WorldWideScience

Sample records for electronics recycling reuse

  1. Reuse, Reduce, Recycle.

    Science.gov (United States)

    Briscoe, Georgia

    1991-01-01

    Discussion of recycling paper in law libraries is also applicable to other types of libraries. Results of surveys of law libraries that investigated recycling practices in 1987 and again in 1990 are reported, and suggestions for reducing the amount of paper used and reusing as much as possible are offered. (LRW)

  2. Radiological control criteria for materials considered for recycle and reuse

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Hill, R.L.; Aaberg, R.L.; Wallo, A. III

    1994-11-01

    Pacific Northwest Laboratory (PNL) is conducting technical analyses to support the US Department of Energy (DOE), Office of Environmental Guidance, Air, Water, and Radiation Division (DOE/EH-232) in developing radiological control criteria for recycling or reuse of metals or equipment containing residual radioactive contamination from DOE operations. The criteria, framed as acceptable concentrations for release of materials for recycling or reuse, are risk-based and were developed through analysis of generic radiation exposure scenarios and pathways. The analysis includes evaluation of relevant radionuclides, potential mechanisms of exposure, and non-health-related impacts of residual radioactivity on electronics and film. The analysis considers 42 key radionuclides that DOE operations are known to generate and that may be contained in recycled or reused metals or equipment. Preliminary results are compared with similar results reported by the International Atomic Energy Agency, by radionuclide grouping

  3. Control levels for residual contamination in materials considered for recycle and reuse

    International Nuclear Information System (INIS)

    Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

    1993-09-01

    Pacific Northwest Laboratory (PNL) is collecting data and conducting technical analyses to support joint efforts by the U.S. Department of Energy (DOE), Office of Environmental Guidance, Air, Water and Radiation Division (DOE/EH-232); by the U.S. Environmental Protection Agency (EPA); and by the U.S. Nuclear Regulatory Commission (NRC) to develop radiological control criteria for the recycle and reuse of scrap materials and equipment that contain residual radioactive contamination. The initial radiological control levels are the concentrations in or on materials considered for recycle or reuse that meet the individual (human) or industrial (electronics/film) dose criteria. The analysis identifies relevant radionuclides, potential mechanisms of exposure, and methods to determine possible non-health-related impacts from residual radioactive contamination in materials considered for recycle or reuse. The generic methodology and scenarios described here provide a basic framework for numerically deriving radiological control criteria for recycle or reuse. These will be adequately conservative for most situations

  4. Radiological control criteria for materials considered for recycle and reuse

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Hill, R.L.; Aaberg, R.L.; Wallo, A. III.

    1995-01-01

    Pacific Northwest Laboratory (PNL) is conducting technical analyses to support the U.S. Department of Energy (DOE), Office of Environmental Guidance, Air, Water, and Radiation Division (DOE/EH-232) in developing radiological control criteria for recycling or reuse of metals or equipment containing residual radioactive contamination from DOE operations. The criteria, framed as acceptable concentrations for release of materials for recycling or reuse, are risk-based and were developed through analysis of generic radiation exposure scenarios and pathways. The analysis includes evaluation of relevant radionuclides, potential mechanisms of exposure, and non-health-related impacts of residual radioactivity on electronics and film. The analysis considers 42 key radionuclides that DOE operations are known to generate and that may be contained in recycled or reused metals or equipment. The preliminary results are compared with similar results reported by the International Atomic Energy Agency, by radionuclide grouping. (author)

  5. The Three Rs: Reduce, Reuse, Recycle.

    Science.gov (United States)

    Science Activities, 1991

    1991-01-01

    A student hand-out for a recycling unit defines the terms reduce, recycle, and reuse as they relate to solid waste management. Presents the characteristics of recyclable items such as yard wastes, metals, glass, and paper. Lists organizations through which more information about recycling can be obtained. (MCO)

  6. Control criteria for residual contamination in materials considered for recycle and reuse

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Hill, R.L.; Aaberg, R.L.

    1993-11-01

    Pacific Northwest Laboratory (PNL) is collecting data and conducting technical analyses to support the US Department of Energy (DOE), Office of Environmental Guidance, Air, Water, and Radiation Division (DOE/EH-232) in determining the feasibility of developing radiological control criteria for recycling or reuse of metals or equipment containing residual radioactive contamination from DOE operations. The criteria, framed as acceptable concentrations for release of materials for recycling or reuse, will be risk-based and will be developed through analysis of radiation exposure scenarios and pathways. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and non-health-related impacts of residual radioactivity on electronics and film. The analyses will consider 42 key radionuclides that are generated during DOE operations and may be contained in recycled or reused metals or equipment

  7. Reusing and recycling in Saskatchewan: Environmental benefits of reusing and recycling

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    After an introduction explaining the environmental benefits of reusing and recycling, as well as providing suggestions on minimizing waste and conserving energy, a directory of recyclers and handlers of various kinds of waste in Saskatchewan is presented. Names, addresses/telephone numbers, and types of materials accepted are given for recyclers of animal products, clothing or textiles, glass, compostable materials, industrial hardware, metals, office products, paper, plastic, and tires. Collection depots in the SARCAN recycling program for beverage containers are listed, giving town name, address, hours of operation, and telephone number. Receivers of waste dangerous goods are listed under the categories of ozone-depleting substances, waste batteries, solvents, lubricating oils and oil filters, paint, flammable liquids, antifreeze, drycleaning waste, and miscellaneous.

  8. Reduce, reuse and recycle

    CSIR Research Space (South Africa)

    Afrika, M

    2010-10-01

    Full Text Available The adoption of the internationally accepted waste management hierarchy (Sakai et al, 1996) into South African policy has changed the focus from “end of pipe” waste management towards waste minimisation (reuse, recycling and cleaner production...

  9. P3 DESIGN OF A NATIONAL ELECTRONICS PRODUCT REUSE AND RECYCLING SYSTEM

    Science.gov (United States)

    Material and resource conservation are critical to sustainability; and, the ability to efficiently and effectively recover old products for reuse and recycle is an essential element in these conservation efforts. In California alone, it has been estimated that 10,000 computers a...

  10. Factors Influencing Consumers’ Intention to Return the End of Life Electronic Products through Reverse Supply Chain Management for Reuse, Repair and Recycling

    Directory of Open Access Journals (Sweden)

    Kamyar Kianpour

    2017-09-01

    Full Text Available Resource depletion, population growth and environmental problems force companies to collect their end of life (EOL products for reuse, recycle and refurbishment through reverse supply chain management (RSCM. Success in collecting the EOL products through RSCM depends on the customers’ participation intention. The objectives of this study are: (1 To examine the important factors influencing customers’ attitude to participate in RSCM; (2 To examine the important factors influencing customers’ subjective norm to participate in RSCM; (3 To examine the main factors influencing customers’ perceived behavioral control to participate in RSCM; (4 To examine the influence of attitude, subjective norms and perceived behavioral control on customers’ participation intention in RSCM. The Decomposed Theory of Planned Behaviour (DTPB has been chosen as the underpinning theory for this research. The research conducted employed the quantitative approach. Non-probability (convenience sampling method was used to determine the sample and data was collected using questionnaires. Partial Least Squares-Structural Equation Modeling (PLS-SEM technique was employed. A total of 800 questionnaires were distributed among customers of electronic products in Malaysia. Finally, the questionnaire was distributed among the customers in electronic retailer companies based on convenience sampling method. The empirical results confirm that consumers perception about the risk associated with EOL electronic products, consumers’ ecological knowledge and relative advantages associated with reuse, repair and recycling can influence the attitude of consumers to return the EOL products for reuse, repair and recycling to producer.

  11. Management and recycling of electronic waste

    International Nuclear Information System (INIS)

    Tanskanen, Pia

    2013-01-01

    Waste electrical and electronic equipment (WEEE) is one of the largest growing waste streams globally. Hence, for a sustainable environment and the economic recovery of valuable material for reuse, the efficient recycling of electronic scrap has been rendered indispensable, and must still be regarded as a major challenge for today’s society. In contrast to the well-established recycling of metallic scrap, it is much more complicated to recycle electronics products which have reached the end of their life as they contain many different types of material types integrated into each other. As illustrated primarily for the recycling of mobile phones, the efficient recycling of WEEE is not only a challenge for the recycling industry; it is also often a question of as-yet insufficient collection infrastructures and poor collection efficiencies, and a considerable lack of the consumer’s awareness for the potential of recycling electronics for the benefit of the environment, as well as for savings in energy and raw materials

  12. Recycle Alaska: Reduce, Reuse, Recycle. Activities Handbook, Teacher's Guide, and Student Worksheets.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau.

    Recycling is a very important aspect of conserving the environment for future generations. This guide addresses the topic of litter prevention for the Alaskan environment and contains 42 activities. Activity topics covered include Natural Cycles, Human Interruption of Natural Cycles, Reduce, Reuse, Recycle and Recycled Classroom. Grade level,…

  13. Electronic waste recovery in Finland: Consumers' perceptions towards recycling and re-use of mobile phones.

    Science.gov (United States)

    Ylä-Mella, Jenni; Keiski, Riitta L; Pongrácz, Eva

    2015-11-01

    This paper examines consumers' awareness and perceptions towards mobile phone recycling and re-use. The results are based on a survey conducted in the city of Oulu, Finland, and analysed in the theoretical framework based on the theories of planned behaviour (TPB) and value-belief-norm (VBN). The findings indicate that consumers' awareness of the importance and existence of waste recovery system is high; however, awareness has not translated to recycling behaviour. The survey reveals that 55% of respondents have two or more unused mobile phones at homes. The more phones stored at homes, the more often reasons 'I don't know where to return' and/or 'have not got to do it yet' were mentioned. This indicates that proximity and the convenience of current waste management system are inadequate in promoting the return of small waste electrical and electronic equipment (WEEE). To facilitate re-use, and the highest level of recovery, consumers will need to be committed to return end-of-use electronics to WEEE collection centres without delays. Further, the supply and demand of refurbished mobile phones do not meet at this moment in Finland due to consumer's storing habits versus expectations of recent features under guarantee and unrealistic low prizes. The study also points out that, in order to change current storing habits of consumers, there is an explicit need for more information and awareness on mobile phone collection in Finland, especially on regarding retailers' take-back. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Recycling and reuse of wastewater from uranium mining and milling

    International Nuclear Information System (INIS)

    Xu Lechang; Gao Jie; Zhang Xueli; Wei Guangzhi; Zhang Guopu

    2010-01-01

    Uranium mining/milling process, and the sources, recycling/reuse approach and treatment methods of process wastewater are introduced. The wastewater sources of uranium mining and milling include effluent, raffinate, tailings water, mine discharge, resin form converted solution, and precipitation mother liquor. Wastewater can be recycled/reused for leachant, eluent, stripping solution,washing solution and tailings slurry. (authors)

  15. Beneficial reuse `96: The fourth annual conference on the recycle and reuse of radioactive scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    From October 22-24, 1996 the University of Tennessee`s Energy, Environment and Resources Center and the Oak Ridge National Laboratory`s Center for Risk Management cosponsored Beneficial Reuse `96: The Fourth Annual Conference on the Recycle and Reuse of Radioactive Materials. Along with the traditional focus on radioactive scrap metals, this year`s conference included a wide range of topics pertaining to naturally occurring radioactive materials (NORM), and contaminated concrete reuse applications. As with previous Beneficial Reuse conferences, the primary goal of this year`s conference was to bring together stakeholder representatives for presentations, panel sessions and workshops on significant waste minimization issues surrounding the recycle and reuse of contaminated metals and other materials. A wide range of industry, government and public stakeholder groups participated in this year`s conference. An international presence from Canada, Germany and Korea helped to make Beneficial Reuse `96 a well-rounded affair. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  16. Recycle and reuse of radioactive scrap metals within the department of energy

    International Nuclear Information System (INIS)

    Adams, V.; Murphie, W.; Gresalfi, M.

    2000-01-01

    The United States Department of Energy (DOE) National Center of Excellence for Metals Recycle (NMR) is pursuing recycle and reuse alternatives to burial of radioactive scrap metal. This approach is being implemented in a safe and environmentally sound manner, while significantly lowering dis-positioning cost and accelerating cleanup activities. This paper will define the NMR's success to date in promoting safe and cost effective recycle and reuse strategies for DOE's excess metals, through the use of case studies. The paper will also present actual volumes of metal moved by DOE into restricted and unrestricted uses since 1997. In addition, this paper will discuss the principle underlying the Three Building Decommissioning and Decontamination (D and D) Project in Oak Ridge, Tennessee. In January 2000, the Secretary of Energy placed a moratorium on the unrestricted release of volumetrically contaminated metals from the DOE sites. Pursuant to that moratorium, the Secretary also established a ''Re-Use and Recycling Task Force'' to conduct a review of DOE policies regarding the management and release of all materials for recycle and reuse from DOE facilities. This task force was charged to develop a set of recommendations to ensure the protection of public health and the environment, openness and public trust, and fiscal responsibility. This paper will present an overview of the DOE's present range of recycle and reuse alternatives to disposal, as practiced by the NMR, and discuss the policy and issues associated with the task force mission. (authors)

  17. Direction of CRT waste glass processing: electronics recycling industry communication.

    Science.gov (United States)

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Recycle and reuse of materials and components from waste streams of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2000-01-01

    All nuclear fuel cycle processes utilize a wide range of equipment and materials to produce the final products they are designed for. However, as at any other industrial facility, during operation of the nuclear fuel cycle facilities, apart from the main products some byproducts, spent materials and waste are generated. A lot of these materials, byproducts or some components of waste have a potential value and may be recycled within the original process or reused outside either directly or after appropriate treatment. The issue of recycle and reuse of valuable material is important for all industries including the nuclear fuel cycle. The level of different materials involvement and opportunities for their recycle and reuse in nuclear industry are different at different stages of nuclear fuel cycle activity, generally increasing from the front end to the back end processes and decommissioning. Minimization of waste arisings and the practice of recycle and reuse can improve process economics and can minimize the potential environmental impact. Recognizing the importance of this subject, the International Atomic Energy Agency initiated the preparation of this report aiming to review and summarize the information on the existing recycling and reuse practice for both radioactive and non-radioactive components of waste streams at nuclear fuel cycle facilities. This report analyses the existing options, approaches and developments in recycle and reuse in nuclear industry

  19. Current status of scrap metal recycling and reuse in USA and European countries

    International Nuclear Information System (INIS)

    Matsumoto, Akira

    1997-01-01

    Recycling and reuse of natural resources has become a global issue to be pursued, but less effective without voluntary efforts from the every industries and of the individuals. In Japan, recycling and reuse of the scrap metal from dismantling of the nuclear facilities are currently noticed as a promising option and the responsible government organizations just started activities to develope the system for enabling and encouraging the nuclear facility owners to recycle their waste. Coincidently, there have been many reports published recently, which inform successful results of the method and the activities of the international organizations for the same intention. Taking this opportunity, current trends of scrap metal recycling and reuse in the experienced countries are reviewed and the proposals from IAEA, EC and OECD/NEA on the relating issues are summarized and compared in this paper. (author)

  20. Treatment of water closet flush water for recycle and reuse

    Energy Technology Data Exchange (ETDEWEB)

    Parker, C.E.

    1985-01-01

    Results from the operation of a 37.8 m/sup 3//d extended aeration and sand filtration system in the closed-loop treatment of water closet flush water are presented. The system has operated for four and one-half years at 95 percent recycle. During this period over 30,000 m/sup 3/ of flush water was treated and reused. Water inputs into the recycle system resulted from liquid human wastes plus wastage form potable water uses. Wasted potable water inputs were from wash basins, water fountains and custodial services. Operation of both the biological treatment unit and the pressure sand filter followed acceptable conventional practice. Variations in nitrogen (ammonia, nitrite and nitrate), pH and alkalinity that were observed could be accounted for through fundamental biological, chemical and physical relationships. The pH throughout the entire recycle system varied between 5.5 and 8.4. Recycled water pH rose from a preflush pH of approximately 7.0 to a pH of 8.4 immediately after flushing. The biological unit lowered the pH and functioned between pH values of 5.5 and 7.0. A slight rise in pH between the biological unit (through storage and filtration) and water closets was observed. The predominate biomass in the biological unit was fungi. Biological solids were threadlike; however, they readily separated by gravity settling. Wastage of biological solids from the biological unit in the recycle-reuse system was the same experienced for a comparable biological unit used to treat water closet wastewater that was not recycled. Results from this study have conclusively demonstrated on a full-scale basis the acceptability of using biological oxidation and sand filtration as a treatment train in the reuse of water closet wastewater with a recycle ratio of 20.

  1. Research on the Phenomenon of Chinese Residents’ Spiritual Contagion for the Reuse of Recycled Water Based on SC-IAT

    Directory of Open Access Journals (Sweden)

    Hanliang Fu

    2017-11-01

    Full Text Available Recycled water has been widely recognized in the world as an effective approach to relieve the issue of water shortage. Meanwhile, with several decades of development, the insufficiency of technology is no longer the primary factor that restricts the popularization of recycled water. What makes it difficult to promote the concept of reusing recycled water in China? To solve this issue, a special experiment on the public’s attitude towards the reuse of recycled water was designed based on a Single Category Implicit Association Test (SC-IAT, so as to avoid factors like social preference that can influence the survey results, and to gain the public’s negative implicit attitude towards reusing recycled water reuse, which is close to the public’s real attitude to it. From the perspective of implicit attitude, this research testifies the “spiritual contagion” phenomenon of the public, which refers to refusing recycled water reuse because recycled water is made from sewage treatment. By comparing the implicit attitude to recycled water reuse with the explicit attitude that is acquired from self-reporting questionnaires about reusing recycled water, this research finds that the implicit attitude is more positive than the explicit attitude, which accounts for the phenomenon of “best game no one played” in the promotion of the recycled water reuse, that is, the public though applauding the environment-friendly policy, will not actually use the recycled water.

  2. Innovative technologies for recycling and reusing radioactively contaminated materials from DOE facilities

    International Nuclear Information System (INIS)

    Bossart, S.J.; Hyde, J.

    1993-01-01

    Through award of ten contracts under the solicitation, DOE is continuing efforts to develop innovative technologies for decontamination and recycling or reusing of process equipment, scrap metal, and concrete. These ten technologies are describe briefly in this report. There is great economic incentive for recycling or reusing materials generated during D ampersand D of DOE's facilities. If successfully developed, these superior technologies will enable DOE to clean its facilities by 2019. These technologies will also generate a reusable or recyclable product, while achieving D ampersand D in less time at lower cost with reduced health and safety risks to the workers, the public and the environment

  3. Direction of CRT waste glass processing: Electronics recycling industry communication

    International Nuclear Information System (INIS)

    Mueller, Julia R.; Boehm, Michael W.; Drummond, Charles

    2012-01-01

    Highlights: ► Given a large flow rate of CRT glass ∼10% of the panel glass stream will be leaded. ► The supply of CRT waste glass exceeded demand in 2009. ► Recyclers should use UV-light to detect lead oxide during the separation process. ► Recycling market analysis techniques and results are given for CRT glass. ► Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  4. Resource Recovery. Redefining the 3 Rs. Reduce...Reuse...Recycle. Resources in Technology.

    Science.gov (United States)

    Technology Teacher, 1991

    1991-01-01

    Discusses the problems of waste disposal, recycling, and resource recovery. Includes information on the social and cultural impact, the three classes of resource recovery (reuse, direct recycling, and indirect recycling), and specific products (paper, glass, plastics, metals, and so on). Includes a student quiz and possible outcomes. (JOW)

  5. Developing improved opportunities for the recycling and reuse of materials in road, bridge, and construction projects.

    Science.gov (United States)

    2014-12-01

    The use of recycled and reused materials in transportation construction reduces consumption of non-renewable : resources. The objective of this research was to develop opportunities for improving the recycling and reuse of : materials in road and bri...

  6. Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

    1995-07-01

    Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed.

  7. Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment

    International Nuclear Information System (INIS)

    Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

    1995-07-01

    Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed

  8. Reduction of Radioactive Waste Through the Reuse and Recycle Policy of the Sealed Radioactive Sources Management

    Directory of Open Access Journals (Sweden)

    T. Marpaung

    2012-08-01

    Full Text Available In the past few years, the utilization of sealed source for medical, industrial and research purposes has shown an accelerating increase. This situation will lead to increases in the amount of sealed radioactive. During its use, a sealed radioactive waste will eventually become either a spent sealed source or disused sealed radioactive source (DSRS, due to certain factors. The reduction of the amount of radioactive waste can be executed through the application of reuse and recycle of sealed source. The reuse and recycle policy for spent and disused sealed sources are not already specified yet. The reuse of spent sealed sources can be applied only for the sources which had been used in the medical field for radiotherapy, namely the reuse of a teletherapy Co-60 source in a calibration facility. The recycle of a spent sealed source can be performed for radioactive sources with relatively high activities and long half-lives; however, the recycling activity may only be performed by the manufacturer. To avoid legal conflicts, in the amendment to the Government Regulation No.27 Year 2002 on Management of Radioactive Waste, there will be a recommendation for a new scheme in the management of radioactive waste to facilitate the application of the principles of reduce, reuse, and recycle

  9. Reduction of Radioactive Waste Through the Reuse and Recycle Policy of the Sealed Radioactive Sources Management

    International Nuclear Information System (INIS)

    Marpaung, T.

    2012-01-01

    In the past few years, the utilization of sealed source for medical, industrial and research purposes has shown an accelerating increase. This situation will lead to increases in the amount of sealed radioactive. During its use, a sealed radioactive waste will eventually become either a spent sealed source or disused sealed radioactive source (DSRS), due to certain factors. The reduction of the amount of radioactive waste can be executed through the application of reuse and recycle of sealed source. The reuse and recycle policy for spent and disused sealed sources are not already specified yet. The reuse of spent sealed sources can be applied only for the sources which had been used in the medical field for radiotherapy, namely the reuse of a teletherapy Co-60 source in a calibration facility. The recycle of a spent sealed source can be performed for radioactive sources with relatively high activities and long half-lives; however, the recycling activity may only be performed by the manufacturer. To avoid legal conflicts, in the amendment to the Government Regulation No.27 Year 2002 on Management of Radioactive Waste, there will be a recommendation for a new scheme in the management of radioactive waste to facilitate the application of the principles of reduce, reuse, and recycle (author)

  10. Status of electronic waste recycling techniques: a review.

    Science.gov (United States)

    Abdelbasir, Sabah M; Hassan, Saad S M; Kamel, Ayman H; El-Nasr, Rania Seif

    2018-05-08

    The increasing use of electrical and electronic equipment leads to a huge generation of electronic waste (e-waste). It is the fastest growing waste stream in the world. Almost all electrical and electronic equipment contain printed circuit boards as an essential part. Improper handling of these electronic wastes could bring serious risk to human health and the environment. On the other hand, proper handling of this waste requires a sound management strategy for awareness, collection, recycling, and reuse. Nowadays, the effective recycling of this type of waste has been considered as a main challenge for any society. Printed circuit boards (PCBs), which are the base of many electronic industries, are rich in valuable heavy metals and toxic halogenated organic substances. In this review, the composition of different PCBs and their harmful effects are discussed. Various techniques in common use for recycling the most important metals from the metallic fractions of e-waste are illustrated. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical, or biohydrometallurgical routes is also discussed, along with alternative uses of non-metallic fraction. The data are explained and compared with the current e-waste management efforts done in Egypt. Future perspectives and challenges facing Egypt for proper e-waste recycling are also discussed.

  11. Reusing Recycling Material as Teaching Strategy to Strengthen Environmental Values

    Directory of Open Access Journals (Sweden)

    Yudit Zaida del Carmen Alarcón de Palma

    2017-08-01

    Full Text Available The study was centered interest implement recycling reuse the material as a teaching strategy to strengthen environmental students “Adolfo Moreno” National Basic School Barinitas parish, municipality Bolivar, Barinas state values. School Year 2014 - 2015. The study was based on the paradigm of qualitative research and research in action type. From this point of view, the study focuses on participatory action this mode, it is limited in so-called field layouts. The study its characteristics was fulfilled in the following phases: diagnosis, planning, implementation, evaluation and systematization. Finally, it can be noted that the implementation of teaching strategies reuse recycle material for strengthening environmental students "Adolfo Moreno" National Basic School values; They will be incorporating parents and guardians as well as various educational actors to implement the activities involved in the proposal which seeks to change attitudes to improve through practical actions management standards and conservation practices to achieve an environmental change in institution through technical, theoretical and practical knowledge to strengthen the benefit of recyclables properly handle procedures.

  12. Development of decommissioning recycle simulator for the rational reuse of dismantled wastes

    International Nuclear Information System (INIS)

    Sakata, Eichi; Ozaki, Sachio; Hironaga, Michihiko; Nishiuchi, Tatsuo

    2002-01-01

    An expert system having a faculty of furnishing motivations for decommissioning planners to establish a rational recycle scenario has been developed and named 'recycle simulator'. This paper presents both a summarized configuration and an algorithm of the proposed system and indicates content of required data-bases and their mutual relations. Finally an instance applying the 'recycle simulator' pointed out some important factors in the reuse of demolished concrete. (author)

  13. Review of produced water recycle and beneficial reuse

    Energy Technology Data Exchange (ETDEWEB)

    Hum, F.; Tsang, P. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory; Harding, T. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory]|[Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering

    2006-11-15

    Fresh water scarcity and increasing water demands are concerns facing jurisdictions around the world. A number of water management initiatives involving produced water recycling and reuse in Alberta and Canada will have a significant impact on sustainable development in Alberta. Produced water must first be treated to meet water quality requirements and regulatory guidelines for specific applications. This paper presented a comprehensive technical and economic review of commercially available water treatment technologies and discussed technical challenges in recycling produced water for steam generation and for commercial use. It provided an introduction to fresh water allocations and oil, gas and water production volumes in Alberta. In addition to research and development activities, the paper identified guidelines from Alberta Environment and the Energy and Utilities Board. Benefits of treated produced water were discussed. Desalination technologies include both distillation processes and membrane processes. The paper provided cost estimates based on a literature view and discussed the potential water treatment for south-east Alberta. The paper also offered a number of recommendations for further research. It was concluded that treating and recycling produced water for agriculture, irrigation, commercial and domestic uses are at early stages of research and development and that regulatory guidelines on water quality, health and safety for specific industries, ownership and transfer of produced water need to be developed in order to facilitate beneficial reuse of produced water. 57 refs., 7 tabs., 14 figs.

  14. Integrated wastewater management by reuse and recycling in a textile industry: a case study in Thailand

    International Nuclear Information System (INIS)

    Javed, M.R.; Trankler, J.

    2005-01-01

    Increasing stringent environmental legislation, scarcity of resources and development of treatment and management techniques for wastewater, have made recycling and reuse feasible and economical in many industrial processes. Wastewater management by integrating all available techniques was studied for reuse and recycling in a textile industry. Cotton and silk fabrics were main products of the selected industry. Approach was divided in to five parts, to achieve the objectives of reuse and recycling: in-house water consumption evaluation, segregation study, optimizing existing WWTP, treatability study and advanced treatment for final effluent to fulfill reuse criteria. Water consumption evaluation was done by in-house survey. Segregation study was performed by analyzing different wastewater streams. Efficiency of existing WWTP for COD and BOD removal was assessed and optimized. Treatability of dye wastewater by ozonation, chemical and nanofiltration was studied. Treatment study of final effluent for TDS and color removal by nanofiltration and chemical treatment was performed. Analyses show the possibilities to conserve and optimize water consumption up to 30% in the production processes by in-house improvement. Segregation study shows that up to 15% wastewater from less polluted streams can be recycled back. Adopting separate efficient treatment techniques could fulfill reuse criteria for remaining wastewater streams (50%). (author)

  15. Solid Waste Educational Resources and Activities: Let's Reduce, Reuse, and Recycle. [CD-ROM].

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Solid Waste and Emergency Response.

    This contains games, activities, publications, and resources for students and teachers on how to reduce, reuse, recycle, and properly manage waste. It also contains a screen saver featuring runners-up from the Earth Day 2000 art contest. Activities and games include titles such as "Planet Protectors,""Recycle City,""Trash…

  16. Reduce--recycle--reuse: guidelines for promoting perioperative waste management.

    Science.gov (United States)

    Laustsen, Gary

    2007-04-01

    The perioperative environment generates large amounts of waste, which negatively affects local and global ecosystems. To manage this waste health care facility leaders must focus on identifying correctable issues, work with relevant stakeholders to promote solutions, and adopt systematic procedural changes. Nurses and managers can moderate negative environmental effects by promoting reduction, recycling, and reuse of materials in the perioperative setting.

  17. Reusing Water

    Science.gov (United States)

    Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management System Environmental Outreach Feature Stories Individual Permit for Storm Water Public Reading Room Sustainability » Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by

  18. Recycled Water Reuse Permit Renewal Application for the Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This renewal application for a Recycled Water Reuse Permit is being submitted in accordance with the Idaho Administrative Procedures Act 58.01.17 “Recycled Water Rules” and the Municipal Wastewater Reuse Permit LA-000141-03 for continuing the operation of the Central Facilities Area Sewage Treatment Plant located at the Idaho National Laboratory. The permit expires March 16, 2015. The permit requires a renewal application to be submitted six months prior to the expiration date of the existing permit. For the Central Facilities Area Sewage Treatment Plant, the renewal application must be submitted by September 16, 2014. The information in this application is consistent with the Idaho Department of Environmental Quality’s Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater and discussions with Idaho Department of Environmental Quality personnel.

  19. Reuse of materials from recyclable-waste collection for road building

    International Nuclear Information System (INIS)

    Messineo, A.; Panno, D.; Ticali, D.

    2006-01-01

    A right policy of waste management should look to nature: in fact in nature nothing of produced is lost; everything could be considered food to energy resource for another subject. A diffusion of right policy of waste reuse is the leit motive of this study. Heavy problem of pollution and the protection of the natural environment, is the one of the most important problem of this society, and so to think waste to reuse for civil engineering research has a double aim: a) to reduce quantity to send to dump; b) to reuse good materials for civil engineering building, as substitute of natural aggregate. It look very innovative and actual to think to possibility of reuse glass from recyclable-waste collection for road building, and so we could consider road as a valid substitute to dump. The aim is to consider waste as an element with high energetic power and value added [it

  20. Brownfields Recover Your Resources - Reduce, Reuse, and Recycle Construction and Demolition Materials at Land Revitalization Projects

    Science.gov (United States)

    This document provides background information on how the sustainable reuse of brownfield properties includes efforts to reduce the environmental impact by reusing and recycling materials generated during building construction, demolition, or renovation.

  1. Social and economic importance of textile reuse and recycling in Brazil

    Science.gov (United States)

    Baruque-Ramos, J.; Amaral, M. C.; Laktim, M. C.; Santos, H. N.; Araujo, F. B.; Zonatti, W. F.

    2017-10-01

    Brazil is an important world producer of textiles. However, this industrial activity, combined with additional import and trade, generates millions of tons of textile scraps, unsold clothing and discarded post-consumption garments. There is a great potential for the recycling and reuse industry in the context of solidarity and circular economy. The present study aimed to present examples in Brazil related to waste reduction, reuse and recycling of textiles in the context of solidary economy. In this way, some representative initiatives, from Sao Paulo, Minas Gerais and Rio de Janeiro states are presented and discussed based on these principles and approaching responsible lifestyles and environmental awareness and the refusal to waste resources in general. The main socioenvironmental benefits are related to the training of labor and local income generation, the population’s awareness of consumption patterns, saving of natural resources and raw materials, and mitigation of environmental impacts.

  2. Is it possible to treat produced water for recycle and beneficial reuse?

    Energy Technology Data Exchange (ETDEWEB)

    Hum, F.; Tsang, P.; Kantzas, A.; Harding, T. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2005-11-01

    In 2003, the oil and gas industry in Alberta injected 0.3 billion cubic metres of produced water into disposal wells. This paper addressed the issue of using the large volume of produced water for recycling and make water reuse a sustainable activity in Alberta to reduce fresh water demand. Although produced water represents a potential resource for recycling and beneficial reuse, it must first be treated to meet water quality criteria and regulatory guidelines for specific applications. A comprehensive technical and economic review of water treatment technologies was presented. Commonly used and new water desalination technologies were reviewed and key challenges associated with the recycling of produced water were identified. It was shown that water treatment processes are commercially available and that they are not prohibitively expensive. However, the cost of implementing treating processes to meet drinking water quality guidelines is about 3 times the current cost of municipal water supply in Alberta. For that reason, it is more feasible to recycle waste water for agricultural or petroleum applications, such as waterflooding. The water quality guidelines for these other purposes are less stringent than for drinking water and there is also growing public resistance for industry to use fresh water for commercial use. 42 refs., 3 tabs., 14 figs.

  3. Applying the three R's: Reduce, reuse, and recycle in the chemical industry.

    Science.gov (United States)

    Mostafa, Mohamed K; Peters, Robert W

    2017-03-01

    Pollution prevention (P2) assessment was conducted by applying the three R's, reduce, reuse, and recycle, in a chemical industry for the purpose of reducing the amount of wastewater generated, reusing paint wastewater in the manufacture of cement bricks, recycling cooling water, and improving water usage efficiency. The results of this study showed that the annual wastewater flow generated from the paint manufacturing can be reduced from 1,100 m 3 to 488.4 m 3 (44.4% reduction) when a high-pressure hose is used. Two mixtures were prepared. The first mixture (A) contains cement, coarse aggregate, fine aggregate, Addicrete BVF, and clean water. The second mixture (B) contains the same components used in the first mixture, except that paint wastewater was used instead of the clean water. The prepared samples were tested for water absorption, toxicity, reactivity, compressive strength, ignitability, and corrosion. The tests results indicated that using paint wastewater in the manufacture of the cement bricks improved the mechanical properties of the bricks. The toxicity test results showed that the metals concentration in the bricks did not exceed the U.S. EPA limits. This company achieved the goal of zero liquid discharge (ZLD), especially after recycling 2,800 m 3 of cooling water. The total annual saving could reach $42,570 with a payback period of 41 days. This research focused on improving the water usage efficiency, reducing the quantity of wastewater generated, and potentially reusing wastewater in the manufacture of cement bricks. Reusing paint wastewater in the manufacture of the bricks prevents the hazardous pollutants in the wastewater (calcium carbonate, styrene acrylic resins, colored pigments, and titanium dioxide) from entering and polluting the surface water and the environment. We think that this paper will help to find the most efficient and cost-effective way to manage paint wastewater and conserve fresh water resources. We also believe that this

  4. Investigation of impurities present in recycling and reusing of scrap lead for accumulator industry

    International Nuclear Information System (INIS)

    Farooq, A.; Irfan, N.; Chaudhry, M.M.; Nawab, S.

    2012-01-01

    Recycling and reusing are the basic strategies of reducing solid waste generated from industries. Millions of batteries containing toxic metals and poisonous wastes are discarded every year in Pakistan. Battery waste deposited in landfills increases the concentration of toxic metals in leachates obtained from landfill base. For this reason, recycling of locally available scrap lead has been focused. During reduction and refining stages, samples were obtained at various stages from a five ton lead smelting pot of an accumulator industry. Various impurities present were determined and removed in order to reuse in accumulators. X-ray fluorescence (XRF) and atomic absorption spectroscopy (AAS) techniques were used to analyze the samples obtained at various stages of recycling. This work has been carried out to reduce these impurities and the refining process has thus been optimized. The lead thus obtained is 99.98 % pure. (author)

  5. 76 FR 71861 - America Recycles Day, 2011

    Science.gov (United States)

    2011-11-18

    ... electronics annually, and without following proper recycling and management practices, the disposal of our old..., and prevent the recovery and reuse of valuable resources. For the well- being of our people and our..., management, and recycling that will accelerate our burgeoning electronics recycling market and create jobs...

  6. A flexible environmental reuse/recycle policy based on economic strength.

    Science.gov (United States)

    Tsiliyannis, C A

    2007-01-01

    Environmental policies based on fixed recycling rates may lead to increased environmental impacts (e.g., landfilled wastes) during economic expansion. A rate policy is proposed, which is adjusted according to the overall strength or weakness of the economy, as reflected by overall packaging demand and consumption, production and imports-exports. During economic expansion featuring rising consumption, production or exports, the proposed flexible policy suggests a higher reuse/recycle rate. During economic slowdown a lower rate results in lower impacts. The flexible target rates are determined in terms of annual data, including consumption, imports-exports and production. Higher environmental gains can be achieved at lower cost if the flexible policy is applied to widely consumed packaging products and materials associated with low rates, or if cleaner recycling technology is adopted.

  7. Resource Recovery and Reuse: Recycled Magnetically Separable Iron-based Catalysts for Phosphate Recovery and Arsenic Removal

    Science.gov (United States)

    Environmentally friendly processes that aid human and environmental health include recovering, recycling, and reusing limited natural resources and waste materials. In this study, we re-used Iron-rich solid waste materials from water treatment plants to synthesize magnetic iron-o...

  8. From collision to collaboration - Integrating informal recyclers and re-use operators in Europe: A review.

    Science.gov (United States)

    Scheinberg, Anne; Nesić, Jelena; Savain, Rachel; Luppi, Pietro; Sinnott, Portia; Petean, Flaviu; Pop, Flaviu

    2016-09-01

    The European Union hosts some of the world's most developed waste management systems and an ambitious policy commitment to the circular economy. The existence of informal recycling and re-use activities in Europe has been vigorously denied until quite recently, and remains a very challenging subject for the European solid waste management sector, as well as for European government and private institutions. In countries ranging from Malta to Macedonia and from France to Turkey, informal recyclers excluded from legal recycling niches increasingly collide with formalised and controlled European Union approaches to urban waste management, packaging recovery schemes, formal re-use enterprises, and extended producer responsibility systems.This review focuses on the period from 2004 through the first half of 2016. The 78 sources on European (and neighbouring) informal recycling and re-use are contextualised with global sources and experience. The articles focus on informal recovery in and at the borders of the European Union, document the conflicts and collisions, and elaborate some constructive approaches towards legalisation, integration, and reconciliation. The overarching recommendation, to locate the issue of informal recovery and integration in the framework of the European circular economy package, is supported by four specific pillars of an integration strategy: Documentation, legalisation, occupational and enterprise recognition, and preparation for structural integration. © The Author(s) 2016.

  9. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.

    Science.gov (United States)

    Zhou, Lei; Xu, Zhenming

    2012-05-01

    Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry. © 2012 American Chemical Society

  10. Characteristics of recycled and electron beam irradiated high density polyethylene samples

    International Nuclear Information System (INIS)

    Cardoso, Jessica R.; Gabriel, Leandro; Geraldo, Aurea B.C.; Moura, Eduardo

    2015-01-01

    Polymers modification by irradiation is a well-known process that allows degradation and cross-linking in concurrent events; this last is expected when an increase of mechanical properties is required. Actually, the interest of recycling and reuse of polymeric material is linked to the increase of plastics ending up in waste streams. Therefore, these both irradiation and recycling process may be conducted to allow a new use to this material that would be discarded by an improvement of its mechanical properties. In this work, the High Density Polyethylene (HDPE) matrix has been recycled five times from original substrate. The electron beam irradiation process was applied from 50 kGy to 200 kGy in both original and recycled samples; in this way, mechanical properties and thermal characteristics were evaluated. The results of applied process and material characterization are discussed. (author)

  11. Characteristics of recycled and electron beam irradiated high density polyethylene samples

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Jessica R.; Gabriel, Leandro; Geraldo, Aurea B.C.; Moura, Eduardo, E-mail: jrcardoso@ipen.br, E-mail: lgabriell@gmail.com, E-mail: ageraldo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Polymers modification by irradiation is a well-known process that allows degradation and cross-linking in concurrent events; this last is expected when an increase of mechanical properties is required. Actually, the interest of recycling and reuse of polymeric material is linked to the increase of plastics ending up in waste streams. Therefore, these both irradiation and recycling process may be conducted to allow a new use to this material that would be discarded by an improvement of its mechanical properties. In this work, the High Density Polyethylene (HDPE) matrix has been recycled five times from original substrate. The electron beam irradiation process was applied from 50 kGy to 200 kGy in both original and recycled samples; in this way, mechanical properties and thermal characteristics were evaluated. The results of applied process and material characterization are discussed. (author)

  12. Metal recycling experience at Los Alamos National Laboratory. Reuse, release, and recycle of metals from radiological control areas

    International Nuclear Information System (INIS)

    Gogol, S.

    1997-01-01

    Approximately 15% of the Low-Level Waste (LLW) produced at Los Alamos consists of scrap metal equipment and materials. The majority of this material is produced by decommissioning and the modification of existing facilities. To reduce this waste stream, Department of Energy Headquarters, EM-77 Office, sponsored the Reuse, Recycle, and Release of Metals from Radiological Control Areas High Return on Investment (ROI) Project to implement recycle, reuse, and release of scrap metal at the laboratory. The goal of this project was to develop cost effective alternatives to LLW disposal of scrap metal and to avoid the disposal of 2,400 m 3 of scrap metal. The ROI for this project was estimated at 948%. The ROI project was funded in March 1996 and is scheduled for completion by October 1997. At completion, a total of 2,400 m 3 of LLW avoidance will have been accomplished and a facility to continue recycling activities will be operational. This paper will present the approach used to develop effective alternatives for scrap metal at Los Alamos and then discuss the tasks identified in the approach in detail. Current scrap metal inventory, waste projections, alternatives to LLW disposal, regulatory guidance, and efforts to institutionalize the alternatives to LLW disposal will be discussed in detail

  13. A State of the Art on the Technology for Recycling and Reuse of the Decommissioning Concrete Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chung Hun; Choi, Wang Kyu; Min, Byung Youn; Oh, Won Zin; Lee, Kun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-02-15

    This report describes the reduction and recycling technology of decommissioning concrete waste. Decontamination and decommissioning (D and D) becomes one of the most important nuclear markets especially in the developed countries including USA, UK and France where lots of the retired nuclear facilities have been waiting for decommissioning. In our country the KAERI has been carrying out the decommissioning of the retired TRIGA MARK II and III research reactors and an uranium conversion plant as the first national decommissioning project since 1998. One of the most important areas of the decommissioning is a management of a huge amount of a decommissioning waste the cost of which is more than half of the total decommissioning cost. Therefore reduction in decommissioning waste by a reuse or a recycle is an important subject of decommissioning technology development in the world. Recently much countries pay attention to recycle the large amount of concrete dismantling waste resulted from both a nuclear and a non nuclear industries. In our country, much attention was taken in a recycle of concrete dismantling waste as a concrete aggregate, but a little success has been resulted due to the disadvantages such as a weakness of hardness and surface mortar contamination. A recycle in nuclear industry and a self disposal of the radioactively contaminated concrete wastes are main directions of concrete wastes resulted from a nuclear facility decommissioning. In this report it was reviewed the state of art of the related technologies for a reduction and a recycle of concrete wastes from a nuclear decommissioning in the country and abroad. Prior to recycle and reuse in the nuclear sector, however, the regulatory criteria for the recycle and reuse of concrete waste should be established in parallel with the development of the recycling technology.

  14. A State of the Art on the Technology for Recycling and Reuse of the Decommissioning Concrete Wastes

    International Nuclear Information System (INIS)

    Jung, Chung Hun; Choi, Wang Kyu; Min, Byung Youn; Oh, Won Zin; Lee, Kun Woo

    2008-02-01

    This report describes the reduction and recycling technology of decommissioning concrete waste. Decontamination and decommissioning (D and D) becomes one of the most important nuclear markets especially in the developed countries including USA, UK and France where lots of the retired nuclear facilities have been waiting for decommissioning. In our country the KAERI has been carrying out the decommissioning of the retired TRIGA MARK II and III research reactors and an uranium conversion plant as the first national decommissioning project since 1998. One of the most important areas of the decommissioning is a management of a huge amount of a decommissioning waste the cost of which is more than half of the total decommissioning cost. Therefore reduction in decommissioning waste by a reuse or a recycle is an important subject of decommissioning technology development in the world. Recently much countries pay attention to recycle the large amount of concrete dismantling waste resulted from both a nuclear and a non nuclear industries. In our country, much attention was taken in a recycle of concrete dismantling waste as a concrete aggregate, but a little success has been resulted due to the disadvantages such as a weakness of hardness and surface mortar contamination. A recycle in nuclear industry and a self disposal of the radioactively contaminated concrete wastes are main directions of concrete wastes resulted from a nuclear facility decommissioning. In this report it was reviewed the state of art of the related technologies for a reduction and a recycle of concrete wastes from a nuclear decommissioning in the country and abroad. Prior to recycle and reuse in the nuclear sector, however, the regulatory criteria for the recycle and reuse of concrete waste should be established in parallel with the development of the recycling technology

  15. Certified Electronics Recyclers

    Science.gov (United States)

    Learn how EPA encourages all electronics recyclers become certified by demonstrating to an accredited, independent third-party auditor and that they meet specific standards to safely recycle and manage electronics.

  16. Research on the Influencing Mechanism of Traditional Cultural Values on Citizens’ Behavior Regarding the Reuse of Recycled Water

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2018-01-01

    Full Text Available In order to explore the influence mechanism of traditional Chinese culture values on urban residents’ acceptance of the reuse of recycled water, this paper selects interdependent self-constructional indicators representing the dependency relation between people as the representative of traditional culture values. In this paper, interdependent self-constructional indicators are introduced based on a technology acceptance model (TAM, in order to establish a hypothesis model. Following this, the writer conducts a study that shows the influence on the acceptance of recycled water through the formation of interdependent self-construction. Finally, the influence mechanism of traditional cultural values on citizens’ behavior regarding the reuse of recycled water is determined. To start with, the writer verifies the reliability and validity of data from 584 samples, and then tests the goodness-of-fit between the sample data and the hypothesis model by AMOS21.0 (software. On this basis, the writer analyzes the direct and indirect influence through the hypothesis model and finds that the interdependent self-constructional intensity will accelerate the acceptance process of recycled water technology by positively influencing a change in the residents’ attitudes to recycled water. The conclusion shows that traditional Chinese cultural values have a certain influence on urban residents’ acceptance of the reuse of recycled water. Meanwhile, the writer clarifies the influence’s mechanism.

  17. Recycling of electronic scrap

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    This Ph.D. thesis deals with the growingly important field of electronics recycling with special attention to the problem of printed circuit board recycling. A literature survey of contemporary electronics recycling and printed circuit board recycling is presented.Further, an analysis of the role...

  18. Linking Informal and Formal Electronics Recycling via an Interface Organization

    Directory of Open Access Journals (Sweden)

    Yoshiaki Totoki

    2013-07-01

    Full Text Available Informal recycling of electronics in the developing world has emerged as a new global environmental concern. The primary approach to address this problem has been command-and-control policies that ban informal recycling and international trade in electronic scrap. These bans are difficult to enforce and also have negative effects by reducing reuse of electronics, and employment for people in poverty. An alternate approach is to link informal and formal sectors so as to maintain economic activity while mitigating environmental damages. This article explores the idea of an interface organization that purchases components and waste from informal dismantlers and passes them on to formal processors. Environmental, economic and social implications of interface organizations are discussed. The main environmental questions to resolve are what e-scrap components should be targeted by the interface organization, i.e., circuit boards, wires, and/or plastic parts. Economically, when formal recycling is more profitable (e.g., for circuit boards, the interface organization is revenue positive. However, price subsidies are needed for copper wires and residual waste to incentivize informal dismantlers to turn in for formal processing. Socially, the potential for corruption and gaming of the system is critical and needs to be addressed.

  19. Mobile phone collection, reuse and recycling in the UK

    International Nuclear Information System (INIS)

    Ongondo, F.O.; Williams, I.D.

    2011-01-01

    Highlights: → We characterized the key features of the voluntary UK mobile phone takeback network via a survey. → We identified 3 flows: information; product (handsets and accessories); and incentives. → There has been a significant rise in the number of UK takeback schemes since 1997. → Most returned handsets are low quality; little data exists on quantities of mobile phones collected. → Takeback schemes increasingly divert EoL mobile phones from landfill and enable reuse/recycling. - Abstract: Mobile phones are the most ubiquitous electronic product on the globe. They have relatively short lifecycles and because of their (perceived) in-built obsolescence, discarded mobile phones represent a significant and growing problem with respect to waste electrical and electronic equipment (WEEE). An emerging and increasingly important issue for industry is the shortage of key metals, especially the types of metals found in mobile phones, and hence the primary aim of this timely study was to assess and evaluate the voluntary mobile phone takeback network in the UK. The study has characterised the information, product and incentives flows in the voluntary UK mobile phone takeback network and reviewed the merits and demerits of the incentives offered. A survey of the activities of the voluntary mobile phone takeback schemes was undertaken in 2008 to: identify and evaluate the takeback schemes operating in the UK; determine the target groups from whom handsets are collected; and assess the collection, promotion and advertising methods used by the schemes. In addition, the survey sought to identify and critically evaluate the incentives offered by the takeback schemes, evaluate their ease and convenience of use; and determine the types, qualities and quantities of mobile phones they collect. The study has established that the UK voluntary mobile phone takeback network can be characterised as three distinctive flows: information flow; product flow (handsets and related

  20. Reduce, reuse and recycle: a green solution to Canada's medical isotope shortage.

    Science.gov (United States)

    Galea, R; Ross, C; Wells, R G

    2014-05-01

    Due to the unforeseen maintenance issues at the National Research Universal (NRU) reactor at Chalk River and coincidental shutdowns of other international reactors, a global shortage of medical isotopes (in particular technetium-99m, Tc-99m) occurred in 2009. The operation of these research reactors is expensive, their age creates concerns about their continued maintenance and the process results in a large amount of long-lived nuclear waste, whose storage cost has been subsidized by governments. While the NRU has since revived its operations, it is scheduled to cease isotope production in 2016. The Canadian government created the Non-reactor based medical Isotope Supply Program (NISP) to promote research into alternative methods for producing medical isotopes. The NRC was a member of a collaboration looking into the use of electron linear accelerators (LINAC) to produce molybdenum-99 (Mo-99), the parent isotope of Tc-99m. This paper outlines NRC's involvement in every step of this process, from the production, chemical processing, recycling and preliminary animal studies to demonstrate the equivalence of LINAC Tc-99m with the existing supply. This process stems from reusing an old idea, reduces the nuclear waste to virtually zero and recycles material to create a green solution to Canada's medical isotope shortage. © 2013 Published by Elsevier Ltd.

  1. Recycling, reducing and reusing: A theoretical framework

    International Nuclear Information System (INIS)

    Kubursi, A.A.; Butterfield, D.W.

    1990-01-01

    Macroeconomic models are generally based on a particular national income accounting framework. The current approach treats waste and pollution generation in such a way that any increase in these activities increases directly the gross domestic product of the economy. A reformulation is suggested for the accounting framework so as to treat waste management and pollution abatement as services to business whose costs should be charged against business revenue. Even such costs to households may be considered as costs to output. In this way such expenses appear as a cost to society and not as a final output. A new theoretical framework is developed to correspond to the reformulated accounting principle that allows clear identification of recycling activity and waste management. The rectangular input-output framework is particularly suited for this treatment as it allows different industries to produce the same output and identifies different commodities as inputs in the production of the same output. With the new framework, it is possible to examine the socioeconomic consequences of increased use and production of recyclables. Equally important is the ability to assess the relative efficiency of alternative policies to reuse or reduce the use of products and resources through price incentives and full cost charges. 2 tabs

  2. Food packaging in South Africa: reducing, re-using and recycling.

    CSIR Research Space (South Africa)

    Nahman, Anton

    2009-01-01

    Full Text Available types of responses to these problems. One response has been from government, who have identified plastic, glass and steel cans as ‘priority wastes’ that need to be kept away from landfill sites through reduction, re-use and recycling (the others being... of potentially valuable materials, such as steel, glass, and plastics, which could otherwise have been re-processed into new products, thereby displacing the need to exploit virgin raw materials. How Have Government and Industry Responded? There have been two...

  3. A proposal for improving sustainability practice through the implementations of reuse and recycle technique in Malaysian construction industry

    Science.gov (United States)

    Osman, Wan Nadzri; Nawi, Mohd Nasrun Mohd; Saad, Rohaizah; Anuar, Herman Shah; Ibrahim, Siti Halipah

    2016-08-01

    Construction and demolition waste is often seen as the major contributor to the solid waste stream that is going to landfill, hence, making it the area of focus for improvement. In the construction industry, reuse and recycle principles have been promoted in order to reduce waste and protect the environment. Construction and demolition waste including demolished concrete, bricks and masonry, wood and other materials such as dry wall, glass, insulation, roofing, wire, pipe, rock and soil constitute a significant component of the total waste. Without proper reuse and recycle policies, these construction and demolition wastes would quickly fill all the remaining landfill space, which has already been growing in scarce around this region. Based on the feedback received, on average, a third of respondents said they currently have a lotto benefit from the use of reduce and reuse. In addition, they also agreed that the existing policies help and support the min carrying out the reduce and reuse practices. Respondents also agreed that other stakeholders in the construction industry currently have an excellent awareness in term of implementation of the reduce and reuse in their practices.

  4. Reduce, reuse and recycle: A green solution to Canada's medical isotope shortage

    International Nuclear Information System (INIS)

    Galea, R.; Ross, C.; Wells, R.G.

    2014-01-01

    Due to the unforeseen maintenance issues at the National Research Universal (NRU) reactor at Chalk River and coincidental shutdowns of other international reactors, a global shortage of medical isotopes (in particular technetium-99m, Tc-99m) occurred in 2009. The operation of these research reactors is expensive, their age creates concerns about their continued maintenance and the process results in a large amount of long-lived nuclear waste, whose storage cost has been subsidized by governments. While the NRU has since revived its operations, it is scheduled to cease isotope production in 2016. The Canadian government created the Non-reactor based medical Isotope Supply Program (NISP) to promote research into alternative methods for producing medical isotopes. The NRC was a member of a collaboration looking into the use of electron linear accelerators (LINAC) to produce molybdenum-99 (Mo-99), the parent isotope of Tc-99m. This paper outlines NRC’s involvement in every step of this process, from the production, chemical processing, recycling and preliminary animal studies to demonstrate the equivalence of LINAC Tc-99m with the existing supply. This process stems from reusing an old idea, reduces the nuclear waste to virtually zero and recycles material to create a green solution to Canada's medical isotope shortage. - Highlights: • Commercial power electron accelerators are realistic option to produce 99 Mo. • Could cover national demand of Canada. • Demonstrate LINAC- 99 Mo as environmental and economical solution to isotope crisis. • Demonstrate LINAC- 99m Tc to be clinically equivalent to current fission- 99m Tc supply

  5. Water conservation, recycling, and reuse: US northeast

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, E.

    1984-10-01

    This paper focuses upon present and future possibilities for water conservation, recycling, and reuse in New England and Middle Atlantic states. Telephone interviews and questionnaires sent to trade associations, public utility commissions, federal, state and other agencies were used to supplement information gathered in the literature. Water intake and consumptive demands in 1980 were calculated for industrial, electric utility, agricultural, and residential sectors. Corresponding information for the year 2000 were estimated using data from utilities, public utility commissions, and the US Bureau of Economic Affairs. Water supplies were estimated using the concept of safe yield. Assuming reductions in water use by industries, agriculture and by private residences in the year 2000, it was found that many users, particularly the electric utility sector, would still experience serious water supply shortfalls in several industrialized states. 20 references, 14 tables.

  6. Recovery, reuse and recycling by the United States wood packaging industry: 1993-2006

    Science.gov (United States)

    Robert J. Bush; Philip A. Araman; E. Bradley Hager

    2007-01-01

    The packaging industry is an important market for wood materials, especially low grade hardwoods. Approximately one-third of U.S. hardwood lumber production is utilized in the production of pallets and containers. The industry recovers significant volumes of pallets and containers from the waste stream for re-use, repair, and recycling. Industry by-products (both wood...

  7. Optimisation of petroleum refinery water network systems retrofit incorporating reuse, regeneration and recycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Khor, Cheng Seong; Shah, Nilay [Imperial College London (United Kingdom); Mahadzir, Shuhaimi [Universiti Teknologi Petronas (Malaysia); Elkamel, Ali [University of Waterloo (Canada)

    2012-02-15

    Increasingly strict environmental regulations have given rise to higher requirements for operating efficiency and optimization and water has become a vital resource in the refining process and allied industries. Due to this high demand for water, plants may be exposed to supply interruptions and shortages in the future. Major concerns in the petroleum refining industry are the scarcity of fresh water supply and increasingly rigid rules on wastewater discharge, which have resulted from concerns over the environmental impact. This paper presents the efforts made to develop an optimization framework for design of petroleum refinery water network systems and retrofitting that incorporates reuse, regeneration, and recycling strategies. This framework includes the complementary advantage of water pinch analysis (WPA). Water minimization strategies were incorporated as first postulates in a superstructural representation that includes all feasible flow-sheet options for taking advantage of water reuse, regeneration and recycling opportunities. Additionally, a post-optimization analysis was carried out to evaluate the repeated treatment processes required to identify the most efficient retrofit option.

  8. The formal electronic recycling industry: Challenges and opportunities in occupational and environmental health research.

    Science.gov (United States)

    Ceballos, Diana Maria; Dong, Zhao

    2016-10-01

    E-waste includes electrical and electronic equipment discarded as waste without intent of reuse. Informal e-waste recycling, typically done in smaller, unorganized businesses, can expose workers and communities to serious chemical health hazards. It is unclear if formalization into larger, better-controlled electronics recycling (e-recycling) facilities solves environmental and occupational health problems. To systematically review the literature on occupational and environmental health hazards of formal e-recycling facilities and discuss challenges and opportunities to strengthen research in this area. We identified 37 publications from 4 electronic databases (PubMed, Web of Science, Environmental Index, NIOSHTIC-2) specific to chemical exposures in formal e-recycling facilities. Environmental and occupational exposures depend on the degree of formalization of the facilities but further reduction is needed. Reported worker exposures to metals were often higher than recommended occupational guidelines. Levels of brominated flame-retardants in worker's inhaled air and biological samples were higher than those from reference groups. Air, dust, and soil concentrations of metals, brominated flame-retardants, dioxins, furans, polycyclic-aromatic hydrocarbons, or polychlorinated biphenyls found inside or near the facilities were generally higher than reference locations, suggesting transport into the environment. Children of a recycler had blood lead levels higher than public health recommended guidelines. With mounting e-waste, more workers, their family members, and communities could experience unhealthful exposures to metals and other chemicals. We identified research needs to further assess exposures, health, and improve controls. The long-term solution is manufacturing of electronics without harmful substances and easy-to-disassemble components. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Electronic waste: chemical characterization glasses of tubes cathode rays with viability for recycling

    International Nuclear Information System (INIS)

    Lima, Norma Maria O.; Morais, Crislene R. Silva; Lima, Lenilde Mergia Ribeiro

    2011-01-01

    Electronic waste, or e-waste, often makes incorrect destinations, which causes serious environmental problems. The aim of this study was to analyze the X-ray fluorescence to study the recycling technology for the glass of Cathode Ray Tubes or, popularly, 'picture tubes', identified by the acronym CRT (Cathode Ray Tubes), which integrate computer monitors. It was observed that the glass screen and funnel analyzed have different chemical compositions. As the silicon oxide (SiO2), the largest component of these glasses percentage 59.89% and 48.63% respectively for the screen and funnel this oxide is responsible for forming the vitreous network. The study of recycling of computer monitors it is important, since about 45% of existing materials on a monitor are made of glass, since it is 100% recyclable and can be reused, thus reducing the amount of waste deposited in the environment. (author)

  10. Developing improved opportunities for the recycle and reuse of materials in road, bridge and construction projects : [summary].

    Science.gov (United States)

    2014-01-01

    Reducing waste and reusing materials is now : a part of the everyday fabric of life. Recycling : glass, paper, and plastic is an activity in many : households and businesses. Similarly, the : transportation sector generates huge quantities : of concr...

  11. Green Science: Revisiting Recycling

    Science.gov (United States)

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  12. Re-design, re-use and recycle of temporary houses

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Hakan [Department of Construction, Faculty of Technical Education, University of Abant Izzet Baysal, Duzce 81100 (Turkey)

    2007-01-15

    Disasters are recurring to global problems, which results in homelessness. The affected region had economical, environmental and social problems as well. In relief and reconstruction phases, the need for integrated management appeared in order to use the national sources actively and productively. Especially housing implementations had an important role for future development of the affected region. For accelerating the reconstruction of the region and forming a sustainable community, which maintains itself socially, environmentally and economically over time; energy usage for construction should be kept to a minimum. Past research in Turkey shows that the cost of temporary houses (to be used as the short term shelter) had a ratio of 10-15% of the total expenses of whole construction activity. For saving money and protecting the environment and conserving scarce resources, the affected region must consider the option of temporary houses to meet their short and long-term need during the reconstruction process. After the end of usage, temporary houses should be able to be re-used for the same or new function. This study is a test of re-design and re-use of a temporary housing site; by using recycled materials, minimum energy and voluntary participation so that this site can finally become a permanent housing site. (author)

  13. Beneficial reuse '97

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The annual Beneficial Reuse Conference was conducted in Knoxville, Tennessee from August 5-7, 1997. Now in its fifth year, this conference has become the national forum for discussing the beneficial reuse and recycle of contaminated buildings, equipment and resources, and the fabrication of useful products from such resources. As in the past, the primary goal of Beneficial Reuse ''97 was to provide a forum for the practitioners of pollution prevention, decontamination and decommissioning, waste minimization, reindustrialization, asset management, privatization and recycling to share their successes and failures, as well as their innovative strategies and operational experiences with the assembled group of stakeholders. Separate abstracts have been indexed into the database for contributions to this conference proceedings

  14. The Recycler Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Prost, L. R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-03-19

    The Recycler Electron cooler was the first (and so far, the only) cooler working at a relativistic energy (γ = 9.5). It was successfully developed in 1995-2004 and was in operation at Fermilab in 2005-2011, providing cooling of antiprotons in the Recycler ring. This paper describes the cooler, difficulties in achieving the required electron beam parameters and the ways to overcome them, cooling measurements, and details of operation.

  15. Kajian penerapan recycle, reuse dan recovery untuk proses produksi kulit web blue pada industri penyamakan kulit

    Directory of Open Access Journals (Sweden)

    Prayitno Prayitno

    2009-06-01

    Full Text Available Leather tanning industries are industries that process skin to produce finish leather product by using many stages of process in which for every stage of process will generate a huge amount either liquid or solid waste. If waste are not to be treated properly, it will cause environmental pollution. Implementation of 3R programs i.e. recycle, reuse and recovery will give impact on minimizing of waste problem. In leather tanning industries for producing wet blue leather however, 3R programs have to be implemented in processes of desalting, washing liquor, flesh and fat, chrome liquor and chrome-tanned waste. In implementing 3 R the waste generated can be either reused, recycled or recoveried as follow salt as swelling agent preventing in pickling process; washing liquor waste as washing liquor for dirt washing; flesh and fat as raw material for producing tallow, soap, fertilizer and livestock fodder; chrome liquor waste as chrome agent for chrome tanning and chrome-tanned waste as filler for producing material building or livestock fodder as protein sources.

  16. Mobile phone collection, reuse and recycling in the UK.

    Science.gov (United States)

    Ongondo, F O; Williams, I D

    2011-06-01

    Mobile phones are the most ubiquitous electronic product on the globe. They have relatively short lifecycles and because of their (perceived) in-built obsolescence, discarded mobile phones represent a significant and growing problem with respect to waste electrical and electronic equipment (WEEE). An emerging and increasingly important issue for industry is the shortage of key metals, especially the types of metals found in mobile phones, and hence the primary aim of this timely study was to assess and evaluate the voluntary mobile phone takeback network in the UK. The study has characterised the information, product and incentives flows in the voluntary UK mobile phone takeback network and reviewed the merits and demerits of the incentives offered. A survey of the activities of the voluntary mobile phone takeback schemes was undertaken in 2008 to: identify and evaluate the takeback schemes operating in the UK; determine the target groups from whom handsets are collected; and assess the collection, promotion and advertising methods used by the schemes. In addition, the survey sought to identify and critically evaluate the incentives offered by the takeback schemes, evaluate their ease and convenience of use; and determine the types, qualities and quantities of mobile phones they collect. The study has established that the UK voluntary mobile phone takeback network can be characterised as three distinctive flows: information flow; product flow (handsets and related accessories); and incentives flow. Over 100 voluntary schemes offering online takeback of mobile phone handsets were identified. The schemes are operated by manufacturers, retailers, mobile phone network service operators, charities and by mobile phone reuse, recycling and refurbishing companies. The latter two scheme categories offer the highest level of convenience and ease of use to their customers. Approximately 83% of the schemes are either for-profit/commercial-oriented and/or operate to raise funds

  17. An experimental school prototype: Integrating 3rs (reduce, reuse & recycle) concept into architectural design

    OpenAIRE

    Kong Seng Yeap; Sreenivasaiah Purushothama Rao

    2012-01-01

    The authors conducted a design project to examine the use of school as an ecological learning hub for children. Specifically, this study explores the ecological innovations that transform physical environment into three-dimensional textbooks for environmental education. A series of design workshops were carried out to gain interdisciplinary input for ecological school design. The findings suggest to integrate the concept of 3Rs (Reduce, Reuse & Recycle) into the physical environment. As a res...

  18. Recycling and Reuse of Materials Arising from the Decommissioning of Nuclear Facilities. A Report by the NEA Co-operative Program on Decommissioning

    International Nuclear Information System (INIS)

    Ooms, Bart; Verwaest, Isi; Legee, Frederic; Nokhamzon, Jean-Guy; Pieraccini, Michel; Poncet, Philippe; Franzen, Nicole; Vignaroli, Tiziano; Herschend, Bjoern; Benest, Terry; Loudon, David; Favret, Derek; Weber, Inge; )

    2017-01-01

    Large quantities of materials arising from the decommissioning of nuclear facilities are non-radioactive per se. An additional, significant share of materials is of very low-level or low-level radioactivity and can, after having undergone treatment and a clearance process, be recycled and reused in a restricted or unrestricted way. Recycle and reuse options today provide valuable solutions to minimise radioactive waste from decommissioning and at the same time maximise the recovery of valuable materials. The NEA Co-operative Programme on Decommissioning (CPD) prepared this overview on the various approaches being undertaken by international and national organisations for the management of slightly contaminated material resulting from activities in the nuclear sector. The report draws on CPD member organisations' experiences and practices related to recycling and reuse, which were gathered through an international survey. It provides information on improvements and changes in technologies, methodologies and regulations since the 1996 report on this subject, with the conclusions and recommendations taking into account 20 years of additional experience that will be useful for current and future practitioners. Case studies are provided to illustrate significant points of interest, for example in relation to scrap metals, concrete and soil

  19. Environmental benefits from reusing clothes

    DEFF Research Database (Denmark)

    Farrant, Laura; Olsen, Stig Irving; Wangel, Arne

    2010-01-01

    and Estonia, it was assumed that over 100 collected items 60 would be reused, 30 recycled in other ways and 10 go to final disposal Using these inputs, the LCA showed that the collection, processing and transport of second-hand clothing has insignificant impacts on the environment in comparison to the savings...... of establishing the net benefits from introducing clothes reuse. Indeed, it enables to take into consideration all the activities connected to reusing clothes, including, for instance, recycling and disposal of the collected clothes not suitable for reuse. In addition, the routes followed by the collected clothes....... Conclusions The results of the study show that clothes reuse can significantly contribute to reducing the environmental burden of clothing. Recommendations and perspectives It would be beneficial to apply other methods for estimating the avoided production of new clothes in order to check the validity...

  20. Electric vehicle recycling 2020: Key component power electronics.

    Science.gov (United States)

    Bulach, Winfried; Schüler, Doris; Sellin, Guido; Elwert, Tobias; Schmid, Dieter; Goldmann, Daniel; Buchert, Matthias; Kammer, Ulrich

    2018-04-01

    Electromobility will play a key role in order to reach the specified ambitious greenhouse gas reduction targets in the German transport sector of 42% between 1990 and 2030. Subsequently, a significant rise in the sale of electric vehicles (EVs) is to be anticipated in future. The amount of EVs to be recycled will rise correspondingly after a delay. This includes the recyclable power electronics modules which are incorporated in every EV as an important component for energy management. Current recycling methods using car shredders and subsequent post shredder technologies show high recycling rates for the bulk metals but are still associated with high losses of precious and strategic metals such as gold, silver, platinum, palladium and tantalum. For this reason, the project 'Electric vehicle recycling 2020 - key component power electronics' developed an optimised recycling route for recycling power electronics modules from EVs which is also practicable in series production and can be implemented using standardised technology. This 'WEEE recycling route' involves the disassembly of the power electronics from the vehicle and a subsequent recycling in an electronic end-of-life equipment recycling plant. The developed recycling process is economical under the current conditions and raw material prices, even though it involves considerably higher costs than recycling using the car shredder. The life cycle assessment shows basically good results, both for the traditional car shredder route and the developed WEEE recycling route: the latter provides additional benefits from some higher recovery rates and corresponding credits.

  1. Application of exemption principles to the recycle and reuse of materials from nuclear facilities

    International Nuclear Information System (INIS)

    1992-01-01

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting, in a coherent and comprehensive manner, the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. The RADWASS publications will: (a) reflect the existing international consensus in the approaches and methodologies for safe waste management, including disposal, and provide mechanisms to establish consensus where it does not yet exist; and (b) provide Member States with a comprehensive series of internationally agreed upon documents to assist in the derivation of new, or to complement existing, national criteria, standards and practices. This Safety Practices publication is concerned with procedures for determining the levels of radionuclides in materials below which they can be exempted from regulatory control and recycled or reused without any further restriction. It describes how the internationally agreed upon principles for exemption can be applied in the case of recycle and reuse. The methodology is applied to derive the typical ranges of exempt concentrations for representative radionuclides. Refs, figs and tabs

  2. Dioxins, Furans and PCBs in Recycled Water for Indirect Potable Reuse

    Directory of Open Access Journals (Sweden)

    Clemencia Rodriguez

    2008-12-01

    Full Text Available An assessment of potential health impacts of dioxin and dioxin-like compounds in recycled water for indirect potable reuse was conducted. Toxic equivalency factors (TEFs for 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDD and dibenzofurans (PCDFs and dioxin-like polychlorinated biphenyls (PCBs congeners have been developed by the World Health Organization to simplify the risk assessment of complex mixtures. Samples of secondary treated wastewater in Perth, Australia were examined pre-and post-tertiary treatment in one full-scale and one pilot water reclamation plant. Risk quotients (RQs were estimated by expressing the middle-bound toxic equivalent (TEQ and the upper-bound TEQ concentration in each sampling point as a function of the estimated health target value. The results indicate that reverse osmosis (RO is able to reduce the concentration of PCDD, PCDF and dioxin-like PCBs and produce water of high quality (RQ after RO=0.15. No increased human health risk from dioxin and dioxin-like compounds is anticipated if highly treated recycled water is used to augment drinking water supplies in Perth. Recommendations for a verification monitoring program are offered.

  3. Dioxins, Furans and PCBs in Recycled Water for Indirect Potable Reuse

    Science.gov (United States)

    Rodriguez, Clemencia; Cook, Angus; Devine, Brian; Van Buynder, Paul; Lugg, Richard; Linge, Kathryn; Weinstein, Philip

    2008-01-01

    An assessment of potential health impacts of dioxin and dioxin-like compounds in recycled water for indirect potable reuse was conducted. Toxic equivalency factors (TEFs) for 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (PCBs) congeners have been developed by the World Health Organization to simplify the risk assessment of complex mixtures. Samples of secondary treated wastewater in Perth, Australia were examined pre-and post-tertiary treatment in one full-scale and one pilot water reclamation plant. Risk quotients (RQs) were estimated by expressing the middle-bound toxic equivalent (TEQ) and the upper-bound TEQ concentration in each sampling point as a function of the estimated health target value. The results indicate that reverse osmosis (RO) is able to reduce the concentration of PCDD, PCDF and dioxin-like PCBs and produce water of high quality (RQ after RO=0.15). No increased human health risk from dioxin and dioxin-like compounds is anticipated if highly treated recycled water is used to augment drinking water supplies in Perth. Recommendations for a verification monitoring program are offered. PMID:19151430

  4. Recycling and reuse of chosen kinds of waste materials in a building industry

    Science.gov (United States)

    Ferek, B.; Harasymiuk, J.; Tyburski, J.

    2016-08-01

    The article describes the current state of knowledge and practice in Poland concerning recycling as a method of reuse of chosen groups of waste materials in building industry. The recycling of building scraps is imposed by environmental, economic and technological premises. The issue of usage of sewage residues is becoming a problem of ever -growing gravity as the presence of the increasing number of pernicious contaminants makes their utilization for agricultural purposes more and more limited. The strategies of using waste materials on Polish building sites were analyzed. The analysis of predispositions to salvage for a group of traditional materials, such as: timber, steel, building debris, insulation materials, plastics, and on the example of new materials, such as: artificial light aggregates made by appropriate mixing of siliceous aggregates, glass refuses and sewage residues in order to obtain a commodity which is apt for economic usage also was made in the article. The issue of recycling of waste materials originating from building operations will be presented in the context of the binding home and EU legal regulations. It was proved that the level of recycling of building wastes in Poland is considerably different from one which is achieved in the solid market economies, both in quantity and in assortment. The method of neutralization of building refuses in connection with special waste materials, which are sewage sludge that is presented in the article may be one of the alternative solutions to the problem of recycling of these wastes not only on the Polish scale.

  5. Biological treatment: potential reusing of recycled plastics from grenhouses; La depuracin biolgica: posible reutilizacin de plsticos reciclados procedentes de invernaderos

    Energy Technology Data Exchange (ETDEWEB)

    Zamorano, M.; Hontaria, E. [Universidad de Granada (Spain)

    1997-12-31

    The purpose of this study was to investigate recycled plastic used to cover crops as support beds in submerged biofilters for the purification of residual water, which also permit the re-used of recycled or waste products and the clarification and improvement of the effluent flow from the filter. The recycled plastic shows that the efficiency was 88% COD-removal and 84% SS-removal, without secondary clarification. The functioning of the system with this material has not improved 100%, this study has opened up a new field of investigation that will perfect the system and materials. (Author) 10 refs.

  6. Reusing recycled aggregates in structural concrete

    Science.gov (United States)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  7. Radiological characterisation and its role in the efficient management of low-level radioactive material supporting concurrent reuse, recycling and disposal. WNA Statement - Towards Greater Efficiency in the Management of Low-Level Radioactive Material that Concurrently Supports Reuse, Recycling and Disposal

    International Nuclear Information System (INIS)

    Townes, Jamie

    2012-01-01

    There are currently 435 operating civil nuclear power reactors in the world with an impressive number planned or already under construction as well as a range of associated nuclear fuel cycle and research facilities. Advances in the prior radiological characterisation of the materials which exist within these facilities and which are produced through their operation have enabled these materials to be characterised to a very high degree of precision and sensitivity with associated improvements in the limits of detection for radioactivity. This has enabled an accurate and reliable knowledge of their radiological properties to be gained along with an evaluation of the associated risks from radioactive components even down to very small values. Following their use, either at the end of an operational process or at the end of the facility's life, these materials, if they cannot be re-used, must be recycled or disposed of. The knowledge derived from characterisation has shown that the major volume of such materials (excluding used nuclear fuel) fall into a category which is amenable to re-cycling through the application of established survey and treatment techniques. Such materials contain valuable resources which, in a world committed to greater efficiency and sustainability, must be conserved through recycling in order to optimise the demand for fresh resources which must be found, extracted and processed as well as to conserve valuable space in national disposal facilities. Despite these advances irrationality concerning the reuse, recycling and disposal of materials containing low levels of radioactivity continues to prevail, even in countries with large nuclear power programmes. Should the facts about the true nature of the materials, gained and refined through advances in radiological characterisation, become more widely known then this could depolarise an often negatively charged debate. Combined with a knowledge of the safe and effective treatment techniques that

  8. Study on the reuse of nodular casting

    International Nuclear Information System (INIS)

    Bermont, V.M; Gomez, C.A; Lamas, J.F; Castillo, R.N

    2004-01-01

    Nodular cast pieces that have worn out are an attractive alternative to be reused as a cheap raw material for directly making other pieces. This materials recycling process often requires new and successive thermal treatments in order to be machined, to obtain the proper mechanical and microstructural properties. This work includes the results of the microstructural analysis by optic and Scanning Electron Microscopy and of the mechanical tests for traction and hardness of the test pieces submitted to different successive thermal treatments. The results show that by means of successive thermal treatments, followed by austemperizing, the appropriate mechanical and microstructural properties can be recovered permitting the nodular castings that were studied to be reliably reused (CW)

  9. DEVELOPMENT OF A SUSTAINABLE CONCRETE WASTE RECYCLING SYSTEM

    OpenAIRE

    Truptimala Patanaik*; Niharika Patel; Shilpika Panda; Subhasmita Prusty

    2016-01-01

    Construction solid waste has caused serious environmental problems. Reuse, recycling and reduction of construction materials have been advocated for many years, and various methods have been investigated. There may be six type of building materials: plastic, paper, timber, metal, glass and concrete which can be reused and recycled. This paper examines the rate of reusable & recyclable concrete waste. On the other hand, the reuse of construction waste is highly essential ...

  10. Rethink, Rework, Recycle.

    Science.gov (United States)

    Wrhen, Linda; DiSpezio, Michael A.

    1991-01-01

    Information about the recycling and reuse of plastics, aluminum, steel, glass, and newspapers is presented. The phases of recycling are described. An activity that allows students to separate recyclable materials is included. The objectives, a list of needed materials, and procedure are provided. (KR)

  11. Reduction of Radioactive Waste Through the Reuse and Recycle Policy of the Sealed Radioactive Sources Management

    OpenAIRE

    Marpaung, T

    2012-01-01

    In the past few years, the utilization of sealed source for medical, industrial and research purposes has shown an accelerating increase. This situation will lead to increases in the amount of sealed radioactive. During its use, a sealed radioactive waste will eventually become either a spent sealed source or disused sealed radioactive source (DSRS), due to certain factors. The reduction of the amount of radioactive waste can be executed through the application of reuse and recycle of sealed ...

  12. Beneficial Reuse of Produced and Flowback Water

    Science.gov (United States)

    Water reuse and recycling is a significant issue in the development of oil and gas shale plays in the United StatesDrilling operations – 60,000 to 650,000 gallons per wellHydraulic fracturing operations – 3 million to 5 million gallons per wellDefinition of produced water and flowback waterInteractions of water quality constituents as they relate to water reuse and recyclingTesting criteria in the laboratory and field operations

  13. SRS stainless steel beneficial reuse program

    Energy Technology Data Exchange (ETDEWEB)

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other types of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.

  14. Factors relevant to the recycling or reuse of components arising from the decommissioning and refurbishment of nuclear facilities

    International Nuclear Information System (INIS)

    1988-01-01

    The decommissioning and decontamination of nuclear facilities is a topic of great interest to many Member States of the International Atomic Energy Agency (IAEA) because of the large number of older nuclear facilities which are or soon will be retired from service. To assist in the development of the required decommissioning expertise, the IAEA is developing reports and recommendations which will eventually form an integrated information base covering in a systematic way the wide range of topics associated with decommissioning. This information is required so that Member States can decommission their nuclear facilities in a safe, timely and cost effective manner and the IAEA can effectively respond to requests for assistance. One area which warrants more detailed analyses is an assessment of the factors important to the recycling or reuse of components arising from the refurbishment or decommissioning of nuclear plants, the topic of the present report. The document provides an up to date review of the engineering, social, scientific and administrative factors relevant to the safe recycling or reuse of components arising from decommissioning or refurbishment of nuclear facilities. This report should be of interest to owners, operators, policy makers and regulators involved with nuclear facilities, especially those in developing countries. Refs, figs and tabs

  15. Scrap uranium recycling via electron beam melting

    International Nuclear Information System (INIS)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R ampersand D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility

  16. An assessment and evaluation for recycle/reuse of contaminated process and metallurgical equipment at the DOE Rocky Flats Plant Site -- Building 865

    International Nuclear Information System (INIS)

    1993-08-01

    An economic analysis of the potential advantages of alternatives for recycling and reusing equipment now stored in Building 865 at the Rocky Flats Plant (RFP) in Colorado has been conducted. The inventory considered in this analysis consists primarily of metallurgical and process equipment used before January 1992, during development and production of nuclear weapons components at the site. The economic analysis consists of a thorough building inventory and cost comparisons for four equipment dispositions alternatives. The first is a baseline option of disposal at a Low Level Waste (LLW) landfill. The three alternatives investigated are metal recycling, reuse with the government sector, and release for unrestricted use. This report provides item-by-item estimates of value, disposal cost, and decontamination cost. The economic evaluation methods documented here, the simple cost comparisons presented, and the data provided as a supplement, should provide a foundation for D ampersand D decisions for Building 865, as well as for similar D ampersand D tasks at RFP and at other sites

  17. Electron Cloud Measurements in Fermilab Main Injector and Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey Scott [Indiana U.; Backfish, M. [Fermilab; Tan, C. Y. [Fermilab; Zwaska, R. [Fermilab

    2015-06-01

    This conference paper presents a series of electron cloud measurements in the Fermilab Main Injector and Recycler. A new instability was observed in the Recycler in July 2014 that generates a fast transverse excitation in the first high intensity batch to be injected. Microwave measurements of electron cloud in the Recycler show a corresponding depen- dence on the batch injection pattern. These electron cloud measurements are compared to those made with a retard- ing field analyzer (RFA) installed in a field-free region of the Recycler in November. RFAs are also used in the Main Injector to evaluate the performance of beampipe coatings for the mitigation of electron cloud. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. The diamond-like carbon coating, in contrast, reduced the electron cloud signal to 1% of that measured in uncoated stainless steel beampipe.

  18. Approach and issues toward development of risk-based release standards for radioactive scrap metal recycle and reuse

    International Nuclear Information System (INIS)

    Chen, S.Y.; Nieves, L.A.; Nabelssi, B.K.; LePoire, D.J.

    1994-01-01

    The decontamination and decommissioning of nuclear facilities is expected to generate large amounts of slightly radioactive scrap metal (RSM). It is likely that some of these materials will be suitable for recycling and reuse. The amount of scrap steel from DOE facilities, for instance, is estimated to be more than one million tons (Hertzler 1993). However, under current practice and without the establishment of acceptable recycling standards, the RSM would be disposed of primarily as radioactive low-level waste (LLW). In the United States, no specific standards have been developed for the unrestricted release of bulk contaminated materials. Although standards for unrestricted release of radioactive surface contamination (NRC 1974) have existed for about 20 years, the release of materials is not commonly practiced because of the lack of risk-based justifications. Recent guidance from international bodies (IAEA 1988) has established a basis for deriving risk-based release limits for radioactive materials. It is important, therefore, to evaluate the feasibility of recycling and associated issues necessary for the establishment of risk-based release limits for the radioactive metals

  19. Technological, Economic, and Environmental Optimization of Aluminum Recycling

    Science.gov (United States)

    Ioana, Adrian; Semenescu, Augustin

    2013-08-01

    The four strategic directions (referring to the entire life cycle of aluminum) are as follows: production, primary use, recycling, and reuse. Thus, in this work, the following are analyzed and optimized: reducing greenhouse gas emissions from aluminum production, increasing energy efficiency in aluminum production, maximizing used-product collection, recycling, and reusing. According to the energetic balance at the gaseous environment level, the conductive transfer model is also analyzed through the finished elements method. Several principles of modeling and optimization are presented and analyzed: the principle of analogy, the principle of concepts, and the principle of hierarchization. Based on these principles, an original diagram model is designed together with the corresponding logic diagram. This article also presents and analyzes the main benefits of aluminum recycling and reuse. Recycling and reuse of aluminum have the main advantage that it requires only about 5% of energy consumed to produce it from bauxite. The aluminum recycling and production process causes the emission of pollutants such as dioxides and furans, hydrogen chloride, and particulate matter. To control these emissions, aluminum recyclers are required to comply with the National Emission Standards for Hazardous Air Pollutants for Secondary Aluminum Production. The results of technological, economic, and ecological optimization of aluminum recycling are based on the criteria function's evaluation in the modeling system.

  20. Frequent Questions on Recycling

    Science.gov (United States)

    This is a list of frequent questions on recycling, broken down into five categories. These are answers to common questions that EPA has received from press and web inquiries. This list is located on the Reduce, Reuse, Recycle website.

  1. Electronic waste and informal recycling in Kathmandu, Nepal

    DEFF Research Database (Denmark)

    Parajuly, Keshav; Thapa, Khim B.; Cimpan, Ciprian

    2018-01-01

    In the absence of relevant policies and supporting infrastructure, many developing countries are struggling to establish a resource-oriented waste management system. In countries like Nepal, where informal recycling practices are prevalent, the lack of understanding of the existing system hinders...... surveys, and site observations was conducted to understand the local recycling sector, the lifecycle of electronic products, and the relevant stakeholders. E-waste is found to be an integral part of the existing solid waste management chain and, therefore, needs to be addressed collectively. We identify...... any advancement in this sector. We characterize the informal recycling chain in Kathmandu, where a workforce of more than 10,000 people handles the recyclable items in various waste streams, including electronic waste (e-waste). A field study, supported by key informant interviews, questionnaire...

  2. Electron beam irradiation and adsorption as possibilities for wastewater reuse

    International Nuclear Information System (INIS)

    Borrely, Sueli I.; Higa, Marcela C.; Pinheiro, Alessandro; Morais, Aline V.; Fungaro, Denise A.

    2013-01-01

    The importance of water for life and for the industrial processes is forcing the development of combined technologies for wastewater improvement. The limitations of biological treatment for reducing micro-pollutants and the constant introduction of different chemical into environment make Ionizing Radiation a more interesting technique for pollutants abatement. Electron Accelerators are the main radiation source for cleaning waters purpose. Remazol Orange and Black B were decomposed by Electron Beam Irradiation. Another research consisted in reuse of burnt coal for cleaning wastewater and the Orange and Red dyes were adsorbed onto zeolitic material. Both color and toxicity were the main parameters to evaluate the efficacy of the process and also the recommended criteria which allow further industrial reuse. Real effluents were also treated by both technologies in batch scale. The radiation dose suggested for real effluents varied from 2.5kGy up to 5kGy. The characteristics of obtained zeolite will be presented. The removal of color and toxicity was enough to allow the industrial reuse of those products (wastewater). (author)

  3. Relevance and Benefits of Urban Water Reuse in Tourist Areas

    Directory of Open Access Journals (Sweden)

    Gaston Tong Sang

    2012-01-01

    Full Text Available Urban water reuse is one of the most rapidly growing water reuse applications worldwide and one of the major elements of the sustainable management of urban water cycle. Because of the high probability of direct contact between consumers and recycled water, many technical and regulatory challenges have to be overcome in order to minimize health risks at affordable cost. This paper illustrates the keys to success of one of the first urban water reuse projects in the island Bora Bora, French Polynesia. Special emphasis is given on the reliability of operation of the membrane tertiary treatment, economic viability in terms of pricing of recycled water and operating costs, as well as on the benefits of water reuse for the sustainable development of tourist areas.

  4. Optimisation of industrial wastes reuse as construction materials.

    Science.gov (United States)

    Collivignarelli, C; Sorlini, S

    2001-12-01

    This study concerns the reuse of two inorganic wastes, foundry residues and fly ashes from municipal solid waste incineration, as "recycled aggregate" in concrete production. This kind of reuse was optimised by waste treatment with the following steps: waste washing with water; waste stabilisation-solidification treatment with inorganic reagents; final grinding of the stabilised waste after curing for about 10-20 days. Both the treated wastes were reused in concrete production with different mix-designs. Concrete specimens were characterised by means of conventional physical-mechanical tests (compression, elasticity modulus, shrinkage) and different leaching tests. Experimental results showed that a good structural and environmental quality of "recycled concrete" is due both to a correct waste treatment and to a correct mix-design for concrete mixture.

  5. Reduce, reuse, recycle for robust cluster-state generation

    International Nuclear Information System (INIS)

    Horsman, Clare; Brown, Katherine L.; Kendon, Vivien M.; Munro, William J.

    2011-01-01

    Efficient generation of cluster states is crucial for engineering large-scale measurement-based quantum computers. Hybrid matter-optical systems offer a robust, scalable path to this goal. Such systems have an ancilla which acts as a bus connecting the qubits. We show that by generating the cluster in smaller sections of interlocking bricks, reusing one ancilla per brick, the cluster can be produced with maximal efficiency, requiring fewer than half the operations compared with no bus reuse. By reducing the time required to prepare sections of the cluster, bus reuse more than doubles the size of the computational workspace that can be used before decoherence effects dominate. A row of buses in parallel provides fully scalable cluster-state generation requiring only 20 controlled-phase gates per bus use.

  6. An assessment and evaluation for recycle/reuse of contaminated process and metallurgical equipment at the DOE Rocky Flats Plant Site -- Building 865. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    An economic analysis of the potential advantages of alternatives for recycling and reusing equipment now stored in Building 865 at the Rocky Flats Plant (RFP) in Colorado has been conducted. The inventory considered in this analysis consists primarily of metallurgical and process equipment used before January 1992, during development and production of nuclear weapons components at the site. The economic analysis consists of a thorough building inventory and cost comparisons for four equipment dispositions alternatives. The first is a baseline option of disposal at a Low Level Waste (LLW) landfill. The three alternatives investigated are metal recycling, reuse with the government sector, and release for unrestricted use. This report provides item-by-item estimates of value, disposal cost, and decontamination cost. The economic evaluation methods documented here, the simple cost comparisons presented, and the data provided as a supplement, should provide a foundation for D&D decisions for Building 865, as well as for similar D&D tasks at RFP and at other sites.

  7. Reuse and recycling of radioactive material packaging

    International Nuclear Information System (INIS)

    Gerulis, Eduardo; Zapparoli, Carlos Leonel; Barboza, Marycel Figols de

    2009-01-01

    Human development is directly linked to energy consumption. The political decisions (to this human development) result in economic, social and environmental aspects, whose magnitude should maintain the sustainability of every aspect for not to collapsing. The environmental aspect has been a target of research because of the excessive emission of gases which contributes to the greenhouse effect. The production processes emit gases due to the consumption of energy to get it, but it is necessary to maintain the environmental sustainability in order to minimize the contribution to the emission of greenhouse gases. The population control and the energetic efficiency are factors that contribute to the environmental sustainability. Besides them, the culture of consumption is another factor that, when applied to the reduction of emissions, also contributes to the sustainability of the environment. The reuse of materials is one of the sub-factors which contribute to the reduction of emissions. The Radiopharmacy Directory (DIRF) at IPEN-CNEN/SP, produces radiopharmaceuticals that are necessary to improve the Brazilian population's life quality. The radiopharmaceuticals are transported in packaging to the transport of radioactive material. These packages are considered non-biodegradable, because some metals, which make up these packages, pollute the environment. These packages have increased costs, in addition, because it must be approved in tests of integrity. The reuse of packaging in favorable situations to the same purpose is a way to help the environment degradation and costs reduction. The packaging reuse in unfavorable situations disobey rules or return logistics that become effective the transport back, but the consumption culture strengthening can change this situation. This paper describes IPEN's packaging, form and quantities distribution, and the packaging that comes back to be reused. (author)

  8. Hanford recycling

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  9. An experimental school prototype: Integrating 3rs (reduce, reuse & recycle concept into architectural design

    Directory of Open Access Journals (Sweden)

    Kong Seng Yeap

    2012-06-01

    Full Text Available The authors conducted a design project to examine the use of school as an ecological learning hub for children. Specifically, this study explores the ecological innovations that transform physical environment into three-dimensional textbooks for environmental education. A series of design workshops were carried out to gain interdisciplinary input for ecological school design. The findings suggest to integrate the concept of 3Rs (Reduce, Reuse & Recycle into the physical environment. As a result, an experimental school prototype is developed. It represents a series of recommendations that are rendered by novel ideas through the amalgamation of architecture, ecology and education. These findings promote the development of sustainable and interactive learning spaces through cross-disciplinary investigations in school architecture. Designers and practitioners interested in educational facilities design would find this article useful.

  10. Recycling and reuse of waste from electricity distribution networks as reinforcement agents in polymeric composites.

    Science.gov (United States)

    Zimmermann, Matheus V G; Zattera, Ademir J

    2013-07-01

    Of the waste generated from electricity distribution networks, wooden posts treated with chromated copper arsenate (CCA) and ceramic insulators make up the majority of the materials for which no effective recycling scheme has been developed. This study aims to recycle and reuse this waste as reinforcement elements in polymer composites and hybrid composites, promoting an ecologically and economically viable alternative for the disposal of this waste. The CCA wooden posts were cut, crushed and recycled via acid leaching using 0.2 and 0.4N H2SO4 in triplicate at 70°C and then washed and dried. The ceramic insulators were fragmented in a hydraulic press and separated by particle size using a vibrating sieve. The composites were mixed in a twin-screw extruder and injected into the test specimens, which were subjected to physical, mechanical, thermal and morphological characterization. The results indicate that the acid treatment most effective for removing heavy metals in the wood utilizes 0.4NH2SO4. However, the composites made from wood treated with 0.2NH2SO4 exhibited the highest mechanical properties of the composites, whereas the use of a ceramic insulator produces composites with better thermal stability and impact strength. This study is part of the research and development project of ANEEL (Agência Nacional de Energia Elétrica) and funded by CPFL (Companhia Paulista de Força e Luz). Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Direct Reuse of Rare Earth Permanent Magnets—Coating Integrity

    DEFF Research Database (Denmark)

    Høgberg, Stig; Holbøll, Joachim; Mijatovic, Nenad

    2017-01-01

    Rare earth permanent magnets can be reused directly as an alternative to traditional recycling methods, in which scrapped magnets are reprocessed into new magnets by undergoing many of the original energy-intensive and expensive production processes. Direct reuse entails using segmented magnet...... assemblies built by several small standard-sized magnets that can be reused directly in a number of different applications. A central part of the direct reuse strategy is to separate and demagnetize magnets by heating them to the Curie temperature. We investigated the validity of direct reuse as a rare earth...

  12. Quantify the energy and environmental effects of using recycled asphalt and recycled concrete for pavement construction phase I : final report.

    Science.gov (United States)

    2009-08-01

    The objective of this study is to quantify the energy and environment impacts from using recycled materials : for highway construction. Specifically, when recycled asphalt pavement is re-used for producing hot mix : asphalt or when recycled concrete ...

  13. Water brief-WDM & wastewater reuse

    International Development Research Centre (IDRC) Digital Library (Canada)

    aalfouns

    Wastewater Reuse for Water Demand Management in the Middle East and ... Among the substantial WDM tools in MENA is the use of wastewater to reduce the pressure on scarce freshwater .... recycled water to irrigate crops with associated ...

  14. Informal electronic waste recycling: A sector review with special focus on China

    International Nuclear Information System (INIS)

    Chi Xinwen; Streicher-Porte, Martin; Wang, Mark Y.L.; Reuter, Markus A.

    2011-01-01

    Informal recycling is a new and expanding low cost recycling practice in managing Waste Electrical and Electronic Equipment (WEEE or e-waste). It occurs in many developing countries, including China, where current gaps in environmental management, high demand for second-hand electronic appliances and the norm of selling e-waste to individual collectors encourage the growth of a strong informal recycling sector. This paper gathers information on informal e-waste management, takes a look at its particular manifestations in China and identifies some of the main difficulties of the current Chinese approach. Informal e-waste recycling is not only associated with serious environmental and health impacts, but also the supply deficiency of formal recyclers and the safety problems of remanufactured electronic products. Experiences already show that simply prohibiting or competing with the informal collectors and informal recyclers is not an effective solution. New formal e-waste recycling systems should take existing informal sectors into account, and more policies need to be made to improve recycling rates, working conditions and the efficiency of involved informal players. A key issue for China's e-waste management is how to set up incentives for informal recyclers so as to reduce improper recycling activities and to divert more e-waste flow into the formal recycling sector.

  15. Strengthening Culture of Recycling and Reusing from Environmental Axiology

    Directory of Open Access Journals (Sweden)

    Elizabeth Del Valle Nadales Díaz

    2017-02-01

    Full Text Available This research aims to strengthen the culture of recycling and reuse from the environmental axiology in the students and teachers of the José Francisco Jiménez School, in the parish of Bolivia City of Pedraza state Barinas, under the action research method competitor. Consequently, it was developed in five phases described as: diagnosis, planning, execution, evaluation and systematization. The informants were two (2 classroom teachers, one (1 parents and representatives and two (02 students, belonging to the 6th grade of the aforementioned institution. The technique used for the collection of information was observation and interview, the instrument will be the observation guide for students and an interview guide for parents, representatives and teachers, the validity and reliability of the same was determined through of triangulation. Subsequently, the obtained results allowed to know the weaknesses in relation to the current situation of the garbage in the institution and the community in general. Based on the derivations that were generated, a set of actions aimed at students was developed in order to strengthen the entire content of environmental care in accordance with the new educational policies. In developing and evaluating the study, it was concluded that the actions carried out will be an alternative for students to process information related to the interactions of environmental systems, taking individual and collective actions in the protection and defense of the environment for sustainable development.

  16. On the logistics of recycling : an introduction

    NARCIS (Netherlands)

    Flapper, S.D.P.

    1993-01-01

    An overview is given of the different logistic aspects of recycling, where recycling denotes "All the activities required for the reuse of materials and (semi-)finished products after they are no longer used by their last user." Special attention is paid to the forced recycling of durable

  17. Sustainable Materials Management (SMM) Electronics Challenge Data

    Science.gov (United States)

    On September 22, 2012, EPA launched the SMM Electronics Challenge. The Challenge encourages electronics manufacturers, brand owners and retailers to strive to send 100 percent of the used electronics they collect from the public, businesses and within their own organizations to third-party certified electronics refurbishers and recyclers. The Challenge??s goals are to: 1). Ensure responsible recycling through the use of third-party certified recyclers, 2). Increase transparency and accountability through public posting of electronics collection and recycling data, and 3). Encourage outstanding performance through awards and recognition. By striving to send 100 percent of used electronics collected to certified recyclers and refurbishers, Challenge participants are ensuring that the used electronics they collect will be responsibly managed by recyclers that maximize reuse and recycling, minimize exposure to human health and the environment, ensure the safe management of materials by downstream handlers, and require destruction of all data on used electronics. Electronics Challenge participants are publicly recognized on EPA's website as a registrant, new participant, or active participant. Awards are offered in two categories - tier and champion. Tier awards are given in recognition of achieving all the requirements under a gold, silver or bronze tier. Champion awards are given in two categories - product and non-product. For champion awards, a product is an it

  18. Water Recycling in Australia

    Directory of Open Access Journals (Sweden)

    Ross Young

    2011-09-01

    Full Text Available Australia is the driest inhabited continent on earth and, more importantly, experiences the most variable rainfall of all the continents on our planet. The vast majority of Australians live in large cities on the coast. Because wastewater treatments plants were all located near the coast, it was thought that large scale recycling would be problematic given the cost of infrastructure and pumping required to establish recycled water schemes. This all changed when Australia experienced a decade of record low rainfall and water utilities were given aggressive targets to increase the volume of water recycled. This resulted in recycled water being accepted as a legitimate source of water for non-drinking purposes in a diversified portfolio of water sources to mitigate climate risk. To ensure community support for recycled water, Australia lead the world in developing national guidelines for the various uses of recycled water to ensure the protection of public health and the environment. Australia now provides a great case study of the developments in maximizing water recycling opportunities from policy, regulatory and technological perspectives. This paper explores the evolution in thinking and how approaches to wastewater reuse has changed over the past 40 years from an effluent disposal issue to one of recognizing wastewater as a legitimate and valuable resource. Despite recycled water being a popular choice and being broadly embraced, the concept of indirect potable reuse schemes have lacked community and political support across Australia to date.

  19. Management experiences and trends for water reuse implementation in Northern California.

    Science.gov (United States)

    Bischel, Heather N; Simon, Gregory L; Frisby, Tammy M; Luthy, Richard G

    2012-01-03

    In 2010, California fell nearly 300,000 acre-ft per year (AFY) short of its goal to recycle 1,000,000 AFY of municipal wastewater. Growth of recycled water in the 48 Northern California counties represented only 20% of the statewide increase in reuse between 2001 and 2009. To evaluate these trends and experiences, major drivers and challenges that influenced the implementation of recycled water programs in Northern California are presented based on a survey of 71 program managers conducted in 2010. Regulatory requirements limiting discharge, cited by 65% of respondents as a driver for program implementation, historically played an important role in motivating many water reuse programs in the region. More recently, pressures from limited water supplies and needs for system reliability are prevalent drivers. Almost half of respondents (49%) cited ecological protection or enhancement goals as drivers for implementation. However, water reuse for direct benefit of natural systems and wildlife habitat represents just 6-7% of total recycling in Northern California and few financial incentives exist for such projects. Economic challenges are the greatest barrier to successful project implementation. In particular, high costs of distribution systems (pipelines) are especially challenging, with $1 to 3 million/mile costs experienced. Negative perceptions of water reuse were cited by only 26% of respondents as major hindrances to implementation of surveyed programs.

  20. REUSE OF AUTOMOTIVE COMPONENTS FROM DISMANTLED END OF LIFE VEHICLES

    Directory of Open Access Journals (Sweden)

    Piotr NOWAKOWSKI

    2013-12-01

    Full Text Available The problem of recycling end of life automotive vehicles is serious worldwide. It is one of the most important streams of waste in developed countries. It has big importance as recycling potential of raw materials content in automotive vehicles is valuable. Different parts and assemblies after dismantling can also be reused in vehicles where replacement of specific component is necessary. Reuse of the components should be taken into consideration in selecting the vehicles dismantling strategy. It also complies with European Union policy concerning end of life vehicles (ELV. In the paper it is presented systematic approach to dismantling strategies including disassembly oriented on further reuse of components. It is focused on decision making and possible benefits calculation from economic and environmental point of view.

  1. Constructed Wetlands for Greywater Recycle and Reuse

    Science.gov (United States)

    Concern over dwindling water supplies for urban areas as well as environmental degradation from existing urban water systems has motivated research into more resilient and sustainable water supply strategies. Greywater reuse has been suggested as a way to diversify local water su...

  2. Results of the drilling cuttings reuse and recycling program of PetroPiar, S.A. (formerly Petrolera Ameriven, S.A.)

    Energy Technology Data Exchange (ETDEWEB)

    Arrocha, A.; Ellis, G.; Camacho, R.; Crespo, A.; Jimenez, C. [PetroPiar, Caracas (Venezuela); Morales, F. [Simon Bolivar Univ., Caracas (Venezuela)

    2008-07-01

    Venezuela's Orinoco Oil Belt has been divided into 27 blocks depending on their technical characteristics. PetroPiar's area of exploration and production is located in the Ayacucho block. In an effort to support sustainable development, the company has initiated a research program to reuse and recycle the drill cuttings produced in the area. The drill cuttings are produced using a water based drilling mud. This paper presented the results of the program from year 2000. The drillings cuttings were shown to have excellent physical and mechanical properties. To date, approximately 81,860 m{sup 3} of drilling cuttings have been reused as blended or fill material in the construction of sub-bases and bases for well pads. A series of geophysical treatability tests are scheduled for 2007-2008 along with environmental characterizations to develop Cold Mix Asphalt with asphalt emulsions, through the reuse of oily drilling cuttings, to substitute a surface hot mix asphalt carpet. The optimum compaction humidity was shown to be 8 per cent. The equivalent of sand above 34 per cent allows for good compaction of the binder and the aggregate, producing a workable mix. Six per cent residual asphalt was shown to be the optimal binder for these mixes. 18 refs., 8 tabs., 15 figs.

  3. Frontiers and prospects for recycling Waste Electrical and Electronic ...

    African Journals Online (AJOL)

    This paper reviews the frontlines and projections for the recycling of waste electrical and electronic equipment (WEEE) in Nigeria. The paper identified the sources of WEEE, showed chemical characterization of some WEEE components and presented measures to minimize these wastes through recycling opportunities.

  4. Informal electronic waste recycling: a sector review with special focus on China.

    Science.gov (United States)

    Chi, Xinwen; Streicher-Porte, Martin; Wang, Mark Y L; Reuter, Markus A

    2011-04-01

    Informal recycling is a new and expanding low cost recycling practice in managing Waste Electrical and Electronic Equipment (WEEE or e-waste). It occurs in many developing countries, including China, where current gaps in environmental management, high demand for second-hand electronic appliances and the norm of selling e-waste to individual collectors encourage the growth of a strong informal recycling sector. This paper gathers information on informal e-waste management, takes a look at its particular manifestations in China and identifies some of the main difficulties of the current Chinese approach. Informal e-waste recycling is not only associated with serious environmental and health impacts, but also the supply deficiency of formal recyclers and the safety problems of remanufactured electronic products. Experiences already show that simply prohibiting or competing with the informal collectors and informal recyclers is not an effective solution. New formal e-waste recycling systems should take existing informal sectors into account, and more policies need to be made to improve recycling rates, working conditions and the efficiency of involved informal players. A key issue for China's e-waste management is how to set up incentives for informal recyclers so as to reduce improper recycling activities and to divert more e-waste flow into the formal recycling sector. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Recycling of Dilute Deacetylation Black Liquor to Enable Efficient Recovery and Reuse of Spent Chemicals and Biomass Pretreatment Waste

    Directory of Open Access Journals (Sweden)

    Xiaowen Chen

    2018-06-01

    Full Text Available Deacetylation/dilute alkaline pretreatment followed by mechanical refining (DMR has been proven as an effective process for biomass sugar liberation without severe chemical modification to lignin. Previous research has been focused on optimizing deacetylation conditions, reducing energy consumptions in mechanical refining, and improving sugar yields and titers in enzymatic hydrolysis. To successfully commercialize this process, another critical challenge is to develop a robust process to balance water usage, recover spent chemicals, and utilize waste carbons from the dilute deacetylation waste liquor. In this work, a new process modification and strategy is pioneered to recycle and reuse the weak black liquor (WBL in order to reduce water, chemical, and energy usage while increasing both inorganic and organic contents in the WBLto facilitate downstream processing. Results suggest that the accumulation did not lower acetyl and lignin removal in alkaline pretreatment, resulting in comparable sugar yields in enzymatic hydrolysis. Sodium and potassium were found to be the two most important inorganic compounds in the recycled WBL. Moreover, the accumulated sodium and phenolic compounds did not inhibit the downstream ethanol fermentation processes. Finally, techno-economic analysis (TEA showed a decrease in the minimum ethanol selling price (MESP by ~5 to 15 cents per gallon of ethanol resulting from the inclusion of the recycling of weak black liquor when compared to a conventional non-recycling process.

  6. Tire recycling technologies: What is the future?

    NARCIS (Netherlands)

    Saiwari, Sitisaiyidah; van Hoek, Johannes Wilhelmus; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.; Blume, Anke; Heideman, G.

    2016-01-01

    Recycling is a heavily discussed topic nowadays, and recycled tire material to be re-used for the same application is one of the spear points of current R&D activities. Regarding the immense amount of used tires, more than just one outlet for the recycled material is needed. Besides the commonly

  7. Reuse Recycler: High Intensity Proton Stacking at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P. [Fermilab

    2016-07-17

    After a successful career as an antiproton storage and cooling ring, Recycler has been converted to a high intensity proton stacker for the Main Injector. We discuss the commissioning and operation of the Recycler in this new role, and the progress towards the 700 kW design goal.

  8. Value-based management of design reuse

    Science.gov (United States)

    Carballo, Juan Antonio; Cohn, David L.; Belluomini, Wendy; Montoye, Robert K.

    2003-06-01

    Effective design reuse in electronic products has the potential to provide very large cost savings, substantial time-to-market reduction, and extra sources of revenue. Unfortunately, critical reuse opportunities are often missed because, although they provide clear value to the corporation, they may not benefit the business performance of an internal organization. It is therefore crucial to provide tools to help reuse partners participate in a reuse transaction when the transaction provides value to the corporation as a whole. Value-based Reuse Management (VRM) addresses this challenge by (a) ensuring that all parties can quickly assess the business performance impact of a reuse opportunity, and (b) encouraging high-value reuse opportunities by supplying value-based rewards to potential parties. In this paper we introduce the Value-Based Reuse Management approach and we describe key results on electronic designs that demonstrate its advantages. Our results indicate that Value-Based Reuse Management has the potential to significantly increase the success probability of high-value electronic design reuse.

  9. Application of ceramic membranes to SAGD produced water treatment for enhanced recycle and reuse

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, K. [Veolia Water Solutions and Technologies, Mississauga, ON (Canada)

    2009-07-01

    Drivers for using ceramic membranes in steam assisted gravity drainage (SAGD) include reduced investment cost; alternative treatment technologies that reduce energy and greenhouse gas emissions; and ceramic membranes can be chemically and steam cleaned. This presentation discussed the application of ceramic membranes to SAGD produced water treatment for enhanced recycle and reuse. The presentation illustrated conventional ceramic membranes as well as surface enhanced membranes and provided background information on oil separation. Other topics that were discussed included issues regarding desalter bottoms de-oiling; challenges in de-oiling oil sands produced water; CeraMem surface enhanced membranes; surface facilities and ceramic membrane opportunities; and water treatment using ceramic membranes. The presentation concluded with a discussion of the application of ceramic membranes to SAGD next steps such as a demonstration test of industrial prototype membranes for de-oiling, and pilot testing of ceramic desilication. tabs., figs.

  10. Treatment and reuse for irrigation of wastewater in Cagliari

    International Nuclear Information System (INIS)

    Bragadin, G.L.; Franco, D.; Mancini, M.L.

    2006-01-01

    D.M. 12 June 2003 n. 185 gives national rules about wastewater recycling and reuse. Increasing in water consumption for new agricultural practise and uncertainty about availability of water resource in summer due to climatic instability make necessary to search new available fonts. In most part of Italian territory surface water volumes are taken into civil water distribution system for domestic use and, in summer, rivers are often in dry condition before arriving in urban tracts and in quality condition typical of domestic wastewater more or less treated in downstream. This work explains an experience in reclamation and irrigation reuse of a large flowrate of domestic wastewater carried out in Cagliari and discuss results in order to test reliability and efficiency with reference to existent Italian laws about discharge (D.Lgs n. 152/99) and reuse (D.M. n. 185/2003). Simbrizzi artificial basin make possible agricultural recycling and reuse realizing adequate retention basins for storage and final finishing of wastewater, at the same time permits to avoid every discharge in seawater during summer [it

  11. Evaluation of appropriate technologies for grey water treatments and reuses.

    Science.gov (United States)

    Li, Fangyue; Wichmann, Knut; Otterpohl, Ralf

    2009-01-01

    As water is becoming a rare resource, the onsite reuse and recycling of grey water is practiced in many countries as a sustainable solution to reduce the overall urban water demand. However, the lack of appropriate water quality standards or guidelines has hampered the appropriate grey water reuses. Based on literature review, a non-potable urban grey water treatment and reuse scheme is proposed and the treatment alternatives for grey water reuse are evaluated according to the grey water characteristics, the proposed standards and economical feasibility.

  12. Solvent extraction of organic acids from stillage for its re-use in ethanol production process.

    Science.gov (United States)

    Castro, G A; Caicedo, L A; Alméciga-Díaz, C J; Sanchez, O F

    2010-06-01

    Stillage re-use in the fermentation stage in ethanol production is a technique used for the reduction of water and fermentation nutrients consumption. However, the inhibitory effect on yeast growth of the by-products and feed components that remains in stillage increases with re-use and reduces the number of possible recycles. Several methods such as ultrafiltration, electrodialysis and advanced oxidation processes have been used in stillage treatment prior its re-use in the fermentation stage. Nevertheless, few studies evaluating the effect of solvent extraction as a stillage treatment option have been performed. In this work, the inhibitory effect of serial stillage recycling over ethanol and biomass production was determined, using acetic acid as a monitoring compound during the fermentation and solvent extraction process. Raw palm oil methyl ester showed the highest acetic acid extraction from the aqueous phase, presenting a distribution coefficient of 3.10 for a 1:1 aqueous phase mixture:solvent ratio. Re-using stillage without treatment allowed up to three recycles with an ethanol production of 53.7 +/- 2.0 g L(-1), which was reduced 25% in the fifth recycle. Alternatively, treated stillage allowed up to five recycles with an ethanol final concentration of 54.7 +/- 1.3 g L(- 1). These results show that reduction of acetic acid concentration by an extraction process with raw palm oil methyl ester before re-using stillage improves the number of recycles without a major effect on ethanol production. The proposed process generates a palm oil methyl ester that contains organic acids, among other by-products, that could be used for product recovery and as an alternative fuel.

  13. The Dynamic Earth: Recycling Naturally!

    Science.gov (United States)

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  14. Sustainable Materials Management (SMM) - Recycling Economic Information (REI) Report

    Data.gov (United States)

    U.S. Environmental Protection Agency — The 2016 Recycling Economic Information (REI) Report aims to increase the understanding of the economic implications of material reuse and recycling. The report...

  15. Recycling supercapacitors based on shredding and mild thermal treatment.

    Science.gov (United States)

    Jiang, Guozhan; Pickering, Stephen J

    2016-02-01

    Supercapacitors are widely used in electric and hybrid vehicles, wind farm and low-power equipment due to their high specific power density and huge number of charge-discharge cycles. Waste supercapacitors should be recycled according to EU directive 2002/96/EC on waste electric and electronic equipment. This paper describes a recycling approach for end-of-life supercapacitors based on shredding and mild thermal treatment. At first, supercapacitors are shredded using a Retsch cutting mill. The shredded mixture is then undergone thermal treatment at 200°C to recycle the organic solvent contained in the activated carbon electrodes. After the thermal treatment, the mixture is roughly separated using a fluidized bed method to remove the aluminium foil particles and paper particles from the activated carbon particles, which is subsequently put into water for a wet shredding into fine particles that can be re-used. The recycled activated carbon has a BET surface area of up to 1200m(2)/g and the recycled acetonitrile has a high purity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fernald scrap metal recycling and beneficial reuse

    International Nuclear Information System (INIS)

    Motl, G.P.; Burns, D.D.

    1993-10-01

    The Fernald site, formerly the Feed Materials Production Facility, produced uranium metal products to meet defense production requirements for the Department of Energy from 1953 to 1989. In this report is is described how the Fernald scrap metal project has demonstrated that contractor capabilities can be used successfully to recycle large quantities of Department of Energy scrap metal. The project has proven that the open-quotes beneficial reuseclose quotes concept makes excellent economic sense when a market for recycled products can be identified. Topics covered in this report include the scrap metal pile history, the procurement strategy, scrap metal processing, and a discussion of lessons learned

  17. Present status of recycling waste mobile phones in China: a review.

    Science.gov (United States)

    Li, Jingying; Ge, Zhongying; Liang, Changjin; An, Ni

    2017-07-01

    A large number of waste mobile phones have already been generated and are being generated. Various countries around the world have all been positively exploring the way of recycling and reuse when facing such a large amount of waste mobile phones. In some countries, processing waste mobile phones has been forming a complete industrial chain, which can not only recycle waste mobile phones to reduce their negative influence on the environment but also turn waste into treasure to acquire economic benefits dramatically. However, the situation of recycling waste mobile phones in China is not going well. Waste mobile phones are not formally covered by existing regulations and policies for the waste electric and electronic equipment in China. In order to explore an appropriate system to recover waste mobile phones, the mobile phone production and the amount of waste mobile phones are introduced in this paper, and status of waste mobile phones recycling is described; then, the disposal technology of electronic waste that would be most likely to be used for processing of electronic waste in industrial applications in the near future is reviewed. Finally, rationalization proposals are put forward based on the current recovery status of waste mobile phones for the purpose of promoting the development of recycling waste mobile phones in developing countries with a special emphasis on China.

  18. Electronic waste: chemical characterization glasses of tubes cathode rays with viability for recycling; Lixo eletronico: caracterizacao quimica dos vidros de tubos de raios catodicos com viabilidade para reciclagem

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Norma Maria O.; Morais, Crislene R. Silva, E-mail: normalimam@ig.com.br [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Unidade Academica de Engenharia de Materiais; Lima, Lenilde Mergia Ribeiro [Universidade Federal de Campina Grande (UATEC/UFCG), Campina Grande, PB (Brazil). Unidade Academica de Tecnologia do Desenvolvimento

    2011-07-01

    Electronic waste, or e-waste, often makes incorrect destinations, which causes serious environmental problems. The aim of this study was to analyze the X-ray fluorescence to study the recycling technology for the glass of Cathode Ray Tubes or, popularly, 'picture tubes', identified by the acronym CRT (Cathode Ray Tubes), which integrate computer monitors. It was observed that the glass screen and funnel analyzed have different chemical compositions. As the silicon oxide (SiO2), the largest component of these glasses percentage 59.89% and 48.63% respectively for the screen and funnel this oxide is responsible for forming the vitreous network. The study of recycling of computer monitors it is important, since about 45% of existing materials on a monitor are made of glass, since it is 100% recyclable and can be reused, thus reducing the amount of waste deposited in the environment. (author)

  19. The Efficiency of Informality: Quantifying Greenhouse Gas Reductions from Informal Recycling in Bogotá, Colombia

    DEFF Research Database (Denmark)

    Vergara, Sintana E.; Damgaard, Anders; Gomez, Daniel

    2016-01-01

    The dual challenges of increasing urbanization and consumption are centered in cities in the Global South, where growing waste production threatens public and environmental health. Reuse and recycling are widely recognized to provide broad environmental benefits. Although most industrialized cities...... replaced their informal recycling sectors with municipally run recycling schemes and have had to build their recycling rates anew, most industrializing cities in the Global South remain centers of recycling and reuse through the work of informal workers. Bogotá, Colombia, is emblematic of many cities...

  20. Reuse of waste water: impact on water supply planning

    Energy Technology Data Exchange (ETDEWEB)

    Mangan, G.F. Jr.

    1978-06-01

    As the urban population of the world increases and demands on easily developable water supplies are exceeded, cities have recourse to a range of management alternatives to balance municipal water supply and demand. These alternatives range from doing nothing to modifying either the supply or the demand variable in the supply-demand relationship. The reuse or recycling of urban waste water in many circumstances may be an economically attractive and effective management strategy for extending existing supplies of developed water, for providing additional water where no developable supplies exist and for meeting water quality effluent discharge standards. The relationship among municipal, industrial and agricultural water use and the treatment links which may be required to modify the quality of a municipal waste effluent for either recycling or reuse purposes is described. A procedure is described for analyzing water reuse alternatives within a framework of regional water supply and waste water disposal planning and management.

  1. What Germany’s University Beginners Think about Water Reuse

    Directory of Open Access Journals (Sweden)

    Sarah Schmid

    2018-06-01

    Full Text Available Water reuse is a new technology, not yet implemented, but discussed for use in Germany. Public opinion plays a major role in the success of the introduction of this new technology and was not yet analyzed for Germany. When monitoring 340 university beginners’ conceptions regarding water reuse, a variety of conceptions appeared. While usage of tap water is accepted for drinking purposes, acceptance of recycled water for oral consumption was low. When asked for reasons for (not using recycled water, three groups of respondents were extracted: (a The acceptors (convinced of quality, or naming sustainability as a reason; (b the undecided (doubts about quality, rejection of its use for consumption, and psychological conflicts of logic and disgust; (c the non-acceptors (unconvinced of quality and preference for bottled water. When asked about factors that would lead to accepting the use of recycled water, insights into treatment processes were identified as the most convincing, followed by educational films and guided tours. Participants showed high conviction about currently existing tap-water qualities. Having water that is cleaned before it reaches the consumer was reported to have high priority. To increase acceptance of water reuse, recommendations for appropriate outreach programs are discussed.

  2. Green Michael addition of thiols to electron deficient alkenes using KF/alumina and recyclable solvent or solvent-free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lenardao, Eder J.; Trecha, Danusia O.; Ferreira, Patricia da C.; Jacob, Raquel G.; Perin, Gelson [Universidade Federal de Pelotas (UFPEL), Pelotas, RS (Brazil). Inst. de Quimica e Geociencias. Lab. de Sintese Organica Limpa (LASOL)]. E-mail: lenardao@ufpel.edu.br

    2009-07-01

    A general, clean and easy method for the conjugated addition of thiols to citral promoted by KF/Al{sub 2}O{sub 3} under solvent-free or using glycerin as recyclable solvent at room temperature is described. It was found that the solvent-free protocol is applicable to the direct reaction of thiophenol with the essential oil of lemon grass (Cymbopogon citratus) to afford directly 3,7-dimethyl-3-(phenylthio)oct-6-enal, a potential bactericide agent. The method was extended to other electron-poor alkenes with excellent results. For the solvent-free protocol, the use of microwave irradiation facilitated the procedure and accelerates the reaction. The catalytic system and glycerin can be reused up to three times without previous treatment with comparable activity. (author)

  3. INEL metal recycle annual report, FY-94

    International Nuclear Information System (INIS)

    Bechtold, T.E.

    1994-09-01

    In 1992, the mission of the Idaho Chemical Processing Plant was changed from reprocessing of spent nuclear fuels to development of technologies for conditioning of spent nuclear fuels and other high-level wastes for disposal in a geologic repository. In addition, the Department of Energy (DOE) directed Idaho National Engineering Laboratory (INEL) to develop a program plan addressing the management of radioactive contaminated scrap metal (RSM) within the DOE complex. Based on discussions with the EM-30 organization, the INEL Metal Recycle program plan was developed to address all issues of RSM management. Major options considered for RSM management were engineered interim storage, land disposal as low-level waste, and beneficial reuse/recycle. From its inception, the Metal Recycle program has emphasized avoidance of storage and disposal costs through beneficial reuse of RSM. The Metal Recycle program plan includes three major activities: Site-by-site inventory of RSM resources; validation of technologies for conversion of RSM to usable products; and identification of parties prepared to participate in development of a RSM recycle business

  4. Sustainability and the Recycling of Words

    Science.gov (United States)

    Miller, Donna L.; Nilsen, Alleen Pace

    2011-01-01

    With the mention of "sustainability" and "recycling," most people think about reusing paper, plastic, metal, and glass, but what the authors discovered when they embarked on a word-study unit is that the sustainability movement has also brought about the recycling of words. The authors were team-teaching a language awareness class taken by…

  5. Resource conservation approached with an appropriate collection and upgrade-remanufacturing for used electronic products.

    Science.gov (United States)

    Zlamparet, Gabriel I; Tan, Quanyin; Stevels, A B; Li, Jinhui

    2018-03-01

    This comparative research represents an example for a better conservation of resources by reducing the amount of waste (kg) and providing it more value under the umbrella of remanufacturing. The three discussed cases will expose three issues already addressed separately in the literature. The generation of waste electrical and electronic equipment (WEEE) interacts with the environmental depletion. In this article, we gave the examples of addressed issues under the concept of remanufacturing. Online collection opportunity eliminating classical collection, a business to business (B2B) implementation for remanufactured servers and medical devices. The material reuse (recycling), component sustainability, reuse (part harvesting), product reuse (after repair/remanufacturing) indicates the recovery potential using remanufacturing tool for a better conservation of resources adding more value to the products. Our findings can provide an overview of new system organization for the general collection, market potential and the technological advantages using remanufacturing instead of recycling of WEEE or used electrical and electronic equipment. Copyright © 2017. Published by Elsevier Ltd.

  6. The study on recycle scheme of the metallic radioactive wastes (II)

    International Nuclear Information System (INIS)

    Shin, J. I.; Park, J. H.; Jung, K. J.

    2003-01-01

    It was understood that regulation criteria for material release varied with countries and that international standards were not setup. But, most advanced countries are continuously studying on the recycling of metallic wastes for the purpose of the reuse of resources and disposal cost reduction. Practically, the advanced countries make a lot of cost profits compared with disposal as their metallic wastes are recycled and reused through technology like melting. The reasonable international standards are also expected to be set in the near future because of the aggressive cooperation between international agencies such as IAEA and NEA toward recycling these wastes. In our case, the recycle criteria for radioactive waste containing radioactive nuclide with long half-life such as Cs-137(half-life: 30y) and Co-60(half-life: 5.26y) including others, which are generated from the nuclear fission or dismantling of nuclear facilities, are not yet established. Therefore, it is required that the recommendation and legalization of the regulatory criteria be carried out for the recycle and reuse of metallic wastes to be generated from the dismantling of domestic nuclear facilities in the future

  7. The study on the overseas recycling technology of the radioactive metallic wastes

    International Nuclear Information System (INIS)

    Kim, H. R.; Jung, Y. S.; Sin, J. I.

    2002-01-01

    It was understood that regulation criteria for material release varied with countries and that international standards were not setup. But, most advanced countries are continuously studying on the recycling of metallic wastes for the purpose of the reuse of resources and disposal cost reduction. Practically, the advanced countries make a lot of cost profits compared with disposal as their metallic wastes are recycled and reused through technology like melting. In our case, the recycle criteria for radioactive waste containing radioactive nuclide with long half-life such as Cs-137(half-life: 30y) and Co-60(half-life: 5.26y) including others, which are generated from the nuclear fission or dismantling of nuclear facilities, are not yet established. Therefore, it is required that the recommendation and legalization of the regulatory criteria be carried out for the recycle and reuse of metallic wastes to be generated from the dismantling of domestic nuclear facilities in the future

  8. Reuse, Recycle, Reweigh: Combating Influenza through Efficient Sequential Bayesian Computation for Massive Data.

    Science.gov (United States)

    Tom, Jennifer A; Sinsheimer, Janet S; Suchard, Marc A

    Massive datasets in the gigabyte and terabyte range combined with the availability of increasingly sophisticated statistical tools yield analyses at the boundary of what is computationally feasible. Compromising in the face of this computational burden by partitioning the dataset into more tractable sizes results in stratified analyses, removed from the context that justified the initial data collection. In a Bayesian framework, these stratified analyses generate intermediate realizations, often compared using point estimates that fail to account for the variability within and correlation between the distributions these realizations approximate. However, although the initial concession to stratify generally precludes the more sensible analysis using a single joint hierarchical model, we can circumvent this outcome and capitalize on the intermediate realizations by extending the dynamic iterative reweighting MCMC algorithm. In doing so, we reuse the available realizations by reweighting them with importance weights, recycling them into a now tractable joint hierarchical model. We apply this technique to intermediate realizations generated from stratified analyses of 687 influenza A genomes spanning 13 years allowing us to revisit hypotheses regarding the evolutionary history of influenza within a hierarchical statistical framework.

  9. Waste Management Options for Long-Duration Space Missions: When to Reject, Reuse, or Recycle

    Science.gov (United States)

    Linne, Diane L.; Palaszewski, Bryan A.; Gokoglu, Suleyman; Gallo, Christopher A.; Balasubramaniam, Ramaswamy; Hegde, Uday G.

    2014-01-01

    The amount of waste generated on long-duration space missions away from Earth orbit creates the daunting challenge of how to manage the waste through reuse, rejection, or recycle. The option to merely dispose of the solid waste through an airlock to space was studied for both Earth-moon libration point missions and crewed Mars missions. Although the unique dynamic characteristics of an orbit around L2 might allow some discarded waste to intersect the lunar surface before re-impacting the spacecraft, the large amount of waste needed to be managed and potential hazards associated with volatiles recondensing on the spacecraft surfaces make this option problematic. A second option evaluated is to process the waste into useful gases to be either vented to space or used in various propulsion systems. These propellants could then be used to provide the yearly station-keeping needs at an L2 orbit, or if processed into oxygen and methane propellants, could be used to augment science exploration by enabling lunar mini landers to the far side of the moon.

  10. Household recycling behaviour and attitudes towards the disposal of small electrical and electronic equipment

    Energy Technology Data Exchange (ETDEWEB)

    Darby, Lauren; Obara, Louise [ESRC Centre for BRASS, Cardiff University, 54 Park Place, Cardiff, Wales CF10 3AT (United Kingdom)

    2005-04-01

    Waste electrical and electronic equipment (WEEE) is recognised as the fastest growing waste stream in the European Union (EU), with estimates of up to 20kg per person per annum. A wide variety of WEEE is discarded by consumers, often in different ways depending on size with small items (e.g. toasters) being easier to dispose of than larger ones (e.g. washing machines). Currently, small WEEE is not treated as a priority waste stream in the UK as in order to meet targets under the WEEE Directive (CEC, 2003c) it makes more sense to focus on larger items for which collection, reuse and recycling systems already exist, but small items need to be tackled for a number of reasons, including the long term strategic development of infrastructure. In light of this, the paper will assess consumer attitudes towards the disposal of small WEEE, and identify key problems raised by the implementation of the WEEE Directive in relation to these small product groups. The findings from a large scale postal questionnaire, and semi-structured interviews conducted in Cardiff, Wales will be used, and key literature and research carried out to date on the disposal of WEEE, and household attitudes to waste and recycling will be assessed. It will also look at how the implementation of the WEEE Directive 'fits in' with the current transition in the UK towards more sustainable waste management practices at the household level, and then explore the most effective ways of engaging householders in the recycling of small WEEE. Key recommendations will then be outlined concerning the future strategic development and practical implementation of the WEEE Directive in relation to consumer involvement and small product types.

  11. Usage of Recycled Pet

    Directory of Open Access Journals (Sweden)

    A. Ebru Tayyar

    2010-01-01

    Full Text Available The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PET bottles are commonly used in beverage industry and can be reused after physical and chemical recycling processes. Usage areas of recycled PET have been developed rapidly. Although recycled PET is used in plastic industry, composite industry also provides usage alternatives of recycled PET. Textile is a suitable sector for recycling of some plastics made of polymers too. In this study, the recycling technologies and applications of waste PET bottles have been investigated and scientific works in this area have been summarized.

  12. Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China.

    Science.gov (United States)

    Zhang, Shengen; Ding, Yunji; Liu, Bo; Pan, De'an; Chang, Chein-chi; Volinsky, Alex A

    2015-11-01

    Waste electrical and electronic equipment (WEEE) has been one of the fastest growing waste streams worldwide. Effective and efficient management and treatment of WEEE has become a global problem. As one of the world's largest electronic products manufacturing and consumption countries, China plays a key role in the material life cycle of electrical and electronic equipment. Over the past 20 years, China has made a great effort to improve WEEE recycling. Centered on the legal, recycling and technical systems, this paper reviews the progresses of WEEE recycling in China. An integrated recycling system is proposed to realize WEEE high recycling rate for future WEEE recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Potable Water Reuse: What Are the Microbiological Risks?

    Science.gov (United States)

    Nappier, Sharon P; Soller, Jeffrey A; Eftim, Sorina E

    2018-06-01

    With the increasing interest in recycling water for potable reuse purposes, it is important to understand the microbial risks associated with potable reuse. This review focuses on potable reuse systems that use high-level treatment and de facto reuse scenarios that include a quantifiable wastewater effluent component. In this article, we summarize the published human health studies related to potable reuse, including both epidemiology studies and quantitative microbial risk assessments (QMRA). Overall, there have been relatively few health-based studies evaluating the microbial risks associated with potable reuse. Several microbial risk assessments focused on risks associated with unplanned (or de facto) reuse, while others evaluated planned potable reuse, such as indirect potable reuse (IPR) or direct potable reuse (DPR). The reported QMRA-based risks for planned potable reuse varied substantially, indicating there is a need for risk assessors to use consistent input parameters and transparent assumptions, so that risk results are easily translated across studies. However, the current results overall indicate that predicted risks associated with planned potable reuse scenarios may be lower than those for de facto reuse scenarios. Overall, there is a clear need to carefully consider water treatment train choices when wastewater is a component of the drinking water supply (whether de facto, IPR, or DPR). More data from full-scale water treatment facilities would be helpful to quantify levels of viruses in raw sewage and reductions across unit treatment processes for both culturable and molecular detection methods.

  14. Electron beam radiation effects on recycled polyamide-6

    International Nuclear Information System (INIS)

    Evora, Maria Cecilia; Silva, Leonardo G. de Andrade e

    2001-01-01

    Applications of electron beam processing in the treatment of polymers are commonly used. The interaction of high energy radiation with polymers may cause permanent modifications in the polymer's physicochemical structure. The induced modifications may result in degradation of the polymer or in improvement of its properties (crosslinking), which are simultaneous and competing processes, depending on the radiation dose utilized. Crosslinking occurs more readily in the polymer's amorphous content and this process makes the glass transition temperature (Tg) of the polymers to increase. Successive recycling cycles promote changes in polymers properties, such as breaking of structure, molecular weight reduction, melt index increase and mechanical resistance reduction. The polyamide-6 resin was recycled for three successive recycling cycles and thi polyamide-6 specimens were molded by the process of injection molding. These specimens were irradiated at the Nuclear Energetic Research Institute (IPEN) radiation facility, on a JOB 188 model accelerator, with a 1.5 MeV electron beam, doses of 200, 300, 400, 500 and 600 kGy, and dose rate of 22.61 kGy/s. The DMA tests were performed using DMA-983 equipment from TA Instruments and two heatings were adopted in order to eliminate the moisture absorption. The X-ray diffraction analysis wa carried out at the Philips PW 1830 model equipment

  15. Experimental investigation of photocatalytic effects of concrete in air purification adopting entire concrete waste reuse model.

    Science.gov (United States)

    Xu, Yidong; Chen, Wei; Jin, Ruoyu; Shen, Jiansheng; Smallbone, Kirsty; Yan, Chunyang; Hu, Lei

    2018-07-05

    This research investigated the capacities of recycled aggregate concrete adopting entire concrete waste reuse model in degrading NO 2. Two major issues within environmental sustainability were addressed: concrete waste reuse rate and mitigation of hazards substances in the polluted air. The study consisted of two stages: identification of proper replacement rates of recycled concrete wastes in new concrete mixture design, and the evaluation of photocatalytic performance of recycled aggregate concrete in degrading NO 2 . It was found that replacement rates up to 3%, 30%, and 50% for recycled power, recycled fine aggregate, and recycled coarse aggregate respectively could be applied in concrete mixture design without deteriorating concrete strength. Recycled aggregates contained both positive attributes ("internal curing") and negative effects (e.g., lower hardness) to concrete properties. It was found that 30%-50% of natural coarse aggregate replaced by recycled coarse aggregates coated with TiO 2 would significantly improve the photocatalytic performance of concrete measured by degradation rate of NO 2 . Micro-structures of recycled aggregates observed under microscope indicated that soaking recycled aggregates in TiO 2 solution resulted in whiskers that filled the porosity within recycled aggregates which enhanced concrete strength. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Potential for reuse of effluent from fish-processing industries

    Directory of Open Access Journals (Sweden)

    Luana Morena Rodrigues Vitor Dias Ferraciolli

    2017-09-01

    Full Text Available The most common problems in the fish processing industry relate to high water consumption and the generation of effluents with concentrated organic loads. Given that reuse can represent an alternative for sustainable development, this study sought to assess the potential for recycling effluents produced in a fish-processing plant. In order to do so, the final industrial effluent was analyzed using the American Public Health Association (APHA standard effluent-analysis method (2005. In addition, the study assessed treatments which produce effluents meeting the requirements prescribed by different countries' regulations for reuse and recycling. The results found that effluents with smaller organic loads, such as those from health barriers and monoblock washing, can be treated in order to remove nutrients and solids so that they can be subsequently reused. For effluents produced by the washing and gutting cylinders, it is recommended that large fragments of solid waste be removed beforehand. Effluents can in this way attain a quality compatible with industrial reuse. This study further highlights the possibility of treating effluents so as comply with drinking water standards. This would potentially allow them to be used within the actual fish-processing procedure; in such a case, a revision of standards and measures for controlling use should be considered to prevent microbiological damage to products and risks to handlers and final consumers.

  17. 40 CFR Appendix C to Subpart B of... - SAE J2788 Standard for Recovery/Recycle and Recovery/Recycle/Recharging Equipment for HFC-134a...

    Science.gov (United States)

    2010-07-01

    ... Part 82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Servicing of Motor Vehicle Air Conditioners Pt. 82, Subpt. B, App. C... reuse in, mobile air-conditioning systems and recovery/recycling and system recharging of recycled...

  18. Recycling waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P I.S.

    1976-01-01

    It is being realized that if environmental quality is to be improved the amount of waste generated by man has to be substantially reduced. There are two ways this can be achieved. First, by conserving materials and energy, and sacrificing economic growth, a solution that is completely unacceptable because it would mean some form of rationing, mass unemployment, and collapse of society as it is known. The second way to reduce the volume of waste is by planned recycling, re-use, and recovery. Already the reclamation industry recovers, processes, and turns back for re-use many products used by industry and thereby reduces the UK's import bill for raw materials. In the book, the author sets out the various ways materials may be recovered from industrial and municipal wastes. The broad technology of waste management is covered and attention is focused on man's new resources lying buried in the mountains of industrial wastes, the emissions from stocks, the effluents and sludges that turn rivers into open sewers, and municipal dumps in seventeen chapters. The final chapter lists terms and concepts used in waste technology, organizations concerned with waste management, and sources of information about recycling waste. (MCW)

  19. Generation of X-rays by electrons recycling through thin internal targets of cyclic accelerators

    Science.gov (United States)

    Kaplin, V.; Kuznetsov, S.; Uglov, S.

    2018-05-01

    The use of thin (recycling effect) of electrons through them. The multiplicity of electron passes (M) is determined by the electron energy, accelerator parameters, the thickness, structure and material of a target and leads to an increase in the effective target thickness and the efficiency of radiation generation. The increase of M leads to the increase in the emittance of electron beams which can change the characteristics of radiation processes. The experimental results obtained using the Tomsk synchrotron and betatron showed the possibility of increasing the yield and brightness of coherent X-rays generated by the electrons passing (recycling) through thin crystals and periodic multilayers placed into the chambers of accelerators, when the recycling effect did not influence on the spectral and angular characteristics of generated X-rays.

  20. Recycled materials in geotechnical applications. Geotechnical special publication No. 79

    Energy Technology Data Exchange (ETDEWEB)

    Vipulanandan, C.; Elton, D.J. [eds.

    1998-07-01

    Recycled materials have the potential for use in a variety of geotechnical and geoenvironmental applications. This proceedings contains 15 papers on field applications and laboratory testing related to recycled materials. Papers cover: geotechnics of industrial by-products; paper mill sludge for landfill cover; mitigation of void development under bridge approach slabs using rubber tire chips; tire shreds as lightweight fill for embankments and retaining walls; performance of a highway embankment and hydraulic barriers constructed using waste foundry sand, and recycled materials; lagoon-stored lime for embankment; construction and demolition debris for base and subbase applications; fly ash for fill, pavement, earth structures and aggregate; compaction of contaminated soils-reuse as a road base material; and database on beneficial reuse of foundry by-products; and more.

  1. Membrane process treatment for greywater recycling: investigations on direct tubular nanofiltration.

    Science.gov (United States)

    Hourlier, F; Massé, A; Jaouen, P; Lakel, A; Gérente, C; Faur, C; Cloirec, P Le

    2010-01-01

    On-site greywater recycling and reuse is one of the main ways to reduce potable water requirement in urban areas. Direct membrane filtration is a promising technology to recycle greywater on-site. This study aimed at selecting a tubular nanofiltration (NF) membrane and its operating conditions in order to treat and reuse greywater in buildings. To do so, a synthetic greywater (SGW) was reconstituted in order to conduct experiments on a reproducible effluent. Then, three PCI NF membranes (AFC30, AFC40 and AFC80) having distinct molecular weight cut-offs were tested to recycle this SGW with a constant concentration at 25°C at two different transmembrane pressures (20 and 35 bar). The best results were obtained with AFC80 at 35 bar: the flux was close to 50 L m⁻²  h⁻¹, retentions of 95% for chemical oxygen demand and anionic surfactants were observed, and no Enterococcus were detected in the permeate. The performances of AFC80 were also evaluated on a real greywater: fluxes and retentions were similar to those observed on SGW. These results demonstrate the effectiveness of direct nanofiltration to recycle and reuse greywater.

  2. Recycling architecture: industrial archeology and concrete parks

    Directory of Open Access Journals (Sweden)

    Elena Vigliocco

    2013-02-01

    Full Text Available Abandoned industrial buildings are characterized by a fragile image which makes them unworthy;however they maintain quality and potentiality that can be explored by new solutions and strategies of intervention. Inspired by issues related to reuse and recycling, a new paradigm can be formalized: unused and abandoned existing industrial buildings maintain a latent energy that can be reactivated by new strategies of reuse; like a bottle made of plastic, an architecture can be reused before throw it away through demolition. In this case, reuse is preferable than recycle. The question is: how can we reuse an architecture that is compromised by many factors like the pollution of the soil? We need a change of paradigm: if less changes will take place on buildings, than lower will be the energy required to produce them. Different renovative strategies can be classified according to the relation between intensity of the intervention and level of the modification pursued. At the same time, public administration should take an active role in the involvement of private actors: the real possibility of reducing the untenableness of urban development models will be realized on the development of new strategies and tools. Through the description of some european cases, the article will present different solutions constructed on a layering of materials and meanings.

  3. Municipal solid waste management for total resource recycling: a case study on Haulien County in Taiwan.

    Science.gov (United States)

    Chang, Yu-Min; Liu, Chien-Chung; Dai, Wen-Chien; Hu, Allen; Tseng, Chao-Heng; Chou, Chieh-Mei

    2013-01-01

    This work presents the enforcement performance of recent Haulien County, Taiwan municipal solid waste (MSW) recycling management programs. These programs include: Mandatory Refuse Sorting and Recycling, Diverse Bulk Waste Reuse, Pay-as-you-Discharge, Total Food Waste Recycling, Restricted Use on Plastic Shopping Bags & Plastic Tableware, Recycling Fund Management, and Ash Reuse. These programs provide incentives to reduce the MSW quantity growth rate. It was found that the recycled material fraction of MSW generated in 2001 was from 6.8%, but was 32.4% in 2010 and will increase stably by 2-5% yearly in the near future. Survey data for the last few years show that only 2.68% (based on total MSW generated) of food waste was collected in 2001. However, food waste was up to 9.7% in 2010 after the Total Food Waste Recycling program was implemented. The reutilization rate of bottom ash was 20% in 2005 and up to 65% in 2010 owing to Ash Reuse Program enforcement. A quantified index, the Total Recycle Index, was proposed to evaluate MSW management program performance. The demonstrated county will move toward a zero waste society in 2015 if the Total Recycle Index approaches 1.00. Exact management with available programs can lead to slow-growing waste volume and recovery of all MSW.

  4. Ontario tire recycling and economic development (OnTRED) plan : a market approach to eliminating tire stockpiles and promoting recycled rubber product manufacturing in Ontario

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-05-15

    Details of the Ontario Tire Recycling and Economic Development (OnTRED) plan were presented. The plan was developed to address deficiencies in the Ontario Tire Stewardship's (OTS) Scrap Tire Diversion Program plan. The OTS promotes the burning of scrap tires contrary to the Waste Diversion Act, and transfers the financial responsibility for scrap tire management from manufacturers to retailers. The OnTRED plan will attempt to improve the current 87 per cent recovery rate for passenger scrap tires in Ontario, and prevent the formation of any new tire stockpiles. The aim of the OnTRED plan is to ensure reuse and recycling consistent with provisions in the Waste Diversion Act and enhance the existing workings of the tire and scrap tire market through the promotion of reuse and recycling. In addition, the plan aims to minimize administration and compliance costs. A program summary of the OnTRED plan was presented, as well as details of market development plans and buy-recycled rebates. Issues concerning collector registration and transaction tracking were presented, as well as details of brand-owner and first importer pay-in models. Stakeholder roles and responsibilities were reviewed. A budget scenario was presented, as well as a rebate and diversion scenario. It was concluded that Ontario's 87 per cent scrap tire diversion rate can be improved through a focus on patterns of reuse and recycling. 3 tabs., 7 figs.

  5. Considerations in recycling contaminated scrap metal and rubble

    International Nuclear Information System (INIS)

    Kluk, A.F.; Hocking, E.K.

    1992-01-01

    Management options for the Department of Energy's increasing amounts of contaminated scrap metal and rubble include reuse as is, disposal, and recycling. Recycling, with its promise of resource recovery, virgin materials conservation, and land disposal minimization, emerges as a preferred management technique. Implementing a cost effective recycling program requires resolution of several issues including: establishing release limits for contaminants, controlling use of recycled materials creating effective public communication programs; developing economical, reliable assay technologies; managing secondary waste streams, expanding availability of unrestricted markets; and solving conflicting legal considerations

  6. Recycling-oriented characterization of small waste electrical and electronic equipment

    International Nuclear Information System (INIS)

    Chancerel, Perrine; Rotter, Susanne

    2009-01-01

    As a result of the continuous change in the design and function of consumer electrical and electronic products, the mechanical and material properties of the obsolete products, called waste electric and electronic equipment (WEEE), are highly variable. The variability within WEEE is explained by the number of different appliances, and the heterogeneity in composition of any given appliance. This paper reports on an extended investigation of the properties of WEEE, in particular small appliances. The investigation focuses on the analysis of the composition of about 700 single appliances. Firstly, analytical methods to characterize the waste equipment are described. The results of the experimental analyses show that the mechanical properties, the material composition, the polymer composition and the chemical composition of WEEE vary not only between equipment types with different functions, but also between single appliances within one equipment type. Data on hazardous and valuable substances in selected equipment types are presented. Using detailed data on the composition of individual appliances to calculate rates of recovery for assumed recycling processes demonstrates that the performance of recycling processes depends strongly on the composition of WEEE. Recycling-oriented characterization is, therefore, a systematic approach to support the design and the operation of recycling processes.

  7. Resource recovery and recycling in OECD countries

    Energy Technology Data Exchange (ETDEWEB)

    MacNeil, J.W.

    It was the importance of the economic issues relevant to resource recovery and re-use that prompted OECD to become involved in this general area, and the author proposes in this talk to describe the principal features of the three main approaches to waste management from an economic perspective. These approaches are reduction of waste generation (i.e. birth control) resource recovery and materials recycling or re-use (reincarnation). Most of OECD's work in this area to date has been on the third of these approaches with particular emphasis on the economics of recycling, so somewhat more attention will be devoted to it. Then some conclusions will be drawn concerning possible policy actions to encourage a rational approach to management of this resource.

  8. Discovering Hidden Resources: Assistive Technology Recycling, Refurbishing, and Redistribution. RESNA Technical Assistance Project.

    Science.gov (United States)

    RESNA: Association for the Advancement of Rehabilitation Technology, Arlington, VA.

    This monograph discusses the benefits of recycling and reusing assistive technology for students with disabilities. It begins by discussing the benefits of recycled assistive technology for suppliers, students, and consumers, and then profiles programmatic models for assistive technology recycling programs. The advantages and disadvantages for…

  9. Cross-Linked ZnO Nanowalls Immobilized onto Bamboo Surface and Their Use as Recyclable Photocatalysts

    Directory of Open Access Journals (Sweden)

    Chunde Jin

    2014-01-01

    Full Text Available A novel recyclable photocatalyst was fabricated by hydrothermal method to immobilize the cross-linked ZnO nanowalls on the bamboo surface. The resultant samples were characterized by using scanning electron microscopy (SEM, X-ray diffraction (XRD, energy dispersive spectroscopy (EDS, and Fourier transformation infrared (FTIR techniques. FTIR spectra demonstrated that the cross-linked wurtzite ZnO nanowalls and bamboo surface were interconnected with each other by hydrogen bonds. Meanwhile, the cross-linked ZnO nanowalls modified bamboo (CZNB presented a superior photocatalytic ability and could be recycled at least 3 times with a photocatalytic efficiency up to 70%. The current research provides a new opportunity for the development of a portable and recycled biomass-based photocatalysts which can be an efficiently degraded pollutant solution and reused several times.

  10. Mixture optimization of cement treated demolition waste with recycled masonry and concrete

    NARCIS (Netherlands)

    Xuan, D.X.; Houben, L.J.M.; Molenaar, A.A.A.; Shui, Z.H,

    2011-01-01

    Due to environmental reasons and the shortage of natural resources, it is greatly valuable to recycle construction and demolition waste (CDW) as much as possible. One of effective ways to reuse more CDW is to produce a cemented road base material. The recycled CDW however is a mix of recycled

  11. Optimal facility and equipment specification to support cost-effective recycling

    International Nuclear Information System (INIS)

    Redus, K.S.; Yuracko, K.L.

    1998-01-01

    The authors demonstrate a project management approach for D and D projects to select those facility areas or equipment systems on which to concentrate resources so that project materials disposition costs are minimized, safety requirements are always met, recycle and reuse goals are achieved, and programmatic or stakeholder concerns are met. The authors examine a facility that contains realistic areas and equipment, and they apply the approach to illustrate the different results that can be obtained depending on the strength or weakness of safety risk requirements, goals for recycle and reuse of materials, and programmatic or stakeholder concerns

  12. Beneficial Re-Use of Metal from Decommissioning of Power Reactors

    International Nuclear Information System (INIS)

    Eshleman, Troy; Raw, Graham; Moloney, Barry

    2014-01-01

    Utilities and contractors decommissioning nuclear power reactors can recycle a high proportion of the scrap metal generated during dismantling either by free release for general re-use directly from the point of generation, or by recycling off-site at facilities specifically licensed for radioactive material. The worldwide commercial vendors operate different commercial models of volumetric decontamination of ferrous metals by thermal treatment. Some aim to achieve free release of output metals for general use, while others accept higher activity metals as feedstock for the manufacture of steel products which contain residual radioactivity, which we term 'Beneficial Re-use'. It is estimated that 10-30% of metals from light water reactor decommissioning have been exposed to neutron radiation (activated) and/or are contaminated to such an extent that free release is not achievable. This paper outlines a cost-effective alternative to managed storage or disposal for lightly activated or contaminated metal, utilising a 'Beneficial Re-Use' programme which has been in routine operation in the United States for over 20 years. 'Beneficial Re-Use' describes the manufacture of products such as radiation shielding from radioactive scrap metal. Unlike recycling practised in Europe, such products remain under control in licensed facilities and the metal does not find its way into general circulation or consumer products. Since 1992, EnergySolutions and its predecessor Duratek has been melting scrap at their Bear Creek, Tennessee facility to produce shield blocks for use in high energy research facilities. Over 62,300 t of scrap steel have been re-used, and the demand for shielding products continues long into the future. 3,000 t of this feedstock originated outside the US. This paper proposes the potential for activated steel that will not be acceptable at European recycling facilities to enter the Beneficial Re-use programme. Acceptance criteria

  13. Continuation of Research, Commercialization, and Workforce Development in the Polymer/Electronics Recycling Industry

    Energy Technology Data Exchange (ETDEWEB)

    Mel Croucher; Rakesh Gupta; Hota GangaRao; Darran Cairns; Jinzing Wang; Xiaodong Shi; Jason Linnell; Karen Facemyer; Doug Ritchie; Jeff Tucker

    2009-09-30

    The MARCEE Project was established to understand the problems associated with electronics recycling and to develop solutions that would allow an electronics recycling industry to emerge. While not all of the activities have been funded by MARCEE, but through private investment, they would not have occurred had the MARCEE Project not been undertaken. The problems tackled and the results obtained using MARCEE funds are discussed in detail in this report.

  14. Recycling nutrients in algae biorefinery

    NARCIS (Netherlands)

    Garcia Alba, Laura; Vos, M.P.; Torri, C.; Fabbri, D.; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2013-01-01

    Algal fuel cells: Repeated nutrient recycling is demonstrated by reusing the aqueous phase obtained from the hydrothermal liquefaction (HTL) of microalgae. This is achieved, for the first time, by performing a complete set of four continuous growth–HTL cycles. Results show similar growth rates in

  15. Waste reduction by re-use of low activated material - 16035

    International Nuclear Information System (INIS)

    Ehrlicher, Ulrich; Pauli, Heinz

    2009-01-01

    A multidisciplinary institute, equipped with research reactors and accelerator-driven research installations produces and, in the case of PSI, collects radioactive waste on one hand and requires material, especially for shielding purpose, on the other hand. The legislative framework for radiation protection, financial reasons and limited storage capacity strongly force Paul Scherrer Institute and comparable facilities to minimize radioactive waste. Besides free release of inactive components, recycling and re-use of low-level radioactive material in controlled areas are the best means for waste minimization. The re-use of slightly activated steel plates as a shielding material and the recycling of irradiated reactor graphite as a filling material embedded in mortar may give examples and encouragement for similar activities. Besides the advantages for radiation protection, the financial benefit can be measured in millions of dollars. (authors)

  16. Planning logistics network for recyclables collection

    Directory of Open Access Journals (Sweden)

    Ratković Branislava

    2014-01-01

    Full Text Available Rapid urbanization, intensified industrialization, rise of income, and a more sophisticated form of consumerism are leading to an increase in the amount and toxicity of waste all over the world. Whether reused, recycled, incinerated or put into landfill sites, the management of household and industrial waste yield financial and environmental costs. This paper presents a modeling approach that can be used for designing one part of recycling logistics network through defining optimal locations of collection points, and possible optimal scheduling of vehicles for collecting recyclables. [Projekat Ministarstva nauke Republike Srbije, br. TR36005

  17. Resource Recovery and Reuse in Organic Solid Waste Management

    NARCIS (Netherlands)

    Lens, P.N.L.; Hamelers, H.V.M.; Hoitink, H.; Bidlingmaier, W.

    2004-01-01

    Uncontrolled spreading of waste materials leads to health problems and environmental damage. To prevent these problems a waste management infrastructure has been set to collect and dispose of the waste, based on a hierarchy of three principles: waste prevention, recycling/reuse, and final disposal.

  18. Institutional disposition and management of end-of-life electronics.

    Science.gov (United States)

    Babbitt, Callie W; Williams, Eric; Kahhat, Ramzy

    2011-06-15

    Institutions both public and private face a challenge to develop policies to manage purchase, use, and disposal of electronics. Environmental considerations play an increasing role in addition to traditional factors of cost, performance and security. Characterizing current disposition practices for end-of-life electronics is a key step in developing policies that prevent negative environmental and health impacts while maximizing potential for positive social and economic benefits though reuse. To provide a baseline, we develop the first characterization of quantity, value, disposition, and flows of end-of-life electronics at a major U.S. educational institution. Results of the empirical study indicate that most end-of-first-life electronics were resold through public auction to individuals and small companies who refurbish working equipment for resale or sell unusable products for reclamation of scrap metal. Desktop and laptop computers sold for refurbishing and resale averaged U.S. $20-100 per unit, with computers sold directly to individuals for reuse reaching $250-350 per unit. This detailed assessment was coupled with a benchmarking survey of end-of-life electronics management practices at other U.S. universities. Survey results indicate that while auctions are still commonplace, an increasing number of institutions are responding to environmental concerns by creating partnerships with local recycling and resale entities and mandating domestic recycling. We use the analyses of current disposition practices as input to discuss institutional strategies for managing electronics. One key issue is the tension between benefits of used equipment sales, in terms of income for the institution and increased reuse for society, and the environmental risks because of unknown downstream practices.

  19. Potential reuse of petroleum-contaminated soil: A directory of permitted recycling facilities

    International Nuclear Information System (INIS)

    Rosenthal, S.; Wolf, G.; Avery, M.; Nash, J.H.

    1992-06-01

    Soil contaminated by virgin petroleum products leaking from underground storage tanks is a pervasive problem in the United States. Economically feasible disposal of such soil concerns the responsible party (RP), whether the RP is one individual small business owner, a group of owners, or a large multinational corporation. They may need a starting point in their search for an appropriate solution, such as recycling. The report provides initial assistance in two important areas. First it discusses four potential recycling technologies that manufacture marketable products from recycled petroleum-contaminated soil: the hot mix asphalt process, the cold mix asphalt system, cement production, and brick manufacturing. The report also presents the results of a project survey designed to identify recycling facilities. It lists recycling facilities alphabetically by location within each state, organized by U.S. Environmental Protection Agency (EPA) Region. The report also includes detailed addresses, recycling locations, telephone numbers, and contacts for these facilities. The scope of the project limits listings to fixed facilities or small mobile facility owners that recycle soil contaminated by virgin petroleum products into marketable commodities. It does not address site-specific or commercial hazardous waste remediation facilities

  20. Supplemental Release Limits for the Directed Reuse of Lead in Shielding Products by the Department of Energy

    International Nuclear Information System (INIS)

    Coleman, R.L.

    2001-01-01

    The DOE National Center of Excellence for Metals Recycle (NMR) proposes to define and implement a complex-wide directed reuse strategy for surplus radiologically impacted lead (Pb) as part of the U.S. Department of Energy's commitment to the safe and cost-effective recycle or reuse of excess materials and equipment across the DOE complex. NMR will, under this proposal, act on behalf of the DOE Office of Environmental Management, Office of Technical Program Integration (specifically EM-22), as the Department's clearinghouse for DOE surplus lead and lead products by developing and maintaining a cost-effective commercially-based contaminated lead recycle program. It is NMR's intention, through this directed reuse strategy, to mitigate the adverse environmental and economic consequences of managing surplus lead as a waste within the complex. This approach would promote the safe and cost-effective reuse of DOE's scrap and surplus lead in support of the Department's goals of resource utilization, energy conservation, pollution prevention and waste minimization. This report discusses recommendations for supplemental radiological limits for the directed reuse of contaminated lead and lead products by the DOE within the nuclear industry. The limits were selected--with slight modification--from the recently published American National Standards Institute and Health Physics Society standard N13.12 titled Surface and Volume Radioactivity Standards for Clearance (ANSI/HPS 1999) and are being submitted for formal approval by the DOE. Health and measurement implications from the adoption and use of the limits for directed reuse scenarios are discussed within this report

  1. Supplemental Release Limits for the Directed Reuse of Lead in Shielding Products by the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, R.L.

    2001-08-22

    The DOE National Center of Excellence for Metals Recycle (NMR) proposes to define and implement a complex-wide directed reuse strategy for surplus radiologically impacted lead (Pb) as part of the U.S. Department of Energy's commitment to the safe and cost-effective recycle or reuse of excess materials and equipment across the DOE complex. NMR will, under this proposal, act on behalf of the DOE Office of Environmental Management, Office of Technical Program Integration (specifically EM-22), as the Department's clearinghouse for DOE surplus lead and lead products by developing and maintaining a cost-effective commercially-based contaminated lead recycle program. It is NMR's intention, through this directed reuse strategy, to mitigate the adverse environmental and economic consequences of managing surplus lead as a waste within the complex. This approach would promote the safe and cost-effective reuse of DOE's scrap and surplus lead in support of the Department's goals of resource utilization, energy conservation, pollution prevention and waste minimization. This report discusses recommendations for supplemental radiological limits for the directed reuse of contaminated lead and lead products by the DOE within the nuclear industry. The limits were selected--with slight modification--from the recently published American National Standards Institute and Health Physics Society standard N13.12 titled Surface and Volume Radioactivity Standards for Clearance (ANSI/HPS 1999) and are being submitted for formal approval by the DOE. Health and measurement implications from the adoption and use of the limits for directed reuse scenarios are discussed within this report.

  2. Management status of end-of-life vehicles and development strategies of used automotive electronic control components recycling industry in China.

    Science.gov (United States)

    Wang, Junjun; Chen, Ming

    2012-11-01

    Recycling companies play a leading role in the system of end-of-life vehicles (ELVs) in China. Automotive manufacturers in China are rarely involved in recycling ELVs, and they seldom provide dismantling information for recycling companies. In addition, no professional shredding plant is available. The used automotive electronic control components recycling industry in China has yet to take shape because of the lack of supporting technology and profitable models. Given the rapid growth of the vehicle population and electronic control units in automotives in China, the used automotive electronic control components recycling industry requires immediate development. This paper analyses the current recycling system of ELVs in China and introduces the automotive product recycling technology roadmap as well as the recycling industry development goals. The strengths, weaknesses, opportunities and challenges of the current used automotive electronic control components recycling industry in China are analysed comprehensively based on the 'strengths, weaknesses, opportunities and threats' (SWOT) method. The results of the analysis indicate that this recycling industry responds well to all the factors and has good opportunities for development. Based on the analysis, new development strategies for the used automotive electronic control components recycling industry in accordance with the actual conditions of China are presented.

  3. Expanded recycling at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Betschart, J.F.; Malinauskas, L.; Burns, M.

    1996-01-01

    The Pollution Prevention Program Office has increased recycling activities, reuse, and options to reduce the solid waste streams through streamlining efforts that applied best management practices. The program has prioritized efforts based on volume and economic considerations and has greatly increased Los Alamos National Laboratory's (LANL's) recycle volumes. The Pollution Prevention Program established and chairs a Solid Waste Management Solutions Group to specifically address and solve problems in nonradioactive, Resource Conservation and Recovery Act (RCRA), state-regulated, and sanitary and industrial waste streams (henceforth referred to as sanitary waste in this paper). By identifying materials with recycling potential, identifying best management practices and pathways to return materials for reuse, and introducing the concept and practice of open-quotes asset management,open-quotes the Group will divert much of the current waste stream from disposal. This Group is developing procedures, agreements, and contracts to stage, collect, sort, segregate, transport and process materials, and is also garnering support for the program through the involvement of upper management, facility managers, and generators

  4. Collection of Recyclables from Cubes

    DEFF Research Database (Denmark)

    Wøhlk, Sanne; Bogh, Morten Bie; Mikkelsen, Hardy

    2014-01-01

    Collection of recyclable materials is a major part of reverse logistics and an important issue in sustainable logistics. In this paper we consider a case study where paper and glass are collected from recycling cubes and transported to a treatment facility where it is processed for reuse. We...... analyze how outsourcing the planning and transportation of the service can result in conflicts of interest and as a consequence cause unsustainable solutions. Finally, we suggest an alternative payment structure which can lead to a common goal, overall economic sustainability, and an improved financial...

  5. Waste Not Want Not: Water Reuse and Recycling in Texas

    Science.gov (United States)

    The Texas Water Development Board has provided more than $300 million to over 28 projects using its CWSRF to fund a diversification of water reclamation, reuse and supply development solutions to augment community resiliency in the face of drought events.

  6. Compressive strength improvement for recycled concrete aggregate

    Directory of Open Access Journals (Sweden)

    Mohammed Dhiyaa

    2018-01-01

    Full Text Available Increasing amount of construction waste and, concrete remnants, in particular pose a serious problem. Concrete waste exist in large amounts, do not decay and need long time for disintegration. Therefore, in this work old demolished concrete is crashed and recycled to produce recycled concrete aggregate which can be reused in new concrete production. The effect of using recycled aggregate on concrete compressive strength has been experimentally investigated; silica fume admixture also is used to improve recycled concrete aggregate compressive strength. The main parameters in this study are recycled aggregate and silica fume admixture. The percent of recycled aggregate ranged from (0-100 %. While the silica fume ranged from (0-10 %. The experimental results show that the average concrete compressive strength decreases from 30.85 MPa to 17.58 MPa when the recycled aggregate percentage increased from 0% to 100%. While, when silica fume is used the concrete compressive strength increase again to 29.2 MPa for samples with 100% of recycled aggregate.

  7. Investigating the feasibility of using recycled processed water

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, J. [Urban Systems, Kelowna, BC (Canada)

    2009-07-01

    By the year 2025, 52 countries, with two-thirds of the world's population, are expected to have water shortages. Approximately 3,800 cubic kilometres of fresh water is withdrawn annually from the world's lakes, river and aquifers, which is twice the volume extracted 50 years ago. Water use considerations, alternative water sources, and considerations when using recycled water were discussed in this presentation. A case study of the city of Dawson Creek was provided as it pertained to water reuse in the oil and gas industry. Considerations for recycled water use include health concerns; perception of sewage versus effluent; industrial workers' concerns; and the end product concept. Quality issues were also discussed along with access to water sources, regulations and risks. The case study included a discussion of guiding principles; Dawson Creek's water system; industrial water uses; wastewater system; effluent characteristics; and effluent reuse opportunities. It was concluded that concerns regarding water reuse are not insurmountable providing the driving factors are strong. figs.

  8. The analysis on the current status of the overseas recycle technology of the metallic radioactive wastes

    International Nuclear Information System (INIS)

    Shin, Jae In; Kim, Hee Reyoung; Jung, Kee Jung

    2002-05-01

    It was understood that regulation criteria for material release varied with countries and that international standards were not setup. But, most advanced countries are continuously studying on the recycling of metallic wastes for the purpose of the reuse of resources and disposal cost reduction. Practically, the advanced countries make a lot of cost profits compared with disposal as their metallic wastes are recycled and reused through technology like melting. The reasonable international standards are also expected to be set in the near future because of the aggressive cooperation between international agencies such as IAEA and NEA toward recycling these wastes. In our case, the recycle criteria for radioactive waste containing radioactive nuclide with long half-life such as Cs-137(half-life: 30y) and Co-60(half-life: 5.26y) including others, which are generated from the nuclear fission or dismantling of nuclear facilities, are not yet established. Therefore, it is required that the recommendation and legalization of the regulatory criteria be carried out for the recycle and reuse of metallic wastes to be generated from the dismantling of domestic nuclear facilities in the future

  9. Development of an Integrated Wastewater Treatment System/water reuse/agriculture model

    Science.gov (United States)

    Fox, C. H.; Schuler, A.

    2017-12-01

    Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The

  10. An evaluation of concrete recycling and reuse practices

    Energy Technology Data Exchange (ETDEWEB)

    Nakhjiri, K.S.; MacKinney, J.

    1997-02-01

    Nuclear facilities operated by the Department of Energy (DOE), Department of Defense (DOD), and NRC licensees contain many concrete structures that are contaminated with radioactivity. Dismantling these structures will result in significant quantities of waste materials, both contaminated and uncontaminated. Bartlett estimates the total volume of waste from demolition of concrete structures to be on the order of 4 million cubic meters, but that only 20,000 cubic meters would be contaminated with radioactivity. Other studies suggest that as much as 5% of the concrete in these facilities would be contaminated with radioactivity. While the actual quantity of contaminated material should be fixed with greater precision, the fact that so much uncontaminated concrete exists (over 95% of the total 4 million cubic meters) suggests that a program that recycles concrete could produce substantial savings for both government agencies (DOE, DOD) and private companies (NRC licensees). This paper presents a fundamental discussion of (1) various methods of processing concrete, (2) demolition methods, especially those compatible with recycling efforts, and (3) state-of-the-art concrete dismantlement techniques.

  11. Research, Commercialization, & Workforce Development in the Polymer/Electronics Recycling Industry

    Energy Technology Data Exchange (ETDEWEB)

    Carl Irwin; Rakesh Gupta; Richard Turton; GangaRao Hota; Cyril Logar; Tom Ponzurick; Buddy Graham; Walter Alcorn; Jeff Tucker

    2006-02-01

    The Mid-Atlantic Recycling Center for End-of-Life Electronics (MARCEE) was set up in 1999 in response to a call from Congressman Alan Mollohan, who had a strong interest in this subject. A consortium was put together which included the Polymer Alliance Zone (PAZ) of West Virginia, West Virginia University (WVU), DN American and Ecolibrium. The consortium developed a set of objectives and task plans, which included both the research issues of setting up facilities to demanufacture End-of-Life Electronics (EoLE), the economics of the demanufacturing process, and the infrastructure development necessary for a sustainable recycling industry to be established in West Virginia. This report discusses the work of the MARCEE Project Consortium from November 1999 through March 2005. While the body of the report is distributed in hard-copy form the Appendices are being distributed on CD's.

  12. Re-use of construction and demolition residues and industrial wastes for the elaboration or recycled eco-efficient concretes

    Energy Technology Data Exchange (ETDEWEB)

    Juan Valdes, A.; Medina Martinez, C.; Guerra Romero, M. I.; Llamas Garcia, B.; Moran del Pozo, J. M.; Tascon Vegas, A.

    2010-07-01

    Production of residues from industries and construction and demolition sectors has increased during last years. The total amount of debris produced according to different estimations reaches values close to 42 million tonnes yr{sup -}1. Much of this waste has been thrown to landfill, without considering its potential for reuse, recycling or valuation. The aim of this research is to describe some of the physical and mechanical properties of different laboratory-mixed concretes, using various proportions of additional materials recovered from industrial waste and demolition rubble. The added materials are included either as admixtures (forestry residues, cork dust, steel fibre) or in partial substitution of natural aggregates (wire from electrical residues, tyre rubber, white ceramic, sanitary porcelain or shale). The laboratory tests have followed the standard EN protocols. Assay results were variable according to the nature of the material added to the mix: organic materials and shale, despite the steel fibre reinforcement, reduce the compression strength, but are suitable for the manufacture of lightweight concrete for agricultural pavements, with certain flexion resistance and a relatively good behaviour to impact. The substitution of natural aggregates with ceramic and porcelain wastes produces a significant increase in compression resistance, making them suitable for the manufacture of concrete with characteristic resistances above 40 MPa, which can be used both for structures or other agricultural elements: separators, feeders, slat floors. As a conclusion can be stated the possibility of reuse these wastes for the production of structural or non-structural concrete, with different applications in agricultural engineering. (Author) 36 refs.

  13. Re-use of construction and demolition residues and industrial wastes for the elaboration or recycled eco-efficient concretes

    International Nuclear Information System (INIS)

    Juan Valdes, A.; Medina Martinez, C.; Guerra Romero, M. I.; Llamas Garcia, B.; Moran del Pozo, J. M.; Tascon Vegas, A.

    2010-01-01

    Production of residues from industries and construction and demolition sectors has increased during last years. The total amount of debris produced according to different estimations reaches values close to 42 million tonnes yr - 1. Much of this waste has been thrown to landfill, without considering its potential for reuse, recycling or valuation. The aim of this research is to describe some of the physical and mechanical properties of different laboratory-mixed concretes, using various proportions of additional materials recovered from industrial waste and demolition rubble. The added materials are included either as admixtures (forestry residues, cork dust, steel fibre) or in partial substitution of natural aggregates (wire from electrical residues, tyre rubber, white ceramic, sanitary porcelain or shale). The laboratory tests have followed the standard En protocols. Assay results were variable according to the nature of the material added to the mix: organic materials and shale, despite the steel fibre reinforcement, reduce the compression strength, but are suitable for the manufacture of lightweight concrete for agricultural pavements, with certain flexion resistance and a relatively good behaviour to impact. The substitution of natural aggregates with ceramic and porcelain wastes produces a significant increase in compression resistance, making them suitable for the manufacture of concrete with characteristic resistances above 40 MPa, which can be used both for structures or other agricultural elements: separators, feeders, slat floors. As a conclusion can be stated the possibility of reuse these wastes for the production of structural or non-structural concrete, with different applications in agricultural engineering. (Author) 36 refs.

  14. Recycling technologies for sewarage systems. Reuse of water, heat, and sludge in Tokyo; Gesuido wo meguru risaikuru gijutsu. Tokyoto ni okeru mizu/netsu/odei no sairiyo

    Energy Technology Data Exchange (ETDEWEB)

    Mino, T. [Tokyo Univ. (Japan)

    1996-03-10

    The recycling technology employed in Tokyo were reported. It will be useful for developing and introducing the recycling technology for water, heat, and sludge in the sewage treatment. Among various kinds of recycling technology, one of the most peculiar technology is the district heating and cooling system using the heat of sewage. The Japan`s first practical plant which uses the untreated sewage as the heat source was installed and is now operating in Korakuen pump station. In the station, the energy contained in the sewage is recovered by a heat exchanger. The heat pump produces warm water of 45{degree}C and cold water of 7{degree}C as well. Both are supplied to the area near by through the heat source supply pipeline. The Nanbu sludge plant has a sludge-resourcing plant, in which the sludge is converted into fuel, metro-bricks, and light-weight granules, as well as a conventional sludge treatment plant carrying out the concentration, dehydration, and incineration of sludge. The Ochiai sewage treatment plant reuses water after cleaning. The clean water is used as for the service water in addition to being discharged into the river stream. 7 figs., 1 tab.

  15. Recycling the liquid fraction of alkaline hydrogen peroxide in the pretreatment of corn stover.

    Science.gov (United States)

    Alencar, Bárbara Ribeiro Alves; Reis, Alexandre Libanio Silva; de Souza, Raquel de Fatima Rodrigues; Morais, Marcos Antônio; Menezes, Rômulo Simões Cezar; Dutra, Emmanuel Damilano

    2017-10-01

    The aim of this study was to evaluate the influence of recycling the liquid fraction of pretreatment with alkaline hydrogen peroxide (AHP) on the hydrolysis of corn stover. Corn stover was pretreated in the traditional condition with 7.5% v/v H 2 O 2 . After pretreatment, the solids were separated from the liquid fraction and five successive reuse cycles of the liquid fraction were tested. The solid fraction from pretreatment in each recycle was submitted to enzymatic hydrolysis. The number of recycles had a linear negative effect (R 2 =0.98) on biomass delignification efficiency and also affected negatively the enzymatic conversion efficiency. Despite the decrease in efficiency after each recycling step, reuse of the liquid fraction leads to reduction in water, H 2 O 2 and NaOH consumption of up to 57.6%, 59.6% and 57.6%, respectively. These findings point to an efficient recycling technology, which may reduce costs and save water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Summary Report about the Sustainable Materials Management (SMM) Electronics Reuse and Recycling Forum

    Science.gov (United States)

    On September 23 and 24, 2014, EPA hosted a forum to “harness the collective power of the electronics community and identify shared priorities that will advance domestic end-of-life electronics management.

  17. A Pilot Assessment of Occupational Health Hazards in the US Electronic Scrap Recycling Industry.

    Science.gov (United States)

    Ceballos, Diana M; Gong, Wei; Page, Elena

    2015-01-01

    The National Institute for Occupational Safety and Health (NIOSH) surveyed a randomly selected sample of electronic scrap (e-scrap) recycling facilities nationwide to characterize work processes, exposures, and controls. Despite multiple attempts to contact 278 facilities, only 47 responded (17% response rate). Surveyed facilities reported recycling a wide variety of electronics. The most common recycling processes were manual dismantling and sorting. Other processes included shredding, crushing, and automated separation. Many facilities reported that they had health and safety programs in place. However, some facilities reported the use of compressed air for cleaning, a practice that can lead to increased employee dust exposures, and some facilities allowed food and drinks in the production areas, a practice that can lead to ingestion of contaminants. Although our results may not be generalizable to all US e-scrap recycling facilities, they are informative regarding health and safety programs in the industry. We concluded that e-scrap recycling has the potential for a wide variety of occupational exposures particularly because of the frequent use of manual processes. On-site evaluations of e-scrap recyclers are needed to determine if reported work processes, practices, and controls are effective and meet current standards and guidelines. Educating the e-scrap recycling industry about health and safety best practices, specifically related to safe handling of metal dust, would help protect employees.

  18. Entropy, recycling and macroeconomics of water resources

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris

    2014-05-01

    We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences

  19. Recycling-Oriented Product Characterization for Electric and Electronic Equipment as a Tool to Enable Recycling of Critical Metals

    Science.gov (United States)

    Rotter, Vera Susanne; Chancerel, Perrine; Ueberschaar, Maximilian

    To establish a knowledge base for new recycling processes of critical elements, recycling-orientated product characterization for Electric and Electronic Equipment (EEE) can be used as a tool. This paper focuses on necessary data and procedures for a successful characterization and provides information about existing scientific work. The usage of this tool is illustrated for two application: Hard Disk Drives (HDD) and Liquid Crystal Display (LCD) panels. In the first case it could be shown that Neodymium and other Rare Earth Elements are concentrated in magnets (25% by weight) and contribute largely to the end demand of Neodymium. Nevertheless, recycling is limited by the difficult liberation and competing other target metals contained in HDD. In the second case it could be shown that also for this application the usage of Indium is concentrated in LCDs, but unlike in magnets the concentration is lower (200 ppm). The design of LCDs with two glued glass layers and the Indium-Tin-Oxide layer in between make the Indium inaccessible for hydro-metallurgical recovery, the glass content puts energetic limitations on pyro-metallurgical processes. For the future technical development of recycling infrastructure we need an in depth understanding of product design and recycling relevant parameters for product characterization focusing on new target metals. This product-centered approach allows also re-think traditional "design for recycling" approaches.

  20. Pretreatment of eucalyptus with recycled ionic liquids for low-cost biorefinery.

    Science.gov (United States)

    Xu, Jikun; Liu, Bingchuan; Hou, Huijie; Hu, Jingping

    2017-06-01

    It is urgent to develop recycled ionic liquids (ILs) as green solvents for sustainable biomass pretreatment. The goal of this study is to explore the availability and performance of reusing 1-allyl-3-methylimidazolium chloride ([amim]Cl) and 1-butyl-3-methylimidazolium acetate ([bmim]OAc) for pretreatment, structural evolution, and enzymatic hydrolysis of eucalyptus. Cellulose enzymatic digestibility slightly decreased with the increased number of pretreatment recycles. The hydrolysis efficiencies of eucalyptus pretreated via 4th recycled ILs were 54.3% for [amim]Cl and 72.8% for [bmim]OAc, which were 5.0 and 6.7-folds higher than that of untreated eucalyptus. Deteriorations of ILs were observed by the relatively lower sugar conversion and lignin removal from eucalyptus after 4th reuse. No appreciable changes in fundamental framework and thermal stability of [amim]Cl were observed even after successive pretreatments, whereas the anionic structure of [bmim]OAc was destroyed or replaced. This study suggested that the biomass pretreatment with recycled ILs was a potential alternative for low-cost biorefinery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Social awareness programmes in waste management and recycling

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2013-05-01

    Full Text Available .csir.co.zaSlide 21 • Clean-up campaigns do not succeed in changing human behaviour • Main message must be “do not litter” and “Reduce, re-use and recycle” • Incentives associated with clean-up campaigns often reward bad behaviour • Payment for clean-ups must... to emotion • If people feel guilty if they don’t recycle, they are likely to start recycling • Create simple “Prompts” • Sticky notes on garbage bins to remind people to recycle • Use social pressure • Share peer behaviour • Incentives • Make behaviour public...

  2. Reusing Implicit Cooperation. A Novel Approach to Knowledge Management

    Directory of Open Access Journals (Sweden)

    Luigi Lancieri

    2008-07-01

    Full Text Available The study described in this paper deals with information reuse obtained by implicit co-operation, particularly by recycling the contents of a proxy cache (shared memory. The objective is to automatically feed a Web server with large multimedia objects implicitly centred on community fields of interests. We show that the strategy of reusing previously downloaded information provides interesting advantages at a low cost; in particular, to reduce Web access time, to improve information retrieval, and to reduce Internet bandwidth use. Moreover, we use the conceptual frameworks of forgetting and collective intelligence to develop a model on which the operation of implicit cooperation is based.

  3. Application of Ultrafiltration in a Paper Mill: Process Water Reuse and Membrane Fouling Analysis

    Directory of Open Access Journals (Sweden)

    Chen Chen

    2015-02-01

    Full Text Available High water consumption is a major environmental problem that the pulp and paper industry is facing. Ultrafiltration (UF can be used to remove the dissolved and colloidal substances (DCS concentrated during the recycling of white water (the process water to facilitate the reuse of white water and reduce fresh water consumption. However, membrane fouling limits the application of UF in this industry. In this study, super-clear filtrate obtained from a fine paper mill was purified with a polyethersulfone (PES ultrafiltration membrane to evaluate the reuse performance of the ultrafiltrate. The membrane foulants were characterized by scanning electron microscopy, energy-dispersive spectrophotometry, attenuated total reflection-fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry. The results indicate that the retention rate of stock and the strength properties of paper increased when the ultrafiltrate was reused in the papermaking process compared to when super-clear filtrate was used. The reversible membrane foulants during ultrafiltration accounted for 85.52% of the total foulants and primarily originated from retention aids, drainage aids, and wet strength resins, while the irreversible adsorptive foulants accounted for 14.48% and mostly came from sizing agents, coating chemicals, and others. Moreover, the presence of dissolved multivalent metal ions, especially Ca2+, accelerated membrane fouling.

  4. Treatment and recycling of textile wastewaters

    International Nuclear Information System (INIS)

    Ciardelli, G.; Brighetti, G.

    1999-01-01

    The results of an experimental campaign involving the treatment of textile wastewaters for recycle by mean of an absorption resins pilot plant are briefly described. The case study concerned the treatment and reuse of yarns dyeing wastewaters. Results obtained indicate the possibility of an industrial scale implementation of the technique [it

  5. Assessment of opportunities to increase the recovery and recycling rates of waste oils

    Energy Technology Data Exchange (ETDEWEB)

    Graziano, D.J.; Daniels, E.J.

    1995-08-01

    Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

  6. Potential GTCC LLW sealed radiation source recycle initiatives

    International Nuclear Information System (INIS)

    Fischer, D.

    1992-04-01

    This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities

  7. Optics of Electron Beam in the Recycler

    International Nuclear Information System (INIS)

    Burov, A.; Kroc, T.; Lebedev, V.; Nagaitsev, S.; Prost, L.; Pruss, S.; Shemyakin, A.; Sutherland, M.; Warner, A.; Kazakevich, G.; Tiunov, M.

    2006-01-01

    Electron cooling of 8.9 GeV/c antiprotons in the Recycler ring (Fermilab) requires high current and good quality of the DC electron beam. Electron trajectories of ∼0.2 A or higher DC electron beam have to be parallel in the cooling section, within ∼ 0.2 mrad, making the beam envelope cylindrical. These requirements yielded a specific scheme of the electron transport from a gun to the cooling section, with electrostatic acceleration and deceleration in the Pelletron. Recuperation of the DC beam limits beam losses at as tiny level as ∼0.001%, setting strict requirements on the return electron line to the Pelletron and a collector. To smooth the beam envelope in the cooling section, it has to be linear and known at the transport start. Also, strength of the relevant optic elements has to be measured with good accuracy. Beam-based optic measurements are being carried out and analysed to get this information. They include beam simulations in the Pelletron, differential optic (beam response) measurements and simulation, beam profile measurements with optical transition radiation, envelope measurements and analysis with orifice scrapers. Current results for the first half-year of commissioning are presented. Although electron cooling is already routinely used for pbar stacking, its efficiency is expected to be improved

  8. Hybrid membrane processes for water reuse

    OpenAIRE

    Pidou, Marc

    2006-01-01

    Water recycling is now widely accepted as a sustainable option to respond to the general increase of the fresh water demand, water shortages and for environment protection. Because greywater represents up to 70% of domestic wastewater volume but contains only 30% of the organic fraction and from 9 to 20% of the nutrients (Kujawa-Roeleveld and Zeeman, 2006), it is seen as one of the most appropriate sources to be treated and reuse. A broad range of technologies has been used for...

  9. Expansive development of a decommissioning program 'recycle simulator' in nuclear power station

    International Nuclear Information System (INIS)

    Nishiuchi, T.; Ozaki, S.; Hironaga, M.

    2004-01-01

    A decommissioning program 'Recycle Simulator' should be put into practice in careful consideration of both recycle of non-radioactive wastes and reduce of radioactive wastes in the coming circulatory social system. Nevertheless current support systems for decommissioning planning mainly deal with decontamination, safety storage and dismantlement, so-called the prior part of the total decommissioning process. Authors emphasize the necessity of total planning of decommissioning including recycle or reuse of a large amount of demolition materials and are propelling the development of the multi expert system named 'Recycle Simulator'. This paper presents an algorithm of the recycling and reusing scenario of demolition materials and a summarized configuration. 'Recycle Simulator' for the demolished concrete was developed in 2000 and presented at a previous International Conference on Nuclear Engineering. Construction of a supporting multi expert system for the totally planning of decommissioning projects is objected by expansive development of the previous version. 3 main conclusions obtained from this paper are the following. (1) The previously developed expert system was advanced in its estimation function toward the satisfaction of decommissioning planners. (2) The applicability of the system was enlarged to all the radioactive and non-radioactive wastes, demolished metal and concrete products, in a corresponding site of decommissioning. (3) Finally decommissioning recycle simulator was completed in a harmonized unification. (authors)

  10. Crumb Rubber in cold recycled bituminous mixes

    DEFF Research Database (Denmark)

    Dondi, Giulio; Tataranni, Piergiorgio; Pettinari, Matteo

    2014-01-01

    Today recycling is one of the most innovative and interesting techniques for the rehabilitation of destressed road pavements. In recent years the increased interest in this process, has led to the development of various alternative methods for the recovery and the reuse of road bituminous materials...

  11. Radioactive Scrap Metal (RSM) recycling: A doe white paper

    International Nuclear Information System (INIS)

    Chatterjee, S.; Moore, H.H.; Ghoshal, A.

    1992-01-01

    An effective White Paper on recycling radioactive scrap metals has been drafted at the request of the U.S. Department of Energy (DOE) recently. The paper has received the praise and commendation of the DOE's Director of Environmental Management. However, obstructionist posturing by the petty bureaucrats in DOE continues to plague the meaningful implementation of RSM recycling. The key findings of the White Paper study and its major recommendations have discussed in this paper. The study indicates that several technologies, such as melt refining and electro refining, are currently available for surface and volume decontamination of metals. The unit cost of decontamination was found to vary from $700 to $400/ton; recycling of most low-contaminated metals can therefore be cost-effective vis-a vis the average cost of low-level radioactive wastes disposal of %400 to $2800/ton. Major recycling demonstration projects with emphasis on restricted RSM reuse options have been recommended. Volume contamination standard for unrestricted release should be established only after adequate studies of health effects and scientific/industrial effects of RSM reuse has been conducted by the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC). Some of the significant technical data developed during this study have also been briefly discussed in this paper. (author)

  12. The impact of radioactive steel recycling on the public and professionals

    International Nuclear Information System (INIS)

    Hrncir, Tomas; Panik, Michal; Ondra, Frantisek; Necas, Vladimir

    2013-01-01

    Highlights: • Methodology for recycling of decommissioning steel was developed. • Four scenarios of recycling within nuclear and public sector were suggested. • Radiation impact assessment of suggested scenarios was performed. • Conditional clearance levels for analyzed radionuclides were derived. • Results imply that recycling of decommissioning steel can be feasible. -- Abstract: The decommissioning of nuclear power plants represents a complex process resulting in the generation of large amounts of waste materials, e.g. steel scrap containing various concentrations of radionuclides. Recycling some of these materials is highly desirable due to numerous reasons. Herein presented scenarios of recycling of radioactive steel within the nuclear as well as civil engineering industry are analyzed from the radiation protection point of view. An approach based on the dose constraints principle is chosen. The aim of the study is to derive conditional clearance levels (maximal specific mass activity of material allowing its recycling/clearance) for analyzed radionuclides ensuring that the detrimental impact on human health is kept on a negligible level. Determined conditional clearance levels, as the result of performed software calculations, are valid for the reuse of radioactive steel in four selected scenarios. Calculation results indicate that the increase of the amount of recyclable radioactive steel due to its reuse in specific applications may be feasible considering the radiation impact on the public and professionals. However, issues connected with public acceptance, technical difficulties and financing of potential realization are still open and they have to be examined in more detail

  13. Archetype-based data warehouse environment to enable the reuse of electronic health record data.

    Science.gov (United States)

    Marco-Ruiz, Luis; Moner, David; Maldonado, José A; Kolstrup, Nils; Bellika, Johan G

    2015-09-01

    The reuse of data captured during health care delivery is essential to satisfy the demands of clinical research and clinical decision support systems. A main barrier for the reuse is the existence of legacy formats of data and the high granularity of it when stored in an electronic health record (EHR) system. Thus, we need mechanisms to standardize, aggregate, and query data concealed in the EHRs, to allow their reuse whenever they are needed. To create a data warehouse infrastructure using archetype-based technologies, standards and query languages to enable the interoperability needed for data reuse. The work presented makes use of best of breed archetype-based data transformation and storage technologies to create a workflow for the modeling, extraction, transformation and load of EHR proprietary data into standardized data repositories. We converted legacy data and performed patient-centered aggregations via archetype-based transformations. Later, specific purpose aggregations were performed at a query level for particular use cases. Laboratory test results of a population of 230,000 patients belonging to Troms and Finnmark counties in Norway requested between January 2013 and November 2014 have been standardized. Test records normalization has been performed by defining transformation and aggregation functions between the laboratory records and an archetype. These mappings were used to automatically generate open EHR compliant data. These data were loaded into an archetype-based data warehouse. Once loaded, we defined indicators linked to the data in the warehouse to monitor test activity of Salmonella and Pertussis using the archetype query language. Archetype-based standards and technologies can be used to create a data warehouse environment that enables data from EHR systems to be reused in clinical research and decision support systems. With this approach, existing EHR data becomes available in a standardized and interoperable format, thus opening a world

  14. Analysis of Possibilities for Using Recycled Concrete Aggregate in Concrete Pavement

    OpenAIRE

    R. Pernicova; D. Dobias

    2016-01-01

    The present article describes the limits of using recycled concrete aggregate (denoted as RCA) in the top layer of concrete roads. The main aim of this work is to investigate the possibility of reuse of recycled aggregates obtained by crushing the old concrete roads as a building material in the new top layers of concrete pavements. The paper is based on gathering the current knowledge about how to use recycled concrete aggregate, suitability, and modification of the properties and its standa...

  15. Evaluation of radioactive scrap metal recycling

    International Nuclear Information System (INIS)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information

  16. Evaluation of radioactive scrap metal recycling

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  17. Major issues associated with DOE commercial recycling initiatives

    International Nuclear Information System (INIS)

    Motl, G.P.; Burns, D.D.; Rast, D.M.

    1994-01-01

    Major initiatives are underway within DOE to recycle large volumes of scrap material generated during cleanup of the DOE Weapons Complex. These recycling initiatives are driven not only by the desire to conserve natural resources, but also by the recognition that shallow level burial is not a politically acceptable option. The Fernald facility is in the vanguard of a number of major DOE recycling efforts. These early efforts have brought issues to light that can have a major impact on the ability of Fernald and other major DOE sites to expand recycling efforts in the future. Some of these issues are; secondary waste deposition, title to material and radioactive contaminants, mixed waste generated during recycling, special nuclear material possession limits, cost benefit, transportation of waste to processing facilities, release criteria, and uses for beneficially reused products

  18. Reuse of waste water from high pressure water jet decontamination for reactor decommissioning scrap metal

    International Nuclear Information System (INIS)

    Deng Junxian; Li Xin; Hou Huijuan

    2011-01-01

    For recycle and reuse of reactor decommissioning scrap metal by high pressure water jet decontamination, large quantity of radioactive waste water will be generated. To save the cost of radioactive waste water treatment and to reduce the cost of the scrap decontamination, this part of radioactive waste water should be reused. Most of the radioactivities in the decontamination waste water come from the solid particle in the water. Thus to reuse the waste water, the solid particle in the waster should be removed. Different possible treatment technologies have been investigated. By cost benefit analysis the centrifugal separation technology is selected. (authors)

  19. The QWERTY/EE concept, Quantifying Recyclability and Eco-Efficiency for End-of-Life Treatment of Consumer Electronic Products

    NARCIS (Netherlands)

    Huisman, J.

    2003-01-01

    The QWERTY/EE concept addresses recyclability and eco-efficiency of take-back and recycling of consumer electronic products, a topic currently receiving large international attention. Through the environmental part of the concept an alternative for usual weight based recycling percentages is

  20. Recycling of end-of-life reverse osmosis membranes by oxidative treatment: a technical evaluation.

    Science.gov (United States)

    Coutinho de Paula, Eduardo; Gomes, Júlia Célia Lima; Amaral, Míriam Cristina Santos

    2017-07-01

    The adverse impacts caused by the disposal of thousands of tonnes per annum of reverse osmosis (RO) membranes modules have grown dramatically around the world. The objective of this study was to evaluate the technical feasibility of recycling by chemical oxidation of end-of-life RO membranes for applications in other separation processes with specifications less rigorous. The recycling technique consisted in to cause a membrane exposition with oxidant solutions in order to remove its aromatic polyamide layer and subsequent conversion to a porous membrane. The recycling technique was evaluated by water permeability and salt rejection tests before and after the oxidative treatments. Initially, membranes' chemical cleaning and pretreatment procedures were assessed. Among factors evaluated, the oxidizing agent, its concentration and pH, associated with the oxidative treatment time, showed important influence on the oxidation of the membranes. Results showed that sodium hypochlorite and potassium permanganate are efficient agents for the membrane recycling. The great increased permeability and decreased salt rejection indicated changes on membranes' selective properties. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and contact angle characterization techniques revealed marked changes on the main membranes' physical-chemical properties, such as morphology, roughness and hydrophobicity. Reuse of produced effluents and fouling tendency of recycled membranes were also evaluated.

  1. Industrial wastewater reuse in petroleum refinery using the WSD for regeneration systems

    Directory of Open Access Journals (Sweden)

    Lídia Yokoyama

    2011-12-01

    Full Text Available Wastewater reuse practices in the industry require an adequate understanding of the characteristics of the manufacture processes, to minimize the water consumption and the generation of effluent. The objective of this work was to apply the WSD method, used to defining the target of minimum process water consumption in a case study of oil refinery, by means of the reuse and recycling operations, including regeneration processes. The importance and influence of the wastewater treatment plant in the regeneration quality, including intermediate process streams, for the reuse and the recycling operations, were evaluated. Furthermore, centralized and distributed treatment flowsheet configurations were tested. Thus, this work presented the solution of a case study with three contaminants in water streams processes, different interconnections approaches, used to illustrate the application of this procedure showing the reduction of water flow rate and total costs compared to the original flowsheet. The scenarios revealed to be greatly promising, and flowsheet configurations were reached with higher than 4 % and 20 % of reduction in the water flow rate consumption and the total costs, respectively. Regarding the ecoefficiency processes, the results demonstrate that the applied technique is successful when the minimum water consumption is the main goal in the industry.

  2. Photo-catalytic reactors for in-building grey water reuse. Comparison with biological processes and market potential

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, B.; Murray, C.; Diaper, C.; Parsons, S.A.; Jeffrey, P. [School of Water Sciences, Cranfield Univ., Cranfield, Bedfordshire (United Kingdom); Bedel, C. [Dept. of Industrial Process, National Inst. of Applied Sciences (France); Centeno, C. [Dept. of the Faculty of Engineering, Univ. of Santo Tomas, Manila (Philippines)

    2003-07-01

    Photo catalytic reactors potentially have a market in the reuse of grey water as they do not suffer from problems associated with toxic shocks and can be compact. The process is dependant upon the ratio of TOC to TiO{sub 2} concentration such that a greater proportion of the feed is degraded when either are increased. Economic assessment of grey water recycling showed both scale of operation and regional location to be the two most important factors in deciding the financial acceptability of any reuse technology. Overall the assessment suggested that photo catalytic oxidation (PCO) technology was suitable for grey water recycling and that the technology should be marketed at large buildings such as residential accommodation and offices. (orig.)

  3. MOX fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    Guillet, J.L.

    1990-01-01

    This paper is devoted to the reprocessing of MOX fuel in UP2-800 plant at La Hague, and to the MOX successive reprocessing and recycling. 1. MOX fuel reprocessing. In a first step, the necessary modifications in UP2-800 to reprocess MOX fuel are set out. Early in the UP2-800 project, actions have been taken to reprocess MOX fuel without penalty. They consist in measures regarding: Dissolution; Radiological shieldings; Nuclear instrumentation; Criticality. 2. Mox successive reprocessing and recycling. The plutonium recycling in the LWR is now a reality and, as said before, the MOX fuel reprocessing is possible in UP2-800 plant at La Hague. The following actions in this field consist in verifying the MOX successive reprocessing and recycling possibilities. After irradiation, the fissile plutonium content of irradiated MOX fuel is decreased and, in this case, the re-use of plutonium in the LWR need an important increase of initial Pu enrichment inconsistent with the Safety reactor constraints. Cogema opted for reprocessing irradiated MOX fuel in dilution with the standard UO2 fuel in appropriate proportions (1 MOX for 4 UO2 fuel for instance) in order to save a fissile plutonium content compatible with MOX successive recycling (at least 3 recyclings) in LWR. (author). 2 figs

  4. Economic evaluation of municipal solid waste recycling in Yazd:

    OpenAIRE

    Eslami H; Mokhtari M; Eslami Dost Z; Barzegar Khanghah MR; Ranjbar Ezzatabadi M

    2017-01-01

    Background and aims: In every urban waste management plan, recycling and reuse is considered as an economic pattern. This study aimed to economic evaluation of municipal solid waste recycling in Yazd by cost-benefit analysis in 2015. Methods: This research is a descriptive–analytic study which in the data about quality and quantity of municipal solid waste in Yazd city were collected through the sampling and physical analysis and the data about total income and costs from the implementatio...

  5. Reúso de água em indústria de reciclagem de plástico tipo PEAD Water reuse on HDPE plastics recycling pack industry

    Directory of Open Access Journals (Sweden)

    Angela Cristina Orsi Bordonalli

    2009-06-01

    Full Text Available A discussão acerca da viabilidade técnica, econômica e ambiental do reúso da água em processos industriais tem sido uma preocupação constante. Neste trabalho propõe-se uma alternativa simplificada para o tratamento de efluentes com vistas ao seu reúso em uma indústria de reciclagem de plásticos. A água, no presente caso, é componente fundamental para o processo, já que participa como elemento de remoção de detritos e impurezas que contaminam a matriz da matéria-prima utilizada, proveniente, principalmente, de aterros sanitários e lixões. As embalagens plásticas recicladas pela indústria em questão são, em sua grande maioria, de uso doméstico e, em menor escala, frascos contaminados com óleos lubrificantes. Os resultados demonstraram a viabilidade do tratamento através de processo físico-químico por coagulação, floculação, decantação e filtração em manta geotêxtil, com o uso do hidroxicloreto de alumínio (PAC como coagulante, soda cáustica (50% como alcalinizante e polieletrólito como auxiliar de floculação e desidratação do lodo, bem como a exequibilidade do reúso dos efluentes em circuito fechado.The discussion about technical, economical and environmental feasibility of water reuse in industrial process has been a constant concern. This paper purposes a simplified choice for waste water treatment seeking reuse in a plastic recycle industry. The water, in this case, is a prime component because it is the main element for the debris and impurities removal that contaminates the matrix of plastic raw material, which comes, mostly, from landfill and waste disposals. The recycled plastic packages, from the company that had been used for this research, come mostly from domestic use and, in a minor scale, the plastic package contaminated by lubricant oil. The final results show feasible for the treatment through physical-chemical process by coagulation, flocculation, decantation and filtration on geotextile

  6. Output-Orientated Data Envelopment Analysis for Measuring Recycling Efficiency: An Application at Italian Regional Level

    Science.gov (United States)

    Crociata, Alessandro; Mattoscio, Nicola

    2016-01-01

    Pro-environmental behaviours associated with reducing, reusing and recycling have become increasingly matters of public policy concern. However, the existing literature on waste management rarely considers the cultural factors associated with predictors and enablers of recycling behaviours, nor has it deeply explored the relation between cultural…

  7. Selective dissolution of halide perovskites as a step towards recycling solar cells

    Science.gov (United States)

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-05-01

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb2+ cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.

  8. Selective dissolution of halide perovskites as a step towards recycling solar cells.

    Science.gov (United States)

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-05-23

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb(2+) cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.

  9. Beneficial reuse of empty DUF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Arnish, J.; Nabelssi, B. [Argonne National Lab., IL (United States)

    1997-02-01

    This paper discusses options for the disposal of depleted UF{sub 6} storage cylinders as they are freed over the next 20 years. Presently there are 46,000 mild steel cylinders in use, and projections show 600,000 tons of steel being freed over 20 years. The paper discusses the results of studies which have looked at various aspects of this issue: health risks; environmental impacts; costs and hassles; impact of DOE metal recycle policy. The general conclusions were that chemical and trauma risks dominate the risk evaluations, that risk levels are broadly speaking level for the studied disposition options, that environmental risks are highest for burial, and lowest for free release, while costs are higher for burial and recycling, than for reuse or free release.

  10. Recycled water reuse permit renewal application for the materials and fuels complex industrial waste ditch and industrial waste pond

    Energy Technology Data Exchange (ETDEWEB)

    Name, No

    2014-10-01

    This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  11. Influence of recycling programmes on waste separation behaviour.

    Science.gov (United States)

    Stoeva, Katya; Alriksson, Stina

    2017-10-01

    To achieve high rates of waste reuse and recycling, waste separation in households is essential. This study aimed to reveal how recycling programmes in Sweden and Bulgaria influenced inhabitants' participation in separation of household waste. The waste separation behaviour of 111 university students from Kalmar, Sweden and 112 students from Plovdiv, Bulgaria was studied using the Theory of Planned Behaviour framework. The results showed that a lack of proper conditions for waste separation can prevent individuals from participating in this process, regardless of their positive attitudes. When respondents were satisfied with the local conditions for waste separation their behaviour instead depended on their personal attitudes towards waste separation and recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Electrical and electronic waste: a global environmental problem.

    Science.gov (United States)

    Ramesh Babu, Balakrishnan; Parande, Anand Kuber; Ahmed Basha, Chiya

    2007-08-01

    The production of electrical and electronic equipment (EEE) is one of the fastest growing global manufacturing activities. This development has resulted in an increase of waste electric and electronic equipment (WEEE). Rapid economic growth, coupled with urbanization and growing demand for consumer goods, has increased both the consumption of EEE and the production of WEEE, which can be a source of hazardous wastes that pose a risk to the environment and to sustainable economic growth. To address potential environmental problems that could stem from improper management of WEEE, many countries and organizations have drafted national legislation to improve the reuse, recycling and other forms of material recovery from WEEE to reduce the amount and types of materials disposed in landfills. Recycling of waste electric and electronic equipment is important not only to reduce the amount of waste requiring treatment, but also to promote the recovery of valuable materials. EEE is diverse and complex with respect to the materials and components used and waste streams from the manufacturing processes. Characterization of these wastes is of paramount importance for developing a cost-effective and environmentally sound recycling system. This paper offers an overview of electrical and e-waste recycling, including a description of how it is generated and classified, strategies and technologies for recovering materials, and new scientific developments related to these activities. Finally, the e-waste recycling industry in India is also discussed.

  13. Ionizing radiation effect study by electron beam on ultra high molecular weight polyethylene virgin and recycled industrial

    International Nuclear Information System (INIS)

    Rosario, Salmo Cordeiro do

    2006-01-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) is an engineering plastic which has several applications, chiefly, in specific areas of the industry and medicine. UHMWPE can be even for other applications such as: port fenders, current guide, bucket coating, silos and gutters, plugs, pulleys and surgical prosthesis. This range of applications is due to the excellent technical characteristics that this material owns, such as; high resistance to wear, high resistance to impact, anti-adherence, non toxic, excellent chemical resistance, low specific weight, easy mill processing, and high resistance to fatigue. The UHMWPE type used in this work were UTEC 3041 and UTEC 6541 of the Braskem. The recycling process of UHMWPE raised much interest, because the utilization of this raw material grew over 600% in the last decade, becoming one of the most used engineering plastics for attainment of mill processed parts after polyamide. As the utilization of this polymer in the manufacturing of parts for machinery has grown, its waste is very big, because the rest of this material is thrown out, usually not being reused. The goal of this work is to recycle the UHMWPE UTEC 3041 and study the properties of this recycled and virgin material and compare the results between both with these materials submitted to different radiation dose. (author)

  14. Environmental fate of hexabromocyclododecane from a new Canadian electronic recycling facility.

    Science.gov (United States)

    Tomko, Geoffrey; McDonald, Karen M

    2013-01-15

    An electronics recycling facility began operation at the municipal landfill site for the City of Edmonton, Canada in March 2008 with the goal of processing 30,000 tonnes of electronic wastes per year. Of the many by-products from the process, brominated fire retardants such as hexabromocyclododecane (HBCD) can evolve off of e-wastes and be released into the environmental media. HBCD has been identified by many countries and international bodies as a chemical of concern because of its ability to bioaccumulate in the ecosystem. An evaluation of the potential emission of HBCD indicates that up to 500 kg per year may be released from a landfill and recycling facility such as that operating in Edmonton. A multimedia fugacity model was used to evaluate the dispersion and fate of atmospherically emitted HBCD traveling into surrounding agricultural land and forested parkland. The model indicates that the three isomers of HBCD partitioned into environmental media similarly. Much of the HBCD is lost through atmospheric advection, but it is also found in soil and sediment. Modeled air concentrations are similar to those measured at locations with a history of e-waste recycling. Since HBCD has been shown to bioaccumulate, the HBCD released from this source has the long-term potential to affect agricultural food crops and the park ecosystem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Attitudes toward text recycling in academic writing across disciplines.

    Science.gov (United States)

    Hall, Susanne; Moskovitz, Cary; Pemberton, Michael A

    2018-01-01

    Text recycling, the reuse of material from one's own previously published writing in a new text without attribution, is a common academic writing practice that is not yet well understood. While some studies of text recycling in academic writing have been published, no previous study has focused on scholars' attitudes toward text recycling. This article presents results from a survey of over 300 journal editors and editorial board members from 86 top English-language journals in 16 different academic fields regarding text recycling in scholarly articles. Responses indicate that a large majority of academic gatekeepers believe text recycling is allowable in some circumstances; however, there is a lack of clear consensus about when text recycling is or is not appropriate. Opinions varied according to the source of the recycled material, its structural location and rhetorical purpose, and conditions of authorship conditions-as well as by the level of experience as a journal editor. Our study suggests the need for further research on text recycling utilizing focus groups and interviews.

  16. Re-use of disposable coil dialysers

    International Nuclear Information System (INIS)

    Abbud Filho, M.

    1980-01-01

    Re-use of disposable dialysers has been in practice for over 16 years throughout the world but it still is a polemical subject. The main justification for it is the reduction of costs in the hemodialytic treatment. We evaluated the technique of re-use that we adopt by studying 33 patients who should re-utilize coil dialysers for 8 consecutive hemodialysis sessions. We investigated: 1) small and middle molecules clearances trough a radioisotopic method; 2) the integrity of the system regarding bacterial invasion; 3) the frequency of anti-N antibodies; 4) aspects of scanning electron microscopy (SEM) of dialysis membrane after re-use. We observed no changes in the dialysers performance during re-use. We conclude that the re-use of dialyzers is feasible, without risks for the patients, allowing marked reduction of costs, thus making possible to offer treatment to a larger number of uremic patients. (author)

  17. Second life. Reuse of used electric and electronic equipment; Second Life. Wiederverwendung gebrauchter Elektro- und Elektronikgeraete

    Energy Technology Data Exchange (ETDEWEB)

    Broehl-Kerner, Horst; Elander, Maria; Koch, Martin; Vendramin, Claudio [Bundesarbeitsgemeinschaft Arbeit e.V., Berlin (Germany)

    2012-07-15

    In project Second Life the existing basic conditions and framework, as well as the different aspects of high-quality reuse were researched and documented. In addition, innovative attempts of the procurement were tested and the feasibility of a quality labeling for electric and electronic devices was analyzed and documented. The results deliver at all important levels of consideration the topically necessary orientation on the subject of reuse of E- devices referring to the product spectrum focused in the project. On the basis of the achieved project results the project partners work on the following aims for the future: First, Informal interlinking of the stakeholder and actors brought together in the project via a new homepage (www.bagsecondlife.de) and newsletter of bag arbeit department for Labour and Environment (FAU) in order to inform about new and changing legislation more actually and also to help them participating in activities of creating contents of a label. Second, establishing a label (e.g. ''ECO Second'') that will be successful on the market. An important base for the project work is the interdisciplinary cooperation of four partners from different fields of action. Thus they were able to cover the required expertise in the fields of protection of environment and climate as well as environmental communication. Both the last aspects were introduced by the Deutsche Umwelthilfe. The operational or practical aspects were represented by Arbeitskreis Recycling and Werkstatt Frankfurt as well as by FAU. Project coordination, spreading of information and the necessary law expertise were perceived from bag arbeit respectively members of FAU-board. With the contributions of Oekopol GmbH and Dr. Bruening engineering to norms, rules, market sphere and ecological classification of the plan, demanded and necessary technical expert's assessment were integrated. Further single results of the project are the project homepage mentioned above

  18. Addressing Criticality in Rare Earth Elements via Permanent Magnets Recycling

    Science.gov (United States)

    Nlebedim, I. C.; King, A. H.

    2018-02-01

    Rare earth elements (REEs) are critical for many advanced technologies and are faced with potential supply disruptions. Recycling of permanent magnets (PMs) can be good sources for REEs which can help minimize global dependence on freshly mined REEs, but PMs are rarely recycled. Recycling of PMs has been discussed with respect to improving REEs resource sustainability. Some challenges to be addressed in order to establish industrially deployable technologies for PMs recycling have also been discussed, including profitability, energy efficiency and environmental impacts. Key considerations for promoting circular economy via PMs recycling is proposed with the focus on deciding the target points in the supply chain at which the recycled products will be inserted. Important technical considerations for recycling different forms of waste PMs, including swarfs, slags, shredded and intact hard disk drives magnets, have been presented. The aspects of circular economy considered include reusing magnets, remanufacturing magnets and recovering of REEs from waste PMs.

  19. Recycle and reuse of components arising from decommissioning nuclear installations: an overview

    International Nuclear Information System (INIS)

    Stearn, S.M.

    1987-01-01

    Recycling offers savings in both acquiring new materials and disposing of old. But this must be set against the associated economic, social and administrative costs. There is considerable experience of the problems involved and research is in hand to expand the authors understanding of these. Materials may be recycled within the nuclear industry only if there is a ready use for it. Release for unrestricted use depends on the existence of suitable criteria and a means to assure compliance with them. The interaction between these two factors could be a deciding factor. Work is in hand to prepare workable release criteria based on a dose to the public of not more than 10 microsieverts, and a figure of 1 Bq/gm is proposed. Quality assurance will be important in any recycling program. Public acceptance is crucial and unrestricted release must not operate so as to jeopardize this

  20. Environmental pollution of electronic waste recycling in India: A critical review

    International Nuclear Information System (INIS)

    Awasthi, Abhishek Kumar; Zeng, Xianlai; Li, Jinhui

    2016-01-01

    The rapid growth of the production of electrical and electronic products has meant an equally rapid growth in the amount of electronic waste (e-waste), much of which is illegally imported to India, for disposal presenting a serious environmental challenge. The environmental impact during e-waste recycling was investigated and metal as well as other pollutants [e.g. polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs)] were found in excessive levels in soil, water and other habitats. The most e-waste is dealt with as general or crudely often by open burning, acid baths, with recovery of only a few materials of value. As resulted of these process; dioxins, furans, and heavy metals are released and harmful to the surrounding environment, engaged workers, and also residents inhabiting near the sites. The informal e-waste sectors are growing rapidly in the developing countries over than in the developed countries because of cheapest labor cost and week legislations systems. It has been confirmed that contaminates are moving through the food chain via root plant translocation system, to the human body thereby threatening human health. We have suggested some possible solution toward in which plants and microbes combine to remediate highly contaminated sites. - Highlights: • It systematically reviewed Environmental deterioration through e-waste recycling in India. • We found heavy metals (Cu, Pb, Cd and Cr) potentially serious concern at recycling site. • The heavy metals can entered human body through the direct and indirect exposure. • Regular monitoring required to examine the possibility of risk through e-waste mismanagement. • Further phytoremedial approach can be use as one of the possible solution for contaminated soil and improve the land quality. - The e-waste recycling sites are highly contaminated with heavy metals as well as other pollutants (e.g. PBDEs, PCBs) in excessive levels.

  1. PROPERTIES AND MICROSTRUCTURE OF CEMENT PASTE INCLUDING RECYCLED CONCRETE POWDER

    Directory of Open Access Journals (Sweden)

    Jaroslav Topič

    2017-02-01

    Full Text Available The disposal and further recycling of concrete is being investigated worldwide, because the issue of complete recycling has not yet been fully resolved. A fundamental difficulty faced by researchers is the reuse of the recycled concrete fines which are very small (< 1 mm. Currently, full recycling of such waste fine fractions is highly energy intensive and resulting in production of CO2. Because of this, the only recycling methods that can be considered as sustainable and environmentally friendly are those which involve recycled concrete powder (RCP in its raw form. This article investigates the performance of RCP with the grain size < 0.25 mm as a potential binder replacement, and also as a microfiller in cement-based composites. Here, the RCP properties are assessed, including how mechanical properties and the microstructure are influenced by increasing the amount of the RCP in a cement paste (≤ 25 wt%.

  2. Review of processes for the release of DOE real and non-real property for reuse and recycle

    International Nuclear Information System (INIS)

    Ranek, N.L.; Kamboj, S.; Hensley, J.; Chen, S.Y.; Blunt, D.

    1997-11-01

    This report summarizes the underlying historical and regulatory framework supporting the concept of authorizing release for restricted or unrestricted reuse or recycle of real and non-real U.S. Department of Energy (DOE) properties containing residual radioactive material. Basic radiation protection principles as recommended by the International Commission on Radiological Protection are reviewed, and international initiatives to investigate radiological clearance criteria are reported. Applicable requirements of the U.S. Nuclear Regulatory Commission, the Environmental Protection Agency, DOE, and the State of Washington are discussed. Several processes that have been developed for establishing cleanup and release criteria for real and non-real DOE property containing residual radioactive material are presented. Examples of DOE real property for which radiological cleanup criteria were established to support unrestricted release are provided. Properties discussed include Formerly Utilized Sites Remedial Action Project sites, Uranium Mill Tailings Remedial Action Project sites, the Shippingport decommissioning project, the south-middle and south-east vaults in the 317 area at Argonne National Laboratory, the Heavy Water Components Test Reactor at DOE's Savannah River Site, the Experimental Boiling Water Reactor at Argonne National Laboratory, and the Weldon Spring site. Some examples of non-real property for which DOE sites have established criteria to support unrestricted release are also furnished. 10 figs., 4 tabs

  3. Tyre Recycling with Thermal Solvolysis Method Using Microwave Radiation

    OpenAIRE

    Korjakins, Aleksandrs; Holimenkovs, Aleksandrs

    2017-01-01

    Used tyres are one of the most widespread types of waste and one of the polymer materials which are most difficult to recycle. There are many different applications for used tyres today. Part of the tyres can be retreated and re-used, but most of the used tyres are recycled. By dissolving the tyres, it is possible to filter out various chemical substances. These substances coming from the used tyres can be used for creating a new material or improving an existing one. One of the technologies ...

  4. Disposal of radwastes and recycling of wastes and structural materials -fundamental principles, concepts, results

    International Nuclear Information System (INIS)

    Schaller, G.; Arens, G.; Brennecke, P.; Goertz, R.; Poschner, J.; Thieme, M.

    1997-01-01

    This report describes the German concept for the disposal of radioactive waste, and the re-use or recycling of contaminated materials. All radioactive waste can be disposed of in deep geological formations (practised at ERAM disposal site, planned for Konrad disposal site). Radioactively contaminated material below clearance levels can proceed for disposal at waste disposal sites and incineration plants, or for re-use and recycling, especially where the material consists of contaminated steel and of buildings. The basic principles (dose limits and model structures for deriving recommendations), reference values, or limits are described. The latest concepts are described in greater detail. Waste management in Germany is compared with international concepts. (orig.) [de

  5. Strength of masonry blocks made with recycled concrete aggregates

    Science.gov (United States)

    Matar, Pierre; Dalati, Rouba El

    The idea of recycling concrete of demolished buildings aims at preserving the environment. Indeed, the reuse of concrete as aggregate in new concrete mixes helped to reduce the expenses related to construction and demolition (C&D) waste management and, especially, to protect the environment by reducing the development rate of new quarries. This paper presents the results of an experimental study conducted on masonry blocks containing aggregates resulting from concrete recycling. The purpose of this study is to investigate the effect of recycled aggregates on compressive strength of concrete blocks. Tests were performed on series of concrete blocks: five series each made of different proportions of recycled aggregates, and one series of reference blocks exclusively composed of natural aggregates. Tests showed that using recycled aggregates with addition of cement allows the production of concrete blocks with compressive strengths comparable to those obtained on concrete blocks made exclusively of natural aggregates.

  6. Scenario of solid waste reuse in Khulna city of Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Bari, Quazi H., E-mail: qhbari@yahoo.com [Department of Civil Engineering, Khulna University of Engineering and Technology, Khulna 9203 (Bangladesh); Mahbub Hassan, K. [Department of Civil Engineering, Khulna University of Engineering and Technology, Khulna 9203 (Bangladesh); Haque, R. [Project Builders Ltd., Dhaka 1000 (Bangladesh)

    2012-12-15

    The reuse and recycling of waste materials are now sincerely considered to be an integral part of solid waste management in many parts of the world. In this context, a vast number of options ranging from small scale decentralized to larger scale centralized plants have been adopted. This study aimed at investigating the waste reuse schemes in Khulna city located in the southern part of Bangladesh and ranked third largest city in the country. The shops for reusable material (SRM) were mostly situated around railway, waterway, and truck station markets which provided easy transportation to further locations. For the reuses of waste materials and products, a chain system was found to collect reusable wastes under a total number of 310 identified SRM with 859 persons directly or indirectly involved in the scheme. This was a decentralized waste management system with self sufficient (autonomous) management. According to mass balance, about 38.52 tons d{sup -1} solid wastes were reused in Khulna city area, accounting for 7.65% of the total generated wastes. This study revealed that apparently a silent, systematic, smooth, and clean reuse chain has been established in Khulna city area under private initiatives, whose sustainability was confirmed over the years in the country without any official or formal funds. However, proper adjustment between the higher and lower chain in the materials flow path, as well as personal hygiene training for the workers, would further improve the achievements of the established reuse scheme.

  7. Scenario of solid waste reuse in Khulna city of Bangladesh

    International Nuclear Information System (INIS)

    Bari, Quazi H.; Mahbub Hassan, K.; Haque, R.

    2012-01-01

    The reuse and recycling of waste materials are now sincerely considered to be an integral part of solid waste management in many parts of the world. In this context, a vast number of options ranging from small scale decentralized to larger scale centralized plants have been adopted. This study aimed at investigating the waste reuse schemes in Khulna city located in the southern part of Bangladesh and ranked third largest city in the country. The shops for reusable material (SRM) were mostly situated around railway, waterway, and truck station markets which provided easy transportation to further locations. For the reuses of waste materials and products, a chain system was found to collect reusable wastes under a total number of 310 identified SRM with 859 persons directly or indirectly involved in the scheme. This was a decentralized waste management system with self sufficient (autonomous) management. According to mass balance, about 38.52 tons d −1 solid wastes were reused in Khulna city area, accounting for 7.65% of the total generated wastes. This study revealed that apparently a silent, systematic, smooth, and clean reuse chain has been established in Khulna city area under private initiatives, whose sustainability was confirmed over the years in the country without any official or formal funds. However, proper adjustment between the higher and lower chain in the materials flow path, as well as personal hygiene training for the workers, would further improve the achievements of the established reuse scheme.

  8. The WaterHub at Emory University: Campus Resiliency through Decentralized Reuse.

    Science.gov (United States)

    Allison, Daniel; Lohan, Eric; Baldwin, Tim

    2018-02-01

      In the spring of 2015, Emory University in Atlanta, GA, commissioned an innovative campuswide water reclamation and reuse system known as the WaterHub®. Treating up to 400,000 gallons each day, the system can recycle the equivalent of two-thirds of the University's wastewater production and reduce the campus water footprint by up to 40 percent.One of the first district-scale water reuse systems in North America, the WaterHub mines wastewater from the campus sewer system and repurposes it for beneficial reuse on campus. In its first year of operation, the facility has treated more than 80 million gallons of campus wastewater and is expected to save millions of dollars in utility costs for the University over the next 20 years. The system represents a new age in commercial-scale water management in which onsite, urban water reclamation facilities may be a new norm.

  9. Electron beam irradiation process applied to primary and secondary recycled high density polyethylene

    International Nuclear Information System (INIS)

    Cardoso, Jéssica R.; Moura, Eduardo de; Geraldo, Áurea B.C.

    2017-01-01

    Plastic bags, packaging and furniture items are examples of plastic utilities always present in life. However, the end-of-life of plastics impacts the environment because of this ubiquity and also often their high degradation time. Recycling processes are important in this scenario because they offer many solutions to this problem. Basically, four ways are known for plastic recycling: primary recycling, which consists in re-extrusion of clean plastic scraps from a production plant; secondary recycling, that uses end-of-life products that generally are reduced in size by extrusion to obtain a more desirable shape for reprocessing (pellets and powder); tertiary recover which is related to thermo-chemical methods to produce fuels and petrochemical feedstock; and quaternary route, that is related to energy recovery and it is done in appropriate reactors. In this work, high density polyethylene (HDPE) was recovered to simulate empirically the primary and secondary recycling ways using materials which ranged from pristine to 20-fold re-extrused materials. The final 20-fold recycled thermoplastic was irradiated in an electron beam accelerator under a dose rate of 22.4 kGy/s and absorbed doses of 50 kGy and 100 kGy. The characterization of HDPE in distinct levels of recovering was performed by infrared spectroscopy (FTIR) and thermogravimetric degradation. In the HDPE recycling, degradation and crosslinking are consecutive processes; degradation is very noticeable in the 20-fold recycled product. Despite this, the 20-fold recycled product presents crosslinking after irradiation process and the post-irradiation product presents similarities in spectroscopic and thermal degradation characteristics of pristine, irradiated HDPE. These results are discussed. (author)

  10. Electron beam irradiation process applied to primary and secondary recycled high density polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Jéssica R.; Moura, Eduardo de; Geraldo, Áurea B.C., E-mail: ageraldo@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Plastic bags, packaging and furniture items are examples of plastic utilities always present in life. However, the end-of-life of plastics impacts the environment because of this ubiquity and also often their high degradation time. Recycling processes are important in this scenario because they offer many solutions to this problem. Basically, four ways are known for plastic recycling: primary recycling, which consists in re-extrusion of clean plastic scraps from a production plant; secondary recycling, that uses end-of-life products that generally are reduced in size by extrusion to obtain a more desirable shape for reprocessing (pellets and powder); tertiary recover which is related to thermo-chemical methods to produce fuels and petrochemical feedstock; and quaternary route, that is related to energy recovery and it is done in appropriate reactors. In this work, high density polyethylene (HDPE) was recovered to simulate empirically the primary and secondary recycling ways using materials which ranged from pristine to 20-fold re-extrused materials. The final 20-fold recycled thermoplastic was irradiated in an electron beam accelerator under a dose rate of 22.4 kGy/s and absorbed doses of 50 kGy and 100 kGy. The characterization of HDPE in distinct levels of recovering was performed by infrared spectroscopy (FTIR) and thermogravimetric degradation. In the HDPE recycling, degradation and crosslinking are consecutive processes; degradation is very noticeable in the 20-fold recycled product. Despite this, the 20-fold recycled product presents crosslinking after irradiation process and the post-irradiation product presents similarities in spectroscopic and thermal degradation characteristics of pristine, irradiated HDPE. These results are discussed. (author)

  11. Investigation about the ecotown-enterprise for establishing recycling system of non-radioactive waste arising from power plant decommissioning

    International Nuclear Information System (INIS)

    Hironaga, Michihiko; Nishiuchi, Tatsuo; Ozaki, Yukio; Yamamoto, Kimio

    2004-01-01

    About 95% of demolition wastes generated by decommissioning nuclear power plants are below the clearance level, i.e., the wastes can be dealt with as industrial wastes. On that case, rational processing, disposal, and reuse are expectable. However, even if the demolition waste is below a clearance level, it seems to be difficult to be immediately accepted in general society with the demolition wastes. Therefore, it is important to establish the technology for an effective recycle system of demolition wastes, and to reuse demolition wastes as much as possible, resulting in recognition of the value by the society. On the other hand, as for recycling of industrial waste, the recycling enterprise is promoted in the domestic self-governing body in response to the 'eco-town enterprise' which is recommended by the government. This report investigates the system and subjects of a 'eco-town enterprise' for recycling demolition wastes. (author)

  12. Recycling of wastes from uranium mining and metallurgy and recovery of useful resources in China

    International Nuclear Information System (INIS)

    Pan Yingjie; Xue Jianxin; Chen Zhongqiu

    2012-01-01

    Recycling of wastes from uranium mining and metallurgy in China and recovery of useful resources are summarized from the aspects such as recovery of uranium from mine water, reusing of waste water, decontaminating and recycling of radioactivity contaminated metal, backfill of gangues and tailings, and comprehensive recovery and utilization of associated uranium deposits. (authors)

  13. Material recycling: Presence of chemicals and their influence on the circular economy concept

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Astrup, Thomas Fruergaard

    2014-01-01

    of the concept is the pursuit of sustainability through re-use and recycling of products and materials once they have served their purpose. Once such materials (e.g. paper, plastics) are recycled, chemicals that they contain are reintroduced,spread or even accumulate in the newly manufactured products (Figure 1...... the recyclability of waste materials with respect to the presence of substances. The outcomes of the work will provide crucial basis for future waste characterization activities, environmental and risk assessments of material recycling, as well as provide authorities, scientific community and society...... with a necessary basis for evaluating potential future limitations to recycling and address means of mitigating accumulation and spreading of chemicals in various materials....

  14. Lead use and recycling at the INEL

    International Nuclear Information System (INIS)

    Losinski, S.J.; Thurmond, S.M.

    1995-08-01

    As part of DOE's efforts to develop a Department-wide management strategy for the use, reuse, and recycle of lead, DOE has requested that each site provide site-specific management and use practices for lead, specifically management and use information that responds to four specific questions of interest. This report provides the Idaho National Engineering Laboratory's response to those areas of interest

  15. The recycling and disposal of electrical and electronic waste in China-legislative and market responses

    International Nuclear Information System (INIS)

    Hicks, C.; Dietmar, R.; Eugster, M.

    2005-01-01

    The development of new legislation on collection, recycling and disposal of waste electrical and electronic equipment (WEEE) as well as the scaling-up and privatisation of the WEEE processing industry, are indications of major changes for WEEE management in China. However, China's attempts to regulate the industry and establish a financially viable, environmentally benign and safe WEEE management system are facing significant challenges. The existence of an extensive informal sector, combined with a lack of environmental awareness among WEEE collectors, recyclers and consumers, are contributing to China's difficulties in developing a financially and environmentally sound recycling and disposal system. This paper discusses the current status of WEEE recycling and disposal in China, and its impacts on the environment, human health, and the economy. It also examines the legislative and market responses to the WEEE issue, and how these will be affected by Chinese attitudes and practices towards WEEE recycling

  16. Pentachlorophenol (PCP) sludge recycling unit

    International Nuclear Information System (INIS)

    1994-08-01

    The Guelph Utility Pole Company treats utility poles by immersion in pentachlorophenol (PCP) or by pressure treatment with chromated copper arsenate (CCA). The PCP treatment process involves a number of steps, each producing a certain amount of sludge and other wastes. In a plant upgrading program to improve processing and treatment of poles and to reduce and recycle waste, a PCP recovery unit was developed, first as an experimental pilot-scale unit and then as a full-scale unit. The PCP recovery unit is modular in design and can be modified to suit different requirements. In a recycling operation, the sludge is pumped through a preheat system (preheated by waste heat) and suspended solids are removed by a strainer. The sludge is then heated in a tank and at a predetermined temperature it begins to separate into its component parts: oil, steam, and solids. The steam condenses to water containing low amounts of light oil, and this water is pumped through an oil/water separator. The recovered oil is reused in the wood treatment process and the water is used in the CCA plant. The oil remaining in the tank is reused in PCP treatment and the solid waste, which includes small stones and wood particles, is removed and stored. By the third quarter of operation, the recovery unit was operating as designed, processing ca 10,000 gal of sludge. This sludge yielded 6,500 gal of water, 3,500 gal of oil, and ca 30 gal of solids. Introduction of the PCP sludge recycling system has eliminated long-term storage of PCP sludge and minimized costs of hazardous waste disposal. 4 figs

  17. Cyclic process for re-use of waste water generated during the production of UO2

    International Nuclear Information System (INIS)

    Crossley, T.J.

    1976-01-01

    The process is described whereby waste water produced during the hydrolysis and ammonium hydroxide treatment of UF 6 to produce ammonium diuranate is recycled for reuse. The solution containing large amounts of ammonia and fluorides and trace amounts of uranium is first treated with lime to precipitate the fluoride. The ammonia is distilled off and recycled to UO 2 F 2 treatment vessel. The CaF 2 precipitate is separated by centrifugation and the aqueous portion is passed through cationic exchange beds

  18. How much do South African households in towns & rural areas recycle?

    CSIR Research Space (South Africa)

    Strydom, Wilma

    2016-10-01

    Full Text Available stream_source_info Strydom_18309_2016.pdf.txt stream_content_type text/plain stream_size 15060 Content-Encoding UTF-8 stream_name Strydom_18309_2016.pdf.txt Content-Type text/plain; charset=UTF-8 How much do South...) targets of diverting 25% of recyclables from landfill sites for re-use, recycling or recovery by 2016, and all metropolitan municipalities, secondary cities and large towns have initiated separation at source programmes (Goal 1), and 80% of municipalities...

  19. Reuse of hydroponic waste solution.

    Science.gov (United States)

    Kumar, Ramasamy Rajesh; Cho, Jae Young

    2014-01-01

    Attaining sustainable agriculture is a key goal in many parts of the world. The increased environmental awareness and the ongoing attempts to execute agricultural practices that are economically feasible and environmentally safe promote the use of hydroponic cultivation. Hydroponics is a technology for growing plants in nutrient solutions with or without the use of artificial medium to provide mechanical support. Major problems for hydroponic cultivation are higher operational cost and the causing of pollution due to discharge of waste nutrient solution. The nutrient effluent released into the environment can have negative impacts on the surrounding ecosystems as well as the potential to contaminate the groundwater utilized by humans for drinking purposes. The reuse of non-recycled, nutrient-rich hydroponic waste solution for growing plants in greenhouses is the possible way to control environmental pollution. Many researchers have successfully grown several plant species in hydroponic waste solution with high yield. Hence, this review addresses the problems associated with the release of hydroponic waste solution into the environment and possible reuse of hydroponic waste solution as an alternative resource for agriculture development and to control environmental pollution.

  20. Innovative technologies for recycling contaminated concrete and scrap metal

    International Nuclear Information System (INIS)

    Bossart, S.J.; Moore, J.

    1993-01-01

    Decontamination and decommissioning of US DOE's surplus facilities will generate enormous quantities of concrete and scrap metal. A solicitation was issued, seeking innovative technologies for recycling and reusing these materials. Eight proposals were selected for award. If successfully developed, these technologies will enable DOE to clean its facilities by 2019

  1. Progress toward uranium scrap recycling via electron beam cold hearth refining

    International Nuclear Information System (INIS)

    McKoon, R.H.

    1994-01-01

    A 250 kW electron beam cold hearth refining (EBCHR) melt furnace at Lawrence Livermore National Laboratory (LLNL) has been in operation for over a year producing 5.5 in.-diameter ingots of various uranium alloys. Production of in-specification uranium-6%-niobium (U-6Nb) alloy ingots has been demonstrated using Virgin feedstock. A vibratory scrap feeder has been installed on the system and the ability to recycle chopped U-6Nb scrap has been established. A preliminary comparison of vacuum arc remelted (VAR) and electron beam (EB) melted product is presented

  2. Progress toward uranium scrap recycling via Electron Cold Hearth Refining (EBCHR)

    International Nuclear Information System (INIS)

    McKoon, R.H.

    1994-01-01

    A 250 kW electron beam cold hearth refining (EBCHR) melt furnace at Lawrence Livermore National Laboratory (LLNL) has been in operation for over a year producing 5.5 in.-diameter ingots of various uranium alloys. Production of in-specification uranium-6% - niobium (U-6Nb) alloy ingots has been demonstrated using virgin feedstock. A vibratory scrap feeder has been installed on the system and the ability to recycle chopped U-6Nb scrap has been established. A preliminary comparison of vacuum arc remelted (VAR) and electron beam (EB) melted product is presented

  3. Review of the technological approaches for grey water treatment and reuses.

    Science.gov (United States)

    Li, Fangyue; Wichmann, Knut; Otterpohl, Ralf

    2009-05-15

    Based on literature review, a non-potable urban grey water reuse standard is proposed and the treatment alternatives and reuse scheme for grey water reuses are evaluated according to grey water characteristics and the proposed standard. The literature review shows that all types of grey water have good biodegradability. The bathroom and the laundry grey water are deficient in both nitrogen and phosphors. The kitchen grey water has a balanced COD: N: P ratio. The review also reveals that physical processes alone are not sufficient to guarantee an adequate reduction of the organics, nutrients and surfactants. The chemical processes can efficiently remove the suspended solids, organic materials and surfactants in the low strength grey water. The combination of aerobic biological process with physical filtration and disinfection is considered to be the most economical and feasible solution for grey water recycling. The MBR appears to be a very attractive solution in collective urban residential buildings.

  4. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    Science.gov (United States)

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements.

  5. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input–output model: A case of Suzhou in China

    International Nuclear Information System (INIS)

    Liang Sai; Zhang Tianzhu

    2012-01-01

    Highlights: ► Impacts of solid waste recycling on Suzhou’s urban metabolism in 2015 are analyzed. ► Sludge recycling for biogas is regarded as an accepted method. ► Technical levels of reusing scrap tires and food wastes should be improved. ► Other fly ash utilization methods should be exploited. ► Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input–output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.

  6. ASTM STANDARD GUIDE FOR EVALUATING DISPOSAL OPTIONS FOR REUSE OF CONCRETE FROM NUCLEAR FACILITY DECOMMISSIONING

    International Nuclear Information System (INIS)

    Phillips, Ann Marie; Meservey, Richard H.

    2003-01-01

    Within the nuclear industry, many contaminated facilities that require decommissioning contain huge volumes of concrete. This concrete is generally disposed of as low-level waste at a high cost. Much of the concrete is lightly contaminated and could be reused as roadbed, fill material, or aggregate for new concrete, thus saving millions of dollars. However, because of the possibility of volumetric contamination and the lack of a method to evaluate the risks and costs of reusing concrete, reuse is rarely considered. To address this problem, Argonne National Laboratory-East (ANL-E) and the Idaho National Engineering and Environmental Laboratory teamed to write a ''concrete protocol'' to help evaluate the ramifications of reusing concrete within the U.S. Department of Energy (DOE). This document, titled the Protocol for Development of Authorized Release Limits for Concrete at U.S. Department of Energy Site (1) is based on ANL-E's previously developed scrap metal recycle protocols; on the 10-step method outlined in DOE's draft handbook, Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material (2); and on DOE Order 4500.5, Radiation Protection of the Public and the Environment (3). The DOE concrete protocol was the basis for the ASTM Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning, which was written to make the information available to a wider audience outside DOE. The resulting ASTM Standard Guide is a more concise version that can be used by the nuclear industry worldwide to evaluate the risks and costs of reusing concrete from nuclear facility decommissioning. The bulk of the ASTM Standard Guide focuses on evaluating the dose and cost for each disposal option. The user calculates these from the detailed formulas and tabulated data provided, then compares the dose and cost for each disposal option to select the best option that meets regulatory requirements. With this information

  7. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... for several batches of hydrolysis, and thereby reduces the overall cost associated with the hydrolysis. Research on this subject has been ongoing for many years and several promising technologies and methods have been developed and demonstrated. But only in a very few cases have these technologies been...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...

  8. 3. International conference on oxidation technologies for water and wastewater treatment. Special topic: AOP's for recycling and reuse

    Energy Technology Data Exchange (ETDEWEB)

    Vogelpohl, A. (ed.)

    2003-07-01

    With the increasing pressure on a more effective and sustainable use of water resources, those water treatment technologies become more and more important which will allow for a recycling of wastewater for agricultural and/or industrial purposes. The so-called advanced oxidation processes (AOP's) belong to these technologies as they offer the potential of a complete conversion of the water pollutants to carbon dioxide, water and mineral salts. Despite the progress that has been achieved in understanding and applying AOP's, the most significant disadvantages of the oxidation technologies are the high investment and operating costs. As these technologies are the high investment and operating costs. As these technologies are based on radical reactions, more effective means of producing radicals and a deeper insight in the reaction pathways will be the key for generating radicals at lower costs as well as choosing the optimum process conditions and defining the applications where AOP's are most competitive. Two national, three international conferences with the publication of their papers in water science and technology (1997 and 2001) as well as the foundation of the IWA Specialist Group on AOP's in 2001 demonstrate the success and the necessity of this conference series. It is designed to bring forward the most recent advances in the fundamentals as well as the development and the application of AOP's especially in the field of water recycling reuse. It will help to disseminate new achievements in these areas and to identify future research and development needs. The increased number of interesting papers submitted will be the basis for a successful, fruitful and hopefully critical conference in Goslar. (orig.)

  9. ICT reuse in socio-economic enterprises

    International Nuclear Information System (INIS)

    Ongondo, F.O.; Williams, I.D.; Dietrich, J.; Carroll, C.

    2013-01-01

    Highlights: • We analyse ICT equipment reuse operations of socio-economic enterprises. • Most common ICT products dealt with are computers and related equipment. • In the UK in 2010, ∼143,750 appliances were reused. • Marketing and legislative difficulties are the common hurdles to reuse activities. • Socio-economic enterprises can significantly contribute to resource efficiency. - Abstract: In Europe, socio-economic enterprises such as charities, voluntary organisations and not-for-profit companies are involved in the repair, refurbishment and reuse of various products. This paper characterises and analyses the operations of socio-economic enterprises that are involved in the reuse of Information and Communication Technology (ICT) equipment. Using findings from a survey, the paper specifically analyses the reuse activities of socio-economic enterprises in the UK from which Europe-wide conclusions are drawn. The amount of ICT products handled by the reuse organisations is quantified and potential barriers and opportunities to their operations are analysed. By-products from reuse activities are discussed and recommendations to improve reuse activities are provided. The most common ICT products dealt with by socio-economic enterprises are computers and related equipment. In the UK in 2010, an estimated 143,750 appliances were reused. However, due to limitations in data, it is difficult to compare this number to the amount of new appliances that entered the UK market or the amount of waste electrical and electronic equipment generated in the same period. Difficulties in marketing products and numerous legislative requirements are the most common barriers to reuse operations. Despite various constraints, it is clear that organisations involved in reuse of ICT could contribute significantly to resource efficiency and a circular economy. It is suggested that clustering of their operations into “reuse parks” would enhance both their profile and their

  10. ICT reuse in socio-economic enterprises

    Energy Technology Data Exchange (ETDEWEB)

    Ongondo, F.O., E-mail: f.ongondo@soton.ac.uk [Centre for Environmental Sciences, Faculty of Engineering and the Environment, Lanchester Building, University of Southampton, University Rd., Highfield, Southampton, Hampshire SO17 1BJ (United Kingdom); Williams, I.D. [Centre for Environmental Sciences, Faculty of Engineering and the Environment, Lanchester Building, University of Southampton, University Rd., Highfield, Southampton, Hampshire SO17 1BJ (United Kingdom); Dietrich, J. [Technische Universität Berlin, Centre for Scientific Continuing Education and Cooperation, Cooperation and Consulting for Environmental Questions (kubus) FH10-1, Fraunhoferstraße 33-36, 10587 Berlin (Germany); Carroll, C. [Centre for Environmental Sciences, Faculty of Engineering and the Environment, Lanchester Building, University of Southampton, University Rd., Highfield, Southampton, Hampshire SO17 1BJ (United Kingdom)

    2013-12-15

    Highlights: • We analyse ICT equipment reuse operations of socio-economic enterprises. • Most common ICT products dealt with are computers and related equipment. • In the UK in 2010, ∼143,750 appliances were reused. • Marketing and legislative difficulties are the common hurdles to reuse activities. • Socio-economic enterprises can significantly contribute to resource efficiency. - Abstract: In Europe, socio-economic enterprises such as charities, voluntary organisations and not-for-profit companies are involved in the repair, refurbishment and reuse of various products. This paper characterises and analyses the operations of socio-economic enterprises that are involved in the reuse of Information and Communication Technology (ICT) equipment. Using findings from a survey, the paper specifically analyses the reuse activities of socio-economic enterprises in the UK from which Europe-wide conclusions are drawn. The amount of ICT products handled by the reuse organisations is quantified and potential barriers and opportunities to their operations are analysed. By-products from reuse activities are discussed and recommendations to improve reuse activities are provided. The most common ICT products dealt with by socio-economic enterprises are computers and related equipment. In the UK in 2010, an estimated 143,750 appliances were reused. However, due to limitations in data, it is difficult to compare this number to the amount of new appliances that entered the UK market or the amount of waste electrical and electronic equipment generated in the same period. Difficulties in marketing products and numerous legislative requirements are the most common barriers to reuse operations. Despite various constraints, it is clear that organisations involved in reuse of ICT could contribute significantly to resource efficiency and a circular economy. It is suggested that clustering of their operations into “reuse parks” would enhance both their profile and their

  11. Recycled Portland cement concrete pavements : Part II, state-of-the art summary.

    Science.gov (United States)

    1979-01-01

    This report constitutes a review of the literature concerning recycling of portland cement concrete pavements by crushing the old pavement and reusing the crushed material as aggregate in a number of applications. A summary of the major projects cond...

  12. Investigation of Appropriate Applications for Reuse of Conditionally Released Materials from Decommissioning

    International Nuclear Information System (INIS)

    Daniska, V.; Vasko, M.; Necas, V.

    2012-01-01

    During the decommissioning (D and D) phase of nuclear facility life cycle a lot of original facility materials are generated as a primary decommissioning waste. One portion of these materials is unconditionally releasable, i.e. their radioactivity content is below the stipulated concentration limits for clearance thus they can be further recycled or dumped without any constraints as a conventional waste. Second portion of generated waste is waste with radioactivity content higher than limits for free release and it has to be handled and disposed of as the radioactive waste (RAW) within special RAW repositories. Disposal of RAW is quite expensive therefore it seems to be reasonable to reduce amount of waste destined for disposal and to identify RAW with radioactivity content slightly higher than stipulated concentration limits for unconditional release which could be released with some constraints for further recycling and reuse while stipulated safety requirements are observed, i.e. conditional release of RAW. The most perspective materials from decommissioning for such material reuse are steel and concrete. These materials can be reused within the long term robust constructions for applications with infrequent or only short time presence of personnel/public, minimum interaction of human with materials and controllable interaction of materials with environment. Ideal applications for deployment of such materials are steel reinforcement in pylons for highways, tunnel linings, industry prefabricates, big tanks or linings in nuclear applications, for concrete debris it can be filling material for road construction. Presented paper deals with preconditions for reuse of conditionally released materials. It maps legal pre-requisites in the Slovak Republic, appropriate material application scenarios, methodology of assessment of impact on human health and environment - external and internal exposure assessment, possible optimisation of scenarios and estimation of

  13. Assessment of Relevant Exposure Pathways in Scenario of Reuse of Very Low Level Radioactive Steel in Tunnel Constructions

    International Nuclear Information System (INIS)

    Hrncir, T.; Necas, V.

    2012-01-01

    Decommissioning process and related management of generated radioactive materials during this process became important topics during last several years because of continuously increasing number of nuclear power plant approaching the end of their lifetime. The very low level radioactive waste category includes considerable amount of materials arising from decommissioning. In line with international incentives of optimization of the waste management process, alternative concepts of recycling and reuse of materials are considered. One of these concepts of such optimization is the conditional release of materials with their subsequent recycling and reuse in industrial or nuclear sector. This paper is devoted to an option of recycling and reuse of conditionally released steel in industrial sector, specifically in motorway tunnel constructions. It is assumed that very low level radioactive steel would be released and reused in form of steel reinforcing components, such as steel nets and bars, assembled in primary and secondary lining of motorway tunnel. Assessment of exposure pathways relevant for construction, operation and post-operation period was performed. The computational tool VISIPLAN 3D ALARA was used for calculation of external individual effective dose for personnel constructing the tunnel and for members of the public driving through already built motorway tunnel. The simulation software GOLDSIM was used for the assessment of internal exposure pathways. GOLDSIM environment enables modelling of degradation processes and transport of radionuclides through unsaturated and saturated zone of subsoil. There are international recommendations available for the concept of release of radioactive materials into the environment derived from the principles that the individual effective dose received by critical individual must not exceed some tens of microSv/yr. Dose limits 10 microSv/yr or 50 microSv/yr considering specific conditions are stated in Slovak legislation

  14. A degradation-based sorting method for lithium-ion battery reuse.

    Directory of Open Access Journals (Sweden)

    Hao Chen

    Full Text Available In a world where millions of people are dependent on batteries to provide them with convenient and portable energy, battery recycling is of the utmost importance. In this paper, we developed a new method to sort 18650 Lithium-ion batteries in large quantities and in real time for harvesting used cells with enough capacity for battery reuse. Internal resistance and capacity tests were conducted as a basis for comparison with a novel degradation-based method based on X-ray radiographic scanning and digital image contrast computation. The test results indicate that the sorting accuracy of the test cells is about 79% and the execution time of our algorithm is at a level of 200 milliseconds, making our method a potential real-time solution for reusing the remaining capacity in good used cells.

  15. Wastewater reuse

    Directory of Open Access Journals (Sweden)

    Milan R. Radosavljević

    2013-12-01

    application and technology applied are ​​significantly dependent on socio-economic circumstances, industry structure, climate and politics. Reuse of water for irrigation of agricultural crops Fourty-one percent of the recycled water in Japan, 60% in California (USA, and 15% in Tunisia is used for irrigation of crops. In China, at least 1.33 million hectares of agricultural land is irrigated with untreated or partially treated wastewater (http://www.eolss.net. Agricultural irrigation is essential to improve the quality and quantity of production. By 2025, agriculture is expected to increase its water requirements by 1.2 times (http://www.unep.or.jp. If wastewater originatines from industrial sources, the presence of toxic chemicals, salts and heavy metals may limit its reuse. Such materials can change soil properties and may affect the growth of crops, so that appropriate treatment and supervision should be practiced. Recycled water that is important for agriculture must contain nitrogen, potassium, zinc, boron and sulfur. However, excess nitrogen can lead to overgrowth, delayed crop maturity and poor quality. Boron is an essential element for plant growth, and the excess boron becomes toxic. Tunisia is one of a few countries that have implemented a national policy for the reuse of wastewater. Since 1960., the wastewater in Tunisia has been used for irrigation of orchards. Since 1989, after a secondary treatment, the wastewater has been used for the cultivation of various crops (olives, fodder, cotton, etc., except for growing vegetables. In countries such as Morocco, Jordan, Egypt, Malta, Cyprus and Spain, wastewater is either used or being considered for irrigation, while in Israel, the percentage of the use of wastewater for irrigation is the highest in the region, with 24.4% and should be increased to 36% in the future (http://www.eolss.net. Depending on the country, socio-economic conditions, may be different,  starting from the shortage of money for capital

  16. ICT reuse in socio-economic enterprises.

    Science.gov (United States)

    Ongondo, F O; Williams, I D; Dietrich, J; Carroll, C

    2013-12-01

    In Europe, socio-economic enterprises such as charities, voluntary organisations and not-for-profit companies are involved in the repair, refurbishment and reuse of various products. This paper characterises and analyses the operations of socio-economic enterprises that are involved in the reuse of Information and Communication Technology (ICT) equipment. Using findings from a survey, the paper specifically analyses the reuse activities of socio-economic enterprises in the U.K. from which Europe-wide conclusions are drawn. The amount of ICT products handled by the reuse organisations is quantified and potential barriers and opportunities to their operations are analysed. By-products from reuse activities are discussed and recommendations to improve reuse activities are provided. The most common ICT products dealt with by socio-economic enterprises are computers and related equipment. In the U.K. in 2010, an estimated 143,750 appliances were reused. However, due to limitations in data, it is difficult to compare this number to the amount of new appliances that entered the U.K. market or the amount of waste electrical and electronic equipment generated in the same period. Difficulties in marketing products and numerous legislative requirements are the most common barriers to reuse operations. Despite various constraints, it is clear that organisations involved in reuse of ICT could contribute significantly to resource efficiency and a circular economy. It is suggested that clustering of their operations into "reuse parks" would enhance both their profile and their products. Reuse parks would also improve consumer confidence in and subsequently sales of the products. Further, it is advocated that industrial networking opportunities for the exchange of by-products resulting from the organisations' activities should be investigated. The findings make two significant contributions to the current literature. One, they provide a detailed insight into the reuse operations

  17. The prospect for recycle of radioactive scrap metals to products for restricted and unrestricted use

    International Nuclear Information System (INIS)

    Liby, A.L.

    1995-01-01

    Large quantities of radioactive scrap metals will arise from decontamination and decommissioning of nuclear power plants and DOE facilities. Much of this metal can be easily decontaminated and released to the existing secondary metals industry for recycling. For metal that can not be readily released, recycle into restricted-use end products is an economically attractive alternative to burial as low level radioactive waste. This paper will examine sources and types of scrap metal, technical approaches, potential products, and economics of metals recycle. Construction, licensing, environmental compliance, and possible reuse of existing nuclear facilities for metals recycling will be discussed. (author)

  18. Eco-friendly functionalized superhydrophobic recycled paper with enhanced flame-retardancy.

    Science.gov (United States)

    Si, Yifan; Guo, Zhiguang

    2016-09-01

    Recycled paper with superhydrophobicity and flame-retardancy has been demonstrated here due to the synergistic action of dopamine-silica trimethylsilyl modified gel powder and stearic acid modified Mg(OH)2. This multifunctional recycled paper displays great self-cleaning and anti-fouling ability and can be used for oil-water separation. Surprisingly, the absorbed organic can be reused as fuel via simple combustion method for multiple cycles. This work will not only expand the usable range of paper but also ease the energy and environment crisis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers.

    Science.gov (United States)

    Burns, Katrina N; Sun, Kan; Fobil, Julius N; Neitzel, Richard L

    2016-01-19

    Electronic waste (e-waste) is a growing occupational and environmental health issue around the globe. E-waste recycling is a green industry of emerging importance, especially in low-and middle-income countries where much of this recycling work is performed, and where many people's livelihoods depend on this work. The occupational health hazards of e-waste recycling have not been adequately explored. We performed a cross-sectional study of noise exposures, heart rate, and perceived stress among e-waste recycling workers at a large e-waste site in Accra, Ghana. We interviewed 57 workers and continuously monitored their individual noise exposures and heart rates for up to 24 h. More than 40% of workers had noise exposures that exceeded recommended occupational (85 dBA) and community (70 dBA) noise exposure limits, and self-reported hearing difficulties were common. Workers also had moderate to high levels of perceived stress as measured via Cohen's Perceived Stress Scale, and reported a variety of symptoms that could indicate cardiovascular disease. Noise exposures were moderately and significantly correlated with heart rate (Spearman's ρ 0.46, p stress, and unfavorable physical working conditions. These findings suggest that occupational and non-occupational noise exposure is associated with elevations in average heart rate, which may in turn predict potential cardiovascular damage.

  20. The development of technology for recycling of electronic scrap

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hyo-Shin; Kim, Won-Baek; Sohn, Yong-Uhn [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Electronic devices, especially computer becomes an essential tools for home and industries entering the information era. The number of computers exceed over 100 million, hence, the amount of end of life(EOL) computer and electronic scrap is increasing. These wastes and scraps include products rejected from manufacturing processes and obstacle computers. Owing to a short life cycle of electronic products and rapid growth of electronic industries, the number of domestic EOL computers goes beyond a million and its disposal causes an environmental problems. Therefore, this recycling is considered to play an important role from the viewpoint of environmental preservation as well as reusable resources. The process development for the recovery of valuable materials and minimization of waste from electronic scrap has been carried out. In the first year of three year project, physical separation such as shredding, crushing, and magnetic separation is established to reclaim valuable materials effectively. Then, hydro- and pyrometallurgical processes are employed to recover valuable metals from electronic scrap. First, metallic and nonmetallic portion are separated from PCBs by a newly designed shredder to prevent hazardous organic materials from further chemical treatment. The optimum conditions for each unit process were found in terms of separation ratio, energy consumption, recovery rate, etc. (author). 92 refs., 24 tabs., 39 figs.

  1. The influence of printed electronics on the recyclability of paper: A case study for smart envelopes in courier and postal services

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, C., E-mail: caliaga@itene.com [Sustainability Division, Packaging, Transport and Logistics Research Centre, C/Albert Einstein 1, 46980 Paterna, Valencia (Spain); Zhang, H.; Dobon, A.; Hortal, M. [Sustainability Division, Packaging, Transport and Logistics Research Centre, C/Albert Einstein 1, 46980 Paterna, Valencia (Spain); Beneventi, D. [Laboratory of Pulp & Paper Science, Grenoble INP Pagora, 461, Rue de la Papeterie, F-38400 Saint-Martin d’Hères Cedex (France)

    2015-04-15

    Highlights: • Study of the influence of components of printed electronics in paper recycling. • Comparison between paper recycled with and without resistors, batteries and layouts. • Mechanical and optical properties are evaluated in paper handsheets obtained. • Tensile strength of recycled paper is slighted reduced by layouts. • Optical properties of recycled paper slightly varies with layouts and batteries. - Abstract: The aim of this paper is to analyse the effects of the presence of printed electronics on the paper waste streams and specifically on paper recyclability. The analysis is based on a case study focussed on envelopes for postal and courier services provided with these intelligent systems. The smart printed envelope of the study includes a combination of both conventional (thin flexible batteries and resistors) and printed electronic components (conductive track layout based on nanosilver ink). For this purpose, a comparison between envelopes with and without these components (batteries, resistors and conductive track layouts) was carried out through pilot scale paper recycling tests. The generation of rejects during the recycling process as well as the final quality of the recycled paper (mechanical and optical properties) were tested and quantitatively evaluated. The results show that resistors are retained during the screening process in the sieves and consequently they cannot end up in the final screened pulp. Therefore, mechanical and optical properties of the recycled paper are not affected. Nevertheless, inks from the conductive track layouts and batteries were partially dissolved in the process water. These substances were not totally retained in the sieving systems resulting in slight changes in the optical properties of the final recycled paper (variations are 7.2–7.5% in brightness, 8.5–10.7% in whiteness, 1.2–2.2% in L{sup ∗} values, 3.3–3.5% in opacity and 16.1–27% in yellowness). These variations are not in ranges

  2. The influence of printed electronics on the recyclability of paper: A case study for smart envelopes in courier and postal services

    International Nuclear Information System (INIS)

    Aliaga, C.; Zhang, H.; Dobon, A.; Hortal, M.; Beneventi, D.

    2015-01-01

    Highlights: • Study of the influence of components of printed electronics in paper recycling. • Comparison between paper recycled with and without resistors, batteries and layouts. • Mechanical and optical properties are evaluated in paper handsheets obtained. • Tensile strength of recycled paper is slighted reduced by layouts. • Optical properties of recycled paper slightly varies with layouts and batteries. - Abstract: The aim of this paper is to analyse the effects of the presence of printed electronics on the paper waste streams and specifically on paper recyclability. The analysis is based on a case study focussed on envelopes for postal and courier services provided with these intelligent systems. The smart printed envelope of the study includes a combination of both conventional (thin flexible batteries and resistors) and printed electronic components (conductive track layout based on nanosilver ink). For this purpose, a comparison between envelopes with and without these components (batteries, resistors and conductive track layouts) was carried out through pilot scale paper recycling tests. The generation of rejects during the recycling process as well as the final quality of the recycled paper (mechanical and optical properties) were tested and quantitatively evaluated. The results show that resistors are retained during the screening process in the sieves and consequently they cannot end up in the final screened pulp. Therefore, mechanical and optical properties of the recycled paper are not affected. Nevertheless, inks from the conductive track layouts and batteries were partially dissolved in the process water. These substances were not totally retained in the sieving systems resulting in slight changes in the optical properties of the final recycled paper (variations are 7.2–7.5% in brightness, 8.5–10.7% in whiteness, 1.2–2.2% in L ∗ values, 3.3–3.5% in opacity and 16.1–27% in yellowness). These variations are not in ranges able

  3. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    International Nuclear Information System (INIS)

    DelCul, Guillermo D.; Trowbridge, Lee D.; Renier, John-Paul; Ellis, Ronald James; Williams, Kent Alan; Spencer, Barry B.; Collins, Emory D.

    2009-01-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the 235 U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of 238 Pu due to the presence of 236 U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance

  4. Wastewater reuse. What can be learned from the Israel experience; Reutilizacion de aguas residuales. Que se puede aprender de la experiencia israeli

    Energy Technology Data Exchange (ETDEWEB)

    Juanico, M.

    2007-07-01

    In Israel, wastewater is defined as an integral part of the water resources of the country and massive water reuse has been performed for almost four decades. Today, reuse achieves 75% of the produced wastewater. The present paper analyzes the historical development of wastewater reuse in Israel, addressing main events, regulations, coexistence of projects of different sizes and characteristics, institutional organization, the contractual relationship between the urban and rural sectors, nutrients recycling, quality of the treated wastewater and the problem of salination of soils and aquifers. The paper gives an holistic and impartial description of the controversial issues that are presently discussed in the country regarding wastewater reuse. (Author) 42 refs.

  5. Industrial waste recycling strategies optimization problem: mixed integer programming model and heuristics

    Science.gov (United States)

    Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang

    2008-12-01

    Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.

  6. Reduce, reuse, and recycle: developmental evolution of trait diversification.

    Science.gov (United States)

    Preston, Jill C; Hileman, Lena C; Cubas, Pilar

    2011-03-01

    A major focus of evolutionary developmental (evo-devo) studies is to determine the genetic basis of variation in organismal form and function, both of which are fundamental to biological diversification. Pioneering work on metazoan and flowering plant systems has revealed conserved sets of genes that underlie the bauplan of organisms derived from a common ancestor. However, the extent to which variation in the developmental genetic toolkit mirrors variation at the phenotypic level is an active area of research. Here we explore evidence from the angiosperm evo-devo literature supporting the frugal use of genes and genetic pathways in the evolution of developmental patterning. In particular, these examples highlight the importance of genetic pleiotropy in different developmental modules, thus reducing the number of genes required in growth and development, and the reuse of particular genes in the parallel evolution of ecologically important traits.

  7. Physio-chemical reactions in recycle aggregate concrete.

    Science.gov (United States)

    Tam, Vivian W Y; Gao, X F; Tam, C M; Ng, K M

    2009-04-30

    Concrete waste constitutes the major proportion of construction waste at about 50% of the total waste generated. An effective way to reduce concrete waste is to reuse it as recycled aggregate (RA) for the production of recycled aggregate concrete (RAC). This paper studies the physio-chemical reactions of cement paste around aggregate for normal aggregate concrete (NAC) and RAC mixed with normal mixing approach (NMA) and two-stage mixing approach (TSMA) by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Four kinds of physio-chemical reactions have been recorded from the concrete samples, including the dehydration of C(3)S(2)H(3), iron-substituted ettringite, dehydroxylation of CH and development of C(6)S(3)H at about 90 degrees C, 135 degrees C, 441 degrees C and 570 degrees C, respectively. From the DSC results, it is confirmed that the concrete samples with RA substitution have generated less amount of strength enhancement chemical products when compared to those without RA substitution. However, the results from the TSMA are found improving the RAC quality. The pre-mix procedure of the TSMA can effectively develop some strength enhancing chemical products including, C(3)S(2)H(3), ettringite, CH and C(6)S(3)H, which shows that RAC made from the TSMA can improve the hydration processes.

  8. Nanomaterials environmental risks and recycling: Actual issues

    Directory of Open Access Journals (Sweden)

    Živković Dragana

    2014-01-01

    Full Text Available Nanotechnologies are being spoken of as the driving force behind a new industrial revolution. Nanoscience has matured significantly during the last decade as it has transitioned from bench top science to applied technology. Presently, nanomaterials are used in a wide variety of commercial products such as electronic components, sports equipment, sun creams and biomedical applications. The size of nanoparticles allows them to interact strongly with biological structures, so they present potential human and environmental health risk. Nanometer size presents also a problem for separation, recovery, and reuse of the particulate matter. Therefore, industrial-scale manufacturing and use of nanomaterials could have strong impact on human health and the environment or the problematic of nanomaterials recycling. The catch-all term ''nanotechnology' is not sufficiently precise for risk governance and risk management purposes. The estimation of possible risks depends on a consideration of the life cycle of the material being produced, which involves understanding the processes and materials used in manufacture, the likely interactions between the product and individuals or the environment during its manufacture and useful life, and the methods used in its eventual disposal. From a risk-control point of view it will be necessary to systematically identify those critical issues, which should be looked at in more detail. Brief review of actual trends in nanomaterials environmental risks and recycling is given in this paper.

  9. Physio-chemical reactions in recycle aggregate concrete

    International Nuclear Information System (INIS)

    Tam, Vivian W.Y.; Gao, X.F.; Tam, C.M.; Ng, K.M.

    2009-01-01

    Concrete waste constitutes the major proportion of construction waste at about 50% of the total waste generated. An effective way to reduce concrete waste is to reuse it as recycled aggregate (RA) for the production of recycled aggregate concrete (RAC). This paper studies the physio-chemical reactions of cement paste around aggregate for normal aggregate concrete (NAC) and RAC mixed with normal mixing approach (NMA) and two-stage mixing approach (TSMA) by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Four kinds of physio-chemical reactions have been recorded from the concrete samples, including the dehydration of C 3 S 2 H 3 , iron-substituted ettringite, dehydroxylation of CH and development of C 6 S 3 H at about 90 deg. C, 135 deg. C, 441 deg. C and 570 deg. C, respectively. From the DSC results, it is confirmed that the concrete samples with RA substitution have generated less amount of strength enhancement chemical products when compared to those without RA substitution. However, the results from the TSMA are found improving the RAC quality. The pre-mix procedure of the TSMA can effectively develop some strength enhancing chemical products including, C 3 S 2 H 3 , ettringite, CH and C 6 S 3 H, which shows that RAC made from the TSMA can improve the hydration processes

  10. Trans-Americas leads the way into municipal textile recycling

    Energy Technology Data Exchange (ETDEWEB)

    Ridgley, H.

    1998-08-01

    Most textile waste in the US still goes to the landfill--an estimated 6.6 million tons each year. But thanks to the efforts of textile recycles--such as Trans-Americas Textile Recycling CO. (Brooklyn, NY)--another 1.25 million tons gets salvaged for reuse overseas or as a feedstock for the wiping and fiber industries, according to the Council for Textile Recycling. In an era where global population levels are increasing the demand for textile waste from the Western world and municipalities are struggling to reach their waste diversion goals, boosting textile recovery rates makes sense. And it`s a waste that can be easily incorporated into existing municipal curbside or drop-off recycling programs. Since 1942, when the company first opened its doors in Brooklyn, NY, it purchased textile discards from charities. While those discards still make up the majority of Trans-Americas` supply, in the last two years, the company also began purchasing post-consumer material from municipalities. Textiles are definitely going to be an increasingly important part of recycling, as states look to meet their mandates.

  11. Leaching and mechanical behaviour of concrete manufactured with recycled aggregates.

    Science.gov (United States)

    Sani, D; Moriconi, G; Fava, G; Corinaldesi, V

    2005-01-01

    The reuse of debris from building demolition is of increasing public interest because it decreases the volume of material to be disposed to landfill. This research is focused on the evaluation of the possibility of reusing recycled aggregate from construction or demolition waste (C&D) as a substitute for natural aggregate in concrete production. In most applications, cement based materials are used for building construction due to their cost effectiveness and performance; however their impact on the surrounding environment should be monitored. The interstitial pore fluid in contact with hydrated cementitious materials is characterized by persistent alkaline pH values buffered by the presence of hydrate calcium silicate, portlandite and alkaline ions. An experimental plan was carried out to investigate concrete structural properties in relation to alkali release in aqueous solution. Results indicate that the presence of recycled aggregate increases the leachability of unreactive ions (Na, K, Cl), while for calcium the substitution resulted in a lower net leaching. In spite of the lower mechanical resistance (40% less), such a waste concrete may be suggested as more environmentally sustainable.

  12. Indirect Potable Reuse: A Sustainable Water Supply Alternative

    Directory of Open Access Journals (Sweden)

    Clemencia Rodriguez

    2009-03-01

    Full Text Available The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed.

  13. Indirect Potable Reuse: A Sustainable Water Supply Alternative

    Science.gov (United States)

    Rodriguez, Clemencia; Van Buynder, Paul; Lugg, Richard; Blair, Palenque; Devine, Brian; Cook, Angus; Weinstein, Philip

    2009-01-01

    The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed. PMID:19440440

  14. Quantifying Domestic Used Electronics Flows using a Combination of Material Flow Methodologies: A US Case Study.

    Science.gov (United States)

    Miller, T Reed; Duan, Huabo; Gregory, Jeremy; Kahhat, Ramzy; Kirchain, Randolph

    2016-06-07

    This paper describes the scope, methods, data, and results of a comprehensive quantitative analysis of generation, stock, and collection of used computers and monitors in the United States , specifically desktops, laptops, CRT monitors, and flat panel monitors in the decade leading up to 2010. Generation refers to used electronics coming directly out of use or postuse storage destined for disposal or collection, which encompasses a variety of organizations gathering used electronics for recycling or reuse. Given the lack of actual statistics on flows of used electronics, two separate approaches, the sales obsolescence method (SOM) and the survey scale-up method (SSUM), were used in order to compare the results attained and provide a range for estimated quantities. This study intentionally sought to capture the uncertainty in the estimates. To do so, uncertainty in each data set was incorporated at each stage using Monte Carlo simulations for SOM and establishing scenarios for SSUM. Considering the average results across both methods, we estimate that in 2010 the U.S. generated 130-164 thousand metric tons of used computers and 128-153 thousand tons of used monitors, of which 110-116 thousand tons of used computers and 105-106 thousand tons of used monitors were collected for further reuse, recycling, or export. While each approach has its strengths and weaknesses, both the SOM and the SSUM appear to be capable of producing reasonable ranges of estimates for the generation and collection of used electronics.

  15. Development of Policies, Institutions and Procedures for Water Reuse

    Science.gov (United States)

    Demouche, L.; Pfiefer, J.; Hanson, A.; Skaggs, R.

    2009-12-01

    In the arid, water scarce region of New Mexico and West Texas there is growing interest in the potential for water reuse to extend existing supplies and mitigate drought shortage impacts. There are no new sources of water in New Mexico, except reclaimed water. Communities and individuals are uncertain about and have many unanswered questions about polices, institutions involved (agencies), legal and regulatory requirements, and procedures governing water reuse. Issues to be addressed by this project include: the legal ability to reuse water, ownership of water rights, downstream or third party impacts, regulatory and procedural requirements, water quality concerns, state and local agency involvement, and cost effectiveness of water reuse compared to alternative sources. Presently, there is very little implementation or directives in New Mexico policy that addresses reuse, reclamation, or recycled water. The only regulations pertaining to reuse is New Mexico Environmental Department currently allows the use of reclaimed domestic wastewater for irrigation of golf courses and green spaces, which is listed in the Policy for the Above Ground Use of Reclaimed Domestic Wastewater (NMED, 2003). This document identifies the various reclaimed quality classifications that are required for specific applications and the permits required for application. This document does not identify or address policy applications on the distribution, ownership, or trading of reclaimed water. Even though reclaimed water reuse projects are currently being implemented in many cities in the U.S., mainly for commercial and municipal irrigation (golf courses and green space), its potential has not yet been exploited. A policy analysis matrix (PAM) is being designed to identify and examine the policy framework and consequences of non-policy implementation for decision makers and interest groups and assist them in understanding the consequences of policy actions and project outcomes if no laws or

  16. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  17. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  18. Gunite and associated tanks remediation project recycling and waste minimization effort

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Saunders, A.D.

    1998-05-01

    The Department of Energy's Environmental Management Program at Oak Ridge National Laboratory has initiated clean up of legacy waste resulting from the Manhattan Project. The gunite and associated tanks project has taken an active pollution prevention role by successfully recycling eight tons of scrap metal, reusing contaminated soil in the Area of Contamination, using existing water (supernate) to aid in sludge transfer, and by minimizing and reusing personal protective equipment (PPE) and on-site equipment as much as possible. Total cost savings for Fiscal Year 1997 activities from these efforts are estimated at $4.2 million dollars

  19. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    DelCul, Guillermo Daniel [ORNL; Trowbridge, Lee D [ORNL; Renier, John-Paul [ORNL; Ellis, Ronald James [ORNL; Williams, Kent Alan [ORNL; Spencer, Barry B [ORNL; Collins, Emory D [ORNL

    2009-02-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the {sup 235}U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of {sup 238}Pu due to the presence of {sup 236}U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance.

  20. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-01-25

    Highlights: • Pyrolysis characteristics are conducted for a better understanding of LCDs pyrolysis. • Optimum design is developed which is significant to guide the further industrial process. • Acetic acid and TPP are recycled and separated. - Abstract: Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box–Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min{sup −1} and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  1. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels

    International Nuclear Information System (INIS)

    Wang, Ruixue; Xu, Zhenming

    2016-01-01

    Highlights: • Pyrolysis characteristics are conducted for a better understanding of LCDs pyrolysis. • Optimum design is developed which is significant to guide the further industrial process. • Acetic acid and TPP are recycled and separated. - Abstract: Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box–Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min"−"1 and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  2. Recycled Coarse Aggregate Produced by Pulsed Discharge in Water

    Science.gov (United States)

    Namihira, Takao; Shigeishi, Mitsuhiro; Nakashima, Kazuyuki; Murakami, Akira; Kuroki, Kaori; Kiyan, Tsuyoshi; Tomoda, Yuichi; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori; Ohtsu, Masayasu

    In Japan, the recycling ratio of concrete scraps has been kept over 98 % after the Law for the Recycling of Construction Materials was enforced in 2000. In the present, most of concrete scraps were recycled as the Lower Subbase Course Material. On the other hand, it is predicted to be difficult to keep this higher recycling ratio in the near future because concrete scraps increase rapidly and would reach to over 3 times of present situation in 2010. In addition, the demand of concrete scraps as the Lower Subbase Course Material has been decreased. Therefore, new way to reuse concrete scraps must be developed. Concrete scraps normally consist of 70 % of coarse aggregate, 19 % of water and 11 % of cement. To obtain the higher recycling ratio, the higher recycling ratio of coarse aggregate is desired. In this paper, a new method for recycling coarse aggregate from concrete scraps has been developed and demonstrated. The system includes a Marx generator and a point to hemisphere mesh electrode immersed in water. In the demonstration, the test piece of concrete scrap was located between the electrodes and was treated by the pulsed discharge. After discharge treatment of test piece, the recycling coarse aggregates were evaluated under JIS and TS and had enough quality for utilization as the coarse aggregate.

  3. Results on reuse of reclaimed shower water

    Science.gov (United States)

    Verostko, Charles E.; Garcia, Rafael; Pierson, Duane L.; Reysa, Richard P.; Irbe, Robert

    1986-01-01

    The Waste Water Recovery System that has been used in conjunction with a microgravity whole body shower to test a closed loop shower water reclamation system applicable to the NASA Space Station employs a Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem. Attention is given to the suitability of a Space Shuttle soap for such crew showers, the effects of shower water on the entire system, and the purification qualities of the recovered water. The chemical pretreatment of the shower water for microorganism control involved activated carbon, mixed ion exchange resin beds, and iodine bactericide dispensing units. The water was recycled five times, demonstrating the feasibility of reuse.

  4. Processing of combined domestic bath and laundry waste waters for reuse as commode flushing water

    Science.gov (United States)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1975-01-01

    An experimental investigation of processes and system configurations for reclaiming combined bath and laundry waste waters for reuse as commode flush water was conducted. A 90-min recycle flow was effective in removing particulates and in improving other physical characteristics to the extent that the filtered water was subjectively acceptable for reuse. The addition of a charcoal filter resulted in noticeable improvements in color, turbidity, and suds elimination. Heating and chlorination of the waste waters were investigated for reducing total organism counts and eliminating coliform organisms. A temperature of 335.9 K (145 F) for 30 min and chlorine concentrations of 20 mg/l in the collection tank followed by 10 mg/l in the storage tank were determined to be adequate for this purpose. Water volume relationships and energy-use rates for the waste water reuse systems are also discussed.

  5. Waste management, informal recycling, environmental pollution and public health.

    Science.gov (United States)

    Yang, Hong; Ma, Mingguo; Thompson, Julian R; Flower, Roger J

    2018-03-01

    With rapid population growth, especially in low-income and middle-income countries, the generation of waste is increasing at an unprecedented rate. For example, annual global waste arising from waste electrical and electronic equipment alone will have increased from 33.8 to 49.8 million tonnes between 2010 and 2018. Despite incineration and other waste treatment techniques, landfill still dominates waste disposal in low-income and middle-income countries. There is usually insufficient funding for adequate waste management in these countries and uptake of more advanced waste treatment technologies is poor. Without proper management, many landfills represent serious hazards as typified by the landslide in Shenzhen, China on 20 December 2015. In addition to formal waste recycling systems, approximately 15million people around the world are involved in informal waste recycling, mainly for plastics, metals, glass and paper. This review examines emerging public health challenges, in particular within low-income and middle-income countries, associated with the informal sector. While informal recyclers contribute to waste recycling and reuse, the relatively primitive techniques they employ, combined with improper management of secondary pollutants, exacerbate environmental pollution of air, soil and water. Even worse, insufficient occupational health measures expose informal waste workers to a range of pollutants, injuries, respiratory and dermatological problems, infections and other serious health issues that contribute to low life expectancy. Integration of the informal sector with its formal counterparts could improve waste management while addressing these serious health and livelihood issues. Progress in this direction has already been made notably in several Latin American countries where integrating the informal and formal sectors has had a positive influence on both waste management and poverty alleviation. © Article author(s) (or their employer(s) unless

  6. Characterization of Airborne Particles in an Electronic Waste Recycling Facility and Their Toxicity Assessment

    Science.gov (United States)

    Improper disposal of electronic waste (e-waste) can lead to release of toxic chemicals into the environment and also may pose health risks. Thus, recycling e-waste, instead of landfilling, is considered to be an effective way to reduce pollutant release and exposure. However, lit...

  7. Stainless Steel RSM Beneficial Reuse technical feasibility to business reality

    International Nuclear Information System (INIS)

    Boettinger, W.L.; Mishra, G.

    1997-08-01

    The Stainless Steel Beneficial Reuse Program began in 1994 as a demonstration funded by the DOE Office of Science and Technology. The purpose was to assess the practicality of stainless steel radioactive scrap metal (RSM) recycle. Technical feasibility has been demonstrated through the production of a number of products made from recycled RSM. A solid business foundation is yet to be achieved. However, a business environment is beginning to develop as multiple markets and applications for RSM are surfacing around the Complex. The criteria for a successful business reality includes: - affordable programs, - a continuing production base from which to expand, - real products needs, -adequate RSM supply, and - a multi-year program This program currently sponsored by SRS and DOE-ORO to fabricate Defense Waste Processing Facility (DWPF) canisters from RSM provides an activity that satisfies these criteria. The program status is discussed. A comparison of the cost of DWPF canisters fabricated from recycled RSM and virgin metal is presented. The comparison is a function of several factors: disposal costs, the fabrication cost of virgin metal canisters, the fabrication cost of recycled RSM canisters, free release decontamination costs, and the cost to accumulate the RSM. These variables are analyzed and the relationship established to show the break-even point for various values of each parameter

  8. Reuse of assembly systems: a great ecological and economical potential for facility suppliers

    Science.gov (United States)

    Weule, Hartmut; Buchholz, Carsten

    2001-02-01

    In addition to the consumer goods, capital goods offer a great potential for ecological and economic optimization. In view of this fact the project WiMonDi (Re-Use of Assembly Systems as new Business Fields), started in September 1998, focuses a marketable Remanufacturing and Re-Use of modules and components of assembly systems by using technically and organizationally continuous concepts. The objective of the closed Facility-Management-System is to prolong the serviceable lifespan of assembly facilities through the organized dismantling, refurbishment and reconditioning of the assembly facilities as well as their components. Therefore, it is necessary to develop easible and methodical strategies to realize a workable Re-Use concept. Within the project the focus is based on the optimization of Re-Use-strategies - the direct Re-Use, the Re-Use including Refurbishment as well as Material Recycling. The decision for an optimal strategy depends on economical (e.g. residual value, cost/benefit of relevant processes, etc.), ecological (e.g. pollutant components /substances), etc.) and technical parameters (e.g. reliability, etc.). For the purpose to integrate the total cost-of-ownership of products or components, WiMonDi integrates the costs of the use of products as well as the Re-Use costs/benefits. To initiate the conception of new distribution and user models between the supplier and the user of assembly facilities the described approach is conducted in close cooperation between Industry and University.

  9. U.S. Department of Energy National Center of Excellence for Metals Recycle

    International Nuclear Information System (INIS)

    Adams, V.; Bennett, M.; Bishop, L.

    1998-05-01

    The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-l2 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer programs, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, provide pollution prevention information and documentation, and produce independent government estimates. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrapyard, and disposition of PCB-contaminated drums

  10. Criterion 6, indicator 33 : recovery or recycling of forest products as a percentage of total forest products consumption

    Science.gov (United States)

    Ken Skog; James Howard; Rebecca. Westby

    2011-01-01

    This indicator shows the trend in recovering wood and paper for reuse in products in the United States. This reuse can hold down the need to harvest wood to meet U.S. consumption needs. The paper recycling rate (utilization rate in producing new paper) increased from 22% to 38% between 1970 and 1996, but then stabilized at 37% to 38% between 1996 and 2006. This rate...

  11. Disposal Options of Bamboo Fabric-Reinforced Poly(Lactic Acid Composites for Sustainable Packaging: Biodegradability and Recyclability

    Directory of Open Access Journals (Sweden)

    M.R. Nurul Fazita

    2015-08-01

    Full Text Available The present study was conducted to determine the recyclability and biodegradability of bamboo fabric-reinforced poly(lactic acid (BF-PLA composites for sustainable packaging. BF-PLA composite was recycled through the granulation, extrusion, pelletization and injection processes. Subsequently, mechanical properties (tensile, flexural and impact strength, thermal stability and the morphological appearance of recycled BF-PLA composites were determined and compared to BF-PLA composite (initial materials and virgin PLA. It was observed that the BF-PLA composites had the adequate mechanical rigidity and thermal stability to be recycled and reused. Moreover, the biodegradability of BF-PLA composite was evaluated in controlled and real composting conditions, and the rate of biodegradability of BF-PLA composites was compared to the virgin PLA. Morphological and thermal characteristics of the biodegradable BF-PLA and virgin PLA were obtained by using environment scanning electron microscopy (ESEM and differential scanning calorimetry (DSC, respectively. The first order decay rate was found to be 0.0278 and 0.0151 day−1 in a controlled composting condition and 0.0008 and 0.0009 day−1 in real composting conditions for virgin PLA and BF-PLA composite, respectively. Results indicate that the reinforcement of bamboo fabric in PLA matrix minimizes the degradation rate of BF-PLA composite. Thus, BF-PLA composite has the potential to be used in product packaging for providing sustainable packaging.

  12. Agronomic behavior of gladiolus in organic substrates with wastewater reuse

    Directory of Open Access Journals (Sweden)

    Ítalo Dourado Teixeira

    2015-12-01

    Full Text Available This study aimed to assess the technical feasibility of effluent reuse and recycling of organic substrates in the production of gladiolus. We adopted a completely randomized design in a split-plot, and the plots three qualities water (river water with Hoagland’s solution; treated effluent in stabilization pond; treated effluent in stabilization pond and disinfected and the subplots organic substrates (pine bark, coir, bagasse, repeated five times. Were characterized physico-chemical water and each substrate, the beginning and end of two growing seasons. The variables evaluated were: number of tillers, plant height, total production; flower stem length, number of flowers, time to first harvest, total cycle time, fresh and dry mass of the area. The reuse of effluent resulted in agronomic performance equal or superior to that obtained by the use of nutrient solution and the substrate base bagasse promoted agronomic performance inferior to the other substrates evaluated.

  13. The implications of household greywater treatment and reuse for municipal wastewater flows and micropollutant loads

    DEFF Research Database (Denmark)

    Revitt, Michael; Eriksson, Eva; Donner, Erica

    2011-01-01

    An increasing worldwide interest in water recycling technologies such as greywater treatment and reuse suggests that additional research to elucidate the fate of xenobiotics during such practices would be beneficial. In this paper, scenario analyses supported by empirical data are used...... for highlighting the potential fate of a election of xenobiotic micropollutants in decentralised greywater treatment systems, and for investigation of the possible implications of greywater recycling for the wider urban water cycle. Potential potable water savings of up to 43% are predicted for greywater recycling...... based on Danish water use statistics and priority substance monitoring at a greywater treatment plant in Denmark. Adsorption represents an important mechanism for the removal of cadmium, nickel, lead and nonylphenol from influent greywater and therefore the disposal route adopted for the generated...

  14. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite.

    Science.gov (United States)

    Zou, Zhanan; Zhu, Chengpu; Li, Yan; Lei, Xingfeng; Zhang, Wei; Xiao, Jianliang

    2018-02-01

    Electronic skin (e-skin) mimicking functionalities and mechanical properties of natural skin can find broad applications. We report the first dynamic covalent thermoset-based e-skin, which is connected through robust covalent bonds, rendering the resulting devices good chemical and thermal stability at service condition. By doping the dynamic covalent thermoset with conductive silver nanoparticles, we demonstrate a robust yet rehealable, fully recyclable, and malleable e-skin. Tactile, temperature, flow, and humidity sensing capabilities are realized. The e-skin can be rehealed when it is damaged and can be fully recycled at room temperature, which has rarely, if at all, been demonstrated for e-skin. After rehealing or recycling, the e-skin regains mechanical and electrical properties comparable to the original e-skin. In addition, malleability enables the e-skin to permanently conform to complex, curved surfaces without introducing excessive interfacial stresses. These properties of the e-skin yield an economical and eco-friendly technology that can find broad applications in robotics, prosthetics, health care, and human-computer interface.

  15. HOUSEHOLD PARTICIPATION IN RECYCLING PROGRAMS: A CASE STUDY FROM MALAYSIA

    Directory of Open Access Journals (Sweden)

    Azilah M Akil

    2015-05-01

    Full Text Available The increase in per capita income and rapid urbanization, have contributed significantly to changes in consumption behaviour leading to increased waste generation.  Waste disposed to landfill sites is fast becoming unfeasible thus requiring a more effective management of waste material involving waste reduction, reuse and recycling. The success of recycling program, however, is largely dependent on household participation activities which are essentially behaviour driven. The recycling performance of Malaysian households is still low as it stands at 5.5% compared to Singapore and Vietnam which are 56% and 22% respectively. This study examines recycling behaviour among households and the influence of socioeconomic, demographic and behavioural characteristics on households’ participation in recycling program in Malaysia.  A sample of 300 randomly selected household were surveyed.  The findings revealed that most of the households (70% claim that they are practicing recycling particularly types of paper and old clothes. The factors of participation in recycling show equal results both for environmental concerns and economic benefits. Those who did not participate in recycling, listed household issues or behaviour, namely lack of time and materials to recycle, inconvenient, lack of space, lack of facilities and information as well as laziness, as barriers. The paper finally highlights the factors which can encourage household to be involved in recycling and give recommendations to the authorities in terms of facilities and infrastructures to facilitate the program.

  16. Waste reduction and recycling initiatives in Japanese cities: lessons from Yokohama and Kamakura.

    Science.gov (United States)

    Hotta, Yasuhiko; Aoki-Suzuki, Chika

    2014-09-01

    Waste reduction and recycling at the city level will acquire greater significance in the near future due to rising global volumes of waste. This paper seeks to identify policy-relevant drivers for successful promotion of waste reduction and recycling. Factors influencing the success of waste reduction and recycling campaigns are identified. Two case study cities in Japan which depict the successful use of the 3Rs (reduce, reuse and recycle) at the municipal level are presented. In these cases, the existence of incinerators, which are generally considered as disincentives for recycling, was not functioning as a disincentive but rather as an incentive for waste reduction. Owing to the high cost of incineration facilities, the movement to close incinerators has become a strong incentive for waste reduction and recycling in these two cities. The study suggests that careful consideration is necessary when making decisions concerning high-cost waste treatment facilities with high installation, maintenance and renewal outlays. In addition, intensive source separation and other municipal recycling initiatives have a high potential for producing positive results. © The Author(s) 2014.

  17. Optimization of greenhouse gas emissions in second-hand consumer product recovery through reuse platforms.

    Science.gov (United States)

    Fortuna, Lorena M; Diyamandoglu, Vasil

    2017-08-01

    Product reuse in the solid waste management sector is promoted as one of the key strategies for waste prevention. This practice is considered to have favorable impact on the environment, but its benefits have yet to be established. Existing research describes the perspective of "avoided production" only, but has failed to examine the interdependent nature of reuse practices within an entire solid waste management system. This study proposes a new framework that uses optimization to minimize the greenhouse gas emissions of an integrated solid waste management system that includes reuse strategies and practices such as reuse enterprises, online platforms, and materials exchanges along with traditional solid waste management practices such as recycling, landfilling, and incineration. The proposed framework uses material flow analysis in combination with an optimization model to provide the best outcome in terms of GHG emissions by redistributing product flows in the integrated solid waste management system to the least impacting routes and processes. The optimization results provide a basis for understanding the contributions of reuse to the environmental benefits of the integrated solid waste management system and the exploration of the effects of reuse activities on waste prevention. A case study involving second-hand clothing is presented to illustrate the implementation of the proposed framework as applied to the material flow. Results of the case study showed the considerable impact of reuse on GHG emissions even for small replacement rates, and helped illustrate the interdependency of the reuse sector with other waste management practices. One major contribution of this study is the development of a framework centered on product reuse that can be applied to identify the best management strategies to reduce the environmental impact of product disposal and to increase recovery of reusable products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Innovative Design of Plastic Bottle Recycling Box Based on ARM

    Directory of Open Access Journals (Sweden)

    Yuedong Xiong

    2014-04-01

    Full Text Available Aiming at the problems of on-site plastic bottles recycling and the reuse of waste, the automatic recycling system was developed on the basis of ARM. As the main controller, ARM not only controls the mechanical system of the collector to recover and break plastic bottles, but also communicates with and rewards the user by the automatic reward system through the wireless network. The experimental prototype test results show: post treated fragments of plastic bottles are small, which are convenient to transport and take advantage of; the operation of recovery is easy, and the interface of man-machine interaction is friendly which is easy to expand functions.

  19. Influence of recycled polystyrene beads on cement paste properties

    Directory of Open Access Journals (Sweden)

    Maaroufi Maroua

    2018-01-01

    Full Text Available In order to keep up with the requirements of sustainable development, there is a growing interest towards reducing the energy consumption in the construction and rehabilitation of buildings and the promotion of recycling waste in building materials. The use of recycled polystyrene beads in cement-based materials composition constitutes a solution to improve the insulation in buildings. This allows also limiting landfill by reusing the polystyrene waste. The aim of this study is to compare some properties and performances of a cement paste containing polystyrene beads to a reference paste designed with only the same cement. An experimental campaign was conducted and the obtained results showed that adding recycled polystyrene beads to a cement paste improves its hygro-thermal properties. Further studies are however necessary to better understand the real role of the polystyrene beads in the heat and mass transfers.

  20. Proposal of a new model to improve the collection of small WEEE: a pilot project for the recovery and recycling of toys.

    Science.gov (United States)

    Solé, Miquel; Watson, Jenna; Puig, Rita; Fullana-i-Palmer, Pere

    2012-11-01

    A new collection model was designed and tested in Catalonia (Spain) to foster the separate collection and recycling of electrical and electronic toys, with the participation of selected primary and secondary schools, as well as waste collection points and municipalities. This project approach is very original and important because small household WEEE has low rates of collection (16-21% WEEE within the EU or 5-7% WEEE in Spain) and no research on new approaches to enhance the collection of small WEEE is found in the literature. The project was successful in achieving enhanced toys collection and recycling rates, which went up from the national Spanish average of 0.5% toys before the project to 1.9 and 6% toys during the two project years, respectively. The environmental benefits of the campaign were calculated through a life-cycle approach, accounting for the avoided impact afforded by the reuse of the toys and the recycling of the valuable materials contained therein (such as metals, batteries and circuit boards) and subtracting the additional environmental burdens associated with the establishment of the collection campaign.

  1. Copper on Chitosan: A Recyclable Heterogeneous Catalyst for Azide-alkyne Cycloaddition Reactions in Water

    Science.gov (United States)

    Copper sulfate is immobilized over chitosan by simply stirring an aqueous suspension of chitosan in water with copper sulfate; the ensuing catalyst has been utilized for the azide-alkyne cycloaddition in aqueous media and it can be recycled and reused many time without loosing it...

  2. Interpretation of ion flux and electron temperature profiles at the JET divertor target during high recycling and detached discharges

    International Nuclear Information System (INIS)

    Monk, R.D.

    1997-01-01

    Detailed experiments have been carried out with the JET Mark I pumped divertor to characterise high recycling and detached plasma regimes. This paper presents new measurements of high resolution divertor ion flux profiles that identify the growth of additional peaks during high recycling discharges. These ion flux profiles are used in conjunction with Dα and neutral flux measurements to examine the physics of divertor detachment and compare against simple analytic models. Finally, problems are highlighted with conventional methods of single and triple probe interpretation under high recycling conditions. By assuming that the single probe behaves as an asymmetric double probe the whole characteristic may be fitted and significantly lower electron temperatures may be derived when the electron to ion saturation current ratio is reduced. The results from the asymmetric double probe fit are shown to be consistent with independent diagnostic measurements. (orig.)

  3. Reuse of secondhand TVs exported from Japan to the Philippines

    International Nuclear Information System (INIS)

    Yoshida, Aya; Terazono, Atsushi

    2010-01-01

    The trade of secondhand electrical and electronic equipment (EEE) from developed to developing countries has become a growing environmental issue owing to concerns about improper recycling of these goods in developing countries. We followed a 12-m cargo container of cathode-ray-tube color TVs exported from Japan to the Philippines in February 2008. We surveyed the number of TVs damaged in transport, as well as the number of malfunctioning TVs from this shipment. In addition, we present the results of interviews with 113 Filipino consumers who intended to buy secondhand EEE at nine secondhand shops in Metro Manila. Approximately 3% of the imported TVs were damaged upon arrival. The importer sold some of the units directly to local dealers, and kept the rest to repair, refurbish and resell. Approximately 40% of the imported TVs malfunctioned and needed repair in addition to basic reconditioning. Most interviewees indicated that they prefer to buy secondhand EEE because the prices are lower than those of brand-new products. Consumers indicated that they planned on using the product for an average of about 5 years, but the actual period of use may be lower. Most end-of-life EEE in the Philippines is dismantled and recycled by unregulated companies and untrained individuals in markets or near landfill sites, and it is clear that a proper collection system and treatment methods are needed for e-waste. In addition to the material flow of secondhand TVs, we also discuss several economic aspects and appropriate control measures of the international reuse of secondhand TVs.

  4. Recycling plastic bottles in a creative way

    OpenAIRE

    Pavlin, Suzana

    2016-01-01

    Beside other plastic products, plastic bottles represent a true environmental disaster in the last few years. We assume that hardly anyone asks what happens after they drink that last drop of water out of it. Just like most municipal waste, a plastic bottle can be reused, recycled, burned or deposited into landfill. When the Environment Protection Act is not respected, plastic bottle ends up in the nature, very often in the sea, where it decomposes very slowly and has negative influence on th...

  5. Energy implications of recycling packaging materials

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., Washington, DC (United States)

    1994-03-01

    In 1992, Congress sought to rewrite the United States comprehensive solid waste legislation -- the Resource Conservation and Recovery Act (RCRA). Commodity-specific recycling rates were proposed for consumer-goods packaging materials and newsprint We compare the impacts on energy, materials use, and landfill volume of recycling at those rates to the impacts for alternative methods of material disposition to determine the optimum for each material. After products have served their intended uses, there are several alternative paths for material disposition. These include reuse, recycling to the same product, recycling to a lower-valued product, combustion for energy recovery, incineration without energy recovery, and landfill. Only options considered to be environmentally sound are Included. Both houses of Congress specifically excluded combustion for energy recovery from counting towards the recovery goats, probably because combustion is viewed as a form of disposal and is therefore assumed to waste resources and have n environmental effects. However, co-combustion in coal-fired plants or combustion in appropriately pollution-controlled waste-to-energy plants Is safe, avoids landfill costs, and can displace fossil fuels. In some cases, more fossil fuels can be displaced by combustion than by recycling. We compare the alternative life-cycle energies to the energies for producing the products from virgin materials. Results depend on the material and on the objective to be achieved. There are trade-offs among possible goals. For instance, paper packaging recycling conserves trees but may require greater fossil-fuel input than virgin production. Therefore, the objectives for proposed legislation must be examined to see whether they can most effectively be achieved by mandated recycling rates or by other methods of disposition. The optimal choices for the United States may not necessarily be the same as those for Europe and other parts of the world.

  6. Continuous recycling of enzymes during production of lignocellulosic bioethanol in demonstration scale

    International Nuclear Information System (INIS)

    Haven, Mai Østergaard; Lindedam, Jane; Jeppesen, Martin Dan; Elleskov, Michael; Rodrigues, Ana Cristina; Gama, Miguel; Jørgensen, Henning; Felby, Claus

    2015-01-01

    Highlights: • Results from continuous experiments in demonstration scale for a total of 16 days. • Reuse of enzymes is possible through recycling fermentation broth. • Recycling fermentation broth can increase ethanol concentration with lower dry matter. - Abstract: Recycling of enzymes in production of lignocellulosic bioethanol has been tried for more than 30 years. So far, the successes have been few and the experiments have been carried out at conditions far from those in an industrially feasible process. Here we have tested continuous enzyme recycling at demonstration scale using industrial process conditions (high dry matter content and low enzyme dosage) for a period of eight days. The experiment was performed at the Inbicon demonstration plant (Kalundborg, Denmark) capable of converting four tonnes of wheat straw per hour. 20% of the fermentation broth was recycled to the hydrolysis reactor while enzyme dosage was reduced by 5%. The results demonstrate that recycling enzymes by this method can reduce overall enzyme consumption and may also increase the ethanol concentrations in the fermentation broth. Our results further show that recycling fermentation broth also opens up the possibility of lowering the dry matter content in hydrolysis and fermentation while still maintaining high ethanol concentrations.

  7. Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers

    Directory of Open Access Journals (Sweden)

    Katrina N. Burns

    2016-01-01

    Full Text Available Electronic waste (e-waste is a growing occupational and environmental health issue around the globe. E-waste recycling is a green industry of emerging importance, especially in low-and middle-income countries where much of this recycling work is performed, and where many people’s livelihoods depend on this work. The occupational health hazards of e-waste recycling have not been adequately explored. We performed a cross-sectional study of noise exposures, heart rate, and perceived stress among e-waste recycling workers at a large e-waste site in Accra, Ghana. We interviewed 57 workers and continuously monitored their individual noise exposures and heart rates for up to 24 h. More than 40% of workers had noise exposures that exceeded recommended occupational (85 dBA and community (70 dBA noise exposure limits, and self-reported hearing difficulties were common. Workers also had moderate to high levels of perceived stress as measured via Cohen’s Perceived Stress Scale, and reported a variety of symptoms that could indicate cardiovascular disease. Noise exposures were moderately and significantly correlated with heart rate (Spearman’s ρ 0.46, p < 0.001. A mixed effects linear regression model indicated that a 1 dB increase in noise exposure was associated with a 0.17 increase in heart rate (p-value = 0.01 even after controlling for work activities, age, smoking, perceived stress, and unfavorable physical working conditions. These findings suggest that occupational and non-occupational noise exposure is associated with elevations in average heart rate, which may in turn predict potential cardiovascular damage.

  8. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts

    International Nuclear Information System (INIS)

    Liang Miao; Liu Xia; Qi Wei; Su Rongxin; Huang Renliang; Yu Yanjun; He Zhimin; Wang Libing

    2013-01-01

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts. (paper)

  9. An Integrated Approach to Identification, Assessment and Management of Watershed-Scale Risk for Sustainable Water Use Through Reuse and Recycling

    Science.gov (United States)

    Hunter, C. K.; Bolster, D.; Gironas, J. A.

    2014-12-01

    Water resources are essential to development, not only economically but also socially, politically and ecologically. With growing demand and potentially shrinking supply, water scarcity is one of the most pressing socio-ecological problems of the 21st century. Considering implications of global change and the complexity of interrelated systems, uncertain future conditions compound problems associated with water stress, requiring hydrologic models to re-examine traditional water resource planning and management. The Copiapó water basin, located in the Atacama Desert of northern Chile exhibits a complex resource management scenario. With annual average precipitation of only 28 mm, water intensive sectors such as export agriculture, extensive mining, and a growing population have depleted the aquifeŕs reserves to near critical levels. Being that global climate change models predict a decrease in already scarce precipitation, and that growing population and economies demand will likely increase, the real future situation might be even worse than that predicted. A viable option for alleviation of water stress, water reuse and recycling has evolved through technological innovation to feasibly meet hydraulic needs with reclaimed water. For the proper application of these methods for resource management, however, stakeholders must possess tools by which to quantify hydrologic risk, understand its factors of causation, and choose between competing management scenarios and technologies so as to optimize productivity. While previous investigations have addressed similar problems, they often overlook aspects of forecasting uncertainty, proposing solutions that while accurate under specific scenarios, lack robustness to withstand future variations. Using the WEAP (Water Evaluation and Planning) platform for hydrologic modeling, this study proposes a methodology, applicable to other stressed watersheds, to quantify inherent risk in water management positions, while considering

  10. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2014-08-15

    Highlights: • NMFs from WEEE were treated by incineration or land filling in the past. • Environmental risks such as heavy metals and BFRs will be the major problems during the NMFs recycling processes. • Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glasses are reviewed. • More environmental impact assessment should be carried out to evaluate the environmental risks of the recycling products. - Abstract: The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite

  11. HEAVY METALS IN RECOVERED FINES FOR CONSTRUCTION AND DEMOLITION DEBRIS RECYCLING FACILITIES IN FLORIDA

    Science.gov (United States)

    A major product recovered from the processing and recycling of construction and demolition (C&D) debris is screened soil, also referred to as fines. A proposed reuse option for C&D debris fines is fill material, typically in construction projects as a substitute for natural soil....

  12. Process analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy.

    Science.gov (United States)

    Fink, Herbert; Panne, Ulrich; Niessner, Reinhard

    2002-09-01

    An experimental setup for direct elemental analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy (LIPS, or laser-induced breakdown spectroscopy, LIBS) was realized. The combination of a echelle spectrograph, featuring a high resolution with a broad spectral coverage, with multivariate methods, such as PLS, PCR, and variable subset selection via a genetic algorithm, resulted in considerable improvements in selectivity and sensitivity for this complex matrix. With a normalization to carbon as internal standard, the limits of detection were in the ppm range. A preliminary pattern recognition study points to the possibility of polymer recognition via the line-rich echelle spectra. Several experiments at an extruder within a recycling plant demonstrated successfully the capability of LIPS for different kinds of routine on-line process analysis.

  13. Recycling solid residues recovered from glass fibre-reinforced composites – A review applied to wind turbine blade materials

    DEFF Research Database (Denmark)

    Beauson, Justine; Lilholt, Hans; Brøndsted, Povl

    2014-01-01

    For the sustainable development of modern societies, optimized life cycle management of any technologies must be considered, from their development and implementation to their end of life (EoL). This is of main concern for the wind energy sector. Rapidly growing, this industrial sector will have...... to face large amount of future wind turbine (WT) blades coming to EoL. Among the EoL solutions available for WT blades, i.e. reuse, remanufacturing, recycling, incineration or disposal, this literature review focuses on recycling and particularly the recycling of shredded composite (SC) materials...

  14. U.S. Department of Energy National Center of Excellence for Metals Recycle

    International Nuclear Information System (INIS)

    Adams, V.; Bennett, M.; Bishop, L.

    1998-06-01

    The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. The Center has gotten off to a fast start. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-12 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer software, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, produce pollution prevention information and documentation, manage their materials inventory, produce independent government estimates, and implement sale/service contracts. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrap yard, and disposition of PCB-contaminated drums. Members of the Center look forward to working with all DOE sites, regulatory authorities, the private sector, and other stakeholders to achieve the metals recycle goals

  15. Study on Concrete Containing Recycled Aggregates Immersed in Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Adnan Suraya Hani

    2017-01-01

    Full Text Available In recent decades, engineers have sought a more sustainable method to dispose of concrete construction and demolition waste. One solution is to crush this waste concrete into a usable gradation for new concrete mixes. This not only reduces the amount of waste entering landfills but also alleviates the burden on existing sources of quality natural concrete aggregates. There are too many kinds of waste but here constructions waste will be the priority target that should be solved. It could be managed by several ways such as recycling and reusing the concrete components, and the best choice of these components is the aggregate, because of the ease process of recycle it. In addition, recycled aggregates and normal aggregates were immersed in epoxy resin and put in concrete mixtures with 0%, 5%, 10% and 20% which affected the concrete mixtures properties. The strength of the concrete for both normal and recycled aggregates has increased after immersed the aggregates in epoxy resin. The percentage of water absorption and the coefficient of water permeability decreased with the increasing of the normal and the recycled aggregates immersed in epoxy resin. Generally the tests which have been conducted to the concrete mixtures have a significant results after using the epoxy resin with both normal and recycled aggregates.

  16. Quality Assessment of Mixed and Ceramic Recycled Aggregates from Construction and Demolition Wastes in the Concrete Manufacture According to the Spanish Standard.

    Science.gov (United States)

    Rodríguez-Robles, Desirée; García-González, Julia; Juan-Valdés, Andrés; Morán-Del Pozo, Julia Mª; Guerra-Romero, Manuel I

    2014-08-13

    Construction and demolition waste (CDW) constitutes an increasingly significant problem in society due to the volume generated, rendering sustainable management and disposal problematic. The aim of this study is to identify a possible reuse option in the concrete manufacturing for recycled aggregates with a significant ceramic content: mixed recycled aggregates (MixRA) and ceramic recycled aggregates (CerRA). In order to do so, several tests are conducted in accordance with the Spanish Code on Structural Concrete (EHE-08) to determine the composition in weight and physic-mechanical characteristics (particle size distributions, fine content, sand equivalent, density, water absorption, flakiness index, and resistance to fragmentation) of the samples for the partial inclusion of the recycled aggregates in concrete mixes. The results of these tests clearly support the hypothesis that this type of material may be suitable for such partial replacements if simple pretreatment is carried out. Furthermore, this measure of reuse is in line with European, national, and regional policies on sustainable development, and presents a solution to the environmental problem caused by the generation of CDW.

  17. Quality Assessment of Mixed and Ceramic Recycled Aggregates from Construction and Demolition Wastes in the Concrete Manufacture According to the Spanish Standard

    Directory of Open Access Journals (Sweden)

    Desirée Rodríguez-Robles

    2014-08-01

    Full Text Available Construction and demolition waste (CDW constitutes an increasingly significant problem in society due to the volume generated, rendering sustainable management and disposal problematic. The aim of this study is to identify a possible reuse option in the concrete manufacturing for recycled aggregates with a significant ceramic content: mixed recycled aggregates (MixRA and ceramic recycled aggregates (CerRA. In order to do so, several tests are conducted in accordance with the Spanish Code on Structural Concrete (EHE-08 to determine the composition in weight and physic-mechanical characteristics (particle size distributions, fine content, sand equivalent, density, water absorption, flakiness index, and resistance to fragmentation of the samples for the partial inclusion of the recycled aggregates in concrete mixes. The results of these tests clearly support the hypothesis that this type of material may be suitable for such partial replacements if simple pretreatment is carried out. Furthermore, this measure of reuse is in line with European, national, and regional policies on sustainable development, and presents a solution to the environmental problem caused by the generation of CDW.

  18. 75 FR 71003 - America Recycles Day, 2010

    Science.gov (United States)

    2010-11-19

    ... help create green jobs, support a vibrant American recycling and refurbishing industry, and advance our..., including the recycling of electronic products. The increased use of electronics and technology in our homes... harmful effects of the improper handling and disposal of these products. Currently, most discarded...

  19. Ozone treatment of textile wastewaters for reuse.

    Science.gov (United States)

    Ciardelli, G; Capannelli, G; Bottino, A

    2001-01-01

    Treatment of textile wastewaters by means of an ozonation pilot plant are described. Wastewaters used were produced by a dyeing and finishing factory and were first treated in an active sludge plant and filtrated through sand. In the appropriate conditions very high colour removal (95-99%) was achieved and the effluent could be reused in production processes requiring water of high quality as dyeing yarns or light colorations. Even if the chemical oxygen demand of treated waters was still in a range (75-120 mg/l, a decrease of up to 60%) that was usually considered to be too high for recycling purposes, recycling experiments were successful. The economical viability of the techniques implementation was also demonstrated and the industrial plant is currently under realisation under an EU financed project. The paper considers also the possible improvement of ozone diffusion by means of membrane contactors realised in a second pilot plant, in order to further reduce operating costs of the technique. With respect to traditional systems, the gas/liquid contact surface is much higher being that of the membrane. Ozone at the interface is therefore immediately solubilized and potentially consumed with no additional resistance to the mass transfer.

  20. Nutrient and media recycling in heterotrophic microalgae cultures.

    Science.gov (United States)

    Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S

    2016-02-01

    In order for microalgae-based processes to reach commercial production for biofuels and high-value products such as omega-3 fatty acids, it is necessary that economic feasibility be demonstrated at the industrial scale. Therefore, process optimization is critical to ensure that the maximum yield can be achieved from the most efficient use of resources. This is particularly true for processes involving heterotrophic microalgae, which have not been studied as extensively as phototrophic microalgae. An area that has received significant conceptual praise, but little experimental validation, is that of nutrient recycling, where the waste materials from prior cultures and post-lipid extraction are reused for secondary fermentations. While the concept is very simple and could result in significant economic and environmental benefits, there are some underlying challenges that must be overcome before adoption of nutrient recycling is viable at commercial scale. Even more, adapting nutrient recycling for optimized heterotrophic cultures presents some added challenges that must be identified and addressed that have been largely unexplored to date. These challenges center on carbon and nitrogen recycling and the implications of using waste materials in conjunction with virgin nutrients for secondary cultures. The aim of this review is to provide a foundation for further understanding of nutrient recycling for microalgae cultivation. As such, we outline the current state of technology and practical challenges associated with nutrient recycling for heterotrophic microalgae on an industrial scale and give recommendations for future work.

  1. Acoustic emission monitoring of recycled aggregate concrete under bending

    Science.gov (United States)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The amount of construction and demolition waste has increased considerably over the last few years, making desirable the reuse of this waste in the concrete industry. In the present study concrete specimens are subjected at the age of 28 days to four-point bending with concurrent monitoring of their acoustic emission (AE) activity. Several concrete mixtures prepared using recycled aggregates at various percentages of the total coarse aggregate and also a reference mix using natural aggregates, were included to investigate their influence of the recycled aggregates on the load bearing capacity, as well as on the fracture mechanisms. The results reveal that for low levels of substitution the influence of using recycled aggregates on the flexural strength is negligible while higher levels of substitution lead into its deterioration. The total AE activity, as well as the AE signals emitted during failure, was related to flexural strength. The results obtained during test processing were found to be in agreement with visual observation.

  2. Performance of ceramic ultrafiltration and reverse osmosis membranes in treating car wash wastewater for reuse.

    Science.gov (United States)

    Moazzem, Shamima; Wills, Jamie; Fan, Linhua; Roddick, Felicity; Jegatheesan, Veeriah

    2018-03-01

    Reusing treated effluents in industries is a great option to conserve freshwater resources. For example, car wash centres all over Australia are estimated to use 17.5 billion litres of water and discharge it as wastewater and spend $75 million a year for both purchasing fresh water and for treating and/or discharging the wastewater. Therefore, it is important to develop simple but reliable systems that can help to treat and reuse car wash wastewater. Significant savings could also be associated with the implementation of such systems. This study evaluates the performance of granular and membrane filtration systems with coagulation/flocculation and sedimentation in treating car wash wastewater for the purpose of reuse. Overall, 99.9% of turbidity, 100% of suspended solids and 96% of COD were removed from the car wash wastewater after treating by coagulation, flocculation, sedimentation, sand filtration, ceramic ultrafiltration and reverse osmosis and the treated water meets the standards required for class A recycled water in Australia and standards imposed in Belgium and China. The treated water can be reused. However, optimisation is required to reduce the sludge produced by this system.

  3. The influence of printed electronics on the recyclability of paper: a case study for smart envelopes in courier and postal services.

    Science.gov (United States)

    Aliaga, C; Zhang, H; Dobon, A; Hortal, M; Beneventi, D

    2015-04-01

    The aim of this paper is to analyse the effects of the presence of printed electronics on the paper waste streams and specifically on paper recyclability. The analysis is based on a case study focussed on envelopes for postal and courier services provided with these intelligent systems. The smart printed envelope of the study includes a combination of both conventional (thin flexible batteries and resistors) and printed electronic components (conductive track layout based on nanosilver ink). For this purpose, a comparison between envelopes with and without these components (batteries, resistors and conductive track layouts) was carried out through pilot scale paper recycling tests. The generation of rejects during the recycling process as well as the final quality of the recycled paper (mechanical and optical properties) were tested and quantitatively evaluated. The results show that resistors are retained during the screening process in the sieves and consequently they cannot end up in the final screened pulp. Therefore, mechanical and optical properties of the recycled paper are not affected. Nevertheless, inks from the conductive track layouts and batteries were partially dissolved in the process water. These substances were not totally retained in the sieving systems resulting in slight changes in the optical properties of the final recycled paper (variations are 7.2-7.5% in brightness, 8.5-10.7% in whiteness, 1.2-2.2% in L(∗) values, 3.3-3.5% in opacity and 16.1-27% in yellowness). These variations are not in ranges able to cause problems in current paper recycling processes and restrict the use of recycled paper in current applications. Moreover, real impacts on industrial recycling are expected to be even significantly lower since the proportion of paper product with printed circuits in the current paper waste streams are much lower than the ones tested in this work. However, it should be underlined the fact that this situation may change over the next

  4. Reprocessing yields and material throughput: HTGR recycle demonstration facility

    International Nuclear Information System (INIS)

    Holder, N.; Abraham, L.

    1977-08-01

    Recovery and reuse of residual U-235 and bred U-233 from the HTGR thorium-uranium fuel cycle will contribute significantly to HTGR fuel cycle economics and to uranium resource conservation. The Thorium Utilization National Program Plan for HTGR Fuel Recycle Development includes the demonstration, on a production scale, of reprocessing and refabrication processes in an HTGR Recycle Demonstration Facility (HRDF). This report addresses process yields and material throughput that may be typically expected in the reprocessing of highly enriched uranium fuels in the HRDF. Material flows will serve as guidance in conceptual design of the reprocessing portion of the HRDF. In addition, uranium loss projections, particle breakage limits, and decontamination factor requirements are identified to serve as guidance to the HTGR fuel reprocessing development program

  5. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.

    Science.gov (United States)

    Wang, Ruixue; Xu, Zhenming

    2014-08-01

    The world's waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute

  6. Collection and recycling of electronic scrap: A worldwide overview and comparison with the Brazilian situation

    International Nuclear Information System (INIS)

    Reis de Oliveira, Camila; Moura Bernardes, Andréa; Gerbase, Annelise Engel

    2012-01-01

    Highlights: ► Review of the different e-waste collection systems and recycling processes. ► We present the e-waste collection systems used in Europe and in the US. ► We present e-waste collection systems used in Asia and Latin America. ► E-waste management between developed and developing countries is very different. ► We made a comparison of the world situation to the current Brazilian reality. - Abstract: Recycling and the related issue of sustainable development are increasing in importance around the world. In Brazil, the new National Policy on Solid Wastes has prompted discussion on the future of electronic waste (e-waste). Over the last 10 years, different e-waste collection systems and recycling processes have been applied globally. This paper presents the systems used in different countries and compares the world situation to the current Brazilian reality. To establish a recycling process, it is necessary to organize efficient collection management. The main difficulty associated with the implementation of e-waste recycling processes in Brazil is the collection system, as its efficiency depends not only on the education and cooperation of the people but also on cooperation among industrial waste generators, distributors and the government. Over half a million waste pickers have been reported in Brazil and they are responsible for the success of metal scrap collection in the country. The country also has close to 2400 companies and cooperatives involved in recycling and scrap trading. On the other hand, the collection and recycling of e-waste is still incipient because e-wastes are not seen as valuable in the informal sector. The Brazilian challenge is therefore to organize a system of e-waste management including the informal sector without neglecting environmentally sound management principles.

  7. Water use and its recycling in microalgae cultivation for biofuel application.

    Science.gov (United States)

    Farooq, Wasif; Suh, William I; Park, Min S; Yang, Ji-Won

    2015-05-01

    Microalgal biofuels are not yet economically viable due to high material and energy costs associated with production process. Microalgae cultivation is a water-intensive process compared to other downstream processes for biodiesel production. Various studies found that the production of 1 L of microalgal biodiesel requires approximately 3000 L of water. Water recycling in microalgae cultivation is desirable not only to reduce the water demand, but it also improves the economic feasibility of algal biofuels as due to nutrients and energy savings. This review highlights recently published studies on microalgae water demand and water recycling in microalgae cultivation. Strategies to reduce water footprint for microalgal cultivation, advantages and disadvantages of water recycling, and approaches to mitigate the negative effects of water reuse within the context of water and energy saving are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Recycling microcavity optical biosensors.

    Science.gov (United States)

    Hunt, Heather K; Armani, Andrea M

    2011-04-01

    Optical biosensors have tremendous potential for commercial applications in medical diagnostics, environmental monitoring, and food safety evaluation. In these applications, sensor reuse is desirable to reduce costs. To achieve this, harsh, wet chemistry treatments are required to remove surface chemistry from the sensor, typically resulting in reduced sensor performance and increased noise due to recognition moiety and optical transducer degradation. In the present work, we suggest an alternative, dry-chemistry method, based on O2 plasma treatment. This approach is compatible with typical fabrication of substrate-based optical transducers. This treatment completely removes the recognition moiety, allowing the transducer surface to be refreshed with new recognition elements and thus enabling the sensor to be recycled.

  9. Quality Assessment of Mixed and Ceramic Recycled Aggregates from Construction and Demolition Wastes in the Concrete Manufacture According to the Spanish Standard †

    Science.gov (United States)

    Rodríguez-Robles, Desirée; García-González, Julia; Juan-Valdés, Andrés; Pozo, Julia Mª Morán-del; Guerra-Romero, Manuel I

    2014-01-01

    Construction and demolition waste (CDW) constitutes an increasingly significant problem in society due to the volume generated, rendering sustainable management and disposal problematic. The aim of this study is to identify a possible reuse option in the concrete manufacturing for recycled aggregates with a significant ceramic content: mixed recycled aggregates (MixRA) and ceramic recycled aggregates (CerRA). In order to do so, several tests are conducted in accordance with the Spanish Code on Structural Concrete (EHE-08) to determine the composition in weight and physic-mechanical characteristics (particle size distributions, fine content, sand equivalent, density, water absorption, flakiness index, and resistance to fragmentation) of the samples for the partial inclusion of the recycled aggregates in concrete mixes. The results of these tests clearly support the hypothesis that this type of material may be suitable for such partial replacements if simple pretreatment is carried out. Furthermore, this measure of reuse is in line with European, national, and regional policies on sustainable development, and presents a solution to the environmental problem caused by the generation of CDW. PMID:28788164

  10. Recycling of construction and demolition waste in Kuwait

    International Nuclear Information System (INIS)

    Kartam, N.; Al-Mutairi, N.; Al-Ghusain, I.; Al-Humoud, J.

    2002-01-01

    'Full text:' There is an increasing pressure on the construction industry to reduce costs and improve our environment. The fact is that both of these goals can be achieved at the same time. Although construction and demolition (C and D) constitutes a major type of waste in terms of volume and weight, its management and recycling efforts have not seen the light in Kuwait. The goal of this research project is to study methods leading to the minimization of the total C and D waste that is landfilled in Kuwait. This can be achieved by applying the waste management hierarchy in order of importance: 1) reduce, 2) re-use, 3) recycle, 4) incineration (energy recovery), and 5) safe disposal. This paper presents the current C and D waste disposal system in Kuwait and identifies potential problems to the environment, people and economy. Then, it investigates the recycling option to manage and control this major type of waste in an economically efficient and environmentally safe manner. There are significant volumes of potentially valuable and recoverable resources being wasted in the construction industry, and these figures are continuously growing as we are starting the new millennium. C and D waste constitutes 15%-30% of all solid waste entering landfills in various countries [Bossink 1995]; and thus it is a major type of waste. An estimated 2-3 million ton of construction and demolition waste are being only disposed of in Kuwait's landfill sites each year despite the limited available land (Industrial Investment Company, 1990). C and D waste is a target because it is both heavy and bulky, and therefore undesirable for disposal in engineered, lined landfills because of the space it consumes. On the other hand, many C and D materials have high potential for recovery and use. Recovering C and D waste can help communities reach their recycling goals, preserve valuable space in their local landfills, and create better opportunities for handling other kind of waste. Therefore

  11. International Conference on water reuse and desalination

    International Nuclear Information System (INIS)

    1984-01-01

    The International conference on water reuse and desalination was held on the 13 November 1984 in Johannesburg, South Africa. Papers delivered on this conference covered the following aspects: desalination technology, industrial effluent control, economics of desalination of wastewaters, consumable supplies in desalination, the world market for seawater desalination equipment, reverse osmosis, evaporation and ultrafiltration, treatment of hazardous wastes, role of reverse osmosis in waste water treatment, as well as the desalination, recovery and recycle of water with high efficiency. A paper was also delivered on the mechanical vapour compression process applied to seawater desalination - as an example the paper presents the largest unit so far constructed by SIDEM using this process: a 1,500 mz/day unit installed in the Nuclear power plant of Flamanville in France

  12. Experimental investigation of PV modules recycling; PV module recycle no jikkenteki kento

    Energy Technology Data Exchange (ETDEWEB)

    Unagida, H; Kurokawa, K [Tokyo University of Agriculture and Technology, Tokyo (Japan); Sakuta, K; Otani, K; Murata, K [Electrotechnical Laboratory, Tsukuba (Japan)

    1997-11-25

    Recycling, cost/energy analysis and recovery experiment were made on crystalline silicon PV modules with EVA(ethylene vinyl acetate)-laminated structure. The life of modules is dependent not on performance deterioration of PV cells themselves but on yellowing or poor transmittance of EVA caused by ultraviolet ray, and disconnection between cells by thermal stress. Recovery is carried out in 3 stages of cell, wafer and material. Recovery in the stages of cell and wafer results in considerable reduction of energy and cost. The recovery experiment was carried out using PV module samples prepared by cutting the modules into 25times15mm pieces after removing Al frames from the used modules, peeling back sheets and cutting off EVA. Since a nitric acid process at 70-80degC can dissolve EVA effectively, it is promising for reuse of surface glass and PV cells as they are. This process is also carried out under a condition around room temperature and pressure, contributing to cost reduction and energy saving for recycling. Generation of harmful NOx is only a problem to be solved. 2 refs., 6 figs., 1 tab.

  13. Aligning the economic modeling of software reuse with reuse practices

    NARCIS (Netherlands)

    Postmus, D.; Meijler, 27696

    In contrast to current practices where software reuse is applied recursively and reusable assets are tailored trough parameterization or specialization, existing reuse economic models assume that (i) the cost of reusing a software asset depends on its size and (ii) reusable assets are developed from

  14. Cascaded strand displacement for non-enzymatic target recycling amplification and label-free electronic detection of microRNA from tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Kai; Dou, Baoting; Yang, Jianmei; Yuan, Ruo; Xiang, Yun, E-mail: yunatswu@swu.edu.cn

    2016-04-15

    The monitoring of microRNA (miRNA) expression levels is of great importance in cancer diagnosis. In the present work, based on two cascaded toehold-mediated strand displacement reactions (TSDRs), we have developed a label- and enzyme-free target recycling signal amplification approach for sensitive electronic detection of miRNA-21 from human breast cancer cells. The junction probes containing the locked G-quadruplex forming sequences are self-assembled on the senor surface. The presence of the target miRNA-21 initiates the first TSDR and results in the disassembly of the junction probes and the release of the active G-quadruplex forming sequences. Subsequently, the DNA fuel strand triggers the second TSDR and leads to cyclic reuse of the target miRNA-21. The cascaded TSDRs thus generate many active G-quadruplex forming sequences on the sensor surface, which associate with hemin to produce significantly amplified current response for sensitive detection of miRNA-21 at 1.15 fM. The sensor is also selective and can be employed to monitor miRNA-21 from human breast cancer cells. - Highlights: • Amplified and sensitive detection of microRNA from tumor cells is achieved. • Signal amplification is realized by two cascaded strand displacement reactions. • The developed sensor is selective and label-free without involving any enzymes.

  15. Fixed-base recycling of contaminated metals in the commercial market

    International Nuclear Information System (INIS)

    Loiselle, V.

    1993-01-01

    Since the establishment of the first fixed-base commercial decontamination facility in 1982, commercial processors have cleaned and recycled more than 120 million lb of metals for productive reuse. This represents enough metal to duplicate the Eiffel Tower eight times. This paper examines the economic conditions that led to the foundation of this industry and the types of decontamination technology that have been successfully employed by the processors

  16. Recycling of engineering plastics from waste electrical and electronic equipments: influence of virgin polycarbonate and impact modifier on the final performance of blends.

    Science.gov (United States)

    Ramesh, V; Biswal, Manoranjan; Mohanty, Smita; Nayak, Sanjay K

    2014-05-01

    This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.

  17. Use of recycled plastics in concrete: A critical review.

    Science.gov (United States)

    Gu, Lei; Ozbakkaloglu, Togay

    2016-05-01

    Plastics have become an essential part of our modern lifestyle, and the global plastic production has increased immensely during the past 50years. This has contributed greatly to the production of plastic-related waste. Reuse of waste and recycled plastic materials in concrete mix as an environmental friendly construction material has drawn attention of researchers in recent times, and a large number of studies reporting the behavior of concrete containing waste and recycled plastic materials have been published. This paper summarizes the current published literature until 2015, discussing the material properties and recycling methods of plastic and the influence of plastic materials on the properties of concrete. To provide a comprehensive review, a total of 84 studies were considered, and they were classified into sub categories based on whether they dealt with concrete containing plastic aggregates or plastic fibers. Furthermore, the morphology of concrete containing plastic materials is described in this paper to explain the influence of plastic aggregates and plastic fibers on the properties of concrete. The properties of concretes containing virgin plastic materials were also reviewed to establish their similarities and differences with concrete containing recycled plastics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Attributes to facilitate e-waste recycling behaviour

    Directory of Open Access Journals (Sweden)

    Senawi Nur Hidayah

    2016-01-01

    Full Text Available This study aims to identify the set of attributes to facilitate electronic waste (e-waste behaviour among the community. E-waste disposal is increasing from year to year in parallel with increasing of global population. The short lifespan of electronics and poor e-waste recycling behaviour is among the main contributors to the steadily increasing of e-waste generated. Current recycling rate among the nation is lacking behind, which is only 10.5%. A questionnaire survey has been conducted among the students in Universiti Teknologi Malaysia to evaluate the current e-waste recycling practice. The results showed that majority of the respondents did not recycle their e-waste on campus. Aggressive efforts is needed to realize the country’s target of 20% recycling rate in year 2020, one of the effective paths is to minimize e-waste generation via active e-waste recycling behaviour among the community. Extensive literatures have been reviewed to classify the attributes to facilitate effective e-waste recycling among the community. Total of five attributes that identified in this study which are Convenience of E- waste Recycling Infrastruture and Services, E-waste Recycling Information, Incentives For E-waste Recycling, Reminder to Recycle E-waste And E-waste Recycling Infrastructure and Services. The set of attributes identified in this study may serve as guideline for the management in designing program to foster e-waste recycling behaviour among the community.

  19. Does the Circular Economy Grow the Pie? The Case of Rebound Effects From Smartphone Reuse

    Directory of Open Access Journals (Sweden)

    Tamar Makov

    2018-05-01

    Full Text Available The environmental benefits of the circular economy (CE are often taken for granted. There are, however, reasons to believe that rebound effects may counteract such benefits by increasing overall consumption or “growing the pie.” In this study, we focus on two main rebound mechanisms: (1 imperfect substitution between “re-circulated” (recycled, reused, etc. and new products and (2 re-spending due to economic savings. We use the case study of smartphone reuse in the US to quantify, for the first time, rebound effects from reuse. Using a combination of life cycle assessment, sales statistics, consumer surveying, consumer demand modeling, and environmentally-extended input-output analysis, we quantify the magnitude of this rebound effect for life-cycle greenhouse gas emissions. We find a rebound effect of 29% on average, with a range of 27–46% for specific smartphone models. Moreover, when exploring how rebound might play out in other regions and under different consumer behavior patterns, we find that rebound effects could be higher than 100% (backfire effect. In other words, we estimate that about one third, and potentially the entirety, of emission savings resulting from smartphone reuse could be lost due to the rebound effect. Our results thus suggest that there are grounds to challenge the premise that CE strategies, and reuse in particular, always reduce environmental burdens.

  20. Torsional Shear Device for Testing the Dynamic Properties of Recycled Material

    Science.gov (United States)

    Gabryś, Katarzyna; Sas, Wojciech; Soból, Emil; Głuchowski, Andrzej

    2016-12-01

    From the viewpoint of environmental preservation and effective utilization of resources, it is beneficial and necessary to reuse wastes, for example, concrete, as the recycled aggregates for new materials. In this work, the dynamic behavior of such aggregates under low frequency torsional loading is studied. Results show that the properties of such artificial soils match with those reported in the literature for specific natural soils.

  1. Urban Biomining Meets Printable Electronics: End-To-End at Destination Biological Recycling and Reprinting

    Science.gov (United States)

    Rothschild, Lynn J. (Principal Investigator); Koehne, Jessica; Gandhiraman, Ram; Navarrete, Jesica; Spangle, Dylan

    2017-01-01

    Space missions rely utterly on metallic components, from the spacecraft to electronics. Yet, metals add mass, and electronics have the additional problem of a limited lifespan. Thus, current mission architectures must compensate for replacement. In space, spent electronics are discarded; on earth, there is some recycling but current processes are toxic and environmentally hazardous. Imagine instead an end-to-end recycling of spent electronics at low mass, low cost, room temperature, and in a non-toxic manner. Here, we propose a solution that will not only enhance mission success by decreasing upmass and providing a fresh supply of electronics, but in addition has immediate applications to a serious environmental issue on the Earth. Spent electronics will be used as feedstock to make fresh electronic components, a process we will accomplish with so-called 'urban biomining' using synthetically enhanced microbes to bind metals with elemental specificity. To create new electronics, the microbes will be used as 'bioink' to print a new IC chip, using plasma jet electronics printing. The plasma jet electronics printing technology will have the potential to use martian atmospheric gas to print and to tailor the electronic and chemical properties of the materials. Our preliminary results have suggested that this process also serves as a purification step to enhance the proportion of metals in the 'bioink'. The presence of electric field and plasma can ensure printing in microgravity environment while also providing material morphology and electronic structure tunabiity and thus optimization. Here we propose to increase the TRL level of the concept by engineering microbes to dissolve the siliceous matrix in the IC, extract copper from a mixture of metals, and use the microbes as feedstock to print interconnects using mars gas simulant. To assess the ability of this concept to influence mission architecture, we will do an analysis of the infrastructure required to execute

  2. Effective regeneration of anode material recycled from scrapped Li-ion batteries

    Science.gov (United States)

    Zhang, Jin; Li, Xuelei; Song, Dawei; Miao, Yanli; Song, Jishun; Zhang, Lianqi

    2018-06-01

    Recycling high-valuable metal elements (such as Li, Ni, Co, Al and Cu elements) from scrapped lithium ion batteries can bring significant economic benefits. However, recycling and reusing anode material has not yet attracted wide attention up to now, due to the lower added-value than the above valuable metal materials and the difficulties in regenerating process. In this paper, a novel regeneration process with significant green advance is proposed to regenerate anode material recycled from scrapped Li-ion batteries for the first time. After regenerated, most acetylene black (AB) and all the styrene butadiene rubber (SBR), carboxymethylcellulose sodium (CMC) in recycled anode material are removed, and the surface of anode material is coated with pyrolytic carbon from phenolic resin again. Finally, the regenerated anode material (graphite with coating layer, residual AB and a little CMC pyrolysis product) is obtained. As expected, all the technical indexs of regenerated anode material exceed that of a midrange graphite with the same type, and partial technical indexs are even closed to that of the unused graphite. The results indicate the effective regeneration of anode material recycled from scrapped Li-ion batteries is really achieved.

  3. Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan.

    Science.gov (United States)

    Asari, Misuzu; Fukui, Kazuki; Sakai, Shin-Ichi

    2008-04-01

    We summarized the mercury flow of mercury-containing products from their manufacture to their disposal in Japan and discussed the current management of mercury-containing hazardous household waste (HHW). The mercury flow originating from these products was estimated to be about 10-20 tonnes annually, about 5 tonnes of which was attributable to fluorescent lamps, the major mercury-containing product in Japan. The recent rapid increase in digital home electronics with liquid crystal displays (e.g.,televisions, personal computers, mobile phones, and digital cameras) has led to a marked increase in the production of backlights, which are also fluorescent and contain mercury. Most of the annual flow was disposed of as waste, with only 0.6 tonnes Hg recovered. The mercury flow for end-of-life fluorescent lamps (excluding backlights) was analyzed under three scenarios for Kyoto, Japan for 2003: the present condition scenario, the improved recycling scenario, and the complete recycling scenario. Under the present condition scenario, mercury flow was calculated to be 34 kg Hg for incineration, 21 kg Hg for landfill, and only 4 kg Hg for recycling. The complete recycling scenario shows a simple flow, with all mercury recycled. Under this scenario for Kyoto, we calculated that a cyclic system having 47 kg of mercury (3.5 tonnes Hg in Japan) could be established if all fluorescent lamps (excluding those stored in residences) were collected and recycled. Mercury is a HHW priority chemical, and we need to limit its use and establish a closed-loop system. There are currently no regulations to achieve this, and the management of most HHWs is left to local governments. Therefore, products are disposed of in landfills or incinerated, except for some that are voluntarily collected and recycled. In order to recycle all of the waste fluorescent lamps, we must have a complete recycling system that has a high rate of public participation in collection. We also must have a closed

  4. Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan

    International Nuclear Information System (INIS)

    Asari, Misuzu; Fukui, Kazuki; Sakai, Shin-ichi

    2008-01-01

    We summarized the mercury flow of mercury-containing products from their manufacture to their disposal in Japan and discussed the current management of mercury-containing hazardous household waste (HHW). The mercury flow originating from these products was estimated to be about 10-20 tonnes annually, about 5 tonnes of which was attributable to fluorescent lamps, the major mercury-containing product in Japan. The recent rapid increase in digital home electronics with liquid crystal displays (e.g., televisions, personal computers, mobile phones, and digital cameras) has led to a marked increase in the production of backlights, which are also fluorescent and contain mercury. Most of the annual flow was disposed of as waste, with only 0.6 tonnes Hg recovered. The mercury flow for end-of-life fluorescent lamps (excluding backlights) was analyzed under three scenarios for Kyoto, Japan for 2003: the present condition scenario, the improved recycling scenario, and the complete recycling scenario. Under the present condition scenario, mercury flow was calculated to be 34 kg Hg for incineration, 21 kg Hg for landfill, and only 4 kg Hg for recycling. The complete recycling scenario shows a simple flow, with all mercury recycled. Under this scenario for Kyoto, we calculated that a cyclic system having 47 kg of mercury (3.5 tonnes Hg in Japan) could be established if all fluorescent lamps (excluding those stored in residences) were collected and recycled. Mercury is a HHW priority chemical, and we need to limit its use and establish a closed-loop system. There are currently no regulations to achieve this, and the management of most HHWs is left to local governments. Therefore, products are disposed of in landfills or incinerated, except for some that are voluntarily collected and recycled. In order to recycle all of the waste fluorescent lamps, we must have a complete recycling system that has a high rate of public participation in collection. We also must have a closed

  5. Multi-Market Impacts of Market-Based Recycling Initiatives.

    Science.gov (United States)

    Fisher, Linda R

    1999-09-01

    In 1995 the average tipping fee in the state of New York was $70/ton, with some landfills charging as high as $100. 1 In New Jersey, fees reached prices as high as $165/ton. 2 With budget crises occurring at all levels of government, economists, environmental scientists, policy-makers, and others are scrambling to find alternatives to waste disposal. Recycling as a solution has risen to the forefront, most likely because it both saves landfill space and may use fewer resources than virgin material processing. At every level of government, policies are being set that encourage recycling. Unfortunately, some of these programs may be resulting in unintended and undesirable side effects. To understand these effects, a broader view of the many factors involved in materials use, waste generation, and disposal is necessary. Within this paper, the broader view is considered, including a discussion of the externalities that exist in the markets affected by waste and an analysis of the effects on all alternatives to recycling, including composting and reuse. Through use of mathematical optimization, this paper shows that a recycling subsidy, or the more complicated tax/subsidy scheme, does not necessarily provide greater environmental benefits compared with disposal taxes.

  6. Plastic recycling in the Nordics: A value chain market analysis.

    Science.gov (United States)

    Milios, Leonidas; Holm Christensen, Lena; McKinnon, David; Christensen, Camilla; Rasch, Marie Katrine; Hallstrøm Eriksen, Mikael

    2018-06-01

    There is low utilisation of plastic waste in the Nordic region and only a fraction of plastic materials go back into production processes through reuse and recycling practices. This paper aims to increase knowledge concerning factors that inhibit demand for recycled plastics, and to identify critical barriers for plastic recycling across the regional plastics value chain. A literature review and targeted interviews with key actors across the plastics value chain enabled the mapping of interactions between the major actors and identified hotspots that act as barriers to the flow of plastic materials. Barriers identified include the lack of both supply and demand of recycled plastic and are mainly attributed to the fragmented market of secondary materials. The main hotspots identified are the low demand due to price considerations, insufficient traceability and transparency in value chain transactions, and general design deficiencies in the recyclability of products. Value chain coordination is considered as the most important intervention by the interviewees, followed by the need for increased investment in innovation and technology development. Complementary measures that could counteract the identified barriers include public procurement for resource efficiency, ban on the incineration of recyclable materials, and specifications on the design of plastic products for reducing the number of different polymers, and the number and usage of additives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Heavy metals in recovered fines from construction and demolition debris recycling facilities in Florida.

    Science.gov (United States)

    Townsend, Timothy; Tolaymat, Thabet; Leo, Kevin; Jambeck, Jenna

    2004-10-01

    A major product recovered from the processing and recycling of construction and demolition (C&D) debris is screened soil, also referred to as fines. A proposed reuse option for C&D debris fines is fill material, typically in construction projects as a substitute for natural soil. Waste material that is reused in a manner similar to soil must first be characterized to examine potential risks to human health and the environment. In Florida, samples of C&D debris fines from 13 C&D debris recycling facilities were characterized for 11 total and leachable heavy metal concentrations. Total metal concentration results (mg/kg) were compared to existing data on background Florida soil concentrations and to Florida's risk-based soil cleanup target levels (SCTLs). All of the detected metals were found to be elevated with respect to background. The 95% upper confidence level of arsenic from 99 samples was 3.2 mg/kg; arsenic presented the greatest limitation to reuse when compared to the SCTLs. Lead was not found to pose a major problem, likely because of the relatively new building infrastructure in Florida, which results in less demolition debris and less material impacted by lead-based paint. The results of batch leaching tests conducted using simulated rainwater (mg/l) were compared directly to risk-based groundwater levels for Florida and were found not to pose a risk using existing risk assessment policies.

  8. Wastewater recycling technology for fermentation in polyunsaturated fatty acid production.

    Science.gov (United States)

    Song, Xiaojin; Ma, Zengxin; Tan, Yanzhen; Zhang, Huidan; Cui, Qiu

    2017-07-01

    To reduce fermentation-associated wastewater discharge and the cost of wastewater treatment, which further reduces the total cost of DHA and ARA production, this study first analyzed the composition of wastewater from Aurantiochytrium (DHA) and Mortierella alpina (ARA) fermentation, after which wastewater recycling technology for these fermentation processes was developed. No negative effects of DHA and ARA production were observed when the two fermentation wastewater methods were cross-recycled. DHA and ARA yields were significantly inhibited when the wastewater from the fermentation process was directly reused. In 5-L fed-batch fermentation experiments, using this cross-recycle technology, the DHA and ARA yields were 30.4 and 5.13gL -1 , respectively, with no significant changes (P>0.05) compared to the control group, and the water consumption was reduced by half compared to the traditional process. Therefore, this technology has great potential in industrial fermentation for polyunsaturated fatty acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evolution of water recycling in Australian cities since 2003.

    Science.gov (United States)

    Radcliffe, J C

    2010-01-01

    The prolonged Australian drought which commenced in 2002, and the agreement between Australia's Commonwealth and States/Territories governments to progress water reform through the National Water Initiative, has resulted in many new recycling projects in Australia's capital cities. Dual reticulation systems are being advanced in new subdivision developments in Sydney, Melbourne and Adelaide. Brisbane has installed three large Advanced Water Treatment Plants that are designed to send indirect potable recycled water to the Wivenhoe Dam which is Brisbane's principal water reservoir. Numerous water recycling projects are serving industry and agriculture. Experimental managed aquifer recharge is being undertaken with wetland-treated stormwater in Adelaide and reverse osmosis treated wastewater in Perth. New National Water Quality Management Strategy recycled water guidelines have been developed for managing environmental risks, for augmentation of drinking water supplies, for managed aquifer recharge and for stormwater harvesting and reuse. Many recent investments are part-supported through Commonwealth government grants. Desalination plants are being established in Melbourne and Adelaide and a second one in Perth in addition to the newly-operational plants in Perth, South-East Queensland and Sydney. Despite there being numerous examples of unplanned indirect potable recycling, most governments remain reluctant about moving towards planned potable recycling. There is evidence of some policy bans still being maintained by governments but the National Water Commission continues to reinforce the necessity of an even-handed objective consideration of all water supply options.

  10. ASSESSMENT OF ENERGY SAVING IN WASTE RECYCLING USING SYSTEM DYNAMICS

    Directory of Open Access Journals (Sweden)

    Eugênio de Oliveira Simonetto

    2013-06-01

    Full Text Available Recycling is a topic of great importance in integrated waste management, evidence of this is verified in the National Policy of Solid Waste, decreed in 2010, where it is considered one of the priorities. In this article is presented a computer simulation model, since their development until its validation, which aims to support environmental managers in their decisions regarding the definition and / or maintenance of solid waste policies recycling, as well as evaluating the benefits of process in the environment (in this article we evaluated the energy savings. For the model development was considered: the rate of natural population growth (births and deaths, percentage of solid waste recycled (for each type of material, gravimetric composition of the material in the total waste generated, the amount of waste generated per inhabitant and energy savings caused by each distinct type of material. Through the model results generated, end users (environmental managers thereof may, for example, set incentives to reduce the total generation of solid waste, produce campaigns enhancing reuse and recycling and to assess the relative benefits of energy savings caused by recycling. Model validation was through analysis of future scenarios for a given municipality in southern Brazil. For modeling and system validation was used Vensim from Ventana Systems.

  11. Water Reuse: From Ancient to Modern Times and the Future

    Directory of Open Access Journals (Sweden)

    Andreas N. Angelakis

    2018-05-01

    Full Text Available From the beginning of the Bronze Age (ca. 3200–1100 BC, domestic wastewater (sewage has been used for irrigation and aquaculture by a number of civilizations including those that developed in China and the Orient, Egypt, the Indus Valley, Mesopotamia, and Crete. In historic times (ca. 1000 BC−330 AD, wastewater was disposed of or used for irrigation and fertilization purposes by the Greek and later Roman civilizations, especially in areas surrounding important cities (e.g., Athens and Rome. In more recent times, the practice of land application of wastewater for disposal and agricultural use was utilized first in European cities and later in USA. Today, water reclamation and reuse projects are being planned and implemented throughout the world. Recycled water is now used for almost any purpose including potable use. This paper provides a brief overview of the evolution of water reuse over the last 5,000 years, along with current practice and recommendations for the future. Understanding the practices and solutions of the past, provides a lens with which to view the present and future.

  12. Ionizing radiation and water reuse

    International Nuclear Information System (INIS)

    Borrely, Sueli Ivone; Sampa, Maria Helena de Oliveira; Oikawa, Hiroshi; Silveira, Carlos Gaia da; Duarte, Celina Lopes; Cherbakian, Eloisa Helena

    2002-01-01

    The aim of the present paper is to point out the possibility of including ionizing radiation for wastewater treatment and reuse. Radiation processing is an efficient technology which can be useful for water reuse once the process can reduce not only the biological contamination but also organic substances, promoting an important acute toxicity removal from aquatic resources. Final secondary effluents from three different wastewater treatment plant were submitted to electron beam radiation and the process efficacy was evaluated. Concerning disinfection, relatively low radiation doses (2,0 - 4,0 kGy) accounted for 4 to 6 cycle log reduction for total coliforms. When radiation was applied for general wastewater improvement related to the chemical contamination, radiation process reduced from 78% up to 100% the total acute toxicity, measured for crustaceans, D. similis, and for V. fiscehri bacteria. (author)

  13. Environmental issues of polythylene bags waste and its reuse in construction industry

    International Nuclear Information System (INIS)

    Khan, S.A.; Kamal, M.A.

    2005-01-01

    The main aim of every development and progress is to provide comfort, convenience and prosperity to the mankind. Each development brings a product for the use of public which ends up as a waste after some time. Since the development of plastic in the last century, it has become a popular material used in a wide variety of ways. The problem appears when these items are no longer wanted and how these are disposed, particularly the throwaway plastic material used in wrapping or packaging. Because plastic does not decompose, the amount of plastic waste has increased to the alarming level. The waste problems multifolds, if no reuse option or recycle process has been developed. The plastic shopping bags are one of such products for which no reuse or recycle industry is yet available. Plastic waste problems being multidimensional have attracted world-wide recognition and multiple solutions to tackle the problems are under consideration. There exists a great potential for use of plastic waste in the construction Industry. This study is related to the fabrication of blocks of 'Compressed Plastic Waste (CPW)' and their use in the construction industry, e.g., access ramps for overhead bridges, highway embankments on soft soils, backfill behind retaining walls, foundation support on soft soil and bouancy mats on very soft soils, etc. This paper is dedicated to cost-benefit analysis for the above mentioned uses of the plastic waste blocks. (author)

  14. Optimized collection of EoL electronic products for Circular economy: A techno-economic assessment

    DEFF Research Database (Denmark)

    Angouria-Tsorochidou, Elisavet; Cimpan, Ciprian; Parajuly, Keshav

    2018-01-01

    The relevance of a circular model is widely accepted for the lifecycle management of electrical and electronic products (e-products), given the low recovery rates of valuable resources in current end-of-life (EoL) practices focused on recycling. However, missing insight into the technical...... and business potential for alternative EoL options (reuse, repair and remanufacturing) holds stakeholders from implementing circular strategies. In this context, our study first mapped by means of material flow analysis (MFA) the life cycle stages of e-products in Denmark and then performed a preliminary...

  15. Integrated and holistic suitability assessment of recycling options for masonry rubble

    Science.gov (United States)

    Herbst, T.; Rübner, K.; Meng, B.

    2012-04-01

    Our industrial society depends on continuous mining and consumption of raw materials and energy. Besides, the building sector causes one of the largest material streams in Germany. On the one hand, the building sector is connected with a high need in material and energetic resources as well as financial expenditures. On the other hand, nearly 50 % of the volume of waste arises from the building industry. During the last years, the limitation of natural resources, increasing negative environmental consequences as well as rising prices and shortages of dump space have led to a change in thinking in the building and waste industry to a closed substance cycle waste management. In consideration of the production figures of the main kinds of masonry units (clay bricks, sand-lime bricks, autoclaved aerated concrete brick, concrete blocks), a not unimportant quantity of masonry rubble (including gypsum plaster boards, renders, mortars and mineral insulating materials) of more than 20 million tons per year is generated in the medium term. With regard to a sustainable closed substance cycle waste management, these rest masses have to be recycled if possible. Processed aggregates made from masonry rubble can be recycled in the production of new masonry units under certain conditions. Even carefully deconstructed masonry units can once more re-used as masonry units, particularly in the area of the preservation of monuments and historical buildings. In addition, masonry rubble in different processing qualities is applied in earth and road construction, horticulture and scenery construction as well as concrete production. The choice of the most suitable recycling option causes technical, economical and ecological questions. At present, a methodology for a comprehensive suitability assessment with a passable scope of work does not exist. Basic structured and structuring information on the recycling of masonry rubble is absent up to now. This as well as the economic and technical

  16. Recycling cellulase towards industrial application of enzyme treatment on hardwood kraft-based dissolving pulp.

    Science.gov (United States)

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ji, Xingxiang; Ni, Yonghao

    2016-07-01

    Cost-effectiveness is vital for enzymatic treatment of dissolving pulp towards industrial application. The strategy of cellulase recycling with fresh cellulase addition was demonstrated in this work to activate the dissolving pulp, i.e. decreasing viscosity and increasing Fock reactivity. Results showed that 48.8-35.1% of cellulase activity can be recovered from the filtered liquor in five recycle rounds, which can be reused for enzymatic treatment of dissolving pulp. As a result, the recycling cellulase with addition fresh cellulase of 1mg/g led to the pulp of viscosity 470mL/g and Fock reactivity 80%, which is comparable with cellulase charge of 2mg/g. Other pulp properties such as alpha-cellulose, alkaline solubility and molecular weight distribution were also determined. Additionally, a zero-release of recycling cellulase treatment was proposed to integrate into the dissolving pulp production process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Typology of Options for Metal Recycling: Australia’s Perspective

    Directory of Open Access Journals (Sweden)

    Artem Golev

    2015-12-01

    Full Text Available While Australia has traditionally relied on obtaining metals from primary sources (namely mined natural resources, there is significant potential to recover metals from end-of-life-products and industrial waste. Although any metals recycling value chain requires a feasible technology at its core, many other non-technical factors are key links in the chain, which can compromise the overall viability to recycle a commodity and/or product. The “Wealth from Waste” Cluster project funded by the Commonwealth Scientific Industrial Research Organisation (CSIRO Flagship Collaboration Fund and partner universities is focusing on identifying viable options to “mine” metals contained in discarded urban infrastructure, manufactured products and consumer goods. A key aspect of this research is to understand the critical non-technical barriers and system opportunities to enhance rates of metals recycling in Australia. Work to date has estimated the mass and current worth of metals in above ground resources. Using these outcomes as a basis, a typology for different options for (metal reuse and recycling has been developed to classify the common features, which is presented in this article. In addition, the authors investigate the barriers and enablers in the recycling value chain, and propose a set of requirements for a feasible pathway to close the material loop for metals in Australia.

  18. Sustainable approach for recycling waste lamb and chicken bones for fluoride removal from water followed by reusing fluoride-bearing waste in concrete.

    Science.gov (United States)

    Ismail, Zainab Z; AbdelKareem, Hala N

    2015-11-01

    Sustainable management of waste materials is an attractive approach for modern societies. In this study, recycling of raw waste lamb and chicken bones for defluoridation of water has been estimated. The effects of several experimental parameters including contact time, pH, bone dose, fluoride initial concentration, bone grains size, agitation rate, and the effect of co-existing anions in actual samples of wastewater were studied for fluoride removal from aqueous solutions. Results indicated excellent fluoride removal efficiency up to 99.4% and 99.8% using lamb and chicken bones, respectively at fluoride initial concentration of 10 mg F/L and 120 min contact time. Maximum fluoride uptake was obtained at neutral pH range 6-7. Fluoride removal kinetic was well described by the pseudo-second order kinetic model. Both, Langmuir and Freundlich isotherm models could fit the experimental data well with correlation coefficient values >0.99 suggesting favorable conditions of the process. Furthermore, for complete sustainable management of waste bones, the resulted fluoride-bearing sludge was reused in concrete mixes to partially replace sand. Tests of the mechanical properties of fluoride sludge-modified concrete mixes indicated a potential environmentally friendly approach to dispose fluoride sludge in concrete and simultaneously enhance concrete properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Torsional Shear Device for Testing the Dynamic Properties of Recycled Material

    Directory of Open Access Journals (Sweden)

    Gabryś Katarzyna

    2016-12-01

    Full Text Available From the viewpoint of environmental preservation and effective utilization of resources, it is beneficial and necessary to reuse wastes, for example, concrete, as the recycled aggregates for new materials. In this work, the dynamic behavior of such aggregates under low frequency torsional loading is studied. Results show that the properties of such artificial soils match with those reported in the literature for specific natural soils.

  20. Use of scalp hair as indicator of human exposure to heavy metals in an electronic waste recycling area

    International Nuclear Information System (INIS)

    Wang Thanh; Fu Jianjie; Wang Yawei; Liao Chunyang; Tao Yongqing; Jiang Guibin

    2009-01-01

    Scalp hair samples were collected at an electronic waste (e-waste) recycling area and analyzed for trace elements and heavy metals. Elevated levels were found for Cu and Pb with geometric means (GMs) at 39.8 and 49.5 μg/g, and the levels of all elements were found in the rank order Pb > Cu >> Mn > Ba > Cr > Ni > Cd > As > V. Besides Cu and Pb, Cd (GM: 0.518 μg/g) was also found to be significantly higher compared to that in hair samples from control areas. Differences with age, gender, residence status and villages could be distinguished for most of the elements. The high levels of Cd, Cu and Pb were likely found to be originated from e-waste related activities, and specific sources were discussed. This study shows that human scalp hair could be a useful biomarker to assess the extent of heavy metal exposure to workers and residents in areas with intensive e-waste recycling activities. - Human scalp hair samples can be used to indicate environmental and occupational exposure of heavy metals due to intensive electronic waste recycling activities.

  1. Towards a comprehensive framework for reuse: A reuse-enabling software evolution environment

    Science.gov (United States)

    Basili, V. R.; Rombach, H. D.

    1988-01-01

    Reuse of products, processes and knowledge will be the key to enable the software industry to achieve the dramatic improvement in productivity and quality required to satisfy the anticipated growing demand. Although experience shows that certain kinds of reuse can be successful, general success has been elusive. A software life-cycle technology which allows broad and extensive reuse could provide the means to achieving the desired order-of-magnitude improvements. The scope of a comprehensive framework for understanding, planning, evaluating and motivating reuse practices and the necessary research activities is outlined. As a first step towards such a framework, a reuse-enabling software evolution environment model is introduced which provides a basis for the effective recording of experience, the generalization and tailoring of experience, the formalization of experience, and the (re-)use of experience.

  2. Recycling of solid wastes at kindergartens centers

    Directory of Open Access Journals (Sweden)

    Mohamed R.M.S.R.

    2017-02-01

    Full Text Available The present study aimed to conduct an activity on environmental awareness campaign at a kindergarten center, with the children age 4-6 years old. The activity included identify the various types of waste generated at the kindergarten and to realize the conservation practice by participating in simple waste management strategies and an explanation about recycling, reusing and reducing waste (3R. The activity provided the children more awareness about the importance of minimizing the plastic wastes. The activity had created an interesting experience to the young generation through practice activity and has given a light on the nature conservation along their growing years. It can be concluded that the awareness of environmental issues among children have risen up as noted by looking at students physical expression. Children have understood the potential to conserve nature from a simple action which is recycling. After the activity, children’s were able to identify and divide the rubbish.

  3. The development and prospects of the end-of-life vehicle recycling system in Taiwan.

    Science.gov (United States)

    Chen, Kuan-chung; Huang, Shih-han; Lian, I-wei

    2010-01-01

    Automobiles usually contain toxic substances, such as lubricants, acid solutions and coolants. Therefore, inappropriate handling of end-of-life vehicles (ELVs) will result in environmental pollution. ELV parts, which include metallic and non-metallic substances, are increasingly gaining recycling value due to the recent global shortage of raw materials. Hence, the establishment of a proper recycling system for ELVs will not only reduce the impact on the environment during the recycling process, but it will also facilitate the effective reuse of recycled resources. Prior to 1994, the recycling of ELVs in Taiwan was performed by related operators in the industry. Since the publishing of the "End-of-life vehicle recycling guidelines" under the authority of the Waste Disposal Act by the Environmental Protection Administration (EPA) in 1994, the recycling of ELVs in Taiwan has gradually become systematic. Subsequently, the Recycling Fund Management Board (RFMB) of the EPA was established in 1998 to collect a Collection-Disposal-Treatment Fee (recycling fee) from responsible enterprises for recycling and related tasks. Since then, the recycling channels, processing equipment, and techniques for ELVs in Taiwan have gradually become established. This paper reviews the establishment of the ELV recycling system, analyzes the current system and its performance, and provides some recommendations for future development. The reduction of auto shredder residue (ASR) is a key factor in maximizing the resource recovery rate and recycling efficiency. The RFMB needs to provide strong economic incentives to further increase the recycling rate and to encourage the automobile industry to design and market greener cars. 2010 Elsevier Ltd. All rights reserved.

  4. Applicability of recycled aggregates in concrete piles for soft soil improvement.

    Science.gov (United States)

    Medeiros-Junior, Ronaldo A; Balestra, Carlos Et; Lima, Maryangela G

    2017-01-01

    The expressive generation of construction and demolition waste is stimulating several studies for reusing this material. The improvement of soft soils by concrete compaction piles has been widely applied for 40 years in some Brazilian cities. This technique is used to improve the bearing capacity of soft soils, allowing executing shallow foundations instead of deep foundations. The compaction piles use a high volume of material. This article explored the possibility of using recycled aggregates from construction waste to replace the natural aggregates in order to improve the bearing capacity of the soft soil, regarding its compressive strength. Construction wastes from different stages of a construction were used in order to make samples of concrete with recycled aggregates. The strength of concretes with natural aggregates was compared with the strength of concretes with recycled (fine and coarse) aggregates. Results show that all samples met the minimum compressive strength specified for compaction piles used to improve the bearing capacity of soft soils. The concrete with recycled aggregate from the structural stage had even higher resistances than the concrete with natural aggregates. This behaviour was attributed to the large amount of cementitious materials in the composition of this type of concrete. It was also observed that concrete with recycled fine aggregate has a superior resistance to concrete with recycled coarse aggregate.

  5. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    Science.gov (United States)

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  6. Electron beam treatment of toxic volatile organic compounds and dioxins

    International Nuclear Information System (INIS)

    Kojima, Takuji

    2006-01-01

    Considerations of wastes based on the reduction, reuse and recycle in daily life are primary measures to conserve our environment, but the control technology is necessary to support these measures. The electron beam (EB) process is promising as an advanced purification process having advantages such as a quick treatment of big volume gas, applicability even for very low concentration pollutants as the further purification at the downstream of existing process, and decomposition of pollutants into non-toxic substances by one process. The EB technology has been developed for treatment of toxic volatile organic compounds (VOCs) in ventilation gas and dioxins in solid waste incineration flue gas. (author)

  7. Reduce, Reuse, Recycle: Good Earth and the Electronics Dilemma

    Science.gov (United States)

    Descy, Don E.

    2007-01-01

    According to the National Safety Council, 63 million computers became obsolete in 2005 alone, and it is estimated that the total number in storage in 2007 numbers upwards of 500 million computers (Earth 911, 2007). This article describes the steps that one should take before disposing of an obsolete computer. First and foremost, all personal…

  8. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries

    Science.gov (United States)

    Li, Xuelei; Zhang, Jin; Song, Dawei; Song, Jishun; Zhang, Lianqi

    2017-03-01

    A new green recycling process (named as direct regeneration process) of cathode material mixture from scrapped LiFePO4 batteries is designed for the first time. Through this direct regeneration process, high purity cathode material mixture (LiFePO4 + acetylene black), anode material mixture (graphite + acetylene black) and other by-products (shell, Al foil, Cu foil and electrolyte solvent, etc.) are recycled from scrapped LiFePO4 batteries with high yield. Subsequently, recycled cathode material mixture without acid leaching is further directly regenerated with Li2CO3. Direct regeneration procedure of recycled cathode material mixture from 600 to 800 °C is investigated in detail. Cathode material mixture regenerated at 650 °C display excellent physical, chemical and electrochemical performances, which meet the reuse requirement for middle-end Li-ion batteries. The results indicate the green direct regeneration process with low-cost and high added-value is feasible.

  9. Heavy metals in recovered fines from construction and demolition debris recycling facilities in Florida

    International Nuclear Information System (INIS)

    Townsend, Timothy; Tolaymat, Thabet; Leo, Kevin; Jambeck, Jenna

    2004-01-01

    A major product recovered from the processing and recycling of construction and demolition (C and D) debris is screened soil, also referred to as fines. A proposed reuse option for C and D debris fines is fill material, typically in construction projects as a substitute for natural soil. Waste material that is reused in a manner similar to soil must first be characterized to examine potential risks to human health and the environment. In Florida, samples of C and D debris fines from 13 C and D debris recycling facilities were characterized for 11 total and leachable heavy metal concentrations. Total metal concentration results (mg/kg) were compared to existing data on background Florida soil concentrations and to Florida's risk-based soil cleanup target levels (SCTLs). All of the detected metals were found to be elevated with respect to background. The 95% upper confidence level of arsenic from 99 samples was 3.2 mg/kg; arsenic presented the greatest limitation to reuse when compared to the SCTLs. Lead was not found to pose a major problem, likely because of the relatively new building infrastructure in Florida, which results in less demolition debris and less material impacted by lead-based paint. The results of batch leaching tests conducted using simulated rainwater (mg/l) were compared directly to risk-based groundwater levels for Florida and were found not to pose a risk using existing risk assessment policies

  10. Reuse of Electronic Equipment and Software Installed on Them ‒ an Exploratory Analysis in the Context of Circular Economy

    Directory of Open Access Journals (Sweden)

    Cristian Bogdan Onete

    2018-05-01

    Full Text Available The transition to a circular economy in which the value of products, materials and resources is maintained as long as possible and the waste is minimized, has led to the creation of new business opportunities and new, innovative and efficient production and consumption models. Over the last few years, the principles of the circular economy have been gradually integrated into several sectors, the consumer electronics industry being such an example. The applicability of the circular economy principles in this sector has been presented in the literature, but these approaches have taken into account, in particular, the physical, tangible components of electronic products, focusing on the existing interrelationships between the circular economy and the production and use of electronic devices and equipment. Given that electronic products often incorporate intangible components, namely the software necessary for their operation, we have chosen to address in this paper the problems of the circular economy from this perspective, the purpose of this paper being to emphasize the relation between the use of software products and the principles of circular economy. Thus, the paper presents the main opportunities and challenges that circular economy involves for all stakeholders, namely manufacturers of electronic goods and developers of the related software and their users. In order to determine the way consumers capitalize the possibilities to reuse the software components of IT products they use (computers, tablets, mobile phones, we have undertaken an exploratory research that took place between October and November 2017 on the basis of a structured questionnaire posted online and applied to Romanian young people, the number of respondents being 257. Research has shown the respondents easily adapt to new versions of software when they change their phone or laptop and there is a frequent transfer of equipment without considering the possibilities of reuse

  11. The informal recycling in the international and local context: theoretical Elements

    International Nuclear Information System (INIS)

    Yepes P, Dora Luz

    2002-01-01

    This article is a synthesis of the theoretical aspects related with the urban problem of the informal recycling in our means, and it is framed inside the denominated investigation project alternatives for their invigoration of the informal recycling in Medellin, which is a thesis of the grade that looks for to strengthen the informal recycling through the study of the factors associated to the labor productivity of the informal recycle. Specifically, the study will identify options of improvement of its work y points to propose alternatives to dignify the labor of these people integrally by the light of environmental precepts, technicians, normative, institutional social and of sustainability. This document describe the theoretical elements in which this investigation will be based, showing the informal recycling inside of an international context, and their situation in a national and local environment. As a result of the bibliographical revision carried out, can be said, that it glimpses a low interest in to improve the conditions of work a International level of the informal recycle, unless the strategies that it outlines the international labor organization, with regard to the strengthening of the informal economy; in Latin America, it has not been possible to go further of the official rhetoric and the pro motion of the groups environmentalists, but in the issue of the recovery policies, reuse, and the recycling of solid wastes, if there. Has been a sustained advance; at national level clear strategies to improve the informal work of the recycle are being identified, however, lacks many efforts to develop the committed actions with these strategies, in spite of the fact that has been advancing the creation of recycle organizations little by little

  12. Re-use of Low Bandwidth Equipment for High Bit Rate Transmission Using Signal Slicing Technique

    DEFF Research Database (Denmark)

    Wagner, Christoph; Spolitis, S.; Vegas Olmos, Juan José

    : Massive fiber-to-the-home network deployment requires never ending equipment upgrades operating at higher bandwidth. We show effective signal slicing method, which can reuse low bandwidth opto-electronical components for optical communications at higher bit rates.......: Massive fiber-to-the-home network deployment requires never ending equipment upgrades operating at higher bandwidth. We show effective signal slicing method, which can reuse low bandwidth opto-electronical components for optical communications at higher bit rates....

  13. Recycled water sources influence the bioavailability of copper to earthworms.

    Science.gov (United States)

    Kunhikrishnan, Anitha; Bolan, Nanthi S; Naidu, Ravi; Kim, Won-Il

    2013-10-15

    Re-use of wastewaters can overcome shortfalls in irrigation demand and mitigate environmental pollution. However, in an untreated or partially treated state, these water sources can introduce inorganic contaminants, including heavy metals, to soils that are irrigated. In this study, earthworms (Eisenia fetida) have been used to determine copper (Cu) bioavailability in two contrasting soils irrigated with farm dairy, piggery and winery effluents. Soils spiked with varying levels of Cu (0-1,000 mg/kg) were subsequently irrigated with recycled waters and Milli-Q (MQ) water and Cu bioavailability to earthworms determined by mortality and avoidance tests. Earthworms clearly avoided high Cu soils and the effect was more pronounced in the absence than presence of recycled water irrigation. At the highest Cu concentration (1,000 mg/kg), worm mortality was 100% when irrigated with MQ-water; however, when irrigated with recycled waters, mortality decreased by 30%. Accumulation of Cu in earthworms was significantly less in the presence of recycled water and was dependent on CaCl2-extractable free Cu(2+) concentration in the soil. Here, it is evident that organic carbon in recycled waters was effective in decreasing the toxic effects of Cu on earthworms, indicating that the metal-organic complexes decreased Cu bioavailability to earthworms. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Use of recycled plastic in concrete: a review.

    Science.gov (United States)

    Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet

    2008-01-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.

  15. Use of recycled plastic in concrete: A review

    International Nuclear Information System (INIS)

    Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet

    2008-01-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper

  16. Key drivers of the e-waste recycling system: Assessing and modelling e-waste processing in the informal sector in Delhi

    International Nuclear Information System (INIS)

    Streicher-Porte, Martin; Widmer, Rolf; Jain, Amit; Bader, Hans-Peter; Scheidegger, Ruth; Kytzia, Susanne

    2005-01-01

    The management and recycling of waste electrical and electronic equipment WEEE was assessed in the city of Delhi, India. In order to do this, the personal computer was defined as the tracer for which a model was designed. The model depicts the entire life cycle of the tracer, from production through sale and consumption-including reuse and refurbishment-to the material recovery in the mainly informal recycling industry. The field work included interviews with the relevant stakeholders, transect walks and literature study, which was followed by a software-supported material flow analysis (MFA) of the whole life cycle chain of the tracer item. In addition to the MFA, several economic aspects of the recycling system were investigated. The study revealed that the life span of a personal computer has considerable influence upon the system, most notably in the following two aspects: (i) a prolonged life span creates value by means of refurbishing and upgrading activities, and (ii) it slows down the flow rate of the whole system. This is one of the simplest ways of preventing an uncontrolled increase in environmentally hazardous emissions by the recycling sector. The material recovery of the system is mainly driven by the precious metal content of personal computers. A first estimate showed that precious metal recovery contributes to over 80% of the personal computer materials' market value, despite the small quantity of them found in computers

  17. Raw material generated from pet bottle recycling and its derivatives

    Directory of Open Access Journals (Sweden)

    João Almeida Santos

    2015-08-01

    Full Text Available The recycling process is no longer a pejorative connotation business to become the main business of any company not only because of the need to conserve virgin resources, but mainly because of the benefits to the environment. In this sense, this paper aims at assessing the possibility of exports of polyethylene terephthalate - PET known for - a type of product that can be recycled and reprocessed into products of various types and applications. This article has been structured based on exploratory research bibliographic database of scientific articles, books, newspapers and magazines where we analyze the main steps involved in the recycling of PET and its exploitation for export. Support of organizations and associations such as the Brazilian Association of PET (ABIPET contributed to the development of theoretical framework. The market operated and what can still be very large, with the possibility of exponential growth supported by: the economy in the use of virgin resources reduces the impact of chemicals in the environment, saving energy used in the production process, reducing the use of financial resources allocated to the reuse of materials.

  18. Reuse of organobentonites with a carbon dioxide responsive solvent.

    Science.gov (United States)

    Luan, Ling-Yu; Zhang, Li; Wang, Li-Hong

    2018-05-22

    Synthesized organobentonite (SOB), montmorillonite (MMT), and commercial organobentonite (COB) were used as adsorbents for paraffin oil, a model pollutant in land-based oil spills and oil pipeline rupture. The characterization of clays was carried out with scanning electron microscopy (SEM), thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). After adsorption, oil was separated from adsorbents with a carbon dioxide responsive solvent N,N-dimethylcyclohexylamine (DMCHA), and DMCHA was subsequently separated from paraffin oil upon CO 2 bubbling instead of distillation with high energy cost. The adsorption capacity of oil to SOB, MMT, and COB was 0.686, 1.124, and 1.239 g/g, respectively. It was found that the adsorption capacity and rinsed amount of the adsorbents depended on the d-spacing, which is related to surfactant content. Electrical conductivity and pH measurements suggested that the separation process occurred via two steps. Firstly, during the initial 35 min, carbonate ions coexisted with bicarbonate ions. Then, only bicarbonate ions existed after the introduction of CO 2 gas for 120 min. Thus, organobentonites were feasible for hydrocarbon adsorption and could be simply reused by an amine-based responsive solvent. This work provided a cost-effective and sustainable method of recycling of organobentonites and the responsive solvent, which can be used to deal with leaked oil and oil spills.

  19. Morphology, mechanical and thermal oxidative aging properties of HDPE composites reinforced by nonmetals recycled from waste printed circuit boards.

    Science.gov (United States)

    Yang, Shuangqiao; Bai, Shibing; Wang, Qi

    2016-11-01

    In this study nonmetals recycled from waste printed circuit boards (NPCB) is used as reinforce fillers in high-density polyethylene (HDPE) composites. The morphology, mechanical and thermal oxidative aging properties of NPCB reinforced HDPE composites are assessed and it compared with two other commercial functional filler for the first time. Mechanical test results showed that NPCB could be used as reinforcing fillers in the HDPE composites and mechanical properties especially for stiffness is better than other two commercial fillers. The improved mechanical property was confirmed by the higher aspect ratio and strong interfacial adhesion in scanning electron microscopy (SEM) studies. The heat deflection temperature (HDT) test showed the presence of fiberglass in NPCB can improve the heat resistance of composite for their potential applications. Meanwhile, the oxidation induction time (OIT) and the Fourier transform infrared (FTIR) spectroscopy results showed that NPCB has a near resistance to oxidation as two other commercial fillers used in this paper. The above results show the reuse of NPCB in the HDPE composites represents a promising way for resolving both the environmental pollution and the high-value reuse of resources. Copyright © 2015. Published by Elsevier Ltd.

  20. Why Do Some Water Utilities Recycle More than Others? A Qualitative Comparative Analysis in New South Wales, Australia.

    Science.gov (United States)

    Kunz, Nadja C; Fischer, Manuel; Ingold, Karin; Hering, Janet G

    2015-07-21

    Although the recycling of municipal wastewater can play an important role in water supply security and ecosystem protection, the percentage of wastewater recycled is generally low and strikingly variable. Previous research has employed detailed case studies to examine the factors that contribute to recycling success but usually lacks a comparative perspective across cases. In this study, 25 water utilities in New South Wales, Australia, were compared using fuzzy-set Qualitative Comparative Analysis (fsQCA). This research method applies binary logic and set theory to identify the minimal combinations of conditions that are necessary and/or sufficient for an outcome to occur within the set of cases analyzed. The influence of six factors (rainfall, population density, coastal or inland location, proximity to users; cost recovery and revenue for water supply services) was examined for two outcomes, agricultural use and "heavy" (i.e., commercial/municipal/industrial) use. Each outcome was explained by two different pathways, illustrating that different combinations of conditions are associated with the same outcome. Generally, while economic factors are crucial for heavy use, factors relating to water stress and geographical proximity matter most for agricultural reuse. These results suggest that policies to promote wastewater reuse may be most effective if they target uses that are most feasible for utilities and correspond to the local context. This work also makes a methodological contribution through illustrating the potential utility of fsQCA for understanding the complex drivers of performance in water recycling.

  1. Potential for recycling of slightly radioactive metals arising from decommissioning within nuclear sector in Slovakia.

    Science.gov (United States)

    Hrncir, Tomas; Strazovec, Roman; Zachar, Matej

    2017-09-07

    The decommissioning of nuclear installations represents a complex process resulting in the generation of large amounts of waste materials containing various concentrations of radionuclides. Selection of an appropriate strategy of management of the mentioned materials strongly influences the effectiveness of decommissioning process keeping in mind safety, financial and other relevant aspects. In line with international incentives for optimization of radioactive material management, concepts of recycling and reuse of materials are widely discussed and applications of these concepts are analysed. Recycling of some portion of these materials within nuclear sector (e.g. scrap metals or concrete rubble) seems to be highly desirable from economical point of view and may lead to conserve some disposal capacity. However, detailed safety assessment along with cost/benefit calculations and feasibility study should be developed in order to prove the safety, practicality and cost effectiveness of possible recycling scenarios. Paper discussed the potential for recycling of slightly radioactive metals arising from decommissioning of NPPs within nuclear sector in Slovakia. Various available recycling scenarios are introduced and method for overall assessment of various recycling scenarios is outlined including the preliminary assessment of safety and financial aspects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    International Nuclear Information System (INIS)

    Mizia, R.E.; Atteridge, D.G.; Buckentin, J.; Carter, J.; Davis, H.L.; Devletian, J.H.; Scholl, M.R.; Turpin, R.B.; Webster, S.L.

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpack canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel open-quotes scrapclose quotes metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques

  3. Spatial optimization for decentralized non-potable water reuse

    Science.gov (United States)

    Kavvada, Olga; Nelson, Kara L.; Horvath, Arpad

    2018-06-01

    Decentralization has the potential to reduce the scale of the piped distribution network needed to enable non-potable water reuse (NPR) in urban areas by producing recycled water closer to its point of use. However, tradeoffs exist between the economies of scale of treatment facilities and the size of the conveyance infrastructure, including energy for upgradient distribution of recycled water. To adequately capture the impacts from distribution pipes and pumping requirements, site-specific conditions must be accounted for. In this study, a generalized framework (a heuristic modeling approach using geospatial algorithms) is developed that estimates the financial cost, the energy use, and the greenhouse gas emissions associated with NPR (for toilet flushing) as a function of scale of treatment and conveyance networks with the goal of determining the optimal degree of decentralization. A decision-support platform is developed to assess and visualize NPR system designs considering topography, economies of scale, and building size. The platform can be used for scenario development to explore the optimal system size based on the layout of current or new buildings. The model also promotes technology innovation by facilitating the systems-level comparison of options to lower costs, improve energy efficiency, and lower greenhouse gas emissions.

  4. Recycling polyethylene terephthalate wastes as short fibers in Strain-Hardening Cementitious Composites (SHCC).

    Science.gov (United States)

    Lin, Xiuyi; Yu, Jing; Li, Hedong; Lam, Jeffery Y K; Shih, Kaimin; Sham, Ivan M L; Leung, Christopher K Y

    2018-05-26

    As an important portion of the total plastic waste bulk but lack of reuse and recycling, the enormous amounts of polyethylene terephthalate (PET) solid wastes have led to serious environmental issues. This study explores the feasibility of recycling PET solid wastes as short fibers in Strain-Hardening Cementitious Composites (SHCCs), which exhibit strain-hardening and multiple cracking under tension, and therefore have clear advantages over conventional concrete for many construction applications. Based on micromechanical modeling, fiber dispersion and alkali resistance, the size of recycled PET fibers was first determined. Then the hydrophobic PET surface was treated with NaOH solution followed by a silane coupling agent to achieve the dual purpose of improving the fiber/matrix interfacial frictional bond (from 0.64 MPa to 0.80 MPa) and enhancing the alkali resistance for applications in alkaline cementitious environment. With surface treatment, recycling PET wastes as fibers in SHCCs is a promising approach to significantly reduce the material cost of SHCCs while disposing hazardous PET wastes in construction industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Recycling of acetone by distillation

    International Nuclear Information System (INIS)

    Brennan, D.L.; Campbell, B.A.; Phelan, J.E.; Harper, M.

    1992-09-01

    The Resource Conservation Recovery Act (RCRA) identifies spent acetone solvent as a listed hazardous waste. At Fernald, acetone has been spent that has been contaminated with radionuclides and therefore is identified as a mixed hazardous waste. At the time of this publication there is no available approved method of recycling or disposal of radioactively contaminated spent acetone solvent. The Consent Decree with the Ohio EPA and the Consent Agreement with the United States EPA was agreed upon for the long-term compliant storage of hazardous waste materials. The purpose of this project was to demonstrate the feasibility for safely decontaminating spent acetone to background levels of radioactivity for reuse. It was postulated that through heat distillation, radionuclides could be isolated from the spent acetone

  6. Perspectives for medical informatics. Reusing the electronic medical record for clinical research.

    Science.gov (United States)

    Prokosch, H U; Ganslandt, T

    2009-01-01

    Even though today most university hospitals have already implemented commercial hospital information systems and started to build up comprehensive electronic medical records, reuse of such data for data warehousing and research purposes is still very rare. Given this situation, the focus of this paper is to present an overview on exemplary projects, which have already tackled this challenge, reflect on current initiatives within the United States of America and the European Union to establish IT infrastructures for clinical and translational research, and draw attention to new challenges in this area. This paper does not intend to provide a fully comprehensive review on all the issues of clinical routine data reuse. It is based, however, on a presentation of a large variety of historical, but also most recent activities in data warehousing, data retrieval and linking medical informatics with translational research. The article presents an overview of the various international approaches to this issue and illustrates concepts and solutions which have been published, thus giving an impression of activities pursued in this field of medical informatics. Further, problems and open questions, which have also been named in the literature, are presented and three challenges (to establish comprehensive clinical data warehouses, to establish professional IT infrastructure applications supporting clinical trial data capture and to integrate medical record systems and clinical trial databases) related to this area of medical informatics are identified and presented. Translational biomedical research with the aim "to integrate bedside and biology" and to bridge the gap between clinical care and medical research today and in the years to come, provides a large and interesting field for medical informatics researchers. Especially the need for integrating clinical research projects with data repositories built up during documentation of routine clinical care, today still leaves

  7. Treatment and Recycling Process for Biosolids by Radiation

    International Nuclear Information System (INIS)

    Lee, J. K.; Yoo, D. H.; Lee, B. J.; Park, C. K.; Lee, M. J.

    2005-01-01

    The volume of sludge is increasing rapidly on a yearly basis in Korea. Liquid sewage sludge generated in Korea has been treated as reuse (7%), landfill (5%), incineration (12%) and ocean dump (72%) in 2003 [1]. Ocean dump is the main treatment of sewage sludge up to date but incineration and landfill will be increased because Korean government will restrict ocean dump in the near future. Desirable treatment of sewage sludge is still a sensitive issue though many scientists have vigorously studied the safe and environmentally sound treatment of sewage sludge and reducing sludge cake. Therefore reduction of moisture content in sludge and recycling by radiation is the main objective in this work. Here we studied the radiation technique as a pretreatment process to enhance sludge dewaterability, to disinfect micro-organisms, and to remove the toxic organics in sewage sludge simultaneously. The improvement of sludge compost after irradiation was also observed to develop the method for recycling of sludge

  8. Recycling entire DOE facilities: The National Conversion Pilot Project

    International Nuclear Information System (INIS)

    Floyd, D.R.

    1996-01-01

    The Mission of the National Conversion Pilot Project - to demonstrate, at the Rocky Flats Site, the feasibility of economic conversion of DOE Sites - is succeeding. Contaminated facilities worth $92 million are being cleaned and readied for reuse by commercial industry to manufacture products needed in the DOE cleanup and elsewhere. Former Rocky Flats workers have been hired, recultured, are conducting the cleanup and are expected to perform the future manufacturing by recycling DOE RSM and other metals requiring special environmental controls. Stakeholder sway over project activities is welcome and strong

  9. Sand Cement Brick Containing Recycled Concrete Aggregate as Fine-Aggregate Replacement

    Directory of Open Access Journals (Sweden)

    Sheikh Khalid Faisal

    2017-01-01

    Full Text Available Nowadays, the usage amount of the concrete is increasing drastically. The construction industry is a huge consumer of natural consumer. It is also producing the huge wastage products. The usage of concrete has been charged to be not environmentally friendly due to depletion of reserve natural resources, high energy consumption and disposal issues. The conservation of natural resources and reduction of disposal site by reuse and recycling waste material was interest possibilites. The aim of this study is to determine the physical and mechanical properties of sand cement brick containing recycled concrete aggregate and to determine the optimum mix ratio containing recycled concrete aggregate. An experiment done by comparing the result of control specimen using 100% natural sand with recycled concrete aggregate replacement specimen by weight for 55%, 65%, and 75%. The sample was tested under density, compressive strength, flexural strength and water absorption to study the effect of using recycled concrete aggregate on the physical and mechanical properties of bricks. The result shows that the replacement of natural sand by recycled concrete aggregate at the level of 55% provide the highest compressive and flexural strength compared to other percentage and control specimen. However, if the replacement higher than 55%, the strength of brick was decreased for compressive and flexural strength, respectively. The relationship of compressive-flexural strength is determined from statistical analysis and the predicted result can be obtained by using equation ff,RCA = 0.5375 (fc0.3272.

  10. Estimation of doses from radioactively contaminated disaster wastes reused for pavements

    International Nuclear Information System (INIS)

    Sawaguchi, Takuma; Takeda, Seiji; Kimura, Hideo; Tanaka, Tadao

    2015-01-01

    It is desirable that the disaster wastes contaminated by radioactive cesium after the severe accident at the Fukushima Nuclear Plant are reused as much as possible in order to minimize the quantity to be disposed of. Ministry of the Environment showed the policy that the wastes containing cesium of higher concentration than the clearance level (100 Bq/kg) were reusable as materials of construction such as subbase course materials of pavements under controlled condition with measures to lower exposure doses. In this study, in order to provide technical information for making a guideline on the use of contaminated concrete materials recycled from disaster wastes as pavement, doses for workers and the public were estimated, and the reusable concentration of radioactive cesium in the wastes was evaluated. It was shown that the external exposure of the public (children) residing near the completed pavement gave the minimum radiocesium concentration in order to comply with the dose criteria. The recycled concrete materials whose average concentration of cesium lower than 2,700 Bq/kg can be used as the subbase course materials of pavements. (author)

  11. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    OpenAIRE

    Carrión, F.; Montalban Domingo, Maria Laura; Real Herráiz, Julia Irene; Real, T.

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate) and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strenght, flexural strength, modulus of elasticity,...

  12. Waste minimization, recycling and reuse in operations support services fleet maintenance

    International Nuclear Information System (INIS)

    Trego, A.L.

    1994-01-01

    Government regulations and smart business practices demand that organizations dramatically reduce both the type and volume of waste generated by their operations. This article describes successful waste minimization and recycling programs created by the Fleet Maintenance, Operations Support Services Division, Westinghouse Hanford Company. These comprehensive programs have greatly reduced waste formerly produced in maintaining 3,528 government-owned vehicles and nearly 200 emergency power generators at the Hanford Site. The actions are integral to preventing future contamination of the Site as well as to cleaning up the complexity of wastes from almost 50 years of defense production. The results of the Fleet Maintenance programs are impressive, recording cost savings of $290,000 in fiscal year 1993 and $965,000 since 1988

  13. A recyclable Au(I) catalyst for selective homocoupling of arylboronic acids: significant enhancement of nano-surface binding for stability and catalytic activity.

    Science.gov (United States)

    Zhang, Xin; Zhao, Haitao; Wang, Jianhui

    2010-08-01

    Au nanoparticles stabilized by polystyrene-co-polymethacrylic acid microspheres (PS-co-PMAA) were prepared and characterized via X-ray diffraction (XRD), and transmission electron microscope (TEM). The Au nanoparticles supported on the microspheres showed highly selective catalytic activity for homo-coupling reactions of arylboronic acids in a system of aryl-halides and arylboronic acids. X-ray photoelectron spectroscopy (XPS) spectra of the catalyst shows large amounts of Au(I) complexes band to the surface of the Au nanoparticles, which contributes to the selective homocoupling of the arylboronic acids. More importantly, this supported Au complex is a highly recyclable catalyst. The supported Au catalyst can be recycled and reused at least 6 times for a phenylboronic acid reactant, whereas the parent complex shows very low catalytic activity for this compound. The high catalytic activity of this material is attributed to: (1) the high surface to volume ratio which leads to more active sites being exposed to reactants; (2) the strong surface binding of the Au nanoparticle to the Au(I) complexes, which enhances both the stability and the catalytic activity of these complexes.

  14. Decontamination and reuse of ORGDP aluminum scrap

    International Nuclear Information System (INIS)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF 6 . This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible

  15. Recovery of zirconium from pickling solution, regeneration and its reuse

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, D. [Nuclear Fuel Complex, Hyderabad 500062 (India); Mandal, D., E-mail: dmandal10@gmail.com [Alkali Material & Metal Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Visweswara Rao, R.V.R.L.; Sairam, S.; Thakur, S. [Nuclear Fuel Complex, Hyderabad 500062 (India)

    2017-05-15

    Graphical abstract: The following compares the performance of fresh pickling solution (PS) and regenerated and used pickling solution (UPS). - Highlights: • Pickling of zircaloy tubes and appendages is carried out to remove oxide layer. • The pickling solution become saturated with zirconium due to reuse. • As NaNO{sub 3} concentration increases, conc. of Zr in pickling solution decreases. • Experimental results shows that, used pickling solution can be regenerated. • Regenerated solution may be reused by adding makeup quantities of HF-HNO{sub 3}. - Abstract: The pressurized heavy water reactors use natural uranium oxide (UO{sub 2}) as fuel and uses cladding material made up of zircaloy, an alloy of zirconium. Pickling of zircaloy tubes and appendages viz., spacer and bearing pads is carried out to remove the oxide layer and surface contaminants, if present. Pickling solution, after use for many cycles i.e., used pickling solution (UPS) is sold out to vendors, basically for its zirconium value. UPS, containing a relatively small concentration of hydrofluoric acid. After repeated use, pickling solution become saturated with zirconium fluoride complex and is treated by adding sodium nitrate to precipitate sodium hexafluro-zirconate. The remaining solution can be recycled after suitable makeup for further pickling use. The revenue lost by selling UPS is very high compared to its zirconium value, which causes monetary loss to the processing unit. Experiments were conducted to regenerate and reuse UPS which will save a good amount of revenue and also protect the environment. Experimental details and results are discussed in this paper.

  16. Japan, the European Union, and Waste Electronic and Electrical Equipment Recycling: Key Lessons Learned

    OpenAIRE

    Yoshida, Fumikazu; Yoshida, Haruyo

    2010-01-01

    This article considers how Japan and the EU manage the recycling of consumer appliances and PCs/cellular phones through a review of their current collection and treatment systems for WEEE (waste electronic and electrical equipment), and on the basis of its findings offers recommendations for the improvement of these systems. We hope thereby to provide information that will be helpful for the better management of WEEE in developed countries as well as in our own. On the basis of our findings, ...

  17. A methodology for calculating the levelized cost of electricity in nuclear power systems with fuel recycling

    International Nuclear Information System (INIS)

    De Roo, Guillaume; Parsons, John E.

    2011-01-01

    In this paper we show how the traditional definition of the levelized cost of electricity (LCOE) can be extended to alternative nuclear fuel cycles in which elements of the fuel are recycled. In particular, we define the LCOE for a cycle with full actinide recycling in fast reactors in which elements of the fuel are reused an indefinite number of times. To our knowledge, ours is the first LCOE formula for this cycle. Others have approached the task of evaluating this cycle using an 'equilibrium cost' concept that is different from a levelized cost. We also show how the LCOE implies a unique price for the recycled elements. This price reflects the ultimate cost of waste disposal postponed through the recycling, as well as other costs in the cycle. We demonstrate the methodology by estimating the LCOE for three classic nuclear fuel cycles: (i) the traditional Once-Through Cycle, (ii) a Twice-Through Cycle, and (iii) a Fast Reactor Recycle. Given our chosen input parameters, we show that the 'equilibrium cost' is typically larger than the levelized cost, and we explain why.

  18. Wastewater Reuse for Agriculture: Development of a Regional Water Reuse Decision-Support Model (RWRM) for Cost-Effective Irrigation Sources.

    Science.gov (United States)

    Tran, Quynh K; Schwabe, Kurt A; Jassby, David

    2016-09-06

    Water scarcity has become a critical problem in many semiarid and arid regions. The single largest water use in such regions is for crop irrigation, which typically relies on groundwater and surface water sources. With increasing stress on these traditional water sources, it is important to consider alternative irrigation sources for areas with limited freshwater resources. One potential irrigation water resource is treated wastewater for agricultural fields located near urban centers. In addition, treated wastewater can contribute an appreciable amount of necessary nutrients for plants. The suitability of reclaimed water for specific applications depends on water quality and usage requirements. The main factors that determine the suitability of recycled water for agricultural irrigation are salinity, heavy metals, and pathogens, which cause adverse effects on human, plants, and soils. In this paper, we develop a regional water reuse decision-support model (RWRM) using the general algebraic modeling system to analyze the cost-effectiveness of alternative treatment trains to generate irrigation water from reclaimed wastewater, with the irrigation water designed to meet crop requirements as well as California's wastewater reuse regulations (Title 22). Using a cost-minimization framework, least-cost solutions consisting of treatment processes and their intensities (blending ratios) are identified to produce alternative irrigation sources for citrus and turfgrass. Our analysis illustrates the benefits of employing an optimization framework and flexible treatment design to identify cost-effective blending opportunities that may produce high-quality irrigation water for a wide range of end uses.

  19. Influence of the recycled material percentage on the rheological behaviour of HDPE for injection moulding process.

    Science.gov (United States)

    Javierre, C; Clavería, I; Ponz, L; Aísa, J; Fernández, A

    2007-01-01

    The amount of polymer material wasted during thermoplastic injection moulding is very high. It comes from both the feed system of the part, and parts necessary to set up the mould, as well as the scrap generated along the process due to quality problems. The residues are managed through polymer recycling that allows reuse of the materials in the manufacturing injection process. Recycling mills convert the parts into small pieces that are used as feed material for injection, by mixing the recycled feedstock in different percentages with raw material. This mixture of both raw and recycled material modifies material properties according to the percentage of recycled material introduced. Some of the properties affected by this modification are those related to rheologic behaviour, which strongly conditions the future injection moulding process. This paper analyzes the rheologic behaviour of material with different percentages of recycled material by means of a capillary rheometer, and evaluates the influence of the corresponding viscosity curves obtained on the injection moulding process, where small variations of parameters related to rheological behaviour, such as pressure or clamping force, can be critical to the viability and cost of the parts manufactured by injection moulding.

  20. A comparison of electronic waste recycling in Switzerland and in India

    International Nuclear Information System (INIS)

    Sinha-Khetriwal, Deepali; Kraeuchi, Philipp; Schwaninger, Markus

    2005-01-01

    Electronic waste, commonly known as e-waste, is comprised of discarded computers, television sets, microwave ovens and other such appliances that are past their useful lives. As managing e-waste becomes a priority, countries are being forced to develop new models for the collection and environmentally sound disposal of this waste. Switzerland is one of the very few countries with over a decade of experience in managing e-waste. India, on the other hand, is only now experiencing the problems that e-waste poses. The paper aims to give the reader insight into the disposal of end-of-life appliances in both countries, including appliance collection and the financing of recycling systems as well as the social and environmental aspects of the current practices

  1. Technology and human issues in reusing learning objects

    NARCIS (Netherlands)

    Collis, Betty; Strijker, A.

    2004-01-01

    Reusing learning objects is as old as retelling a story or making use of libraries and textbooks, and in electronic form has received an enormous new impetus because of the World Wide Web and Web technologies. Are we at the brink of changing the "shape and form of learning, ... of being able to

  2. New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process.

    Science.gov (United States)

    Cregut, Mickael; Bedas, M; Durand, M-J; Thouand, G

    2013-12-01

    Polyurethanes are polymeric plastics that were first used as substitutes for traditional polymers suspected to release volatile organic hazardous substances. The limitless conformations and formulations of polyurethanes enabled their use in a wide variety of applications. Because approximately 10 Mt of polyurethanes is produced each year, environmental concern over their considerable contribution to landfill waste accumulation appeared in the 1990s. To date, no recycling processes allow for the efficient reuse of polyurethane waste due to their high resistance to (a)biotic disturbances. To find alternatives to systematic accumulation or incineration of polyurethanes, a bibliographic analysis was performed on major scientific advances in the polyurethane (bio)degradation field to identify opportunities for the development of new technologies to recondition this material. Until polymers exhibiting oxo- or hydro-biodegradative traits are generated, conventional polyurethanes that are known to be only slightly biodegradable are of great concern. The research focused on polyurethane biodegradation highlights recent attempts to reprocess conventional industrial polyurethanes via microbial or enzymatic degradation. This review describes several wonderful opportunities for the establishment of new processes for polyurethane recycling. Meeting these new challenges could lead to the development of sustainable management processes involving polymer recycling or reuse as environmentally safe options for industries. The ability to upgrade polyurethane wastes to chemical compounds with a higher added value would be especially attractive. © 2013.

  3. Drivers and economic aspects for the implementation of advanced wastewater treatment and water reuse in a PVC plant

    Directory of Open Access Journals (Sweden)

    David Prieto

    2016-06-01

    The proposed solution is profitable for sites where fresh demineralized water production costs are currently higher than 1.5 €/m3 and the required flow of the recycled water exceeds 50 m3/h. The water reuse concept allows decoupling the production from fresh water use. In this case, anticipating that a drought would lead to a 3% reduction of the production, the amortization period would be lowered to one year.

  4. ASSET RECOVERY OF HAZARDOUS MATERIALS BENEFICIAL REUSE OF RADIOLOGICALLY ENCUMBERED LEAD STOCKS

    International Nuclear Information System (INIS)

    Lloyd, E.R.; Meehan, R.W.

    2003-01-01

    Underutilized and surplus lead stocks and leaded components are a common legacy environmental problem across much of the Department of Energy (DOE) Complex. While seeking to dispose of these items through its Environmental Management Program, DOE operational programs continue to pursue contemporary mission requirements such as managing and/or storing radioactive isotopes that require lead materials for shielding. This paradox was identified in late 1999 when DOE's policies for managing scrap metal were assessed. In January 2000, the Secretary of Energy directed the National Center of Excellence for Materials Recycle (NMR) to develop and implement a comprehensive lead reuse program for all of DOE. Fluor Hanford, contractor for DOE Richland Operations, subsequently contacted NMR to pilot lead reclamation and reuse at the Hanford Site. This relationship resulted in the development of a beneficial reuse pathway for lead reclaimed from spent fuel transport railcars being stored at Hanford. The 1.3 million pounds of lead in the railcars is considered radiologically encumbered due to its prior use. Further, the material was considered a mixed Resource Conservation and Recovery Act (RCRA) low-level radioactive waste that would require expensive storage or macro encapsulation to meet land disposal restrictions prior to burial. Working closely with Flour Hanford and the Office of Air, Water, and Radiation (EH-412), NMR developed a directed reuse pathway for this and other radiologically encumbered lead. When derived supplemental release limits were used, the lead recovered from these railcars became eligible for reuse in shielding products to support DOE and commercial nuclear industry operations. Using this disposition pathway has saved Hanford one third of the cost of disposing of the lead and the cost of acquiring additional lead for nuclear shielding applications. Furthermore, the environmental costs associated with mining and producing new lead for shielding products a

  5. Quantifying pathogen risks associated with potable reuse: A risk assessment case study for Cryptosporidium.

    Science.gov (United States)

    Amoueyan, Erfaneh; Ahmad, Sajjad; Eisenberg, Joseph N S; Pecson, Brian; Gerrity, Daniel

    2017-08-01

    This study evaluated the reliability and equivalency of three different potable reuse paradigms: (1) surface water augmentation via de facto reuse with conventional wastewater treatment; (2) surface water augmentation via planned indirect potable reuse (IPR) with ultrafiltration, pre-ozone, biological activated carbon (BAC), and post-ozone; and (3) direct potable reuse (DPR) with ultrafiltration, ozone, BAC, and UV disinfection. A quantitative microbial risk assessment (QMRA) was performed to (1) quantify the risk of infection from Cryptosporidium oocysts; (2) compare the risks associated with different potable reuse systems under optimal and sub-optimal conditions; and (3) identify critical model/operational parameters based on sensitivity analyses. The annual risks of infection associated with the de facto and planned IPR systems were generally consistent with those of conventional drinking water systems [mean of (9.4 ± 0.3) × 10 -5 to (4.5 ± 0.1) × 10 -4 ], while DPR was clearly superior [mean of (6.1 ± 67) × 10 -9 during sub-optimal operation]. Because the advanced treatment train in the planned IPR system was highly effective in reducing Cryptosporidium concentrations, the associated risks were generally dominated by the pathogen loading already present in the surface water. As a result, risks generally decreased with higher recycled water contributions (RWCs). Advanced treatment failures were generally inconsequential either due to the robustness of the advanced treatment train (i.e., DPR) or resiliency provided by the environmental buffer (i.e., planned IPR). Storage time in the environmental buffer was important for the de facto reuse system, and the model indicated a critical storage time of approximately 105 days. Storage times shorter than the critical value resulted in significant increases in risk. The conclusions from this study can be used to inform regulatory decision making and aid in the development of design or operational

  6. Correlation analysis between sulphate content and leaching of sulphates in recycled aggregates from construction and demolition wastes.

    Science.gov (United States)

    Barbudo, Auxi; Galvín, Adela P; Agrela, Francisco; Ayuso, Jesús; Jiménez, Jose Ramón

    2012-06-01

    In some recycled aggregates applications, such as component of new concrete or roads, the total content of soluble sulphates should be measured and controlled. Restrictions are usually motivated by the resistance or stability of the new structure, and in most cases, structural concerns can be remedied by the use of techniques such as sulphur-resistant cements. However, environmental risk assessment from recycling and reuse construction products is often forgotten. The purpose of this study is to analyse the content of soluble sulphate on eleven recycled aggregates and six samples prepared in laboratory by the addition of different gypsum percentages. As points of reference, two natural aggregates were tested. An analysis of the content of the leachable amount of heavy metals regulated by European regulation was included. As a result, the correlation between solubility and leachability data allow suggest a limiting gypsum amount of 4.4% on recycled aggregates. This limit satisfies EU Landfill Directive criteria, which is currently used as reference by public Spanish Government for recycled aggregates in construction works. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Segregation and redistribution of end-of-process energetic materials

    International Nuclear Information System (INIS)

    McCabe, R.A.; Cummins, B.; Gonzalez, M.A.

    1993-03-01

    A system recovering then recycling or reusing end-of-process energetic materials has been developed at the Lawrence Livermore National Laboratory (LLNL). The system promotes separating energetic materials with high potential for reuse or recycling from those that have no further value. A feature of the system is a computerized electronic bulletin board for advertising the availability of surplus and recovered energetic materials and process chemicals to LLNL researchers, and for posting energetic materials, ''want ads.'' The system was developed and implemented to promote waste minimization and pollution prevention at LLNL

  8. Synthesis, characterization and catalytic activity of CoFe{sub 2}O{sub 4}-APTES-Pd magnetic recyclable catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Demirelli, M. [Department of Chemistry, Faculty of Arts and Sciences, Yıldız Teknik University Davutpaşa Campus, Esenler, İstanbul (Turkey); Department of Chemistry, Faculty of Arts and Sciences, Fatih University, B. Cekmece, İstanbul 34500 (Turkey); Karaoğlu, E., E-mail: ebubekirkaraoglu@gmail.com [Department of Chemistry, Faculty of Arts and Sciences, Fatih University, B. Cekmece, İstanbul 34500 (Turkey); Department of Medical Biochemistry, Faculty of Medicine, Sakarya University, Korucuk, Sakarya (Turkey); Baykal, A. [Department of Chemistry, Faculty of Arts and Sciences, Fatih University, B. Cekmece, İstanbul 34500 (Turkey); Sözeri, H.; Uysal, E. [TUBITAK-UME, National Metrology Institute, PO Box 54, 41470 Gebze, Kocaeli (Turkey)

    2014-01-05

    Highlights: • CoFe{sub 2}O{sub 4}-APTES-Pd (0) nanocomposite, as effective catalysts for reduction reactions. • It could be reused several times without significant loss in hydrogenation reaction. • So far, CoFe{sub 2}O{sub 4}-APTES-Pd (0) nanocomposite have not been synthesized. • CoFe{sub 2}O{sub 4}-APTES-Pd (0) nanocomposite was confirmed by XRD, FT-IR. • Pd containing nanoparticles embedded in organic surfactant observed by TEM. -- Abstract: A new magnetically recyclable catalyst, CoFe{sub 2}O{sub 4}-APTES-Pd(0) nanocomposite, as highly effective catalysts for reduction reactions in liquid phase was fabricated and characterized. The reduction of Pd{sup 2+} was accomplished with sodium borohydride (NaBH{sub 4}). The chemical characterization of the product was done with X-ray diffractometry, infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy and inductively coupled plasma. It was found that the combination of CoFe{sub 2}O{sub 4} and 3-aminopropyltriethoxysilane (APTES) could give rise to structurally stable catalytic sites. Furthermore, the high magnetization CoFe{sub 2}O{sub 4}-APTES-Pd(0) catalyst can be recovered by magnet and reused for ten runs for hydrogenation reaction of 4-nitro aniline, 1,3 dinitro and cyclohexanone. The catalyst was easily isolated from the reaction mixture by a magnetic bar and reused at least 10 times without significant degradation in the activity which shows the indicative of a potential applications of these catalysts in industry.

  9. Recycler Electron Cooling Project: Mechanical vibrations in the Pelletron and their effect on the beam

    International Nuclear Information System (INIS)

    Kazakevich, Grigory M.; Burov, A.; Boffo, C.; Joireman, P.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; Fermilab

    2005-01-01

    The Fermilab's Recycler ring will employ an electron cooler to cool stored 8.9 GeV antiprotons [1]. The cooler is based on an electrostatic accelerator, Pelletron [2], working in an energy-recovery regime. A full-scale prototype of the cooler has been assembled and commissioned in a separate building [3]. The main goal of the experiments with the prototype was to demonstrate stable operation with a 3.5 MeV, 0.5 A DC electron beam while preserving a high beam quality in the cooling section. The quality is characterized, first of all, by a spread of electron velocities in the cooling section, which may be significantly affected by mechanical vibration of the Pelletron elements. This paper describes the results of vibration measurements in the Pelletron terminal and correlates them with the beam motion in the cooling section

  10. Evaluation of optimal reuse system for hydrofluoric acid wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Won, Chan-Hee [Department of Environmental Engineering, Chonbuk National University, 567 Bakje-daero, Deokjin-Gu, Jeonju, Jeollabuk-Do, 561-756 (Korea, Republic of); Choi, Jeongyun [R and D Center, Samsung Engineering Co. Ltd., 415-10 Woncheon-Dong, Youngtong-Gu, Suwon, Gyeonggi-Do, 443-823 (Korea, Republic of); Chung, Jinwook, E-mail: jin-wook.chung@samsung.com [R and D Center, Samsung Engineering Co. Ltd., 415-10 Woncheon-Dong, Youngtong-Gu, Suwon, Gyeonggi-Do, 443-823 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Coagulation and ion exchange technologies were ineffective in removing fluoride. Black-Right-Pointing-Pointer Polyamide RO was more efficacious than cellulose RO due to its high flux and rejection. Black-Right-Pointing-Pointer Spiral wound RO system was more preferential to disc tube RO system for reusing raw hydrofluoric acid wastewater. Black-Right-Pointing-Pointer Combined coagulation and RO technology can be applied to reuse raw hydrofluoric acid wastewater. - Abstract: The treatment of hydrofluoric acid (HF) wastewater has been an important environmental issue in recent years due to the extensive use of hydrofluoric acid in the chemical and electronics industries, such as semiconductor manufacturers. Coagulation/precipitation and ion exchange technologies have been used to treat HF wastewater, but these conventional methods are ineffective in removing organics, salts, and fluorides, limiting its reuse for water quality and economic feasibility. One promising alternative is reverse osmosis (RO) after lime treatment. Based on pilot-scale experiment using real HF wastewater discharged from semiconductor facility, the spiral wound module equipped with polyamide membranes has shown excellent flux and chemical cleaning cycles. Our results suggest that coagulation/precipitation and spiral wound RO constitute the optimal combination to reuse HF wastewater.

  11. Technical and environmental characterisation of recycled aggregate for reuse in bricks

    Directory of Open Access Journals (Sweden)

    Sorlini Sabrina

    2017-01-01

    Full Text Available Waste mud coming from an aggregate washing plant was formerly used as filling material for a pond, aimed at the recovery of an abandoned quarry. Once completed the filling capacity of the pond, the need for identifying a possible reuse of mud produced by the plant arose in order to avoid landfill disposal. Therefore, mud has been geometrically, physically and chemically characterised for its recovery as construction material. A variety of tests was carried out on mud samples as required by EN technical specifications and by Italian environmental standards, focusing particularly on leaching behaviour. The tested material showed satisfactory physical and chemical properties and a release of pollutants below the limits set by the Italian code. Many mix-designs for the production of unfired bricks made of waste mud, sand and straw, stabilised and non-stabilised with lime, gypsum or cement, were developed. The bricks were tested in order to evaluate mechanical properties and leaching behaviour. Mud bricks provided remarkable compressive strength, even if not suitable for structural elements. The use as interior design to minimise humidity changes and to facilitate a thermal insulation is fostered, thus strengthening the so-called green building economy.

  12. A slow start at the beginning of the recycling chain : How to make consumers recycle their mobile phones?

    OpenAIRE

    Pietikäinen, Johanna

    2007-01-01

    The aim of this research is to find out why people recycle their old mobile phones lazily. The interest to recycle electronic equipment has enlarged in past few years; the reason for this is the aim of the European Union (EU) to increase recycling as a whole. In the background, there is the objective of the EU to reduce waste by delegating the responsibility of the products-waste handling to producers. The European Parliament and the Council have passed a directive on Waste Electrical and Ele...

  13. Evaluation of potential for reuse of industrial wastewater using metal-immobilized catalysts and reverse osmosis.

    Science.gov (United States)

    Choi, Jeongyun; Chung, Jinwook

    2015-04-01

    This report describes a novel technology of reusing the wastewater discharged from the display manufacturing industry through an advanced oxidation process (AOP) with a metal-immobilized catalyst and reverse osmosis (RO) in the pilot scale. The reclaimed water generated from the etching and cleaning processes in display manufacturing facilities was low-strength organic wastewater and was required to be recycled to secure a water source. For the reuse of reclaimed water to ultrapure water (UPW), a combination of solid-phase AOP and RO was implemented. The removal efficiency of TOC by solid-phase AOP and RO was 92%. Specifically, the optimal acid, pH, and H2O2 concentrations in the solid-phase AOP were determined. With regard to water quality and operating costs, the combination of solid-phase AOP and RO was superior to activated carbon/RO and ultraviolet AOP/anion polisher/coal carbon. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Wastewater reuse

    OpenAIRE

    Milan R. Radosavljević; Vanja M. Šušteršič

    2013-01-01

    Water scarcity and water pollution are some of the crucial issues that must be addressed within local and global perspectives. One of the ways to reduce the impact of water scarcity  and to minimizine water pollution is to expand water and wastewater reuse. The local conditions including regulations, institutions, financial mechanisms, availability of local technology and stakeholder participation have a great influence on the decisions for wastewater reuse. The increasing awareness of food s...

  15. Water Reuse: Using Reclaimed Water For Irrigation

    OpenAIRE

    Haering, Kathryn; Evanylo, Gregory K.; Benham, Brian Leslie, 1960-; Goatley, Michael

    2009-01-01

    Describes water reuse and reclaimed water, explains how reclaimed water is produced, options for water reuse, water reuse regulations, and agronomic concerns with water reuse, and provides several case studies of water reuse.

  16. Recycling of paint-contaminated grit.

    Science.gov (United States)

    Taha, R; al-Alawi, D; al-Nabhani, M; Pillay, A E; al-Hamdi, A

    2001-08-01

    The impact on the environment of using paint-contaminated grit (PCG) as a partial or full replacement for sand in Portland cement mortar and asphalt concrete mixtures was investigated. The grit waste material originated from abrasive blasting of offshore steel structures. There is a major environmental concern regarding the safe disposal of the spent blasting abrasives that contain paint chips or paint particles and other debris removed from the surface of the steel structures. This work investigated the potential reuse of PCG in Portland cement concrete (PCC) and hot mix asphalt concrete. Several studies were conducted to establish the integrity of the materials containing the recycled grit. These included the chemical and physical characterization of natural sand and PCG, the assay of leaches associated with the grit material for hazardous metal contaminants, such as Cr, Cd and Pb, and the assessment of the mechanical properties of the PCG-substituted mortars by applying special tests (such as Marshall stability and determination of the flow properties) to the PCG-substituted asphalt concrete mixtures. The overall results demonstrated that the potential reuse of PCG in PCC and asphalt concrete mixtures would not pose any environmental threat and could produce several benefits, such as reduced disposal costs, protection of water sources from improper disposal practices and reduced costs in the production of natural aggregates and asphalt cement.

  17. Closed-Loop Supply Chain Planning Model for a Photovoltaic System Manufacturer with Internal and External Recycling

    Directory of Open Access Journals (Sweden)

    Songi Kim

    2016-06-01

    Full Text Available The photovoltaic (PV generation system has been widely used since the late 1990s. Considering its lifespan of 20 to 30 years, many end-of-life systems will emerge in the near future. This is why recycling PV systems will be beneficial (and may even be detrimental to both the environment and the economy. Through the recycling process, hazardous by-product substances such as cadmium and lead can be treated properly. Moreover, valuable materials including indium, gallium, and tellurium can be extracted and reused for manufacturing purposes. Even though many studies have dealt with issues related to the PV system and its recycling policy, they lack significant factors regarding the recycling policy. This study analyzes and compares three real cases of manufacturer’s recycling policy, including Deutsche Solar, First Solar, and PV Cycle, from the perspective of a closed-loop supply chain. Two mathematical models are developed to help PV system manufacturers establish supply chain planning and choose suitable recycling policies in consideration of different circumstances. Furthermore, an experimental example of these models will be used to validate and conclude the significance of the models. The results from this study will show that recycling CdTe PV systems is much more efficient than recycling c-Si PV systems and that, in the case of c-Si, it is better to outsource recycling end-of-life systems and dispose of all manufacturing scrap.

  18. Guidance document for multi-facility recycle/reuse/free release of metals from radiological control area

    International Nuclear Information System (INIS)

    Gogol, S.; Starke, T.

    1997-01-01

    Approximately 15% of the Low Level Waste (LLW) produced at Los Alamos consists of scrap metal equipment and materials. The majority of this material is produced by decommissioning and modification of existing facilities. To address this waste stream, Los Alamos has developed a scrap metal recycling program that is operated by the Environmental Stewardship Office to minimize the amount of LLW metal sent for LLW landfill disposal. Past practice has supported treating all waste metals generated within RCA's as contaminated. Through the metal recycling project, ESO is encouraging the use of alternatives to LLW disposal. Diverting RSM from waste landfill, disposal protects the environment, reduces the cost of operation, and reduces the cost of maintenance and operation at landfill sites. Waste minimization efforts also results in a twofold economic reward: The RSM has a market value and decontamination reduces the volume and therefore the amount of the radioactive waste to be buried within landfills

  19. Dismantling techniques and recycling or other end-of-life treatments of other materials not commonly reused in roads

    OpenAIRE

    Batista, F. A.; Antunes, M. L.; Santos, C.

    2009-01-01

    Este registo pertence ao Repositório Científico do LNEC The interest of recycling of waste, industrial by-products and other road materials for pavement construction and rehabilitation has been generally growing in Portugal, for the last 10 years. Among the several types of wastes, there’s been a great interest in using recycled tyres as a raw material to be incorporated in asphalt paving mixtures. The first significant experience with asphalt rubber, manufactured by the wet...

  20. Recycling of canteen waste water for irrigation purpose

    International Nuclear Information System (INIS)

    Ahmad, J.

    2005-01-01

    Recycling of wastewater of a canteen was done at Attock refinery Limited, Rawalpindi during 2002. The wastewater of the refinery canteen was recycled after a long process and was reused for irrigation of nearby garden and other landscape plants. The average outflow of the wastewater from the canteen was calculated as 4000 liters/day. Laboratory analysis for the quality of wastewater was conducted and it was found that suspended solid. Chemical Oxygen demand (COD) and biochemical oxygen demand (BOD) of the wastewater were above the National Environmental Quality Standards (NEQS) limits. Treatment system employed was composed of screening and settling tank for removing the suspended solids and aeration for decreasing the COD and BOD. It was a low cost system in which the materials used were mostly taken from the redundant stock. Air was given for aeration with the help of a compressor. The treated water was tested in the laboratory for the priority parameters i.e. temperature, pH, BOD, COD, Total suspended solids (TSS), Total dissolved (TDS), oil and grease and Phenols. These parameters were compared with the National Environmental Quality Standards (NEQS). Treated water was used for irrigation of the nearby garden and landscape. The recycling process was successfully conducted and a huge quantity of 4000 liters water/day (1000 G water/day) was processes was successfully conducted and a huge quantity of 4000 liters water/day (1000 G water/day) was recycled with a daily saving of Rs.100 at the rate of Rs.1/10 G water that was taken from market survey. (author)

  1. Evaluation of disposal, recycling and clearance scenarios for managing ARIES radwaste after plant decommissioning

    International Nuclear Information System (INIS)

    El-Guebaly, L.

    2007-01-01

    The wealth of experience accumulated over the past 30-40 years of fusion power plant studies must be forged into a new strategy to reshape all aspects of handling the continual stream of radioactive materials during operation and after power plant decommissioning. With tighter environmental controls and the political difficulty of building new repositories worldwide, the disposal option could be replaced with more environmentally attractive scenarios, such as recycling and clearance. We applied the three scenarios to the most recent ARIES compact stellarator power plant. All ARIES-CS components qualify as Class A or C low-level waste, according to the US guidelines, and can potentially be recycled using conventional and advanced remote handling equipment. Approximately 80% of the total waste can be cleared for reuse within the nuclear industry or, preferably, released to the commercial market. This paper documents the recent developments in radwaste management of nuclear facilities and highlights the benefits and challenges of disposal, recycling and clearance

  2. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    Directory of Open Access Journals (Sweden)

    Francisco Carrión

    2014-01-01

    Full Text Available Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate, and waste aggregates (basalt and limestone coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%, and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  3. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    Science.gov (United States)

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  4. Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract

    Directory of Open Access Journals (Sweden)

    G. Manjari

    2017-07-01

    Full Text Available The phytogenic synthesis method to highly active, recoverable and recyclable heterogeneous copper oxide nanocatalyst and encapsulated within biomaterial that acts as a nontoxic and renewable source of reducing and stabilizing agent. The biosynthesized CuO NPs were characterized using UV–Vis absorption spectroscopy, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, transmission electron microscopy (TEM and thermo gravimetric analysis-differential scanning calorimetry (TGA–DSC, techniques. The formation of CuO NPs with the size 20–45 nm range is shown in TEM image. Significantly, in aqueous phase CuO NPs have high catalytic activity for the reduction of Congo red (CR, methylene blue (MB and 4-nitrophenol (4-NP in the presence of the sodium borohydride (NaBH4 at room temperature. In addition, CuO NPs catalyst can be easily recovered by centrifugation and reused for 6 cycles with more than 90% conversion efficiency. CuO nanocatalyst, leaching after catalytic application was investigated by ICPAES (Inductively coupled plasma atomic emission spectroscopy. CuO NPs possess great prospects in reduction of pernicious dyes and nitro organic pollutants in water.

  5. SEL Ada reuse analysis and representations

    Science.gov (United States)

    Kester, Rush

    1990-01-01

    Overall, it was revealed that the pattern of Ada reuse has evolved from initial reuse of utility components into reuse of generalized application architectures. Utility components were both domain-independent utilities, such as queues and stacks, and domain-specific utilities, such as those that implement spacecraft orbit and attitude mathematical functions and physics or astronomical models. The level of reuse was significantly increased with the development of a generalized telemetry simulator architecture. The use of Ada generics significantly increased the level of verbatum reuse, which is due to the ability, using Ada generics, to parameterize the aspects of design that are configurable during reuse. A key factor in implementing generalized architectures was the ability to use generic subprogram parameters to tailor parts of the algorithm embedded within the architecture. The use of object oriented design (in which objects model real world entities) significantly improved the modularity for reuse. Encapsulating into packages the data and operations associated with common real world entities creates natural building blocks for reuse.

  6. The suitability of concrete using recycled aggregates (RAs) for high-performance concrete (HPC)

    OpenAIRE

    Torgal, Fernando Pacheco; Ding, Y.; Miraldo, Sérgio; Abdollahnejad, Zahra; Labrincha, J. A.

    2013-01-01

    Most studies related to concrete made with recycled aggregates (RA) use uncontaminated aggregates produced in the laboratory, revealing the potential to re-use as much as 100%. However, industrially produced RA contain a certain level of impurities that can be deleterious for Portland cement concrete, thus making it difficult for the concrete industry to use such investigations unless uncontaminated RA are used. This chapter reviews current knowledge on concrete made with RA, with a focus on ...

  7. CONSIDERATIONS UPON DESIGNING MODULAR CONSTRUCTIONS FOR IMPROVING THE PRODUCTS ASSEMBLING, MAINTENANCE AND RECYCLING PROCESSES

    Directory of Open Access Journals (Sweden)

    BÂRSAN Lucian

    2015-11-01

    Full Text Available Modular constructions are frequently used in industry because of their multiple advantages. Used from the antiquity as a measuring system that ensured good proportions for the objects or buildings, the module is used in present industry as a tool for improving the product maintenance, repair, upgrading, and/or recycling. Modular constructions can be assembled and disassembled easily, facilitating the postuse actions like subassemblies reuse, or materials recovering for the recycling process. An important aspect of this paper is that designers should create the modular solution even from the conceptual design stage and build a structure of functions based on well motivated arguments and which can easily be brake out according to technological possibilities, product functioning and assembly solutions.

  8. Comparisons of four categories of waste recycling in China’s paper industry based on physical input–output life-cycle assessment model

    International Nuclear Information System (INIS)

    Liang Sai; Zhang, Tianzhu; Xu Yijian

    2012-01-01

    Highlights: ► Using crop straws and wood wastes for paper production should be promoted. ► Bagasse and textile waste recycling should be properly limited. ► Imports of scrap paper should be encouraged. ► Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input–output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China’s paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.

  9. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  10. Aspects to consider for optimizing a substrate culture system with drainage recycling

    Directory of Open Access Journals (Sweden)

    William J Cuervo B

    2012-09-01

    Full Text Available In Colombia, the soilless system has been implemented in the cut flowers industry, among others, due to soil limitations. The use of substrates as growing media implies to drain around 30% of the applied fertigation solution to avoid the rhizosphere salinization. The drainage solution is spilled out to the soil producing environmental hazards and it might reach the water table; although the drainage solution could be recycled or reuse, depending upon their chemical characteristics. The nutrient uptake by the plants depends upon their phenological stage and the nutrient concentration in the solution; which could lead to ion depletion or accumulation. In general, monovalent ions are withdrawn faster than divalent ones. An efficient drainage treatment involves the automation of sensing and evaluation of ion concentration and recycling the drainage solution. The system should take into account the chemical aspects in the recycled and the new solutions in order to predict the life time of the drainage solution from their EC and pH. The system must be integrated with disinfection methods to avoid the spreading of plant pathogens. This review point out the physiological and technical bases that should be taking into account in a drainage recycling system in established crops under substrates, as a tool to take decisions more efficiently.

  11. Levels and risk factors of antimony contamination in human hair from an electronic waste recycling area, Guiyu, China.

    Science.gov (United States)

    Huang, Yue; Ni, Wenqing; Chen, Yaowen; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng

    2015-05-01

    The primitive electronic waste (e-waste) recycling has brought a series of environmental pollutants in Guiyu, China. Antimony is one of the important metal contaminants and has aroused the global concerns recently. We aimed to investigate concentrations of antimony in human hair from Guiyu and compared them with those from a control area where no e-waste recycling exists, and assessed the potential risk factors. A total of 205 human hair samples from Guiyu and 80 samples from Jinping were collected for analysis. All volunteers were asked to complete a questionnaire including socio-demographic characteristics and other possible factors related to hair antimony exposure. The concentrations of hair antimony were analyzed using atomic absorption spectrophotometer. Our results indicated that the level of hair antimony in volunteers from Guiyu (median, 160.78; range, 6.99-4412.59 ng/g) was significantly higher than those from Jinping (median, 61.74; range, 2.98-628.43 ng/g). The residents who engaged in e-waste recycling activities in Guiyu had higher hair antimony concentrations than others (P recycling. Multiple stepwise regression analysis indicated that hair antimony concentrations were associated with education level (β = -0.064), the time of residence in Guiyu (β = 0.112), living house also served as e-waste workshop (β = 0.099), the work related to e-waste (β = 0.169), and smoking (β = 0.018). The elevated hair antimony concentrations implied that the residents in Guiyu might be at high risk of antimony contamination, especially the e-waste recycling workers. Work related to e-waste recycling activities and long-time residence in Guiyu contributed to the high hair antimony exposure.

  12. Attitudes and norms affecting scientists' data reuse.

    Directory of Open Access Journals (Sweden)

    Renata Gonçalves Curty

    Full Text Available The value of sharing scientific research data is widely appreciated, but factors that hinder or prompt the reuse of data remain poorly understood. Using the Theory of Reasoned Action, we test the relationship between the beliefs and attitudes of scientists towards data reuse, and their self-reported data reuse behaviour. To do so, we used existing responses to selected questions from a worldwide survey of scientists developed and administered by the DataONE Usability and Assessment Working Group (thus practicing data reuse ourselves. Results show that the perceived efficacy and efficiency of data reuse are strong predictors of reuse behaviour, and that the perceived importance of data reuse corresponds to greater reuse. Expressed lack of trust in existing data and perceived norms against data reuse were not found to be major impediments for reuse contrary to our expectations. We found that reported use of models and remotely-sensed data was associated with greater reuse. The results suggest that data reuse would be encouraged and normalized by demonstration of its value. We offer some theoretical and practical suggestions that could help to legitimize investment and policies in favor of data sharing.

  13. Water Reuse Reconsidered

    Science.gov (United States)

    Environmental Science and Technology, 1975

    1975-01-01

    The Second National Conference on Complete WateReuse stressed better planning, management, and use of water. The sessions covered: water reuse and its problems; water's interface with air and land, and modification of these interactions by the imposition of energy; and heavy metals in the environment and methods for their removal. (BT)

  14. Acid resistance of quaternary blended recycled aggregate concrete

    Directory of Open Access Journals (Sweden)

    K Jagannadha Rao

    2018-06-01

    Full Text Available The possibility of reusing the aggregate from demolished structures in fresh concrete, in order to reduce the CO2 impact on the environment [23] and to preserve natural resources, was explored worldwide and it is established that recycled aggregates can be used as a partial replacement of natural aggregates. Due to its potential to be used in eco-friendly structures and shortage of supply of natural aggregates in some parts of the world, there is an increasing interest in using the recycled aggregate. The durability aspects are also of equal concern along with the strength and economy of any material to be used in the construction. Studies reveal that the behaviour of ternary and quaternary blended concretes is superior from durability point of view compared to conventional concrete. Therefore a study is conducted to assess the acid resistance of recycled aggregate based Quaternary Blended Cement Concrete (QBCC of two grades M40 and M60. Fly ash and silica fume are fixed at 20% and 10% respectively from the previous studies while two percentages of Nano silica (2 and 3% were used along with the cement to obtain QBCC. Three percentages of recycled aggregates as partial replacement of conventional aggregate (0%, 50% and 75% were used in this study. Two different acids (HCL and H2SO4 with different concentrations (3 and 5% were used in this study. Acid resistance of QBCC with Recycled Concrete Aggregate (RCA is assessed in terms of visual appearance, weight loss, and compressive strength loss by destructive and non-destructive tests at regular intervals for a period of 56 days. The test results showed marginal weight loss and strength loss in both M40 and M60 grades of concretes. The Ultrasonic Pulse Velocity (UPV results show that the quality of QBCC is good even after being subjected to acid exposure. Keywords: Recycled concrete aggregate (RCA, Quaternary blended cement concrete (QBCC, Acid resistance, Ultrasonic pulse velocity (UPV, Mineral

  15. Reuse of process water in a waste-to-energy plant: An Italian case of study.

    Science.gov (United States)

    Gardoni, Davide; Catenacci, Arianna; Antonelli, Manuela

    2015-09-01

    The minimisation of water consumption in waste-to-energy (WtE) plants is an outstanding issue, especially in those regions where water supply is critical and withdrawals come from municipal waterworks. Among the various possible solutions, the most general, simple and effective one is the reuse of process water. This paper discusses the effectiveness of two different reuse options in an Italian WtE plant, starting from the analytical characterisation and the flow-rate measurement of fresh water and process water flows derived from each utility internal to the WtE plant (e.g. cooling, bottom ash quenching, flue gas wet scrubbing). This census allowed identifying the possible direct connections that optimise the reuse scheme, avoiding additional water treatments. The effluent of the physical-chemical wastewater treatment plant (WWTP), located in the WtE plant, was considered not adequate to be directly reused because of the possible deposition of mineral salts and clogging potential associated to residual suspended solids. Nevertheless, to obtain high reduction in water consumption, reverse osmosis should be installed to remove non-metallic ions (Cl(-), SO4(2-)) and residual organic and inorganic pollutants. Two efficient solutions were identified. The first, a simple reuse scheme based on a cascade configuration, allowed 45% reduction in water consumption (from 1.81 to 0.99m(3)tMSW(-1), MSW: Municipal Solid Waste) without specific water treatments. The second solution, a cascade configuration with a recycle based on a reverse osmosis process, allowed 74% reduction in water consumption (from 1.81 to 0.46m(3)tMSW(-1)). The results of the present work show that it is possible to reduce the water consumption, and in turn the wastewater production, reducing at the same time the operating cost of the WtE plant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Greywater Treatment and Reuse

    Directory of Open Access Journals (Sweden)

    Gökhan Ekrem ÜSTÜN

    2015-07-01

    Full Text Available The aim of this study, to examine grey water treatment and reuse. For this aim, previous literature studies been research on and interpreted. Project began with study of physical, chemical and biological characteristics of the gray water. At the second part; grey water treatment and reuse were examined. At the third part; the technologies used for the methods treatment of gray water were explained. Then from costs and previous studies about grey water reuse were mentioned.

  17. Initial research on recycled tyre bales for road infrastructure applications

    Science.gov (United States)

    Duda, Aleksander; Sobala, Dariusz

    2017-12-01

    The paper reviews selected surveys carried out within the R&D project, co-financed with the European Regional Development Fund, called "ReUse - Innovative Recycling Materials, Enhancing the Sustainability of Bridge Facilities" (Innotech No. K3 / IN3 / 38/228116 / NCBiR / 15). The aim of the project and conducted research is to develop and implement innovative, cheap and environmentally-friendly recycled construction material in the form of tyre bales made from compressed used car tyres. This material is likely to be applied in civil engineering, especially in transport infrastructure, geotechnical and hydraulic engineering. New material is cheap and has unique properties such as low weight, high water permeability, high vibration and noise-damping capacity, low pressure coefficient values and other parameters that technically and economically allow it to replace natural aggregates. The extensive practical application of new material will facilitate the replacement of waste management methods with the environmentally friendly ones.

  18. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site.

    Science.gov (United States)

    Fujimori, Takashi; Takigami, Hidetaka

    2014-02-01

    We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.

  19. Development Of Nutrient And Water Recycling Capabilities In Algae Biofuels Production Systems. Final Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, Tryg [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States). Civil and Environmental Engineering Dept.; Spierling, Ruth [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Poole, Kyle [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Blackwell, Shelley [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Crowe, Braden [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Hutton, Matt [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Lehr, Corinne [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States). Dept. of Chemistry and Biochemistry

    2018-01-25

    The objective of this project was to develop and demonstrate methods of recycling of water and nutrients for algal biofuels production. Recycling was accomplished both internal to the system and, in a broader sense, through import and reuse of municipal wastewater. Such an integrated system with wastewater input had not been demonstrated previously, and the performance was unknown, particularly in terms of influence of recycling on algal productivity and the practical extent of nutrient recovery from biomass residuals. Through long-term laboratory and pilot research, the project resulted in the following: 1. Bench-scale pretreatment of algal biomass did not sufficiently increase methane yield of nutrient solubilization during anaerobic digestion to warrant incorporation of pre-treatment into the pilot plant. The trial pretreatments were high-pressure orifice homogenization, sonication, and two types of heat treatment. 2. Solubilization of biomass particulate nutrients by lab anaerobic digesters ranged from 20% to nearly 60% for N and 40-65% for P. Subsequent aerobic degradation of the anaerobically digested biomass simulated raceways receiving whole digestate and resulted in an additional 20-55% N solubilization and additional 20% P solubilization. 3. Comparisons of laboratory and pilot digesters showed that laboratory units were reasonable proxies for pilot-scale. 4. Pilot-scale anaerobic digesters were designed, installed, and operated to digest algal biomass. Nutrient re-solubilization by the digesters was monitored and whole digestate was successfully used as a fertilizer in pilot algae raceways. 5. Unheated, unmixed digesters achieved greater methane yield and nutrient solubilization than heated, mixed digesters, presumably due to longer the solids residence times in unmixed digesters. The unmixed, unheated pilot digesters yielded 0.16 LCH4/g volatile solids (VS) introduced with 0.15 g VS/L-d organic loading and 16oC average temperature. A

  20. REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.

    Energy Technology Data Exchange (ETDEWEB)

    FTHENAKIS,V.

    2001-01-29

    Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

  1. Formalisms for reuse and systems integration

    CERN Document Server

    Rubin, Stuart

    2015-01-01

    Reuse and integration are defined as synergistic concepts, where reuse addresses how to minimize redundancy in the creation of components; while, integration focuses on component composition. Integration supports reuse and vice versa. These related concepts support the design of software and systems for maximizing performance while minimizing cost. Knowledge, like data, is subject to reuse; and, each can be interpreted as the other. This means that inherent complexity, a measure of the potential utility of a system, is directly proportional to the extent to which it maximizes reuse and integration. Formal methods can provide an appropriate context for the rigorous handling of these synergistic concepts. Furthermore, formal languages allow for non ambiguous model specification; and, formal verification techniques provide support for insuring the validity of reuse and integration mechanisms.   This edited book includes 12 high quality research papers written by experts in formal aspects of reuse and integratio...

  2. Reverse logistics system and recycling potential at a landfill: A case study from Kampala City.

    Science.gov (United States)

    Kinobe, J R; Gebresenbet, G; Niwagaba, C B; Vinnerås, B

    2015-08-01

    The rapid growing population and high urbanisation rates in Sub-Saharan Africa has caused enormous pressure on collection services of the generated waste in the urban areas. This has put a burden on landfilling, which is the major waste disposal method. Waste reduction, re-use and recycling opportunities exist but are not fully utilized. The common items that are re-used and re-cycled are plastics, paper, aluminum, glass, steel, cardboard, and yard waste. This paper develops an overview of reverse logistics at Kiteezi landfill, the only officially recognised waste disposal facility for Kampala City. The paper analyses, in details the collection, re-processing, re-distribution and final markets of these products into a reversed supply chain network. Only 14% of the products at Kiteezi landfill are channeled into the reverse chain while 63% could be included in the distribution chain but are left out and disposed of while the remaining 23% is buried. This is because of the low processing power available, lack of market value, lack of knowledge and limited value addition activities to the products. This paper proposes possible strategies of efficient and effective reverse logistics development, applicable to Kampala City and other similar cities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Mixture design and treatment methods for recycling contaminated sediment

    International Nuclear Information System (INIS)

    Wang, Lei; Kwok, June S.H.; Tsang, Daniel C.W.; Poon, Chi-Sun

    2015-01-01

    Graphical abstract: - Highlights: • Contaminated sediment can be recycled as fill material for site formation. • Thermal pretreatment of sediment permits non-load-bearing block application. • CO 2 curing enhances strength and reduces carbon footprint. • Inclusion of granular wastes reinforces the solidified sediment matrix. • Sediment blocks are useful resources for construction use. - Abstract: Conventional marine disposal of contaminated sediment presents significant financial and environmental burden. This study aimed to recycle the contaminated sediment by assessing the roles and integration of binder formulation, sediment pretreatment, curing method, and waste inclusion in stabilization/solidification. The results demonstrated that the 28-d compressive strength of sediment blocks produced with coal fly ash and lime partially replacing cement at a binder-to-sediment ratio of 3:7 could be used as fill materials for construction. The X-ray diffraction analysis revealed that hydration products (calcium hydroxide) were difficult to form at high sediment content. Thermal pretreatment of sediment removed 90% of indigenous organic matter, significantly increased the compressive strength, and enabled reuse as non-load-bearing masonry units. Besides, 2-h CO 2 curing accelerated early-stage carbonation inside the porous structure, sequestered 5.6% of CO 2 (by weight) in the sediment blocks, and acquired strength comparable to 7-d curing. Thermogravimetric analysis indicated substantial weight loss corresponding to decomposition of poorly and well crystalline calcium carbonate. Moreover, partial replacement of contaminated sediment by various granular waste materials notably augmented the strength of sediment blocks. The metal leachability of sediment blocks was minimal and acceptable for reuse. These results suggest that contaminated sediment should be viewed as useful resources

  4. Mixture design and treatment methods for recycling contaminated sediment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Kwok, June S.H.; Tsang, Daniel C.W., E-mail: dan.tsang@polyu.edu.hk; Poon, Chi-Sun

    2015-02-11

    Graphical abstract: - Highlights: • Contaminated sediment can be recycled as fill material for site formation. • Thermal pretreatment of sediment permits non-load-bearing block application. • CO{sub 2} curing enhances strength and reduces carbon footprint. • Inclusion of granular wastes reinforces the solidified sediment matrix. • Sediment blocks are useful resources for construction use. - Abstract: Conventional marine disposal of contaminated sediment presents significant financial and environmental burden. This study aimed to recycle the contaminated sediment by assessing the roles and integration of binder formulation, sediment pretreatment, curing method, and waste inclusion in stabilization/solidification. The results demonstrated that the 28-d compressive strength of sediment blocks produced with coal fly ash and lime partially replacing cement at a binder-to-sediment ratio of 3:7 could be used as fill materials for construction. The X-ray diffraction analysis revealed that hydration products (calcium hydroxide) were difficult to form at high sediment content. Thermal pretreatment of sediment removed 90% of indigenous organic matter, significantly increased the compressive strength, and enabled reuse as non-load-bearing masonry units. Besides, 2-h CO{sub 2} curing accelerated early-stage carbonation inside the porous structure, sequestered 5.6% of CO{sub 2} (by weight) in the sediment blocks, and acquired strength comparable to 7-d curing. Thermogravimetric analysis indicated substantial weight loss corresponding to decomposition of poorly and well crystalline calcium carbonate. Moreover, partial replacement of contaminated sediment by various granular waste materials notably augmented the strength of sediment blocks. The metal leachability of sediment blocks was minimal and acceptable for reuse. These results suggest that contaminated sediment should be viewed as useful resources.

  5. Evaluation of dry solid waste recycling from municipal solid waste: case of Mashhad city, Iran.

    Science.gov (United States)

    Farzadkia, Mahdi; Jorfi, Sahand; Akbari, Hamideh; Ghasemi, Mehdi

    2012-01-01

    The recycling for recovery and reuse of material and energy resources undoubtedly provides a substantial alternative supply of raw materials and reduces the dependence on virgin feedstock. The main objective of this study was to assess the potential of dry municipal solid waste recycling in Mashhad city, Iran. Several questionnaires were prepared and distributed among various branches of the municipality, related organizations and people. The total amount of solid waste generated in Mashhad in 2008 was 594, 800  tons with per capita solid waste generation rate of 0.609  kg  person(-1) day(-1). Environmental educational programmes via mass media and direct education of civilians were implemented to publicize the advantages and necessity of recycling. The amount of recycled dry solid waste was increased from 2.42% of total dry solid waste (2588.36  ton  year(-1)) in 1999 to 7.22% (10, 165  ton  year(-1)) in 2008. The most important fractions of recycled dry solid waste in Mashhad included paper and board (51.33%), stale bread (14.59%), glass (9.73%), ferrous metals (9.73%), plastic (9.73%), polyethylene terephthalate (2.62%) and non-ferrous metals (0.97%). It can be concluded that unfortunately the potential of dry solid waste recycling in Mashhad has not been considered properly and there is a great effort to be made in order to achieve the desired conditions of recycling.

  6. Metal Exposures at three U.S. electronic scrap recycling facilities.

    Science.gov (United States)

    Ceballos, Diana; Beaucham, Catherine; Page, Elena

    2017-06-01

    Many metals found in electronic scrap are known to cause serious health effects, including but not limited to cancer and respiratory, neurologic, renal, and reproductive damage. The National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention performed three health hazard evaluations at electronic scrap recycling facilities in the U.S. to characterize employee exposure to metals and recommend control strategies to reduce these exposures. We performed air, surface, and biological monitoring for metals. We found one overexposure to lead and two overexposures to cadmium. We found metals on non-production surfaces, and the skin and clothing of workers before they left work in all of the facilities. We also found some elevated blood lead levels (above 10 micrograms per deciliter), however no employees at any facility had detectable mercury in their urine or exceeded 34% of the OELs for blood or urine cadmium. This article focuses on sampling results for lead, cadmium, mercury, and indium. We provided recommendations for improving local exhaust ventilation, reducing the recirculation of potentially contaminated air, using respirators until exposures are controlled, and reducing the migration of contaminants from production to non-production areas. We also recommended ways for employees to prevent taking home metal dust by using work uniforms laundered on-site, storing personal and work items in separate lockers, and using washing facilities equipped with lead-removing cleaning products.

  7. Mechanical characterization of sportive tracks made with materials recycled from end-of-life tyres

    OpenAIRE

    Morales-Gámiz, F. J.; Escriba, S.; García-Villena, S. A.; Bermejo, J. M.; Saiz, L.

    2015-01-01

    Congreso celebrado en la Escuela de Arquitectura de la Universidad de Sevilla desde el 24 hasta el 26 de junio de 2015. The European Framework Directive 2008/98/EC on waste established as priority reuse and recycling before other recovery alternatives. In this normative reference, one the main waste flows identified are the end-of-life tyres, as a material whose mechanical properties could provide advantage in the construction of new structures. This paper presents the mechanical character...

  8. Occurrence and fate of acrylamide in water-recycling systems and sludge in aggregate industries.

    Science.gov (United States)

    Junqua, Guillaume; Spinelli, Sylvie; Gonzalez, Catherine

    2015-05-01

    Acrylamide is a hazardous substance having irritant and toxic properties as well as carcinogen, mutagen, and impaired fertility possible effects. Acrylamide might be found in the environment as a consequence of the use of polyacrylamides (PAMs) widely added as a flocculant for water treatment. Acrylamide is a monomer used to produce polyacrylamide (PAM) polymers. This reaction of polymerization can be incomplete, and acrylamide molecules can be present as traces in the commercial polymer. Thus, the use of PAMs may generate a release of acrylamide in the environment. In aggregate industries, PAM is widely involved in recycling process and water reuse (aggregate washing). Indeed, these industries consume large quantities of water. Thus, European and French regulations have favored loops of recycling of water in order to reduce water withdrawals. The main goal of this article is to study the occurrence and fate of acrylamide in water-recycling process as well as in the sludge produced by the flocculation treatment process in aggregate production plants. Moreover, to strengthen the relevance of this article, the objective is also to demonstrate if the recycling system leads to an accumulation effect in waters and sludge and if free acrylamide could be released by sludge during their storage. To reach this objective, water sampled at different steps of recycling water process has been analyzed as well as different sludge corresponding to various storage times. The obtained results reveal no accumulation effect in the water of the water-recycling system nor in the sludge.

  9. Advanced Recyclable Media System reg-sign. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The objective of the Large-Scale Demonstration Project (LSDP) is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory East's (ANL) Chicago Pile-5 (CP-5) Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved deactivation and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. This report describes a demonstration of the Advanced Recyclable Media System reg-sign technology which was employed by Surface Technology Systems, Inc. to remove coatings from a concrete floor. This demonstration is part of the CP-5 LSDP sponsored by the US Department of Energy (DOE) Office of Science and Technology Deactivation and Decommissioning Focus Area (DDFA). The Advanced Recyclable Media System reg-sign (ARMS) technology is an open blast technology which uses a soft recyclable media. The patented ARMS Engineered Blast Media consists of a fiber-reinforced polymer matrix which can be manufactured in various grades of abrasiveness. The fiber media can be remade and/or reused up to 20 times and can clean almost any surface (e.g., metal, wood, concrete, lead) and geometry including corners and the inside of air ducts

  10. Recycling energy to restore impaired ankle function during human walking.

    Directory of Open Access Journals (Sweden)

    Steven H Collins

    Full Text Available BACKGROUND: Humans normally dissipate significant energy during walking, largely at the transitions between steps. The ankle then acts to restore energy during push-off, which may be the reason that ankle impairment nearly always leads to poorer walking economy. The replacement of lost energy is necessary for steady gait, in which mechanical energy is constant on average, external dissipation is negligible, and no net work is performed over a stride. However, dissipation and replacement by muscles might not be necessary if energy were instead captured and reused by an assistive device. METHODOLOGY/PRINCIPAL FINDINGS: We developed a microprocessor-controlled artificial foot that captures some of the energy that is normally dissipated by the leg and "recycles" it as positive ankle work. In tests on subjects walking with an artificially-impaired ankle, a conventional prosthesis reduced ankle push-off work and increased net metabolic energy expenditure by 23% compared to normal walking. Energy recycling restored ankle push-off to normal and reduced the net metabolic energy penalty to 14%. CONCLUSIONS/SIGNIFICANCE: These results suggest that reduced ankle push-off contributes to the increased metabolic energy expenditure accompanying ankle impairments, and demonstrate that energy recycling can be used to reduce such cost.

  11. Polybrominated diphenyl ethers--plasma levels and thyroid status of workers at an electronic recycling facility.

    Science.gov (United States)

    Julander, A; Karlsson, M; Hagström, K; Ohlson, C G; Engwall, M; Bryngelsson, I-L; Westberg, H; van Bavel, B

    2005-08-01

    Personnel working with electronic dismantling are exposed to polybrominated diphenyl ethers (PBDEs), which in animal studies have been shown to alter thyroid homeostasis. The aim of this longitudinal study was to measure plasma level of PBDEs in workers at an electronic recycling facility and to relate these to the workers' thyroid status. PBDEs and three thyroid hormones: triiodothyronine (T(3)), thyroxin (T(4)) and thyroid stimulating hormone (TSH) were repeatedly analysed in plasma from 11 workers during a period of 1.5 years. Plasma levels of PBDEs at start of employment were plasma levels of PBDEs fluctuated during the study period. Due to small changes in thyroid hormone levels it was concluded that no relevant changes were present in relation to PBDE exposure within the workers participating in this study.

  12. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production.

    Science.gov (United States)

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; López-Ochoa, Luis M; López-González, Luis M

    2017-07-18

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study's methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product's performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete's strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete's performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced.

  13. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production

    Science.gov (United States)

    Ferreiro-Cabello, Javier; López-González, Luis M.

    2017-01-01

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study’s methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product’s performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete’s strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete’s performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced. PMID:28773183

  14. Effects of Re-Using a Conceptual Examination Question in Physics

    Science.gov (United States)

    Sharma, Manjula D.; Sefton, Ian M.; Cole, Martyn; Whymark, Aaron; Millar, Rosemary M.; Smith, Andrew

    2005-12-01

    We report on a study of what happened when we recycled a conceptual examination question in a first-year university physics course. The question, which was used for three consecutive years, asked about an astronaut's experience of weighing in an orbiting space-craft. Our original intention was to use a phenomenographic approach to look for differences in students' descriptive answers. Having done that, we decided to add a study of the marks that were awarded to those answers. The first time that the question was re-used, the distribution of answers amongst our phenomenographic categories showed a decrease in the common conception that gravity is zero in the satellite and an increase in explanations in terms of free fall. When the question was re-used a second time, that difference was maintained but it was not significantly increased. The distribution of marks for the question was different over the three years in a way that appears to be unrelated to differences in students' conceptual understandings. Differences in the distribution of marks are more likely to be related to differences in marking procedures. We conclude that studies like this one have the potential to contribute to improvements in university assessment procedures. In particular we propose that phenomenographic analysis could be used in the design of marking schemes.

  15. Recycling of petroleum-contaminated sand.

    Science.gov (United States)

    Taha, R; Ba-Omar, M; Pillay, A E; Roos, G; al-Hamdi, A

    2001-08-01

    The environmental impact of using petroleum-contaminated sand (PCS) as a substitute in asphalt paving mixtures was examined. An appreciable component of PCS is oily sludge, which is found as the dregs in oil storage tanks and is also produced as a result of oil spills on clean sand. The current method for the disposal of oily sludge is land farming. However, this method has not been successful as an oil content of reuse of the sludge in asphalt paving mixtures was therefore considered as an alternative. Standard tests and environmental studies were conducted to establish the integrity of the materials containing the recycled sludge. These included physical and chemical characterization of the sludge itself, and an assessment of the mechanical properties of materials containing 0%, 5%, 22% and 50% oily sludge. The blended mixtures were subjected to special tests, such as Marshall testing and the determination of stability and flow properties. The experimental results indicated that mixtures containing up to 22% oily sludge could meet the necessary criteria for a specific asphalt concrete wearing course or bituminous base course. To maximize the assay from the recycled material, the environmental assessment was restricted to the 50% oily sludge mixture. Leachates associated with this particular mixture were assayed for total organic residue and certain hazardous metal contaminants. The results revealed that the organics were negligible, and the concentrations of the metals were not significant. Thus, no adverse environmental impact should be anticipated from the use of the recycled product. Our research showed that the disposal of oily sludge in asphalt paving mixtures could possibly yield considerable savings per tonne of asphalt concrete, and concurrently minimize any direct impact on the environment.

  16. Environmental pollution of electronic waste recycling in India: A critical review.

    Science.gov (United States)

    Awasthi, Abhishek Kumar; Zeng, Xianlai; Li, Jinhui

    2016-04-01

    The rapid growth of the production of electrical and electronic products has meant an equally rapid growth in the amount of electronic waste (e-waste), much of which is illegally imported to India, for disposal presenting a serious environmental challenge. The environmental impact during e-waste recycling was investigated and metal as well as other pollutants [e.g. polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs)] were found in excessive levels in soil, water and other habitats. The most e-waste is dealt with as general or crudely often by open burning, acid baths, with recovery of only a few materials of value. As resulted of these process; dioxins, furans, and heavy metals are released and harmful to the surrounding environment, engaged workers, and also residents inhabiting near the sites. The informal e-waste sectors are growing rapidly in the developing countries over than in the developed countries because of cheapest labor cost and week legislations systems. It has been confirmed that contaminates are moving through the food chain via root plant translocation system, to the human body thereby threatening human health. We have suggested some possible solution toward in which plants and microbes combine to remediate highly contaminated sites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Reuse of the Reflective Light and the Recycle Heat Energy in Concentrated Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Hsin-Chien Chen

    2013-01-01

    Full Text Available A complex solar unit with microcrystalline silicon solar cells placed around the centered GaAs triple junction solar cell has been proposed and carried out. With the same illumination area and intensity, the total resultant power shows that the excess microcrystalline silicon solar cells increase the total output power by 13.2% by absorbing the reflective light from the surface of optical collimators. Furthermore, reusing the residual heat energy generated from the above-mentioned mechanism helps to increase the output power by around 14.1%. This mechanism provides a simple method to enhance the utility rate of concentrated photovoltaic (CPV system. Such concept can be further applied to the aerospace industry and the development of more efficient CPV solar energy applications.

  18. Impact of metals in surface matrices from formal and informal electronic-waste recycling around Metro Manila, the Philippines, and intra-Asian comparison

    International Nuclear Information System (INIS)

    Fujimori, Takashi; Takigami, Hidetaka; Agusa, Tetsuro; Eguchi, Akifumi; Bekki, Kanae; Yoshida, Aya; Terazono, Atsushi; Ballesteros, Florencio C.

    2012-01-01

    Highlights: ► We quantified 11 metals in surface matrices from e-waste recycling sites at the Philippines. ► Dust had statistical higher levels of metal contamination and health risk compared to soil. ► Formal and informal sites had different metal contaminations. ► Intra-Asian comparison provided common insight on metal contamination from e-waste recycling. - Abstract: We report concentrations, enrichment factors, and hazard indicators of 11 metals (Ag, As, Cd, Co, Cu, Fe, In, Mn, Ni, Pb, and Zn) in soil and dust surface matrices from formal and informal electronic waste (e-waste) recycling sites around Metro Manila, the Philippines, referring to soil guidelines and previous data from various e-waste recycling sites in Asia. Surface dust from e-waste recycling sites had higher levels of metal contamination than surface soil. Comparison of formal and informal e-waste recycling sites (hereafter, “formal” and “informal”) revealed differences in specific contaminants. Formal dust contained a mixture of serious pollutant metals (Ni, Cu, Pb, and Zn) and Cd (polluted modestly), quite high enrichment metals (Ag and In), and crust-derived metals (As, Co, Fe, and Mn). For informal soil, concentration levels of specific metals (Cd, Co, Cu, Mn, Ni, Pb, and Zn) were similar among Asian recycling sites. Formal dust had significantly higher hazardous risk than the other matrices (p < 0.005), excluding informal dust (p = 0.059, almost significant difference). Thus, workers exposed to formal dust should protect themselves from hazardous toxic metals (Pb and Cu). There is also a high health risk for children ingesting surface matrices from informal e-waste recycling sites.

  19. Life Cycle Assessment Of Danish Concrete Waste Recycled In Road Base Applications

    DEFF Research Database (Denmark)

    Butera, Stefania; Birgisdottir, H.; Astrup, Thomas Fruergaard

    2013-01-01

    LCA was used to assess the environmental impacts from recycling of C&DW in road construction. The scenario comprised all stages in the end of life of C&D concrete, including recovery of materials, as well as avoided production of the substituted goods. Results show the importance of transportation...... of the material, especially when considering global warming, acidification and human toxicity categories. Ecotoxicity is dominated by leaching of pollutants from the concrete material, where Cr and Sb play a major role. Compared to landfilling of the same waste stream, reuse in road construction provides lower...

  20. Water Reclamation and Reuse.

    Science.gov (United States)

    Smith, Daniel W.

    1978-01-01

    Presents a literature review of water reclamation and reuse. This review covers: (1) water resources planning; (2) agriculture and irrigation; (3) ground recharge; (4) industrial reuse; (5) health considerations; and (6) technology developments. A list of 217 references is also presented. (HM)

  1. Possible Sources of Bias in Primary Care Electronic Health Record Data Use and Reuse.

    Science.gov (United States)

    Verheij, Robert A; Curcin, Vasa; Delaney, Brendan C; McGilchrist, Mark M

    2018-05-29

    Enormous amounts of data are recorded routinely in health care as part of the care process, primarily for managing individual patient care. There are significant opportunities to use these data for other purposes, many of which would contribute to establishing a learning health system. This is particularly true for data recorded in primary care settings, as in many countries, these are the first place patients turn to for most health problems. In this paper, we discuss whether data that are recorded routinely as part of the health care process in primary care are actually fit to use for other purposes such as research and quality of health care indicators, how the original purpose may affect the extent to which the data are fit for another purpose, and the mechanisms behind these effects. In doing so, we want to identify possible sources of bias that are relevant for the use and reuse of these type of data. This paper is based on the authors' experience as users of electronic health records data, as general practitioners, health informatics experts, and health services researchers. It is a product of the discussions they had during the Translational Research and Patient Safety in Europe (TRANSFoRm) project, which was funded by the European Commission and sought to develop, pilot, and evaluate a core information architecture for the learning health system in Europe, based on primary care electronic health records. We first describe the different stages in the processing of electronic health record data, as well as the different purposes for which these data are used. Given the different data processing steps and purposes, we then discuss the possible mechanisms for each individual data processing step that can generate biased outcomes. We identified 13 possible sources of bias. Four of them are related to the organization of a health care system, whereas some are of a more technical nature. There are a substantial number of possible sources of bias; very little is

  2. Concepts for Reusing Composite Materials from Decommissioned Wind Turbine Blades in Affordable Housing

    Directory of Open Access Journals (Sweden)

    Lawrence C. Bank

    2018-01-01

    Full Text Available The very rapid growth in wind energy technology in the last 15 years has led to a rapid growth in the amount of non-biodegradable, thermosetting fiber reinforced polymer (FRP composite materials used in wind turbine blades. This paper discusses conceptual architectural and structural options for recycling these blades by reusing parts of wind turbine blades in new or retrofitted housing projects. It focuses on large-sized FRP pieces that can be salvaged from the turbine blades and can potentially be useful in infrastructure projects where harsh environmental conditions (water and high humidity exist. Since reuse design should be for specific regional locations and architectural characteristics the designs presented in this paper are for the coastal regions of the Yucatan province in Mexico on the Gulf of Mexico where low-quality masonry block informal housing is vulnerable to severe hurricanes and flooding. To demonstrate the concept a prototype 100 m long wind blade model developed by Sandia National Laboratories is used to show how a wind blade can be broken down into parts, thus making it possible to envision architectural applications for the different wind blade segments for housing applications.

  3. The Resource Benefits Evaluation Model on Remanufacturing Processes of End-of-Life Construction Machinery under the Uncertainty in Recycling Price

    Directory of Open Access Journals (Sweden)

    Qian-wang Deng

    2017-02-01

    Full Text Available In the process of end-of-life construction machinery remanufacturing, the existence of uncertainties in all aspects of the remanufacturing process increase the difficulty and complexity of resource benefits evaluation for them. To quantify the effects of those uncertainty factors, this paper makes a mathematical analysis of the recycling and remanufacturing processes, building a resource benefits evaluation model for the end-of-life construction machinery. The recycling price and the profits of remanufacturers can thereby be obtained with a maximum remanufacturing resource benefit. The study investigates the change regularity of the resource benefits, recycling price, and profits of remanufacturers when the recycling price, quality fluctuation coefficient, demand coefficient, and the reusing ratio of products or parts are varying. In the numerical experiment, we explore the effects of uncertainties on the remanufacturing decisions and the total expected costs. The simulated analysis shows when the quality fluctuation coefficient is approaching to 1, the values of the profits of remanufacturer, the maximal resource benefits and recycling price grade into constants.

  4. Microwave based oxidation process for recycling the off-specification (U,Pu)O{sub 2} fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Singh, G., E-mail: gitendars@barctara.gov.in [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, 401 502 (India); Khot, P.M. [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, 401 502 (India); Kumar, Pradeep [Integrated Fuel Fabrication Facility (IFFF), Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Bhatt, R.B.; Behere, P.G.; Afzal, Mohd [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, 401 502 (India)

    2017-02-15

    This paper reports development of a process named MicroWave Direct Oxidation (MWDO) for recycling the off-specification (U,Pu)O{sub 2} mixed oxide (MOX) fuel pellets generated during fabrication of typical fast reactor fuels. MWDO is a two-stage, single-cycle process based on oxidative pulverisation of pellets using 2450 MHz microwave. The powder sinterability was evaluated by bulk density and BET specific surface area. The oxidised powders were analyzed for phases using XRD and stoichiometry by thermogravimetry. The sinterability was significantly enhanced by carrying out oxidation in higher oxygen partial pressure and by subjecting MOX to multiple micronisation-oxidation cycles. After three cycles, the recycled powder from (U,28%Pu)O{sub 2} resulted surface area >3 m{sup 2}/g and 100% re-used for MOX fabrication. The flow sheet was developed for maximum utilization of recycled powder describable by a parameter called Scrap Recycling Ratio (SRR). The process demonstrates smaller processing cycle, better powder properties and higher oxidative pulverisation over conventional method. - Highlights: • A process for recycling the off-specification (U,Pu)O{sub 2} sintered fuel pellets of fast reactors was demonstrated. • The method is a two-stage, single cycle process based on oxidative pulverization of MOX pellets using 2450 MHz microwave. • The process demonstrated utilization of recycled powder with SRR of 1.

  5. Ag-decorated Fe_3O_4@SiO_2 core-shell nanospheres: Seed-mediated growth preparation and their antibacterial activity during the consecutive recycling

    International Nuclear Information System (INIS)

    Li, Miaomiao; Wu, Wenjie; Qiao, Ru; Tan, Linxiang; Li, Zhengquan; Zhang, Yong

    2016-01-01

    We demonstrated a seed-mediated growth approach to synthesize Ag nanoparticles-decorated Fe_3O_4@SiO_2 core-shell nanospheres without use of surface functionalization. The particle size and decoration density of the immobilized Ag nanoparticles on SiO_2 surface were tunable by adjusting the added AgNO_3 concentration and the alternating repetition times in seed-mediated growth procedure. The as-prepared Ag-decorated Fe_3O_4@SiO_2 nanospheres exhibited excellent antibacterial activities against Escherichia coli, Bacillus subtilis and Candida albicans, in which the minimum inhibitory concentration were 12.5 μg mL"−"1, 50 μg mL"−"1 and 50 μg mL"−"1, respectively. It is speculated that their antibacterial activity is attributed to both the interaction of released Ag ions with the functional groups of vital enzymes and proteins and the strong oxidation of reactive oxygen species generated under the action of photoinduced electrons in Ag nanoparticles. Besides studying their antibacterial mechanism, we also investigated the variation of antibacterial activity of these heterostructured nanospheres during the consecutive magnetic separation and recycling. It shows that the magnetic antibacterial agent could be reused and its activity remained stable even after nine cycles, which enable it to be promisingly applied in biomedical areas. - Highlights: • Ag-decorated Fe_3O_4@SiO_2 were synthesized via a seed-mediated growth method. • The core-shell heterostructures exhibited excellent antibacterial activity. • The activity was attributed to the effect of released Ag"+ with ROS oxidation. • The antibacterial agent was reused during magnetic separation and recycling.

  6. Recycling of chlorobutyl rubber compounds subjected of gamma radiation

    International Nuclear Information System (INIS)

    Scagliusi, Sandra R.; Cardoso, Elizabeth C.L.; Santos, Renato G. dos; Lugao, Ademar B.

    2015-01-01

    In Brazil, as in the world, the correct destination of solid waste and its impacts on the environment are so worrying that have been treated as public policy of the State, leading to behavioral change on the part of business and society. Polymeric materials (plastics and rubbers) comprise a growing proportion of urban and industrial waste sent to landfills. Development of technologies for reducing polymeric residues that are acceptable from an environmental point of view, and which are effective in terms of cost, has proven a difficult challenge due to the inherent complexities of all reuse polymers. To establish more efficient processes for reuse / recycling of polymeric materials remains a challenge throughout the world. Due to ionizing radiation ability to alter the structure and properties of materials and the fact that it is applicable to all types of polymers, irradiation is promising and effective for the management of solid waste which can be used as raw materials or additives chemicals. Halogenated polymers have been used on a large scale in a broad variety of applications, such as tires, spare parts (tubes, tire liners, etc.) and various artifacts (covers, gaskets, etc.). Due to the low unsaturation of chlorobutyl rubber (about 3%), shows significant levels of degradation upon exposure to radiation. The main effect of gamma rays on butyl polymers is the formation of free radicals and the chain scission. This paper aims to introduce a rubber recovery technique chlorobutyl rubber the characterization of non-irradiated and irradiated samples based on the following properties: tensile strength and elongation at break, hardness, and rheological properties. The radiation doses used in the study were degradation range: 0 kGy, 25 kGy, 50 kGy, 100 kGy, 150 kGy and 200 kGy, in order to confirm the feasibility of recycling chlorobutyl rubber. It was observed that doses greater than 100 kGy, the material exhibits a high degree of degradation. Research on rubber

  7. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    International Nuclear Information System (INIS)

    Seletskiy, Sergey M.; Rochester U.

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the first cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cooling. The Recycler Electron Cooler (REC) is the key component of the Tevatron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV carrying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 (micro)rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible. Chapter 1 is an introduction where I describe briefly the theory and the history of electron cooling, and derive the requirements to the quality of electron beam and requirements to the basic parameters of the Recycler Electron Cooler. Chapter 2 is devoted to the theoretical consideration of the motion of electrons in the cooling section, description of the cooling section and of the measurement of the magnetic fields. In Chapter 3 I consider different factors that increase the effective electron angle in the cooling section and suggest certain algorithms for the suppression of parasitic angles. Chapter 4 is devoted to the measurements of the energy of the electron beam. In the concluding Chapter 5 I review

  8. Logistics improvements in a cooperative of recyclable waste collectors in Belém-PA: A proposal based on NSWP

    Directory of Open Access Journals (Sweden)

    Emmily Caroline Cabral da Fonseca

    2017-03-01

    Full Text Available The increase in consumption has contributed to the growth in solid waste generation. In 2012, Brazil presented an increase in waste generation rates, which exceeded the rate of population growth. The metropolitan region of Belém-PA reflects this scenario as well. This Brazilian State has taken actions in order to combat this problem, and one of them was the creation of the National Solid Waste Policy (NSWP established by Law No. 12,305 (2010. This Law contains guidelines for handling, decreasing generation, reusing and recycling solid waste. In this sense, the cooperatives of recyclable waste collectors are an important link in this reusing and recycling network. Thus, this paper proposes improvements for the processes performed by a cooperative of waste collectors, located in Belém-PA, in the context of the NSWP by encouraging the sustainable development of this organization. For this purpose, the theoretical background was provided from journals and government sites, especially topics regarding to the said Act and the Reverse Logistics (RL. In addition, data from the cooperative activities were collected and analyzed, which resulted in the following contributions: proposition of improvements in the processes, object of this study, which followed the NSWP considerations. These results proposed actions aligned to the principles of sustainable development expected in the NSWP, as well as to generate new content focused on the area of Production Engineering, especially Logistics.

  9. Business Models for Social Innovation of Municipal Solid Waste Recycling Companies: Comparison of Two Business Cases in Thailand and Taiwan

    Directory of Open Access Journals (Sweden)

    Xiujuan Chen

    2018-03-01

    Full Text Available The significant increase of municipal solid wastes (e.g., food disposals, biomedical wastes, recyclable materials, etc. is a very important environmental issue around the world. Waste recycling, reduction, and reuse are not only methods to solve environmental problems, but also directions for social innovation for business to create potential social value. This study investigates the business models of two waste recycling companies in Thailand and Taiwan. First, the basic micro and macro environmental factors were analyzed, including the period of firm’s business operations, location of the firm, space for separating and storing recyclable waste and various types of recyclable waste purchasing affecting the firms’ performance in these two economies. Second, different recyclable waste materials, volumes and price strategies between the case companies were compared. Third, this study also investigates the impacts of factors regarding resource characteristics, a firm’s capabilities and an entrepreneur’s abilities to improve a firm’s performance all compose a critical business model. The results showed that there were an increasing number of owners of waste recycling businesses developing and adapting to new business models. Detailed comparisons are reported and discussed in the article to shed light on managerial and policy implications.

  10. Mechanical and chemical recycling of solid plastic waste.

    Science.gov (United States)

    Ragaert, Kim; Delva, Laurens; Van Geem, Kevin

    2017-11-01

    This review presents a comprehensive description of the current pathways for recycling of polymers, via both mechanical and chemical recycling. The principles of these recycling pathways are framed against current-day industrial reality, by discussing predominant industrial technologies, design strategies and recycling examples of specific waste streams. Starting with an overview on types of solid plastic waste (SPW) and their origins, the manuscript continues with a discussion on the different valorisation options for SPW. The section on mechanical recycling contains an overview of current sorting technologies, specific challenges for mechanical recycling such as thermo-mechanical or lifetime degradation and the immiscibility of polymer blends. It also includes some industrial examples such as polyethylene terephthalate (PET) recycling, and SPW from post-consumer packaging, end-of-life vehicles or electr(on)ic devices. A separate section is dedicated to the relationship between design and recycling, emphasizing the role of concepts such as Design from Recycling. The section on chemical recycling collects a state-of-the-art on techniques such as chemolysis, pyrolysis, fluid catalytic cracking, hydrogen techniques and gasification. Additionally, this review discusses the main challenges (and some potential remedies) to these recycling strategies and ground them in the relevant polymer science, thus providing an academic angle as well as an applied one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Recycling of electric appliances. Utilization of the new EU regulation; Recycling von Elektrogeraeten. Nutzen der neuen EU-Richtlinie

    Energy Technology Data Exchange (ETDEWEB)

    Friege, Henning [Awista GmbH, Duesseldorf (Germany)

    2012-10-15

    In the light of a shortage of resources the recycling of secondary raw materials and especially of metals from electric appliances is increasingly gaining importance. If one is to believe the announcements, everything is regulated in the best way. But when one considers closer the data from the recycling of resources and especially the non-ferric (NF) metals from electric and electronic appliances, this still is not a success story - we ought to write it.

  12. Sustainable recycling of automotive products in China: Technology and regulation

    Science.gov (United States)

    Chen, Ming

    2006-08-01

    The Chinese economy is growing rapidly, but accompanyingsuch growth are issues of environmental protection and social inequity which must be addressed. With the Automobile Industry Development Policy and the Motor Vehicle Product Recovery Technology Policy, an automobile products recoverability target has been established and will be incorporated into an automobile products authentication management system in China. By 2010, for all end-of-life automobile products, reuse and recovery shall be increased to a minimum of 85% by average weight per vehicle, and the use of lead, mercury, cadmium, and hexavalent chromium is prohibited. This paper will address the sustainable recycling of Chinese automobile products within the period of 2006 2010.

  13. Synthesis and characterization of NiFe2O4–Pd magnetically recyclable catalyst for hydrogenation reaction

    International Nuclear Information System (INIS)

    Karaoğlu, E.; Özel, U.; Caner, C.; Baykal, A.; Summak, M.M.; Sözeri, H.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Novel superparamagnetic NiFe 2 O 4 –Pd magnetically recyclable catalyst was fabricated through co-precipitation. ► It could be reused several times without significant loss in catalytic activity for hydrogenation reaction. ► No further modification of the NiFe 2 O 4 –Pd magnetically recyclable catalyst is necessary for utilization as catalyst. -- Abstract: Herein we report the fabrication and characterization magnetically recyclable catalysts of NiFe 2 O 4 –Pd nanocomposite as highly effective catalysts for reduction reactions in liquid phase. The reduction Pd 2+ was accomplished with polyethylene glycol 400 (PEG-400) instead of sodium borohydride (NaBH 4 ) and NiFe 2 O 4 nanoparticles was prepared by sonochemically using FeCI 3 ·6H 2 O and NiCl 2 . The chemical characterization of the product was done with X-ray diffractometry, Infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy, thermal gravimetry and inductively coupled plasma. Thus formed NiFe 2 O 4 –Pd MRCs showed a very high activity in reduction reactions of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase. It was found out that the catalytic activity of NiFe 2 O 4 –Pd MRCs on the reduction of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase are between 99–93% and 98–93%, respectively. Magnetic character of this system allowed recovery and multiple use without significant loss of its catalytic activity. It is found that NiFe 2 O 4 –Pd MRCs showed very efficient catalytic activity and multiple usability.

  14. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    Science.gov (United States)

    Knight, Chase C.

    of the polymer matrix. To date, very few studies have been reported in this area and the studies thus far have only focused on small scale feasibility and have only shown the recovery of random fibers. The goal of this research is to advance the knowledge in the field of sub-critical and supercritical fluid recycling by providing fundamental information that will be necessary to move this process forward to an industrial scale. This dissertation work consists of several phases of studies. In the first phase of this research, the feasibility of recycling woven CFRP was established on a scale approximately 30 times larger than previously reported. The industrial relevance was also conveyed, as the process was shown to remove up 99% of a highly cross-linked resin from an aerospace grade composite system with 100% retention of the single filament tensile strength and modulus whilst also retaining the highly valuable woven fiber structure. The second phase of research demonstrated the power of this technology to recycle multi-layer composites and provide the ability to reuse the highly valuable materials. Up to 99% resin elimination was achieved for a woven 12-layer aerospace grade composite. The recycled woven fabric layers, with excellent retention of the fiber architecture, were directly reused to fabricate reclaimed fiber composites (RFC). Manufacturing issues associated with the use of the recycled fiber were investigated. Several fabrication technologies were used to fabricate the composite, and the composites show moderate short beam shear strength and may be suitable for certain industrial applications. Moreover, fresh composites were also recycled, recovered, and reused to investigate the retention of flexural properties of the fibers after recycling. Up to 95% of the flexural strength and 98% of the flexural modulus was retained in the reclaimed fiber composites. The recycled resin residual can be incorporated into fresh resin and cured, demonstrating a near

  15. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    Directory of Open Access Journals (Sweden)

    SU Yong-zhong

    2016-09-01

    Full Text Available A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different textures and fertility levels. Three treatments for each soil were set up:(1 conventional tillage,winter irrigation, and new plastic mulching cultivation(NM;(2 no tillage, less winter irrigation and reused plastic mulching cultivation (RM;(3 no tillage, less winter irrigation and reused plastic mulching combined with straw mulching (RMS. The results showed that the average daily soil temperature in the two reused plastic mulching treatment(RM and RMS during maize sowing and elongation stage was lower 0.6~1.0℃(5 cm depth and 0.5~0.8℃(15 cm depth than that in the NM. This result suggested that no tillage and reused plastic mulching cultivation still had the effect of increasing soil temperature. Maize grain yield in the RM was reduced by 4.4%~10.6% compared with the conventional cultivation(NM, while the net income increased due to saving in plastic film and tillage ex-penses. There was no significant difference in maize grain yield between the RMS and NM treatment, but the net income in the RMS was in-creased by 12.5%~17.1% than that in the NM. Compared with the NM, the two reused plastic film mulching treatments (RM and RMS decreased the volume of winter irrigation, but maize IWP increased. Soil texture and fertility level affected significantly maize nitrogen uptake and IWP. In the arid oases with the shortage of water resources, cultivation practices of conservation tillage with recycle of plastic film is an ideal option for saving cost and increasing income

  16. Software reuse example and challenges at NSIDC

    Science.gov (United States)

    Billingsley, B. W.; Brodzik, M.; Collins, J. A.

    2009-12-01

    NSIDC has created a new data discovery and access system, Searchlight, to provide users with the data they want in the format they want. NSIDC Searchlight supports discovery and access to disparate data types with on-the-fly reprojection, regridding and reformatting. Architected to both reuse open source systems and be reused itself, Searchlight reuses GDAL and Proj4 for manipulating data and format conversions, the netCDF Java library for creating netCDF output, MapServer and OpenLayers for defining spatial criteria and the JTS Topology Suite (JTS) in conjunction with Hibernate Spatial for database interaction and rich OGC-compliant spatial objects. The application reuses popular Java and Java Script libraries including Struts 2, Spring, JPA (Hibernate), Sitemesh, JFreeChart, JQuery, DOJO and a PostGIS PostgreSQL database. Future reuse of Searchlight components is supported at varying architecture levels, ranging from the database and model components to web services. We present the tools, libraries and programs that Searchlight has reused. We describe the architecture of Searchlight and explain the strategies deployed for reusing existing software and how Searchlight is built for reuse. We will discuss NSIDC reuse of the Searchlight components to support rapid development of new data delivery systems.

  17. Efficiently Combining Water Reuse and Desalination through Forward Osmosis-Reverse Osmosis (FO-RO) Hybrids: A Critical Review.

    Science.gov (United States)

    Blandin, Gaetan; Verliefde, Arne R D; Comas, Joaquim; Rodriguez-Roda, Ignasi; Le-Clech, Pierre

    2016-07-01

    Forward osmosis (FO) is a promising membrane technology to combine seawater desalination and water reuse. More specifically, in a FO-reverse osmosis (RO) hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower desalination energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be a credible alternative to new desalination facilities or to implementation of stand-alone water reuse schemes. However, apart from the societal (public perception of water reuse for potable application) and water management challenges (proximity of wastewater and desalination plants), FO-RO hybrid has to overcome technical limitation such as low FO permeation flux to become economically attractive. Recent developments (i.e., improved FO membranes, use of pressure assisted osmosis, PAO) demonstrated significant improvement in water flux. However, flux improvement is associated with drawbacks, such as increased fouling behaviour, lower rejection of trace organic compounds (TrOCs) in PAO operation, and limitation in FO membrane mechanical resistance, which need to be better considered. To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale. In addition, refined economics assessment is expected to integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as cost savings from any treatment step avoided in the water recycling.

  18. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them.

    Science.gov (United States)

    Zhang, Wenxuan; Xu, Chengjian; He, Wenzhi; Li, Guangming; Huang, Juwen

    2018-02-01

    The wide use of lithium ion batteries (LIBs) has brought great numbers of discarded LIBs, which has become a common problem facing the world. In view of the deleterious effects of spent LIBs on the environment and the contained valuable materials that can be reused, much effort in many countries has been made to manage waste LIBs, and many technologies have been developed to recycle waste LIBs and eliminate environmental risks. As a review article, this paper introduces the situation of waste LIB management in some developed countries and in China, and reviews separation technologies of electrode components and refining technologies of LiCoO 2 and graphite. Based on the analysis of these recycling technologies and the structure and components characteristics of the whole LIB, this paper presents a recycling strategy for all components from obsolete LIBs, including discharge, dismantling, and classification, separation of electrode components and refining of LiCoO 2 /graphite. This paper is intended to provide a valuable reference for the management, scientific research, and industrial implementation on spent LIBs recycling, to recycle all valuable components and reduce the environmental pollution, so as to realize the win-win situation of economic and environmental benefits.

  19. Recycling of mixed plastic waste from electrical and electronic equipment. Added value by compatibilization.

    Science.gov (United States)

    Vazquez, Yamila V; Barbosa, Silvia E

    2016-07-01

    Plastic waste from electrical and electronic equipment (WEEE) grows up exponentially fast in the last two decades. Either consumption increase of technological products, like cellphones or computers, or the short lifetime of this products contributes to this rise generating an accumulation of specific plastic materials such ABS (Acrylonitrile-Butadiene-Styrene), HIPS (High impact Polystyrene), PC (Polycarbonate), among others. All of they can be recycled by themselves. However, to separate them by type is neither easy nor economically viable, then an alternative is recycling them together as a blend. Taking into account that could be a deterioration in final properties, to enhance phase adhesion and add value to a new plastic WEEE blend a compatibilization is needed. In this work, a systematical study of different compatibilizers for blends of HIPS and ABS from WEEE was performed. A screening analysis was carried out by adding two different compatibilizer concentration (2wt% and 20wt%) on a HIPS/ABS physical blend 80/20 proportion from plastic e-waste. Three copolymers were selected as possible compatibilizers by their possible affinity with initial plastic WEEE. A complete characterization of each WEEE was performed and compatibilization efficiency was evaluated by comparing either mechanical or morphological blends aspects. Considering blends analyzed in this work, the best performance was achieved by using 2% of styrene-acrylonitrile rubber, obtaining a compatibilized blend with double ultimate strength and modulus respect to the physical blend, and also improve mechanical properties of initial WEEE plastics. The proposed way is a promise route to improve benefit of e-scrap with sustainable, low costs and easy handling process. Consequently, social recycling interest will be encouraged by both ecological and economical points of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Research on Recycling Mixed Wastes Based on Fiberglass and Organic Resins

    Science.gov (United States)

    Platon, M. A.; Ştef, M.; Popa, C.; Tiuc, A. E.; Nemeş, O.

    2018-06-01

    In recycling, according to principles of Directive 2008/98/EC of the European Parliament and of the Council on waste, research is upheld for achieving innovative technologies for reuse and keep as long it is possible, in economic chain, a waste. The aim of this research is to study and test a new composite material based on fiberglass waste mixed with organic resins with large application in the industry but not limited to this. Fiberglass is a material widely used for reinforcement of composite materials. As waste, fiberglass was less studied for ways to be reused. Filling fiberglass mixed with organic resins as PMMA and epoxy resins possess proper physical features for thermoforming. Three mixes are studied: fiberglass with PMMA, fiberglass with PMMA and rubber granules or sawdust. Samples will be tested for to define the mechanical and chemical behavior to have a complete description of the material. Analyzing the results can be concluded that mixes are suitable for board production, with improved features, compared with equivalent products on the market.