growth rate and entomotoxicity in new bioreactor process optimization and scale-up. This study results demonstrated that the oxygen transfer rate in 2000 L bioreactor was better than 15 L and 150 L fermenters. The better oxygen transfer in 2000 L bioreactor augmented the bacterial growth [total cell (TC) and viable spore count (SC)] and delta-endotoxin yield. Prepared a stable biopesticide formulation for field use and its entomotoxicity was also evaluated. This study result corroborates the feasibility of industrial scale operation of biopesticide production using starch industry wastewater as raw material.

  18. Survey of hazardous organic compounds in the groundwater, air and wastewater effluents near the Tehran automobile industry.

    Science.gov (United States)

    Kargar, Mahdi; Nadafi, Kazem; Nabizadeh, Ramin; Nasseri, Simin; Mesdaghinia, Alireza; Mahvi, Amir Hossein; Alimohammadi, Mahmood; Nazmara, Shahrokh; Rastkari, Noushin

    2013-02-01

    Potential of wastewater treatment in car industry and groundwater contamination by volatile organic compounds include perchloroethylene (PCE), trichloroethylene (TCE) and dichloromethane (DCM) near car industry was conducted in this study. Samples were collected in September through December 2011 from automobile industry. Head-space Gas chromatography with FID detector is used for analysis. Mean PCE levels in groundwater ranged from 0 to 63.56 μg L(-1) with maximum level of 89.1 μg L(-1). Mean TCE from 0 to 76.63 μg L(-1) with maximum level of 112 μg L(-1). Due to the data obtained from pre treatment of car staining site and conventional wastewater treatment in car factory, the most of TCE, PCE and DCM removed by pre aeration. Therefor this materials entry from liquid phase to air phase and by precipitation leak out to the groundwater. As a consequence these pollutants have a many negative health effect on the workers by air and groundwater.

  19. Removal of toxic Cr(VI) ions from tannery industrial wastewater using a newly designed three-phase three-dimensional electrode reactor

    Science.gov (United States)

    Grace Pavithra, K.; Senthil Kumar, P.; Carolin Christopher, Femina; Saravanan, A.

    2017-11-01

    In this research, the wastewater samples were collected from leather tanning industry at different time intervals. The parameters like pH, electrical conductivity, temperature, turbidity, chromium and chemical oxygen demand (COD) of the samples were analyzed. A three-phase three-dimensional fluidized type electrode reactor (FTER) was newly designed for the effective removal of toxic pollutants from wastewater. The influencing parameters were optimized for the maximum removal of toxic pollutants from wastewater. The optimum condition for the present system was calculated as: contact time of 30 min, applied voltage of 3 V and the particle electrodes of 15 g. The particle electrode was characterized by using FT-IR analysis. Langmuir-Hinshelwood and pseudo-second order kinetic models were fits well with the experimental data. The results showed that the FTER can be successfully employed for the treatment of industrial wastewater.

  20. [Uptake of nickel from industrial wastewater by genetically engineered Escherichia coli JM109].

    Science.gov (United States)

    Deng, Xu; Li, Qing-Biao; Lu, Ying-Hua; Sun, Dao-Hua; Huang, Yi-Li

    2003-05-01

    Heavy metal wastewater poses a serious threat to the environment. In comparison to the existing methods of chemical precipitation, ion exchange and carbon adsorption, biosorption is an attractive alternative for the recovery of heavy metals from industrial effluents. However, nickel ion, different from other heavy metal ions, is a more recalcitrant pollutant and has low affinity to many metal tolerant microorganisms. In this study, Escherichia coli JM109 was genetically engineered to simultaneously express a Ni2+ transport system (the product of nixA gene) andoverexpress metallothionein (MT). NixA protein has a high affinity for Ni2+, and metallothioneins (MTs) are capable of binding a variety of heavy metals including Ni2+ . The Ni2+ bioaccumulation performance of the genetically engineered E. coli JM109 was evaluated. Time-course test showed that the bioaccumulation rate was rapid, and 95% of the accumulation was achieved within the first 10 minutes. The maximum Ni2+ bioaccumulation by genetically engineered E. coli cells was dramatically increased from 1.54 mg/g to 10.11mg/g, a more than five-fold increase than that of the original E. coli strain. The isotherm was of Langmuir type. Within the tested pH range (pH 4-10), the engineered cells displayed more resistance to pH variation, retaining up to 80% of the Ni2+ binding capacity at pH 4, while the original E. coli host cells lost 80% of Ni2+ binding capacity at pH 4. The presence of Na+ and Ca2+ affected Ni2+ bioaccumulation, but the effects were not serious, as 71% and 66% of the Ni2+ binding capacities were retained respectively at the concentrations of 1000 mg/L Na+ and 1000 mg/L Ca2+ . However, Mg2+ exerted a severe adverse effect on Ni2+ bioaccumulation, 83% of Ni2+ accumulating capacity was lost when Mg2+ concentration reached 200 mg/L. The effects of different kinds of heavy metals on Ni2+ accumulating were different. The genetically engineered E. coli cell lost less than 45% of its Ni2+ bioaccumulation

  1. Biogas Production and Removal COD – BOD and TSS from Wastewater Industrial Alcohol (Vinasse) by Modified UASB Bioreactor

    OpenAIRE

    Utami Isni; Redjeki Sri; Astuti Dwi Hery; Sani

    2016-01-01

    Biogas production and decreased organic loading of vinasse using a modified UASB bioreactor has been done successfully. Vinasse is waste from the ethanol industry which contains COD: 9.360 mg / L , BOD : 4.013 mg/L, and TSS: 317.5 mg/L. The purpose of this research was to study the performance of bioreactors Upflow Anaerobic Sludge Blanket (UASB) to decompose the vinasse into biogas or methane. UASB operating principle is to distribute wastewater in the bioreactor to flow upward through the s...

  2. Biofuel application of biomass obtained from a meat industry wastewater plant through the flotation process. A case study

    Energy Technology Data Exchange (ETDEWEB)

    De Sena, Rennio F.; Claudino, Andreia; Moretti, Karine; Bonfanti, Iris C.P.; Moreira, Regina F.P.M.; Jose, Humberto J. [Laboratory of Energy and the Environment LEMA, Department of Chemical Engineering and Food Engineering EQA, Federal University of Santa Catarina UFSC, Center of Tecnology CTC, 88040-900 Florianopolis, SC (Brazil)

    2008-01-15

    Physicochemical treatment of meat industry wastewater is used to increase the organic matter removal efficiency, and it generates great amounts of sludge. Treatment using commercial ferric sulfate as coagulant for this specific wastewater gave high organic matter removals, decreasing considerably the amount of waste material to be treated in biological systems, and also allowing the obtention of 0.83-0.87 kg of biomass fuel for each m{sup 3} of treated wastewater. Due to sanitary, environmental problems and operational costs related to the discharge, land disposal and re-use of wastes, the utilization of this Biofuel (dried sludge) for steam generation has shown to be a viable alternative. This type of fuel has a high heating value, and it is a renewable energy source. The combustion test with a Biofuel to sawdust ratio of 4:1 met the technical requirements for the characterization of this promising fuel; nevertheless, operating conditions must be well designed to achieve NO{sub X} and SO{sub 2} emissions below local and/or international limits. (author)

  3. Performance evaluation and modeling of a submerged membrane bioreactor treating combined municipal and industrial wastewater using radial basis function artificial neural networks.

    Science.gov (United States)

    Mirbagheri, Seyed Ahmad; Bagheri, Majid; Boudaghpour, Siamak; Ehteshami, Majid; Bagheri, Zahra

    2015-01-01

    Treatment process models are efficient tools to assure proper operation and better control of wastewater treatment systems. The current research was an effort to evaluate performance of a submerged membrane bioreactor (SMBR) treating combined municipal and industrial wastewater and to simulate effluent quality parameters of the SMBR using a radial basis function artificial neural network (RBFANN). The results showed that the treatment efficiencies increase and hydraulic retention time (HRT) decreases for combined wastewater compared with municipal and industrial wastewaters. The BOD, COD, [Formula: see text] and total phosphorous (TP) removal efficiencies for combined wastewater at HRT of 7 hours were 96.9%, 96%, 96.7% and 92%, respectively. As desirable criteria for treating wastewater, the TBOD/TP ratio increased, the BOD and COD concentrations decreased to 700 and 1000 mg/L, respectively and the BOD/COD ratio was about 0.5 for combined wastewater. The training procedures of the RBFANN models were successful for all predicted components. The train and test models showed an almost perfect match between the experimental and predicted values of effluent BOD, COD, [Formula: see text] and TP. The coefficient of determination (R(2)) values were higher than 0.98 and root mean squared error (RMSE) values did not exceed 7% for train and test models.

  4. Ozone/UV treatment to enhance biodegradation of surfactants in industrial wastewater. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Cline, J.E. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Sullivan, P.F. [Specialty Industrial Products, Inc., Spartanburg, SC (United States); Lovejoy, M.A.; Collier, J. [Sun River Innovations, Ltd., Lexington, KY (United States); Adams, C.D. [Univ. of Missouri, Rolla, MO (United States)

    1996-10-01

    The new owners of a surfactant manufacturing plant wanted to triple production but were limited by the plant`s wastewater treatment capacity. Mass balance calculations indicated that little aerobic biodegradation was occurring in the plant`s wastewater treatment system. Literature reviews and laboratory tests confirmed that as much as 60% of the plant`s products might resist aerobic biodegradation. Overall chemical losses, both solid and aqueous, were estimated at 3.8% of theoretical. Organic loadings to the wastewater treatment system were 170 kg/d of which 50 kg/d reached the biological treatment system. Pollution prevention measures have allowed a > 20% increase in production levels with a > 30% decrease in effluent volume and no increase in discharge of chemical oxygen demand (COD). A new dissolved air flotation (DAF) system removes 70% of the organic loading. Sludge volumes are lower by an order of magnitude than with the clarifier/drum-filter process it replaced.

  5. Mutagenicity of automobile workshop soil leachate and tobacco industry wastewater using the Ames Salmonella fluctuation and the SOS chromotests.

    Science.gov (United States)

    Okunola, Alabi A; Babatunde, Esan E; Chinwe, Duru; Pelumi, Oyedele; Ramatu, Salihu G

    2016-06-01

    Environmental management of industrial solid wastes and wastewater is an important economic and environmental health problem globally. This study evaluated the mutagenic potential of automobile workshop soil-simulated leachate and tobacco wastewater using the SOS chromotest on Escherichia coli PQ37 and the Ames Salmonella fluctuation test on Salmonella typhimurium strains TA98 and TA100 without metabolic activation. Physicochemical parameters of the samples were also analyzed. The result of the Ames test showed mutagenicity of the test samples. However, the TA100 was the more responsive strain for both the simulated leachate and tobacco wastewater in terms of mutagenic index in the absence of metabolic activation. The SOS chromotest results were in agreement with those of the Ames Salmonella fluctuation test. Nevertheless, the E. coli PQ37 system was slightly more sensitive than the Salmonella assay for detecting genotoxins in the tested samples. Iron, cadmium, manganese, copper, nickel, chromium, arsenic, zinc, and lead contents analyzed in the samples were believed to play significant role in the observed mutagenicity in the microbial assays. The results of this study showed that the simulated leachate and tobacco wastewater showed strong indication of a genotoxic risk. Further studies would be required in the analytical field in order to identify and quantify other compounds not analyzed for in this study, some of which could be responsible for the observed genotoxicity. This will be necessary in order to identify the sources of toxicants and thus to take preventive and/or curative measures to limit the toxicity of these types of wastes. © The Author(s) 2014.

  6. Autonomous mobile platform for monitoring air emissions from industrial and municipal wastewater ponds.

    Science.gov (United States)

    Fu, Long; Huda, Quamrul; Yang, Zheng; Zhang, Lucas; Hashisho, Zaher

    2017-11-01

    Significant amounts of volatile organic compounds and greenhouse gases are generated from wastewater lagoons and tailings ponds in Alberta, Canada. Accurate measurements of these air pollutants and greenhouse gases are needed to support management and regulatory decisions. A mobile platform was developed to measure air emissions from tailings pond in the oil sands region of Alberta. The mobile platform was tested in 2015 in a municipal wastewater treatment lagoon. With a flux chamber and a CO2/CH4 sensor on board, the mobile platform was able to measure CO2 and CH4 emissions over two days at two different locations in the pond. Flux emission rates of CO2 and CH4 that were measured over the study period suggest the presence of aerobic and anaerobic zones in the wastewater treatment lagoon. The study demonstrated the capabilities of the mobile platform in measuring fugitive air emissions and identified the potential for the applications in air and water quality monitoring programs. The Mobile Platform demonstrated in this study has the ability to measure greenhouse gas (GHG) emissions from fugitive sources such as municipal wastewater lagoons. This technology can be used to measure emission fluxes from tailings ponds with better detection of spatial and temporal variations of fugitive emissions. Additional air and water sampling equipment could be added to the mobile platform for a broad range of air and water quality studies in the oil sands region of Alberta.

  7. Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale.

    Science.gov (United States)

    Foteinis, Spyros; Monteagudo, Jose Maria; Durán, Antonio; Chatzisymeon, Efthalia

    2018-01-15

    The environmental sustainability of a semi-industrial solar photo-Fenton reactor, treating real effluents emanating from a pharmaceutical laboratory, is assessed herein. The life cycle assessment/analysis (LCA) methodology was employed and real life cycle inventory (LCI) data was collected from a ferrioxalate-assisted homogeneous solar photo-Fenton wastewater treatment plant (WWTP), at Ciudad Real, Spain. Electricity was provided by photovoltaic (PV) panels in tandem with a battery bank, making the plant autonomous from the local grid. The effective treatment of 1m3 of secondary-treated pharmaceutical wastewater, containing antipyrine, was used as a functional unit. The main environmental hotspot was identified to be the chemical reagents used to enhance treatment efficiency, mainly hydrogen peroxide (H2O2) and to a smaller degree oxalic acid. On the other hand, land use, PV panels, battery units, compound parabolic collectors (CPC), tanks, pipes and pumps, as materials, had a low contribution, ranging from as little as 0.06% up to about 2% on the total CO2eq emissions. Overall, the solar photo-Fenton process was found to be a sustainable technology for treating wastewater containing micropollutants at semi-industrial level, since the total environmental footprint was found to be 2.71kgCO2m-3 or 272mPtm-3, using IPCC 2013 and ReCiPe impact assessment methods, respectively. A sensitivity analysis revealed that if the excess of solar power is fed back into the grid then the total environmental footprint is reduced. Depending on the amount of solar power fed back into the grid the process could have a near zero total environmental footprint. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Treatment of industry wastewater using thermo-chemical combined processes with copper salt up to recyclable limit

    Directory of Open Access Journals (Sweden)

    Omprakash Sahu

    2016-12-01

    Full Text Available Sugarcane is valuable crop of India and has a major role in foreign exchange. The aim of research work is to investigate the reduction of chemical oxygen demand and color from sugarcane industry effluent by thermolysis and coagulation method. The complete study was done in batch mode to determine the effect of operating parameters. The result shows maximum 73% of chemical oxygen demand and 76% color removal with copper oxide catalyst at 5 kg/m3 massloading, 85 °C reacting temperature, 9 h treatment time and pH 8. Combined study showed 97.6% chemical oxygen demand and 99.9% color removal at pH 6.5 and mass loading 8 mM with copper sulfate salt. The settling and filtration was found to be good at 65 °C and 75 °C with copper oxide treated sugar industry wastewater.

  9. Performance of Submerged Membrane Bioreactor Combined with Powdered Activated Carbon Addition for the Treatment of an Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Tri Widjaja

    2010-02-01

    Full Text Available Membrane technology is one of the alternative solutions to overcome industrial wastewater treatment developed nowadays. The addition of PAC (Powdered Activated Carbon in the activated sludge using Submerged Membrane Adsorption Hybrid Bioreactor (SMAHBR is expected to increase the organic material removal. The purpose of this study was to determine the performance of submerged membrane bioreactor and activated carbon adsorption capacity of organic materials in wastewater. This study used SIER (Surabaya Industrial Estate Rungkut – Surabaya, Indonesia waste as activated sludge operated at Mixed Liquor Suspended Solid (MLSS concentrations of 8000 and 15000 mg/l, and Chemical Oxygen Demand (COD concentrations of 1500, 2500 mg/l, Sludge Retention Time (SRT of 10;20; and 30 days and activated carbon variables of 0%; 2.5%; 5%; 7.5%; 10%. The results showed that the fouling potential occurred at high MLSS where the COD removal occurred at PAC addition of 10% reaching 91.86%. High Soluble Microbial Product (SMP accumulation (± 10 mg/l occurred in short SRT and high MLSS concentration. PAC addition resulted in decreased microorganisms in the reactor and better effluent of SMAHBR, as a result, the performance of the submerged membrane bioreactor would be restored.

  10. Sequencing treatment of industrial wastewater with ultraviolet/H2O2 advanced oxidation and moving bed bioreactor

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Mehrabani Ardekani

    2015-01-01

    Full Text Available Aims: The main purpose of this study was to determine the efficiency of a sequencing treatment including ultraviolet (UV/H 2 O 2 oxidation followed by a moving bed bioreactor (MBBR. Materials and Methods: Effect of solution pH, reaction time, and H 2 O 2 concentration were investigated for an industrial wastewater sample. The effluent of the advanced oxidation processes unit was introduced to the MBBR operated for three hydraulic retention times of 4, 8, and 12 h. Results: The optimum condition for industrial wastewater treatment via advanced oxidation was solution pH: 7, H 2 O 2 dose: 1000 mg/L and 90 min reaction time. These conditions led to 74.68% chemical oxygen demand (COD removal and 66.15% biochemical oxygen demand (BOD 5 removal from presedimentation step effluent that initially had COD and BOD 5 contents of 4,400 and 1,950 mg/L, respectively. Conclusion: Combination of UV/H 2 O 2 advanced oxidation with MBBR could result in effluents that meet water quality standards for discharge to receiving waters.

  11. Assessment of the interactions between economic growth and industrial wastewater discharges using co-integration analysis: a case study for China's Hunan Province.

    Science.gov (United States)

    Xiao, Qiang; Gao, Yang; Hu, Dan; Tan, Hong; Wang, Tianxiang

    2011-07-01

    We have investigated the interactions between economic growth and industrial wastewater discharge from 1978 to 2007 in China's Hunan Province using co-integration theory and an error-correction model. Two main economic growth indicators and four representative industrial wastewater pollutants were selected to demonstrate the interaction mechanism. We found a long-term equilibrium relationship between economic growth and the discharge of industrial pollutants in wastewater between 1978 and 2007 in Hunan Province. The error-correction mechanism prevented the variable expansion for long-term relationship at quantity and scale, and the size of the error-correction parameters reflected short-term adjustments that deviate from the long-term equilibrium. When economic growth changes within a short term, the discharge of pollutants will constrain growth because the values of the parameters in the short-term equation are smaller than those in the long-term co-integrated regression equation, indicating that a remarkable long-term influence of economic growth on the discharge of industrial wastewater pollutants and that increasing pollutant discharge constrained economic growth. Economic growth is the main driving factor that affects the discharge of industrial wastewater pollutants in Hunan Province. On the other hand, the discharge constrains economic growth by producing external pressure on growth, although this feedback mechanism has a lag effect. Economic growth plays an important role in explaining the predicted decomposition of the variance in the discharge of industrial wastewater pollutants, but this discharge contributes less to predictions of the variations in economic growth.

  12. Evaluation of industrial wastewater pollutants from soap factories and breweries in the Bafoussam city vicinity and contribution to the reduction of this pollution (Western highlands of Cameroon)

    OpenAIRE

    C. Gouafo; B.P.K. Yerima

    2013-01-01

    The discharges of wastewaters of industries in the Bafoussam city vicinity deteriorate the quality of surface and underground water and soils. The purpose of this study is to determine the level of ecotoxicity in the different industries and ways to fight against pollution. The following physico-chemical parameters were determined: COD, BOD5, OM, TP, Cu, Cd, Zn, Cr, Fe, Al, EC, Turbidity, NH4+ and NO3- from wastewaters from all the two soap factories (SWC and SCS) and one breweries (ASCB) ind...

  13. Evaluation of waste activated sludge as a coagulant aid for the treatment of industrial wastewater containing mixed surfactants.

    Science.gov (United States)

    Sriwiriyarat, Tongchai; Jangkorn, Siriprapha

    2009-04-01

    Wastewater generated by the industry manufacturing detergents and various kinds of consumer products normally contains very high contents of mixed surfactants, organic matters expressed as chemical oxygen demand (COD), and phosphates that must be treated prior to discharge to the aquatic environment. In this study, jar-test experiments were conducted to evaluate the waste activated sludge (WAS) as a coagulation aid in the coagulation-flocculation process with ferric chloride or aluminum sulfate as a coagulant for the treatment of wastewater collected from the aforementioned industry. The WAS was selected because of its adsorption capability of anionic surfactants and its availability from the wastage stream of biological wastewater treatment process. The effective dosages of both coagulants with and without the WAS additions were determined in this study. Without the WAS addition, the concentrations of 800 mg/L aluminum sulfate at the optimum pH value of 8 and 2208 mg/L ferric chloride at the optimum pH value of 12 were the optimum chemical dosages. It appears that aluminum sulfate was more effective than ferric chloride based on the chemical dosage and removal efficiency. The turbidity, suspended particles, anionic surfactants, COD, and phosphates removal efficiencies of aluminum sulfate and ferric chloride under the optimum dosage were 95.6, 88.2, 78.4, 73.5, 47.3% and 98.8, 92.0, 72.7, 67.5, 53.1%, respectively. The addition of 200 mg/L WAS was sufficient to reduce the optimum dosages of both chemicals by 200 mg/L. The cationic surfactant existing in the wastewater worked as a flocculating agent leading to the flocculation of waste activated sludge resulting in the enmeshment of the suspended particles and colloids on which the COD, anionic surfactants, and phosphates were adsorbed. However, the substances removal efficiencies of ferric chloride and aluminum sulfate were slightly enhanced and reduced, respectively. It is possibly explained that the settling time

  14. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent.

    Science.gov (United States)

    Santos, Sílvia C R; Boaventura, Rui A R

    2015-06-30

    Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD5 removals of 53-79%, but color removal was rather limited (10-18%). The performance was significantly enhanced by the addition of WS, with BOD5 removals above 91% and average color removals of 60-69%. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Chemical oxidation of carwash industry wastewater as an effort to decrease water pollution

    Science.gov (United States)

    Bhatti, Zulfiqar Ahmad; Mahmood, Qaisar; Raja, Iftikhar Ahmad; Malik, Amir Haider; Khan, Muhammad Suleman; Wu, Donglei

    Car wash wastewater (CWW) contains petroleum, hydrofluoric acid, ammonium bifluoride products, paint residues, rubber, phosphates, oil, grease and volatile organic compounds (VOCs). The present study dealt with various investigations conducted for the treatment of CWW. A treatment system of 5 L capacity was designed in the laboratory. Due to high load of oil and grease, CWW was aerated and scum was removed. Alum was used as coagulant in primary treatment which resulted 93% and 97% reduction in COD and turbidity. During secondary treatment CWW was further treated with waste hydrogen peroxide which resulted in further 71% and 83% reduction in COD and turbidity, respectively. Other desirable changes were also observed in pH, total dissolved solids (TDS), conductivity and dissolved oxygen contents. It was concluded that designed system could be effectively used to treat carwash wastewater that could be reused in the same station.

  16. Cultivation of Nannochloropsis for eicosapentaenoic acid production in wastewaters of pulp and paper industry.

    Science.gov (United States)

    Polishchuk, Anna; Valev, Dimitar; Tarvainen, Marko; Mishra, Sujata; Kinnunen, Viljami; Antal, Taras; Yang, Baoru; Rintala, Jukka; Tyystjärvi, Esa

    2015-10-01

    The eicosapentaenoic acid (EPA) containing marine microalga Nannochloropsis oculata was grown in an effluent from anaerobic digestion of excess activated sludge from a wastewater treatment plant serving a combination of a pulp and a paper mill and a municipality (digester effluent, DE), mixed with the effluent of the same wastewater treatment plant. The maximum specific growth rate and photosynthesis of N. oculata were similar in the DE medium and in artificial sea water medium (ASW) but after 7 days, algae grown in the DE medium contained seven times more triacylglycerols (TAGs) per cell than cells grown in ASW, indicating mild stress in the DE medium. However, the volumetric rate of EPA production was similar in the ASW and DE media. The results suggest that N. oculata could be used to produce EPA, utilizing the nutrients available after anaerobic digestion of excess activated sludge of a pulp and paper mill. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Oil and Grease Removal from Industrial Wastewater Using New Utility Approach

    Directory of Open Access Journals (Sweden)

    H. S. Abd El-Gawad

    2014-01-01

    Full Text Available The present study is an attempt to investigate oil and grease pollution that may pollute fresh water and influence aquatic environment. Then removal of oil and grease from manufacturing wastewater befall essential but common techniques not enough. Enzyme and adsorption units representing major developed new laboratory were selected to assess the water quality and humiliation prospective of oil and grease from wastewater. Several components and environmental variables that were dissolved oxygen, bacteriology measure, flow rate and adsorption material amount studied to assess the removal performance of oil and grease. The results elucidated significant variations among different tests which influenced microbial necessary role of oxidation declining develop biological treatment process reached to 72%. The study stressed out natural material (zeolite that enhanced organic reduction under optimal conditions. These conditions were closer spacing and high length of adsorbing unit that led to increase oil and grease contact period with adsorbent and added to increase performance removal reached to 99%.

  18. Integrated treatment of tapioca processing industrial wastewater based on environmental bio-technology

    NARCIS (Netherlands)

    Huynh Ngoc Phuong Mai,

    2006-01-01

    Tapioca processing wastewater containing high COD (9,630-13,760 mg/L), BOD (7,280-11,510 mg/L), SS (450-1,850 mg/L), total nitrogen (291-355 mg/L) total phosphorus (39-73 mg/L) and low pH (3.4-4.6) are one of the major causes of severe pollution to receiving source in South Vietnam. Based on the

  19. Discoloration of wastewater from a paint industry by the microalgae Chlorella sp

    Directory of Open Access Journals (Sweden)

    Edgardo Angulo M

    2017-09-01

    Full Text Available Objective. Decoloring wastewater from a paint factory making use of Chlorella sp., microalgae as a biological way of treatment. Materials and methods. Samples of this microalgae previously cultivated with nourishing fertilizer under photoperiods of light and darkness were taken to test the microalgae Chlorella sp., initial concentration effect in the bioremoval process. For this purpose, it was cultivated in 0.10, 0.20 and 0.30 units of absorbance in bioreactors with 200 mL wastewater with and without nutrients. The biotest with the best rate of colour removal was chosen and the DBO5 and DQO were marked out. The immobilized Chlorella sp., in kappa carrageenan was also tested. Results. In the tests colour decrease percentage were 81.7, 69.7 and 58.3% without nutrients in the initial concentrations of 0.10, 0.20 and 0.30 units of absorbance respectively and 72.6, 69.0 and 86.8% for 0.10, 0.20 and 0.30 units of absorbance with nutrients respectively in the day of maximum growth. The immobilized microalgae score were 72.60% and 78.36% of color removal for 0.4 and 1.6 units of absorbance respectively. The higher colour removal test score was that with nutrients at 0.30 units of absorbance with several changes in DBO5 and DQO values. Conclusion. The biological wastewater treatment making use of Chlorella sp., microalgae can be considered as an effective choice in decolorating wastewater.

  20. PENGARUH JENIS ANODA PADA PROSES PEMULIHAN LOGAM NIKEL DARI TIRUAN AIR LIMBAH ELECTROPLATING MENGGUNAKAN SEL ELEKTRODEPOSISI

    Directory of Open Access Journals (Sweden)

    Djaenudin Dhaenudin

    2013-11-01

    Full Text Available EFFECT OF ANODES TYPES ON NICKEL RECOVERY FROM SYNTHETIC ELECTROPLATING WASTE ELECTRODEPOSITION CELLS. A study concerning the recovery of nickel from electroplating wastewater artificial solution. The study was conducted with a batch system using electrodeposition cell consisting of two spaces separated by water hyacinth leaf, copper cathode plate, H2SO4 solution anolyte, catholyte solution of NiSO4 plus NaCl supporting electrolyte and anode varied. Electrodeposition performed at the direct current of 5V power for 4 hours each run. The research objective was to obtain the best anode in nickel electrodeposition process of electroplating waste artificial solution. Graphite, stainless steel type AISI 316 and the lead were used as a variation of the anode. Concentration of nickel in the catholyte at baseline 2200 mg/L. The results showed that the anode was a graphite anode with best value decreased by 72.44% nickel concentration, deposition of nickel on the cathode of 0.188 grams and specific energy values ​​of 6.1625 kWh/kg.nickel.   Telah dilakukan penelitian tentang pemulihan logam nikel dari larutan tiruan air limbah electroplating. Penelitian dilakukan dengan sistem batch menggunakan sel elektrodeposisi yang terdiri dari dua ruang yang dipisahkan dengan daun eceng gondok, katoda pelat tembaga, anolit larutan H2SO4, katolit larutan NiSO4 ditambah elektrolit pendukung larutan NaCl dan anoda divariasikan. Elektrodeposisi dilakukan pada listrik searah sebesar 5V selama 4 jam setiap tempuhan. Tujuan penelitian adalah memperoleh anoda terbaik pada proses elektrodeposisi nikel dari larutan tiruan limbah electroplating. Grafit, Stainless Steel  tipe AISI 316 dan timbal digunakan sebagai variasi jenis anoda. Konsentrasi nikel dalam katolit pada awal penelitian 2200 mg/L. Hasil penelitian menunjukkan bahwa anoda grafit merupakan anoda yang paling baik dengan nilai penurunan konsentrasi nikel sebesar 72,44%, deposisi nikel di katoda sebesar 0

  1. Combination of Fenton oxidation and composting for the treatment of the olive solid residue and the olive mile wastewater from the olive oil industry in Cyprus.

    Science.gov (United States)

    Zorpas, Antonis A; Costa, Costa N

    2010-10-01

    Co-composting of olive oil solid residue (OOSR) and treated wastewaters (with Fenton) from the olive oil production process has been studied as an alternative method for the treatment of wastewater containing high organic and toxic pollutants in small olive oil industry in Cyprus. The experimental results indicated that the olive mill wastewater (OMW) is detoxified at the end of Fenton Process and the COD is reduced up to 70%. The final co-composted material of OOSR with the treated olive mile wastewater (TOMW) is presented with optimum characteristics and is suitable for agricultural purpose. The final product coming out from an in-Vessel reactor seems to mature faster than the product from the windrow system and is presented with a better soil conditioner. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Innovative bio filtration for treatment of wastewater from communities and industry; Biofiltracion innovadora para el tratamiento de aguas residuales producidas por poblaciones e industrias

    Energy Technology Data Exchange (ETDEWEB)

    Sekoulov, I.; Rudiger, A.; Barz, M.

    2009-07-01

    Nowadays biological treatments are more and more required to clean municipal and industrial wastewater. More than 500 wastewater treatment plant use bio filtration. Bio filtration is a compact aerated reactor which does not imply expensive investments anymore. The real advantage of using bio filters is the aptitude to adapts the treatment to a wide range of entering polluting load, and also to low temperatures of wastewater. However, this technology needs a frequent cleaning that involves to stop the installation. Aquabiotec has solved this issue by enhancing a sequential cleaning. This new generation of bio filtration is able to treat wastewater steadily, with the same efficiency (>90%) and for lower costs compared to a classical bio filter. (Author) 6 refs.

  3. Wastewater reuse in a cascade based system of a petrochemical industry for the replacement of losses in cooling towers.

    Science.gov (United States)

    Hansen, Everton; Rodrigues, Marco Antônio Siqueira; Aquim, Patrice Monteiro de

    2016-10-01

    This article discusses the mapping of opportunities for the water reuse in a cascade based system in a petrochemical industry in southern Brazil. This industrial sector has a large demand for water for its operation. In the studied industry, for example, approximately 24 million cubic meters of water were collected directly from the source in 2014. The objective of this study was to evaluate the implementation of the reuse of water in cascade in a petrochemical industry, focusing on the reuse of aqueous streams to replenish losses in the cooling towers. This is an industrial scale case study with real data collected during the years 2014 and 2015. Water reuse was performed using heuristic approach based on the exploitation of knowledge acquired during the search process. The methodology of work consisted of the construction of a process map identifying the stages of production and water consumption, as well as the characterization of the aqueous streams involved in the process. For the application of the industrial water reuse as cooling water, mass balances were carried out considering the maximum concentration levels of turbidity, pH, conductivity, alkalinity, calcium hardness, chlorides, sulfates, silica, chemical oxygen demand and suspended solids as parameters turbidity, pH, conductivity, alkalinity, calcium hardness, chlorides, sulfates, silica, chemical oxygen demand and suspended solids as parameters. The adopted guideline was the fulfillment of the water quality criteria for each application in the industrial process. The study showed the feasibility for the reuse of internal streams as makeup water in cooling towers, and the implementation of the reuse presented in this paper totaled savings of 385,440 m(3)/year of water, which means a sufficient volume to supply 6350 inhabitants for a period of one year, considering the average water consumption per capita in Brazil; in addition to 201,480 m(3)/year of wastewater that would no longer be generated

  4. Industrial water resources management based on violation risk analysis of the total allowable target on wastewater discharge.

    Science.gov (United States)

    Yue, Wencong; Cai, Yanpeng; Xu, Linyu; Yang, Zhifeng; Yin, Xin'An; Su, Meirong

    2017-07-11

    To improve the capabilities of conventional methodologies in facilitating industrial water allocation under uncertain conditions, an integrated approach was developed through the combination of operational research, uncertainty analysis, and violation risk analysis methods. The developed approach can (a) address complexities of industrial water resources management (IWRM) systems, (b) facilitate reflections of multiple uncertainties and risks of the system and incorporate them into a general optimization framework, and (c) manage robust actions for industrial productions in consideration of water supply capacity and wastewater discharging control. The developed method was then demonstrated in a water-stressed city (i.e., the City of Dalian), northeastern China. Three scenarios were proposed according to the city's industrial plans. The results indicated that in the planning year of 2020 (a) the production of civilian-used steel ships and machine-made paper & paperboard would reduce significantly, (b) violation risk of chemical oxygen demand (COD) discharge under scenario 1 would be the most prominent, compared with those under scenarios 2 and 3, (c) the maximal total economic benefit under scenario 2 would be higher than the benefit under scenario 3, and (d) the production of rolling contact bearing, rail vehicles, and commercial vehicles would be promoted.

  5. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater

    Science.gov (United States)

    2013-01-01

    Background Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. Results The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p wastewater. This study advocates the use of Peranema sp. as a potential candidate for the bioremediation of heavy-metals in wastewater treatment, in addition to Pseudomonas putida and Bacillus licheniformis. PMID:23387904

  6. Degradation of organic pollutants and characteristics of activated sludge in an anaerobic/anoxic/oxic reactor treating chemical industrial wastewater

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-09-01

    Full Text Available A laboratory-scale anaerobic/anoxic/oxic system operated at the hydraulic retention times (HRT of 20, 40, and 60 h with mixed liquor suspended solids (MLSS concentrations of 3 g/L and 6 g/L was considered for treating chemical industrial wastewater rich in complex organic compounds and total dissolved solids. Extending the HRT and increasing the MLSS concentration resulted in higher removal efficiency for chemical oxygen demand at 72%. Organic compounds in wastewater could be classified into easily-removed and refractory compounds during treatment. The easily-removed compounds consisted primarily of ethers, alcohols, and aldehydes, whereas the refractory compounds included mainly oxygen-containing heterocyclic and benzene-containing compounds. Results from energy-dispersive X-ray spectroscopy showed that several metal ions accumulated in activated sludge, particularly Fe(III. Fe accumulated mainly on the surface of sludge floc pellets and resulted in the compactness of activated sludge, which caused the values of mixed liquor volatile suspended solids /MLSS and sludge volume index to decrease.

  7. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab

    2015-09-15

    A thorough review of advancement in slaughterhouse wastewater (SWW) characteristics, treatment, and management in the meat processing industry is presented. This study also provides a general review of the environmental impacts, health effects, and regulatory frameworks relevant to the SWW management. A significant progress in high-rate anaerobic treatment, nutrient removal, advanced oxidation processes (AOPs), and the combination of biological treatment and AOPs for SWW treatment is highlighted. The treatment processes are described and few examples of their applications are given. Conversely, few advances are accounted in terms of waste minimization and water use reduction, reuse, and recycle in slaughterhouses, which may offer new alternatives for cost-effective waste management. An overview of the most frequently applied technologies and combined processes for organic and nutrient removal during the last decade is also summarized. Several types of individual and combined processes have been used for the SWW treatment. Nevertheless, the selection of a particular technology depends on the characteristics of the wastewater, the available technology, and the compliance with regulations. This review facilitates a better understanding of current difficulties that can be found during production and management of the SWW, including treatment and characteristics of the final effluent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass.

    Science.gov (United States)

    Hernández, D; Riaño, B; Coca, M; García-González, M C

    2013-05-01

    Two combined processes were studied in order to produce second generation biofuels: microalgae biomass production and its further use to produce biogas. Two 5 L photobioreactors for treating wastewater from a potato processing industry (from now on RPP) and from a treated liquid fraction of pig manure (from now on RTE) were inoculated with Chlorella sorokiniana and aerobic bacteria at 24±2.7 °C and 6000 lux for 12 h per day of light supply. The maximum biomass growth was obtained for RTE wastewater, with 26.30 mg dry weight L(-1) d(-1). Regarding macromolecular composition of collected biomass, lipid concentration reached 30.20% in RPP and 4.30% in RTE. Anaerobic digestion results showed that methane yield was highly influenced by substrate/inoculum ratio and by lipids concentration of the biomass, with a maximum methane yield of 518 mL CH4 g COD(-1)added using biomass with a lipid content of 30% and a substrate/inoculum ratio of 0.5. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Operational and biological analyses of branched water-adjustment and combined treatment of wastewater from a chemical industrial park.

    Science.gov (United States)

    Xu, Ming; Cao, Jiashun; Li, Chao; Tu, Yong; Wu, Haisuo; Liu, Weijing

    2018-01-01

    The combined biological processes of branched water-adjustment, chemical precipitation, hydrolysis acidification, secondary sedimentation, Anoxic/Oxic and activated carbon treatment were used for chemical industrial wastewater treatment in the Taihu Lake Basin. Full-scale treatment resulted in effluent chemical oxygen demand, total nitrogen, NH3-N and total phosphorus of 35.1, 5.20, 3.10 and 0.15 mg/L, respectively, with a total removal efficiency of 91.1%, 67.1%, 70.5% and 89.3%, respectively. In this process, short-circuited organic carbon from brewery wastewater was beneficial for denitrification and second-sulfate reduction. The concentration of effluent fluoride was 6.22 mg/L, which also met the primary standard. Gas Chromatography-Mass Spectrometry analysis revealed that many types of refractory compounds were present in the inflow. Microbial community analysis performed in the summer by PCR-denaturing gradient gel electrophoresis and MiSeq demonstrated that certain special functional bacteria, such as denitrificans, phosphorus-accumulating bacteria, sulfate- and perhafnate-reducing bacteria, aromatic compound-degrading bacteria and organic fluoride-degrading bacteria, present in the bio-tanks were responsible for the acceptable specific biological pollutant reduction achieved.

  10. Remediation of phenol-contaminated soil by a bacterial consortium and Acinetobacter calcoaceticus isolated from an industrial wastewater treatment plant.

    Science.gov (United States)

    Cordova-Rosa, S M; Dams, R I; Cordova-Rosa, E V; Radetski, M R; Corrêa, A X R; Radetski, C M

    2009-05-15

    Time-course performance of a phenol-degrading indigenous bacterial consortium, and of Acinetobacter calcoaceticus var. anitratus, isolated from an industrial coal wastewater treatment plant was evaluated. This bacterial consortium was able to survive in the presence of phenol concentrations as high as 1200mgL(-1) and the consortium was more fast in degrading phenol than a pure culture of the A. calcoaceticus strain. In a batch system, 86% of phenol biodegradation occurred in around 30h at pH 6.0, while at pH 3.0, 95.2% of phenol biodegradation occurred in 8h. A high phenol biodegradation (above 95%) by the mixed culture in a bioreactor was obtained in both continuous and batch systems, but when test was carried out in coke gasification wastewater, no biodegradation was observed after 10 days at pH 9-11 for both pure strain or the isolated consortium. An activated sludge with the same bacterial consortium characterized above was mixed with a textile sludge-contaminated soil with a phenol concentration of 19.48mgkg(-1). After 20 days of bioaugmentation, the remanescent phenol concentration of the sludge-soil matrix was 1.13mgkg(-1).

  11. Mechanical properties of Cr-Cu coatings produced by electroplating

    Science.gov (United States)

    Riyadi, Tri Widodo Besar; Sarjito, Masyrukan, Riswan, Ricky Ary

    2017-06-01

    Hard chromium coatings has long been considered as the most used electrodeposited coating in several industrial applications such as in petrochemistry, oil and gas industries. When hard coatings used in fastener components, the sliding contact during fastening operation produces high tensile stresses on the surface which can generate microcracks. For component used in high oxidation and corrosion environment, deep cracks cannot be tolerated. In this work, a laminated structure of Cr-Cu coating was prepared using electroplating on carbon steel substrates. Two baths of chrome and copper electrolyte solutions were prepared to deposit Cr as the first layer and Cu as the second layer. The effect of current voltages on the thickness, hardness and specific wear rate of the Cu layer was investigated. The results show that an increase of the current voltages increased the thickness and hardness of the Cu layer, but reduced the specific wear rate. This study showed that the use of Cu can be a potential candidate as a laminated structure Cr-Cu for chromium plating.

  12. Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysis

    Directory of Open Access Journals (Sweden)

    Oliveira-Esquerre K.P.

    2002-01-01

    Full Text Available This work presents a way to predict the biochemical oxygen demand (BOD of the output stream of the biological wastewater treatment plant at RIPASA S/A Celulose e Papel, one of the major pulp and paper plants in Brazil. The best prediction performance is achieved when the data are preprocessed using principal components analysis (PCA before they are fed to a backpropagated neural network. The influence of input variables is analyzed and satisfactory prediction results are obtained for an optimized situation.

  13. Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: equilibrium, kinetic and thermodynamic study.

    Science.gov (United States)

    Rathinam, Aravindhan; Zou, Linda

    2010-12-15

    Batch biosorption experiments have been carried out for the removal of bovine serum albumin (BSA) from simulated industrial wastewater onto Ulva lactuca seaweed. Various vital parameters influencing the biosorption process such as initial concentration of BSA, pH of the solution, adsorbent dosage and temperature have been determined. The biosorption kinetics follows a pseudo-second order kinetic model. Equilibrium isotherm studies demonstrate that the biosorption followed the Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as changes in enthalpy, free energy and entropy have been calculated. The positive value of ΔH° and the negative value of ΔG° show that the sorption process is endothermic and spontaneous. The positive value of change in entropy ΔS° shows increased randomness at the solid-liquid interface during the biosorption of BSA onto U. lactuca seaweed. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Improving the rate of Cu+2 recovery from industrial wastewater using a vertical array of reciprocating perforated zin

    Directory of Open Access Journals (Sweden)

    A.H. El-Shazly

    2015-03-01

    Full Text Available This work investigates the possibility of improving the rate of Cu+2 recovery and/or removal from industrial wastewater by cementation technique using an array of pulsating horizontal perforated zinc discs. The results show that the rate of cementation was found to increase by increasing frequency and amplitude of oscillation (vibrating velocity; disc diameter; copper ion concentration and solution temperature while decreasing by increasing the disc separation. Under certain conditions using pulsating array of perforated zinc discs was found to increase the rate of mass transfer by a factor of 17 times the stagnant discs. The activation energy of the reaction was found to be 8.948 kcal/mol which indicates that under the present conditions cementation takes place under mixed control, i.e. the reaction is partially diffusion control. As such no overall mass transfer correlation could be obtained.

  15. R&D priorities in the field of sustainable remediation and purification of agro-industrial and municipal wastewater.

    Science.gov (United States)

    Miksch, Korneliusz; Cema, Grzegorz; Corvini, Philippe F-X; Felis, Ewa; Sochacki, Adam; Surmacz-Górska, Joanna; Wiszniowski, Jarosław; Zabczynski, Sebastian

    2015-01-25

    This article was presented as a position paper during the Environmental Biotechnology and Microbiology Conference in Bologna, Italy in April 2012. It indicates major and emerging environmental biotechnology research and development (R&D) priorities for EU members in the field of sustainable remediation and purification of agro-industrial and municipal wastewater. The identified priorities are: anaerobic/aerobic microbial treatment, combination of photochemical and biological treatment, phytoremediation and algae-based remediation, as well as innovative technologies currently investigated, such as enzyme-based treatment, bioelectrochemical treatment and recovery of nutrients and reuse of cleaned water. State of the art, research needs and prospective development in these domains are crucially discussed. As a result, goals of the future development of bioremediation and purification processes are defined and the way to achieve them is proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Development of an enzyme membrane reactor for treatment of cyanide-containing wastewaters from the food industry

    Energy Technology Data Exchange (ETDEWEB)

    Basheer, S.; Kut, O.M.; Prenosil, J.E.; Bourne, J.R. (Swiss Federal Inst. of Tech., Zurich (Switzerland))

    1993-02-20

    Cyanidase, an immobilized enzyme preparation for hydrolyzing cyanide to ammonia and formate, was applied for the treatment of cyanide-containing waste-waters from the food industry. Apricot seed extract was chosen as a model effluent. The enzymatic hydrolysis of pure amygdalin, the main cyanogenic glycoside in the extract, and the degradation of the cyanide formed was investigated and compared with the behavior of the real extract in a batch slurry reactor. A diffusional-type, flat-membrane reactor with immobilized cyanidase was developed, where the enzyme is effectively protected from adverse effects of high molecular components contained in the extract. For monitoring continuous-membrane reactor operation, a new unsegmented ammonia measurement system was developed and applied. In continuous operation the cyanidase retained its original activity for more than 400 hours on stream.

  17. Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: Equilibrium, kinetic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Rathinam, Aravindhan [Chemical Laboratory, Central Leather Research Institute, Adyar, Chennai 600020 (India); Zou, Linda, E-mail: linda.zou@unisa.edu.au [SA Water Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia)

    2010-12-15

    Batch biosorption experiments have been carried out for the removal of bovine serum albumin (BSA) from simulated industrial wastewater onto Ulva lactuca seaweed. Various vital parameters influencing the biosorption process such as initial concentration of BSA, pH of the solution, adsorbent dosage and temperature have been determined. The biosorption kinetics follows a pseudo-second order kinetic model. Equilibrium isotherm studies demonstrate that the biosorption followed the Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as changes in enthalpy, free energy and entropy have been calculated. The positive value of {Delta}H{sup o} and the negative value of {Delta}G{sup o} show that the sorption process is endothermic and spontaneous. The positive value of change in entropy {Delta}S{sup o} shows increased randomness at the solid-liquid interface during the biosorption of BSA onto U. lactuca seaweed.

  18. Application of Multi-Barrier Membrane Filtration Technologies to Reclaim Municipal Wastewater for Industrial Use

    OpenAIRE

    Ordóñez Sanz, Ruth; Hermosilla Redondo, Daphne; Merayo Cuevas, Noemí; Gascó, Antonio; Negro Álvarez, Carlos; Blanco Suárez, Ángeles

    2013-01-01

    The significant percentage of the world water consumption devoted to industrial use, along with an increasingly higher environmental concern of society, has awaken the interest of industry on using municipal reclaimed water for replacing fresh water use coming from utilities or natural resources. Depending on the type of industry and the specific application, water must meet certain quality requirements. Therefore, those water quality standards that are required for those most relevant indust...

  19. Treatment of Industrial Wastewater by Nonviable Biomass –A Review

    OpenAIRE

    Priyanka V. Patel; Prof. Mehali J. Mehta

    2015-01-01

    The present paper is a review paper on use of viable biomass of Industrial waste water treatment. there are many industry that use that latest technology such as the use of synthetic dyes for textile. However, a variety of synthetic dyestuff released by the textile industry has been posing a threat to the safety of the environment due the presence of a large number of toxic contaminants such as organic waste, acids, bases and organic pollutants. Therefore, the government began to ...

  20. Changes of Benthic Macroinvertebrates in Thi Vai River and Cai Mep Estuaries Under Polluted Conditions with Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Huong Nguyen Thi Thanh

    2017-06-01

    Full Text Available The pollution on the Thi Vai River has been spreading out rapidly over the two lasted decades caused by the wastewater from the industrial parks in the left bank of Thi Vai River and Cai Mep Estuaries. The evaluation of the benthic macroinvertebrate changes was very necessary to identify the consequences of the industrial wastewater on water quality and aquatic ecosystem of Thi Vai River and Cai Mep Estuaries. In this study, the variables of benthic macroinvertebrates and water quality were investigated in Thi Vai River and Cai Mep Estuaries, Southern Vietnam. The monitoring data of benthic macroinvertebrates and water quality parameters covered the period from 1989 to 2015 at 6 sampling sites in Thi Vai River and Cai Mep Estuaries. The basic water quality parameters were also tested including pH, dissolved oxygen (DO, total nitrogen, and total phosphorus. The biodiversity indices of benthic macroinvertebrates were applied for water quality assessment. The results showed that pH ranged from 6.4 – 7.6 during the monitoring. The DO concentrations were in between 0.20 - 6.70 mg/L. The concentrations of total nitrogen and total phosphorous ranged from 0.03 - 5.70 mg/L 0.024 - 1.380 mg/L respectively. Macroinvertebrate community in the study area consisted of 36 species of polychaeta, gastropoda, bivalvia, and crustacea, of which, species of polychaeta were dominant in species number. The benthic macroinvertebartes density ranged from 0 - 2.746 individuals/m−1 with the main dominant species of Neanthes caudata, Prionospio malmgreni, Paraprionospio pinnata, Trichochaeta carica, Maldane sarsi, Capitella capitata, Terebellides stroemi, Euditylia polymorpha, Grandidierella lignorum, Apseudes vietnamensis. The biodiversity index values during the monitoring characterized for aquatic environmental conditions of mesotrophic to polytrophic. Besides, species richness positively correlated with DO, total nitrogen, and total phosphorus. The results

  1. Soil Quality after Six Years of Paper Mill Industrial Wastewater Application

    Directory of Open Access Journals (Sweden)

    Ivan Carlos Carreiro Almeida

    Full Text Available ABSTRACT The application of wastewater to irrigate soils may be an attractive option for paper mills, especially when the effluents can also provide nutrients to plants. Since there could be negative environmental effects, such activity must be preceded by a thorough evaluation of the consequences. The changes in soil quality of a Neossolo Flúvico Distrófico (Typic Udifluvent were evaluated over a period of six years of irrigation with treated effluent from a wood pulp company. Although effluent application for six years did not affect soil resistance to penetration and soil hydraulic conductivity, it promoted a decrease in the mean size of aggregates and an increase in clay dispersion. Effluent application increased soil pH but did not change exchangeable Ca and Mg contents and organic carbon. After a full rotation of eucalyptus cultivation common in Brazil (six years, no negative effects in tree growth were found due to effluent irrigation. However, effluent addition caused higher values of Na adsorption ratio and intermediate electrical conductivity in the soil, which indicates a possible negative effect on soil quality if the application continues over a longer period. Therefore, a monitoring program should be carried out during subsequent crop rotations, and alternatives must be studied to obtain better effluent quality, such as adding Ca and Mg to the wastewater and using gypsum in the soil.

  2. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology

    Directory of Open Access Journals (Sweden)

    Ebrahiem E. Ebrahiem

    2017-05-01

    Full Text Available The general strategy of this study was based on evaluation of the possibility of applying advanced photo-oxidation technique (Fenton oxidation process for removal of the residuals organic pollutants present in cosmetic wastewater. The different parameters that affect the chemical oxidation process for dyes in their aqueous solutions were studied by using Fenton’s reaction. These parameters are pH, hydrogen peroxide (H2O2 dose, ferrous sulfate (FeSO4·7H2O dose, Initial dye concentration, and time. The optimum conditions were found to be: pH 3, the dose of 1 ml/l H2O2 and 0.75 g/l for Fe(II and Fe(III and reaction time 40 min. Finally, chemical oxygen demands (COD, before and after oxidation process was measured to ensure the entire destruction of organic dyes during their removal from wastewater. The experimental results show that Fenton’s oxidation process successfully achieved very good removal efficiency over 95%.

  3. Impact of paint shop decanter effluents on biological treatability of automotive industry wastewater.

    Science.gov (United States)

    Güven, Didem; Hanhan, Oytun; Aksoy, Elif Ceren; Insel, Güçlü; Çokgör, Emine

    2017-05-15

    A lab-scale Sequencing Batch Reactor (SBR) was implemented to investigate biological treatability and kinetic characteristics of paint shop wastewater (PSW) together with main stream wastewater (MSW) of a bus production factory. Readily biodegradable and slowly biodegradable COD fractions of MWS were determined by respirometric analysis: 4.2% (S S ), 10.4% (S H ) and 59.3% (X S ). Carbon and nitrogen removal performance of the SBR feeding with MSW alone were obtained as 89% and 58%, respectively. When PSW was introduced to MSW, both carbon and nitrogen removal were deteriorated. Model simulation indicated that maximum heterotrophic growth rate decreased from 7.2 to 5.7day -1 , maximum hydrolysis rates were reduced from 6 to 4day -1 (k hS ) and 4 to 1day -1 (k hX ). Based on the dynamic model simulation for the evaluation of nitrogen removal, a maximum specific nitrifier growth rate was obtained as 0.45day -1 for MSW feeding alone. When PSW was introduced, nitrification was completely inhibited and following the termination of PSW addition, nitrogen removal performance was recovered in about 100 days, however with a much lower nitrifier growth rate (0.1day -1 ), possibly due to accumulation of toxic compounds in the sludge. Obviously, a longer recovery period is required to ensure an active nitrifier community. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Experimental investigation and modeling of industrial oily wastewater treatment using modified polyethersulfone ultrafiltration hollow fiber membranes

    Energy Technology Data Exchange (ETDEWEB)

    Salahi, Abdolhamid; Mohammadi, Toraj [Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of); Behbahani, Reza Mosayebi [Petroleum University of Technology (PUT), Ahwaz (Iran, Islamic Republic of); Hemmati, Mahmood [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of)

    2015-06-15

    Hollow fiber membranes were prepared from polyethersulfone/additives/NMP and DMSO system via phase inversion induced by precipitation in non-solvent coagulation bath. The interaction effects of polyethylene-glycol (PEG), propionic-acid (PA), Tween-20, PEG molecular weight and polyvinyl-pyrrolidone (PVP) on morphology and performance of synthesized membranes were investigated. Taguchi method (L{sub 16} orthogonal array) was used initially to plan a minimum number of experiments. 32 membranes were synthesized (with two replications) and their permeation flux and TOC rejection properties to oily wastewater treatment were studied. The obtained results indicated that addition of PA to spinning dope decreases flux while it increases TOC rejection of prepared membranes. Also, the result shows that addition of PVP, Tween-20 and PEG content in spinning dope enhances permeation flux while reducing TOC rejection. The obtained results indicated that the synthesized membranes was effective and suitable for treatment of the oily wastewater to achieve up to 92.6, 98.2, and 98.5% removal of TOC, TSS, and OGC, respectively with a flux of 247.19 L/(m{sup 2}h). Moreover, Hermia's models were used for permeation flux decline prediction. Experimental data and models predictions were compared. The results showed that there is reasonable agreement between experimental data and the cake layer model followed by the intermediate blocking model.

  5. Self-heating of dried industrial tannery wastewater sludge induced by pyrophoric iron sulfides formation.

    Science.gov (United States)

    Bertani, R; Biasin, A; Canu, P; Della Zassa, M; Refosco, D; Simionato, F; Zerlottin, M

    2016-03-15

    Similarly to many powders of solids, dried sludge originated from tannery wastewater may result in a self-heating process, under given circumstances. In most cases, it causes a moderate heating (reaching 70-90°C), but larger, off-design residence times in the drier, in a suboxic atmosphere, extremely reactive solids can be produced. Tannery waste contains several chemicals that mostly end up in the wastewater treatment sludge. Unexpected and uncontrolled self heating could lead to a combustion and even to environmental problems. Elaborating on previous studies, with the addition of several analytical determinations, before and after the self-heating, we attempted to formulate a mechanism for the onset of heating. We demonstrated that the system Fe/S/O has been involved in the process. We proved that the formation of small quantities of pyrophoric iron sulfides is the key. They are converted to sulfated by reaction with water and oxygen with exothermic processes. The pyrite/pyrrhotite production depends on the sludge drying process. The oxidation of sulfides to oxides and sulfates through exothermic steps, reasonably catalyzed by metals in the sludge, occurs preferentially in a moist environment. The mechanism has been proved by reproducing in the laboratory prolonged heating under anoxic/suboxic atmosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater.

    Science.gov (United States)

    Tamisa, Jelmer; Lužkov, Kätlin; Jiang, Yang; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2014-12-20

    A PHA producing microbial culture dominated by Plasticicumulans acidivorans was enriched in a pilot plant using fermented wastewater from the Mars candy bar factory. The pilot plant comprised (1) anaerobic fermentation, (2) enrichment of a PHA-producing microbial community and (3) accumulation for maximization of the cellular PHA content. After anaerobic fermentation, the wastewater contained mainly VFAs (0.64 ± 0.15 gCOD/gCOD) and ethanol (0.22 ± 0.13 gCOD/gCOD). In the enrichment reactor (cycle 12 h, SRT 24 h) a feast-famine pattern was established with a feast phase of around 35 ± 5 min. The culture was able to accumulate 0.70 ± 0.05 gPHA/gVSS. The difference with previous lab-scale results from P. acidivorans, in which a PHA content of 0.90 gPHA/gVSS was achieved, could be attributed to the presence of solids in the influent, the growth of a side population and the accumulation of non-PHA storage compounds that appeared to be related to ethanol consumption.

  7. Toward better understanding and feasibility of controlling greenhouse gas emissions from treatment of industrial wastewater with activated sludge.

    Science.gov (United States)

    Chen, Wei-Hsiang; Yang, Jun-Hong; Yuan, Chung-Shin; Yang, Ying-Hsien

    2016-10-01

    Wastewater treatment plants (WWTPs) have been recognized as important sources for anthropogenic greenhouse gas (GHG) emission. The objective of the study was to thoroughly investigate a typical industrial WWTP in southern Taiwan in winter and summer which possesses the emission factors close to those reported values, with the analyses of emission factors, mass fluxes, fugacity, lab-scale in situ experiments, and impact assessment. The activated sludge was the important source in winter and summer, and nitrous oxide (N 2 O) was the main contributor (e.g., 57 to 91 % of total GHG emission in a unit of kg carbon dioxide-equivalent/kg chemical oxygen demand). Albeit important for the GHGs in the atmosphere, the fractional contribution of the GHG emission to the carbon or nitrogen removal in wastewater treatment was negligible (e.g., less than 1.5 %). In comparison with the sludge concentration or retention time, adjusting the aeration rate was more effective to diminish the GHG emission in the activated sludge without significantly affecting the treated water quality. When the aeration rate in the activated sludge simulation was reduced by 75 %, the mass flux of N 2 O could be diminished by up to 53 % (from 9.6 to 4.5 mg/m 2 -day). The total emission in the WWTP (including carbon dioxide, methane, and N 2 O) would decrease by 46 % (from 0.67 to 0.36 kg CO 2 -equiv/kg COD). However, the more important benefit of changing the aeration rate was lowering the energy consumption in operation of the WWTP, as the fractional contribution of pumping to the total emission from the WWTP ranged from 46 to 93 % within the range of the aeration rate tested. Under the circumstance in which reducing the burden of climate change is a global campaign, the findings provide insight regarding the GHG emission from treatment of industrial wastewater and the associated impact on the treatment performance and possible mitigation strategies by operational modifications.

  8. The effect of the feeding pattern of complex industrial wastewater on activated sludge characteristics and the chemical and ecotoxicological effluent quality.

    Science.gov (United States)

    Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan

    2017-04-01

    Research has demonstrated that the feeding pattern of synthetic wastewater plays an important role in sludge characteristics during biological wastewater treatment. Although considerable research has been devoted to synthetic wastewater, less attention has been paid to industrial wastewater. In this research, three different feeding strategies were applied during the treatment of tank truck cleaning (TTC) water. This industry produces highly variable wastewaters that are often loaded with hazardous chemicals, which makes them challenging to treat with activated sludge (AS). In this study, it is shown that the feeding pattern has a significant influence on the settling characteristics. Pulse feeding resulted in AS with a sludge volume index (SVI) of 68 ± 15 mL gMLSS-1. Slowly and continuously fed AS had to contend with unstable SVI values that fluctuated between 100 and 600 mL gMLSS-1. These fluctuations were clearly caused by the feeding solution. The obtained settling characteristics are being supported by the microscopic analysis, which revealed a clear floc structure for the pulse fed AS. Ecotoxicological effluent assessment with bacteria, Crustacea and algae identified algae as the most sensitive organism for all effluents from all different reactors. Variable algae growth inhibitions were measured between the different reactors. The chemical and ecotoxicological effluent quality was comparable between the reactors.

  9. OPTIMIZATION OF MOTOR VEHICLE INDUSTRIES WASTEWATER TREATMENT METHODS WITH THE AIM OF HEAVY METALS REMOVAL AND WATER REUSE IN PILOT SCALE

    Directory of Open Access Journals (Sweden)

    S. A. Mirbagheri, M. Salehi M

    2006-10-01

    Full Text Available The waste of motor vehicle industries is mainly the result of washing, coloring and various stages of chassis manufacturing, which include oil, grease, dyestuff, chromium, phosphate and other pollutants. In the present research, extended aeration activated sludge biological treatment plant is being considered and evaluated, for the removal of heavy metals and pollution load from industrial wastes and sanitary wastewaters, and on the pilot scale for optimization of waste treatment method for motor vehicle industries. To accomplish the pilot experiments, the natural waste of Bahman motor vehicle factory is used. Effective factors on efficient removal of heavy metals and pollution load such as concentration of biological mass (MLVSS, COD, BOD, pH in the extended aeration activated sludge biological treatment system, in different ratios of the mixing of industrial waste to sanitary wastewater have been experimented and evaluated. The performance of the above system, in the best of conditions, removes about 90% of pollution load and 65% of heavy metals existing in the industrial wastes. After analyzing the experiments, it is concluded that the removal of heavy metals through biological methods is possible and moreover it is feasible to biologically treat the mixing of motor vehicle industries effluent and sanitary wastewater up to the ratio of one to one, if guided exactly and scientifically.

  10. Decomposition Analysis of Wastewater Pollutant Discharges in Industrial Sectors of China (2001–2009 Using the LMDI I Method

    Directory of Open Access Journals (Sweden)

    Beidou Xi

    2012-06-01

    Full Text Available China’s industry accounts for 46.8% of the national Gross Domestic Product (GDP and plays an important strategic role in its economic growth. On the other hand, industrial wastewater is also the major source of water pollution. In order to examine the relationship between the underlying driving forces and various environmental indicators, values of two critical industrial wastewater pollutant discharge parameters (Chemical Oxygen Demand (COD and ammonia nitrogen (NH4-N, between 2001 and 2009, were decomposed into three factors: i.e., production effects (caused by change in the scale of economic activity, structure effects (caused by change in economic structure and intensity effects (caused by change in technological level of each sector, using additive version of the Logarithmic Mean Divisia Index (LMDI I decomposition method. Results showed that: (1 the average annual effect of COD discharges in China was −2.99%, whereas the production effect, the structure effect, and the intensity effect were 14.64%, −1.39%, and −16.24%, respectively. Similarly, the average effect of NH4-N discharges was −4.03%, while the production effect, the structure effect, and the intensity effect were 16.18%, −2.88%, and −17.33%, respectively; (2 the production effect was the major factor responsible for the increase in COD and NH4-N discharges, accounting for 45% and 44% of the total contribution, respectively; (3 the intensity effect, which accounted for 50% and 48% of the total contribution, respectively, exerted a dominant decremental effect on COD and NH4-N discharges; intensity effect was further decomposed into cleaner production effect and pollution abatement effect with the cleaner production effect accounting for 60% and 55% of the reduction of COD and NH4-N, respectively; (4 the major contributors to incremental COD and NH4-N discharges were divided among industrial sub

  11. Training Centers for Onsite Wastewater Treatment

    Science.gov (United States)

    Onsite wastewater training centers offer classes, demonstration projects and research facilities for onsite industry professionals. Classes include wastewater management, new technologies and pre-licensing.

  12. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling.

    Science.gov (United States)

    Ongen, Atakan; Ozcan, H Kurtulus; Arayıcı, Semiha

    2013-12-15

    This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters

    DEFF Research Database (Denmark)

    Pant, Deepak; Singh, Anoop; Van Bogaert, Gilbert

    2012-01-01

    ) respectively, or other products formed at the cathode by an electrochemical reduction process. As compared to conventional fuel cells, BESs operate under relatively mild conditions, use a wide variety of organic substrates and mostly do not use expensive precious metals as catalysts. The recently discovered......Bioelectrochemical systems (BESs) are unique systems capable of converting the chemical energy of organic waste including low-strength wastewaters and lignocellulosic biomass into electricity or hydrogen/chemical products in microbial fuel cells (MFCs) or microbial electrolysis cells (MECs...... use of BES for product synthesis via microbial electrosynthesis have greatly expanded the horizon for these systems. Newer concepts in application as well as development of alternative materials for electrodes, separators, and catalysts, along with innovative designs have made BESs very promising...

  14. Characterizing treated wastewaters of different industries using clustered fluorescence EEM-PARAFAC and FT-IR spectroscopy: implications for downstream impact and source identification.

    Science.gov (United States)

    Yang, Liyang; Han, Dae Ho; Lee, Bo-Mi; Hur, Jin

    2015-05-01

    The quantity and spectroscopic features of dissolved organic matter (DOM) in treated wastewaters were studied for up to 57 facilities across 12 industrial categories to evaluate the potential influences of the effluents on downstream ecosystems and the feasibility of spectroscopic techniques in discriminating pollution sources. The average dissolved organic carbon (DOC) concentration was 3.30±0.70-73.4±14.0 mg L(-1) for each category, high enough to pollute downstream waterbodies. The average specific UV absorbance at 254 nm (SUVA) for each category spanned a broad range between 0.79±0.24 and 5.35±1.41 L(mg m)(-1), suggesting a variable aromaticity of DOM. Fluorescence excitation emission matrix-parallel factor analysis (EEM-PARAFAC) identified four humic-like and two protein-like components. The EEMs were grouped into seven clusters, five of which were dominated by a single PARAFAC component in each cluster. Fourier transform infrared (FT-IR) spectroscopy revealed notable variations in relative intensities of several characteristic absorbance bands among different wastewaters. The large variability in SUVA, PARAFAC and FT-IR features indicated that the chemical composition of DOM greatly differ among industrial wastewaters, and further implied variable biogeochemical reactivity in downstream waterbodies. The results also suggested the potential of DOM features in discriminating different wastewaters, although the variations within each industrial category were also significant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Preparation of Cathode-Anode Integrated Ceramic Filler and Application in a Coupled ME-EGSB-SBR System for Chlortetracycline Industrial Wastewater Systematic Treatment

    Directory of Open Access Journals (Sweden)

    Yuanfeng Qi

    2016-01-01

    Full Text Available Chlortetracycline (CTC contamination of aquatic systems has seriously threatened the environmental and human health throughout the world. Conventional biological treatments could not effectively treat the CTC industrial wastewater and few studies have been focused on the wastewater systematic treatment. Firstly, 40.0 wt% of clay, 30.0 wt% of dewatered sewage sludge (DSS, and 30.0 wt% of scrap iron (SI were added to sinter the new media (cathode-anode integrated ceramic filler, CAICF. Subsequently, the nontoxic CAICF with rough surface and porous interior packed into ME reactor, severing as a pretreatment step, was effective in removing CTC residue and improving the wastewater biodegradability. Secondly, expanded granular sludge bed (EGSB and sequencing batch reactor (SBR, serving as the secondary biological treatment, were mainly focusing on chemical oxygen demand (COD and ammonia nitrogen (NH3-N removal. The coupled ME-EGSB-SBR system removed about 98.0% of CODcr and 95.0% of NH3-N and the final effluent met the national discharged standard (C standard of CJ 343-2010, China. Therefore, the CTC industrial wastewater could be effectively treated by the coupled ME-EGSB-SBR system, which has significant implications for a cost-efficient system in CTC industrial systematic treatment and solid wastes (DSS and SI treatment.

  16. Effects of deburring contaminants on electroplating adhesion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-02-01

    Vibratory deburring and centrifugal barrel finishing can result in inadequate adhesion of electroplated metals. Fine particles of the abrasive metals and compounds used in these processes impregnate the exposed surfaces of the workpieces. If too many of these particles are in the workpiece surfaces, electroplated coatings fail to adhere properly. Ceramic bonded aluminum oxide media causes fewer adhesion problems than fused aluminum oxide media. The implications of impregnated material in other processes were also explored. 7 figures, 10 tables.

  17. Kinetic rates and mass balance of COD, TKN, and TP using SBR treating domestic and industrial wastewater.

    Science.gov (United States)

    Warodomrungsimun, Chaowalit; Fongsatitkul, Prayoon

    2009-12-01

    To assess the performance of SBR to treat three different types of wastewater from domestic, hospital, slaughterhouse and investigate the kinetic rates of active biomass. Mass balance calculation of COD, TKN and TP was further performed to explain the mechanisms of the biological nutrient removals processed in the SBR system. The measured kinetic rates were in turn used to evaluate the process performances under different types of wastewater. Experimental research involving 3 similar SBR lab-scales were installed and operated at the Sanitary Engineering Laboratory. The reactors were seeded with sludge biomass obtained from the Sri-Phraya Domestic Wastewater Treatment Plant in Bangkok. The slaughterhouse, hospital and domestic wastewaters were treated by SBR system for biological organic carbon (COD), nitrogen (TKN) and phosphorus removals. Biological methods for kinetic rates evaluation were conducted in five replicated batch tests. The removal efficiencies of COD and TKN were greater than 90% for all three types of wastewater while the biological phosphorus removal for domestic and hospital wastewaters were less than 60% and phosphorus removal for slaughterhouse exceeded 95%. The kinetic rates of nitrification and denitrification of hospital wastewater was lower than those the domestic and slaughterhouse wastewaters. Phosphorus release and uptake rates of slaughterhouse wastewater were high but domestic and hospital wastewaters were very low. The result of system removal efficiency and batch test for kinetic rates confirmed that the domestic and hospital wastewaters were in deficiency of organic carbon with respect to its ability to support successful biological phosphorus removal.

  18. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.

    Science.gov (United States)

    Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan

    2009-07-01

    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were

  19. Comparison of Poly Aluminum Chloride and Chlorinated Cuprous for Chemical Oxygen Demand and Color Removal from Kashan Textile Industries Company Wastewater

    Directory of Open Access Journals (Sweden)

    Hoseindoost Gh.1 MSPH,

    2016-08-01

    Full Text Available Aims Textile wastewaters are the most important health and environmental problems in Kashan. This research was aimed to compare the poly aluminum chloride and chlorinated cuprous efficiency for removal of Chemical Oxygen Demand (COD and color from Kashan Textile Industries Company wastewater. Materials & Methods This experimental bench scale study in a batch system was conducted on 20 composed wastewater samples collected from Kashan Textile Industries Company raw wastewater. During 5 months, in the beginning of every week a day was selected randomly and in the day a composed sample was taken and studied. PAC at the doses of 10, 20, 30, 40 and 50mg.l-1 and chlorinated cuprous at the doses of 100, 200, 300, 400 and 500mg.l-1 were applied. The optimum pH also optimum concentration of PAC and chlorinated cuprous were determined using Jar test. The data was analyzed by SPSS 16 using descriptive statistics and Fisher Exact test. Findings The average concentration of COD in the raw textile wastewater was 2801.56±1398.29mg.l-1. The average COD concentration has been decreased to 1125.47±797.55mg.l-1. There was a significant difference between the effects of these two coagulants efficiency (p<0.05. The average COD removal efficiency for chlorinated cuprous and PAC was 58.52% and 72.56%, respectively. Also, the average color removal efficiency by chlorinated cuprous and PAC were 17.23 and 64.45%, respectively. Conclusion PAC is more efficient than chlorinated cuprous for both COD and color removal from KTIC wastewater.

  20. Combined photo-fenton-SBR processes for the treatment of wastewater from the citrus processing industry.

    Science.gov (United States)

    Guzmán, José; Mosteo, Rosa; Ormad, María P; Ovelleiro, José L

    2015-01-21

    In this study, the photo-Fenton process was combined with a sequencing batch reactor (SBR) for the treatment of synthetic samples of citrus wastewater (CWW). An experimental design based on the surface response methodology was applied to assess the individual and combined effects of several operating parameters (CODinitial, Fe3(+) concentration and H2O2 concentration) on the photo-Fenton treatment efficiency (DOC removal) with the aim of optimizing the process. The experimental results obtained under optimal conditions for CWW with high CODinitial (10000 mgO2/L) showed a partial degradation of organic matter of around of 61% (measured as DOC). Thereafter, the photo-Fenton effluent was neutralized and clarified before being subjected to the SBR reactor. The results show degradation yields up to 93% of the initial DOC removal without producing undesired side effects, using a hydraulic retention time (HRT) of 1.59 d. The final effluent contained a concentration of organic matter (measured as COD) of 120 mg O2/L.

  1. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E; John Gladden, J

    2007-03-22

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments.

  2. Effect of Organic Waste Concentration on Reactor Performance in Anaerobic Co-Fermentation of Wastewater of Tofu Industry and Organic Solid Waste

    Directory of Open Access Journals (Sweden)

    Sofyan Sofyan

    2015-06-01

    Full Text Available Fuel crisis of oil and gas that are faced currently requires a thought to look for an alternative energy. The objective of this study was to observe the effect of organic waste addition on reactor performance and to increase the production of biogas as an alternative renewable energy. The wastewater used was the wastewater from agglomeration of soy pulp in tofu industry, while the solid waste used was a mixture of organic waste from household and market waste. The study was conducted by fermenting the wastewater and organic waste together with sample volume 300 ml. The reactors were operated semi-continuously with substrate feeding every two weeks. The treatment used in this study were mass comparison of organic waste and wastewater (0:100%; (5:95%; (10:90%; (20:80%; (30:70%; and (40:60%. The results showed that the addition of organic waste affected the reactor performance and the amount of biogas produced. Anaerobic co-fermentation of wastewater from tofu industry and organic waste produced biogas more than fermentation of wastewater without organic waste. The highest amount of biogas was obtained in the treatment of organic waste addition as much as 30% with average volume of biogas was 728 ml in steady state condition.ABSTRAKKrisis bahan bakar minyak dan gas yang dihadapi saat ini memerlukan pemikiran untuk mencari energi alternatif. Penelitian ini bertujuan untuk mengamati pengaruh penambahan sampah organik terhadap kinerja reaktor anaerobik dan meningkatkan produksi biogas sebagai salah satu energi alternatif terbarukan. Limbah cair yang digunakan adalah limbah cair dari penggumpalan bubur kedelai pada industri tahu, sedangkan sampah organik yang digunakan adalah gabungan sampah organik dari rumah tangga dan sampah pasar. Penelitian dilakukan dengan mendigestasi limbah cair industri tahu dan sampah organik secara bersama-sama dalam reaktor anaerobik dengan volume sampel 300 ml. Reaktor dioperasikan secara semi kontinyu dengan pengumpanan

  3. Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment

    NARCIS (Netherlands)

    Van Lier, J.B.; Van der Zee, F.P.; Frijters, C.T.M.J.; Ersahin, M.E.

    2015-01-01

    In the last 40 years, anaerobic sludge bed reactor technology evolved from localized lab-scale trials to worldwide successful implementations at a variety of industries. High-rate sludge bed reactors are characterized by a very small foot print and high applicable volumetric loading rates. Best

  4. Overview of the anaerobic toxicity caused by organic forest industry wastewater pollutants.

    NARCIS (Netherlands)

    Sierra-Alvarez, R.; Field, J.A.; Kortekaas, S.; Lettinga, G.

    1994-01-01

    Numerous types of organic environmental pollutants are encountered in forest industry effluents which potentially could inhibit consortia of anaerobic bacteria. The purpose of this study was to collect anaerobic bioassay data from the literature to better estimate the impact of these pollutants on

  5. Development and characterization of a novel immobilized microbial membrane for rapid determination of biochemical oxygen demand load in industrial waste-waters.

    Science.gov (United States)

    Rastogi, Shikha; Kumar, Anil; Mehra, N K; Makhijani, S D; Manoharan, A; Gangal, V; Kumar, Rita

    2003-01-01

    The rapid determination of waste-water quality of waste-water treatment plants in terms of pollutional strength, i.e. biochemical oxygen demand (BOD) is difficult or even impossible using the chemical determination method. The present study reports the determination of BOD within minutes using microbial BOD sensors, as compared to the 5-day determination using the conventional method. Multiple criteria establish the basis for the development of a BOD biosensor useful for rapid and reliable BOD estimation in industrial waste-waters. Of these, preparation of a suitable novel immobilized microbial membrane used in conjunction with an apt transducer is discussed. As a result, a microbial biosensor based on a formulated, synergistic, pre-tested microbial consortium has been developed for the measurement of BOD load of various industrial waste-waters. The sensor showed maximum response in terms of current difference, when a cell concentration of 2.25 x 10(10) CFU, harvested in their log phase of growth were utilized for microbial membrane construction. The sensor showed a stability of 180 days when the prepared membranes were stored at a temperature of 4 degrees C in 50 mM phosphate buffer of pH 6.8. The reusability of the immobilized membranes was up to 200 cycles without appreciable loss of their response characteristics. A linear relationship between the current change and a glucose-glutamic acid (GAA) concentration up to 60 mg l(-1) was observed (r=0.999). The lower detection limit was 1.0 mg l(-1) BOD. The sensor response was reproducible within +/-5% of the mean in a series of ten samples having 44 mg l(-1) BOD using standard a GGA solution. When used for the BOD estimation of industrial waste-waters, a relatively good agreement was found between the two methods, i.e. 5-day BOD and that measured by the developed microbial sensor.

  6. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber.

    Science.gov (United States)

    Patil, Sunil A; Surakasi, Venkata Prasad; Koul, Sandeep; Ijmulwar, Shrikant; Vivek, Amar; Shouche, Y S; Kapadnis, B P

    2009-11-01

    Feasibility of using chocolate industry wastewater as a substrate for electricity generation using activated sludge as a source of microorganisms was investigated in two-chambered microbial fuel cell. The maximum current generated with membrane and salt bridge MFCs was 3.02 and 2.3 A/m(2), respectively, at 100 ohms external resistance, whereas the maximum current generated in glucose powered MFC was 3.1 A/m(2). The use of chocolate industry wastewater in cathode chamber was promising with 4.1 mA current output. Significant reduction in COD, BOD, total solids and total dissolved solids of wastewater by 75%, 65%, 68%, 50%, respectively, indicated effective wastewater treatment in batch experiments. The 16S rDNA analysis of anode biofilm and suspended cells revealed predominance of beta-Proteobacteria clones with 50.6% followed by unclassified bacteria (9.9%), alpha-Proteobacteria (9.1%), other Proteobacteria (9%), Planctomycetes (5.8%), Firmicutes (4.9%), Nitrospora (3.3%), Spirochaetes (3.3%), Bacteroides (2.4%) and gamma-Proteobacteria (0.8%). Diverse bacterial groups represented as members of the anode chamber community.

  7. Self-heating of dried industrial wastewater sludge: lab-scale investigation of supporting conditions.

    Science.gov (United States)

    Della Zassa, M; Biasin, A; Zerlottin, M; Refosco, D; Canu, P

    2013-06-01

    We studied the reactivity of dried sludge produced by treatment of wastewater, mainly from tanneries. The solids transformations have been first characterized with thermal analysis (TGA and DSC) proving that exothermic transformation takes place at fairly low temperature, before the total organic combustion that occurs in air above 400°C. The onset of low temperature reactions depends on the heating rate and it can be below 100°C at very small heating rate. Then, we reproducibly determined the conditions to trigger dried sludge self-heating at the laboratory scale, on samples in the 0.2-0.3 kg size. Thermal insulation, some aeration and addition of water are key factors. Mastering the self-heating at this scale allows more detailed investigations as well as manipulation of conditions, to understand its nature, course and remediation. Here we report proves and discussions on the role of air, water, particle size, porosity and biological activity, as well as proving that also dried sludge from similar sources lead to self-heating. Tests demonstrate that air and water are simultaneously required for significant self-heating to occur. They act in diverging directions, both triggering the onset of the reactions and damping the temperature rise, by supporting heat loss. The higher the O2 concentration, the higher the solids heating rate. More added water prolongs the exothermic phase. Further additions of water can reactivate the material. Water emphasizes the exothermic processes, but it is not sufficient to start it in an air-free atmosphere. The initial solid moisture concentration (between 8% and 15%) affects the onset of self-heating as intuitive. The sludge particles size strongly determines the strength and extent of the heat release, indicating that surface reactions are taking place. In pelletized particles, limitations to water and air permeability mitigates the reaction course. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Wastewater remediation using a spiral shaped reactor for photochemical reduction of hexavalent chromium.

    Science.gov (United States)

    Machado, Tiele Caprioli; Lansarin, Marla Azário; Ribeiro, Camila Silva

    2015-03-01

    The hexavalent chromium contained in wastewater of some industries is toxic to most microorganisms and potentially harmful to human health. The application of photochemical reduction of Cr(VI) in the treatment of wastewater from the electroplating industry was studied, and a continuous reactor in spiral shape made of borosilicate was designed and constructed (SSR). The statistical model of a circumscribed central composite design (CCCD) was used to investigate the influence of the amount of ethanol and the initial concentration of hexavalent chromium on total Cr(VI) reduction. A total Cr(VI) reduction of 46.0% was achieved under the optimal conditions established by the experimental design, using a synthetic Cr(VI) solution. In addition, the photochemical reduction of Cr(VI) follows pseudo first-order kinetics. The SSR exhibited similar behavior to that of the plug flow reactor (PFR), and presented higher photonic efficiency than the batch reactor. Finally, the designed reactor was effective when applied to real wastewater, showing a total Cr(VI) reduction of 51.8%, and its configuration is suitable for scale up.

  9. Optimization of cyanide elimination from an industrial wastewater on a pilot plant scale.

    Science.gov (United States)

    Movassaghi, Karim; Palmisano, Leonardo

    2002-01-01

    A pilot plant scale reactor was modelled and assembled to experimentally study the cyanide elimination process. The process was performed by using Ca(OCl)2, Cl2 and H2O2. The elimination was optimized at 25 degrees C for time of reaction, pH and amount of oxidant in a pilot plant scale reactor with synthetic solutions. Moreover some tests were carried out by using a real effluent deriving from a gold production industry.

  10. A combined process to treat lemon industry wastewater and produce biogas

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, A.R.; Rubio, M.C.; Maldonado, M.C. [Quimica y Farmacia, Universidad Nacional de Tucuman, Instituto de Biotecnologia, Facultad de Bioquimica, Ayacucho, Tucuman (Argentina)

    2012-02-15

    We studied a process employed for treating lemon industry effluents, using the macrophyte Eishhornia crassipes (water hyacinth) in a phytoremediation tank with a 6000-L workload. The diluted effluents BOD and COD were reduced to 70 and 61%, respectively, working with a 1.5-h hydraulic residence time (HRT). We investigated the effect of adding every 12 h an inoculum consisting of a consortium of microorganisms isolated from the macrophyte roots and recirculating 30% of the outflow. In this way, we achieved a volumetric removal rate (VRR) of BOD = 354 g/m{sup 3} day. Plants were daily harvested from the tank to maintain growth rate and the density originally planted. We studied their use for biogas production in an anaerobic digester working with 12 and 16 days of hydraulic residence time. The yield obtained was 0.87 L/g and productivity 0.87 L/L day with a loading rate of 5 g/L day. Integrating both processes on an industrial scale would solve the effluent pollution problem and generate an energy source that could be used by the industry itself to lower its production costs. (orig.)

  11. Nitrogen removal in industrial wastewater by nitration and denitration--3 years of experience.

    Science.gov (United States)

    Degn Pedersen, P; Jensen, K; Lyngsie, P; Henrik Johansen, N

    2003-01-01

    CPKelco ApS, Denmark is the largest pectin plant in the world and the second largest refined carrageenan plant. The products are used for texturising purposes, primarily within the food industry, but also within the pharmaceutical industry. The products are extracted from imported natural raw materials, like dried citrus peel and special seaweed plants. In the production processes a considerable amount of water and energy are used. The excess water from the production processes is led to CPKelco's own WWTP, which is one of the largest industrial WWTPs in Denmark. In order to obtain higher process stability and lower energy consumption in the WWTP, CPKelco decided to change the nitrogen removal process from a conventional nitrification/denitrification process to a nitration/denitration process, which comprises an oxidation of ammonium to nitrite and a controlled reduction of nitrite to N2. Theoretically this process will decrease the oxygen consumption for oxidation by 25% and the use of carbon source for the reduction will be decreased by 40% compared to the conventional process. This paper presents and discusses the experiences and results from three year's continuous operation of the nitration/denitration process in an activated sludge plant, and the overall performance results are discussed in relation to the previous results. Accordingly the implementation of the nitration/denitration process was done successfully, and today the plant operates with much higher process stability than obtained before, and even the most stringent effluent requirements for nitrogen can be obtained.

  12. EVALUATION OF ENERGY CONSUMPTION IN AGRO-INDUSTRIAL WASTEWATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Wojciech Dąbrowski

    2016-07-01

    Full Text Available Energy consumption during waste water treatment is a very important factor affecting food industry plants. Apart from highly efficient treatment of dairy and meat sewage, a low energy consumption is required in order to lower its costs. During the research period parameters of raw and treated sewage were tested (BOD, COD, N-total, P-total. Also, the energy consumption from selected processes as well as total consumption were measured. Indicators of energy consumption per m3 and removed load were calculated. It was found that biological treatment and aeration played the main role in energy consumption in both objects. It was respectively 40 and 47% for Bielmlek and JBB plants. The second biggest energy consuming stage of treatment in both objects was sludge processing. Energy required to process excessive sludge equaled 30% of the total energy usage in both plants. Energy consumption factors related to hydraulic flow gave results in the range from 2,05 to 3,3 kWhm-3 and from 2,72 to 3,23 kWhm-3 for Bielmlek and JBB plants respectively. The research will be continued in order to optimize energy consumption while retaining high efficiency treatment in food industry WWTPs. Finally a mathematical model will be prepared for optimizing energy consumption in food industry WWTPs.

  13. Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater.

    Science.gov (United States)

    Meng, Qingpeng; Chen, Hong; Lin, Junzhong; Lin, Zhang; Sun, Junliang

    2017-06-01

    High quality zeolite A was synthesized through a hydrothermal process using alkaline-assisted pre-activated halloysite mineral as the alumina and silica source. The synthesis conditions employed in this study were finely tuned by varying the activating temperature, sodium hydroxide content, water content and Si/Al ratio. The obtained zeolite A showed excellent adsorption properties for both single metal cation solutions and mixed cation solutions when the concentrations of the mixed cations were comparable with those in polluted natural river water and industrial wastewater. High adsorptive capacities for Ag+ (123.05mg/g) and Pb2+ (227.70mg/g) were achieved using the synthesized zeolite A. This observation indicates that the zeolite A synthesized from alkaline-assisted pre-activated halloysite can be used as a low-cost and relatively effective adsorbent to purify heavy metal cation polluted natural river water and industrial wastewater. Copyright © 2016. Published by Elsevier B.V.

  14. Effect of municipal and industrial wastewater effluents on the Chromium and Vanadium residues in muscle tissue of Cyprinionm acrostomum and Chondrostoma regium fish in Kermanshah Gharasou River (2013

    Directory of Open Access Journals (Sweden)

    M Pirsaheb

    2015-02-01

    Full Text Available Nowadays, the entrance of heavy metals in the aquatic environment is an important and also a global environmental concern due to the indiscriminate discharging of various industrial wastewaters, which cause accumulation of heavy metals in body of aquatic animals including fishes. The present study aimed to evaluate the amount of Chromium and Vanadium in muscle tissue of Chondrostoma regium and Cyprinion macrostomum fish in Kermanshah Gharasou River in 2013. For sampling eight different places were chosen along the river and according to places of discharging municipal and industrial wastewaters. A total of 10 samples were collected from each place and all samples were analyzed for determination of Chromium and Vanadium metals using atomic absorption spectrophotometer. Based on results, mean concentrations of Chromium and Vanadium in muscle tissue of investigating different species among all places were significantly different (P

  15. Evaluation of Bacteria Isolated from Industrial Wastewaters in Removal of Lead

    Directory of Open Access Journals (Sweden)

    Noohi A

    2011-03-01

    Full Text Available Background and Objectives: Lead is a metal which has the most destructive effect on infants and fetuses. Moreover, it has negative biochemical effects on all persons including the destructive effects on the kidneys, digestive system, intestine, joints, and reproductive system and may cause acute or chronic damage to the nervous system. The aim of this research was screening the bacterial biosorbents with high capacity for absorbing lead among other microorganisms.Methods: At first, by using medium containing of determined concentration of Pb(NO32, resistant bacterial isolates were received from three wastewater samples collected from the cities of Qom and Qazvin. Then, the Minimum Inhibitory Concentration of mentioned isolates was determined by agar dilution method. In order to identify isolates with metal uptake ability, a particular method (Pümpel et al, 1995 was used. At a later stage, biosorption capacity of lead for each isolate with metal uptake ability was investigated by using an Atomic Absorption Spectrophotometer. Finally, after selection and identification of two effective isolates in removal of lead, optimizing the biosorption conditions was carried out in several steps.Results: Out of 29 bacterial isolates that received, 15 lead resistant isolates with MIC≥7mM were selected in order to study lead uptake ability that resulted in selection of isolates Q-III and P-II with biosorption values of 162.8 mg g-1dw and 125.6 mg g-1dw, respectively. On the other hand, the maximum biosorption capacity of lead was observed by isolate Q-III in optimum conditions including contact time 2 h, pH 5, wet biomass concentration 0.5g and for isolate P-II in contact time 2 h, pH 5.5, wet biomass concentration 0.4 g. Conclusion: The results of this study indicated that bacterial isolates Bacillus sp. Q-III and Pseudomonas sp. P-II are two suitable biosorbents for the removal of Pb(II.

  16. Evaluating the Efficiency of Dye Removal from Textile Industry Wastewater Using the Titanium Dioxide Photocatalytic Process under UV-LED Light Irradiation: A Case Study, Hamadan Nakh Rang Factory

    Directory of Open Access Journals (Sweden)

    Asgari G

    2017-09-01

    Full Text Available Introduction: Textile industries, due to a high volume of wastewater and harmful environmental factors such as a variety of dyes, are significant industries in industrial wastewaters treatment. So, the aim of this study was to examine the efficiency of dye removal from the textile industry wastewater using the titanium dioxide photocatalytic process under UV-LED light irradiation (UV-LED/TiO2 in the treatment of the Nakh Rang factory wastewater in Hamadan City, Iran. Methods: In this experimental study, in every experiment, 100 mL sample was placed inside the LED reactor to expose to the UV light and TiO2. The effects of some parameters such as contact time, pH and dosage of TiO2 were examined, and decomposition kinetics and the synergistic effects were also determined for each process. Results: The results of the experiments showed that the UV-LED/TiO2 process can remove the dye from textile wastewater with the efficiency of 80.23% and can also remove the chemical oxygen demand (COD with the efficiency of 64.75% under the optimum conditions and during 120 minutes. Also, the reaction of dye decomposition in this wastewater was a first-order kinetic function. Conclusion: The results of this study show that the UV-LED/TiO2 can be used effectively to remove the dye and reduce the COD of the textile industry wastewater under optimal operating conditions.

  17. Effect of dissolved oxygen changes on activated sludge fungal bulking during lab-scale treatment of acidic industrial wastewater.

    Science.gov (United States)

    Zheng, Shaokui; Sun, Jingyan; Han, Hui

    2011-10-15

    The cloning and sequencing of fungal 18S rRNA genes followed by the identification of filamentous fungal species by fluorescent in situ hybridization (FISH) and the enumeration of filamentous fungal cells by flow cytometry-FISH (FC-FISH) were used to investigate the effect of dissolved oxygen (DO) changes on activated sludge (AS) fungal bulking during a lab-scale treatment of acidic industrial wastewater. By increasing DO levels from 2 mg L⁻¹, bulking started to occur due to the outbreak of fungal filaments, whereas the chemical oxygen demand (COD) removals sharply increased from 70%. Clone library analyses revealed that all clonal fungal sequences were of yeast origin, and that only one and four yeast species were individually detected in AS at two DO levels. Subsequent FISH identification of filamentous yeast species within bulking sludge using self-designed oligonucleotide probes suggested that all probe-reactive cells of Trichosporon asahii had a filamentous morphology and were the dominating filamentous microorganism in the AS. The FC-FISH analyses of bacteria and two main yeast species showed that the DO shift resulted in a sharp increase of T. asahii, by a factor of 48-60, which caused filamentous yeast bulking. Subsequently, the restoration of DO levels to <0.5 mg L⁻¹ effectively restored the sludge settlement and yeast community, as well as unacceptable COD removals.

  18. Investigation of extracellular polymer substances (EPS) and physicochemical properties of activated sludge from different municipal and industrial wastewater treatment plants.

    Science.gov (United States)

    Peng, Ge; Ye, Fenxia; Li, Ying

    2012-01-01

    This paper examines the chemical constituents of extracellular polymeric substances (EPS) and physicochemical properties of eight different sludge flocs from seven full-scale wastewater treatment plants. The physicochemical properties included floc properties (floc size, turbidity and effluent suspended solids (ESS) content of the supernatant), sludge volume index, capillary suction time and specific resistance to filtration. The relationships between the chemical constituents of EPS and the flocculation, settleability and dewaterability of sludge flocs were also assessed. The results showed that higher amounts of EPS were found in the municipal sludge flocs than in the industrial sludges. The content of tightly bound EPS (TB-EPS) was much greater than that of loosely bound EPS (LB-EPS). The amounts of total EPS, LB-EPS, TB-EPS and protein in LB-EPS were strongly related to ESS. The ratios of total protein to EPS and total carbohydrate to EPS showed positive correlation to the flocs size. It was surprising that there was no correlation between settleability or dewaterability and the chemical constituents of EPS.

  19. Application of dynamic models to estimate greenhouse gas emission by wastewater treatment plants of the pulp and paper industry.

    Science.gov (United States)

    Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz

    2013-03-01

    Greenhouse gas (GHG) emission in wastewater treatment plants of the pulp-and-paper industry was estimated by using a dynamic mathematical model. Significant variations were shown in the magnitude of GHG generation in response to variations in operating parameters, demonstrating the limited capacity of steady-state models in predicting the time-dependent emissions of these harmful gases. The examined treatment systems used aerobic, anaerobic, and hybrid-anaerobic/aerobic-biological processes along with chemical coagulation/flocculation, anaerobic digester, nitrification and denitrification processes, and biogas recovery. The pertinent operating parameters included the influent substrate concentration, influent flow rate, and temperature. Although the average predictions by the dynamic model were only 10 % different from those of steady-state model during 140 days of operation of the examined systems, the daily variations of GHG emissions were different up to ± 30, ± 19, and ± 17 % in the aerobic, anaerobic, and hybrid systems, respectively. The variations of process variables caused fluctuations in energy generation from biogas recovery by ± 6, ± 7, and ± 4 % in the three examined systems, respectively. The lowest variations were observed in the hybrid system, showing the stability of this particular process design.

  20. Wastewater canal Vojlovica, industrial complex Pančevo, Serbia – preliminary ecotoxicological assessment of contaminated sediment

    Directory of Open Access Journals (Sweden)

    IVANA PLANOJEVIĆ

    2011-03-01

    Full Text Available Effluents collected from the industrial complex of Pančevo, Serbia (oil refinery, petrochemical plant, and fertilizer factory, are discharged into a wastewater canal entering the Danube River. In this study, which was focused on sediment assessment, a complex triad approach consisting of chemical analysis, sediment toxicity tests and macrozoobenthos community analysis was applied. In toxicity tests on sediment elutriates, the following responses were registered – stimulatory effect in algal bioassay, no effect in acute test with Daphnia magna, and low to moderate toxicity in the conventional Vibrio fischeri test. Moderate to high toxicities were recorded in solid phase tests on Myriophyllum aquaticum and V. fischeri. High content of Hg, certain PAHs and non-characterised sediment contaminants accumulated over years contribute not only to the registered toxicity, but also to the complete absence of macrozoobenthos. The obtained results proved that regularly measured conventional and priority pollutants are hardly ever the only toxic contaminants present in sediments. Toxicity tests, in particular the contact test, might guide towards a better selection of parameters to be regularly or occasionally monitored. In addition, complete sediment toxicity tests proved to be an appropriate method for assessing the bioavailability of the chemically detected contaminants. The analysis of the macrozoobenthos composition and structure as inevitable part of sediment risk assessment procedures integrates the effects of multiple stressors and gives a realistic insight into not only sediment contamination by toxic pollutants, but also the sediment status in general.

  1. Advanced treatment of effluents from an industrial park wastewater treatment plant by ferrous ion activated persulfate oxidation process.

    Science.gov (United States)

    Zhu, Songmei; Zhou, Zhen; Jiang, Haitao; Ye, Jianfeng; Ren, Jiamin; Gu, Lingyun; Wang, Luochun

    The advanced oxidation technology, ferrous ion (Fe(II)) activated persulfate (PS) producing sulfate radicals, was used for the advanced treatment of effluent from an integrated wastewater treatment plant in a papermaking industrial park. Separate and interactive effects of PS dosage, Fe(II)/PS ratio and initial pH on chemical oxygen demand (COD) removal were analyzed by the response surface methodology (RSM). The results showed that Fe(II)-PS system was effective in COD removal from the secondary effluent. PS dosage was the most dominant factor with positive influence on COD removal, followed by initial pH value. The optimum conditions with COD removal of 54.4% were obtained at PS/COD of 2.2, initial pH of 6.47 and Fe(II)/PS of 1.89. UV-visible spectrum analysis showed that after RSM optimization, Fe(II)-PS system effectively degraded large organic molecules into small ones, and decreased humification degree of the effluent. Three-dimensional fluorescence analysis demonstrated that aromatic protein and fulvic substances were fully decomposed by the Fe(II)-PS treatment.

  2. A xylanase gene directly cloned from the genomic DNA of alkaline wastewater sludge showing application potential in the paper industry.

    Science.gov (United States)

    Zhao, Yanyu; Luo, Huiying; Meng, Kun; Shi, Pengjun; Wang, Guozeng; Yang, Peilong; Yuan, Tiezheng; Yao, Bin

    2011-09-01

    A xylanase gene, aws-2x, was directly cloned from the genomic DNA of the alkaline wastewater sludge using degenerated PCR and modified TAIL-PCR. The deduced amino acid sequence of AWS-2x shared the highest identity (60%) with the xylanase from Chryseobacterium gleum belonging to the glycosyl hydrolase GH family 10. Recombinant AWS-2x was expressed in Escherichia coli BL21 (DE3) and purified to electrophoretic homogeneity. The enzyme showed maximal activity at pH 7.5 and 55 °C, maintained more than 50% of maximal activity when assayed at pH 9.0, and was stable over a wide pH range from 4.0 to 11.0. The specific activity of AWS-2x towards hardwood xylan (beechwood and birchwood xylan) was significantly higher than that to cereal xylan (oat spelt xylan and wheat arabinoxylan). These properties make AWS-2x a potential candidate for application in the pulp and paper industry.

  3. An enhanced anaerobic membrane bioreactor treating bamboo industry wastewater by bamboo charcoal addition: Performance and microbial community analysis.

    Science.gov (United States)

    Xia, Tian; Gao, Xinyi; Wang, Caiqin; Xu, Xiangyang; Zhu, Liang

    2016-11-01

    In this study, two anaerobic membrane bioreactors (AnMBRs) were operated for 150days to treat bamboo industry wastewater (BIWW), and one of them was enhanced with bamboo charcoal (B-AnMBR). During the steady period, average chemical oxygen demand (COD) removal efficiencies of 94.5±2.9% and 89.1±3.1% were achieved in B-AnMBR and AnMBR, respectively. The addition of bamboo charcoal (BC) increased the amount of biomass and improved the performance of the systems. A higher biogas production and methane yield were also observed in B-AnMBR. Regarding the issue of membrane fouling, BC lowered the soluble microbial product (SMP) content by approximately 62.73mg/L and decreased the membrane resistance, thereby mitigating membrane fouling. Analysis of the microbial communities demonstrated that BC increased the microbial diversity and promoted the activity of Methanosaeta, Methanospirillum, and Methanobacterium, which are dominant in methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Integrated expanded granular sludge bed and sequential batch reactor treating beet sugar industrial wastewater and recovering bioenergy.

    Science.gov (United States)

    Justo, Ambuchi John; Junfeng, Liu; Lili, Shan; Haiman, Wang; Lorivi, Moirana Ruth; Mohammed, Mohammed O A; Xiangtong, Zhou; Yujie, Feng

    2016-10-01

    The exponential rise in energy demand vis-à-vis depletion of mineral oil resources has accelerated recovery of bioenergy from organic waste. In this study, a laboratory-scale anaerobic (An)/aerobic (Ar) system comprising of expanded granular sludge bed (EGSB) reactor coupled to an aerobic sequential batch reactor (SBR) was constructed to treat beet sugar industrial wastewater (BSIW) of chemical oxygen demand (COD) 1665 mg L(-1) while harnessing methane gas. The EGSB reactor generated methane at the rate of 235 mL/g COD added, with considerably higher than previously reported methane content of 86 %. Meanwhile, contaminants were successfully reduced in the combined An/Ar system, realizing a removal rate of more than 71.4, 97.3, 97.7, and 99.3 % of organic matter as total phosphorus, total nitrogen, biological oxygen demand (BOD), and soluble COD, respectively. Microbial community analysis showed that the bacterial genus Clostridium sp. and archaeal genus Methanosaeta sp. dominated the EGSB reactor, while Rhodobacter sp. dominance was observed in the SBR. The obtained experimental results indicate that the integration of expanded granular sludge bed and sequential batch reactor in treating BSIW obtained competitively outstanding performance.

  5. Treatment of food-agro (sugar industry wastewater with copper metal and salt: Chemical oxidation and electro-oxidation combined study in batch mode

    Directory of Open Access Journals (Sweden)

    Anurag Tiwari

    2017-06-01

    Full Text Available Sugar industry is one of the major industries which have been included in the polluting industries list by the World Bank. Different pollution monitoring agencies like State and National Pollution Control Boards have been made compulsory for each industry to set up a waste water treatment plants. In treatment system, single treatments of effluent are not effective to manage the dischargeable limit. So an attempted has been made to treat sugar industry wastewater with electrochemical and chemical process by using copper as electrode and chemical. Electrochemical process shows 81% chemical oxygen demand and 83.5% color reduction at pH 6, electrode distance 20 mm, current density 178 A m−2 and 120 min treatment time. The combined treatment results show 98% chemical oxygen demand and 99.5% color removal at 8 mM mass loading and pH 6 with copper sulphate.

  6. Biosorptive Removal of Ni(Ii from Wastewater and Industrial Effluent

    Directory of Open Access Journals (Sweden)

    K. Chandrashekhar

    2007-12-01

    Full Text Available The objective of the present work was to investigate the removal of Ni(II by the fresh biomass (FBM and chemically treated leached biomass (LBM of Calotropis procera. The scope of the work included screening of the biosorbents for their metal uptake potential, batch equilibrium, column mode removal studies and kinetic studies at varying pH (2-6, contact time, biosorbent dosages (1-25 g/L and initial metal ion concentration (5-500 mg/L. The development of batch kinetic model and determination of order, desorption studies, column studies were investigated. It was observed that pH had marked effect on the Ni(II uptake. Langmuir and Freundlich models were used to correlate equilibrium data on sorption of Ni(II metallic ion by using both FBM and LBM at 28oC and pH 3 and different coefficients were calculated. It was found that both biomasses were statistically significant fit for Freundlich model. The biomass was successfully used for removal nickel from synthetic and industrial effluents and the technique appears industrially applicable and viable.

  7. Decolorization of textile industry wastewater in solid state fermentation with Peach-Palm (Bactris gasipaes) residue.

    Science.gov (United States)

    Chicatto, J A; Rainert, K T; Gonçalves, M J; Helm, C V; Altmajer-Vaz, D; Tavares, L B B

    2018-02-15

    In this work we have assessed the decolorization of textile effluents throughout their treatment in a solid-state fermentation (SSF) system. SSF assays were conducted with peach-palm (Bactris gasipaes) residue using the white rot fungus Ganoderma lucidum EF 31. The influence of the dye concentration and of the amounts of peach-palm residue and liquid phase on both the discoloration efficiency and enzyme production was studied. According to our results, independently of experimental conditions employed, laccase was the main ligninolytic enzyme produced by G. lucidum. The highest laccase activity was obtained at very low effluent concentrations, suggesting the existence of an inhibitory effect of higher concentrations on fungal metabolism. The highest percentage of color removal was reached when 10 grams of peach palm residue was moistened with 60 mL of the final effluent. In control tests carried out with the synthetic dye Remazol Brilliant Blue R (RBBR) decolorization efficiencies about 20% higher than that achieved with the industrial effluent were achieved. The adsorption of RBBR on peach-palm residue was also investigated. Equilibrium tests showed that the adsorption of this dye followed both Langmuir and Freundlich isotherms. Hence, our experimental results indicate that peach-palm residue is suitable substrate for both laccase production and color removal in industrial effluents.

  8. Demonstration of a full-scale plant using an UASB followed by a ceramic MBR for the reclamation of industrial wastewater.

    Science.gov (United States)

    Niwa, Terutake; Hatamoto, Masashi; Yamashita, Takuya; Noguchi, Hiroshi; Takase, Osamu; Kekre, Kiran A; Ang, Wui Seng; Tao, Guihe; Seah, Harry; Yamaguchi, Takashi

    2016-10-01

    This study comprehensively evaluated the performance of a full-scale plant (4550m(3)d(-1)) using a UASB reactor followed by a ceramic MBR for the reclamation and reuse of mixed industrial wastewater containing many inorganics, chemical, oil and greases. This plant was demonstrated as the first full-scale system to reclaim the mixed industrial wastewater in the world. During 395days of operation, influent chemical oxygen demand (COD) fluctuated widely, but this system achieved COD removal rate of 91% and the ceramic MBR have operated flux of 21-25LMH stably. This means that this system adsorbed the feed water fluctuation and properly treated the water. Energy consumption of this plant was achieved 0.76kWhmm(-3) and this value is same range of domestic sewage MBR system. The combination of an UASB reactor and ceramic MBR is the most economical and feasible solution for water reclamation of mixed industrial wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Estimation of Pb from metal and electroplating industrial waste by ...

    African Journals Online (AJOL)

    Removal of lead in the sediments and liquid waste was then carried out using zeolite-3A. Result shows the quantitative removal of lead. Factors that effect the lead removal include the adsorbent concentration, pH and temperature. The applicability of Freundlich, Langmuir and Dubinin Radushkevich equations for the ...

  10. Comparison of the removal of phthalates and other organic pollutants from industrial wastewaters in membrane bioreactor and conventional activated sludge treatment plants.

    Science.gov (United States)

    Llop, A; Borrull, F; Pocurull, E

    2009-01-01

    In recent years greater attention has been paid to the presence of pollutants in wastewater treatment plants, mainly because of strict environmental regulations and the possibility of reusing treated water in industrial processes. Since some organic pollutant compounds are not sufficiently removed in conventional activated sludge treatment (CAST) plants, new treatment processes have been developed, such as membrane bioreactors (MBRs). In this study a submerged membrane bioreactor (MBR) was used to treat mixed industrial wastewaters in parallel with a CAST plant. Two hydraulic retention times (HRT) of wastewater were tested as one of the operational conditions of MBR and the quality of effluents of the two processes were studied and compared. Several general quality parameters were analysed in wastewaters: chemical oxygen demand (COD), pH, conductivity, nitrogen, phosphate, suspended solids (SS) and turbidity. The two systems reduced COD by around 90%. SS was reduced by around 81% in the CAST plant and around 90% in the MBR plant. The results for the other general parameters were similar or better in the MBR process, which worked at a lower HRT. We also studied the removal of a group of six phthalates and bis(2-ethylhexyl)adipate ester by SPME/GC-MS in the two treatment plants. Most of these compounds were not completely removed in the two treatment plants and were identified at low microg l(-1) levels. We also tentatively identify some organic compounds in the wastewaters. Most of the compounds we found in the influent, MBR effluent and CAST effluent were benzene derivates, styrene, naphthalene and naphthalene derivates, and phenol derivates.

  11. Bioelectricity Production and Comparative Evaluation of Electrode Materials in Microbial Fuel Cells Using Indigenous Anode-Reducing Bacterial Community from Wastewater of Rice-Based Industries

    Directory of Open Access Journals (Sweden)

    Shailesh Kumar Jadhav

    2017-03-01

    Full Text Available Microbial fuel cells (MFCs are the electrochemical systems that harness the electricity production capacity of certain microbes from the reduction of biodegradable compounds. The present study aimed to develop mediator-less MFC without using expensive proton exchange membrane. In the present study, a triplicate of dual-chamber, mediator-less MFCs was operated with two local rice based industrial wastewater to explore the potential of this wastewater as a fuel option in these electrochemical systems. 30 combinations of 6 electrodes viz. Carbon (14 cm × 1.5 cm, Zn (14.9 cm × 4.9 cm, Cu (14.9 cm × 4.9 cm, Sn (14.1cm × 4.5cm, Fe (14cm × 4cm and Al (14cm × 4.5 cm were evaluated for each of the wastewater samples. Zn-C as anode-cathode combination produced a maximum voltage that was 1.084±0.016V and 1.086±0.028 and current of 1.777±0.115mA and 1.503±0.120 for KRM and SSR, respectively. In the present study, thick biofilm has been observed growing in MFC anode. Total 14 bacterial isolates growing in anode were obtained from two of the wastewater. The dual chambered, membrane-less and mediator-less MFCs were employed successfully to improve the economic feasibility of these electrochemical systems to generate bioelectricity and wastewater treatment simultaneously. Keywords: Membrane-less, Microbial Fuel Cells, Biofilm, Wastewater, Electrogenic. Article History: Received June 25th 2016; Received in revised form Dec 15th 2016; Accepted January 5th 2017; Available online How to Cite This Article: Reena, M. and Jadhav, S. K. (2017 Bioelectricity production and Comparative Evaluation of Electrode Materials in Microbial Fuel Cells using Indigenous Anode-reducing Bacterial Community from Wastewater of Rice-based Industries. International Journal of Renewable Energy Develeopment, 6(1, 83-92. http://dx.doi.org/10.14710/ijred.6.1.83-92

  12. Direct electroplated metallization on indium tin oxide plastic substrate.

    Science.gov (United States)

    Hau, Nga Yu; Chang, Ya-Huei; Huang, Yu-Ting; Wei, Tzu-Chien; Feng, Shien-Ping

    2014-01-14

    Looking foward to the future where the device becomes flexible and rollable, indium tin oxide (ITO) fabricated on the plastic substrate becomes indispensable. Metallization on the ITO plastic substrate is an essential and required process. Electroplating is a cost-effective and high-throughput metallization process; however, the poor surface coverage and interfacial adhesion between electroplated metal and ITO plastic substrate limits its applications. This paper develops a new method to directly electroplate metals having strong adhesion and uniform deposition on an ITO plastic substrate by using a combination of 3-mercaptopropyl-trimethoxysilane (MPS) self-assembled monolayers (SAMs) and a sweeping potential technique. An impedance capacitive analysis supports the proposed bridging link model for MPS SAMs at the interface between the ITO and the electrolyte.

  13. 40 CFR 413.10 - Applicability: Description of the electroplating of common metals subcategory.

    Science.gov (United States)

    2010-07-01

    ... electroplating of common metals subcategory. 413.10 Section 413.10 Protection of Environment ENVIRONMENTAL... Electroplating of Common Metals Subcategory § 413.10 Applicability: Description of the electroplating of common metals subcategory. The provisions of this subpart apply to dischargers of pollutants in process...

  14. Factorial design application in photocatalytic wastewater degradation from TNT industry-red water.

    Science.gov (United States)

    Guz, Ricardo; de Moura, Cristiane; da Cunha, Mário Antônio Alves; Rodrigues, Marcio Barreto

    2017-03-01

    In trinitrotoluene (TNT) purification process, realized in industries, there are two washes carried out at the end of the procedure. The first is performed with vaporized water, from which the first effluent, called yellow water, is originated. Then, a second wash is performed using sodium sulfite, generating the red water effluent. The objective of this work was to get the best conditions for photocatalytic degradation of the second effluent, red water, in order to reduce toxicity and adjust legal parameters according to regulatory agencies for dumping these effluents into waterways. It has used a statistical evaluation for factor interaction (pH, concentration) that affects heterogeneous photocatalysis with titanium dioxide (TiO2). Thus, the treatment applied in the factorial experimental design consisted of using a volume equal to 500 mL of the effluent to 0.1 % by batch treatment, which has changed TiO2 pH and concentration, according to the design, with 20 min time for evaluation, where it was used as response to the reduction of UV-Vis absorption. According to the design responses, it has obtained optimum values for the parameters evaluated: pH = 6.5 and concentration of 100 mg/L of TiO2 were shown to be efficient when applied to red water effluent, obtaining approximately 91 % of discoloration.

  15. Effective carbon and nutrient treatment solutions for mixed domestic-industrial wastewater in India.

    Science.gov (United States)

    Saha, S; Badhe, N; Seuntjens, D; Vlaeminck, S E; Biswas, R; Nandy, T

    2015-01-01

    The present study evaluates effectiveness of up-flow anaerobic sludge blanket (UASB) reactor followed by two post-anaerobic treatment options, namely free-surface, up-flow constructed wetland (FUP-CW) and oxygen-limited anaerobic nitrification/denitrification (OLAND) processes in treating sewage from the peri-urban areas in India receiving illegal industrial infiltrations. The UASB studies yielded robust results towards fluctuating strength of sewage and consistently removed 87-98% chemical oxygen demand (COD) at a hydraulic retention time of 1.5-2 d. The FUP-CW removed 68.5±13% COD, 68±3% NH4+-N, 38±5% PO4(3-)-P, 97.6±5% suspended particles and 97±13% fecal coliforms. Nutrient removal was found to be limiting in FUP-CW, especially in winter. Nitrogen removal in the OLAND process were 100 times higher than the FUP-CW process. Results show that UASB followed by FUP-CW can be an excellent, decentralized sewage treatment option, except during winter when nutrient removal is limited in FUP-CW. Hence, the study proposes bio-augmentation of FUP-CW with OLAND biomass for overall improvement in the performance of UASB followed by FUP-CW process.

  16. Wastewater reuse

    Directory of Open Access Journals (Sweden)

    Milan R. Radosavljević

    2013-12-01

    Full Text Available Water scarcity and water pollution are some of the crucial issues that must be addressed within local and global perspectives. One of the ways to reduce the impact of water scarcity  and to minimizine water pollution is to expand water and wastewater reuse. The local conditions including regulations, institutions, financial mechanisms, availability of local technology and stakeholder participation have a great influence on the decisions for wastewater reuse. The increasing awareness of food safety and the influence of the countries which import food are influencing policy makers and agriculturists to improve the standards of wastewater reuse in agriculture. The environmental awareness of consumers has been putting pressure on the producers (industries to opt for environmentally sound technologies including those which conserve water and reduce the level of pollution. It may be observed that we have to move forwards to implement strategies and plans for wastewater reuse. However, their success and sustainability will depend on political will, public awareness and active support from national and international agencies to create favorable    environment for the promotion of environmentally sustainable technologies. Wastewater treatment has a long history, especially in agriculture, but also in industry and households. Poor quality of wastewater can pose a significant risk to the health of farmers and users of agricultural products. The World Health Organization (WHO is working on a project for the reuse of wastewater in agriculture. To reduce effects of human activities to the minimum, it is necessary to provide such technical and technological solutions that would on the one hand ensure complying with  the existing regulations and legislation, and on the other hand provide economically viable systems as seen through investments and operating costs. The use of wastewater The practice of using wastewater varies from country to country. Its

  17. Enhancing the CuCrZr/316L HIP-joint by Ni electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Wei, R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230031 (China); Zhao, S.X., E-mail: sxzhao@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Science, Lanzhou, 730000 (China); Dong, H.; Che, H.Y. [Advanced Technology and Materials Co. Ltd., Beijing, 100081 (China); Li, Q.; Wang, W.J.; Wang, J.C.; Wang, X.L.; Sun, Z.X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230031 (China); Hefei Center for Physical Science and Technology, Hefei, 230022 (China); Hefei Science Center of Chinese Academy of Sciences, Hefei, 230027 (China)

    2017-04-15

    Highlights: • The quality of CuCrZr/316L HIP-joint can be enhanced by nickel electroplating on CuCrZr and 316L. • Nickel layer can prevent the occurrence of nickel-poor region in 316L and protect CuCrZr from oxidation. • A Charpy Impact Value as high as 111.5 ± 3.3 J/cm{sup 2} can be obtained by HIP at 980 °C, 140 MPa for 2 h. • At high temperature, CuCrZr is easily oxidized even in the situation of a high vacuum degree of 2 × 10{sup −5} Pa. - Abstract: The quality of CuCrZr/316L joint is crucial for the safety of ITER hypervapotron cooling structure and hot isostatic pressing (HIP) is an important bonding technique for this structure. In this paper, the authors present a finding that the CuCrZr/316L HIP-joint can be enhanced by nickel electroplating on 316L and CuCrZr. A Charpy Impact Value as high as 111.5 ± 3.3 J/cm{sup 2}, which is more than two times the value in a published article, is obtained. The influence of nickel electroplating is twofold: (1) it can prevent the occurrence of nickel-poor region in 316L and the formation of ferrite; (2) it can protect CuCrZr from oxidation during the heating stage of HIP. However, tensile test is not as effective as Charpy Impact Test in characterizing the bonding quality of the CuCrZr/316L HIP-joint. The surface treatment employed in this study is amenable to batch-scale industrial manufacturing at low cost.

  18. Treatment of high organic content wastewater from food-processing industry with the French vertical flow constructed wetland system.

    Science.gov (United States)

    Paing, J; Serdobbel, V; Welschbillig, M; Calvez, M; Gagnon, V; Chazarenc, F

    2015-01-01

    This study aimed at determining the treatment performances of a full-scale vertical flow constructed wetlands designed to treat wastewater from a food-processing industry (cookie factory), and to study the influence of the organic loading rate. The full-scale treatment plant was designed with a first vertical stage of 630 m², a second vertical stage of 473 m² equipped with a recirculation system and followed by a final horizontal stage of 440 m². The plant was commissioned in 2011, and was operated at different loading rates during 16 months for the purpose of this study. Treatment performances were determined by 24 hour composite samples. The mean concentration of the raw effluent was 8,548 mg.L(-1) chemical oxygen demand (COD), 4,334 mg.L(-1) biochemical oxygen demand (BOD5), and 2,069 mg.L(-1) suspended solids (SS). Despite low nutrients content with a BOD5/N/P ratio of 100/1.8/0.5, lower than optimum for biological degradation (known as 100/5/1), mean removal performances were very high with 98% for COD, 99% for BOD5 and SS for the two vertical stages. The increasing of the organic load from 50 g.m(-2).d(-1) COD to 237 g.m(-2).d(-1) COD (on the first stage) did not affect removal performances. The mean quality of effluent reached French standards (COD < 125 mg.L(-1), BOD5 < 25 mg.L(-1), SS < 35 mg.L(-1)).

  19. Photochemical-biological treatment of a real industrial biorecalcitrant wastewater containing 5-amino-6-methyl-2-benzimidazolone.

    Science.gov (United States)

    Sarria, V; Parra, S; Invernizzi, M; Peringer, P; Pulgarin, C

    2001-01-01

    5-amino-6-methyl-2-benzimidazolone (AMBI), used in the manufacture of dyes, was characterised as a biorecalcitrant compound by means of different biodegradability tests. In order to enhance the biodegradability of this important pollutant, the application of Advanced Oxidation Process (AOPs) as a pretreatment was explored. Some experiments were addressed to find the most efficient AOP. The systems H2O2/hv, TiO2/H2O2/hv, Fe3+/hv, Fe3+/H2O2 and Fe3+/H2O2/hv were compared. The photo-Fenton system was the most efficient and the optimal conditions (AMBI, Fe3+, H2O2 concentrations) for the degradation of AMBI were found. During the photo-Fenton degradation, experiments were also made to obtain information concerning the evolution of: (a) organic carbon and initial compound concentration; (b) the oxidation state; (c) the toxicity; (d) the biodegradability; and (e) the chemical nature of the intermediates. These analyses show that the solution resulting from the treatment of AMBI is biologically compatible and complete mineralisation can be performed by biological means. A combined photochemical (Fenton) and biological flow reactor for the degradation of AMBI was successfully operated in continuous mode at laboratory scale. 100% of the initial concentration of AMBI and 80.3% of Dissolved Organic Carbon (DOC) were removed in 3.5 hours of total residence time. Finally, some field experiments under direct sunlight carried out at the Plataforma Solar de Almeria, Spain, demonstrated that this solar catalytic system is an effective treatment for this kind of industrial wastewater.

  20. Induced production of chitinase to enhance entomotoxicity of Bacillus thuringiensis employing starch industry wastewater as a substrate.

    Science.gov (United States)

    Vu, Khanh Dang; Yan, S; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2009-11-01

    Induced production of chitinase during bioconversion of starch industry wastewater (SIW) to Bacillus thuringiensis var. kurstaki HD-1 (Btk) based biopesticides was studied in shake flask as well as in computer-controlled fermentors. SIW was fortified with different concentrations (0%; 0.05%; 0.1%; 0.2%; 0.3% w/v) of colloidal chitin and its consequences were ascertained in terms of Btk growth (total cell count and viable spore count), chitinase, protease and amylase activities and entomotoxicity. At optimum concentration of 0.2% w/v colloidal chitin, the entomotoxicity of fermented broth and suspended pellet was enhanced from 12.4x10(9) (without chitin) to 14.4x10(9) SBU/L and from 18.2x10(9) (without chitin) to 25.1x10(9) SBU/L, respectively. Further, experiments were conducted for Btk growth in a computer-controlled 15 L bioreactor using SIW as a raw material with (0.2% w/v chitin, to induce chitinase) and without fortification of colloidal chitin. It was found that the total cell count, spore count, delta-endotoxin concentration (alkaline solubilised insecticidal crystal proteins), amylase and protease activities were reduced whereas the entomotoxicity and chitinase activity was increased with chitin fortification. The chitinase activity attained a maximum value at 24 h (15 mU/ml) and entomotoxicity of suspended pellet reached highest (26.7x10(9) SBU/L) at 36 h of fermentation with chitin supplementation of SIW. In control (without chitin), the highest value of entomotoxicity of suspended pellet (20.5x10(9) SBU/L) reached at 48 h of fermentation. A quantitative synergistic action of delta-endotoxin concentration, spore concentration and chitinase activity on the entomotoxicity against spruce budworm larvae was observed.

  1. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater.

    Science.gov (United States)

    Xu, Ming; Liu, Weijing; Li, Chao; Xiao, Chun; Ding, Lili; Xu, Ke; Geng, Jinju; Ren, Hongqiang

    2016-06-01

    Constructed wetlands are ecosystems that use plants and microorganisms to remediate pollution in soil and water. In this study, two parallel pilot-scale vertical flow wetland and horizontal flow wetland (VF-HF) systems were implemented to investigate the treatment performance and microorganism community structure in the secondary effluent of an industrial park wastewater treatment plant (WWTP) with a loading rate of 100 mm/day near the Yangtze River in Suzhou City, East China. Removal efficiencies of 82.3, 69.8, 77.8, and 32.3 were achieved by the VF-HF systems for ammonium nitrogen (NH4 (+)-N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD), respectively. The VF system specialized in COD and NH4 (+)-N removal (73.6 and 79.2 %), whereas the HF system mainly contributed to TN removal (63.5 %). The effluents in all seasons are capable of achieving the "surface water environmental quality standard" (GB3838-2002) grade IV. In the VF system, the 16S gene and nirK gene were significantly correlated with depth, with the 16S gene showing significant correlations with the dissolved oxygen (DO) level (r = 0.954, p < 0.05), which was determined by real-time PCR and high-throughput sequencing. Many types of bacteria capable of biodegradation, including nitrifiers, denitrifiers, and polyaromatic hydrocarbon (PAH) degraders (improvement of the BOD5/COD ratio), were observed, and they contributed to approximately 90 % of the nitrogen removal in the VF-HF system.

  2. Biogas Production and Removal COD – BOD and TSS from Wastewater Industrial Alcohol (Vinasse by Modified UASB Bioreactor

    Directory of Open Access Journals (Sweden)

    Utami Isni

    2016-01-01

    Full Text Available Biogas production and decreased organic loading of vinasse using a modified UASB bioreactor has been done successfully. Vinasse is waste from the ethanol industry which contains COD: 9.360 mg / L , BOD : 4.013 mg/L, and TSS: 317.5 mg/L. The purpose of this research was to study the performance of bioreactors Upflow Anaerobic Sludge Blanket (UASB to decompose the vinasse into biogas or methane. UASB operating principle is to distribute wastewater in the bioreactor to flow upward through the sludge blanket by setting the hidrolic retention time (HRT. Four UASB bioreactor columns were used in this experiment wherein each with a capacity of 50 L in volume; 23 cm inside diameter, and 120 cm. The variations of hydraulic capacity followed the variations of HRT in the range of 72-36 hours. Modifications were carried out on the top of column UASB with the aim of preventing gas losses and increasing the flowrate of gas out from the top of the column. The results showed that HRT increased from 36 h to 72 h followed by an increase in COD removal efficiency of 55.64% to 66.81%; BOD5 from 67.85% to 74.58%; and TSS from 66.69% to 84.19%. The maximum volume of biogas produced was in the range of 5.826 L / day (42.89% methane to 7.930 L / day (methane 58.06%.

  3. Optimization of process parameters for determination of trace Hazardous dyes from industrial wastewaters based on nanostructures materials under ultrasound energy.

    Science.gov (United States)

    Alipanahpour Dil, Ebrahim; Ghaedi, Mehrorang; Asfaram, Arash; Mehrabi, Fatemeh; Bazrafshan, Ali Akbar

    2018-01-01

    In this study, ultrasound-assisted dispersive solid phase micro-extraction based on nanosorbent namely silver-zinc oxide nanoparticles loaded on activated carbon (Ag-ZnO-NP-AC) combined with derivative spectrophotometry method for the simultaneous pre-concentration and determination of Methyl Green (MG) and Rose Bengal (RB) dyes in water and industrial wastewater. Characterized sorbent by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), particle-size distribution (PSD), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and Transmission electron microscopy (TEM) analysis with superior adsorption capacity was applied in ultrasound assisted dispersive-solid-phase micro-extraction (UA-DSPME) methodology. pH, sorbent mass, ultrasonication time, and eluent volume influence and contribution on response correspond to simultaneous pre-concentration and determination of MG and RB were optimized by response surface methodology (RSM) and results were compared with the experimental values. Under the optimal conditions (UA-DSPME), the enrichment factors (EFs) were 93.89 and 97.33 for the MG and RB dyes, respectively. The limits of detection were 2.14 and 2.73ngmL(-1) and the limit of quantification were 7.15 and 9.09ngmL(-1) for MG and RB, respectively. The analytes can be determined over 10-2000ngmL(-1) with recoveries between 90.8% to 97.7% and RSDs less than 3.6%. The developed method due to simplicity and rapidity is able successful for repeatable and accurate monitoring of under study analytes from complicated matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Determination of Water Quality Degradation Due to Industrial and Household Wastewater in the Galing River in Kuantan, Malaysia Using Ion Chromatograph and Water Quality Data

    Directory of Open Access Journals (Sweden)

    Daisuke Kozaki

    2017-04-01

    Full Text Available Water quality of the Galing River in Kuantan, Malaysia was examined to understand the anthropogenic environmental load in each administrative section, using water quality monitoring data and land use pattern. The National Physical Plan 2005 identified Kuantan as one of the country’s future growth centers, which has resulted in rapid development and environmental degradation in the past decade. Multiple water quality indexes used by the Department of Environment, Malaysia and concentrations of several ionic species were examined to assess the river’s water quality. The following inferences were drawn in this study: (1 Cl− and Na+ concentrations indicated that the basin area near the eastern urbanized area was subject to lesser human influence and lower environmental burden; (2 the Western side of the Galing River was subject to higher anthropogenic influence and indicated lower class levels of ammoniacal nitrogen, chemical oxygen demand, and dissolved oxygen, compared to the eastern side; (3 Class V or near class V pH values were obtained upstream at the western side of the Galing River in the industrial area; (4 Two types of environmental burden were identified in the western side of the Galing River, namely, inflow of industrial wastewater upstream on the western side and the effect of household wastewater or untreated raw sewage wastewater.

  5. APPLICATION OF MEMBRANES FROM POLYACRYLONITRITE DOPPED WITH GRAPHEN OXIDE IN PURIFICATION OF INDUSTRIAL WASTEWATER GENERATED DURING PROCESSING OF METALS

    Directory of Open Access Journals (Sweden)

    Tomasz Turek

    2017-08-01

    Full Text Available The paper presents results of research on the use of composite membranes of polyacrylonitrile (PAN doped with graphene oxide (GO to remove contaminations of galvanic wastewater. Membranes were obtained using phase inversion method from PAN and GO solution in N,N-dimethylformamide (DMF. Wastewater was pre-treated with the flocculant Magnafloc®336. Next, ultrafiltration of the treated wastewater was carried out in the ultrafiltration cell AMICON on the previously prepared PAN/GO composite membranes. Physico-chemical properties and composition of solutions before and after integrated purification process were analyzed by UV-Vis spectrophotometer and atomic absorption spectrometry (AAS. As a result of flocculation from wastewater there have been removed phosphates (97%, chlorides (5,2%, sulfates (5,9% and iron (82%. In addition, as a result of ultrafiltration was complete removal of phosphate anions (100% and iron (~91-92%, zinc (68÷84%, lead (65-98% and cadmium (~67%.

  6. Using a life cycle assessment methodology for the analysis of two treatment systems of food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa; Schmidt, Jens Ejbye; Baun, Anders

    2007-01-01

    are the parameters that have the greatest influence on the potential environmental impacts of the systems analyzed. In this study, we present a systematic methodology for the analysis of the operation of two modern wastewater treatment technologies: Biological removal of nitrogen and organic matter by activated...... comprises three major steps: (i) Data gathering regarding wastewater characteristics and discharge, (ii) Simulation of the wastewater treatment plant’s operation by dedicated process engineering models in Matlab/Simulink, (iii) Classification and calculation of life cycle inventory data: removal...... of fertilizers are balanced, normalized & weighted using EDIP 97. The functional unit was defined as an annual averaged volumetric person equivalent (P.E.=0,2 m3 d-1). Person equivalent is a term which results more familiar to wastewater engineers and many plant designs are expressed in that unit. The system...

  7. Masterplan Sistem Pengelolaan Air Limbah Industri Di Kawasan Industri Bsb City, Mijen-semarang

    OpenAIRE

    Triyani, Ruli; Oktiawan, Wiharyanto; Dwi Nugraha, Winardi

    2013-01-01

    Industrial Park BSB City, Mijen-Semarang has concept as green technology industrial park. There's 11 industry producting wastewater in existing area at this time. The industrial wastewater flow to drainage without any treatment which make odours at industrial park area. PT Karyadeka Alam Lestari as developer industrial would be like to build wastewater treatment plant which treat all wastewater industries therefore it needs Masterplan Management System Wastewater Industry At Industrial Park B...

  8. Screening of Industrial Wastewaters as Feedstock for the Microbial Production of Oils for Biodiesel Production and High-Quality Pigments

    Directory of Open Access Journals (Sweden)

    Teresa Schneider

    2012-01-01

    Full Text Available The production of biodiesel has notably increased over the past decade. Currently, plant oil is the main feedstock for biodiesel production, but, due to concerns related to the competition with food production, alternative oil feedstocks have to be found. Oleaginous yeasts are known to produce high amounts of lipids, but no integrated process from microbial fermentation to final biodiesel production has reached commercial realization yet due to economic constraints. Therefore, growth and lipid production of red yeast Rhodotorula glutinis was tested on low-cost substrates, namely, wastewaters from potato, fruit juice, and lettuce processing. Additionally, the production of carotenoids as high-value by-products was examined. All evaluated wastewaters met the general criteria for microbial lipid production. However, no significant increase in lipid content was observed, probably due to lack of available carbon in wastewaters from fruit juice and lettuce processing, and excess of available nitrogen in potato processing wastewater, respectively. During growth on wastewaters from fruit juice and lettuce processing the carotenoid content increased significantly in the first 48 hours. The relations between carbon content, nitrogen content, and carotenoid production need to be further assessed. For economic viability, lipid and carotenoid production needs to be increased significantly. The screening of feedstocks should be extended to other wastewaters.

  9. Reclamation of the wastewater from an industrial park using hollow-fibre and spiral-wound membranes: 50 m3 d(-1) pilot testing and cost evaluation.

    Science.gov (United States)

    Chu, C P; Jiaoa, S R; Hung, J M; Lu, C J; Chung, Y J

    2009-08-01

    The feasibility of reclaiming effluent from industrial park wastewater treatment plants through a membrane process was evaluated in three phases. In phase 1 we selected nine wastewater treatment plants (WWTPs), each with a design capacity exceeding 10,000 m3 d(-1), and analyzed the corresponding effluent composition. 'Potential recycling percentage', R, ranged from 50% to 80% for the industrial park WWTPs, indicating a high feasibility for the reuse of effluent. In phase 2, a 50 m3 d(-1) pilot plant was installed in one of the selected WWTPs and underwent testing for one year. The quality of the reclaimed water was suitable for general-purpose industrial use. In the two ultrafiltration (UF) modules tested, the hydrophilic polyethersulfone hollow-fibre module was more tolerant to variable properties, and had higher recycling percentages than those of backwashable hydrophobic polyvinylidene difluoride spiral-wound module. Using the spiral-wound UF module helped reduce the cost for producing 1 m3 of reclaimed water (US$0.80) compared with a hollow-fibre module (US$0.88). In phase 3, we evaluated the negative effects of refluxing the reverse osmosis retentate, containing high total dissolved solids and non-biodegradable organics, with the biological treatment unit of the upstream WWTP. Biological compactibility tests showed that the refluxed retentate ratio should be reduced to maintain the conductivity of mixed liquor in the aeration tank at less than 110% of the original value.

  10. Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment.

    Science.gov (United States)

    GilPavas, Edison; Dobrosz-Gómez, Izabela; Gómez-García, Miguel Ángel

    2017-04-15

    In this study, the industrial textile wastewater was treated using a chemical-based technique (coagulation-flocculation, C-F) sequential with an advanced oxidation process (AOP: Fenton or Photo-Fenton). During the C-F, Al2(SO4)3 was used as coagulant and its optimal dose was determined using the jar test. The following operational conditions of C-F, maximizing the organic matter removal, were determined: 700 mg/L of Al2(SO4)3 at pH = 9.96. Thus, the C-F allowed to remove 98% of turbidity, 48% of Chemical Oxygen Demand (COD), and let to increase in the BOD5/COD ratio from 0.137 to 0.212. Subsequently, the C-F effluent was treated using each of AOPs. Their performances were optimized by the Response Surface Methodology (RSM) coupled with a Box-Behnken experimental design (BBD). The following optimal conditions of both Fenton (Fe2+/H2O2) and Photo-Fenton (Fe2+/H2O2/UV) processes were found: Fe2+ concentration = 1 mM, H2O2 dose = 2 mL/L (19.6 mM), and pH = 3. The combination of C-F pre-treatment with the Fenton reagent, at optimized conditions, let to remove 74% of COD during 90 min of the process. The C-F sequential with Photo-Fenton process let to reach 87% of COD removal, in the same time. Moreover, the BOD5/COD ratio increased from 0.212 to 0.68 and from 0.212 to 0.74 using Fenton and Photo-Fenton processes, respectively. Thus, the enhancement of biodegradability with the physico-chemical treatment was proved. The depletion of H2O2 was monitored during kinetic study. Strategies for improving the reaction efficiency, based on the H2O2 evolution, were also tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Separation and Preconcentration of Sudan Blue II Using Membrane Filtration and UV-Visible Spectrophotometric Determination in River Water and Industrial Wastewater Samples.

    Science.gov (United States)

    Unsal, Yunus Emre; Tuzen, Mustafa; Soylak, Mustafa

    2015-01-01

    A new separation and preconcentration method based on adsorption on a cellulose acetate membrane filter and elution with ethanol was established for the UV-Vis spectrophotometric determination of Sudan blue II. Various analytical parameters such as pH of working media, flow rates of solutions, and sample volumes were optimized. Matrix effects of concomitants were investigated for the quantitative recovery values of Sudan blue II. The preconcentration factor was 200. LOD was calculated as 0.96 μg/L. RSD was 5.1%. The optimized procedure was applied to the spectrophotometric determination of Sudan blue II in river and industrial wastewater samples from oil and dye products.

  12. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  13. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2013–October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Permit required groundwater monitoring data; Status of compliance activities; Noncompliance issues; and Discussion of the facility’s environmental impacts. During the 2014 permit year, approximately 238 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the downgradient monitoring wells.

  14. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    Mike Lewis

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  15. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  16. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    mike lewis

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2009 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Discussion of the facility’s environmental impacts During the 2010 permit year, approximately 164 million gallons of wastewater were discharged to the Cold Waste Pond. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  17. Investigation of ozone and coagulant material’s (aluminum sulfate, ferric chloride, poly aluminum chloride and lime efficiency in “Kerman Kork” industry wastewater treatment

    Directory of Open Access Journals (Sweden)

    Amir Hussein Javid

    2015-01-01

    Full Text Available Background: Entry of untreated wastewater of wool scouring factories has been associated with many environmental hazards because of high rate of pollution. Presently effective treatment methods and reducing the costs of operation and maintenance from treatment units have always been under the attention of this industry owners. The aim of this survey is to present a suitable method for the treatment of wool scouring. Methods: In this study, chemical coagulant is used for wastewater treatment (aluminum sulfate, ferric chloride, poly aluminum chloride and lime. And then these materials with “ozone” as a strong oxidative in reduction of the amount of Chemical Oxygen Demand (COD in wastewater effluent has been surveyed. Results: The results of this work showed that only ferric chloride and aluminum sulfate among the above chemical coagulant had a high efficiency in the turbidity removal. Productivity of turbidity removal using ferric chloride with the pH of 4 to 5 was 99%, and turbidity was reduced from 166 Nephelometric Turbidity Units (NTU to 1.5 NTU, and productivity of turbidity removal using aluminum sulfate within the pH 4.5 to 5 was 99.33% that reduced turbidity from 166 to 1.1 NTU. Results of ozonation with 5 g/hour and the oxygen flow of 2.5 litter per min with the pH assess of 15, 30, 45, 60, 90, 120, and 150 min to wastewater from chemical treatment with ferric chloride showed that the rate of COD was reduced from 24700 mg/L to 2940 mg/L. In ozonation to wastewater of chemical treatment with aluminum sulfate within the above rang of time, the rate of COD was reduced from 22500 mg/l to 4800 mg/l. Conclusion: We can be hopeful that in near future, getting the cheap technology of ozone production in industrial scale, one can use this technology for the propose of removal of pollutants having removal preferable by help of advanced treatment approaches.

  18. Effect of by-pass and effluent recirculation on nitrogen removal in hybrid constructed wetlands for domestic and industrial wastewater treatment.

    Science.gov (United States)

    Torrijos, V; Gonzalo, O G; Trueba-Santiso, A; Ruiz, I; Soto, M

    2016-10-15

    Hybrid constructed wetlands (CWs) including subsurface horizontal flow (HF) and vertical flow (VF) steps look for effective nitrification and denitrification through the combination of anaerobic/anoxic and aerobic conditions. Several CW configurations including several configurations of single pass systems (HF + HF, VF + VF, VF + HF), the Bp(VF + HF) arrangement (with feeding by-pass) and the R(HF + VF) system (with effluent recirculation) were tested treating synthetic domestic wastewater. Two HF/VF area ratios (AR) were tested for the VF + HF and Bp(VF + HF) systems. In addition, a R(VF + VF) system was tested for the treatment of a high strength industrial wastewater. The percentage removal of TSS, COD and BOD5 was usually higher than 95% in all systems. The single pass systems showed TN removal below the threshold of 50% and low removal rates (0.6-1.2 g TN/m(2) d), except the VF + VF system which reached 63% and 3.5 g TN/m(2) d removal but only at high loading rates. Bp(VF + HF) systems required by-pass ratios of 40-50% and increased TN removal rates to approximately 50-60% in a sustainable manner. Removal rates depended on the AR value, increasing from 1.6 (AR 2.0) to 5.2 g TN/m(2) d (AR 0.5), both working with synthetic domestic wastewater. On real domestic wastewater the Bp (VF + HF) (AR 0.5 and 30% by-pass) reached 2.5 g TN/m(2) d removal rate. Effluent recirculation significantly improved the TN removal efficiency and rate. The R(HF + VF) system showed stable TN removals of approximately 80% at loading rates ranging from 2 to 8 g TN/m(2) d. High TN removal rates (up to 73% TN and 8.4 g TN/m(2) d) were also obtained for the R(VF + VF) system treating industrial wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  20. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  1. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sílvia C.R., E-mail: scrs@fe.up.pt; Boaventura, Rui A.R.

    2015-06-30

    Highlights: • Treating textile dyeing effluents by SBR coupled with waste sludge adsorption. • Metal hydroxide sludge: a good adsorbent for a direct textile dye. • Good adsorption capacities were found with the low-cost adsorbent. • Adsorbent performance considerably reduced by auxiliary products. • Color removal complies with discharge limits. - Abstract: Color removal from textile wastewaters, at a low-cost and consistent technology, is even today a challenge. Simultaneous biological treatment and adsorption is a known alternative to the treatment of wastewaters containing biodegradable and non-biodegradable contaminants. The present work aims at evaluating the treatability of a simulated textile wastewater by simultaneously combining biological treatment and adsorption in a SBR (sequencing batch reactor), but using a low-cost adsorbent, instead of a commercial one. The selected adsorbent was a metal hydroxide sludge (WS) from an electroplating industry. Direct Blue 85 dye (DB) was used in the preparation of the synthetic wastewater. Firstly, adsorption kinetics and equilibrium were studied, in respect to many factors (temperature, pH, WS dosage and presence of salts and dyeing auxiliary chemicals in the aqueous media). At 25 °C and pH 4, 7 and 10, maximum DB adsorption capacities in aqueous solution were 600, 339 and 98.7 mg/g, respectively. These values are quite considerable, compared to other reported in literature, but proved to be significantly reduced by the presence of dyeing auxiliary chemicals in the wastewater. The simulated textile wastewater treatment in SBR led to BOD{sub 5} removals of 53–79%, but color removal was rather limited (10–18%). The performance was significantly enhanced by the addition of WS, with BOD{sub 5} removals above 91% and average color removals of 60–69%.

  2. Effects of wastewater from a cassava industry on soil chemistry and crop yield of lopsided oats (Avena strigosa Schreb.)

    OpenAIRE

    Juarez Rogério Cabral; Paulo Sérgio Lourenço Freitas; Altair Bertonha; Antônio Saraiva Muniz

    2010-01-01

    This experiment was carried out in the Arenito soil of the Cidade Gaúcha county, Northwest Paraná in Brazil, in which 0, 150, 300, 450 and 600 m³ ha-1 of wastewater were applied onto soil and the crop yield and soil chemistry were investigated for lopsided oat (Avena strigosa Schreb.) plants. The crop yield from the control was 2818 kg ha-1 contrasting 3629 kg ha-1 when 300 m³ ha-1 of cassava wastewater were applied, and potassium, after haversting, was the only nutrient found in a higher con...

  3. Synthesis of Poly(hydroxamic Acid-Poly(amidoxime Chelating Ligands for Removal of Metals from Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    M. R. Lutfor

    2011-01-01

    Full Text Available Synthesis of poly(hydroxamic acid-poly(amidoxime chelating ligands were carried out from poly(methyl acrylate-co-acrylonitrile grafted sago starch and hydroxylamine in alkaline medium. The binding property of metal ions was performed and maximum sorption capacity of the copper was 3.20 mmol/ g and the rate of exchange of some metals was faster, i.e. t½ ≈ 7 min (average. Two types of wastewater containing chromium, zinc, nickel, copper and iron, etc. were used and the heavy metal recovery was found to be highly efficient, about 99% of the metals could be removed from the metal plating wastewater.

  4. An integrated mechanical-enzymatic reverse osmosis treatment of dairy industry wastewater and milk protein recovery as a fat replacer: a closed loop approach

    Directory of Open Access Journals (Sweden)

    F. Sarghini

    2013-09-01

    Full Text Available The dairy industry can be classified among the most polluting of the food industries in volume in regard to its large water consumption, generating from 0.2 to 10 L of effluent per liter of processed milk. Dairy industry effluents usually include highly dissolved organic matter with varying characteristics, and a correct waste management project is required to handle. In a framework of natural water resource availability and cost increase, wastewater treatment for water reuse can lower the overall water consumption and the global effluent volume of industrial plants. Moreover, correct dismissal of dairy industry wastewater is sometimes neglected by the operators , increasing the environmental impact due to the chemical and biological characteristics of such effluents. On the other hand, in the case of whey effluents, several by-products are still present inside, such as lactose and milk proteins. Membrane technology has some advantages including a high degree of reliability in removing dissolved, colloidal and particulate matter, like the selectivity in size of pollutants to be removed and the possibility of very compact treatment plants. For example, Reverse Osmosis (RO technology has been successfully applied for the treatment of dairy wastes (1, and as a technology for concentration and fractionation of whey. In this work a membrane treatment approach using reverse osmosis technology is investigated and implemented: the permeate obtained can be reused as clean warm water for cleaning and sanitation of production plants, while concentrated milk proteins are modified by using transglutaminase enzyme obtaining a high temperature resistant fat replacer to be used in different low-fat products like for example mozzarella cheese.

  5. From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management.

    Science.gov (United States)

    Bratina, Božidar; Šorgo, Andrej; Kramberger, Janez; Ajdnik, Urban; Zemljič, Lidija Fras; Ekart, Janez; Šafarič, Riko

    2016-12-01

    After a ban on the depositing of untreated sludge in landfills, the sludge from municipal and industrial water-treatment plants can be regarded as a problem. Waste products of the water treatment process can be a problem or an opportunity - a source for obtaining raw materials. In the European Union, raw sludge and fats, oil and grease (FOG) from municipal and industrial wastewater treatment plants (WWTP) cannot be deposited in any natural or controlled environment. For this reason, it must be processed (stabilized, dried) to be used later as a fertilizer, building material, or alternative fuel source suitable for co-incineration in high temperature furnaces (power plants or concrete plants). The processes of drying sludge, where heat and electricity are used, are energy consuming and economically unattractive. Beside energy efficiency, the main problem of sludge drying is in its variability of quality as a raw material. In addition to this, sludge can be contaminated by a number of organic and inorganic pollutants and organisms. Due to the presence or absence of pollutants, different end products can be economically interesting. For example, if the dried sludge contains coliform bacteria, viruses, helminths eggs or smaller quantities of heavy metals, it cannot be used as a fertilizer but can still be used as a fuel. The objectives of the current article is to present a batch-processing pilot device of sludge or digestate that allows the following: (1) low pressure and low temperature energy effective drying of from 10 to 40% remaining water content, (2) disinfection of pathogen (micro)organisms, (3) heavy metal reduction, (4) production of products of predetermined quality (e.g. containing different quantities of water; it can be used as a fertilizer, or if the percentage of water in the dry sludge is decreased to 10%, then the dried sludge can be used as a fuel with a calorific value similar to coal). An important feature is also the utilization of low

  6. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater

    Directory of Open Access Journals (Sweden)

    Kamika Ilunga

    2013-02-01

    Full Text Available Abstract Background Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. Results The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively compared to other test isolates. This was also revealed with significant COD increases (p Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49% followed by Bacillus licheniformis (Al-23% and Zn-53% and Peranema sp. (Cd-42%. None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes. Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Conclusion Significant differences (p Peranema sp. as a potential candidate for the bioremediation of heavy-metals in wastewater treatment, in addition to Pseudomonas

  7. When wastewater has worth: Water reconditioning opportunities in the food industry to achieve sustainable food manufacturing (abstract)

    Science.gov (United States)

    A major sustainability goal of food processing wastewater (FPWW) management is to not only decrease environmental pollution but also utilize valuable co-products present in the FPWW. Many processed food products, especially those from fruits and vegetables, result in FPWW streams that contain compou...

  8. Statistical Analysis of Reducing Biochemical Oxygen Demand (BOD) on Industrial Rubber Wastewater using Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Syakur, Abdul; Zaman, Badrus; Yunita Nurmaliakasih, Dias

    2017-04-01

    Dielectric Barrier Discharge plasma (DBD) is one of type non-thermal plasma (non-equilibrium plasma) or can be referred to as cold plasma. In this research, DBD plasma be utilized to reduce organic compounds like Biochemichal oxygen demand in the wastewater rubber processing. In the environment field DBD plasma has been used as a treatment for reducing air pollutants such as gas COx, NOx and HC. In addition DBD plasma have been developed to processed wastewater as an alternative technology in wastewater treatment. DBD plasma appears when the electrode is given a high voltage so that, it will form electric field in the area of the electrodes which allows the ionization and the presence of high-energy electrons in the area. The presence of these electrons will ionize molecules of H2O into active species such as OH•, H• and H2O2. The active species that can oxidize into CO2 and H2O so, BOD that can be degraded. In this research for wastewater treatment used high voltage are 10kV, 11kV, 12kV and 13kV and variations of processing time for 5, 10, 15, 20, and 25 (minutes). By increasing the voltage and extend the contact time then the speed variation of electrons to ionize the greater and more active species to be formed to degrade the pollutants to the maximum. This research used quantitative analysis with statistical analysis using SPSS software.

  9. Evaluation of Adsorption Capacity of Chitosan-Citral Schiff Base for Wastewater Pre-Treatment in Dairy Industries

    Directory of Open Access Journals (Sweden)

    Desislava K. Tsaneva

    2017-06-01

    Full Text Available In this study, we aimed to evaluate the adsorption capacity of the Schiff base chitosan-citral for its application in dairy wastewater pre-treatment. Chemical oxygen demand (COD reduction was the factor used to evaluate the adsorption efficiency. The maximum COD percentage reduction of 35.3% was obtained at 40.0 °C, pH 9.0, adsorbent dose 15 g L-1, contact time 180 min and agitation speed 100 rpm. It was found that the Langmuir isotherm fitted well the equilibrium data of COD uptake (R2 = 0.968, whereas the kinetic data were best fitted by the pseudo-second order model (R2=0.999. Enhancement of the adsorption efficiency up to 29.8% in dependence of the initial COD concentration of the dairy wastewater was observed by adsorption with the Schiff base chitosan-citral adsorbent compared to the non-modified chitosan at the same experimental conditions. The results indicated that the Schiff base chitosan-citral can be used for dairy wastewater physicochemical pretreatment by adsorption, which might be applied before the biological unit in the wastewater treatment plant to reduce the load.

  10. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Kassotis, Christopher D., E-mail: christopher.kassotis@duke.edu [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); Iwanowicz, Luke R. [U.S. Geological Survey, Leetown Science Center, Fish Health Branch, 11649 Leetown Road, Kearneysville, WV 25430 (United States); Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam C. [U.S. Geological Survey, National Research Program, 12201 Sunrise Valley Drive, MS 430, Reston, VA 20192 (United States); Orem, William H. [U.S. Geological Survey, Eastern Energy Resources Science Center, 12201 Sunrise Valley Drive, MS 956, Reston, VA 20192 (United States); Nagel, Susan C., E-mail: nagels@health.missouri.edu [Department of Obstetrics, Gynecology and Women' s Health, University of Missouri, Columbia, MO 65211 (United States)

    2016-07-01

    Currently, > 95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. - Highlights: • Oil and gas wastewater disposal may increase endocrine disrupting activity in water. • Tested EDC activity in surface water near oil and gas wastewater injection site. • Water downstream had significantly

  11. Color removal in WWTP with textile industrial wastewater contribution; Eliminacion del color en los efluentes de EDAR urbans con aportes de aguas residuales de la industria textil

    Energy Technology Data Exchange (ETDEWEB)

    Morenilla, J. J.; Bernacer, I.; Basiero, J. A.; Lloret Salinas, M.; Amores Blasco, S.; Lopez, J.; Ruiz, L.; Marco, C.

    2006-07-01

    There is a very important development of textile industries in the Comunidad Valenciana. We ve found a rosaceous tonality in effluents of WWTP with textile industrial wastewater contribution. All of this is masked of the presence of organic coloring molecules which cannot be degraded in a biogical reactor. These molecules have a strong chemical stability due to they have aromatic rings in their structure. Lisis reactions need a high activation energy that is impossible to reach with the metabolic reactions which happen in biological reactors. Because of this we have been making experiments consisting of chemical reactive addition in four Comunidad Valenciana WWTP to remove color. A floculant and an oxidant have been measured out as chemical reactive. Color decrease is quantified by absorbance measures in visible spectrum wave length range. (Author) 3 refs.

  12. Two-step treatment of harmful industrial wastewater: an analysis of microbial reactor with integrated membrane retention for benzene and toluene removal

    Directory of Open Access Journals (Sweden)

    Trusek-Holownia Anna

    2015-12-01

    Full Text Available Standards for highly toxic and carcinogenic pollutants impose strict guidelines, requiring values close to zero, regarding the degradation of such pollutants in industrial streams. In many cases, classic bioremoval processes fail. Therefore, we proposed a stream leaving the microbial membrane bioreactor (MBR that is directed to an additional membrane separation mode (NF/RO. Under certain conditions, the integrated process not only benefits the environment but may also increase the profitability of the bioreactor operation. An appropriate model was developed and tested in which the bioremoval of benzene and toluene by Pseudomonas fluorescens was used as an example. This paper presents equations for selecting the operation parameters of the integrated system to achieve the expected degree of industrial wastewater purification.

  13. Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode.

    Science.gov (United States)

    Mohamed, Hend Omar; Obaid, M; Sayed, Enas Taha; Liu, Yang; Lee, Jinpyo; Park, Mira; Barakat, Nasser A M; Kim, Hak Yong

    2017-08-01

    This study introduces activated carbon (AC) as an effective anode for microbial fuel cells (MFCs) using real industrial wastewater without treatment or addition of external microorganism mediators. Inexpensive activated carbon is introduced as a proper electrode alternative to carbon cloth and carbon paper materials, which are considered too expensive for the large-scale application of MFCs. AC has a porous interconnected structure with a high bio-available surface area. The large surface area, in addition to the high macro porosity, facilitates the high performance by reducing electron transfer resistance. Extensive characterization, including surface morphology, material chemistry, surface area, mechanical strength and biofilm adhesion, was conducted to confirm the effectiveness of the AC material as an anode in MFCs. The electrochemical performance of AC was also compared to other anodes, i.e., Teflon-treated carbon cloth (CCT), Teflon-treated carbon paper (CPT), untreated carbon cloth (CC) and untreated carbon paper (CP). Initial tests of a single air-cathode MFC display a current density of 1792 mAm -2 , which is approximately four times greater than the maximum value of the other anode materials. COD analyses and Coulombic efficiency (CE) measurements for AC-MFC show the greatest removal of organic compounds and the highest CE efficiency (60 and 71%, respectively). Overall, this study shows a new economical technique for power generation from real industrial wastewater with no treatment and using inexpensive electrode materials.

  14. Treatment of a chocolate industry wastewater in a pilot-scale low-temperature UASB reactor operated at short hydraulic and sludge retention time.

    Science.gov (United States)

    Esparza-Soto, M; Arzate-Archundia, O; Solís-Morelos, C; Fall, C

    2013-01-01

    The aim of this work was to evaluate the performance of a 244-L pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of chocolate-processing industry wastewater under low-temperature conditions (18 ± 0.6 °C) for approximately 250 d. The applied organic loading rate (OLR) was varied between 4 and 7 kg/m(3)/d by varying the influent soluble chemical oxygen demand (CODsol), while keeping the hydraulic retention time constant (6.4 ± 0.3 h). The CODsol removal efficiency was low (59-78%). The measured biogas production increased from 240 ± 54 to 431 ± 61 L/d during the experiments. A significant linear correlation between the measured biogas production and removed OLR indicated that 81.69 L of biogas were produced per kg/m(3) of CODsol removed. Low average reactor volatile suspended solids (VSS) (2,700-4,800 mg/L) and high effluent VSS (177-313 mg/L) were derived in a short sludge retention time (SRT) (4.9 d). The calculated SRT was shorter than those reported in the literature, but did not affect the reactor's performance. Average sludge yield was 0.20 kg-VSS/kg-CODsol. The low-temperature anaerobic treatment was a good option for the pre-treatment of chocolate-processing industry wastewater.

  15. Anaerobic treatment of a medium strength industrial wastewater at low-temperature and short hydraulic retention time: a pilot-scale experience.

    Science.gov (United States)

    Esparza Soto, M; Solís Morelos, C; Hernández Torres, J J

    2011-01-01

    The aim of this work was to evaluate the performance of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of cereal-processing industry wastewater under low-temperature conditions (17 degrees C) for more than 300 days. The applied organic loading rate (OLR(appl)) was gradually increased from 4 to 6 and 8 kg COD(sol)/m3d by increasing the influent soluble chemical oxygen demand (COD(sol)), while keeping the hydraulic retention time constant (5.2 h). The removal efficiency was high (82 to 92%) and slightly decreased after increasing the influent COD(sol) and the OLR(appl). The highest removed organic loading rate (OLR(rem)) was reached when the UASB reactor was operated at 8 kg COD(sol)/m3d and it was two times higher than that obtained for an OLR(appl) of 4 kg COD(sol)/m3d. Some disturbances were observed during the experimentation. The formation of biogas pockets in the sludge bed significantly complicated the biogas production quantification, but did not affect the reactor performance. The volatile fatty acids in the effluent were low, but increased as the OLR(appl) increased, which caused an increment of the effluent COD(sol). Anaerobic treatment at low temperature was a good option for the biological pre-treatment of cereal processing industry wastewater.

  16. Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants.

    Science.gov (United States)

    Maragkaki, A E; Fountoulakis, M; Gypakis, A; Kyriakou, A; Lasaridi, K; Manios, T

    2017-01-01

    Due to low degradability of dry solids, most of the digesters at wastewater treatment plants (WWTP) operate at low loading rates resulting in poor biogas yields. In this study, co-digestion of sewage sludge (SS) with olive mill wastewater (OMW), cheese whey (CW) and crude glycerol (CG) was studied in an attempt to improve biogas production of existing digesters at WWTPs. The effect of agro-industrial by-products in biogas production was investigated using a 220L pilot-scale (180L working volume) digester under mesophilic conditions (35°C) with a total feeding volume of 7.5L daily and a 24-day hydraulic retention time. The initial feed was sewage sludge and the bioreactor was operated using this feed for 40days. Each agro-industrial by-product was then added to the feed so that the reactor was fed continuously with 95% sewage sludge and 5% (v/v) of each examined agro-industrial by-product. The experiments showed that a 5% (v/v) addition of OMW, CG or CW to sewage sludge significantly increased biogas production by nearly 220%, 350% and 86% as values of 34.8±3.2L/d, 185.7±15.3L/d and 45.9±3.6L/d respectively, compared to that with sewage sludge alone (375ml daily, 5% v/v in the feed). The average removal of dissolved chemical oxygen demand (d-COD) ranged between 72 and 99% for organic loading rates between 0.9 and 1.5kgVSm -3 d -1 . Reduction in the volatile solids ranged between 25 and 40%. This work suggests that methane can be produced very efficiently by adding a small concentration (5%) of agro-industrial by-products and especially CG in the inlet of digesters treating sewage sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Free water surface constructed wetlands for urban-industrial wastewater treatment; Utilizacion de humedales construidos de flujo superficial en el tratamiento de aguas residuales de origen urbano-industrial

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Garcia, M.; Cabezas Beaumont, A.; Comin Sebastian, F.

    2009-07-01

    In order to assay superficial flow wetlands efficiency in the urban-industrial mixed wastewater quality improve and their effect in its re valorization for potential reuse in irrigation, three Free Water Surface Flow Wetlands were studied. the system presents a high capacity to reduce TSS, nitrate, nitrite and NT concentrations and this efficiency was growing up as the system mature. Denitrification processes in sediment is the main cause of nitrogen elimination. On the other hand reeds biomass development during this period could be contributing to treatment efficiency by means of reeds nutrients assimilation. (Author) 25 refs.

  18. Human Blood Cell Sensing with Platinum Black Electroplated Impedance Sensor

    OpenAIRE

    Zheng, Siyang; Nandra, Mandheerej S.; Tai, Yu-Chong

    2007-01-01

    AC impedance sensing is an important method for biological cell analysis in flow cytometry. For micro impedance cell sensors, downsizing electrodes increases the double layer impedance of the metal-electrolyte interface, thus leaves no sensing zone in frequency domain and reduces the sensitivity significantly. We proposed using platinum black electroplated electrodes to solve the problem. In this paper, using this technique we demonstrated human blood cell sensing with high signal to noise ra...

  19. Biodegradation of benzene-toluene-xylene in petrochemical industries wastewater through anaerobic sequencing biofilm batch reactor in bench scale

    Directory of Open Access Journals (Sweden)

    Maryam Estebar

    2012-01-01

    Conclusions: The optimum BTX removal of 79% was achieved in 3 g COD/l.d and HRT of 3.8 days, at influent BTX concentration of 20 mg/l. Thus, it could be concluded that ASBBR was a feasible, efficient, and consistent technology for treatment of petrochemical wastewaters containing BTX. The ASBBR might be an alternative to intermittent systems as well as batch systems due to its superior operational flexibility.

  20. Recovery of gold from industrial wastewater by extracellular proteins obtained from a thermophilic bacterium Tepidimonas fonticaldi AT-A2.

    Science.gov (United States)

    Han, Yin-Lung; Wu, Jen-Hao; Cheng, Chieh-Lun; Nagarajan, Dillirani; Lee, Ching-Ray; Li, Yi-Heng; Lo, Yung-Chung; Chang, Jo-Shu

    2017-09-01

    Biosorption has emerged as a promising alternative approach for treating wastewater with dilute metal contents in a green and cost effective way. In this study, extracellular proteins of an isolated thermophilic bacterium (Tepidimonas fonticaldi AT-A2) were used as biosorbent to recover precious metal (i.e., Au) from wastewater. The Au (III) adsorption capacity on the T. fonticaldi AT-A2 proteins was the highest when the pH was set at about 4.0-5.0. The adsorption capacity increased with increasing temperature from 15 to 70°C. Adsorption isotherm studies show that both Langmuir and Freundrich models could describe the adsorption equilibrium. The maximum adsorption capacity of Au (III) at 50°C and pH 5 could reach 9.7mg Au/mg protein. The protein-based biosorbent was also used for the recovery of Au from a wastewater containing 15mg/L of Au, achieving a high adsorption capacity of 1.45mg Au/mg protein and a removal efficiency of 71%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Performance of electrodialysis reversal and reverse osmosis for reclaiming wastewater from high-tech industrial parks in Taiwan: A pilot-scale study.

    Science.gov (United States)

    Yen, Feng-Chi; You, Sheng-Jie; Chang, Tien-Chin

    2017-02-01

    Wastewater reclamation is considered an absolute necessity in Taiwan, as numerous industrial parks experience water shortage. However, the water quality of secondary treated effluents from sewage treatment plants generally does not meet the requirements of industrial water use because of the high inorganic constituents. This paper reports experimental data from a pilot-plant study of two treatment processes-(i) fiber filtration (FF)-ultrafiltration (UF)-reverse osmosis (RO) and (ii) sand filtration (SF)-electrodialysis reversal (EDR)-for treating industrial high conductivity effluents from the Xianxi wastewater treatment plant in Taiwan. The results demonstrated that FF-UF was excellent for turbidity removal and it was a suitable pretreatment process for RO. The influence of two membrane materials on the operating characteristics and process stability of the UF process was determined. The treatment performance of FF-UF-RO was higher than that of SF-EDR with an average desalination rate of 97%, a permeate conductivity of 272.7 ± 32.0, turbidity of 0.183 ± 0.02 NTU and a chemical oxigen demand of plant of 4000 m3/d capacity revealed that using FF-UF-RO had a lower treatment cost than using SF-EDR, which required activated carbon filtration as a post treatment process. On the basis of the results in this study, the FF-UF-RO system is recommended as a potential process for additional applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Optimization of a low-cost defined medium for alcoholic fermentation--a case study for potential application in bioethanol production from industrial wastewaters.

    Science.gov (United States)

    Comelli, Raúl N; Seluy, Lisandro G; Isla, Miguel A

    2016-01-25

    In bioethanol production processes, the media composition has an impact on product concentration, yields and the overall process economics. The main purpose of this research was to develop a low-cost mineral-based supplement for successful alcoholic fermentation in an attempt to provide an economically feasible alternative to produce bioethanol from novel sources, for example, sugary industrial wastewaters. Statistical experimental designs were used to select essential nutrients for yeast fermentation, and its optimal concentrations were estimated by Response Surface Methodology. Fermentations were performed on synthetic media inoculated with 2.0 g L(-1) of yeast, and the evolution of biomass, sugar, ethanol, CO2 and glycerol were monitored over time. A mix of salts [10.6 g L(-1) (NH4)2HPO4; 6.4 g L(-1) MgSO4·7H2O and 7.5 mg L(-1) ZnSO4·7H2O] was found to be optimal. It led to the complete fermentation of the sugars in less than 12h with an average ethanol yield of 0.42 g ethanol/g sugar. A general C-balance indicated that no carbonaceous compounds different from biomass, ethanol, CO2 or glycerol were produced in significant amounts in the fermentation process. Similar results were obtained when soft drink wastewaters were tested to evaluate the potential industrial application of this supplement. The ethanol yields were very close to those obtained when yeast extract was used as the supplement, but the optimized mineral-based medium is six times cheaper, which favorably impacts the process economics and makes this supplement more attractive from an industrial viewpoint. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The key role of biogenic manganese oxides in enhanced removal of highly recalcitrant 1,2,4-triazole from bio-treated chemical industrial wastewater.

    Science.gov (United States)

    Wu, Ruiqin; Wu, Haobo; Jiang, Xinbai; Shen, Jinyou; Faheem, Muhammad; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing; Wang, Lianjun; Liu, Xiaodong

    2017-04-01

    The secondary effluent from biological treatment process in chemical industrial plant often contains refractory organic matter, which deserves to be further treated in order to meet the increasingly stringent environmental regulations. In this study, the key role of biogenic manganese oxides (BioMnOx) in enhanced removal of highly recalcitrant 1,2,4-triazole from bio-treated chemical industrial wastewater was investigated. BioMnOx production by acclimated manganese-oxidizing bacterium (MOB) consortium was confirmed through scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analysis. Pseudomonas and Bacillus were found to be the most predominant species in acclimated MOB consortium. Mn 2+ could be oxidized optimally at neutral pH and initial Mn 2+ concentration below 33 mg L -1 . However, 1,2,4-triazole removal by BioMnOx produced occurred optimally at slightly acidic pH. High dosage of both Mn 2+ and 1,2,4-triazole resulted in decreased 1,2,4-triazole removal. In a biological aerated filter (BAF) coupled with manganese oxidation, 1,2,4-triazole and total organic carbon removal could be significantly enhanced compared to the control system without the participation of manganese oxidation, confirming the key role of BioMnOx in the removal of highly recalcitrant 1,2,4-triazole. This study demonstrated that the biosystem coupled with manganese oxidation had a potential for the removal of various recalcitrant contaminants from bio-treated chemical industrial wastewater.

  4. Bulking sludge, scum and foam in municipal and industrial wastewater treatment plants; Blaehschlamm, Schwimmschlamm und Schaum in kommunalen und industriellen Abwasserbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, T.G.; Hansen, J. (eds.)

    2003-07-01

    Over the past few years many German wastewater treatment plants which work according to the activated sludge principle have had problems with bulking sludge, scum and foaming tendencies. These are all biological phenomena which are attributable to the mass occurrence of filiform organisms The main reasons for the increased occurrence of these organisms/phenomena is that wastewater treatment plants are being developed for the goal of ''nutrient elimination'' and therefore have a low sludge freight, and that the use of precipitation agents has been reduced and the oxygen concentration in the activated sludge tank has been decreased. However these very measures contribute to an environment which promotes the growth of filiform organisms that produce bulking sludge and scum. After the positive resonance to the previous annual meetings this year's meeting will be dedicated to the subject of ''Bulking sludge, scum and foam in municipal and industrial wastewater treatment plants''. The meeting is designed as an advanced training event for the staff of planning agencies, municipalities, associations and the water management authorities. [German] Seit einigen Jahren sind auf vielen Klaeranlagen in Deutschland, die nach dem Belebtschlammverfahren konzipiert sind, vermehrt Probleme mit Blaeh- und Schwimmschlamm sowie Schaumbildungstendenzen zu beobachten. Hierbei handelt es sich um Phaenomene, die biologisch verursacht und auf das massenhafte Auftreten von fadenfoermigen Organismen zurueckzufuehren sind. Die Gruende fuer das verstaerkte Auftreten dieser Organismen/Phaenomene sind insbesondere: geringe Schlammbelastung der Anlagen durch Ausbau auf das Reinigungsziel 'Naehrstoffelimination', reduzierter Faellmitteleinsatz sowie Senkung des Sauerstoffgehalts im Belebungsbecken. Gerade hierdurch werden jedoch Milieubedingungen eingestellt, die das Wachstum von fadenfoermigen, blaeh- und schwimmschlammbildenden Organismen

  5. Wastewater Outfalls

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Outfalls which discharge wastewater from wastewater treatment facilities with individual NPDES permits. It does not include NPDES general permits.

  6. A system coupling hybrid biological method with UV/O3 oxidation and membrane separation for treatment and reuse of industrial laundry wastewater.

    Science.gov (United States)

    Mozia, Sylwia; Janus, Magdalena; Brożek, Piotr; Bering, Sławomira; Tarnowski, Krzysztof; Mazur, Jacek; Morawski, Antoni W

    2016-10-01

    The possibilities of application of a three-step system combining hybrid biological treatment followed by advanced UV/O3 oxidation with in situ generated O3 and membrane separation (ultrafiltration (UF) and nanofiltration (NF)) to treat and reuse the wastewater from an industrial laundry are presented. By the application of a hybrid moving bed biofilm reactor (HMBBR), the total organic carbon concentration was reduced for about 90 %. However, since the HMBBR effluent still contained organic contaminants as well as high concentrations of inorganic ions and exhibited significant turbidity (8.2 NTU), its further treatment before a possible reuse in the laundry was necessary. The UV/O3 pretreatment prior to UF was found to be an efficient method of the membrane fouling alleviation. During UF, the turbidity of wastewater was reduced below 0.3 NTU. To remove the inorganic salts, the UF permeate was further treated during NF. The NF permeate exhibited very low conductivity (27-75 μS/cm) and contained only small amounts of Ca(2+) and Mg(2+); thus ,it could be reused at any stage of the laundry process.

  7. Biological treatment of chemical industry wastewater having toxic components; Degradazione per via biologica di reflui a componenti tossiche prodotti da una industria farmaceutica

    Energy Technology Data Exchange (ETDEWEB)

    Fabbricino, M.; Pepe, G. [Naples Univ. Federico 2., Naples (Italy). Dipt. di Ingegneria Idraulica ed Ambientale Girolamo Ippolito; Scevola, D. [Novartis Farma SpA, Torre Annunziata, NA (Italy); Fiorillo, S. [Impianto di depurazione di Cuma, Napoli Ovest, Licola di Pozzuoli, NA (Italy)

    2001-09-01

    In order to understand the capacity of an existing biomass to front the variations of wastewater influent characteristics and to evaluate the possibility of toxic components removal using biological processes, it is single out the intervention required to obtain the envisage efficiency of the activated sludge phase, following the arrival of toxic components. Together with experimental results on pilot scale, the performance of the industrial treatment plant is presented too, showing the effectiveness of activated carbon dosage in the biological phase to preserve the efficiency of the process despite of influent wastewater toxicity. [Italian] Il lavoro presenta l'indagine sperimentale condotta per rilevare la capacita' di adattamento della biomassa dell'impianto di depurazione di una industria farmaceutica a seguito della variazione delle caratteristiche del liquame influente, e la possibilita' di degradazione, per via biologica, delle componenti tossiche presenti nel refluo. Attraverso prove in scala pilota vengono evidenziati gli effetti causati dall'arrivo di tali componenti su di un impianto di ossidazione a fanghi attivi a regime, e vengono individuati gli interventi da apportare per garantire il raggiungimento degli standard richiesti nell'effluente. I risultati ottenuti vengono estesi all'impianto a scala reale di cui vengono illustrati i rendimenti depurativi in termini di abbattimento del carico inquinante.

  8. Reduction of hexavalent chromium: photocatalysis and photochemistry and their application in wastewater remediation.

    Science.gov (United States)

    Machado, Tiele Caprioli; Lansarin, Marla Azário; Matte, Natália

    2014-01-01

    Hexavalent chromium present in wastewater discharge of galvanic industries is toxic to most microorganisms and potentially harmful to human health. This work examines the photochemical reduction of Cr(VI) with ethanol under ultraviolet (UV) and visible radiation, and photocatalytic reduction of Cr(VI) with TiO2 in the presence of ethanol under UV radiation. By means of different experimental designs, this study investigates the influence of the initial pH, ethanol amount, catalyst concentration and initial Cr(VI) concentration on total Cr(VI) reduction. The results obtained showed that photochemistry with ethanol under UV radiation (96.10%) was more efficient than photochemistry with ethanol under visible light (48.07%). Furthermore, photocatalysis with TiO2 in the presence of ethanol under UV radiation showed high values of total Cr(VI) reduction: 94.15%, under the optimal conditions established by the experimental design. Finally, experiments were carried out with wastewater discharge from an electroplating plant in its original concentration, and higher values of total Cr(VI) reduction were observed.

  9. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    Science.gov (United States)

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Characterization of bacterial diversity in an atrazine degrading enrichment culture and degradation of atrazine, cyanuric acid and biuret in industrial wastewater.

    Science.gov (United States)

    Dutta, Anirban; Vasudevan, Venugopal; Nain, Lata; Singh, Neera

    2016-01-01

    An enrichment culture was used to study atrazine degradation in mineral salt medium (MSM) (T1), MSM+soil extract (1:1, v/v) (T2) and soil extract (T3). Results suggested that enrichment culture required soil extract to degrade atrazine, as after second sequential transfer only partial atrazine degradation was observed in T1 treatment while atrazine was completely degraded in T2 and T3 treatments even after fourth transfer. Culture independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique confirmed selective enrichment of genus Bacillus along with Pseudomonas and Burkholderia. Degradation of atrazine/metabolites in the industrial wastewater was studied at different initial concentrations of the contaminants [wastewater-water (v/v) ratio: T1, 1:9; T2, 2:8; T3, 3:7; T4, 5:5 and T5, undiluted effluent]. The initial concentrations of atrazine, cyanuric acid and biuret ranged between 5.32 and 53.92 µg mL(-1), 265.6 and 1805.2 µg mL(-1) and 1.85 and 16.12 µg mL(-1), respectively. The enrichment culture was able to completely degrade atrazine, cyanuric acid and biuret up to T4 treatment, while no appreciable degradation of contaminants was observed in the undiluted effluent (T5). Inability of enrichment culture to degrade atrazine/metabolites might be due to high concentrations of cyanuric acid. Therefore, a separate study on cyanuric acid degradation suggested: (i) no appreciable cyanuric acid degradation with accumulation of an unidentified metabolite in the medium where cyanuric acid was supplemented as the sole source of carbon and nitrogen; (ii) partial cyanuric acid degradation with accumulation of unidentified metabolite in the medium containing additional nitrogen source; and (iii) complete cyanuric acid degradation in the medium supplemented with an additional carbon source. This unidentified metabolite observed during cyanuric acid degradation and also detected in the enrichment culture inoculated wastewater samples

  11. An Alternative Use of Olive Pomace as a Wide-Ranging Bioremediation Strategy to Adsorb and Recover Disperse Orange and Disperse Red Industrial Dyes from Wastewater

    Directory of Open Access Journals (Sweden)

    Vito Rizzi

    2017-09-01

    Full Text Available In this paper, industrial dyes, Disperse Red and Disperse Orange, were studied as model pollutants to show the excellent performance of olive pomace (OP in sequestering and recovering these dangerous dyes from wastewater. The nature of interactions involved between dyes and OP were inferred by changing several parameters: contact time, pomace dosage, pH and temperature values. Visible spectroscopy was mainly used to obtain the percentage of the removed dyes, while SEM (scanning electron microscopy, FTIR-ATR (Fourier transform infra-red spectroscopy in total attenuated reflectance, TG (thermo gravimetric and XPS (X-ray photoelectron spectroscopy analyses were used to carefully investigate the systems. The recovery of dyes was also obtained using glacial acetic acid, the auxiliary solvent used during the dyeing processes, enabling the recycling of both of the adsorbent material and dyes presenting a green and a wide-ranging strategic approach.

  12. Practical study on the electrochemical simultaneous removal of copper and zinc from simulated binary-metallic industrial wastewater using a packed-bed cathode

    Directory of Open Access Journals (Sweden)

    Meshaal F. Alebrahim

    2017-06-01

    Full Text Available In this work, electrochemical-simultaneous removal of copper and zinc from simulated binary-metallic industrial wastewater containing different ratios of copper to zinc was studied using a packed-bed continuous-recirculation flow electrolytic reactor. The total nominal initial concentration of both metals, circulating rate of flow and nominal initial pH were held constant. Parameters affecting the removal percent and current efficiency of removal, such as applied current and time of electrolysis were investigated. Results revealed that increased current intensity accelerated the removal of metals and diminish current efficiency. It was also observed that selective removal of both metals is possible when the applied current was of small intensity. Moreover, the factors that led to loss of faradaic efficiency were discussed.

  13. Removal of color and chemical oxygen demand using a coupled coagulation-electrocoagulation-ozone treatment of industrial wastewater that contains offset printing dyes

    Energy Technology Data Exchange (ETDEWEB)

    Roa M, G.; Barrera D, C.; Balderas H, P.; Zaldumbide O, F. [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Km 14.5 Carretera Toluca-Atlacomulco, 50200 San Cayetano-Toluca, Estado de Mexico (Mexico); Reyes P, H. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon y Paseo Tollocan s/n, 50120 Toluca, Estado de Mexico (Mexico); Bilyeu, B., E-mail: groam@uaemex.mx [Xavier University of Louisiana, Department of Chemistry, 1 Drexel Drive, New Orleans, LA 70125 (United States)

    2014-07-01

    Industrial offset printing processes generate wastewater with highly colored obtaining values of 5 x 10{sup 6}Pt-Co units and great values of chemical oxygen demand (COD) 5.3 x 10{sup -5} mg L{sup -1}. Thus, conventional technologies such as biologicals treatment fail in reaching the discharge limits. In this research, a sequential treatment was applied: coagulation with aluminum hydroxychloride (AHC), electrocoagulation with Al anodes and finally ozonation. Optimal conditions are found when adding 20 mg L{sup -1} AHC, followed by electrocoagulation at 4 A for 50 min, and finally alkaline ozonation for 15 min, resulting in an overall color removal of 99.99% color and 99.35 COD. The sludge generated by the coagulation process was analyzed by scanning electron microscopy and energy dispersive X-ray (EDX) microanalysis. (Author)

  14. Treatment of Wastewater from a Dairy Industry Using Rice Husk as Adsorbent: Treatment Efficiency, Isotherm, Thermodynamics, and Kinetics Modelling

    Directory of Open Access Journals (Sweden)

    Uttarini Pathak

    2016-01-01

    Full Text Available Effluent from milk processing unit contains soluble organics, suspended solids, and trace organics releasing gases, causing taste and odor, and imparting colour and turbidity produced as a result of high consumption of water from the manufacturing process, utilities and service section, chemicals, and residues of technological additives used in individual operations which makes it crucial matter to be treated for preserving the aesthetics of the environment. In this experimental study after determination of the initial parameters of the raw wastewater it was subjected to batch adsorption study using rice husk. The effects of contact time, initial wastewater concentration, pH, adsorbent dosage, solution temperature and the adsorption kinetics, isotherm, and thermodynamic parameters were investigated. The phenomenon of adsorption was favoured at a lower temperature and lower pH in this case. Maximum removal as high as 92.5% could be achieved using an adsorbent dosage of 5 g/L, pH of 2, and temperature of 30°C. The adsorption kinetics and the isotherm studies showed that the pseudo-second-order model and the Langmuir isotherm were the best choices to describe the adsorption behavior. The thermodynamic parameters suggested that not only was the adsorption by rice husk spontaneous and exothermic in nature but also the negative entropy change indicated enthalpy driven process.

  15. Wet air oxidation of resorcinol as a model treatment for refractory organics in wastewaters from the wood processing industry.

    Science.gov (United States)

    Weber, Bernd; Chavez, Alma; Morales-Mejia, Julio; Eichenauer, Sabrina; Stadlbauer, Ernst A; Almanza, Rafael

    2015-09-15

    Wastewater treatment systems are important tools to enhance sustainability in terms of reducing environmental impact and complying with sanitary requirements. This work addresses the wet air oxidation (WAO) process for pre-treatment of phenolic wastewater effluents. The aim was to increase biodegradability prior to a subsequent anaerobic stage. In WAO laboratory experiments using a micro-autoclave, the model compound resorcinol was degraded under different oxygen availability regims within the temperature range 150 °C-270 °C. The activation energy was determined to be 51.5 kJ/mol. Analysis of the products revealed that after 3 h of reaction at 230 °C, 97.5% degradation of resorcinol was achieved. At 250 °C and the same reaction time complete removal of resorcinol was observed. In this case the total organic carbon content was reduced down to 29%, from 118.0 mg/L down to 34.4 mg/L. Under these process conditions, the pollutant was only partially mineralized and the ratio of the biological oxygen demand relative to the chemical oxygen demand, which is 0.07 for resorcinol, was increased to a value exceeding 0.5. The main by-product acetic acid, which is a preferred compound for methanogenic bacteria, was found to account for 33% of the total organic carbon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Microalgae and wastewater treatment

    OpenAIRE

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged i...

  17. Devices for fatigue testing of electroplated nickel (MEMS)

    DEFF Research Database (Denmark)

    Larsen, Kristian Pontoppidan; Ravnkilde, J. T.; Ginnerup, Morten

    2002-01-01

    In-situ fatigue test devices with integrated electrostatic actuator were fabricated in electroplated nanocrystalline nickel (nano-nickel). The devices feature in-plane approximately pure bending with fixed displacement of the test specimen of the dimensions: widths from 2μm to 3.7μm, a height of 7...... after 108 cycles. The combination of high strength and toughness, which is known for nanocrystalline materials, together with very small test specimens and low surface roughness could be the explanation for the good fatigue properties....

  18. Electroplated CoPt magnets for actuation of stiff cantilevers

    Science.gov (United States)

    Loke, Y. C.; Hofbauer, W.; Lu, P.; Ansari, K.; Tang, X. S.; O'Shea, S. J.

    2011-11-01

    A cantilever has been microfabricated for use in non-contact Atomic Force Microscopy (AFM) using a very thick magnetic film to actuate the cantilever motion. The thick magnetic block is deposited electrochemically over a defined area of the cantilever. This cantilever is particularly suitable for driving stiff AFM cantilevers in a liquid environment. Clean mechanical resonances are easily observed. Examples are given of a hard (CoPt) magnet of dimension 29 × 21 × 6 μm3 electroplated on Silicon cantilevers of stiffness ˜22 N/m, giving a static displacement of ˜0.2 nm in an applied field of 10-3 T.

  19. Duplex Surface Treatment of Pre-Electroplating and Pulsed Nanocrystalline Plasma Electrolytic Carbonitriding of Mild Steel

    Science.gov (United States)

    Aliofkhazraei, M.; Mofidi, S. H. H.; Sabour Rouhaghdam, A.; Mohsenian, E.

    2008-09-01

    Recently, new duplex surface treatments involving the use of pre-electroplating and pulsed plasma electrolytic nitrocarburizing (PPEN/C) have led to the possibility of using this material for applications usually typical for tool steels. In this work, we present results concerning the duplex treatment of pre-electroplating of Cr and PPEN/C of AISI 1020 mild steel. The samples were electroplated in a plating bath. After electroplating, the samples were nitrocarburized. The effects of time and applied voltage of PPEN/C process were discussed. The samples were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), and microhardness testing. Electroplated layers of up to 100 μm were obtained. The subsequent PPEN/C increased the surface hardness to 1200 HV0.2 due to the formation of nitrides and carbides. Decreasing the size of nanocrystalline carbonitrides will lead to improvement of their wear resistance significantly.

  20. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    Science.gov (United States)

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators.

  1. Denitrification of industrial wastewater: Influence of glycerol addition on metabolic activity and community shifts in a microbial consortium.

    Science.gov (United States)

    Cyplik, Paweł; Juzwa, Wojciech; Marecik, Roman; Powierska-Czarny, Jolanta; Piotrowska-Cyplik, Agnieszka; Czarny, Jakub; Drożdżyńska, Agnieszka; Chrzanowski, Lukasz

    2013-11-01

    The wastewater originating from explosives manufacturing plants are characterized by a high concentration of nitrates (3200mgNL(-1)), sulfates (1470mgL(-1)) and low pH (1.5) as well as the presence of organic compounds, such as nitroglycerin (1.9mgL(-1)) and nitroglycol (4.8mgL(-1)). The application of glycerol (C/N=3) at such a high concentration enabled complete removal of nitrates and did not cause the anaerobic glycerol metabolic pathway of the DNC4 consortium to activate, as confirmed by the low concentrations of 1,3-propanediol (0.16gL(-1)) and acetic acid (0.11gL(-1)) in the wastewater. Increasing the glycerol content (C/N=5) contributed to a notable increase in the concentration of both compounds: 1.12gL(-1) for acetic acid and 1.82 for 1,3-PD (1,3-propanediol). The nitrate reduction rate was at 44mgNg(-1) biomass d(-1). In order to assess the metabolic activity of the microorganisms, a method to determine the redox potential was employed. It was established, that the microorganisms can be divided into four groups, based on the determined denitrification efficiency and zero-order nitrate removal constants. The first group, involving Pseudomonas putida and Pseudomonas stutzeri, accounts for microorganisms capable of the most rapid denitrification, the second involves rapid denitrifying microbes (Citrobacter freundi and Pseudomonas alcaligenes), the third group are microorganisms exhibiting moderate denitrification ability: Achrobactrum xylosoxidans, Ochrobactrum intermedium and Stenotrophomonas maltophila, while the last group consists of slow denitrifying bacteria: Rodococcus rubber and Sphignobacterium multivorum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A flip chip process based on electroplated solder bumps

    Science.gov (United States)

    Salonen, J.; Salmi, J.

    1994-01-01

    Compared to wire bonding and TAB, flip chip technology using solder joints offers the highest pin count and packaging density and superior electrical performance. The chips are mounted upside down on the substrate, which can be made of silicon, ceramic, glass or - in some cases - even PCB. The extra processing steps required for chips are the deposition of a suitable thin film metal layer(s) on the standard Al pad and the formation of bumps. Also, the development of new fine line substrate technologies is required to utilize the full potential of the technology. In our bumping process, bump deposition is done by electroplating, which was chosen for its simplicity and economy. Sputter deposited molybdenum and copper are used as thin film layers between the aluminum pads and the solder bumps. A reason for this choice is that the metals can be selectively etched after bumping using the bumps as a mask, thus circumventing the need for a separate mask for etching the thin film metals. The bumps are electroplated from a binary Pb-Sn bath using a thick liquid photoresist. An extensively modified commercial flip chip bonder is used for alignment and bonding. Heat assisted tack bonding is used to attach the chips to the substrate, and final reflow joining is done without flux in a vacuum furnace.

  3. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    Full Text Available Quality of life on Earth in the future will largely depend on the amount of safe water. As the most fundamental source of life, water is relentlessly consumed and polluted. To halt this trend, many countries are taking extensive measures and investing substantial resources in order to stop the contamination of water and return at least tolerably good water quality to nature. The goal of water purification is to obtain clean water with the sewage sludge as a by-product. Clean water is returned to nature, and further treatment of sludge may be subject to other procedures. The conclusion of this paper is simple. The procedure with purified water is easily achievable, purified water is discharged into rivers, lakes and seas, but the problem of further treatment of sludge remains. This paper presents the basic methods of wastewater treatment and procedures for processing the products from contaminated water. The paper can serve as a basis for further elaboration. Water Pollution In order to ensure normal life of living creatures, the water in which they live or the water they use must have a natural chemical composition and natural features. When, as a result of human activities, the chemical composition of water and the ratio of its chemical elements significantly change, we say that water is polluted. When the pollutants come from industrial plants, we are talking about industrial wastewater, and when they come from households and urban areas, we are talking about municipal wastewater. Both contain a huge amount of pollutants that eventually end up in rivers. Then, thousands of defenseless birds, fish and other animals suffer, and environmental consequences become immeasurable. In addition, the waste fed to the water often ends up in the bodies of marine animals, so they can return to us as food. Thermal water pollution also has multiple effects on the changes in the wildlife composition of aquatic ecosystems. Polluted water can be purified by

  4. POTENSI PEMANFAATAN AIR LIMBAH PEMUCAT INDUSTRI TENUN ATBM UNTUK MENURUNKAN KEBUTUHAN OKSIGEN KIMIAWI (KOK AIR LIMBAH PEWARNAAN (The Potency of Using Bleaching Wastewater to reduce Chemical Oxygen Demand (COD in Dyeing Wastewater of Traditional Weaving

    Directory of Open Access Journals (Sweden)

    Sarto Sarto

    2012-11-01

    Full Text Available ABSTRAK Kegiatan tenun ATBM di Gamplong menghasilkan air limbah terutama dari proses pewarnaan dan proses pemucatan. Bahan pewarna merupakan senyawa komplek dan relatif stabil sehingga sulit ditangani. Proses oksidasi lanjut telah terbukti mampu menurunkan kadar bahan pewarna dalam air limbah. Penelitian ini mempelajari potensi air limbah pemucatan untuk menurunkan kadar bahan pewama dalam air limbah pewarnaan. Proses pencampuran air limbah pewarna dengan air limbah pemucatan dilakukan di dalam sebuah reaktor batch yang dilengkapi empat lampu UV masing-masing 10 Watt dan sebuah pengaduk magnit. Penurunan kadar zat warna dinyatakan dalam Kebutuhan Oksigen Kimiawi (KOK. Setiap jangka (interval waktu tertentu, cuplikan air limbah sebanyak 2 mL diambil dari reaktor lalu dianalisis KOK nya. Rasio volume limbah pewarnaan terhadap limbah pemucatan adalah 3:1, 2:1, 1:1, 1:2, dan 1:3. Hasil penelitian menunjukkan bahwa semakin kecil nisbah limbah pewamaan dengan limbah pemucatan menghasilkan penurunan KOK semakin besar. Dengan volume limbah total 150 m, potensi oksidasi limbah pemucatan setara dengan sekitar 2 mL hidrogen peroksida 50% dalam 150 mL air limbah. ABSTRACT Traditional weaving activities in Gamplong produce wastewater, mainly from dyeing and bleaching processes. Dyes are complex compounds and realtively stable which is difficult to be managed. Advanced oxidation processes have proved to be able to decrease dyes content in the wastewater. The aim of this experiment is to study the potency of bleaching wastewater to reduce dyes content in dyeing wastewater. The mixing process of those wastewater was conducted in a batch reactor which was equipped with 4 UV light of 10 W each and a magnetic stirrer. The mixing process was performed at ambient temperature and pressure. Dyes content in the wastewater was expressed in chemical oxygen demand (COD. Each run, total volume of wastewater of dyeing process or  mixtures of dyeing process and bleaching

  5. Energy recovery and emissions of PBDD/Fs and PBDEs from cocombustion of woodchip and wastewater sludge in an industrial boiler.

    Science.gov (United States)

    Chang, Shun-Shiang Chang; Lee, Wen-Jhy Lee; Wang, Lin-Chi Wang; Chang-Chien, Guo-Ping Chang-Chien; Wu, Chang-Yu

    2013-01-01

    The emissions of polybrominated dibenzo-pdioxins,dibenzofurans (PBDD/Fs), and polybrominated diphenyl ethers (PBDEs) from trial combustion of 10 wt % dried industrial wastewater-treatment sludge (IWTS) and 90 wt % woodchip in an industrial boiler were investigated and compared to that from woodchip combustion. The PBDD/F toxic equivalent (TEQ) andPBDE emissions increased from 0.121 pg TEQ Nm−3 and 2260 pgNm−3, respectively, of the woodchip combustion to 0.211 pg TEQNm−3 and 4200 pg Nm−3, respectively, of the trial combustion.PBDD/F and PBDE congener profiles of inputs and outputs of the same type of combustion were similar; they also show similarity between woodchip and trial combustions, revealing that the destruction pathway was little affected by the introduction of the IWTS. The fates of PBDD/Fs and PBDEs show that the indigenous pollutants in the feed were effectively depleted (>93.5%). The dominant releasing route of PBDD/F and PBDE shifted from the stack flue gas of woodchip combustion to the ashes of trial combustion. This study demonstrates that co-combustion not only handles the fast growing sludge stream but also yields a saving of 26.3% in the fuel cost and treatment fees of sludge and ashes.

  6. Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment.

    Science.gov (United States)

    Ambuchi, John J; Zhang, Zhaohan; Shan, Lili; Liang, Dandan; Zhang, Peng; Feng, Yujie

    2017-06-15

    The accelerated use of iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs) in the consumer and industrial sectors has triggered the need to understand their potential environmental impact. The response of anaerobic granular sludge (AGS) to IONPs and MWCNTs during the anaerobic digestion of beet sugar industrial wastewater (BSIW) was investigated in this study. The IONPs increased the biogas and subsequent CH4 production rates in comparison with MWCNTs and the control samples. This might be due to the utilization of IONPs and MWCNTs as conduits for electron transfer toward methanogens. The MWCNTs majorly enriched the bacterial growth, while IONP enrichment mostly benefitted the archaea population. Furthermore, scanning electron microscopy and confocal laser scanning microscopy revealed that AGS produced extracellular polymeric substances, which interacted with the IONPs and MWCNTs. This provided cell protection and prevented the nanoparticles from piercing through the membranes and thus cytotoxicity. The results provide useful information and insights on the adjustment of anaerobic microorganisms to the natural complex environment based on nanoparticles infiltration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Quantitative proteomic analysis of Pseudomonas pseudoalcaligenes CECT5344 in response to industrial cyanide-containing wastewaters using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS).

    Science.gov (United States)

    Ibáñez, María Isabel; Cabello, Purificación; Luque-Almagro, Víctor Manuel; Sáez, Lara P; Olaya, Alfonso; Sánchez de Medina, Verónica; Luque de Castro, María Dolores; Moreno-Vivián, Conrado; Roldán, María Dolores

    2017-01-01

    Biological treatments to degrade cyanide are a powerful technology for cyanide removal from industrial wastewaters. It has been previously demonstrated that the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to use free cyanide and several metal-cyanide complexes as the sole nitrogen source. In this work, the strain CECT5344 has been used for detoxification of the different chemical forms of cyanide that are present in alkaline wastewaters from the jewelry industry. This liquid residue also contains large concentrations of metals like iron, copper and zinc, making this wastewater even more toxic. To elucidate the molecular mechanisms involved in the bioremediation process, a quantitative proteomic analysis by LC-MS/MS has been carried out in P. pseudoalcaligenes CECT5344 cells grown with the jewelry residue as sole nitrogen source. Different proteins related to cyanide and cyanate assimilation, as well as other proteins involved in transport and resistance to metals were induced by the cyanide-containing jewelry residue. GntR-like regulatory proteins were also induced by this industrial residue and mutational analysis revealed that GntR-like regulatory proteins may play a role in the regulation of cyanide assimilation in P. pseudoalcaligenes CECT5344. The strain CECT5344 has been used in a batch reactor to remove at pH 9 the different forms of cyanide present in industrial wastewaters from the jewelry industry (0.3 g/L, ca. 12 mM total cyanide, including both free cyanide and metal-cyanide complexes). This is the first report describing the biological removal at alkaline pH of such as elevated concentration of cyanide present in a heterogeneous mixture from an industrial source.

  8. Effects of wastewater from a cassava industry on soil chemistry and crop yield of lopsided oats (Avena strigosa Schreb.

    Directory of Open Access Journals (Sweden)

    Juarez Rogério Cabral

    2010-02-01

    Full Text Available This experiment was carried out in the Arenito soil of the Cidade Gaúcha county, Northwest Paraná in Brazil, in which 0, 150, 300, 450 and 600 m³ ha-1 of wastewater were applied onto soil and the crop yield and soil chemistry were investigated for lopsided oat (Avena strigosa Schreb. plants. The crop yield from the control was 2818 kg ha-1 contrasting 3629 kg ha-1 when 300 m³ ha-1 of cassava wastewater were applied, and potassium, after haversting, was the only nutrient found in a higher concentration in the soil profile.A utilização dos cursos de água, como drenos naturais de resíduos agroindústrias, tem contribuído para sua eutrofização principalmente como fonte de nitrogênio, fósforo e destacadamente potássio. Com o propósito de evitar o despejo deste resíduo, nos cursos de água naturais e pensando em otimizar os custos de fertilização e irrigação de culturas, realizou-se este experimento no Campus do Arenito da Universidade Estadual de Maringá, no município de Cidade Gaúcha, com a cultura da aveia preta, avaliando-se os efeitos dos níveis de água residuária (0, 150, 300, 450 e 600 m³ha-1 como também os efeitos residuais da sua aplicação no solo. O objetivo deste trabalho foi o de avaliar a influência da aplicação de diferentes níveis de água residuária de fecularia de mandioca na produção de aveia preta, bem como seu efeito residual nas propriedades químicas do solo. a aplicação de água residuária de fecularia de mandioca, proporcionou acréscimos na produtividade da cultura da aveia, obtendo-se a produtividade de 3629 kg ha-1 para o nível de 300 m³ ha-1 e 2818 kg ha-1 na testemunha quando se analisaram os valores dos elementos encontrados nas camadas, somente o potássio apresentou acréscimos nas camadas, sendo que os demais apresentaram redução.

  9. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit

  10. Physicochemical monitoring of wastewater from a sugar and ethanol industry after bioaugmentation, with a proposal for reuse

    Directory of Open Access Journals (Sweden)

    Natalino Perovano Filho

    2016-08-01

    Full Text Available The sugar and ethanol industry generates large quantities of waste liquids. If untreated effluents are used in fertigation, they might contaminate groundwater and, if they are released into water bodies, they might also jeopardize the survival of the aquatic ecosystem. Therefore, the proposal of this study was to isolate microorganisms from the treatment station of a sugar and ethanol industry, assessing their enzymatic behavior and effects in laboratory, as well as the physicochemical improvement of the effluent. Following a bioaugmentation of the effluent, a physicochemical monitoring was performed with the purpose of reusing it in drip irrigation.

  11. The simultaneous removal of calcium, magnesium and chloride ions from industrial wastewater using magnesium-aluminum oxide.

    Science.gov (United States)

    Hamidi, Roya; Kahforoushan, Davood; Fatehifar, Esmaeil

    2013-01-01

    In this article, a method for simultaneous removal of calcium, magnesium and chloride by using Mg0.80Al0.20O1.10 as a Magnesium-Aluminum oxide (Mg‒Al oxide) was investigated. Mg‒Al oxide obtained by thermal decomposition of the Mg-Al layered double hydroxide (Mg-Al LDH). The synthesized Mg‒Al oxide were characterized with respect to nitrogen physicosorption, X-ray diffraction (XRD) and field emission scan electron microscopy (FESEM) morphology. Due to high anion-exchange capacity of Mg‒Al oxide, it was employed in simultaneously removal of Cl(-), Mg(+2) and Ca(+2) from distiller waste of a sodium carbonate production factory. For this purpose, experiments were designed to evaluate the effects of quantity of Mg‒Al oxide, temperature and time on the removal process. The removal of Cl(-), Mg(+2) and Ca(+2) from wastewater was found 93.9%, 93.74% and 93.25% at 60°C after 0.5 h, respectively. Results showed that the removal of Cl(-), Mg(+2) and Ca(+2) by Mg‒Al oxide increased with increasing temperature, time and Mg‒Al oxide quantity.

  12. Influence of flue gas sparging on the performance of high rate algae ponds treating agro-industrial wastewaters.

    Science.gov (United States)

    de Godos, Ignacio; Blanco, Saúl; García-Encina, Pedro A; Becares, Eloy; Muñoz, Raúl

    2010-07-15

    The influence of flue gas sparging (7% CO(2)) on the performance of two 465 L High-Rate Algal Ponds (HRAPs) treating diluted swine manure at 10 days of hydraulic retention time was evaluated under continental climatic conditions (Castilla y León, Spain). COD, NH(4)(+), and PO(4)(3-) removal efficiencies were not significantly affected by flue gas input (at 2.2 and 5.5 L min(-1)), which suggests that CO(2) sparging does not compromise wastewater treatment in HRAPs. In this particular study, COD and NH(4)(+) removal efficiencies of 56+/-31% (near to maximum swine manure biodegradability) and 98+/-1%, respectively, were consistently maintained, regardless of the environmental and operational conditions. CO(2) sparging resulted however in lower pH values (approximately 2 units lower) and an enhanced NH(4)(+) nitrification (higher NO(3)(-) and NO(2)(-) concentrations) compared to the system operated in the absence of flue gas supply. Biomass concentration was only higher (approximately 30% than in the control HRAP) when flue gases were supplied at 5.5 L min(-1), probably due to the fact that the higher irradiances and temperatures prevailing within this experimental period resulted in an inorganic carbon-limited scenario in the control HRAP. Therefore, it can be concluded that CO(2) assimilation would be ultimately dependent on the occurrence of inorganic carbon limitation and will never occur in light, COD or nutrients-limited scenarios. 2010 Elsevier B.V. All rights reserved.

  13. Sorption behavior of 20 wastewater originated micropollutants in groundwater — Column experiments with pharmaceutical residues and industrial agents

    Science.gov (United States)

    Burke, Victoria; Treumann, Svantje; Duennbier, Uwe; Greskowiak, Janek; Massmann, Gudrun

    2013-11-01

    Since sorption is an essential process with regard to attenuation of organic pollutants during subsurface flow, information on the sorption properties of each pollutant are essential for assessing their environmental fate and transport behavior. In the present study, the sorption behavior of 20 wastewater originated organic micropollutants was assessed by means of sediment column experiments, since experimentally determined data for these compounds are not or sparsely represented in the literature. Compounds investigated include various psychoactive drugs, phenazone-type pharmaceuticals and β-blockers, as well as phenacetine, N-methylphenacetine, tolyltriazole and para-toluenesulfonamide. While for most of the compounds no or only a low sorption affinity was observed, an elevated tendency to sorb onto aquifer sand was obtained for the β-blockers atenolol, propranolol and metoprolol. A comparison between experimental data and data estimated based on the octanol/water partition coefficient following the QSAR approach demonstrated the limitations of the latter to predict the adsorption behavior in natural systems for the studied compounds.

  14. Treatment and biotransformation of highly polluted agro-industrial wastewater from a palm oil mill into vermicompost using earthworms.

    Science.gov (United States)

    Lim, Su Lin; Wu, Ta Yeong; Clarke, Charles

    2014-01-22

    In this laboratory-scale study, earthworms were introduced as biodegraders of palm oil mill effluent (POME), which is a wastewater produced from the wet process of palm oil milling. POME was absorbed into amendments (soil or rice straw) in different ratios as feedstocks for the earthworm, Eudrilus eugeniae. The presence of earthworms led to significant increases in pH, electrical conductivity, and nutrient content but decreases in the C/N ratio (0.687-75.8%), soluble chemical oxygen demand (19.7-87.9%), and volatile solids (0.687-52.7%). However, earthworm growth was reduced in all treatments by the end of the treatment process. Rice straw was a better amendment/absorbent relative to soil, with a higher nutrient content and greater reduction in soluble chemical oxygen demand with a lower C/N ratio in the vermicompost. Among all treatments investigated, the treatment with 1 part rice straw and 3 parts POME (w/v) (RS1:3) produced the best quality vermicompost with high nutritional status.

  15. Anaerobic co-digestion of Tunisian green macroalgae Ulva rigida with sugar industry wastewater for biogas and methane production enhancement.

    Science.gov (United States)

    Karray, Raida; Karray, Fatma; Loukil, Slim; Mhiri, Najla; Sayadi, Sami

    2017-03-01

    Ulva rigida is a green macroalgae, abundantly available in the Mediterranean which offers a promising source for the production of valuable biomaterials, including methane. In this study, anaerobic digestion assays in a batch mode was performed to investigate the effects of various inocula as a mixture of fresh algae, bacteria, fungi and sediment collected from the coast of Sfax, on biogas production from Ulva rigida. The results revealed that the best inoculum to produce biogas and feed an anaerobic reactor is obtained through mixing decomposed macroalgae with anaerobic sludge and water, yielding into 408mL of biogas. The process was then investigated in a sequencing batch reactor (SBR) which led to an overall biogas production of 375mL with 40% of methane. Further co-digestion studies were performed in an anaerobic up-flow bioreactor using sugar wastewater as a co-substrate. A high biogas production yield of 114mL g-1 VSadded was obtained with 75% of methane. The co-digestion proposed in this work allowed the recovery of natural methane, providing a promising alternative to conventional anaerobic microbial fermentation using Tunisian green macroalgae. Finally, in order to identify the microbial diversity present in the reactor during anaerobic digestion of Ulva rigida, the prokaryotic diversity was investigated in this bioreactor by the denaturing gradient gel electrophoresis (DGGE) method targeting the 16S rRNA gene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Treatment of agro based industrial wastewater in sequencing batch reactor: performance evaluation and growth kinetics of aerobic biomass.

    Science.gov (United States)

    Lim, J X; Vadivelu, V M

    2014-12-15

    A sequencing batch reactor (SBR) with a working volume of 8 L and an exchange ratio of 25% was used to enrich biomass for the treatment of the anaerobically treated low pH palm oil mill effluent (POME). The influent concentration was stepwise increased from 5000 ± 500 mg COD/L to 11,500 ± 500 mg COD/L. The performance of the reactor was monitored at different organic loading rates (OLRs). It was found that approximately 90% of the COD content of the POME wastewater was successfully removed regardless of the OLR applied to the SBR. Cycle studies of the SBR show that the oxygen uptake by the biomass while there is no COD reduction may be due to the oxidation of the storage product by the biomass. Further, the growth kinetic parameters of the biomass were determined in batch experiments using respirometer. The maximum specific growth rate (μmax) was estimated to be 1.143 day(-1) while the half saturation constant (Ks) with respect to COD was determined to be 0.429 g COD/L. The decay coefficient (bD) and biomass yield (Y) were found to be 0.131 day(-1) and 0.272 mg biomass/mg COD consumed, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Recovery of copper as zero-valent phase and/or copper oxide nanoparticles from wastewater by ferritization.

    Science.gov (United States)

    Heuss-Aßbichler, Soraya; John, Melanie; Klapper, Daniel; Bläß, Ulrich W; Kochetov, Gennadii

    2016-10-01

    Recently the focus of interest changed from merely purification of the waste water to recover heavy metals. With the slightly modified ferritization process presented here it is possible to decrease initial Cu(2+) concentrations up to 10 g/l to values copper of all experiments are in the rage of 99.98 to almost 100%. Copper can be precipitated as oxide or zero valent metal (almost) free of hydroxide. All precipitates are exclusively of nanoparticle size. The phase assemblage depends strongly on experimental conditions as e.g. reaction temperature, pH-value, initial concentration and ageing time and condition. Three different options were developed depending on the reaction conditions. Option 1.) copper incorporation into the ferrite structure ((Cu,Fe)Fe2O4) and/or precipitation as cuprite (Cu2O) and zero-valent copper, option 2.) copper incorporation into the ferrite structure and/or precipitation as cuprite and/or tenorite (CuO) and option 3.) copper precipitation as tenorite. Ferrite is formed by the oxidation of GR in alkaline solution without additional oxygen supply. The chemistry reaches from pure magnetite up to 45% copper ferrite component. First experiments with wastewater from electroplating industry confirm the results obtained from synthetic solutions. In all cases the volume of the precipitates is extremely low compared to typical wastewater treatment by hydroxide precipitation. Therefore, pollution and further dissipation of copper can be avoided using this simple and economic process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Photoelectrochemical cell for simultaneous electricity generation and heavy metals recovery from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dawei [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xi Kang Road #1, Nanjing 210098 (China); Li, Yi, E-mail: envly@hhu.edu.cn [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xi Kang Road #1, Nanjing 210098 (China); Li Puma, Gianluca, E-mail: g.lipuma@lboro.ac.uk [Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Lianos, Panagiotis [Department of Chemical Engineering, University of Patras, 26500 Patras (Greece); Wang, Chao; Wang, Peifang [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xi Kang Road #1, Nanjing 210098 (China)

    2017-02-05

    Highlights: • Polymer capped TiO{sub 2} photoanode consumes photogenerated holes. • Heavy metals reduce on the cathode according to their reduction potentials. • Simultaneous recovery of heavy metals and production of electricity. • Industrial wastewater treatment and production of renewable energy. - Abstract: The feasibility of simultaneous recovery of heavy metals from wastewater (e.g., acid mining and electroplating) and production of electricity is demonstrated in a novel photoelectrochemical cell (PEC). The photoanode of the cell bears a nanoparticulate titania (TiO{sub 2}) film capped with the block copolymer [poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)] hole scavenger, which consumed photogenerated holes, while the photogenerated electrons transferred to a copper cathode reducing dissolved metal ions and produced electricity. Dissolved silver Ag{sup +}, copper Cu{sup 2+}, hexavalent chromium as dichromate Cr{sub 2}O{sub 7}{sup 2−} and lead Pb{sup 2+} ions in a mixture (0.2 mM each) were removed at different rates, according to their reduction potentials. Reduced Ag{sup +}, Cu{sup 2+} and Pb{sup 2+} ions produced metal deposits on the cathode electrode which were mechanically recovered, while Cr{sub 2}O{sub 7}{sup 2−} reduced to the less toxic Cr{sup 3+} in solution. The cell produced a current density J{sub sc} of 0.23 mA/cm{sup 2}, an open circuit voltage V{sub oc} of 0.63 V and a maximum power density of 0.084 mW/cm{sup 2}. A satisfactory performance of this PEC for the treatment of lead-acid battery wastewater was observed. The cathodic reduction of heavy metals was limited by the rate of electron-hole generation at the photoanode. The PEC performance decreased by 30% after 9 consecutive runs, caused by the photoanode progressive degradation.

  19. Copper-resistant bacteria from industrial effluents and their role in remediation of heavy metals in wastewater.

    Science.gov (United States)

    Shakoori, A R; Muneer, B

    2002-01-01

    Six copper-resistant bacterial strains were isolated from wastewater of tanneries of Kasur and Rohi Nala. Two strains tolerated copper at 380 mg/L, four up to 400 mg/L. Three strains were identified as members of the genus Salmonella; one strain was identified as Streptococcus pyrogenes, one as Vagococcus fluvialis and the last was identified as Escherichia coli. The pH and temperature optimum for two of them were 7.0 and 30 degrees C, respectively; four strains had corresponding optima at 7.5 and 37 degrees C, respectively. All bacterial isola-tes showed resistance against Ag+ (280-350 mg/L), Co2+ (200-420), CrVI (280-400), Cd2+ (250-350), Hg2+ (110-200), Mn2+ (300-380), Pb2+ (300-400), Sn2+ (480-520) and Zn2+ (300-450). Large-sized plasmids (> 20 kb), were detected in all of the strains. After the isolates were cured of plasmids with ethidium bromide, the efficiency of curing was estimated in the range of 60-90%. Reference strain of E. coli was transformed with the plasmids of the bacterial isolates which grew in Luria-Bertani medium containing 100 mg/L Cu2+. The capability to adsorb and afterwards accumulate Cu2+ inside their cells was assayed by atomic absorption spectrophotometer; all bacterial cells had the ability to adsorb 50-80% of the Cu2+ and accumulate 30-45% Cu2+ inside them after 1 d of incubation.

  20. Biotechnological reduction of sulfide in an industrial primary wastewater treatment system: A sustainable and successful case study

    Energy Technology Data Exchange (ETDEWEB)

    Rajamani, S. [Central Leather Research Institute, Madras (India)

    1996-12-31

    The leather industry is an important export-oriented industry in India, with more than 3,000 tanneries located in different clusters. Sodium sulfide, a toxic chemical, is used in large quantities to remove hair and excess flesh from hides and skins. Most of the sodium sulfide used in the process is discharged as waste in the effluent, which causes serious environmental problems. Reduction of sulfide in the effluent is generally achieved by means of chemicals in the pretreatment system, which involves aerobic mixing using large amounts of chemicals and high energy, and generating large volumes of sludge. A simple biotechnological system that uses the residual biosludge from the secondary settling tank was developed, and the commercial-scale application established that more than 90% of the sulfide could be reduced in the primary treatment system. In addition to the reduction of sulfide, foul smells, BOD and COD are reduced to a considerable level. 3 refs., 2 figs., 1 tab.