WorldWideScience

Sample records for electronic laboratory computing

  1. Nuclear electronics laboratory manual

    International Nuclear Information System (INIS)

    1984-05-01

    The Nuclear Electronics Laboratory Manual is a joint product of several electronics experts who have been associated with IAEA activity in this field for many years. The manual does not include experiments of a basic nature, such as characteristics of different active electronics components. It starts by introducing small electronics blocks, employing one or more active components. The most demanding exercises instruct a student in the design and construction of complete circuits, as used in commercial nuclear instruments. It is expected that a student who completes all the experiments in the manual should be in a position to design nuclear electronics units and also to understand the functions of advanced commercial instruments which need to be repaired or maintained. The future tasks of nuclear electronics engineers will be increasingly oriented towards designing and building the interfaces between a nuclear experiment and a computer. The manual pays tribute to this development by introducing a number of experiments which illustrate the principles and the technology of interfacing

  2. Flying Electronic Warfare Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides NP-3D aircraft host platforms for Effectiveness of Navy Electronic Warfare Systems (ENEWS) Program antiship missile (ASM) seeker simulators used...

  3. Laboratory Handbook Electronics

    CERN Multimedia

    1966-01-01

    Laboratory manual 1966 format A3 with the list of equipment cables, electronic tubes, chassis, diodes transistors etc. One of CERN's first material catalogue for construction components for mechanical and electronic chassis.

  4. Electronics and computer acronyms

    CERN Document Server

    Brown, Phil

    1988-01-01

    Electronics and Computer Acronyms presents a list of almost 2,500 acronyms related to electronics and computers. The material for this book is drawn from a number of subject areas, including electrical, electronics, computers, telecommunications, fiber optics, microcomputers/microprocessors, audio, video, and information technology. The acronyms also encompass avionics, military, data processing, instrumentation, units, measurement, standards, services, organizations, associations, and companies. This dictionary offers a comprehensive and broad view of electronics and all that is associated wi

  5. Computational Electronics and Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    DeFord, J.F.

    1993-03-01

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

  6. The Computational Sensorimotor Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Computational Sensorimotor Systems Lab focuses on the exploration, analysis, modeling and implementation of biological sensorimotor systems for both scientific...

  7. An Analog Computer for Electronic Engineering Education

    Science.gov (United States)

    Fitch, A. L.; Iu, H. H. C.; Lu, D. D. C.

    2011-01-01

    This paper describes a compact analog computer and proposes its use in electronic engineering teaching laboratories to develop student understanding of applications in analog electronics, electronic components, engineering mathematics, control engineering, safe laboratory and workshop practices, circuit construction, testing, and maintenance. The…

  8. Polarized Electrons at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, C.K.

    1997-12-31

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.

  9. Polarized electrons at Jefferson laboratory

    International Nuclear Information System (INIS)

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented

  10. Computational electronics and electromagnetics

    International Nuclear Information System (INIS)

    Shang, C C

    1998-01-01

    The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; and (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs

  11. Advanced computing in electron microscopy

    CERN Document Server

    Kirkland, Earl J

    2010-01-01

    This book features numerical computation of electron microscopy images as well as multislice methods High resolution CTEM and STEM image interpretation are included in the text This newly updated second edition will bring the reader up to date on new developments in the field since the 1990's The only book that specifically addresses computer simulation methods in electron microscopy

  12. An electronics laboratory in Ceylon

    International Nuclear Information System (INIS)

    1962-01-01

    At the request of the Ceylon Government, the International Atomic Energy Agency provided Ceylon with the services of an expert to install electronic equipment for nuclear raw materials prospecting and assay and to train local personnel in the operation and maintenance of the instruments

  13. Introduction to electronic analogue computers

    CERN Document Server

    Wass, C A A

    1965-01-01

    Introduction to Electronic Analogue Computers, Second Revised Edition is based on the ideas and experience of a group of workers at the Royal Aircraft Establishment, Farnborough, Hants. This edition is almost entirely the work of Mr. K. C. Garner, of the College of Aeronautics, Cranfield. As various advances have been made in the technology involving electronic analogue computers, this book presents discussions on the said progress, including some acquaintance with the capabilities of electronic circuits and equipment. This text also provides a mathematical background including simple differen

  14. Computer electronics made simple computerbooks

    CERN Document Server

    Bourdillon, J F B

    1975-01-01

    Computer Electronics: Made Simple Computerbooks presents the basics of computer electronics and explains how a microprocessor works. Various types of PROMs, static RAMs, dynamic RAMs, floppy disks, and hard disks are considered, along with microprocessor support devices made by Intel, Motorola and Zilog. Bit slice logic and some AMD bit slice products are also described. Comprised of 14 chapters, this book begins with an introduction to the fundamentals of hardware design, followed by a discussion on the basic building blocks of hardware (NAND, NOR, AND, OR, NOT, XOR); tools and equipment that

  15. Electronic Computer Originated Mail Service

    Science.gov (United States)

    Seto, Takao

    Electronic mail originated by computer is exactly a new communication media which is a product of combining traditional mailing with electrical communication. Experimental service of this type of mailing started in June 10, 1985 at Ministry of Posts and Telecommunications. Its location in various communication media, its comparison with facsimile type electronic mailing, and status quo of electronic mailing in foreign countries are described. Then, this mailing is briefed centering around the system organization and the services. Additional services to be executed in near future are also mentioned.

  16. Computer simulation of electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Sabchevski, S.P.; Mladenov, G.M. (Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. po Elektronika)

    1994-04-14

    Self-fields and forces as well as the local degree of space-charge neutralization in overcompensated electron beams are considered. The radial variation of the local degree of space-charge neutralization is analysed. A novel model which describes the equilibrium potential distribution in overcompensated beams is proposed and a method for computer simulation of the beam propagation is described. Results from numerical experiments which illustrate the propagation of finite emittance overneutralized beams are presented. (Author).

  17. Inter laboratory comparison on Industrial Computed Tomography

    DEFF Research Database (Denmark)

    Angel, Jais Andreas Breusch; De Chiffre, Leonardo; Larsen, Erik

    The ‘CIA-CT comparison - Inter laboratory comparison on industrial Computed Tomography” is organized by DTU Department of Mechanical Engineering within the Danish project “Centre for Industrial Application of CT scanning - CIA-CT”. The project is co-financed by the Danish Ministry of Science...

  18. JPL Robotics Laboratory computer vision software library

    Science.gov (United States)

    Cunningham, R.

    1984-01-01

    The past ten years of research on computer vision have matured into a powerful real time system comprised of standardized commercial hardware, computers, and pipeline processing laboratory prototypes, supported by anextensive set of image processing algorithms. The software system was constructed to be transportable via the choice of a popular high level language (PASCAL) and a widely used computer (VAX-11/750), it comprises a whole realm of low level and high level processing software that has proven to be versatile for applications ranging from factory automation to space satellite tracking and grappling.

  19. Computer technology forecasting at the National Laboratories

    International Nuclear Information System (INIS)

    Peskin, A.M.

    1980-01-01

    The DOE Office of ADP Management organized a group of scientists and computer professionals, mostly from their own national laboratories, to prepare an annually updated technology forecast to accompany the Department's five-year ADP Plan. The activities of the task force were originally reported in an informal presentation made at the ACM Conference in 1978. This presentation represents an update of that report. It also deals with the process of applying the results obtained at a particular computing center, Brookhaven National Laboratory. Computer technology forecasting is a difficult and hazardous endeavor, but it can reap considerable advantage. The forecast performed on an industry-wide basis can be applied to the particular needs of a given installation, and thus give installation managers considerable guidance in planning. A beneficial side effect of this process is that it forces installation managers, who might otherwise tend to preoccupy themselves with immediate problems, to focus on longer term goals and means to their ends

  20. A Modular and Extensible Remote Electronic Laboratory

    Directory of Open Access Journals (Sweden)

    Giancarlo Parodi

    2005-06-01

    Full Text Available The remote control of instrumentation is not enough to set up a remote laboratory. Several pedagogical, technical, and structural issues must be faced to obtain modular and scalable systems. This paper reports our experience in developing a remote laboratory system to teach electronics to information engineering students. Our target is to develop proper architectures and tools, to obtain an easy management of the system and a better pedagogical effectiveness. The approach used in describing the compo-nents of online experiments facilitates the upgrade of the laboratory and the sharing of experiments, defined as stan-dard learning objects. A particular attention has been paid to pedagogical issues. The main problems being investigated are: the lack of the support that students used to have in traditional labs, the reduced interaction with the objects under test, and the necessity of providing feedback to the experimenters.

  1. SALE: Safeguards Analytical Laboratory Evaluation computer code

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, D.J.; Bush, W.J.; Dolan, C.A.

    1976-09-01

    The Safeguards Analytical Laboratory Evaluation (SALE) program implements an industry-wide quality control and evaluation system aimed at identifying and reducing analytical chemical measurement errors. Samples of well-characterized materials are distributed to laboratory participants at periodic intervals for determination of uranium or plutonium concentration and isotopic distributions. The results of these determinations are statistically-evaluated, and each participant is informed of the accuracy and precision of his results in a timely manner. The SALE computer code which produces the report is designed to facilitate rapid transmission of this information in order that meaningful quality control will be provided. Various statistical techniques comprise the output of the SALE computer code. Assuming an unbalanced nested design, an analysis of variance is performed in subroutine NEST resulting in a test of significance for time and analyst effects. A trend test is performed in subroutine TREND. Microfilm plots are obtained from subroutine CUMPLT. Within-laboratory standard deviations are calculated in the main program or subroutine VAREST, and between-laboratory standard deviations are calculated in SBLV. Other statistical tests are also performed. Up to 1,500 pieces of data for each nuclear material sampled by 75 (or fewer) laboratories may be analyzed with this code. The input deck necessary to run the program is shown, and input parameters are discussed in detail. Printed output and microfilm plot output are described. Output from a typical SALE run is included as a sample problem.

  2. SALE: Safeguards Analytical Laboratory Evaluation computer code

    International Nuclear Information System (INIS)

    Carroll, D.J.; Bush, W.J.; Dolan, C.A.

    1976-09-01

    The Safeguards Analytical Laboratory Evaluation (SALE) program implements an industry-wide quality control and evaluation system aimed at identifying and reducing analytical chemical measurement errors. Samples of well-characterized materials are distributed to laboratory participants at periodic intervals for determination of uranium or plutonium concentration and isotopic distributions. The results of these determinations are statistically-evaluated, and each participant is informed of the accuracy and precision of his results in a timely manner. The SALE computer code which produces the report is designed to facilitate rapid transmission of this information in order that meaningful quality control will be provided. Various statistical techniques comprise the output of the SALE computer code. Assuming an unbalanced nested design, an analysis of variance is performed in subroutine NEST resulting in a test of significance for time and analyst effects. A trend test is performed in subroutine TREND. Microfilm plots are obtained from subroutine CUMPLT. Within-laboratory standard deviations are calculated in the main program or subroutine VAREST, and between-laboratory standard deviations are calculated in SBLV. Other statistical tests are also performed. Up to 1,500 pieces of data for each nuclear material sampled by 75 (or fewer) laboratories may be analyzed with this code. The input deck necessary to run the program is shown, and input parameters are discussed in detail. Printed output and microfilm plot output are described. Output from a typical SALE run is included as a sample problem

  3. Brookhaven National Laboratory electron beam test stand

    International Nuclear Information System (INIS)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Prelec, K.; Snydstrup, L.

    1998-01-01

    The main purpose of the electron beam test stand (EBTS) project at the Brookhaven National Laboratory is to build a versatile device to develop technologies that are relevant for a high intensity electron beam ion source (EBIS) and to study the physics of ion confinement in a trap. The EBTS will have all the main attributes of EBIS: a 1-m-long, 5 T superconducting solenoid, electron gun, drift tube structure, electron collector, vacuum system, ion injection system, appropriate control, and instrumentation. Therefore it can be considered a short prototype of an EBIS for a relativistic heavy ion collider. The drift tube structure will be mounted in a vacuum tube inside a open-quotes warmclose quotes bore of a superconducting solenoid, it will be at room temperature, and its design will employ ultrahigh vacuum technology to reach the 10 -10 Torr level. The first gun to be tested will be a 10 A electron gun with high emission density and magnetic compression of the electron beam. copyright 1998 American Institute of Physics

  4. Data integrity by validation of a computer based laboratory system

    OpenAIRE

    Jasmin, Ramić

    2017-01-01

    The thesis deals with the assurance of regulatory compliance and validation of computer supported laboratory systems in the pharmaceutical industry. It describes the functioning and importance of regulatory authorities and explains the standards and good practice examples to be observed in the validation process. By actively introducing the act on electronic records and signatures, food and drug agencies have succeeded in setting up clear requirements and guidelines in the pharmaceutical indu...

  5. Power Electronics, Energy Harvesting and Renewable Energies Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The research in the Power Electronics, Energy Harvesting and Renewable Energies Laboratory (PEHREL) is mainly focused on investigation, modeling, simulation, design,...

  6. Inter laboratory comparison on Industrial Computed Tomography

    DEFF Research Database (Denmark)

    Angel, Jais Andreas Breusch; De Chiffre, Leonardo; Larsen, Erik

    The ‘CIA-CT comparison - Inter laboratory comparison on industrial Computed Tomography” is organized by DTU Department of Mechanical Engineering within the Danish project “Centre for Industrial Application of CT scanning - CIA-CT”. The project is co-financed by the Danish Ministry of Science......, Technology and Innovation. The comparison aims to collect information about measurement performance in state-of the-art industrial CT (Computed Tomography) scanning. Since CT scanning has entered the field of manufacturing and coordinate metrology, evaluation of uncertainty of measurement with assessment...

  7. Computer simulations improve university instructional laboratories.

    Science.gov (United States)

    Gibbons, Nicola J; Evans, Chris; Payne, Annette; Shah, Kavita; Griffin, Darren K

    2004-01-01

    Laboratory classes are commonplace and essential in biology departments but can sometimes be cumbersome, unreliable, and a drain on time and resources. As university intakes increase, pressure on budgets and staff time can often lead to reduction in practical class provision. Frequently, the ability to use laboratory equipment, mix solutions, and manipulate test animals are essential learning outcomes, and "wet" laboratory classes are thus appropriate. In others, however, interpretation and manipulation of the data are the primary learning outcomes, and here, computer-based simulations can provide a cheaper, easier, and less time- and labor-intensive alternative. We report the evaluation of two computer-based simulations of practical exercises: the first in chromosome analysis, the second in bioinformatics. Simulations can provide significant time savings to students (by a factor of four in our first case study) without affecting learning, as measured by performance in assessment. Moreover, under certain circumstances, performance can be improved by the use of simulations (by 7% in our second case study). We concluded that the introduction of these simulations can significantly enhance student learning where consideration of the learning outcomes indicates that it might be appropriate. In addition, they can offer significant benefits to teaching staff.

  8. Computer Simulations Improve University Instructional Laboratories1

    Science.gov (United States)

    2004-01-01

    Laboratory classes are commonplace and essential in biology departments but can sometimes be cumbersome, unreliable, and a drain on time and resources. As university intakes increase, pressure on budgets and staff time can often lead to reduction in practical class provision. Frequently, the ability to use laboratory equipment, mix solutions, and manipulate test animals are essential learning outcomes, and “wet” laboratory classes are thus appropriate. In others, however, interpretation and manipulation of the data are the primary learning outcomes, and here, computer-based simulations can provide a cheaper, easier, and less time- and labor-intensive alternative. We report the evaluation of two computer-based simulations of practical exercises: the first in chromosome analysis, the second in bioinformatics. Simulations can provide significant time savings to students (by a factor of four in our first case study) without affecting learning, as measured by performance in assessment. Moreover, under certain circumstances, performance can be improved by the use of simulations (by 7% in our second case study). We concluded that the introduction of these simulations can significantly enhance student learning where consideration of the learning outcomes indicates that it might be appropriate. In addition, they can offer significant benefits to teaching staff. PMID:15592599

  9. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab

  10. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Brown, N.A.; Babcock, R.C.; Martono, H.; Carey, D.C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. copyright 1997 American Institute of Physics

  11. Custom electronic subsystems for the Laboratory Telerobotic Manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Glassell, R.L.; Butler, P.L.; Rowe, J.C. (Oak Ridge National Lab., TN (USA)); Zimmermann, S.D. (TeleRobotics International, Inc., Knoxville, TN (USA))

    1990-01-01

    The National Aeronautics and Space Administration (NASA) Space Station Program presents new opportunities for the application of telerobotic and robotic systems. The Laboratory Telerobotic Manipulator (LTM) is a highly advanced 7 degrees-of-freedom (DOF) telerobotic/robotic manipulator. It was developed and built for the Automation Technology Branch at NASA's Langley Research Center (LaRC) for work in research and to demonstrate ground-based telerobotic manipulator system hardware and software systems for future NASA applications in the hazardous environment of space. The LTM manipulator uses an embedded wiring design with all electronics, motor power, and control and communication cables passing through the pitch-yaw differential joints. This design requires the number of cables passing through the pitch/yaw joint to be kept to a minimum. To eliminate the cables needed to carry each pitch-yaw joint's sensor data to the VME control computers, a custom-embedded electronics package for each manipulator joint was developed. The electronics package collects and sends the joint's sensor data to the VME control computers over a fiber optic cable. The electronics package consist of five individual subsystems: the VME Link Processor, the Joint Processor and the Joint Processor power supply in the joint module, the fiber optics communications system, and the electronics and motor power cabling. 3 refs., 3 figs.

  12. Computer-Aided Design for Electron Microscopy

    Czech Academy of Sciences Publication Activity Database

    Lencová, Bohumila

    2004-01-01

    Roč. 6, č. 1 (2004), s. 51-53 ISSN 1439-4243 Institutional research plan: CEZ:AV0Z2065902 Keywords : magnetic electron lenses * accuracy of computation * computer-aided design Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  13. High school students' perception of computer laboratory learning ...

    African Journals Online (AJOL)

    This study focused on senior high school students' perception of their computer laboratory learning environment and how the use of computers affects their learning in urban and community senior high schools. Data was obtained with the Computer Laboratory Environment Inventory questionnaire, administered to 278 ...

  14. Solvated Electrons in Organic Chemistry Laboratory

    Science.gov (United States)

    Ilich, Predrag-Peter; McCormick, Kathleen R.; Atkins, Adam D.; Mell, Geoffrey J.; Flaherty, Timothy J.; Bruck, Martin J.; Goodrich, Heather A.; Hefel, Aaron L.; Juranic, Nenad; Seleem, Suzanne

    2010-01-01

    A novel experiment is described in which solvated electrons in liquid ammonia reduce a benzyl alcohol carbon without affecting the aromatic ring. The reductive activity of solvated electrons can be partially or completely quenched through the addition of electron scavengers to the reaction mixture. The effectiveness of these scavengers was found…

  15. Computational Electronic Structure of Hemoglobin

    Science.gov (United States)

    Chachiyo, Teepanis; Rodriguez, Jorge H.

    2003-03-01

    Hemoglobin is an oxygen transporting protein whereby O2 binds reversibly to an iron-porphyrin active site. Upon binding of O2 the iron-porphyrin complex undergoes subtle structural rearrangements with a concomitant change from the ferrous (deoxyhemoglobin) to the ferric (oxyhemoglobin) oxidation states. We have studied the electronic structure of oxyhemoglobin within the framework of density functional theory (DFT). A geometrical model based on the X-ray crystallographic structure was fully optimized utilizing all-electron basis sets and gradient-corrected exchange correlation density functionals. As suggested by experiment, assuming that the molecular ground state was a singlet, the calculations showed an ``incipient" open-shell electronic structure. There was a very small but finite amount of spin density at the iron site and a spin density of equal magnitude but opposite sign localized on O_2. The bonding between Fe and O2 was dominated by two pairs of electrons nominally occupying d orbitals of Fe or π orbitals of O_2. However, strong electron delocalization was predicted between iron and dioxygen consistent with the incipient open-shell singlet configuration of the active site. Upon binding to iron, the bond length of O2 increased as compared to that of the free ligand due to weaker interaction among the two oxygens. Simulations of the binding process were carried out which show that the orientation of O2 with respect to the porphyrin plane follows a specific trend which minimizes the overall electronic energy. Finally, our calculations found a ``side-on" geometry, where both oxygens bind to Fe, as a stable but excited state configuration.

  16. Argonne's Laboratory computing center - 2007 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R.; Pieper, G. W.

    2008-05-28

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (1012 floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2007, there were over 60 active projects representing a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific

  17. Developing a Computer Laboratory for Undergraduate Sociology Courses.

    Science.gov (United States)

    Raymondo, James C.

    1996-01-01

    Discusses the development of a computer laboratory for sociology courses, as well as some advantages and disadvantages of incorporating computer technology into the classroom. Examines the proposal and proposal-review process. Provides tips for writing a successful proposal. (MJP)

  18. Argonne Laboratory Computing Resource Center - FY2004 Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R.

    2005-04-14

    In the spring of 2002, Argonne National Laboratory founded the Laboratory Computing Resource Center, and in April 2003 LCRC began full operations with Argonne's first teraflops computing cluster. The LCRC's driving mission is to enable and promote computational science and engineering across the Laboratory, primarily by operating computing facilities and supporting application use and development. This report describes the scientific activities, computing facilities, and usage in the first eighteen months of LCRC operation. In this short time LCRC has had broad impact on programs across the Laboratory. The LCRC computing facility, Jazz, is available to the entire Laboratory community. In addition, the LCRC staff provides training in high-performance computing and guidance on application usage, code porting, and algorithm development. All Argonne personnel and collaborators are encouraged to take advantage of this computing resource and to provide input into the vision and plans for computing and computational analysis at Argonne. Steering for LCRC comes from the Computational Science Advisory Committee, composed of computing experts from many Laboratory divisions. The CSAC Allocations Committee makes decisions on individual project allocations for Jazz.

  19. Computer graphics capabilities at Battelle, Pacific Northwest Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, P. J.; Erickson, M. D.; Hill, E. R.; Burnett, R. A.; Addison, L. E.

    1977-09-01

    Some of the computer graphics capabilities at Battelle, Pacific Northwest Laboratories are discussed. Computer graphics philosophy, hardware systems, and software utilized by the Computers and Information Systems Section staff are described in an overview. Subsequent sections detail specific applications of these capabilities to research areas in which Battelle is involved. Use of computer graphics in cartography, decision making, and resource assessment is documented.

  20. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    Science.gov (United States)

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  1. Determination of Absolute Zero Using a Computer-Based Laboratory

    Science.gov (United States)

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  2. A note on simulated annealing to computer laboratory scheduling ...

    African Journals Online (AJOL)

    Simulated Annealing algorithm is used in solving real life problem of Computer Laboratory scheduling in order to maximize the use of scarce and insufficient resources. KEY WORDS: Simulated Annealing (SA), Computer Laboratory Scheduling, Statistical Thermodynamics, Energy Function, and Heuristic etc. Global Jnl of ...

  3. Nuclear electronics laboratory manual 1989 edition

    International Nuclear Information System (INIS)

    1989-10-01

    This manual is a joint product of several electronics experts who have been associated with IAEA activity in this field for many years. It is based on the experience of conducting twenty-three training courses on nuclear electronics. Compared with the first edition, published 1984, this edition contains many new experiments, mainly on the advanced technical level. The total number of experiments and special projects is 58. Tabs and figs

  4. Designing with computers at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Colonas, J.S.

    1974-10-01

    The application of digital computers to the solution of engineering problems relating to accelerator design was explored. The existing computer hardware and software available for direct communication between the engineer and the computer are described, and some examples of useful programs are outlined, showing the ease of their use and the method of communication between machine and designer. An effort is made to convince engineers that they can communicate with the computer in ordinary English and mathematics, rather than in intermediate artificial languages. (U.S.)

  5. ELFE: an electron laboratory for Europe

    International Nuclear Information System (INIS)

    Cavata, C.

    1995-07-01

    This paper presents a brief overview of the physics with the 15-30 GeV continuous beam electron facility proposed by the European community of nuclear physicists to study the quark and gluon structure of hadrons. (authors). 10 refs., 5 figs., 1 tab

  6. Controlling Laboratory Processes From A Personal Computer

    Science.gov (United States)

    Will, H.; Mackin, M. A.

    1991-01-01

    Computer program provides natural-language process control from IBM PC or compatible computer. Sets up process-control system that either runs without operator or run by workers who have limited programming skills. Includes three smaller programs. Two of them, written in FORTRAN 77, record data and control research processes. Third program, written in Pascal, generates FORTRAN subroutines used by other two programs to identify user commands with device-driving routines written by user. Also includes set of input data allowing user to define user commands to be executed by computer. Requires personal computer operating under MS-DOS with suitable hardware interfaces to all controlled devices. Also requires FORTRAN 77 compiler and device drivers written by user.

  7. Computational methods of electron/photon transport

    International Nuclear Information System (INIS)

    Mack, J.M.

    1983-01-01

    A review of computational methods simulating the non-plasma transport of electrons and their attendant cascades is presented. Remarks are mainly restricted to linearized formalisms at electron energies above 1 keV. The effectiveness of various metods is discussed including moments, point-kernel, invariant imbedding, discrete-ordinates, and Monte Carlo. Future research directions and the potential impact on various aspects of science and engineering are indicated

  8. Inter laboratory comparison on Industrial Computed Tomography

    DEFF Research Database (Denmark)

    Angel, Jais Andreas Breusch; De Chiffre, Leonardo

    - CIA-CT”. In the comparison, 27 laboratories from 8 countries were involved, and CT scanned two items selected among common industrial parts: a polymer part and a metal part. Altogether, 27 sets of items were circulated in parallel to the participants. Different measurands are considered, encompassing...

  9. Regional Educational Laboratory Electronic Network Phase 2 System

    Science.gov (United States)

    Cradler, John

    1995-01-01

    The Far West Laboratory in collaboration with the other regional educational laboratories is establishing a regionally coordinated telecommunication network to electronically interconnect each of the ten regional laboratories with educators and education stakeholders from the school to the state level. For the national distributed information database, each lab is working with mid-level networks to establish a common interface for networking throughout the country and include topics of importance to education reform as assessment and technology planning.

  10. Elevating Learner Achievement Using Formative Electronic Lab Assessments in the Engineering Laboratory: A Viable Alternative to Weekly Lab Reports

    Science.gov (United States)

    Chen, Baiyun; DeMara, Ronald F.; Salehi, Soheil; Hartshorne, Richard

    2018-01-01

    A laboratory pedagogy interweaving weekly student portfolios with onsite formative electronic laboratory assessments (ELAs) is developed and assessed within the laboratory component of a required core course of the electrical and computer engineering (ECE) undergraduate curriculum. The approach acts to promote student outcomes, and neutralize…

  11. Managing Laboratory Data Using Cloud Computing as an Organizational Tool

    Science.gov (United States)

    Bennett, Jacqueline; Pence, Harry E.

    2011-01-01

    One of the most significant difficulties encountered when directing undergraduate research and developing new laboratory experiments is how to efficiently manage the data generated by a number of students. Cloud computing, where both software and computer files reside online, offers a solution to this data-management problem and allows researchers…

  12. Scientific Computing Strategic Plan for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Whiting, Eric Todd

    2015-01-01

    Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory's (INL's) challenge and charge, and is central to INL's ongoing success. Computing is an essential part of INL's future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing number of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.

  13. Neuro-Inspired Computing with Stochastic Electronics

    KAUST Repository

    Naous, Rawan

    2016-01-06

    The extensive scaling and integration within electronic systems have set the standards for what is addressed to as stochastic electronics. The individual components are increasingly diverting away from their reliable behavior and producing un-deterministic outputs. This stochastic operation highly mimics the biological medium within the brain. Hence, building on the inherent variability, particularly within novel non-volatile memory technologies, paves the way for unconventional neuromorphic designs. Neuro-inspired networks with brain-like structures of neurons and synapses allow for computations and levels of learning for diverse recognition tasks and applications.

  14. Interfacing laboratory instruments to multiuser, virtual memory computers

    Science.gov (United States)

    Generazio, Edward R.; Roth, Don J.; Stang, David B.

    1990-01-01

    Incentives, problems and solutions associated with interfacing laboratory equipment with multiuser, virtual memory computers are presented. The major difficulty concerns how to utilize these computers effectively in a medium sized research group. This entails optimization of hardware interconnections and software to facilitate multiple instrument control, data acquisition and processing. The architecture of the system that was devised, and associated programming and subroutines are described. An example program involving computer controlled hardware for ultrasonic scan imaging is provided to illustrate the operational features.

  15. Analysis of electronic circuits using digital computers

    International Nuclear Information System (INIS)

    Tapu, C.

    1968-01-01

    Various programmes have been proposed for studying electronic circuits with the help of computers. It is shown here how it possible to use the programme ECAP, developed by I.B.M., for studying the behaviour of an operational amplifier from different point of view: direct current, alternating current and transient state analysis, optimisation of the gain in open loop, study of the reliability. (author) [fr

  16. Dose computation for therapeutic electron beams

    Science.gov (United States)

    Glegg, Martin Mackenzie

    The accuracy of electron dose calculations performed by two commercially available treatment planning computers, Varian Cadplan and Helax TMS, has been assessed. Measured values of absorbed dose delivered by a Varian 2100C linear accelerator, under a wide variety of irradiation conditions, were compared with doses calculated by the treatment planning computers. Much of the motivation for this work was provided by a requirement to verify the accuracy of calculated electron dose distributions in situations encountered clinically at Glasgow's Beatson Oncology Centre. Calculated dose distributions are required in a significant minority of electron treatments, usually in cases involving treatment to the head and neck. Here, therapeutic electron beams are subject to factors which may cause non-uniformity in the distribution of dose, and which may complicate the calculation of dose. The beam shape is often irregular, the beam may enter the patient at an oblique angle or at an extended source to skin distance (SSD), tissue inhomogeneities can alter the dose distribution, and tissue equivalent material (such as wax) may be added to reduce dose to critical organs. Technological advances have allowed the current generation of treatment planning computers to implement dose calculation algorithms with the ability to model electron beams in these complex situations. These calculations have, however, yet to be verified by measurement. This work has assessed the accuracy of calculations in a number of specific instances. Chapter two contains a comparison of measured and calculated planar electron isodose distributions. Three situations were considered: oblique incidence, incidence on an irregular surface (such as that which would be arise from the use of wax to reduce dose to spinal cord), and incidence on a phantom containing a small air cavity. Calculations were compared with measurements made by thermoluminescent dosimetry (TLD) in a WTe electron solid water phantom. Chapter

  17. Teaching Electronics and Laboratory Automation Using Microcontroller Boards

    Science.gov (United States)

    Mabbott, Gary A.

    2014-01-01

    Modern microcontroller boards offer the analytical chemist a powerful and inexpensive means of interfacing computers and laboratory equipment. The availability of a host of educational materials, compatible sensors, and electromechanical devices make learning to implement microcontrollers fun and empowering. This article describes the advantages…

  18. Scientific Computing Strategic Plan for the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, Eric Todd [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory’s (INL’s) challenge and charge, and is central to INL’s ongoing success. Computing is an essential part of INL’s future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing number of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.

  19. Interacting electrons theory and computational approaches

    CERN Document Server

    Martin, Richard M; Ceperley, David M

    2016-01-01

    Recent progress in the theory and computation of electronic structure is bringing an unprecedented level of capability for research. Many-body methods are becoming essential tools vital for quantitative calculations and understanding materials phenomena in physics, chemistry, materials science and other fields. This book provides a unified exposition of the most-used tools: many-body perturbation theory, dynamical mean field theory and quantum Monte Carlo simulations. Each topic is introduced with a less technical overview for a broad readership, followed by in-depth descriptions and mathematical formulation. Practical guidelines, illustrations and exercises are chosen to enable readers to appreciate the complementary approaches, their relationships, and the advantages and disadvantages of each method. This book is designed for graduate students and researchers who want to use and understand these advanced computational tools, get a broad overview, and acquire a basis for participating in new developments.

  20. An Easily Assembled Laboratory Exercise in Computed Tomography

    Science.gov (United States)

    Mylott, Elliot; Klepetka, Ryan; Dunlap, Justin C.; Widenhorn, Ralf

    2011-01-01

    In this paper, we present a laboratory activity in computed tomography (CT) primarily composed of a photogate and a rotary motion sensor that can be assembled quickly and partially automates data collection and analysis. We use an enclosure made with a light filter that is largely opaque in the visible spectrum but mostly transparent to the near…

  1. Computer Simulation and Laboratory Work in the Teaching of Mechanics.

    Science.gov (United States)

    Borghi, L.; And Others

    1987-01-01

    Describes a teaching strategy designed to help high school students learn mechanics by involving them in simple experimental work, observing didactic films, running computer simulations, and executing more complex laboratory experiments. Provides an example of the strategy as it is applied to the topic of projectile motion. (TW)

  2. Computer protection plan for the Superconducing Super Collider Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, S.

    1992-04-15

    The purpose of this document is to describe the current unclassified computer security program practices, Policies and procedures for the Superconducting Super Collider Laboratory (SSCL). This document includes or references all related policies and procedures currently implemented throughout the SSCL. The document includes security practices which are planned when the facility is fully operational.

  3. Enhancing laboratory activity with computer-based tutorials

    Directory of Open Access Journals (Sweden)

    Gordon Ritchie

    1995-12-01

    Full Text Available In a degree course in electronic engineering, great importance is attached to laboratory work, in which students have the opportunity to develop their creative skills in a practical environment. For example, in the first year of the course they are expected to design and test some basic circuits using data available on the characteristics of the semiconductor devices to be used. Many of the students cannot be prepared sufficiently for this activity by attendance at lectures, in which basic principles are expounded to large classes. Firstyear students have widely differing knowledge, experience and ability in circuit design. Therefore, without individual tuition many of them are insufficiently prepared for their laboratory work. Weaker students often neglect to study the laboratory documentation thoroughly in advance and they make poor progress in the laboratory.

  4. Laboratory Works Designed for Developing Student Motivation in Computer Architecture

    Directory of Open Access Journals (Sweden)

    Petre Ogrutan

    2017-02-01

    Full Text Available In light of the current difficulties related to maintaining the students’ interest and to stimulate their motivation for learning, the authors have developed a range of new laboratory exercises intended for first-year students in Computer Science as well as for engineering students after completion of at least one course in computers. The educational goal of the herein proposed laboratory exercises is to enhance the students’ motivation and creative thinking by organizing a relaxed yet competitive learning environment. The authors have developed a device including LEDs and switches, which is connected to a computer. By using assembly language, commands can be issued to flash several LEDs and read the states of the switches. The effectiveness of this idea was confirmed by a statistical study.

  5. Embedded Processor Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Embedded Processor Laboratory provides the means to design, develop, fabricate, and test embedded computers for missile guidance electronics systems in support...

  6. Tactical Systems Integration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Tactical Systems Integration Laboratory is used to design and integrate computer hardware and software and related electronic subsystems for tactical vehicles....

  7. Auger electron spectroscopy for the advanced student laboratory

    International Nuclear Information System (INIS)

    Greczylo, Tomasz; Mazur, Piotr; Debowska, Ewa

    2009-01-01

    This paper presents Auger electron spectroscopy with a retarding field analyser designed for an advanced physics experiment carried out in 'Physics Laboratory II' at the Institute of Experimental Physics, University of Wroclaw, Poland. The authors discuss the process of setting up the experiment and the results of the measurement of Auger spectra. The advantages and disadvantages of the apparatus are discussed along with its implementation in the teaching process

  8. Enhancing laboratory activity with computer-based tutorials

    OpenAIRE

    Gordon Ritchie; Paul Garner

    1995-01-01

    In a degree course in electronic engineering, great importance is attached to laboratory work, in which students have the opportunity to develop their creative skills in a practical environment. For example, in the first year of the course they are expected to design and test some basic circuits using data available on the characteristics of the semiconductor devices to be used. Many of the students cannot be prepared sufficiently for this activity by attendance at lectures, in which basic pr...

  9. A Low Cost Implementation of an Existing Hands-on Laboratory Experiment in Electronic Engineering

    Directory of Open Access Journals (Sweden)

    Clement Onime

    2014-10-01

    Full Text Available In engineering the pedagogical content of most formative programmes includes a significant amount of practical laboratory hands-on activity designed to deliver knowledge acquisition from actual experience alongside traditional face-to-face classroom based lectures and tutorials; this hands-on aspect is not always adequately addressed by current e-learning platforms. An innovative approach to e-learning in engineering, named computer aided engineering education (CAEE is about the use of computer aids for the enhanced, interactive delivery of educational materials in different fields of engineering through two separate but related components; one for classroom and another for practical hands-on laboratory work. The component for hands-on laboratory practical work focuses on the use of mixed reality (video-based augmented reality tools on mobile devices/platforms. This paper presents the computer aided engineering education (CAEE implementation of a laboratory experiment in micro-electronics that highlights some features such as the ability to closely implement an existing laboratory based hands-on experiment with lower associated costs and the ability to conduct the experiment off-line while maintaining existing pedagogical contents and standards.

  10. National CW GeV Electron Microtron laboratory

    International Nuclear Information System (INIS)

    1982-12-01

    Rising interest in the nuclear physics community in a CW GeV electron accelerator reflects the growing importance of high-resolution short-range nuclear physics to future advances in the field. To meet this need, Argonne National Laboratory proposes to build a CW GeV Electron Microtron (GEM) laboratory as a national user facility. The microtron accelerator has been chosen as the technology to generate the electron beams required for the research discussed because of the advantages of superior beam quality, low capital and operating costs and capability of furnishing beams of several energies and intensities simultaneously. A complete technical description of the conceptual design for a six-sided CW microtron (hexatron) is presented. The hexatron and three experimental areas will be housed in a well-shielded complex of existing buildings that provide all utilities and services required for an advanced accelerator and an active research program at a savings of $30 to 40 million. Beam lines have been designed to accommodate the transport of polarized beams to each area. The total capital cost of the facility will be $78.6 million and the annual budget for accelerator operations will be $12.1 million. Design and construction of the facility will require four and one half years. Staged construction with a 2 GeV phase costing $65.9 million is also discussed

  11. Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee

    Science.gov (United States)

    Gallagher, D. L. (Editor)

    1993-01-01

    The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.

  12. An electronic laboratory notebook based on the World Wide Web

    Energy Technology Data Exchange (ETDEWEB)

    Marstaller, J.E.; Zorn, M.D.

    1995-10-01

    The LBNL/UCSF Resource for Molecular Cytogenetics has been created to facilitate the application of molecular cytogenetics in clinical and biological studies. One of the primary tasks is the selection of probes optimized for use in fluorescence in situ hybridization (FISH). Our group provides data management support for all the activities in the Resource. In this paper we describe an electronic laboratory notebook based on the World Wide Web. The data are located in a central database. The user interface consists of a set of HTML forms that handle data input and retrieval from a database from two locations several miles apart. A WWW client allows users to formulate retrieval and edit operations that are sent to the database. Results are filtered through Perl scripts which generate HTML documents with Hypertext links that are sent back to the client. Besides tracking laboratory information through the various stages in the biology laboratory, the system also feeds into a public web server that makes the data available to the community.

  13. Design of simulated nuclear electronics laboratory experiments based on IAEA-TECDOC-530 on pcs

    International Nuclear Information System (INIS)

    Ghousia, S.F.; Nadeem, M.; Khaleeq, M.T.

    2002-05-01

    In this IAEA project, PK-11089 (Design of Simulated Nuclear Electronics Laboratory Experiments based on IAEA-TECDOC-530 on PCs), a software package consisting of Computer-Simulated Laboratory Experiments on Nuclear Electronics compatible with the IAEA-TECDOC-530 (Nuclear Electronics Laboratory Manual) has been developed in OrCAD 9.0 (an electronic circuit simulation software environment) as a self-training aid. The software process model employed in this project is the Feedback Waterfall model with some Rapid Application Model. The project work is completed in the five phases of the SDLC, (all of them have been fully completed) which includes the Requirement Definition, Phase, System and Software Design, Implementation and Unit testing, Integration and System-testing phase and the Operation and Maintenance phase. A total of 125 circuits are designed in 39 experiments from Power Supplies, Analog circuits, Digital circuits and Multi-channel analyzer sections. There is another set of schematic designs present in the package, which contains faulty circuits. This set is designed for the learners to exercise the troubleshooting. The integration and system-testing phase was carried out simultaneously. The Operation and Maintenance phase has been implemented by accomplishing it through some trainees and some undergraduate engineering students by allowing them to play with the software independently. (author)

  14. Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zhu,Y.; Wall, J.

    2008-04-01

    The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative

  15. Computational geomechanics and applications at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Arguello, Jose Guadalupe Jr.

    2010-01-01

    Sandia National Laboratories (SNL) is a multi-program national laboratory in the business of national security, whose primary mission is nuclear weapons (NW). It is a prime contractor to the USDOE, operating under the NNSA and is one of the three NW national laboratories. It has a long history of involvement in the area of geomechanics, starting with the some of the earliest weapons tests at Nevada. Projects in which geomechanics support (in general) and computational geomechanics support (in particular) are at the forefront at Sandia, range from those associated with civilian programs to those in the defense programs. SNL has had significant involvement and participation in the Waste Isolation Pilot Plant (low-level defense nuclear waste), the Yucca Mountain Project (formerly proposed for commercial spent fuel and high-level nuclear waste), and the Strategic Petroleum Reserve (the nation's emergency petroleum store). In addition, numerous industrial partners seek-out our computational/geomechanics expertise, and there are efforts in compressed air and natural gas storage, as well as in CO 2 Sequestration. Likewise, there have also been collaborative past efforts in the areas of compactable reservoir response, the response of salt structures associated with reservoirs, and basin modeling for the Oil and Gas industry. There are also efforts on the defense front, ranging from assessment of vulnerability of infrastructure to defeat of hardened targets, which require an understanding and application of computational geomechanics. Several examples from some of these areas will be described and discussed to give the audience a flavor of the type of work currently being performed at Sandia in the general area of geomechanics.

  16. Applications of industrial computed tomography at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Kruger, R.P.; Morris, R.A.; Wecksung, G.W.

    1980-01-01

    A research and development program was begun three years ago at the Los Alamos Scientific Laboratory (LASL) to study nonmedical applications of computed tomography. This program had several goals. The first goal was to develop the necessary reconstruction algorithms to accurately reconstruct cross sections of nonmedical industrial objects. The second goal was to be able to perform extensive tomographic simulations to determine the efficacy of tomographic reconstruction with a variety of hardware configurations. The final goal was to construct an inexpensive industrial prototype scanner with a high degree of design flexibility. The implementation of these program goals is described

  17. Computer-assisted estimating for the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Spooner, J.E.

    1976-02-01

    An analysis is made of the cost estimating system currently in use at the Los Alamos Scientific Laboratory (LASL) and the benefits of computer assistance are evaluated. A computer-assisted estimating system (CAE) is proposed for LASL. CAE can decrease turnaround and provide more flexible response to management requests for cost information and analyses. It can enhance value optimization at the design stage, improve cost control and change-order justification, and widen the use of cost information in the design process. CAE costs are not well defined at this time although they appear to break even with present operations. It is recommended that a CAE system description be submitted for contractor consideration and bid while LASL system development continues concurrently

  18. Electronic Mail for Personal Computers: Development Issues.

    Science.gov (United States)

    Tomer, Christinger

    1994-01-01

    Examines competing, commercially developed electronic mail programs and how these technologies will affect the functionality and quality of electronic mail. How new standards for client-server mail systems are likely to enhance messaging capabilities and the use of electronic mail for information retrieval are considered. (Contains eight…

  19. Chief Editor's column/The First Electronic Computer

    Indian Academy of Sciences (India)

    1946-02-14

    1996 is the fiftieth anniversary of the birth of the first electronic computer. On February 14, 1946 the. Electronic Numerical Integrator and Computer. (ENIAC) was formally switched on at the Moore. School of Electrical Engineering at the University of. Pennsylvania, U.S.A. ENIAC, designed by a team headed by John W ...

  20. TECHNOLOGICAL COMPETENCE OF FUTURE ENGINEER: FORMATION AND DEVELOPMENT IN COMPUTER INTEGRATED LABORATORY WORKSHOP ON PHYSICS

    Directory of Open Access Journals (Sweden)

    Ihor S. Chernetskyi

    2013-12-01

    Full Text Available The article examines the category «technological competence» and the definition of its components according to the educational process. A structural and functional model of technological competence of future engineers through forms, means, methods and technologies of computer oriented laboratory work. Selected blocks and elements of the model in the course of a typical student laboratory work on the course of general physics. We consider the possibility of using some type of digital labs «Phywe», «Fourier» and modern electronic media (flash books to optimize laboratory work at the Technical University. The analysis of the future research of structural elements model of technological competence.

  1. New laboratory bounds on the stability of the electron

    International Nuclear Information System (INIS)

    Aharonov, Y.; Avignone, F.T. III; Brodzinski, R.L.; Collar, J.I.; Garcia, E.; Miley, H.S.; Morales, A.; Morales, J.; Nussinov, S.; Ortiz de Solorzano, A.; Puimedon, J.; Reeves, J.H.; Saenz, C.; Salinas, A.; Sarsa, M.L.; Villar, J.A.

    1995-01-01

    A set of two natural abundance Ge detectors of 1.1 kg each, located in the Homestake mine, and one small, 0.253 kg, Ge detector operating in the Canfranc railway tunnel in Spain, have been used to obtain bounds on the stability of the electron against the decay modes e - →γν 2 and e - →ν e ν e bar ν e . The bounds on the mean lives are τ(γν e )>3.7(2.1)x10 25 yR, 68% (90%) C.L. and τ(ν e ν e bar ν e )>4.3(2.6)x10 23 yr, 68% (90%) /C.L. which are at present the most stringent laboratory limits for these decays. The theoretical controversy concerning the relevance of such data to fundamental tests of charge conservation is also considered

  2. Laboratory Experiments Enabling Electron Beam use in Tenuous Space Plasmas

    Science.gov (United States)

    Miars, G.; Leon, O.; Gilchrist, B. E.; Delzanno, G. L.; Castello, F. L.; Borovsky, J.

    2017-12-01

    A mission concept is under development which involves firing a spacecraft-mounted electron beam from Earth's magnetosphere to connect distant magnetic field lines in real time. To prevent excessive spacecraft charging and consequent beam return, the spacecraft must be neutralized in the tenuous plasma environment of the magnetosphere. Particle-In-Cell (PIC) simulations suggest neutralization can be accomplished by emitting a neutral plasma with the electron beam. Interpretation of these simulations also led to an ion emission model in which ion current is emitted from a quasi-neutral plasma as defined by the space charge limit [1,2]. Experiments were performed at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL) to help validate the ion emission model. A hollow cathode plasma contactor was used as a representative spacecraft and charged with respect to the chamber walls to examine the effect of spacecraft charging on ion emission. Retarding Potential Analyzer (RPA) measurements were performed to understand ion flow velocity as this parameter relates directly to the expected space charge limit. Planar probe measurements were also made to identify where ion emission primarily occurred and to determine emission current density levels. Evidence of collisions within the plasma (particularly charge exchange collisions) and a simple model predicting emitted ion velocities are presented. While a detailed validation of the ion emission model and of the simulation tools used in [1,2] is ongoing, these measurements add to the physical understanding of ion emission as it may occur in the magnetosphere. 1. G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, J.D. Moulton, and E.A. MacDonald, J. Geophys. Res. Space Physics 120, 3647, 2015. 2. G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, and J.D. Moulton, J. Geophys. Res. Space Physics 120, 3588, 2015. ________________________________ * This work is supported by Los Alamos National Laboratory.

  3. Activities in the Electron Cyclotron Resonance (ECR) Laboratory

    International Nuclear Information System (INIS)

    Biri, S.; Racz, R.

    2008-01-01

    Complete text of publication follows. The electron cyclotron resonance (ECR) ion source (ECRIS) has been operating since 1997. 2003 was the first year when we distributed the beamtime among the users. Between 2003 and 2008 the yearly operation time was around 500...600 hours. Table 1 summarizes the beamtime we supplied in 2008 for the users. The 'Hours' in the table actually mean the time when a plasma was made in the plasma chamber. In most cases a positive ion beam was extracted from the plasma so the ECRIS operated as particle accelerator. 'Beam development' means our continuous effort to produce known or new plasmas and beams with better parameters: higher charge, higher intensity, better transport efficiency, wider ion choice, higher safety, etc. It is already known for our users that the ATOMKI-ECRIS has two operation modes. The ECRIS-A is the original assembly to produce highly charged ion (HCI) beams. The ECRIS-B configuration forms large-size, low charged plasmas for some applications and for plasma investigations. In 2008 the ion source operated only 2 months in the 'B' mode (March and April), 8 months in the 'A' mode (January-February and May-October) while we did not operate it at all in the 2 last months of the year. In November the ECRIS was stopped for 3 months to perform a major renewing and refurbishing of the laboratory. The ECR ion source is one of the facilities of ATOMKI which was designed and built entirely in our institute by institute people. The goal of the renewing was to establish an up-to-date laboratory at European standard which will be attractive place for foreign and domestic researchers, students and visitors. The following parts were exchanged or upgraded: furniture, floors, lights, cables, air conditioning system, floors painting. Some photos showing the new look of the laboratory will be put to our homepage soon

  4. Computer Security Awareness Guide for Department of Energy Laboratories, Government Agencies, and others for use with Lawrence Livermore National Laboratory`s (LLNL): Computer security short subjects videos

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Lonnie Moore, the Computer Security Manager, CSSM/CPPM at Lawrence Livermore National Laboratory (LLNL) and Gale Warshawsky, the Coordinator for Computer Security Education & Awareness at LLNL, wanted to share topics such as computer ethics, software piracy, privacy issues, and protecting information in a format that would capture and hold an audience`s attention. Four Computer Security Short Subject videos were produced which ranged from 1-3 minutes each. These videos are very effective education and awareness tools that can be used to generate discussions about computer security concerns and good computing practices. Leaders may incorporate the Short Subjects into presentations. After talking about a subject area, one of the Short Subjects may be shown to highlight that subject matter. Another method for sharing them could be to show a Short Subject first and then lead a discussion about its topic. The cast of characters and a bit of information about their personalities in the LLNL Computer Security Short Subjects is included in this report.

  5. Electronic digital computers their use in science and engineering

    CERN Document Server

    Alt, Franz L

    1958-01-01

    Electronic Digital Computers: Their Use in Science and Engineering describes the principles underlying computer design and operation. This book describes the various applications of computers, the stages involved in using them, and their limitations. The machine is composed of the hardware which is run by a program. This text describes the use of magnetic drum for storage of data and some computing. The functions and components of the computer include automatic control, memory, input of instructions by using punched cards, and output from resulting information. Computers operate by using numbe

  6. National electronic medical records integration on cloud computing system.

    Science.gov (United States)

    Mirza, Hebah; El-Masri, Samir

    2013-01-01

    Few Healthcare providers have an advanced level of Electronic Medical Record (EMR) adoption. Others have a low level and most have no EMR at all. Cloud computing technology is a new emerging technology that has been used in other industry and showed a great success. Despite the great features of Cloud computing, they haven't been utilized fairly yet in healthcare industry. This study presents an innovative Healthcare Cloud Computing system for Integrating Electronic Health Record (EHR). The proposed Cloud system applies the Cloud Computing technology on EHR system, to present a comprehensive EHR integrated environment.

  7. Electronic laboratory notebooks in a public–private partnership

    Directory of Open Access Journals (Sweden)

    Lea A.I. Vaas

    2016-09-01

    Full Text Available This report shares the experience during selection, implementation and maintenance phases of an electronic laboratory notebook (ELN in a public–private partnership project and comments on user’s feedback. In particular, we address which time constraints for roll-out of an ELN exist in granted projects and which benefits and/or restrictions come with out-of-the-box solutions. We discuss several options for the implementation of support functions and potential advantages of open access solutions. Connected to that, we identified willingness and a vivid culture of data sharing as the major item leading to success or failure of collaborative research activities. The feedback from users turned out to be the only angle for driving technical improvements, but also exhibited high efficiency. Based on these experiences, we describe best practices for future projects on implementation and support of an ELN supporting a diverse, multidisciplinary user group based in academia, NGOs, and/or for-profit corporations located in multiple time zones.

  8. Quantum Computing with an Electron Spin Ensemble

    DEFF Research Database (Denmark)

    Wesenberg, Janus; Ardavan, A.; Briggs, G.A.D.

    2009-01-01

    We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of their strong collective coupling to the quantized...

  9. Computational Approach to Electron Charge Transfer Reactions

    DEFF Research Database (Denmark)

    Jónsson, Elvar Örn

    The step from ab initio atomic and molecular properties to thermodynamic - or macroscopic - properties requires the combination of several theoretical tools. This dissertation presents constant temperature molecular dynamics with bond length constraints, a hybrid quantum mechanics-molecular mecha...... structure modes. This is for a large iridium-iridium dimer complex which shows a dramatic structural (and vibrational) change upon electronic excitation....

  10. Resolution Versus Error for Computational Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Luzi, Lorenzo; Stevens, Andrew; Yang, Hao; Browning, Nigel D.

    2017-07-01

    Images that are collected via scanning transmission electron microscopy (STEM) can be undersampled to avoid damage to the specimen while maintaining resolution [1, 2]. We have used BPFA to impute missing data and reduce noise [3]. The reconstruction is typically evaluated using the peak signal-to-noise ratio (PSNR). This measure is too conservative for STEM images and we propose that the Fourier ring correlation (FRC) is used instead to evaluate the reconstruction. We are not concerned with exact reconstruction of the truth image, and therefore PSNR is a conservative estimation of the quality of the reconstruction. Instead, we are concerned with the visual resolution of the image and whether atoms can be distinguished. We have evaluated the reconstruction of a simulated STEM image using the FRC and compared the results with the PSNR measurements. The FRC captures the resolution of the image and is not affected by a large MSE if the atom peaks are still distinguishable. The noisy and reconstructed images are shown in Figure 1. The simulated STEM image was sampled at 100%, 80%, 40%, and 20% of the original pixels to simulate an undersampled scan. The reconstruction was done using BPFA with a patch size of 10 x 10 and no overlapping patches. Not having overlapping patches produces inferior results but they are still acceptable. The dictionary size is 64 and 30 iterations were completed during each reconstruction. The 100% image was denoised instead of reconstructed. Poisson noise was applied to the simulated image with λ values of 500, 50, and 5 to simulate lower imaging dose. The original simulated STEM image was also included in our calculations and was generated using a dose of 1000. The simulated STEM image is 100 by 100 pixels and has essentially no high frequency components. The image reconstruction tends to smooth the data, also resulting in no high frequency components. This causes the FRC of the two images to be large at higher resolutions and may be

  11. An Overview of the Computational Physics and Methods Group at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Randal Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-22

    CCS Division was formed to strengthen the visibility and impact of computer science and computational physics research on strategic directions for the Laboratory. Both computer science and computational science are now central to scientific discovery and innovation. They have become indispensable tools for all other scientific missions at the Laboratory. CCS Division forms a bridge between external partners and Laboratory programs, bringing new ideas and technologies to bear on today’s important problems and attracting high-quality technical staff members to the Laboratory. The Computational Physics and Methods Group CCS-2 conducts methods research and develops scientific software aimed at the latest and emerging HPC systems.

  12. Recent development in methods for electron optical computations

    Czech Academy of Sciences Publication Activity Database

    Lencová, Bohumila

    2001-01-01

    Roč. 93, č. 6 (2001), s. 434-435 ISSN 0248-4900 Institutional research plan: CEZ:AV0Z2065902 Keywords : electron optical computations * finite element method Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.829, year: 2001

  13. Computation of the average energy for LXY electrons

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau, A.

    1996-01-01

    The application of an atomic rearrangement model in which we only consider the three shells K, L and M, to compute the counting efficiency for electron capture nuclides, requires a fine averaged energy value for LMN electrons. In this report, we illustrate the procedure with two example, ''125 I and ''109 Cd. (Author) 4 refs

  14. Fault tolerant embedded computers and power electronics for nuclear robotics

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, A.; Robiolle, M.

    1995-12-31

    For requirements of nuclear industries, it is necessary to use embedded rad-tolerant electronics and high-level safety. In this paper, we first describe a computer architecture called MICADO designed for French nuclear industry. We then present outgoing projects on our industry. A special point is made on power electronics for remote-operated and legged robots. (authors). 7 refs., 2 figs.

  15. Electron Gun for Computer-controlled Welding of Small Components

    Czech Academy of Sciences Publication Activity Database

    Dupák, Jan; Vlček, Ivan; Zobač, Martin

    2001-01-01

    Roč. 62, 2-3 (2001), s. 159-164 ISSN 0042-207X R&D Projects: GA AV ČR IBS2065015 Institutional research plan: CEZ:AV0Z2065902 Keywords : Electron beam-welding machine * Electron gun * Computer- control led beam Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.541, year: 2001

  16. Fault tolerant embedded computers and power electronics for nuclear robotics

    International Nuclear Information System (INIS)

    Giraud, A.; Robiolle, M.

    1995-01-01

    For requirements of nuclear industries, it is necessary to use embedded rad-tolerant electronics and high-level safety. In this paper, we first describe a computer architecture called MICADO designed for French nuclear industry. We then present outgoing projects on our industry. A special point is made on power electronics for remote-operated and legged robots. (authors). 7 refs., 2 figs

  17. Lawrence Livermore National Laboratory`s Computer Security Short Subjects Videos: Hidden Password, The Incident, Dangerous Games and The Mess; Computer Security Awareness Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    A video on computer security is described. Lonnie Moore, the Computer Security Manager, CSSM/CPPM at Lawrence Livermore National Laboratory (LLNL) and Gale Warshawsky, the Coordinator for Computer Security Education and Awareness at LLNL, wanted to share topics such as computer ethics, software piracy, privacy issues, and protecting information in a format that would capture and hold an audience`s attention. Four Computer Security Short Subject videos were produced which ranged from 1--3 minutes each. These videos are very effective education and awareness tools that can be used to generate discussions about computer security concerns and good computing practices.

  18. Computational Study of Electron Delocalization in Hexaarylbenzenes

    Directory of Open Access Journals (Sweden)

    Citlalli Rios

    2014-03-01

    Full Text Available A number of hexaarylbenzene compounds were studied theoretically, in order to compare energy changes as a result of the toroidal delocalization effect that is characteristic of all these species. The energy was studied taking advantage of locally designed isodesmic reactions. Results indicate that the amount of aromaticity manifested by each substituent is a factor that should be considered when assessing the quantity of energy dissipated from each aromatic center. The influence of different substituents on electronic delocalization is also analyzed, as well as the role played by their frontier molecular orbitals.

  19. A computer-controlled conformal radiotherapy system. IV: Electronic chart

    International Nuclear Information System (INIS)

    Fraass, Benedick A.; McShan, Daniel L.; Matrone, Gwynne M.; Weaver, Tamar A.; Lewis, James D.; Kessler, Marc L.

    1995-01-01

    Purpose: The design and implementation of a system for electronically tracking relevant plan, prescription, and treatment data for computer-controlled conformal radiation therapy is described. Methods and Materials: The electronic charting system is implemented on a computer cluster coupled by high-speed networks to computer-controlled therapy machines. A methodical approach to the specification and design of an integrated solution has been used in developing the system. The electronic chart system is designed to allow identification and access of patient-specific data including treatment-planning data, treatment prescription information, and charting of doses. An in-house developed database system is used to provide an integrated approach to the database requirements of the design. A hierarchy of databases is used for both centralization and distribution of the treatment data for specific treatment machines. Results: The basic electronic database system has been implemented and has been in use since July 1993. The system has been used to download and manage treatment data on all patients treated on our first fully computer-controlled treatment machine. To date, electronic dose charting functions have not been fully implemented clinically, requiring the continued use of paper charting for dose tracking. Conclusions: The routine clinical application of complex computer-controlled conformal treatment procedures requires the management of large quantities of information for describing and tracking treatments. An integrated and comprehensive approach to this problem has led to a full electronic chart for conformal radiation therapy treatments

  20. Characterization of electronics devices for computed tomography dosimetry

    International Nuclear Information System (INIS)

    Paschoal, Cinthia Marques Magalhaes

    2012-01-01

    Computed tomography (CT) is an examination of high diagnostic capability that delivers high doses of radiation compared with other diagnostic radiological examinations. The current CT dosimetry is mainly made by using a 100 mm long ionization chamber. However, it was verified that this extension, which is intended to collect ali scattered radiation of the single slice dose profile in CT, is not enough. An alternative dosimetry has been suggested by translating smaller detectors. In this work, commercial electronics devices of small dimensions were characterized for CT dosimetry. The project can be divided in five parts: a) pre-selection of devices; b) electrical characterization of selected devices; e) dosimetric characterization in Iaboratory, using radiation qualities specific to CT, and in a tomograph; d) evaluation of the dose profile in CT scanner (free in air and in head and body dosimetric phantom); e) evaluation of the new MSAD detector in a tomograph. The selected devices were OP520 and OP521 phototransistors and BPW34FS photodiode. Before the dosimetric characterization, three configurations of detectors, with 4, 2 and 1 OP520 phototransistor working as a single detector, were evaluated and the configuration with only one device was the most adequate. Hence, the following tests, for all devices, were made using the configuration with only one device. The tests of dosimetric characterization in laboratory and in a tomograph were: energy dependence, response as a function of air kerma (laboratory) and CTDI 100 (scanner), sensitivity variation and angular dependence. In both characterizations, the devices showed some energy dependence, indicating the need of correction factors depending on the beam energy; their response was linear with the air kerma and the CTDI 100 ; the OP520 phototransistor showed the largest variation in sensitivity with the irradiation and the photodiode was the most stable; the angular dependence was significant in the laboratory and

  1. Drastic reformation of Electrical and Electronics Engineering Laboratory(Researches)

    OpenAIRE

    青柳, 稔; Minoru, Aoyagi

    2016-01-01

    The Department of Electrical and Electronic Engineering opened in 1978, as the Department of Electrical Engineering. In 1987, the Department of Electrical Engineering was renamed the Department of Electrical and Electronic Engineering. The Department of Electrical and Electronic Engineering has conducted basic educations and studies on electric and electronic engineering. In this paper, I will introduce an overview of recent researches and educations of the Department of Ele ctrical and Elect...

  2. Computer soundcard as an AC signal generator and oscilloscope for the physics laboratory

    Science.gov (United States)

    Sinlapanuntakul, Jinda; Kijamnajsuk, Puchong; Jetjamnong, Chanthawut; Chotikaprakhan, Sutharat

    2018-01-01

    The purpose of this paper is to develop both an AC signal generator and a dual-channel oscilloscope based on standard personal computer equipped with sound card as parts of the laboratory of the fundamental physics and the introduction to electronics classes. The setup turns the computer into the two channel measured device which can provides sample rate, simultaneous sampling, frequency range, filters and others essential capabilities required to perform amplitude, phase and frequency measurements of AC signal. The AC signal also generate from the same computer sound card output simultaneously in any waveform such as sine, square, triangle, saw-toothed pulsed, swept sine and white noise etc. These can convert an inexpensive PC sound card into powerful device, which allows the students to measure physical phenomena with their own PCs either at home or at university attendance. A graphic user interface software was developed for control and analysis, including facilities for data recording, signal processing and real time measurement display. The result is expanded utility of self-learning for the students in the field of electronics both AC and DC circuits, including the sound and vibration experiments.

  3. Low-Cost Virtual Laboratory Workbench for Electronic Engineering

    Science.gov (United States)

    Achumba, Ifeyinwa E.; Azzi, Djamel; Stocker, James

    2010-01-01

    The laboratory component of undergraduate engineering education poses challenges in resource constrained engineering faculties. The cost, time, space and physical presence requirements of the traditional (real) laboratory approach are the contributory factors. These resource constraints may mitigate the acquisition of meaningful laboratory…

  4. ELECTRONIC EVIDENCE IN THE JUDICIAL PROCEEDINGS AND COMPUTER FORENSIC ANALYSIS

    Directory of Open Access Journals (Sweden)

    Marija Boban

    2017-01-01

    Full Text Available Today’s perspective of the information society is characterized by the terminology of modern dictionaries of globalization including the terms such as convergence, digitization (media, technology and/or telecommunications and mobility of people or technology. Each word with progress, development, a positive sign of the rise of the information society. On the other hand in a virtual environment traditional evidence in judicial proceedings with the document on paper substrate, are becoming electronic evidence, and their management processes and criteria for admissibility are changing over traditional evidence. The rapid growth of computer data created new opportunities and the growth of new forms of computing, and cyber crime, but also the new ways of proof in court cases, which were unavailable just a few decades. The authors of this paper describe new trends in the development of the information society and the emergence of electronic evidence, with emphasis on the impact of the development of computer crime on electronic evidence; the concept, legal regulation and probative value of electronic evidence, and in particular of electronic documents; and the issue of electronic evidence expertise and electronic documents in court proceedings.

  5. Computer Simulation of Electron Positron Annihilation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, y

    2003-10-02

    With the launching of the Next Linear Collider coming closer and closer, there is a pressing need for physicists to develop a fully-integrated computer simulation of e{sup +}e{sup -} annihilation process at center-of-mass energy of 1TeV. A simulation program acts as the template for future experiments. Either new physics will be discovered, or current theoretical uncertainties will shrink due to more accurate higher-order radiative correction calculations. The existence of an efficient and accurate simulation will help us understand the new data and validate (or veto) some of the theoretical models developed to explain new physics. It should handle well interfaces between different sectors of physics, e.g., interactions happening at parton levels well above the QCD scale which are described by perturbative QCD, and interactions happening at much lower energy scale, which combine partons into hadrons. Also it should achieve competitive speed in real time when the complexity of the simulation increases. This thesis contributes some tools that will be useful for the development of such simulation programs. We begin our study by the development of a new Monte Carlo algorithm intended to perform efficiently in selecting weight-1 events when multiple parameter dimensions are strongly correlated. The algorithm first seeks to model the peaks of the distribution by features, adapting these features to the function using the EM algorithm. The representation of the distribution provided by these features is then improved using the VEGAS algorithm for the Monte Carlo integration. The two strategies mesh neatly into an effective multi-channel adaptive representation. We then present a new algorithm for the simulation of parton shower processes in high energy QCD. We want to find an algorithm which is free of negative weights, produces its output as a set of exclusive events, and whose total rate exactly matches the full Feynman amplitude calculation. Our strategy is to create

  6. Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development

    Science.gov (United States)

    2016-09-01

    Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development by Neal Tesny Sensors and Electron Devices Directorate...TITLE AND SUBTITLE Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development 5a. CONTRACT NUMBER 5b...called cllMotorBasic. This module can be used separately if one is developing other software that needs to control the motors . The front panel of this

  7. Dry Laboratories in Science Education : Computer-based Practical Work

    NARCIS (Netherlands)

    Kirschner, P.A.; Huisman, W.

    1998-01-01

    Practical (laboratory) work in science education has traditionally been used to allow students to rediscover already known concepts and ideas, to demonstrate concepts taught in the classroom or, in the case of inquirybased science curricula, to teach concepts. Often, these laboratory practicals do

  8. THE EMPLOYMENT OF COMPUTER TECHNOLOGIES IN LABORATORY COURSE ON PHYSICS

    Directory of Open Access Journals (Sweden)

    Liudmyla M. Nakonechna

    2010-08-01

    Full Text Available Present paper considers the questions on development of conceptually new virtual physical laboratory, the employment of which into secondary education schools will allow to check the theoretical knowledge of students before laboratory work and to acquire the modern methods and skills of experiment.

  9. THE EMPLOYMENT OF COMPUTER TECHNOLOGIES IN LABORATORY COURSE ON PHYSICS

    OpenAIRE

    Liudmyla M. Nakonechna

    2010-01-01

    Present paper considers the questions on development of conceptually new virtual physical laboratory, the employment of which into secondary education schools will allow to check the theoretical knowledge of students before laboratory work and to acquire the modern methods and skills of experiment.

  10. Beyond a Battery Hen Model?: A Computer Laboratory, Micropolitics and Educational Change

    Science.gov (United States)

    Grieshaber, Susan

    2010-01-01

    This paper investigates what happened in one Australian primary school as part of the establishment, use and development of a computer laboratory over a period of two years. As part of a school renewal project, the computer laboratory was introduced as an "innovative" way to improve the skills of teachers and children in information and…

  11. Creating and Using a Computer Networking and Systems Administration Laboratory Built under Relaxed Financial Constraints

    Science.gov (United States)

    Conlon, Michael P.; Mullins, Paul

    2011-01-01

    The Computer Science Department at Slippery Rock University created a laboratory for its Computer Networks and System Administration and Security courses under relaxed financial constraints. This paper describes the department's experience designing and using this laboratory, including lessons learned and descriptions of some student projects…

  12. Overview of laboratory data tools available in a single electronic medical record

    Directory of Open Access Journals (Sweden)

    Neil R Kudler

    2010-01-01

    Full Text Available Background: Laboratory data account for the bulk of data stored in any given electronic medical record (EMR. To best serve the user, electronic laboratory data needs to be flexible and customizable. Our aim was to determine the various ways in which laboratory data get utilized by clinicians in our health system′s EMR. Method: All electronic menus, tabs, flowsheets, notes and subsections within the EMR (Millennium v2007.13, Cerner Corporation, Kansas City, MO, US were explored to determine how clinicians utilize discrete laboratory data. Results: Laboratory data in the EMR were utilized by clinicians in five distinct ways: within flowsheets, their personal inbox (EMR messaging, with decision support tools, in the health maintenance tool, and when incorporating laboratory data into their clinical notes and letters. Conclusions : Flexible electronic laboratory data in the EMR hava many advantages. Users can view, sort, pool, and appropriately route laboratory information to better support trend analyses, clinical decision making, and clinical charting. Laboratory data in the EMR can also be utilized to develop clinical decision support tools. Pathologists need to participate in the creation of these EMR tools in order to better support the appropriate utilization of laboratory information in the EMR.

  13. The use of computers in a materials science laboratory

    Science.gov (United States)

    Neville, J. P.

    1990-01-01

    The objective is to make available a method of easily recording the microstructure of a sample by means of a computer. The method requires a minimum investment and little or no instruction on the operation of a computer. An outline of the setup involving a black and white TV camera, a digitizer control box, a metallurgical microscope and a computer screen, printer, and keyboard is shown.

  14. Management and Valorization of Electronic and Computer Wastes in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will examine the issue of electronic and computer waste and its management, and endeavor to identify feasible and sustainable strategies for valorizing such waste. The project will be carried out in Bénin, ... The much anticipated GrowInclusive Platform now under construction. IDRC partner the World Economic ...

  15. Electron beam computed tomography for the diagnosis of cardiac ...

    African Journals Online (AJOL)

    Electron beam computed tomography (EBCT) of the heart is a new modality which will alter the way cardiology is practised. It allows for the detection of early coronary artery disease (CAD) in asymptomatic individuals, regardless of their level of risk as assessed by traditional risk factor analysis. Compared with risk analysis ...

  16. Coronary artery fly-through using electron beam computed tomography

    NARCIS (Netherlands)

    van Ooijen, P M; Oudkerk, M; van Geuns, R J; Rensing, B J; de Feyter, P J

    2000-01-01

    BACKGROUND: Virtual reality techniques have recently been introduced into clinical medicine. This study examines the possibility of coronary artery fly-through using a dataset obtained by noninvasive coronary angiography with contrast-enhanced electron-beam computed tomography. METHODS AND RESULTS:

  17. Management and Valorization of Electronic and Computer Wastes in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    So far, little is known about the extent of the problem and there is little research available to serve as a basis for persuading decision-makers to address it. This project will examine the issue of electronic and computer waste and its management, and endeavor to identify feasible and sustainable strategies for valorizing such ...

  18. Piloting a national laboratory electronic programme status reporting ...

    African Journals Online (AJOL)

    reporting system in Ekurhuleni health district, South Africa. N Cassim, MPH; L M Coetzee, PhD; D K .... CD4'), 89.3% of patients were eligible for treatment at the current. 2015 treatment guideline threshold of 500 ... to CD4 results may allow for laboratory monitoring systems to be implemented to facilitate preselecting them ...

  19. Dual – Temperature Electron distribution in a Laboratory Plasma ...

    African Journals Online (AJOL)

    The dual-temperature distribution function is used to investigate theoretically the effect of a perturbation of Maxwell distribution function on density ratios in a laboratory plasma produced solely by collision. By assuming a foreknowledge of collision coefficients and cross-sections and an atomic model which sets at two ...

  20. dual – temperature electron distribution in a laboratory plasma

    African Journals Online (AJOL)

    DEVEERERRY

    The dual-temperature distribution function is used to investigate theoretically the effect of a perturbation of Maxwell distribution function on density ratios in a laboratory plasma produced solely by collision. By assuming a foreknowledge of collision coefficients and cross-sections and an atomic model which sets at two ...

  1. Research Laboratory of Electronics Progress Report Number 133

    Science.gov (United States)

    1991-08-01

    insta- bilities. Such instabilities are believed to be a Sponsor source of some types of observed planetary, solar National Aeronautics and Space...laboratories of E.N.E.A. ( Energia ceedings of the International Sherwood Theory Nucleare e Energie Alternative), as well as in- Meeting, Williamsburg, Virginia

  2. Applied human factors research at the NASA Johnson Space Center Human-Computer Interaction Laboratory

    Science.gov (United States)

    Rudisill, Marianne; Mckay, Timothy D.

    1990-01-01

    The applied human factors research program performed at the NASA Johnson Space Center's Human-Computer Interaction Laboratory is discussed. Research is conducted to advance knowledge in human interaction with computer systems during space crew tasks. In addition, the Laboratory is directly involved in the specification of the human-computer interface (HCI) for space systems in development (e.g., Space Station Freedom) and is providing guidelines and support for HCI design to current and future space missions.

  3. The development of computer industry and applications of its relevant techniques in nuclear research laboratories

    International Nuclear Information System (INIS)

    Dai Guiliang

    1988-01-01

    The increasing needs for computers in the area of nuclear science and technology are described. The current status of commerical availabe computer products of different scale in world market are briefly reviewed. A survey of some noticeable techniques is given from the view point of computer applications in nuclear science research laboratories

  4. Argonne's Laboratory Computing Resource Center : 2005 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R. B.; Coghlan, S. C; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Pieper, G. P.

    2007-06-30

    Argonne National Laboratory founded the Laboratory Computing Resource Center in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. The first goal of the LCRC was to deploy a mid-range supercomputing facility to support the unmet computational needs of the Laboratory. To this end, in September 2002, the Laboratory purchased a 350-node computing cluster from Linux NetworX. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the fifty fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2005, there were 62 active projects on Jazz involving over 320 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to improve the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure

  5. Inspection Report on "Internal Controls over Accountable Classified Removable Electronic Media at Oak Ridge National Laboratory"

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    The Department of Energy's Oak Ridge National Laboratory (ORNL) conducts cutting edge scientific research. ORNL utilizes removable electronic media, such as computer hard drives, compact disks, data tapes, etc., to store vast amounts of classified information. Incidents involving breakdowns in controls over classified removable electronic media have been a continuous challenge for the Department. The loss of even one piece of such media can have serious national security implications. In 2004, the Department had a complex-wide 'stand-down' of all activities using classified removable electronic media, and such media containing Secret/Restricted Data or higher classified data was designated 'Accountable Classified Removable Electronic Media' (ACREM). As part of the stand-down, sites were required to conduct a 100 percent physical inventory of all ACREM; enter it all into accountability; and conduct security procedure reviews and training. Further, the Department implemented a series of controls, including conducting periodic inventories, utilizing tamper proof devices on ACREM safes, and appointing trained custodians to be responsible for the material. After performance testing and validation that the required accountability systems were in place, ACREM operations at ORNL were approved for restart on August 10, 2004. We conducted a review at ORNL and associated facilities to determine whether ACREM is managed, protected, and controlled consistent with applicable requirements. We found that: (1) Eight pieces of Secret/Restricted Data media had not been identified as ACREM and placed into a system of accountability. Consequently, the items were not subject to all required protections and controls, such as periodic accountability inventories, oversight by a trained custodian, or storage in a designated ACREM safe. (However, the items were secured in safes approved for classified material.) (2) Other required ACREM protections and controls were

  6. Ecoupling server: A tool to compute and analyze electronic couplings.

    Science.gov (United States)

    Cabeza de Vaca, Israel; Acebes, Sandra; Guallar, Victor

    2016-07-05

    Electron transfer processes are often studied through the evaluation and analysis of the electronic coupling (EC). Since most standard QM codes do not provide readily such a measure, additional, and user-friendly tools to compute and analyze electronic coupling from external wave functions will be of high value. The first server to provide a friendly interface for evaluation and analysis of electronic couplings under two different approximations (FDC and GMH) is presented in this communication. Ecoupling server accepts inputs from common QM and QM/MM software and provides useful plots to understand and analyze the results easily. The web server has been implemented in CGI-python using Apache and it is accessible at http://ecouplingserver.bsc.es. Ecoupling server is free and open to all users without login. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. New Dimensions in Teaching Digital Electronics: A Multimode Laboratory Utilizing NI ELVIS IITM, LabVIEW and NI Multisim

    Directory of Open Access Journals (Sweden)

    Andrew Katumba

    2010-11-01

    Full Text Available Over the years, conventional Laboratories in African Universities have been hampered by inadequate resources in terms of the required hardware, space and skilled personnel to administer them. This paper describes a multi-dimensional approach to experimentation, developed by the Makerere University iLabs Project Team, hereafter referred to as iLABS@MAK. The two dimensional approach involves both Virtual Labs and Online Laboratories designed to address laboratory deficiencies in Digital Electronics, encompassing five courses in the curricula of the Bachelor of Science (B.Sc in Computer, Electrical and Telecommunication Engineering Programs. A digital Online Laboratory, the Makerere University Digital iLab (MDEi supporting experiments in the fields of combinational logic circuits and asynchronous sequential logic circuits has been developed. The laboratory utilizes the National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS II™ platform, the Laboratory Virtual Instrument Engineering Workbench (LabVIEW graphical programming environment and NI Multisim. Typical experiment setups supported by the MDEi are presented

  8. RLE (Research Laboratory of Electronics) Progress Report Number 126.

    Science.gov (United States)

    1984-01-01

    P.L. Gould, E. Hiller , B.J. Hughey, R.G. Hulet, M.M. Kash, P.D. Magill, A.L. Migdall, W.P. Moskowitz, E. Raab, T.P. Scott, B.A. Stewart, R...overcome, and testing is near completion. Work on the finished laboratory * apparatus has begun. - In collaboration with Dr. Robert Hillman and Ms. Eva ...Boduch, Raymond Holmberg, Eva B. Picard, Leonard * Brown, Robert M. Huggins, Allan W.F. Pollack, Robert A. Curby, Mark L. Khan, Malik Ram-Mohan, L

  9. The New High Magnetic Field Laboratory at Dresden: a Pulsed-Field Laboratory at an IR Free-Electron-Laser

    International Nuclear Information System (INIS)

    Pobell, F.; Bianchi, A. D.; Herrmannsdoerfer, T.; Krug, H.; Zherlitsyn, S.; Zvyagin, S.; Wosnitza, J.

    2006-01-01

    We report on the construction of a new high magnetic field user laboratory which will offer pulsed-field coils in the range (60 T, 500 ms, 40 mm) to (100 T, 10 ms, 20 mm) for maximum field, pulse time, and bore diameter of the coils. These coils will be energized by a modular 50 MJ/24 kV capacitor bank. Besides many other experimental techniques, as unique possibilities NMR in pulsed fields as well as infrared spectroscopy at 5 to 150 μm will be available by connecting the pulsed field laboratory to a nearby free-electron-laser facility

  10. Design of an electronic performance support system for food chemistry laboratory classes

    NARCIS (Netherlands)

    Kolk, van der J.

    2013-01-01

    The design oriented research described in this thesis aims at designing an realizing an electronic performance support system for food chemistry laboratory classes (labEPSS). Four design goals related to food chemistry laboratory classes were identified. Firstly, labEPSS should avoid extraneous

  11. Development and Evaluation of an Interactive Electronic Laboratory Manual for Cooperative Learning of Medical Histology

    Science.gov (United States)

    Khalil, Mohammed K.; Kirkley, Debbie L.; Kibble, Jonathan D.

    2013-01-01

    This article describes the development of an interactive computer-based laboratory manual, created to facilitate the teaching and learning of medical histology. The overarching goal of developing the manual is to facilitate self-directed group interactivities that actively engage students during laboratory sessions. The design of the manual…

  12. Argonne's Laboratory computing resource center : 2006 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R. B.; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Drugan, C. D.; Pieper, G. P.

    2007-05-31

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2006, there were 76 active projects on Jazz involving over 380 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff

  13. Psychiatrists’ Comfort Using Computers and Other Electronic Devices in Clinical Practice

    Science.gov (United States)

    Fochtmann, Laura J.; Clarke, Diana E.; Barber, Keila; Hong, Seung-Hee; Yager, Joel; Mościcki, Eve K.; Plovnick, Robert M.

    2015-01-01

    This report highlights findings from the Study of Psychiatrists’ Use of Informational Resources in Clinical Practice, a cross-sectional Web- and paper-based survey that examined psychiatrists’ comfort using computers and other electronic devices in clinical practice. One-thousand psychiatrists were randomly selected from the American Medical Association Physician Masterfile and asked to complete the survey between May and August, 2012. A total of 152 eligible psychiatrists completed the questionnaire (response rate 22.2 %). The majority of psychiatrists reported comfort using computers for educational and personal purposes. However, 26 % of psychiatrists reported not using or not being comfortable using computers for clinical functions. Psychiatrists under age 50 were more likely to report comfort using computers for all purposes than their older counterparts. Clinical tasks for which computers were reportedly used comfortably, specifically by psychiatrists younger than 50, included documenting clinical encounters, prescribing, ordering laboratory tests, accessing read-only patient information (e.g., test results), conducting internet searches for general clinical information, accessing online patient educational materials, and communicating with patients or other clinicians. Psychiatrists generally reported comfort using computers for personal and educational purposes. However, use of computers in clinical care was less common, particularly among psychiatrists 50 and older. Information and educational resources need to be available in a variety of accessible, user-friendly, computer and non-computer-based formats, to support use across all ages. Moreover, ongoing training and technical assistance with use of electronic and mobile device technologies in clinical practice is needed. Research on barriers to clinical use of computers is warranted. PMID:26667248

  14. Evolution of a Computer-Based Testing Laboratory

    Science.gov (United States)

    Moskal, Patrick; Caldwell, Richard; Ellis, Taylor

    2009-01-01

    In 2003, faced with increasing growth in technology-based and large-enrollment courses, the College of Business Administration at the University of Central Florida opened a computer-based testing lab to facilitate administration of course examinations. Patrick Moskal, Richard Caldwell, and Taylor Ellis describe the development and evolution of the…

  15. Flow Through a Laboratory Sediment Sample by Computer Simulation Modeling

    Science.gov (United States)

    2006-09-07

    sands; Interacting lattice gas; Computer simulation: Driven flow 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified b. ABSTRACT Unclassified...Transport in Porous Media, Springer, Berlin. 2000. [3] B. Loret, J.M. Huyghe (Eds.), Chemo-Mechanical Couplings in Porous Media Geomechanics and

  16. Automatic Grading of 3D Computer Animation Laboratory Assignments

    Science.gov (United States)

    Lamberti, Fabrizio; Sanna, Andrea; Paravati, Gianluca; Carlevaris, Gilles

    2014-01-01

    Assessment is a delicate task in the overall teaching process because it may require significant time and may be prone to subjectivity. Subjectivity is especially true for disciplines in which perceptual factors play a key role in the evaluation. In previous decades, computer-based assessment techniques were developed to address the…

  17. Advanced methods for teaching electronic-nose technologies to diagnosticians and clinical laboratory technicians

    Science.gov (United States)

    Alphus D. Wilson

    2012-01-01

    Electronic-detection technologies and instruments increasingly are being utilized in the biomedical field to perform a wide variety of clinical operations and laboratory analyses to facilitate the delivery of health care to patients. The introduction of improved electronic instruments for diagnosing diseases and for administering treatments has required new training of...

  18. Personal computer versus personal computer/mobile device combination users' preclinical laboratory e-learning activity.

    Science.gov (United States)

    Kon, Haruka; Kobayashi, Hiroshi; Sakurai, Naoki; Watanabe, Kiyoshi; Yamaga, Yoshiro; Ono, Takahiro

    2017-11-01

    The aim of the present study was to clarify differences between personal computer (PC)/mobile device combination and PC-only user patterns. We analyzed access frequency and time spent on a complete denture preclinical website in order to maximize website effectiveness. Fourth-year undergraduate students (N=41) in the preclinical complete denture laboratory course were invited to participate in this survey during the final week of the course to track login data. Students accessed video demonstrations and quizzes via our e-learning site/course program, and were instructed to view online demonstrations before classes. When the course concluded, participating students filled out a questionnaire about the program, their opinions, and devices they had used to access the site. Combination user access was significantly more frequent than PC-only during supplementary learning time, indicating that students with mobile devices studied during lunch breaks and before morning classes. Most students had favorable opinions of the e-learning site, but a few combination users commented that some videos were too long and that descriptive answers were difficult on smartphones. These results imply that mobile devices' increased accessibility encouraged learning by enabling more efficient time use between classes. They also suggest that e-learning system improvements should cater to mobile device users by reducing video length and including more short-answer questions. © 2016 John Wiley & Sons Australia, Ltd.

  19. Argonne's Laboratory Computing Resource Center 2009 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R. B. (CLS-CI)

    2011-05-13

    Now in its seventh year of operation, the Laboratory Computing Resource Center (LCRC) continues to be an integral component of science and engineering research at Argonne, supporting a diverse portfolio of projects for the U.S. Department of Energy and other sponsors. The LCRC's ongoing mission is to enable and promote computational science and engineering across the Laboratory, primarily by operating computing facilities and supporting high-performance computing application use and development. This report describes scientific activities carried out with LCRC resources in 2009 and the broad impact on programs across the Laboratory. The LCRC computing facility, Jazz, is available to the entire Laboratory community. In addition, the LCRC staff provides training in high-performance computing and guidance on application usage, code porting, and algorithm development. All Argonne personnel and collaborators are encouraged to take advantage of this computing resource and to provide input into the vision and plans for computing and computational analysis at Argonne. The LCRC Allocations Committee makes decisions on individual project allocations for Jazz. Committee members are appointed by the Associate Laboratory Directors and span a range of computational disciplines. The 350-node LCRC cluster, Jazz, began production service in April 2003 and has been a research work horse ever since. Hosting a wealth of software tools and applications and achieving high availability year after year, researchers can count on Jazz to achieve project milestones and enable breakthroughs. Over the years, many projects have achieved results that would have been unobtainable without such a computing resource. In fiscal year 2009, there were 49 active projects representing a wide cross-section of Laboratory research and almost all research divisions.

  20. Computer-Aided Generation of Result Text for Clinical Laboratory Texts

    OpenAIRE

    Kuzmak, Peter M.; Miller, R. E.

    1983-01-01

    Efficient processing of non-numeric textual data is a frequent requirement with medical computer applications such as clinical laboratory result reporting. In such instances, it is often desirable that the computer control the generation of the text to ensure that the intended meaning is conveyed. This paper describes a technique for interactively selecting predefined text segments to form complex textual reports for laboratory tests. The approach, which uses algorithms based on augmented tra...

  1. Selection and implementation of a laboratory computer system.

    Science.gov (United States)

    Moritz, V A; McMaster, R; Dillon, T; Mayall, B

    1995-07-01

    The process of selection of a pathology computer system has become increasingly complex as there are an increasing number of facilities that must be provided and stringent performance requirements under heavy computing loads from both human users and machine inputs. Furthermore, the continuing advances in software and hardware technology provide more options and innovative new ways of tackling problems. These factors taken together pose a difficult and complex set of decisions and choices for the system analyst and designer. The selection process followed by the Microbiology Department at Heidelberg Repatriation Hospital included examination of existing systems, development of a functional specification followed by a formal tender process. The successful tenderer was then selected using predefined evaluation criteria. The successful tenderer was a software development company that developed and supplied a system based on a distributed network using a SUN computer as the main processor. The software was written using Informix running on the UNIX operating system. This represents one of the first microbiology systems developed using a commercial relational database and fourth generation language. The advantages of this approach are discussed.

  2. Students' Cognitive Focus during a Chemistry Laboratory Exercise: Effects of a Computer-Simulated Prelab

    Science.gov (United States)

    Winberg, T. Mikael; Berg, C. Anders R.

    2007-01-01

    To enhance the learning outcomes achieved by students, learners undertook a computer-simulated activity based on an acid-base titration prior to a university-level chemistry laboratory activity. Students were categorized with respect to their attitudes toward learning. During the laboratory exercise, questions that students asked their assistant…

  3. Interior Architectural Requirements for Electronic Circuits and its Applications Research Laboratory

    International Nuclear Information System (INIS)

    ElDib, A.A.

    2014-01-01

    This paper discusses the pivotal role of the Interior Architecture As one of the scientific disciplines minute to complete the Architectural Sciences, which relied upon the achievement and development of facilities containing scientific research laboratories, in terms of planning and design, particularly those containing biological laboratories using radioactive materials, adding to that, the application of the materials or raw materials commensurate with each discipline of laboratory and its work nature, and by the discussion the processing of design techniques and requirements of interior architecture dealing with Research Laboratory for electronic circuits and their applications with the making of its prototypes

  4. Electron beam irradiation: laboratory and field studies of cowpea seeds

    International Nuclear Information System (INIS)

    Srinivasan, K.; Chauhan, S.K.; Prasad, T.V.; Pramod, R.; Verma, V.P.; Petwal, V.; Dwivedi, J.; Bhalla, S.

    2015-01-01

    Cowpea (Vigna unguiculata) rich in protein and vitamins is emerging as one of the most important food legumes to tackle malnutrition. Pulse beetles (Callosobruchus chinensis and C. maculatus) are the pests of economic importance causing enormous losses during storage. Although various pest management strategies exist for the control of these pests, environmental concerns necessitate developing ecofriendly strategies. Electron beam (EB) irradiation has the potential to be a viable, non-chemical, residue-free strategy for management of pulse beetles during storage, but higher doses affect seed germination and viability. Hence, the present investigation was taken up to analyse the dosage effect of the irradiation on seed attributes of cowpea. Healthy cowpea seeds were irradiated with low energy electrons at different doses viz., 180, 360, 540, 720, 900, 1080, 1260, 1440 and 1620 Gy at 500 keV using the EB Accelerator facility at Raja Ramanna Centre for Advanced Technology, Indore. EB irradiated seeds were tested for physiological viz., germination, seedling vigour and vigour index and biochemical parameters viz., electrical conductivity of seed leachate, seed viability/tetrazolium test and dehydrogenase activity. Germination and vigour of the irradiated seeds were evaluated as per the ISTA Rules (ISTA, 1996). Vigour index was calculated as the product of germination percentage and seedling vigour. About 3,000 irradiated seeds from each dose were grown in the field at the Experimental farm, National Bureau of Plant Genetic Resources, New Delhi. Seeds harvested from 1500 individual plants of M 1 generation from each dose (50 seeds from each plant individually) were sown in next season and observed for chlorophyll mutations, if any. Results revealed that doses upto 1080 Gy (88%) did not affect the germination of cowpea seeds drastically as compared to untreated seeds (98%). Lower doses viz., 180 and 360 Gy had no impact on vigour components while higher doses (1080 Gy

  5. Computer-based laboratory simulation: evaluations of student perceptions

    Directory of Open Access Journals (Sweden)

    Norrie S. Edward

    1996-12-01

    Full Text Available Laboratory experimentation in engineering is an essential part of the three main components in an engineer's formation. The theoretical constructs and models are imparted in lectures and tutorials. Workshop hands-on activity allows the student to acquire an understanding of the interaction of design and manufacture, and the constraints both impose. Characteristics of plant are investigated through experiment, and this aids the learner's understanding of the limitation of models in predicting performance. The learner also gains an appreciation of the nature of errors and of the construction of plant. But while the oil industry has brought prosperity to the North- East, it has also brought unique educational demands: the working arrangements place severe restrictions on part-time student attendance. Technicians work a block of two to four weeks offshore, followed by a similar period of leave. Different companies have different arrangements, and shift-change days.

  6. Laboratory for Computer Science Progress Report 18, July 1980-June 1981,

    Science.gov (United States)

    1983-04-01

    34The MDL Programming Language Primer (Draft)," MIT Laboratory for Computer Science, Cambridge, MA January *1981. 2. Golden, V. E. and Schoof , J.L... Raphael , Bertram SIR: A Computer Program for Semantic Information Retrieval, Ph.D. Dissertation, Math. Dept., June 1964, AD 608-499 TR-3 Corbato, Fernando J

  7. Computer-aided diagnosis: how to move from the laboratory to the clinic

    NARCIS (Netherlands)

    van Ginneken, Bram; Schaefer-Prokop, Cornelia M.; Prokop, Mathias

    2011-01-01

    Computer-aided diagnosis (CAD), encompassing computer-aided detection and quantification, is an established and rapidly growing field of research. In daily practice, however, most radiologists do not yet use CAD routinely. This article discusses how to move CAD from the laboratory to the clinic. The

  8. Computer-aided Diagnosis: How to Move from the Laboratory to the Clinic.

    NARCIS (Netherlands)

    Ginneken, B. van; Schaefer-Prokop, C.M.; Prokop, M.

    2011-01-01

    Computer-aided diagnosis (CAD), encompassing computer-aided detection and quantification, is an established and rapidly growing field of research. In daily practice, however, most radiologists do not yet use CAD routinely. This article discusses how to move CAD from the laboratory to the clinic. The

  9. 77 FR 50726 - Software Requirement Specifications for Digital Computer Software and Complex Electronics Used in...

    Science.gov (United States)

    2012-08-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Software Requirement Specifications for Digital Computer Software and Complex Electronics Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear...-1209, ``Software Requirement Specifications for Digital Computer Software and Complex Electronics used...

  10. Interaction between hydroxyethyl starch and propofol: computational and laboratorial study.

    Science.gov (United States)

    Silva, Aura; Sousa, Emília; Palmeira, Andreia; Amorim, Pedro; Guedes de Pinho, Paula; Ferreira, David A

    2014-01-01

    Hydroxyethyl starch (HES) is one of the most used colloids for intravascular volume replacement during anesthesia. To investigate the existence of a chemical interaction between HES and the anesthetic propofol by in vitro propofol dosing, computational docking, and examination of a complex between propofol and HES by infrared (IR), ultraviolet (UV), and (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy. Ten samples with human plasma mixed with HES or lactated Ringers (n = 5 for each fluid) were prepared, and the propofol free fraction was quantified until 50 min, using gas chromatography-mass spectrometry. The docking study was performed between HES and propofol and compared with controls. The binding affinities between HES and the small molecules were evaluated by binding free energy approximation (ΔGb, kJ mol(-1)). The IR, UV, and NMR spectra were measured for propofol, HES, and a mixture of both obtained by the kneading method. Propofol concentrations were significantly lower in the HES samples than in the LR samples (p = .021). The spectroscopic characterization of propofol combined with HES revealed differences in spectra and docking studies reinforced a potential interaction between propofol and HES. Propofol and HES form a complex with different physical-bio-chemical behavior than the single drugs, which may be an important drug interaction. Further studies should evaluate its clinical effects.

  11. Referees Often Miss Obvious Errors in Computer and Electronic Publications

    Science.gov (United States)

    de Gloucester, Paul Colin

    2013-05-01

    Misconduct is extensive and damaging. So-called science is prevalent. Articles resulting from so-called science are often cited in other publications. This can have damaging consequences for society and for science. The present work includes a scientometric study of 350 articles (published by the Association for Computing Machinery; Elsevier; The Institute of Electrical and Electronics Engineers, Inc.; John Wiley; Springer; Taylor & Francis; and World Scientific Publishing Co.). A lower bound of 85.4% articles are found to be incongruous. Authors cite inherently self-contradictory articles more than valid articles. Incorrect informational cascades ruin the literature's signal-to-noise ratio even for uncomplicated cases.

  12. Computational electronics semiclassical and quantum device modeling and simulation

    CERN Document Server

    Vasileska, Dragica; Klimeck, Gerhard

    2010-01-01

    Starting with the simplest semiclassical approaches and ending with the description of complex fully quantum-mechanical methods for quantum transport analysis of state-of-the-art devices, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation provides a comprehensive overview of the essential techniques and methods for effectively analyzing transport in semiconductor devices. With the transistor reaching its limits and new device designs and paradigms of operation being explored, this timely resource delivers the simulation methods needed to properly model state-of

  13. Computational aspects of electronic transport in nanoscale devices

    OpenAIRE

    Sørensen, Hans Henrik Brandenborg; Hansen, Per Christian; Stokbro, Kurt

    2008-01-01

    This thesis is concerned with the modeling of electronic properties of nano-scale devices. In particular the computational aspects of calculating the transmission and current-voltage characteristics of Landauer-Büttiker two-probe systems are in focus. To begin with, the main existing methods are described in detail and benchmarked. These are the Green’s function method and the wave function matching method. The methods are subsequently combined in a hybrid scheme in order to benefit from a co...

  14. Design of Carborane Molecular Architectures via Electronic Structure Computations

    International Nuclear Information System (INIS)

    Oliva, J.M.; Serrano-Andres, L.; Klein, D.J.; Schleyer, P.V.R.; Mich, J.

    2009-01-01

    Quantum-mechanical electronic structure computations were employed to explore initial steps towards a comprehensive design of poly carborane architectures through assembly of molecular units. Aspects considered were (i) the striking modification of geometrical parameters through substitution, (ii) endohedral carboranes and proposed ejection mechanisms for energy/ion/atom/energy storage/transport, (iii) the excited state character in single and dimeric molecular units, and (iv) higher architectural constructs. A goal of this work is to find optimal architectures where atom/ion/energy/spin transport within carborane superclusters is feasible in order to modernize and improve future photo energy processes.

  15. Comparing two iteration algorithms of Broyden electron density mixing through an atomic electronic structure computation

    International Nuclear Information System (INIS)

    Zhang Man-Hong

    2016-01-01

    By performing the electronic structure computation of a Si atom, we compare two iteration algorithms of Broyden electron density mixing in the literature. One was proposed by Johnson and implemented in the well-known VASP code. The other was given by Eyert. We solve the Kohn-Sham equation by using a conventional outward/inward integration of the differential equation and then connect two parts of solutions at the classical turning points, which is different from the method of the matrix eigenvalue solution as used in the VASP code. Compared to Johnson’s algorithm, the one proposed by Eyert needs fewer total iteration numbers. (paper)

  16. Search of computers for discovery of electronic evidence

    Directory of Open Access Journals (Sweden)

    Pisarić Milana M.

    2015-01-01

    Full Text Available In order to address the specific nature of criminal activities committed using computer networks and systems, the efforts of states to adapt or complement the existing criminal law with purposeful provisions is understandable. To create an appropriate legal framework for supressing cybercrime, except the rules of substantive criminal law predict certain behavior as criminal offenses against the confidentiality, integrity and availability of computer data, computer systems and networks, it is essential that the provisions of the criminal procedure law contain adequate powers of competent authorities for detecting sources of illegal activities, or the collection of data on the committed criminal offense and offender, which can be used as evidence in criminal proceedings, taking into account the specificities of cyber crime and the environment within which the illegal activity is undertaken. Accordingly, the provisions of the criminal procedural law should be designed to be able to overcome certain challenges in discovering and proving high technology crime, and the provisions governing search of computer for discovery of electronic evidence is of special importance.

  17. {OpenLabNotes} -- An Electronic Laboratory Notebook Extension for {OpenLabFramework}

    OpenAIRE

    List, M.; Franz, M.; Tan, O.; Mollenhauer, J.; Baumbach, J.

    2015-01-01

    Electronic laboratory notebooks (ELNs) are more accessible and reliable than their paper based alternatives and thus find widespread adoption. While a large number of Commercial products is available, small- to mid-sized laboratories can often not afford the costs or are concerned about the longevity of the providers. Turning towards free alternatives, however, raises questions about data protection, which are not sufficiently addressed by available solutions.To serve as legal documents, ELNs...

  18. Collaborative Computational Project for Electron cryo-Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Chris; Burnley, Tom [Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom); Patwardhan, Ardan [European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom); Scheres, Sjors [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Topf, Maya [University of London, Malet Street, London WC1E 7HX (United Kingdom); Roseman, Alan [University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Winn, Martyn, E-mail: martyn.winn@stfc.ac.uk [Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom)

    2015-01-01

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed.

  19. Collaborative Computational Project for Electron cryo-Microscopy

    International Nuclear Information System (INIS)

    Wood, Chris; Burnley, Tom; Patwardhan, Ardan; Scheres, Sjors; Topf, Maya; Roseman, Alan; Winn, Martyn

    2015-01-01

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed

  20. Accuracy of Laboratory Data Communication on ICU Daily Rounds Using an Electronic Health Record.

    Science.gov (United States)

    Artis, Kathryn A; Dyer, Edward; Mohan, Vishnu; Gold, Jeffrey A

    2017-02-01

    Accurately communicating patient data during daily ICU rounds is critically important since data provide the basis for clinical decision making. Despite its importance, high fidelity data communication during interprofessional ICU rounds is assumed, yet unproven. We created a robust but simple methodology to measure the prevalence of inaccurately communicated (misrepresented) data and to characterize data communication failures by type. We also assessed how commonly the rounding team detected data misrepresentation and whether data communication was impacted by environmental, human, and workflow factors. Direct observation of verbalized laboratory data during daily ICU rounds compared with data within the electronic health record and on presenters' paper prerounding notes. Twenty-six-bed academic medical ICU with a well-established electronic health record. ICU rounds presenter (medical student or resident physician), interprofessional rounding team. None. During 301 observed patient presentations including 4,945 audited laboratory results, presenters used a paper prerounding tool for 94.3% of presentations but tools contained only 78% of available electronic health record laboratory data. Ninty-six percent of patient presentations included at least one laboratory misrepresentation (mean, 6.3 per patient) and 38.9% of all audited laboratory data were inaccurately communicated. Most misrepresentation events were omissions. Only 7.8% of all laboratory misrepresentations were detected. Despite a structured interprofessional rounding script and a well-established electronic health record, clinician laboratory data retrieval and communication during ICU rounds at our institution was poor, prone to omissions and inaccuracies, yet largely unrecognized by the rounding team. This highlights an important patient safety issue that is likely widely prevalent, yet underrecognized.

  1. The LLNL Multiuser Tandem Laboratory computer-controlled radiation monitoring system

    International Nuclear Information System (INIS)

    Homann, S.G.

    1992-01-01

    The Physics Department of the Lawrence Livermore National Laboratory (LLNL) recently constructed a Multiuser Tandem Laboratory (MTL) to perform a variety of basic and applied measurement programs. The laboratory and its research equipment were constructed with support from a consortium of LLNL Divisions, Sandia National Laboratories Livermore, and the University of California. Primary design goals for the facility were inexpensive construction and operation, high beam quality at a large number of experimental stations, and versatility in adapting to new experimental needs. To accomplish these goals, our main design decisions were to place the accelerator in an unshielded structure, to make use of reconfigured cyclotrons as effective switching magnets, and to rely on computer control systems for both radiological protection and highly reproducible and well-characterized accelerator operation. This paper addresses the radiological control computer system

  2. Current algorithms for computed electron beam dose planning

    International Nuclear Information System (INIS)

    Brahme, A.

    1985-01-01

    Two- and sometimes three-dimensional computer algorithms for electron beam irradiation are capable of taking all irregularities of the body cross-section and the properties of the various tissues into account. This is achieved by dividing the incoming broad beams into a number of narrow pencil beams, the penetration of which can be described by essentially one-dimensional formalisms. The constituent pencil beams are most often described by Gaussian, experimentally or theoretically derived distributions. The accuracy of different dose planning algorithms is discussed in some detail based on their ability to take the different physical interaction processes of high energy electrons into account. It is shown that those programs that take the deviations from the simple Gaussian model into account give the best agreement with experimental results. With such programs a dosimetric relative accuracy of about 5% is generally achieved except in the most complex inhomogeneity configurations. Finally, the present limitations and possible future developments of electron dose planning are discussed. (orig.)

  3. Client/Server computing: is this the future direction for the clinical laboratory?

    Science.gov (United States)

    Wells, I G; Farnan, L P; Rayment, M W

    1996-04-15

    One of the major trends in computing for the 1990s is the move towards distributed systems based on Client/Server architecture. Although a recent survey has suggested that some 41% of the major companies in the UK are either using or planning to adopt this new technology, there is little evidence at present of similar progress in the field of clinical laboratory computing. The Pathology Laboratories at St. Luke's Hospital have been developing in-house computer systems using object-oriented software tools since 1988, but these were initially based on conventional file sharing and suffered from poor performance under load. The conversion to Client/Server took place in March 1993 and the results have either met or exceeded all expectations. Our experience suggests that this approach may well be the way forward for the high performance but user-friendly laboratory systems of the future.

  4. Preliminary cryogenic loads requirements for the electron-ion collider at Brookhaven National Laboratory

    Science.gov (United States)

    Than, R.; Ravikumar, D. K.

    2017-12-01

    The proposed electron ion collider at Brookhaven National Laboratory will consist of using one existing hadron ring and developing a new electron accelerator. This paper presents the cryogenic loads for the hadron ring’s superconducting magnets as well as related upgrades to handle the additional loads. The cryogenic loads for the superconducting RF injector/accelerator and storage ring for the electron beam are summarized. The proposed cryogenic plant, and the configuration and flow distribution of the related cryogenic systems are also presented.

  5. Learning Laboratory Chemistry through Electronic Sensors, a Microprocessor, and Student Enabling Software: A Preliminary Demonstration

    Science.gov (United States)

    Zhang, Qing; Brode, Ly; Cao, Tingting; Thompson, J. E.

    2017-01-01

    We describe the construction and initial demonstration of a new instructional tool called ROXI (Research Opportunity through eXperimental Instruction). The system interfaces a series of electronic sensors to control software via the Arduino platform. The sensors have been designed to enable low-cost data collection in laboratory courses. Data are…

  6. Preparations for a high gradient inverse free electron laser experiment at Brookhaven national laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Duris, J.; Li, R. K.; Musumeci, P.; Sakai, Y.; Threlkeld, E.; Williams, O.; Fedurin, M.; Kusche, K.; Pogorelsky, I.; Polyanskiy, M.; Yakimenko, V. [UCLA Department of Physics and Astronomy, Los Angeles, CA 90095 (United States); Accelerator Test Facility, Brookhaven National Laboratory, Upton, NY, 11973 (United States)

    2012-12-21

    Preparations for an inverse free electron laser experiment at Brookhaven National Laboratory's Accelerator Test Facilty are presented. Details of the experimental setup including beam and laser transport optics are first discussed. Next, the driving laser pulse structure is investigated and initial diagnostics are explored and compared to simulations. Finally, planned improvements to the experimental setup are discussed.

  7. Vertical and Horizontal Integration of Laboratory Curricula and Course Projects across the Electronic Engineering Technology Program

    Science.gov (United States)

    Zhan, Wei; Goulart, Ana; Morgan, Joseph A.; Porter, Jay R.

    2011-01-01

    This paper discusses the details of the curricular development effort with a focus on the vertical and horizontal integration of laboratory curricula and course projects within the Electronic Engineering Technology (EET) program at Texas A&M University. Both software and hardware aspects are addressed. A common set of software tools are…

  8. Theoretical and practical considerations for teaching diagnostic electronic-nose technologies to clinical laboratory technicians

    Science.gov (United States)

    Alphus D. Wilson

    2012-01-01

    The rapid development of new electronic technologies and instruments, utilized to perform many current clinical operations in the biomedical field, is changing the way medical health care is delivered to patients. The majority of test results from laboratory analyses, performed with these analytical instruments often prior to clinical examinations, are frequently used...

  9. The Molecular Electronic Device and the Biochip Computer: Present Status

    Science.gov (United States)

    Haddon, R. C.; Lamola, A. A.

    1985-04-01

    The idea that a single molecule might function as a self-contained electronic device has been of interest for some time. However, a fully integrated version--the biochip or the biocomputer, in which both production and assembly of molecular electronic components is achieved through biotechnology--is a relatively new concept that is currently attracting attention both within the scientific community and among the general public. In the present article we draw together some of the approaches being considered for the construction of such devices and delineate the revolutionary nature of the current proposals for molecular electronic devices (MEDs) and biochip computers (BCCs). With the silicon semiconductor industry already in place and in view of the continuing successes of the lithographic process it seems appropriate to ask why the highly speculative MED or BCC has engendered such interest. In some respects the answer is paradigmatic as much as it is real. It is perhaps best stated as the promise of the realm of the molecular. Thus it is envisioned that devices will be constructed by assembly of individual molecular electronic components into arrays, thereby engineering from small upward rather than large downward as do current lithographic techniques. An important corollary of the construction technique is that the functional elements of such an array would be individual molecules rather than macroscopic ensembles. These two aspects of the MED/BCC--assembly of molecular arrays and individually accessible functional molecular units--are truly revolutionary. Both require scientific breakthroughs and the necessary principles, quite apart from the technology, remain essentially unknown. It is concluded that the advent of the MED/BCC still lies well before us. The twin criteria of utilization of individual molecules as functional elements and the assembly of such elements remains as elusive as ever. Biology engineers structures on the molecular scale but biomolecules

  10. Laboratory for Computer Science Progress Report 16, 1 July 1978 - 30 June 1979,

    Science.gov (United States)

    1980-08-01

    Reed F. J. Corbato L Svobodova Research Staff J. N. Chiappa E. A. Martin Undergraduate Students R. Baldwin C. Hornig D. Bollinger K. Khalsa H. Carter R... France , August 1978. 6. Kent, S. "Privacy and security in networks," in Protocols and Techniques for Date Communication Networks, Franklin Kuo (Ed...semantics," MIT/LCS/TR-215, MIT, Laboratory for Computer Science, Cambridge, Ma., March 1979. Theses Completed 1. Bollinger , 0. "A computer controlled

  11. Coding of Electronic Laboratory Reports for Biosurveillance, Selected United States Hospitals, 2011.

    Science.gov (United States)

    Dhakal, Sanjaya; Burrer, Sherry L; Winston, Carla A; Dey, Achintya; Ajani, Umed; Groseclose, Samuel L

    2015-01-01

    Objective Electronic laboratory reporting has been promoted as a public health priority. The Office of the U.S. National Coordinator for Health Information Technology has endorsed two coding systems: Logical Observation Identifiers Names and Codes (LOINC) for laboratory test orders and Systemized Nomenclature of Medicine-Clinical Terms (SNOMED CT) for test results. Materials and Methods We examined LOINC and SNOMED CT code use in electronic laboratory data reported in 2011 by 63 non-federal hospitals to BioSense electronic syndromic surveillance system. We analyzed the frequencies, characteristics, and code concepts of test orders and results. Results A total of 14,028,774 laboratory test orders or results were reported. No test orders used SNOMED CT codes. To describe test orders, 77% used a LOINC code, 17% had no value, and 6% had a non-informative value, "OTH". Thirty-three percent (33%) of test results had missing or non-informative codes. For test results with at least one informative value, 91.8% had only LOINC codes, 0.7% had only SNOMED codes, and 7.4% had both. Of 108 SNOMED CT codes reported without LOINC codes, 45% could be matched to at least one LOINC code. Conclusion Missing or non-informative codes comprised almost a quarter of laboratory test orders and a third of test results reported to BioSense by non-federal hospitals. Use of LOINC codes for laboratory test results was more common than use of SNOMED CT. Complete and standardized coding could improve the usefulness of laboratory data for public health surveillance and response.

  12. Electron heating and energy inventory during asymmetric reconnection in a laboratory plasma

    Science.gov (United States)

    Yoo, J.; Na, B.; Jara-Almonte, J.; Yamada, M.; Ji, H.; Roytershteyn, V.; Argall, M. R.; Fox, W.; Chen, L. J.

    2017-12-01

    Electron heating and the energy inventory during asymmetric reconnection are studied in the Magnetic Reconnection Experiment (MRX) [1]. In this plasma, the density ratio is about 8 across the current sheet. Typical features of asymmetric reconnection such as the large density gradients near the low-density-side separatrices, asymmetric in-plane electric field, and bipolar out-of-plane magnetic field are observed. Unlike the symmetric case [2], electrons are also heated near the low-density-side separatrices. The measured parallel electric field may explain the observed electron heating. Although large fluctuations driven by lower-hybrid drift instabilities are also observed near the low-density-side separatrices, laboratory measurements and numerical simulations reported here suggest that they do not play a major role in electron energization. The average electron temperature increase in the exhaust region is proportional to the incoming magnetic energy per an electron/ion pair but exceeds the scaling of the previous space observations [3]. This discrepancy is explained by differences in the boundary condition and system size. The profile of electron energy gain from the electric field shows that there is additional electron energy gain associated with the electron diamagnetic current besides a large energy gain near the X-line. This additional energy gain increases electron enthalpy, not the electron temperature. Finally, a quantitative analysis of the energy inventory during asymmetric reconnection is conducted. Unlike the symmetric case where the ion energy gain is about twice more than the electron energy gain [4], electrons and ions obtain a similar amount of energy during asymmetric reconnection. [1] J. Yoo et al., accepted for a publication in J. Geophys. Res. [2] J. Yoo et al., Phys. Plasmas 21, 055706 (2014). [3] T. Phan et al., Geophys. Res. Lett. 40, 4475 (2013). [4] M. Yamada et al., Nat. Comms. 5, 4474 (2014).

  13. Computational aspects of electronic transport in nanoscale devices

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    2008-01-01

    is for the calculation of the block tridiagonal matrix inverse of a block tridiagonal matrix in O(N) operations. This algorithm also leads to an optimal evaluation of the frequently used Caroli transmission formula. A modified wave function matching scheme is then developed which allows for a significant reduction...... in the cost of the self-energy matrix calculations when combined with an iterative eigensolver. Finally, such an iterative eigensolver is developed and implemented based of a shift-and-invert Krylov subspace approach. The method is applied to a selection of nano-scale systems and speed-ups of up to an order......This thesis is concerned with the modeling of electronic properties of nano-scale devices. In particular the computational aspects of calculating the transmission and current-voltage characteristics of Landauer-Büttiker two-probe systems are in focus. To begin with, the main existing methods...

  14. Community-driven standards-based electronic laboratory data-sharing networks.

    Science.gov (United States)

    Zarcone, Patina; Nordenberg, Dale; Meigs, Michelle; Merrick, Ulrike; Jernigan, Daniel; Hinrichs, Steven H

    2010-01-01

    Public health laboratories (PHLs) are critical components of the nation's healthcare system, serving as stewards of valuable specimens, delivering important diagnostic results to support clinical and public health programs, supporting public health policy, and conducting research. This article discusses the need for and challenges of creating standards-based data-sharing networks across the PHL community, which led to the development of the PHL Interoperability Project (PHLIP). Launched by the Association of Public Health Laboratories and the Centers for Disease Control and Prevention in September 2006, PHLIP has leveraged a unique community-based collaborative process, catalyzing national capabilities to more effectively share electronic laboratory-generated diagnostic information and bolster the nation's health security. PHLIP is emerging as a model of accelerated innovation for the fields of laboratory science, technology, and public health.

  15. Student teaching and research laboratory focusing on brain-computer interface paradigms--A creative environment for computer science students.

    Science.gov (United States)

    Rutkowski, Tomasz M

    2015-08-01

    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.

  16. Beam Dynamics Simulation of Photocathode RF Electron Gun at the PBP-CMU Linac Laboratory

    Science.gov (United States)

    Buakor, K.; Rimjaem, S.

    2017-09-01

    Photocathode radio-frequency (RF) electron guns are widely used at many particle accelerator laboratories due to high quality of produced electron beams. By using a short-pulse laser to induce the photoemission process, the electrons are emitted with low energy spread. Moreover, the photocathode RF guns are not suffered from the electron back bombardment effect, which can cause the limited electron current and accelerated energy. In this research, we aim to develop the photocathode RF gun for the linac-based THz radiation source. Its design is based on the existing gun at the PBP-CMU Linac Laboratory. The gun consists of a one and a half cell S-band standing-wave RF cavities with a maximum electric field of about 60 MV/m at the centre of the full cell. We study the beam dynamics of electrons traveling through the electromagnetic field inside the RF gun by using the particle tracking program ASTRA. The laser properties i.e. transverse size and injecting phase are optimized to obtain low transverse emittance. In addition, the solenoid magnet is applied for beam focusing and emittance compensation. The proper solenoid magnetic field is then investigated to find the optimum value for proper emittance conservation condition.

  17. Laboratory and exterior decay of wood plastic composite boards: voids analysis and computed tomography

    Science.gov (United States)

    Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight

    2016-01-01

    After exposure in the field and laboratory soil block culture testing, the void content of wood–plastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...

  18. Multi-scale data visualization for computational astrophysics and climate dynamics at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ahern, Sean; Daniel, Jamison R; Gao, Jinzhu; Ostrouchov, George; Toedte, Ross J; Wang, Chaoli

    2006-01-01

    Computational astrophysics and climate dynamics are two principal application foci at the Center for Computational Sciences (CCS) at Oak Ridge National Laboratory (ORNL). We identify a dataset frontier that is shared by several SciDAC computational science domains and present an exploration of traditional production visualization techniques enhanced with new enabling research technologies such as advanced parallel occlusion culling and high resolution small multiples statistical analysis. In collaboration with our research partners, these techniques will allow the visual exploration of a new generation of peta-scale datasets that cross this data frontier along all axes

  19. GeoBrain Computational Cyber-laboratory for Earth Science Studies

    Science.gov (United States)

    Deng, M.; di, L.

    2009-12-01

    Computational approaches (e.g., computer-based data visualization, analysis and modeling) are critical for conducting increasingly data-intensive Earth science (ES) studies to understand functions and changes of the Earth system. However, currently Earth scientists, educators, and students have met two major barriers that prevent them from being effectively using computational approaches in their learning, research and application activities. The two barriers are: 1) difficulties in finding, obtaining, and using multi-source ES data; and 2) lack of analytic functions and computing resources (e.g., analysis software, computing models, and high performance computing systems) to analyze the data. Taking advantages of recent advances in cyberinfrastructure, Web service, and geospatial interoperability technologies, GeoBrain, a project funded by NASA, has developed a prototype computational cyber-laboratory to effectively remove the two barriers. The cyber-laboratory makes ES data and computational resources at large organizations in distributed locations available to and easily usable by the Earth science community through 1) enabling seamless discovery, access and retrieval of distributed data, 2) federating and enhancing data discovery with a catalogue federation service and a semantically-augmented catalogue service, 3) customizing data access and retrieval at user request with interoperable, personalized, and on-demand data access and services, 4) automating or semi-automating multi-source geospatial data integration, 5) developing a large number of analytic functions as value-added, interoperable, and dynamically chainable geospatial Web services and deploying them in high-performance computing facilities, 6) enabling the online geospatial process modeling and execution, and 7) building a user-friendly extensible web portal for users to access the cyber-laboratory resources. Users can interactively discover the needed data and perform on-demand data analysis and

  20. Investigating student learning in upper-division laboratory courses on analog electronics

    Science.gov (United States)

    Stetzer, Mackenzie

    2017-04-01

    There are many important learning goals associated with upper-division laboratory instruction; however, until recently, relatively little work has focused on assessing the impact of these laboratory-based courses on students. As part of an ongoing, in-depth investigation of student learning in upper-division laboratory courses on analog electronics, we have been examining the extent to which students enrolled in these courses develop a robust and functional understanding of both canonical electronics topics (e.g., diode, transistor, and op-amp circuits) and foundational circuits concepts (e.g., Kirchhoff's laws and voltage division). This focus on conceptual understanding is motivated in part by a large body of research revealing significant student difficulties with simple dc circuits at the introductory level and by expectations that students finish electronics courses with a level of understanding suitable for building circuits for a variety of practical, real-world applications. We have also recently extended the scope of our investigation to include more laboratory-focused learning goals such as the development of (1) troubleshooting proficiency and (2) circuit chunking and design abilities. This talk will highlight findings from written questions and interview tasks that have been designed to probe student understanding in sufficient depth to identify conceptual and reasoning difficulties. Specific examples will be used to illustrate the ways in which this research may inform instruction in upper-division laboratory courses on analog electronics. This material is based upon work supported by the National Science Foundation under Grant Nos. DUE-1323426, DUE-1022449, DUE-0962805, and DUE-0618185.

  1. OpenLabNotes – An Electronic Laboratory Notebook Extension for OpenLabFramework

    Directory of Open Access Journals (Sweden)

    List Markus

    2015-09-01

    Full Text Available Electronic laboratory notebooks (ELNs are more accessible and reliable than their paper based alternatives and thus find widespread adoption. While a large number of commercial products is available, small- to mid-sized laboratories can often not afford the costs or are concerned about the longevity of the providers. Turning towards free alternatives, however, raises questions about data protection, which are not sufficiently addressed by available solutions. To serve as legal documents, ELNs must prevent scientific fraud through technical means such as digital signatures. It would also be advantageous if an ELN was integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to OpenLabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively closes the gap between research documentation and sample management, thus making Open- LabFramework more attractive for laboratories that seek to increase productivity through electronic data management.

  2. Video observation as a tool to analyze and modify an electronics laboratory

    Directory of Open Access Journals (Sweden)

    Pieter Coppens

    2016-08-01

    Full Text Available Laboratories are an important part of science and engineering education, especially in the field of electronics. Yet very little research into the benefits of such labs to student learning exists. In particular, it is not well known what students do and, even more importantly, think during electronics laboratories. Therefore, we conducted a study based on video observation of second year students at 3 university campuses in Belgium during a traditional lab on first order RC filters. In this laboratory, students spent the majority of their time performing measurements, while very little time was spent processing or discussing the results. This in turn resulted in hardly any time spent talking about content knowledge. Based on those observations, a new laboratory was designed that includes a preparation with a virtual oscilloscope, a black box approach during the lab session itself, and a form of quick reporting at the end of the lab. This adjusted laboratory was evaluated using the same methodology and was more successful in the sense that the students spent less time gathering measurements and more time processing and analyzing them, resulting in more content-based discussion.

  3. A Crafts-Oriented Approach to Computing in High School: Introducing Computational Concepts, Practices, and Perspectives with Electronic Textiles

    Science.gov (United States)

    Kafai, Yasmin B.; Lee, Eunkyoung; Searle, Kristin; Fields, Deborah; Kaplan, Eliot; Lui, Debora

    2014-01-01

    In this article, we examine the use of electronic textiles (e-textiles) for introducing key computational concepts and practices while broadening perceptions about computing. The starting point of our work was the design and implementation of a curriculum module using the LilyPad Arduino in a pre-AP high school computer science class. To…

  4. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    Science.gov (United States)

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  5. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source

    International Nuclear Information System (INIS)

    Kondo, K.; Okamura, M.; Yamamoto, T.; Sekine, M.

    2012-01-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  6. Stepwise approach to establishing multiple outreach laboratory information system-electronic medical record interfaces.

    Science.gov (United States)

    Pantanowitz, Liron; Labranche, Wayne; Lareau, William

    2010-05-26

    Clinical laboratory outreach business is changing as more physician practices adopt an electronic medical record (EMR). Physician connectivity with the laboratory information system (LIS) is consequently becoming more important. However, there are no reports available to assist the informatician with establishing and maintaining outreach LIS-EMR connectivity. A four-stage scheme is presented that was successfully employed to establish unidirectional and bidirectional interfaces with multiple physician EMRs. This approach involves planning (step 1), followed by interface building (step 2) with subsequent testing (step 3), and finally ongoing maintenance (step 4). The role of organized project management, software as a service (SAAS), and alternate solutions for outreach connectivity are discussed.

  7. Cane Toad or Computer Mouse? Real and Computer-Simulated Laboratory Exercises in Physiology Classes

    Science.gov (United States)

    West, Jan; Veenstra, Anneke

    2012-01-01

    Traditional practical classes in many countries are being rationalised to reduce costs. The challenge for university educators is to provide students with the opportunity to reinforce theoretical concepts by running something other than a traditional practical program. One alternative is to replace wet labs with comparable computer simulations.…

  8. Applied Electronics and Optical Laboratory: an optimized practical course for comprehensive training on optics and electronics

    Science.gov (United States)

    Wang, Kaiwei; Wang, Xiaoping

    2017-08-01

    In order to enhance the practical education and hands-on experience of optoelectronics and eliminate the overlapping contents that previously existed in the experiments section adhering to several different courses, a lab course of "Applied Optoelectronics Laboratory" has been established in the College of Optical Science and Engineering, Zhejiang University. The course consists of two sections, i.e., basic experiments and project design. In section 1, basic experiments provide hands-on experience with most of the fundamental concept taught in the corresponding courses. These basic experiments including the study of common light sources such as He-Ne laser, semiconductor laser and solid laser and LED; the testing and analysis of optical detectors based on effects of photovoltaic effect, photoconduction effect, photo emissive effect and array detectors. In section 2, the course encourages students to build a team and establish a stand-alone optical system to realize specific function by taking advantage of the basic knowledge learned from section 1. Through these measures, students acquired both basic knowledge and the practical application skills. Moreover, interest in science has been developed among students.

  9. FEATURES OF TECHNOLOGIES CREATE INTERACTIVE ELECTRONIC DOCUMENT FOR SUPPORT OF LABORATORY PRACTICAL PHYSICS

    Directory of Open Access Journals (Sweden)

    Mykola A. Meleshko

    2014-02-01

    Full Text Available The article discusses the content of the «flash-book» construct, defining its properties and possible components. There are presented some examples of components programming steps of “authoring flash – book”, considered the possibility of using such an electronic document to optimize the learning process at the Technical University in the performance of laboratory training on general physics. The technique of its using to provide individualized approach to learning and the use of various experimental base from classical to digital equipment laboratories is proposed. It was carried out the analysis of ways to improve such interactive electronic document for the development of information technology competence of engineering students.

  10. Computer Assisted Fluid Power Instruction: A Comparison of Hands-On and Computer-Simulated Laboratory Experiences for Post-Secondary Students

    Science.gov (United States)

    Wilson, Scott B.

    2005-01-01

    The primary purpose of this study was to examine the effectiveness of utilizing a combination of lecture and computer resources to train personnel to assume roles as hydraulic system technicians and specialists in the fluid power industry. This study compared computer simulated laboratory instruction to traditional hands-on laboratory instruction,…

  11. Electronic laboratory quality assurance program: A method of enhancing the prosthodontic curriculum and addressing accreditation standards.

    Science.gov (United States)

    Moghadam, Marjan; Jahangiri, Leila

    2015-08-01

    An electronic quality assurance (eQA) program was developed to replace a paper-based system and to address standards introduced by the Commission on Dental Accreditation (CODA) and to improve educational outcomes. This eQA program provides feedback to predoctoral dental students on prosthodontic laboratory steps at New York University College of Dentistry. The purpose of this study was to compare the eQA program of performing laboratory quality assurance with the former paper-based format. Fourth-year predoctoral dental students (n=334) who experienced both the paper-based and the electronic version of the quality assurance program were surveyed about their experiences. Additionally, data extracted from the eQA program were analyzed to identify areas of weakness in the curriculum. The study findings revealed that 73.8% of the students preferred the eQA program to the paper-based version. The average number of treatments that did not pass quality assurance standards was 119.5 per month. This indicated a 6.34% laboratory failure rate. Further analysis of these data revealed that 62.1% of the errors were related to fixed prosthodontic treatment, 27.9% to partial removable dental prostheses, and 10% to complete removable dental prostheses in the first 18 months of program implementation. The eQA program was favored by dental students who have experienced both electronic and paper-based versions of the system. Error type analysis can yield the ability to create customized faculty standardization sessions and refine the didactic and clinical teaching of the predoctoral students. This program was also able to link patient care activity with the student's laboratory activities, thus addressing the latest requirements of the CODA regarding the competence of graduates in evaluating laboratory work related to their patient care. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. RFID based Anti-theft System for Metropolia UAS Electronics laboratories

    OpenAIRE

    Weldemedhin, Desta

    2016-01-01

    The aim of this thesis is to study different types of RFID based anti-Theft system implementation suitable for Metropolia Electronics laboratory environment to deter theft taking into account several installation requirements. The operating frequencies of the RFID anti-theft system are from low frequency to High frequencies range and governed by different standards based on the region it is going to be implemented. The introduction of this thesis will go through Radio Frequency Identifica...

  13. Preferred names, preferred pronouns, and gender identity in the electronic medical record and laboratory information system: Is pathology ready?

    Directory of Open Access Journals (Sweden)

    Katherine L Imborek

    2017-01-01

    Full Text Available Background: Electronic medical records (EMRs and laboratory information systems (LISs commonly utilize patient identifiers such as legal name, sex, medical record number, and date of birth. There have been recommendations from some EMR working groups (e.g., the World Professional Association for Transgender Health to include preferred name, pronoun preference, assigned sex at birth, and gender identity in the EMR. These practices are currently uncommon in the United States. There has been little published on the potential impact of these changes on pathology and LISs. Methods: We review the available literature and guidelines on the use of preferred name and gender identity on pathology, including data on changes in laboratory testing following gender transition treatments. We also describe pathology and clinical laboratory challenges in the implementation of preferred name at our institution. Results: Preferred name, pronoun preference, and gender identity have the most immediate impact on the areas of pathology with direct patient contact such as phlebotomy and transfusion medicine, both in terms of interaction with patients and policies for patient identification. Gender identity affects the regulation and policies within transfusion medicine including blood donor risk assessment and eligibility. There are limited studies on the impact of gender transition treatments on laboratory tests, but multiple studies have demonstrated complex changes in chemistry and hematology tests. A broader challenge is that, even as EMRs add functionality, pathology computer systems (e.g., LIS, middleware, reference laboratory, and outreach interfaces may not have functionality to store or display preferred name and gender identity. Conclusions: Implementation of preferred name, pronoun preference, and gender identity presents multiple challenges and opportunities for pathology.

  14. Preferred Names, Preferred Pronouns, and Gender Identity in the Electronic Medical Record and Laboratory Information System: Is Pathology Ready?

    Science.gov (United States)

    Imborek, Katherine L; Nisly, Nicole L; Hesseltine, Michael J; Grienke, Jana; Zikmund, Todd A; Dreyer, Nicholas R; Blau, John L; Hightower, Maia; Humble, Robert M; Krasowski, Matthew D

    2017-01-01

    Electronic medical records (EMRs) and laboratory information systems (LISs) commonly utilize patient identifiers such as legal name, sex, medical record number, and date of birth. There have been recommendations from some EMR working groups (e.g., the World Professional Association for Transgender Health) to include preferred name, pronoun preference, assigned sex at birth, and gender identity in the EMR. These practices are currently uncommon in the United States. There has been little published on the potential impact of these changes on pathology and LISs. We review the available literature and guidelines on the use of preferred name and gender identity on pathology, including data on changes in laboratory testing following gender transition treatments. We also describe pathology and clinical laboratory challenges in the implementation of preferred name at our institution. Preferred name, pronoun preference, and gender identity have the most immediate impact on the areas of pathology with direct patient contact such as phlebotomy and transfusion medicine, both in terms of interaction with patients and policies for patient identification. Gender identity affects the regulation and policies within transfusion medicine including blood donor risk assessment and eligibility. There are limited studies on the impact of gender transition treatments on laboratory tests, but multiple studies have demonstrated complex changes in chemistry and hematology tests. A broader challenge is that, even as EMRs add functionality, pathology computer systems (e.g., LIS, middleware, reference laboratory, and outreach interfaces) may not have functionality to store or display preferred name and gender identity. Implementation of preferred name, pronoun preference, and gender identity presents multiple challenges and opportunities for pathology.

  15. Computer simulation of electronic excitation in atomic collision cascades

    Energy Technology Data Exchange (ETDEWEB)

    Duvenbeck, A.

    2007-04-05

    The impact of an keV atomic particle onto a solid surface initiates a complex sequence of collisions among target atoms in a near-surface region. The temporal and spatial evolution of this atomic collision cascade leads to the emission of particles from the surface - a process usually called sputtering. In modern surface analysis the so called SIMS technology uses the flux of sputtered particles as a source of information on the microscopical stoichiometric structure in the proximity of the bombarded surface spots. By laterally varying the bombarding spot on the surface, the entire target can be scanned and chemically analyzed. However, the particle detection, which bases upon deflection in electric fields, is limited to those species that leave the surface in an ionized state. Due to the fact that the ionized fraction of the total flux of sputtered atoms often only amounts to a few percent or even less, the detection is often hampered by rather low signals. Moreover, it is well known, that the ionization probability of emitted particles does not only depend on the elementary species, but also on the local environment from which a particle leaves the surface. Therefore, the measured signals for different sputtered species do not necessarily represent the stoichiometric composition of the sample. In the literature, this phenomenon is known as the Matrix Effect in SIMS. In order to circumvent this principal shortcoming of SIMS, the present thesis develops an alternative computer simulation concept, which treats the electronic energy losses of all moving atoms as excitation sources feeding energy into the electronic sub-system of the solid. The particle kinetics determining the excitation sources are delivered by classical molecular dynamics. The excitation energy calculations are combined with a diffusive transport model to describe the spread of excitation energy from the initial point of generation. Calculation results yield a space- and time-resolved excitation

  16. Computer simulation of laboratory leaching and washing of tank waste sludges

    International Nuclear Information System (INIS)

    Meng, C.D.; MacLean, G.T.; Landeene, B.C.

    1994-01-01

    The process simulator ESP (Environmental Simulation Program) was used to simulate laboratory caustic leaching and washing of core samples from Tanks B-110, C-109, and C-112. The results of the laboratory tests and the computer simulations are compared. The results from both, agreed reasonably well for elements contained in solid phases included in the ESP Public data bank. The use of the GEOCHEM data bank and/or a custom Hanford Data bank should improve the agreement, making ESP a useful process simulator for aqueous based processing

  17. The Role of Computer-Based Educational Laboratories in Nuclear Engineering University Programmes

    International Nuclear Information System (INIS)

    Korolev, S.A.; Kosilov, A.N.; Chernov, E.V.; Vygovskiy, S.B.

    2014-01-01

    The specialized Educational and research laboratory 'Reactor physics, control and safe operation of WWER type NPP’ is based on the computer simulator of WWER -1000 and offers the real-time monitoring of data available to the WWER -1000 NPP control room operators, and provides a possibility to investigate reactor behavior in normal and abnormal situations. The laboratory supports interactive technologies and team-based activities that enable students to build their knowledge through required gateway courses and explore problems relevant to real life situations

  18. Comparison of nonmesonic hypernuclear decay rates computed in laboratory and center-of-mass coordinates

    International Nuclear Information System (INIS)

    De Conti, C.; Barbero, C.; Galeão, A. P.; Krmpotić, F.

    2014-01-01

    In this work we compute the one-nucleon-induced nonmesonic hypernuclear decay rates of Λ 5 He, Λ 12 C and Λ 13 C using a formalism based on the independent particle shell model in terms of laboratory coordinates. To ascertain the correctness and precision of the method, these results are compared with those obtained using a formalism in terms of center-of-mass coordinates, which has been previously reported in the literature. The formalism in terms of laboratory coordinates will be useful in the shell-model approach to two-nucleon-induced transitions

  19. FORTRAN computer programs to process Savannah River Laboratory hydrogeochemical and stream-sediment reconnaissance data

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; D'Andrea, R.F. Jr.

    1980-03-01

    FORTRAN computer programs have been written to read, edit, and reformat the hydrogeochemical and stream-sediment reconnaissance data produced by Savannah River Laboratory for the National Uranium Resource Evaluation program. The data are presorted by Savannah River Laboratory into stream sediment, ground water, and stream water for each 1 0 x 2 0 quadrangle. Extraneous information is eliminated, and missing analyses are assigned a specific value (-99999.0). Negative analyses are below the detection limit; the absolute value of a negative analysis is assumed to be the detection limit

  20. Concepts and techniques: Active electronics and computers in safety-critical accelerator operation

    International Nuclear Information System (INIS)

    Frankel, R.S.

    1995-01-01

    The Relativistic Heavy Ion Collider (RHIC) under construction at Brookhaven National Laboratory, requires an extensive Access Control System to protect personnel from Radiation, Oxygen Deficiency and Electrical hazards. In addition, the complicated nature of operation of the Collider as part of a complex of other Accelerators necessitates the use of active electronic measurement circuitry to ensure compliance with established Operational Safety Limits. Solutions were devised which permit the use of modern computer and interconnections technology for Safety-Critical applications, while preserving and enhancing, tried and proven protection methods. In addition a set of Guidelines, regarding required performance for Accelerator Safety Systems and a Handbook of design criteria and rules were developed to assist future system designers and to provide a framework for internal review and regulation

  1. Concepts and techniques: Active electronics and computers in safety-critical accelerator operation

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, R.S.

    1995-12-31

    The Relativistic Heavy Ion Collider (RHIC) under construction at Brookhaven National Laboratory, requires an extensive Access Control System to protect personnel from Radiation, Oxygen Deficiency and Electrical hazards. In addition, the complicated nature of operation of the Collider as part of a complex of other Accelerators necessitates the use of active electronic measurement circuitry to ensure compliance with established Operational Safety Limits. Solutions were devised which permit the use of modern computer and interconnections technology for Safety-Critical applications, while preserving and enhancing, tried and proven protection methods. In addition a set of Guidelines, regarding required performance for Accelerator Safety Systems and a Handbook of design criteria and rules were developed to assist future system designers and to provide a framework for internal review and regulation.

  2. On the Computation of Secondary Electron Emission Models

    OpenAIRE

    Clerc, Sebastien; Dennison, JR; Hoffmann, Ryan; Abbott, Jonathon

    2006-01-01

    Secondary electron emission is a critical contributor to the charge particle current balance in spacecraft charging. Spacecraft charging simulation codes use a parameterized expression for the secondary electron (SE) yield delta(Eo) as a function of the incident electron energy Eo. Simple three-step physics models of the electron penetration, transport, and emission from a solid are typically expressed in terms of the incident electron penetration depth at normal incidence R(Eo) and the mean ...

  3. Application node system image manager subsystem within a distributed function laboratory computer system

    International Nuclear Information System (INIS)

    Stubblefield, F.W.; Beck, R.D.

    1978-10-01

    A computer system to control and acquire data from one x-ray diffraction, five neutron scattering, and four neutron diffraction experiments located at the Brookhaven National Laboratory High Flux Beam Reactor has operated in a routine manner for over three years. The computer system is configured as a network of computer processors with the processor interconnections assuming a star-like structure. At the points of the star are the ten experiment control-data acquisition computers, referred to as application nodes. At the center of the star is a shared service node which supplies a set of shared services utilized by all of the application nodes. A program development node occupies one additional point of the star. The design and implementation of a network subsystem to support development and execution of operating systems for the application nodes is described. 6 figures, 1 table

  4. Design of a Flexible Hardware Interface for Multiple Remote Electronic practical Experiments of Virtual Laboratory

    Directory of Open Access Journals (Sweden)

    Farah Said

    2012-03-01

    Full Text Available The objective of this work is to present a new design of a Flexible Hardware Interface (FHI based on PID control techniques to use in a virtual laboratory. This flexible hardware interface allows the easy implementation of different and multiple remote electronic practical experiments for undergraduate engineering classes. This interface can be viewed as opened hardware architecture to easily develop simple or complex remote experiments in the electronic domain. The philosophy of the use of this interface can also be expanded to many other domains as optic experiments for instance. It is also demonstrated that software can be developed to enable remote measurements of electronic circuits or systems using only Web site Interface. Using standard browsers (such as Internet explorer, Firefox, Chrome or Safari, different students can have a remote access to different practical experiments at a time.

  5. Electron-density-sensitive Line Ratios of Fe XIII– XVI from Laboratory Sources Compared to CHIANTI

    Science.gov (United States)

    Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.; Scotti, F.; LeBlanc, B. P.

    2018-02-01

    We present electron-density-sensitive line ratios for Fe XIII– XVI measured in the spectral wavelength range of 200–440 Å and an electron density range of (1–4) × 1013 cm‑3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrument was relatively calibrated using spectroscopic techniques in order to improve accuracy. The line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.

  6. Task scheduler and service subsystem for the common node of a distributed function laboratory computer network

    International Nuclear Information System (INIS)

    Stubblefield, F.W.; Dimmler, D.G.

    1976-01-01

    In a functionally distributed computer system, the system function is partitioned into less complex functions which reside at decreasing functional hierarchy levels. At some point in the partitioning process, all software and hardware required to implement an identified function are confined to a node of the system. The type of hardware elements and the form of the software required at the node are determined by the node function. This principle is illustrated in the case of a task scheduler for the common node of a distributed function laboratory computer system having a star-like configuration

  7. Energy-related environmental computer graphics systems in the Department of Energy Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    Computerized graphics techniques available in the Department of Energy's national laboratories for use in the environmental aspects of energy such as land use planning (including siting), and regional studies, environmental impact assessment are discussed. Areas covered include: computer graphics; mapping/cartography; image processing; animation; computer movies; satellite graphics; surface representation; land use analysis; pattern recognition; demographics analysis; ecological analysis; and biomedical applications. Descriptions of each graphics system included should be sufficient for a potential user to determine its possible use to him. Further, information is available by writing or telephoning the indicated contact person.

  8. Effects of Computer-Based Diagnostic Instruction and Non-Diagnostic Instruction on Laboratory Achievement in General Science.

    Science.gov (United States)

    McKenzie, Danny L.; Karnau, Sally A.

    The effects of computer-based diagnostic testing on the laboratory achievement of 91 preservice elementary teachers were assessed. These teachers were enrolled in one of four laboratory sections of a general science course. Intact classes were randomly assigned to one of two treatment groups. All students completed the same laboratory activities…

  9. Strengthening LLNL Missions through Laboratory Directed Research and Development in High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Willis, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-01

    High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC is the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.

  10. A low-cost computer-controlled Arduino-based educational laboratory system for teaching the fundamentals of photovoltaic cells

    International Nuclear Information System (INIS)

    Zachariadou, K; Yiasemides, K; Trougkakos, N

    2012-01-01

    We present a low-cost, fully computer-controlled, Arduino-based, educational laboratory (SolarInsight) to be used in undergraduate university courses concerned with electrical engineering and physics. The major goal of the system is to provide students with the necessary instrumentation, software tools and methodology in order to learn fundamental concepts of semiconductor physics by exploring the process of an experimental physics inquiry. The system runs under the Windows operating system and is composed of a data acquisition/control board, a power supply and processing boards, sensing elements, a graphical user interface and data analysis software. The data acquisition/control board is based on the Arduino open source electronics prototyping platform. The graphical user interface and communication with the Arduino are developed in C number sign and C++ programming languages respectively, by using IDE Microsoft Visual Studio 2010 Professional, which is freely available to students. Finally, the data analysis is performed by using the open source, object-oriented framework ROOT. Currently the system supports five teaching activities, each one corresponding to an independent tab in the user interface. SolarInsight has been partially developed in the context of a diploma thesis conducted within the Technological Educational Institute of Piraeus under the co-supervision of the Physics and Electronic Computer Systems departments’ academic staff. (paper)

  11. A low-cost computer-controlled Arduino-based educational laboratory system for teaching the fundamentals of photovoltaic cells

    Science.gov (United States)

    Zachariadou, K.; Yiasemides, K.; Trougkakos, N.

    2012-11-01

    We present a low-cost, fully computer-controlled, Arduino-based, educational laboratory (SolarInsight) to be used in undergraduate university courses concerned with electrical engineering and physics. The major goal of the system is to provide students with the necessary instrumentation, software tools and methodology in order to learn fundamental concepts of semiconductor physics by exploring the process of an experimental physics inquiry. The system runs under the Windows operating system and is composed of a data acquisition/control board, a power supply and processing boards, sensing elements, a graphical user interface and data analysis software. The data acquisition/control board is based on the Arduino open source electronics prototyping platform. The graphical user interface and communication with the Arduino are developed in C# and C++ programming languages respectively, by using IDE Microsoft Visual Studio 2010 Professional, which is freely available to students. Finally, the data analysis is performed by using the open source, object-oriented framework ROOT. Currently the system supports five teaching activities, each one corresponding to an independent tab in the user interface. SolarInsight has been partially developed in the context of a diploma thesis conducted within the Technological Educational Institute of Piraeus under the co-supervision of the Physics and Electronic Computer Systems departments’ academic staff.

  12. The CT Scanner Facility at Stellenbosch University: An open access X-ray computed tomography laboratory

    Science.gov (United States)

    du Plessis, Anton; le Roux, Stephan Gerhard; Guelpa, Anina

    2016-10-01

    The Stellenbosch University CT Scanner Facility is an open access laboratory providing non-destructive X-ray computed tomography (CT) and a high performance image analysis services as part of the Central Analytical Facilities (CAF) of the university. Based in Stellenbosch, South Africa, this facility offers open access to the general user community, including local researchers, companies and also remote users (both local and international, via sample shipment and data transfer). The laboratory hosts two CT instruments, i.e. a micro-CT system, as well as a nano-CT system. A workstation-based Image Analysis Centre is equipped with numerous computers with data analysis software packages, which are to the disposal of the facility users, along with expert supervision, if required. All research disciplines are accommodated at the X-ray CT laboratory, provided that non-destructive analysis will be beneficial. During its first four years, the facility has accommodated more than 400 unique users (33 in 2012; 86 in 2013; 154 in 2014; 140 in 2015; 75 in first half of 2016), with diverse industrial and research applications using X-ray CT as means. This paper summarises the existence of the laboratory's first four years by way of selected examples, both from published and unpublished projects. In the process a detailed description of the capabilities and facilities available to users is presented.

  13. Electronic reporting of all reference laboratory results: An important step toward a truly all-encompassing, integrated health record.

    Science.gov (United States)

    Kratz, Alexander

    2016-09-01

    Results from reference laboratories are often not easily available in electronic health records. This article describes a multi-pronged, long-term approach that includes bringing send-out tests in-house, upgrading the laboratory information system, interfacing more send-out tests and more reference laboratories, utilizing the "miscellaneous assay" option offered by some reference laboratories, and scanning all remaining paper reports from reference laboratories for display in the electronic health record. This allowed all laboratory results obtained in association with a patient visit, whether performed in-house or at a reference laboratory, to be available in the integrated electronic health record. This was achieved without manual data entry of reference laboratory results, thereby avoiding the risk of transcription errors. A fully integrated electronic health record that contains all laboratory results can be achieved by maximizing the number of interfaced reference laboratory assays and making all non-interfaced results available as scanned documents. © The Author(s) 2015.

  14. Safety leadership in the teaching laboratories of electrical and electronic engineering departments at Taiwanese Universities.

    Science.gov (United States)

    Wu, Tsung-Chih

    2008-01-01

    Safety has always been one of the principal goals in teaching laboratories. Laboratories cannot serve their educational purpose when accidents occur. The leadership of department heads has a major impact on laboratory safety, so this study discusses the factors affecting safety leadership in teaching laboratories. This study uses a mail survey to explore the perceived safety leadership in electrical and electronic engineering departments at Taiwanese universities. An exploratory factor analysis shows that there are three main components of safety leadership, as measured on a safety leadership scale: safety controlling, safety coaching, and safety caring. The descriptive statistics also reveals that among faculty, the perception of department heads' safety leadership is in general positive. A two-way MANOVA shows that there are interaction effects on safety leadership between university size and instructor age; there are also interaction effects between presence of a safety committee and faculty gender and faculty age. It is therefore necessary to assess organizational factors when determining whether individual factors are the cause of differing perceptions among faculty members. The author also presents advice on improving safety leadership for department heads at small universities and at universities without safety committees.

  15. Stepwise approach to establishing multiple outreach laboratory information system-electronic medical record interfaces

    Directory of Open Access Journals (Sweden)

    Liron Pantanowitz

    2010-01-01

    Full Text Available Clinical laboratory outreach business is changing as more physician practices adopt an electronic medical record (EMR. Physician connectivity with the laboratory information system (LIS is consequently becoming more important. However, there are no reports available to assist the informatician with establishing and maintaining outreach LIS-EMR connectivity. A four-stage scheme is presented that was successfully employed to establish unidirectional and bidirectional interfaces with multiple physician EMRs. This approach involves planning (step 1, followed by interface building (step 2 with subsequent testing (step 3, and finally ongoing maintenance (step 4. The role of organized project management, software as a service (SAAS, and alternate solutions for outreach connectivity are discussed.

  16. A Flexible Electronics Laboratory with Local and Remote Workbenches in a Grid

    Directory of Open Access Journals (Sweden)

    Thomas Lagö

    2008-05-01

    Full Text Available The Signal Processing Department (ASB at Blekinge Institute of Technology (BTH has created two online lab workbenches; one for electrical experiments and one for mechanical vibration experiments, mimicking and supplementing workbenches in traditional laboratories. For several years now, the workbenches have been used concurrently with on-site ones in regular, supervised lab sessions. The students are encouraged to use them on a 24/7 basis for example, in preparation for supervised sessions. The electronic workbench can be used simultaneously by many students. The aim of a project known as VISIR (Virtual Systems in Reality founded by ASB at the end of 2006, is to disseminate the online lab workbenches using open source technologies. The goal is to create a template for a grid laboratory where the nodes are workbenches for electrical experiments, located at different universities. This paper focuses on standards, pedagogical aspects, and measurement procedure requirements.

  17. Development and evaluation of an interactive electronic laboratory manual for cooperative learning of medical histology.

    Science.gov (United States)

    Khalil, Mohammed K; Kirkley, Debbie L; Kibble, Jonathan D

    2013-01-01

    This article describes the development of an interactive computer-based laboratory manual, created to facilitate the teaching and learning of medical histology. The overarching goal of developing the manual is to facilitate self-directed group interactivities that actively engage students during laboratory sessions. The design of the manual includes guided instruction for students to navigate virtual slides, exercises for students to monitor learning, and cases to provide clinical relevance. At the end of the laboratory activities, student groups can generate a laboratory report that may be used to provide formative feedback. The instructional value of the manual was evaluated by a questionnaire containing both closed-ended and open-ended items. Closed-ended items using a five-point Likert-scale assessed the format and navigation, instructional contents, group process, and learning process. Open-ended items assessed student's perception on the effectiveness of the manual in facilitating their learning. After implementation for two consecutive years, student evaluation of the manual was highly positive and indicated that it facilitated their learning by reinforcing and clarifying classroom sessions, improved their understanding, facilitated active and cooperative learning, and supported self-monitoring of their learning. Copyright © 2013 American Association of Anatomists.

  18. Laboratory scale electron beam system for treatment of flue gases from diesel combustion

    International Nuclear Information System (INIS)

    Siti Aiasah Hashim; Khairul Zaman Mohd Dahlan; Khomsaton Abu Bakar; Ayub Muhammad

    2004-01-01

    Laboratory scale test rig to treat simulated flue gas using electron beam technology was installed at the Alurtron EB-Irradiation Center, MINT. The experiment test rig was proposed as a result of feasibility studies conducted jointly by IAEA, MINT and TNB Research in 1997. The test rig system consists of several components, among other, diesel generator sets, pipe ducts, spray cooler, ammonia dosage system, irradiation vessel, bag filter and gas analyzers. The installation was completed and commissioned in October 2001. results from the commissioning test runs and subsequent experimental work showed that the efficiency of flue gas treatment is high. It was proven that electron beam technology might be applied in the treatment of air pollutants. This paper describes the design and work function of the individual major components as well as the full system function. Results from the initial experimental works are also presented. (Author)

  19. Plans for an on-line computer at the Finnish TRIGA Laboratory

    International Nuclear Information System (INIS)

    Junttila, J.; Tamminen, A.; Palmgren, A.

    1970-01-01

    Full text: The future plans at the Helsinki Triga reactor include an on-line computer system. The project is in its pre-planning stage, and if the financing can be arranged, the instancing is preliminarily scheduled to start in 1972. We estimate the probability of getting a computer to be 90%. The tasks of the system would be the monitoring and control of reactor power level and other operating conditions, and, on the other hand, data acquisition, analysis and apparatus control in different reactor laboratory experiments. These include the neutron diffractometer, the cold neutron facility and neutron TOF-measurements, gamma-spectroscopy, reactor noise measurements, and neutron activation analysis. It is our intention to purchase a medium-sized computer which is presently being developed by the Finnish company Oy Stroemberg Ab. This computer has been constructed by using the time sharing principle. Consequently, background jobs like testing of new programs, off-line calculations etc., can be executed simultaneously with the actual data taking and control operations. The interfering of programs with each other is prevented by dividing the programs in protected segments. Different kinds of devices and functions can be added to the basic control processing unit, e.g. an automatic interrupt unit with up to 128 priority levels, a fast floating point arithmetic unit, and the control of a direct memory access channel. An additional fact, which makes this particular computer attractive to us, is that we wish to have the manufacturer's support in designing our special applications. The initial system cost of about 120.000 US$ is considered justified for three reasons of about equal importance: 1. The operation and utilization of our reactor will become more efficient. 2. All people involved in the project will learn how to handle a rather complicated-computerization project. 3. The Finnish Government can support the development of this computer by ordering one or two

  20. The Trope Tank: A Laboratory with Material Resources for Creative Computing

    Directory of Open Access Journals (Sweden)

    Nick Montfort

    2014-12-01

    Full Text Available http://dx.doi.org/10.5007/1807-9288.2014v10n2p53 Principles for organizing and making use of a laboratory with material computing resources are articulated. This laboratory, the Trope Tank, is a facility for teaching, research, and creative collaboration and offers hardware (in working condition and set up for use from the 1970s, 1980s, and 1990s, including videogame systems, home computers, and an arcade cabinet. To aid in investigating the material history of texts, the lab has a small 19th century letterpress, a typewriter, a print terminal, and dot-matrix printers. Other resources include controllers, peripherals, manuals, books, and software on physical media. These resources are used for teaching, loaned for local exhibitions and presentations, and accessed by researchers and artists. The space is primarily a laboratory (rather than a library, studio, or museum, so materials are organized by platform and intended use. Textual information about the historical contexts of the available systems, and resources are set up to allow easy operation, and even casual use, by researchers, teachers, students, and artists.

  1. Design of Electronic Experiments Using Computer Generated Virtual Instruments

    Science.gov (United States)

    1994-03-01

    is displayed on the front panel DC Voltage meter. C LABORATORY 4 DESIGN The original Laboratory 4, Transistor ( BJT ) Characteristics, experiment...voltage relations of an NPN transistor in a common-emitter circuit configuration used in both the static and dynamic operation. 5. Transistor curve...of a BJT common emitter amplifier to stated specifications, test it for prop biasing signal amplification characteristics and operational stability. 7

  2. DEVELOPMENT OF A COMPUTER LABORATORY WORK ON ATOMIC FORCE MICROSCOPY OF BIOOBJECTS

    Directory of Open Access Journals (Sweden)

    T. A. Kuchmenko

    2015-01-01

    Full Text Available Innovations in Education are based on the use of new effective educational and information technologies, introduction of progressive forms of organization of educational process, active learning methods. The significant role in the educational system is the development and implementation of virtual labs. For the development of the contemporary science section as bioinformatics, it is necessary to extend the possibility of using computers for processing the information received with the use of modern devices. These research methods include atomic force microscopy. For Students of the specialty 06.05.01 "Bioengineering and Bioinformatics" in the SD "Basics of Nanobiotechnology" it has been developed a virtual laboratory work on "Processing of nanostructured images of biomolecules." The basis for the development of laboratory work was the handbook modified for affordable performance. Laboratory workshop allows you to briefly find out the theory of atomic force microscopy, the organization and the principle of operation of the device. It allows Students to quickly learn the using the program at the AFM image processing Nova 1.0.26.1443. In the laboratory work for the tasks solution the biological objects are selected from the images catalog, and to study and describe of these objects the software is used. Students work with images of biomolecules in the program: change them (increasing, selection of separate areas, evaluate the geometrical parameters, work with 3D-image, writing a description and compare objects with each other. The results are summarized in a table and conclusion. The effectiveness and usefulness of the created laboratory work are proved by the results of Student’s survey and tested in the final and interim certification. This kind of work is suitable for distance learning, to provide a laboratory practicum in SD "Nanotechnology", "Modern methods of analysis" for other specialties as an educational and methodological materials.

  3. Chief Editor's column/The First Electronic Computer

    Indian Academy of Sciences (India)

    At a fundamental level, however, they are all stored program computers whose architecture was originally proposed by von Neumann. Suggested Reading. N Stem. From ENIAC to UNIVAC. Digital. Press. Bedford. MA. USA. 1981. M R Williams. A History of Computing. Technology. Prentice Hall Inc. Englewood. Cliffs, U.S.A. ...

  4. Implementation and use of cloud-based electronic lab notebook in a bioprocess engineering teaching laboratory.

    Science.gov (United States)

    Riley, Erin M; Hattaway, Holly Z; Felse, P Arthur

    2017-01-01

    Electronic lab notebooks (ELNs) are better equipped than paper lab notebooks (PLNs) to handle present-day life science and engineering experiments that generate large data sets and require high levels of data integrity. But limited training and a lack of workforce with ELN knowledge have restricted the use of ELN in academic and industry research laboratories which still rely on cumbersome PLNs for recordkeeping. We used LabArchives, a cloud-based ELN in our bioprocess engineering lab course to train students in electronic record keeping, good documentation practices (GDPs), and data integrity. Implementation of ELN in the bioprocess engineering lab course, an analysis of user experiences, and our development actions to improve ELN training are presented here. ELN improved pedagogy and learning outcomes of the lab course through stream lined workflow, quick data recording and archiving, and enhanced data sharing and collaboration. It also enabled superior data integrity, simplified information exchange, and allowed real-time and remote monitoring of experiments. Several attributes related to positive user experiences of ELN improved between the two subsequent years in which ELN was offered. Student responses also indicate that ELN is better than PLN for compliance. We demonstrated that ELN can be successfully implemented in a lab course with significant benefits to pedagogy, GDP training, and data integrity. The methods and processes presented here for ELN implementation can be adapted to many types of laboratory experiments.

  5. Computational Laboratory Astrophysics to Enable Transport Modeling of Protons and Hydrogen in Stellar Winds, the ISM, and other Astrophysical Environments

    Science.gov (United States)

    Schultz, David

    As recognized prominently by the APRA program, interpretation of NASA astrophysical mission observations requires significant products of laboratory astrophysics, for example, spectral lines and transition probabilities, electron-, proton-, or heavy-particle collision data. Availability of these data underpin robust and validated models of astrophysical emissions and absorptions, energy, momentum, and particle transport, dynamics, and reactions. Therefore, measured or computationally derived, analyzed, and readily available laboratory astrophysics data significantly enhances the scientific return on NASA missions such as HST, Spitzer, and JWST. In the present work a comprehensive set of data will be developed for the ubiquitous proton-hydrogen and hydrogen-hydrogen collisions in astrophysical environments including ISM shocks, supernova remnants and bubbles, HI clouds, young stellar objects, and winds within stellar spheres, covering the necessary wide range of energy- and charge-changing channels, collision energies, and most relevant scattering parameters. In addition, building on preliminary work, a transport and reaction simulation will be developed incorporating the elastic and inelastic collision data collected and produced. The work will build upon significant previous efforts of the principal investigators and collaborators, will result in a comprehensive data set required for modeling these environments and interpreting NASA astrophysical mission observations, and will benefit from feedback from collaborators who are active users of the work proposed.

  6. Survey of biomedical and environental data bases, models, and integrated computer systems at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Murarka, I.P.; Bodeau, D.J.; Scott, J.M.; Huebner, R.H.

    1978-08-01

    This document contains an inventory (index) of information resources pertaining to biomedical and environmental projects at Argonne National Laboratory--the information resources include a data base, model, or integrated computer system. Entries are categorized as models, numeric data bases, bibliographic data bases, or integrated hardware/software systems. Descriptions of the Information Coordination Focal Point (ICFP) program, the system for compiling this inventory, and the plans for continuing and expanding it are given, and suggestions for utilizing the services of the ICFP are outlined.

  7. Survey of biomedical and environental data bases, models, and integrated computer systems at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Murarka, I.P.; Bodeau, D.J.; Scott, J.M.; Huebner, R.H.

    1978-08-01

    This document contains an inventory (index) of information resources pertaining to biomedical and environmental projects at Argonne National Laboratory--the information resources include a data base, model, or integrated computer system. Entries are categorized as models, numeric data bases, bibliographic data bases, or integrated hardware/software systems. Descriptions of the Information Coordination Focal Point (ICFP) program, the system for compiling this inventory, and the plans for continuing and expanding it are given, and suggestions for utilizing the services of the ICFP are outlined

  8. Demonstration of fundamental statistics by studying timing of electronics signals in a physics-based laboratory

    Science.gov (United States)

    Beach, Shaun E.; Semkow, Thomas M.; Remling, David J.; Bradt, Clayton J.

    2017-07-01

    We have developed accessible methods to demonstrate fundamental statistics in several phenomena, in the context of teaching electronic signal processing in a physics-based college-level curriculum. A relationship between the exponential time-interval distribution and Poisson counting distribution for a Markov process with constant rate is derived in a novel way and demonstrated using nuclear counting. Negative binomial statistics is demonstrated as a model for overdispersion and justified by the effect of electronic noise in nuclear counting. The statistics of digital packets on a computer network are shown to be compatible with the fractal-point stochastic process leading to a power-law as well as generalized inverse Gaussian density distributions of time intervals between packets.

  9. Computational fluid dynamics analysis of the Canadian deuterium uranium moderator tests at the Stern Laboratories Inc.

    Directory of Open Access Journals (Sweden)

    Hyoung Tae Kim

    2015-04-01

    Full Text Available A numerical calculation with the commercial computational fluid dynamics code CFX-14.0 was conducted for a test facility simulating the Canadian deuterium uranium moderator thermal–hydraulics. Two kinds of moderator thermal–hydraulic tests at Stern Laboratories Inc. were performed in the full geometric configuration of the Canadian deuterium uranium moderator circulating vessel, which is called a calandria tank, housing a matrix of horizontal rod bundles simulating calandria tubes. The first of these tests is the pressure drop measurement of a cross flow in the horizontal rod bundles. The other is the local temperature measurement on the cross section of the horizontal cylinder vessel simulating the calandria system. In the present study, the full geometric details of the calandria tank are incorporated in the grid generation of the computational domain to which the boundary conditions for each experiment are applied. The numerical solutions are reviewed and compared with the available test data.

  10. Computational fluid dynamics analysis of the Canadian deuterium uranium moderator tests at the stern laboratories inc

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chang, Se Myong [Kunsan National University, Gunsan (Korea, Republic of)

    2015-04-15

    A numerical calculation with the commercial computational fluid dynamics code CFX-14.0 was conducted for a test facility simulating the Canadian deuterium uranium moderator thermal hydraulics. Two kinds of moderator thermal hydraulic tests at Stern Laboratories Inc. were performed in the full geometric configuration of the Canadian deuterium uranium moderator circulating vessel, which is called a calandria tank, housing a matrix of horizontal rod bundles simulating calandria tubes. The first of these tests is the pressure drop measurement of a cross flow in the horizontal rod bundles. The other is the local temperature measurement on the cross section of the horizontal cylinder vessel simulating the calandria system. In the present study, the full geometric details of the calandria tank are incorporated in the grid generation of the computational domain to which the boundary conditions for each experiment are applied. The numerical solutions are reviewed and compared with the available test data.

  11. Computer Aided Design Tools for Extreme Environment Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to provide Computer Aided Design (CAD) tools for radiation-tolerant, wide-temperature-range digital, analog, mixed-signal, and radio-frequency...

  12. Downtime procedures for the 21st century: using a fully integrated health record for uninterrupted electronic reporting of laboratory results during laboratory information system downtimes.

    Science.gov (United States)

    Oral, Bulent; Cullen, Regina M; Diaz, Danny L; Hod, Eldad A; Kratz, Alexander

    2015-01-01

    Downtimes of the laboratory information system (LIS) or its interface to the electronic medical record (EMR) disrupt the reporting of laboratory results. Traditionally, laboratories have relied on paper-based or phone-based reporting methods during these events. We developed a novel downtime procedure that combines advance placement of orders by clinicians for planned downtimes, the printing of laboratory results from instruments, and scanning of the instrument printouts into our EMR. The new procedure allows the analysis of samples from planned phlebotomies with no delays, even during LIS downtimes. It also enables the electronic reporting of all clinically urgent results during downtimes, including intensive care and emergency department samples, thereby largely avoiding paper- and phone-based communication of laboratory results. With the capabilities of EMRs and LISs rapidly evolving, information technology (IT) teams, laboratories, and clinicians need to collaborate closely, review their systems' capabilities, and design innovative ways to apply all available IT functions to optimize patient care during downtimes. Copyright© by the American Society for Clinical Pathology.

  13. Measurement Of Electromagnetic Field Radiation In The Internet Halls And Educational Computer Laboratories

    Directory of Open Access Journals (Sweden)

    Ghanim Thiab Hasan

    2013-04-01

    Full Text Available     There are more concerns about possible health effects related to electromagnetic fields from computer monitors and other video display terminals because of the widespread using of computers in laboratories ,offices and internet halls. This research aims to detect the effect of electromagnetic field radiations in these halls and laboratories and study the successful ways of minimizing its negative  health  effect on human health. The research has been performed on both the mathematical calculations and practical measurements. The obtaining results show that the practical measurements are consistent with the  mathematical calculations results. Comparison of  these results with the safety standard guideline  limits shows that they are within the acceptable exposuring limits recommended by the International Commission on Non-Ionizing Radiation Protection  (ICNIRP and that means there is no health risk from exposure to these fields if the exposure is within the acceptable limits.     

  14. Government leadership in addressing public health priorities: strides and delays in electronic laboratory reporting in the United States.

    Science.gov (United States)

    Gluskin, Rebecca Tave; Mavinkurve, Maushumi; Varma, Jay K

    2014-03-01

    For nearly a decade, interest groups, from politicians to economists to physicians, have touted digitization of the nation's health information. One frequently mentioned benefit is the transmission of information electronically from laboratories to public health personnel, allowing them to rapidly analyze and act on these data. Switching from paper to electronic laboratory reports (ELRs) was thought to solve many public health surveillance issues, including workload, accuracy, and timeliness. However, barriers remain for both laboratories and public health agencies to realize the full benefits of ELRs. The New York City experience highlights several successes and challenges of electronic reporting and is supported by peer-reviewed literature. Lessons learned from ELR systems will benefit efforts to standardize electronic medical records reporting to health departments.

  15. Overview of European technology in computers, telecommunications, and electronics

    Science.gov (United States)

    Blackburn, J. F.

    1990-05-01

    The emergence of the personal computer, the growing use of distributed systems, and the increasing demand for supercomputers and mini-supercomputers are causing a profound impact on the European computer market. An equally profound development in telecommunications is the integration of voice, data, and images in the public network systems - the Integrated Service Digital Network (ISDN). The programs being mounted in Europe to meet the challenges of these technologies are described. The Europe-wide trends and actions with respect to computers, telecommunications, and microelectronics are discussed, and the major European collaborative programs in these fields are described. Specific attention is given to the European Strategic Programme for Research and Development in Information (ESPRIT); Research in Advanced Communications for Europe (RACE); European Research Coordination Agency (Eureka) programs; Joint European Submicron Silicon Initiative (JESSI); and the recently combined programs Basic Research Industrial Technologies in Europe/European Research in Advanced Materials (BRITE/EURAM).

  16. Monitoring space shuttle air quality using the Jet Propulsion Laboratory electronic nose

    Science.gov (United States)

    Ryan, Margaret Amy; Zhou, Hanying; Buehler, Martin G.; Manatt, Kenneth S.; Mowrey, Victoria S.; Jackson, Shannon P.; Kisor, Adam K.; Shevade, Abhijit V.; Homer, Margie L.

    2004-01-01

    A miniature electronic nose (ENose) has been designed and built at the Jet Propulsion Laboratory (JPL), Pasadena, CA, and was designed to detect, identify, and quantify ten common contaminants and relative humidity changes. The sensing array includes 32 sensing films made from polymer carbon-black composites. Event identification and quantification were done using the Levenberg-Marquart nonlinear least squares method. After successful ground training, this ENose was used in a demonstration experiment aboard STS-95 (October-November, 1998), in which the ENose was operated continuously for six days and recorded the sensors' response to the air in the mid-deck. Air samples were collected daily and analyzed independently after the flight. Changes in shuttle-cabin humidity were detected and quantified by the JPL ENose; neither the ENose nor the air samples detected any of the contaminants on the target list. The device is microgravity insensitive.

  17. Characterization of Aerodynamic Interactions with the Mars Science Laboratory Reaction Control System Using Computation and Experiment

    Science.gov (United States)

    Schoenenberger, Mark; VanNorman, John; Rhode, Matthew; Paulson, John

    2013-01-01

    On August 5 , 2012, the Mars Science Laboratory (MSL) entry capsule successfully entered Mars' atmosphere and landed the Curiosity rover in Gale Crater. The capsule used a reaction control system (RCS) consisting of four pairs of hydrazine thrusters to fly a guided entry. The RCS provided bank control to fly along a flight path commanded by an onboard computer and also damped unwanted rates due to atmospheric disturbances and any dynamic instabilities of the capsule. A preliminary assessment of the MSL's flight data from entry showed that the capsule flew much as predicted. This paper will describe how the MSL aerodynamics team used engineering analyses, computational codes and wind tunnel testing in concert to develop the RCS system and certify it for flight. Over the course of MSL's development, the RCS configuration underwent a number of design iterations to accommodate mechanical constraints, aeroheating concerns and excessive aero/RCS interactions. A brief overview of the MSL RCS configuration design evolution is provided. Then, a brief description is presented of how the computational predictions of RCS jet interactions were validated. The primary work to certify that the RCS interactions were acceptable for flight was centered on validating computational predictions at hypersonic speeds. A comparison of computational fluid dynamics (CFD) predictions to wind tunnel force and moment data gathered in the NASA Langley 31-Inch Mach 10 Tunnel was the lynch pin to validating the CFD codes used to predict aero/RCS interactions. Using the CFD predictions and experimental data, an interaction model was developed for Monte Carlo analyses using 6-degree-of-freedom trajectory simulation. The interaction model used in the flight simulation is presented.

  18. Interactive Electronic Circuit Simulation on Small Computer Systems

    Science.gov (United States)

    1979-11-01

    State Circuits, SC-11, No. 5, 730-732, Octo- ber 1976. 3. A. R. Newton and G. L. Taylor, BIASL.25, A MOS Circuit Simulator, Tenth Annual Asilo ...Analysis Time, Accuracy, and Memory Requirement Tradeoffs in SPICE2, Eleventh Annual Asilo - mar Conference on Circuits, Systems and Computers

  19. International Conference on Emerging Research in Electronics, Computer Science and Technology

    CERN Document Server

    Sheshadri, Holalu; Padma, M

    2014-01-01

    PES College of Engineering is organizing an International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT-12) in Mandya and merging the event with Golden Jubilee of the Institute. The Proceedings of the Conference presents high quality, peer reviewed articles from the field of Electronics, Computer Science and Technology. The book is a compilation of research papers from the cutting-edge technologies and it is targeted towards the scientific community actively involved in research activities.

  20. Analysis and Implementation of an Electronic Laboratory Notebook in a Biomedical Research Institute.

    Directory of Open Access Journals (Sweden)

    Santiago Guerrero

    Full Text Available Electronic laboratory notebooks (ELNs will probably replace paper laboratory notebooks (PLNs in academic research due to their advantages in data recording, sharing and security. Despite several reports describing technical characteristics of ELNs and their advantages over PLNs, no study has directly tested ELN performance among researchers. In addition, the usage of tablet-based devices or wearable technology as ELN complements has never been explored in the field. To implement an ELN in our biomedical research institute, here we first present a technical comparison of six ELNs using 42 parameters. Based on this, we chose two ELNs, which were tested by 28 scientists for a 3-month period and by 80 students via hands-on practical exercises. Second, we provide two survey-based studies aimed to compare these two ELNs (PerkinElmer Elements and Microsoft OneNote and to analyze the use of tablet-based devices. We finally explore the advantages of using wearable technology as ELNs tools. Among the ELNs tested, we found that OneNote presents almost all parameters evaluated (39/42 and both surveyed groups preferred OneNote as an ELN solution. In addition, 80% of the surveyed scientists reported that tablet-based devices improved the use of ELNs in different respects. We also describe the advantages of using OneNote application for Apple Watch as an ELN wearable complement. This work defines essential features of ELNs that could be used to improve ELN implementation and software development.

  1. Analysis and Implementation of an Electronic Laboratory Notebook in a Biomedical Research Institute.

    Science.gov (United States)

    Guerrero, Santiago; Dujardin, Gwendal; Cabrera-Andrade, Alejandro; Paz-Y-Miño, César; Indacochea, Alberto; Inglés-Ferrándiz, Marta; Nadimpalli, Hima Priyanka; Collu, Nicola; Dublanche, Yann; De Mingo, Ismael; Camargo, David

    2016-01-01

    Electronic laboratory notebooks (ELNs) will probably replace paper laboratory notebooks (PLNs) in academic research due to their advantages in data recording, sharing and security. Despite several reports describing technical characteristics of ELNs and their advantages over PLNs, no study has directly tested ELN performance among researchers. In addition, the usage of tablet-based devices or wearable technology as ELN complements has never been explored in the field. To implement an ELN in our biomedical research institute, here we first present a technical comparison of six ELNs using 42 parameters. Based on this, we chose two ELNs, which were tested by 28 scientists for a 3-month period and by 80 students via hands-on practical exercises. Second, we provide two survey-based studies aimed to compare these two ELNs (PerkinElmer Elements and Microsoft OneNote) and to analyze the use of tablet-based devices. We finally explore the advantages of using wearable technology as ELNs tools. Among the ELNs tested, we found that OneNote presents almost all parameters evaluated (39/42) and both surveyed groups preferred OneNote as an ELN solution. In addition, 80% of the surveyed scientists reported that tablet-based devices improved the use of ELNs in different respects. We also describe the advantages of using OneNote application for Apple Watch as an ELN wearable complement. This work defines essential features of ELNs that could be used to improve ELN implementation and software development.

  2. Saturday Academay of Computing and Mathematics (SACAM) at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.N. (Oak Ridge Y-12 Plant, TN (USA))

    1991-01-01

    To be part of the impending Information Age, our students and teachers must be trained in the use of computers, logic, and mathematics. The Saturday Academy of Computing and Mathematics (SACAM) represents one facet of Oak Ridge National Laboratory's (ORNL) response to meet the challenge. SACAM attempts to provide the area's best high school students with a creative program that illustrates how researchers are using computing and mathematics tools to help solve nationally recognized problems in virtually all scientific fields. Each SACAM program is designed as eight 3-hour sessions. Each session outlines a current scientific question or research area. Sessions are presented on a Saturday morning by a speaker team of two to four ORNL scientists (mentors) working in that particular field. Approximately four students and one teacher from each of ten area high schools attend the eight sessions. Session topics cover diverse problems such as climate modeling cryptography and cryptology, high-energy physics, human genome sequencing, and even the use of probability in locating people lost in a national forest. Evaluations from students, teachers, and speakers indicate that the program has been well received, and a tracking program is being undertaken to determine long-range benefits. An analysis of the program's successes and lessons learned is presented as well as resources required for the program.

  3. Conceptual model of health information ethics as a basis for computer-based instructions for electronic patient record systems.

    Science.gov (United States)

    Okada, Mihoko; Yamamoto, Kazuko; Watanabe, Kayo

    2007-01-01

    A computer-based learning system called Electronic Patient Record (EPR) Laboratory has been developed for students to acquire knowledge and practical skills of EPR systems. The Laboratory is basically for self-learning. Among the subjects dealt with in the system is health information ethics. We consider this to be of the utmost importance for personnel involved in patient information handling. The variety of material on the subject has led to a problem in dealing with it in a methodical manner. In this paper, we present a conceptual model of health information ethics developed using UML to represent the semantics and the knowledge of the domain. Based on the model, we could represent the scope of health information ethics, give structure to the learning materials, and build a control mechanism for a test, fail and review cycle. We consider that the approach is applicable to other domains.

  4. A FORTRAN program for an IBM PC compatible computer for calculating kinematical electron diffraction patterns

    International Nuclear Information System (INIS)

    Skjerpe, P.

    1989-01-01

    This report describes a computer program which is useful in transmission electron microscopy. The program is written in FORTRAN and calculates kinematical electron diffraction patterns in any zone axis from a given crystal structure. Quite large unit cells, containing up to 2250 atoms, can be handled by the program. The program runs on both the Helcules graphic card and the standard IBM CGA card

  5. Information Technology in project-organized electronic and computer technology engineering education

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard

    1999-01-01

    This paper describes the integration of IT in the education of electronic and computer technology engineers at Institute of Electronic Systems, Aalborg Uni-versity, Denmark. At the Institute Information Technology is an important tool in the aspects of the education as well as for communication...

  6. Effectiveness of an Electronic Performance Support System on Computer Ethics and Ethical Decision-Making Education

    Science.gov (United States)

    Kert, Serhat Bahadir; Uz, Cigdem; Gecu, Zeynep

    2014-01-01

    This study examined the effectiveness of an electronic performance support system (EPSS) on computer ethics education and the ethical decision-making processes. There were five different phases to this ten month study: (1) Writing computer ethics scenarios, (2) Designing a decision-making framework (3) Developing EPSS software (4) Using EPSS in a…

  7. The use of computer-aided learning in chemistry laboratory instruction

    Science.gov (United States)

    Allred, Brian Robert Tracy

    This research involves developing and implementing computer software for chemistry laboratory instruction. The specific goal is to design the software and investigate whether it can be used to introduce concepts and laboratory procedures without a lecture format. This would allow students to conduct an experiment even though they may not have been introduced to the chemical concept in their lecture course. This would also allow for another type of interaction for those students who respond more positively to a visual approach to instruction. The first module developed was devoted to using computer software to help introduce students to the concepts related to thin-layer chromatography and setting up and running an experiment. This was achieved through the use of digitized pictures and digitized video clips along with written information. A review quiz was used to help reinforce the learned information. The second module was devoted to the concept of the "dry lab". This module presented students with relevant information regarding the chemical concepts and then showed them the outcome of mixing solutions. By these observations, they were to determine the composition of unknown solutions based on provided descriptions and comparison with their written observations. The third piece of the software designed was a computer game. This program followed the first two modules in providing information the students were to learn. The difference here, though, was incorporating a game scenario for students to use to help reinforce the learning. Students were then assessed to see how much information they retained after playing the game. In each of the three cases, a control group exposed to the traditional lecture format was used. Their results were compared to the experimental group using the computer modules. Based upon the findings, it can be concluded that using technology to aid in the instructional process is definitely of benefit and students were more successful in

  8. Savannah River Laboratory DOSTOMAN code: a compartmental pathways computer model of contaminant transport

    International Nuclear Information System (INIS)

    King, C.M.; Wilhite, E.L.; Root, R.W. Jr.

    1985-01-01

    The Savannah River Laboratory DOSTOMAN code has been used since 1978 for environmental pathway analysis of potential migration of radionuclides and hazardous chemicals. The DOSTOMAN work is reviewed including a summary of historical use of compartmental models, the mathematical basis for the DOSTOMAN code, examples of exact analytical solutions for simple matrices, methods for numerical solution of complex matrices, and mathematical validation/calibration of the SRL code. The review includes the methodology for application to nuclear and hazardous chemical waste disposal, examples of use of the model in contaminant transport and pathway analysis, a user's guide for computer implementation, peer review of the code, and use of DOSTOMAN at other Department of Energy sites. 22 refs., 3 figs

  9. Computed bound and continuum electronic states of the nitrogen molecule

    Directory of Open Access Journals (Sweden)

    Tennyson Jonathan

    2015-01-01

    Full Text Available The dissociative recombination (DR of N2+ is important for processes occurring in our atmosphere. However, it is not particularly well characterised, experimentally for the vibrational ground state and, theoretically for the v ≥ 4. We use the R-matrix method to compute potential energy curves for both the bound Rydberg states of nitrogen and for quasi-bound states lying in the continuum. Use of a fine mesh of internuclear separations allows the details of avoided crossings to be determined. The prospects for using the curves as the input for DR calculations is discussed.

  10. Communication and computing technology in biocontainment laboratories using the NEIDL as a model.

    Science.gov (United States)

    McCall, John; Hardcastle, Kath

    2014-07-01

    The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, is a globally unique biocontainment research facility housing biosafety level 2 (BSL-2), BSL-3, and BSL-4 laboratories. Located in the BioSquare area at the University's Medical Campus, it is part of a national network of secure facilities constructed to study infectious diseases of major public health concern. The NEIDL allows for basic, translational, and clinical phases of research to be carried out in a single facility with the overall goal of accelerating understanding, treatment, and prevention of infectious diseases. The NEIDL will also act as a center of excellence providing training and education in all aspects of biocontainment research. Within every detail of NEIDL operations is a primary emphasis on safety and security. The ultramodern NEIDL has required a new approach to communications technology solutions in order to ensure safety and security and meet the needs of investigators working in this complex building. This article discusses the implementation of secure wireless networks and private cloud computing to promote operational efficiency, biosecurity, and biosafety with additional energy-saving advantages. The utilization of a dedicated data center, virtualized servers, virtualized desktop integration, multichannel secure wireless networks, and a NEIDL-dedicated Voice over Internet Protocol (VoIP) network are all discussed. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Development of superconductor electronics technology for high-end computing

    Science.gov (United States)

    Silver, A.; Kleinsasser, A.; Kerber, G.; Herr, Q.; Dorojevets, M.; Bunyk, P.; Abelson, L.

    2003-12-01

    This paper describes our programme to develop and demonstrate ultra-high performance single flux quantum (SFQ) VLSI technology that will enable superconducting digital processors for petaFLOPS-scale computing. In the hybrid technology, multi-threaded architecture, the computational engine to power a petaFLOPS machine at affordable power will consist of 4096 SFQ multi-chip processors, with 50 to 100 GHz clock frequency and associated cryogenic RAM. We present the superconducting technology requirements, progress to date and our plan to meet these requirements. We improved SFQ Nb VLSI by two generations, to a 8 kA cm-2, 1.25 µm junction process, incorporated new CAD tools into our methodology, demonstrated methods for recycling the bias current and data communication at speeds up to 60 Gb s-1, both on and between chips through passive transmission lines. FLUX-1 is the most ambitious project implemented in SFQ technology to date, a prototype general-purpose 8 bit microprocessor chip. We are testing the FLUX-1 chip (5K gates, 20 GHz clock) and designing a 32 bit floating-point SFQ multiplier with vector-register memory. We report correct operation of the complete stripline-connected gate library with large bias margins, as well as several larger functional units used in FLUX-1. The next stage will be an SFQ multi-processor machine. Important challenges include further reducing chip supply current and on-chip power dissipation, developing at least 64 kbit, sub-nanosecond cryogenic RAM chips, developing thermally and electrically efficient high data rate cryogenic-to-ambient input/output technology and improving Nb VLSI to increase gate density.

  12. On the use of brain-computer interfaces outside scientific laboratories toward an application in domotic environments.

    Science.gov (United States)

    Babiloni, F; Cincotti, F; Marciani, M; Salinari, S; Astolfi, L; Aloise, F; De Vico Fallani, F; Mattia, D

    2009-01-01

    Brain-computer interface (BCI) applications were initially designed to provide final users with special capabilities, like writing letters on a screen, to communicate with others without muscular effort. In these last few years, the BCI scientific community has been interested in bringing BCI applications outside the scientific laboratories, initially to provide useful applications in everyday life and in future in more complex environments, such as space. Recently, we implemented a control of a domestic environment realized with BCI applications. In the present chapter, we analyze the methodological approach employed to allow the interaction between subjects and domestic devices by use of noninvasive EEG recordings. In particular, we analyze whether the cortical activity estimated from noninvasive EEG recordings could be useful in detecting mental states related to imagined limb movements. We estimate cortical activity from high-resolution EEG recordings in a group of healthy subjects by using realistic head models. Such cortical activity was estimated in a region of interest associated with the subjects' Brodmann areas by use of depth-weighted minimum norm solutions. Results show that the use of the estimated cortical activity instead of unprocessed EEG improves the recognition of the mental states associated with limb-movement imagination in a group of healthy subjects. The BCI methodology here presented has been used in a group of disabled patients to give them suitable control of several electronic devices disposed in a three-room environment devoted to neurorehabilitation. Four of six patients were able to control several electronic devices in the domotic context with the BCI system, with a percentage of correct responses averaging over 63%.

  13. The Continuous Electron Beam Accelerator Facility: CEBAF at the Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Leemann, Chrisoph; Douglas, David R; Krafft, Geoffrey A

    2001-08-01

    The Jefferson Laboratory's superconducting radiofrequency (srf) Continuous Electron Beam Accelerator Facility (CEBAF) provides multi-GeV continuous-wave (cw) beams for experiments at the nuclear and particle physics interface. CEBAF comprises two antiparallel linacs linked by nine recirculation beam lines for up to five passes. By the early 1990s, accelerator installation was proceeding in parallel with commissioning. By the mid-1990s, CEBAF was providing simultaneous beams at different but correlated energies up to 4 GeV to three experimental halls. By 2000, with srf development having raised the average cavity gradient up to 7.5 MV/m, energies up to nearly 6 GeV were routine, at 1-150 muA for two halls and 1-100 nA for the other. Also routine are beams of >75% polarization. Physics results have led to new questions about the quark structure of nuclei, and therefore to user demand for a planned 12 GeV upgrade. CEBAF's enabling srf technology is also being applied in other projects.

  14. Laboratory spectroscopic analyses of electron irradiated alkanes and alkenes in solar system ices

    Science.gov (United States)

    Hand, K. P.; Carlson, R. W.

    2012-03-01

    We report results from laboratory experiments of 10 keV electron irradiation of thin ice films of water and short-chain hydrocarbons at ˜10-8 Torr and temperatures ranging from 70-100 K. Hydrocarbon mixtures include water with C3H8, C3H6, C4H10 (butane and isobutane), and C4H8, (1-butene and cis/trans-2-butene). The double bonds of the alkenes in our initial mixtures were rapidly destroyed or converted to single carbon bonds, covalent bonds with hydrogen, bonds with -OH (hydroxyl), bonds with oxygen (C-O), or double bonds with oxygen (carbonyl). Spectra resulting from irradiation of alkane and alkene ices are largely indistinguishable; the initial differences in film composition are destroyed and the resulting mixture includes long-chain, branched aliphatics, aldehydes, ketones, esters, and alcohols. Methane was observed as a product during radiolysis but CO was largely absent. We find that while some of the carbon is oxidized and lost to CO2 formation, some carbon is sequestered into highly refractory, long-chain aliphatic compounds that remain as a thin residue even after the ice film has been raised to standard temperature and pressure. We conclude that the high availability of hydrogen in our experiments leads to the formation of the formyl radical which then serves as the precursor for formaldehyde and polymerization of longer hydrocarbon chains.

  15. Effects of Combined Hands-on Laboratory and Computer Modeling on Student Learning of Gas Laws: A Quasi-Experimental Study

    Science.gov (United States)

    Liu, Xiufeng

    2006-01-01

    Based on current theories of chemistry learning, this study intends to test a hypothesis that computer modeling enhanced hands-on chemistry laboratories are more effective than hands-on laboratories or computer modeling laboratories alone in facilitating high school students' understanding of chemistry concepts. Thirty-three high school chemistry…

  16. FY2009 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitchell [ORNL

    2009-11-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle

  17. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.

    2008-10-15

    system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.

  18. Validating the Technology Acceptance Model in the Context of the Laboratory Information System-Electronic Health Record Interface System

    Science.gov (United States)

    Aquino, Cesar A.

    2014-01-01

    This study represents a research validating the efficacy of Davis' Technology Acceptance Model (TAM) by pairing it with the Organizational Change Readiness Theory (OCRT) to develop another extension to the TAM, using the medical Laboratory Information Systems (LIS)--Electronic Health Records (EHR) interface as the medium. The TAM posits that it is…

  19. German and U.S. laboratories to collaborate on the development of X-ray free electron lasers

    CERN Multimedia

    Calder, N

    2002-01-01

    Germany's leading particle physics and synchrotron radiation laboratory (DESY), and the U.S. Department of Energy's Stanford Linear Accelerator Center (SLAC), have signed a Memorandum of Understanding (MoU) to establish a unique international collaboration for the development of X-ray free-electron lasers (1 page).

  20. Locking Editor A Utility For Protecting Software Exercises In The Computer Laboratory Of AMA University

    Directory of Open Access Journals (Sweden)

    Paul M. Grafilon

    2017-07-01

    Full Text Available The student of AMA University persistence in computing which has the keys to providing their talent needed to fill the computer laboratory in the computing professions. A range of factors can affect a students decision to remain in a computing major or change to another major if ever they feel that computing education is difficult. This has to describe the activities in computer laboratory specifically exercises machine problems and computing case studies interacting different application programs as the basis of their skills and knowledge in programming capability. The nature of those activities addresses by using of IDE as open source in all programming applications which may result of specific intervention such as using the editor to create a source file the code blocks comments and program statements are entered and the file saved. In case there are no corrective actions taken as the editor does not know this is supposed to be a source file as opposed to notes for class. If working in a position-dependent language like Java the developer would have to be very careful about indenting. The file has to be saved with the correct file extension and in a directory where the compiler can find it. Each source file has to be compiled separately if the program has a few source files they all have to be named separately in the compiler. When invoking the compiler it has to be directed to look in the correct directory for the source files and where the output files should be stored. If there is an error in the source file the compiler will output messages and fail to complete. For any errors the developer goes back and edits the source file working from line numbers and compiler messages to fix the problems and these steps continue until all the source files compile without errors. When linking each object file is specified as being part of the build. Again the locations for the object files and executable are given. There may be errors at this point

  1. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, S., E-mail: schwarz@nscl.msu.edu; Baumann, T. M.; Kittimanapun, K.; Lapierre, A.; Snyder, A. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, East Lansing, Michigan 48824 (United States)

    2014-02-15

    The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.

  2. Electron/positron measurements obtained with the Mars Science Laboratory Radiation Assessment Detector on the surface of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, J.; Wimmer-Schweingruber, R.F.; Appel, J. [Kiel Univ. (Germany). Inst. of Experimental and Applied Physics; and others

    2016-04-01

    The Radiation Assessment Detector (RAD), on board the Mars Science Laboratory (MSL) rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. Although charged and neutral particle spectra have been investigated in detail, the electron and positron spectra have not been investigated yet. The reason for that is that they are difficult to separate from each other and because of the technical challenges involved in extracting energy spectra from the raw data. We use GEANT4 to model the behavior of the RAD instrument for electron/positron measurements.We compare Planetocosmics predictions for different atmospheric pressures and different modulation parameters Φ with the obtained RAD electron/positron measurements.We find that the RAD electron/positron measurements agree well with the spectra predicted by Planetocosmics. Both RAD measurements and Planetocosmics simulation show a dependence of the electron/positron fluxes on both atmospheric pressure and solar modulation potential.

  3. Quantum computation in semiconductor quantum dots of electron-spin asymmetric anisotropic exchange

    International Nuclear Information System (INIS)

    Hao Xiang; Zhu Shiqun

    2007-01-01

    The universal quantum computation is obtained when there exists asymmetric anisotropic exchange between electron spins in coupled semiconductor quantum dots. The asymmetric Heisenberg model can be transformed into the isotropic model through the control of two local unitary rotations for the realization of essential quantum gates. The rotations on each qubit are symmetrical and depend on the strength and orientation of asymmetric exchange. The implementation of the axially symmetric local magnetic fields can assist the construction of quantum logic gates in anisotropic coupled quantum dots. This proposal can efficiently use each physical electron spin as a logical qubit in the universal quantum computation

  4. Evaluating Electronic Customer Relationship Management Performance: Case Studies from Persian Automotive and Computer Industry

    OpenAIRE

    Safari, Narges; Safari, Fariba; Olesen, Karin; Shahmehr, Fatemeh

    2016-01-01

    This research paper investigates the influence of industry on electronic customer relationship management (e-CRM) performance. A case study approach with two cases was applied to evaluate the influence of e-CRM on customer behavioral and attitudinal loyalty along with customer pyramid. The cases covered two industries consisting of computer and automotive industries. For investigating customer behavioral loyalty and customer pyramid companies database were computed while for examining custome...

  5. Gersch-Rodriguez-Smith computation of deep inelastic electron scattering on 4He

    International Nuclear Information System (INIS)

    Viviani, M.; Kievsky, A.; Rinat, A.S.

    2003-01-01

    We compute cross sections for inclusive scattering of high-energy electrons on 4 He, based on the two lowest orders of the Gersch-Rodriguez-Smith series. The required one- and two-particle density matrices are obtained from nonrelativistic 4 He wave functions using realistic models for the nucleon-nucleon and three-nucleon interaction. The computed results for E=3.6 GeV agree well with the NE3 SLAC-Virginia data

  6. Computational Spectroscopy of Polycyclic Aromatic Hydrocarbons In Support of Laboratory Astrophysics

    Science.gov (United States)

    Tan, Xiaofeng; Salama, Farid

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are strong candidates for the molecular carriers of the unidentified infrared bands (UIR) and the diffuse interstellar bands (DIBs). In order to test the PAH hypothesis, we have systematically measured the vibronic spectra of a number of jet-cooled neutral and ionized PAHs in the near ultraviolet (UV) to visible spectral ranges using the cavity ring-down spectroscopy. To support this experimental effort, we have carried out theoretical studies of the spectra obtained in our measurements. Ab initio and (time-dependent) density.functiona1 theory calculations are performed to obtain the geometries, energetics, vibrational frequencies, transition dipole moments, and normal coordinates of these PAH molecules. Franck-Condon (FC) calculations and/or vibronic calculations are then performed using the calculated normal coordinates and vibrational frequencies to simulate the vibronic spectra. It is found that vibronic interactions in these conjugated pi electron systems are often strong enough to cause significant deviations from the Born-Oppenheimer (BO) approximation. For vibronic transitions that are well described by the BO approximation, the vibronic band profiles are simulated by calculating the rotational structure of the vibronic transitions. Vibronic oscillator strength factors are calculated in the frame of the FC approximation from the electronic transition dipole moments and the FC factors. This computational effort together with our experimental measurements provides, for the first time, powerful tools for comparison with space-based data and, hence, a powerful approach to understand the spectroscopy of interstellar PAH analogs and the nature of the UIR and DIBs.

  7. To Compare the Effects of Computer Based Learning and the Laboratory Based Learning on Students' Achievement Regarding Electric Circuits

    Science.gov (United States)

    Bayrak, Bekir; Kanli, Uygar; Kandil Ingeç, Sebnem

    2007-01-01

    In this study, the research problem was: "Is the computer based physics instruction as effective as laboratory intensive physics instruction with regards to academic success on electric circuits 9th grade students?" For this research of experimental quality the design of pre-test and post-test are applied with an experiment and a control…

  8. Comparison of a Computer Simulation Program and a Traditional Laboratory Practical Class for Teaching the Principles of Intestinal Absorption.

    Science.gov (United States)

    Dewhurst, D. G.; And Others

    1994-01-01

    Evaluates the effectiveness of an interactive computer-assisted learning program for undergraduate students that simulates experiments performed using isolated, everted sacs of rat small intestine. The program is designed to offer an alternative student-centered approach to traditional laboratory-based practical classes. Knowledge gain of students…

  9. A Low-Cost Computer-Controlled Arduino-Based Educational Laboratory System for Teaching the Fundamentals of Photovoltaic Cells

    Science.gov (United States)

    Zachariadou, K.; Yiasemides, K.; Trougkakos, N.

    2012-01-01

    We present a low-cost, fully computer-controlled, Arduino-based, educational laboratory (SolarInsight) to be used in undergraduate university courses concerned with electrical engineering and physics. The major goal of the system is to provide students with the necessary instrumentation, software tools and methodology in order to learn fundamental…

  10. The role of the personal computer in the cardiac catheterization laboratory: an integrated approach to information management

    NARCIS (Netherlands)

    Brower, R. W.; ten Katen, H. J.; Bar, F. W.; Koster, R. W.; Meester, G. T.

    1987-01-01

    A personal computer-based data management system for the cardiac catheterization laboratory is described. This is a cooperative effort on the part of the Dutch academic hospitals, through the Interuniversity Cardiology Institute, to put in place a more uniform structure for data collection and

  11. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    Science.gov (United States)

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  12. Computing and information services at the Jet Propulsion Laboratory - A management approach to a diversity of needs

    Science.gov (United States)

    Felberg, F. H.

    1984-01-01

    The Jet Propulsion Laboratory, a research and development organization with about 5,000 employees, presents a complicated set of requirements for an institutional system of computing and informational services. The approach taken by JPL in meeting this challenge is one of controlled flexibility. A central communications network is provided, together with selected computing facilities for common use. At the same time, staff members are given considerable discretion in choosing the mini- and microcomputers that they believe will best serve their needs. Consultation services, computer education, and other support functions are also provided.

  13. Computation and analysis of the electron transport properties for nitrogen and air inductively-coupled plasmas

    Science.gov (United States)

    Yu, Minghao; Kihara, Hisashi; Abe, Ken-ichi; Takahashi, Yusuke

    2015-06-01

    A relatively simple method for calculating accurately the third-order electron transport properties of nitrogen and air thermal plasmas is presented. The electron transport properties, such as the electrical conductivity and the electron thermal conductivity, were computed with the best and latest available collision cross-section data in the temperature and pressure ranges of T = 300 - 15000 K and p = 0.01 - 1.0 atm, respectively. The results obtained under the atmospheric pressure condition showed good agreements with the experimental and the high-accuracy theoretical results. The presently-introduced method has good application potential in numerical simulations of nitrogen and air inductively-coupled plasmas.

  14. Computation of electron cloud diagnostics and mitigation in the main injector

    International Nuclear Information System (INIS)

    Veitzer, S A; Cary, J R; Stoltz, P H; LeBrun, P; Spentzouris, P; Amundson, J F

    2009-01-01

    High-performance computations on Blue Gene/P at Argonne's Leadership Computing Facility have been used to determine phase shifts induced in injected RF diagnostics as a function of electron cloud density in the Main Injector. Inversion of the relationship between electron cloud parameters and induced phase shifts allows us to predict electron cloud density and evolution over many bunch periods. Long time-scale simulations using Blue Gene have allowed us to measure cloud evolution patterns under the influence of beam propagation with realistic physical parameterizations, such as elliptical beam pipe geometry, self-consistent electromagnetic fields, space charge, secondary electron emission, and the application of arbitrary external magnetic fields. Simultaneously, we are able to simulate the use of injected microwave diagnostic signals to measure electron cloud density, and the effectiveness of various mitigation techniques such as surface coating and the application of confining magnetic fields. These simulations provide a baseline for both RF electron cloud diagnostic design and accelerator fabrication in order to measure electron clouds and mitigate the adverse effects of such clouds on beam propagation.

  15. In vivo assessment of three dimensional coronary anatomy using electron beam computed tomography after intravenous contrast administration

    NARCIS (Netherlands)

    B.J.W.M. Rensing (Benno); A.H.H. Bongaerts (Alfons); R.J.M. van Geuns (Robert Jan); P.M.A. van Ooijen (Peter); M. Oudkerk (Matthijs); P.J. de Feyter (Pim)

    1999-01-01

    textabstractIntravenous coronary angiography with electron beam computed tomography (EBCT) allows for the non-invasive visualisation of coronary arteries. With dedicated computer hardware and software, three dimensional renderings of the coronary arteries can be

  16. Neuromorphic computing enabled by physics of electron spins: Prospects and perspectives

    Science.gov (United States)

    Sengupta, Abhronil; Roy, Kaushik

    2018-03-01

    “Spintronics” refers to the understanding of the physics of electron spin-related phenomena. While most of the significant advancements in this field has been driven primarily by memory, recent research has demonstrated that various facets of the underlying physics of spin transport and manipulation can directly mimic the functionalities of the computational primitives in neuromorphic computation, i.e., the neurons and synapses. Given the potential of these spintronic devices to implement bio-mimetic computations at very low terminal voltages, several spin-device structures have been proposed as the core building blocks of neuromorphic circuits and systems to implement brain-inspired computing. Such an approach is expected to play a key role in circumventing the problems of ever-increasing power dissipation and hardware requirements for implementing neuro-inspired algorithms in conventional digital CMOS technology. Perspectives on spin-enabled neuromorphic computing, its status, and challenges and future prospects are outlined in this review article.

  17. 78 FR 63492 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Science.gov (United States)

    2013-10-24

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-847] Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is...

  18. An approach to first principles electronic structure calculation by symbolic-numeric computation

    Directory of Open Access Journals (Sweden)

    Akihito Kikuchi

    2013-04-01

    Full Text Available There is a wide variety of electronic structure calculation cooperating with symbolic computation. The main purpose of the latter is to play an auxiliary role (but not without importance to the former. In the field of quantum physics [1-9], researchers sometimes have to handle complicated mathematical expressions, whose derivation seems almost beyond human power. Thus one resorts to the intensive use of computers, namely, symbolic computation [10-16]. Examples of this can be seen in various topics: atomic energy levels, molecular dynamics, molecular energy and spectra, collision and scattering, lattice spin models and so on [16]. How to obtain molecular integrals analytically or how to manipulate complex formulas in many body interactions, is one such problem. In the former, when one uses special atomic basis for a specific purpose, to express the integrals by the combination of already known analytic functions, may sometimes be very difficult. In the latter, one must rearrange a number of creation and annihilation operators in a suitable order and calculate the analytical expectation value. It is usual that a quantitative and massive computation follows a symbolic one; for the convenience of the numerical computation, it is necessary to reduce a complicated analytic expression into a tractable and computable form. This is the main motive for the introduction of the symbolic computation as a forerunner of the numerical one and their collaboration has won considerable successes. The present work should be classified as one such trial. Meanwhile, the use of symbolic computation in the present work is not limited to indirect and auxiliary part to the numerical computation. The present work can be applicable to a direct and quantitative estimation of the electronic structure, skipping conventional computational methods.

  19. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.

    2006-10-31

    technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE

  20. Electron correlation in molecules: concurrent computation Many-Body Perturbation Theory (ccMBPT) calculations using macrotasking on the NEC SX-3/44 computer

    International Nuclear Information System (INIS)

    Moncrieff, D.; Wilson, S.

    1992-06-01

    The ab initio determination of the electronic structure of molecules is a many-fermion problem involving the approximate description of the motion of the electrons in the field of fixed nuclei. It is an area of research which demands considerable computational resources but having enormous potential in fields as diverse as interstellar chemistry and drug design, catalysis and solid state chemistry, molecular biology and environmental chemistry. Electronic structure calculations almost invariably divide into two main stages: the approximate solution of an independent electron model, in which each electron moves in the average field created by the other electrons in the system, and then, the more computationally demanding determination of a series of corrections to this model, the electron correlation effects. The many-body perturbation theory expansion affords a systematic description of correlation effects, which leads directly to algorithms which are suitable for concurrent computation. We term this concurrent computation Many-Body Perturbation Theory (ccMBPT). The use of a dynamic load balancing technique on the NEC SX-3/44 computer in electron correlation calculations is investigated for the calculation of the most demanding energy component in the most accurate of contemporary ab initio studies. An application to the ground state of the nitrogen molecule is described. We also briefly discuss the extent to which the calculation of the dominant corrections to such studies can be rendered computationally tractable by exploiting both the vector processing and parallel processor capabilities of the NEC SX-3/44 computer. (author)

  1. Progress Towards a Laboratory Test of Alfvénic Electron Acceleration

    Science.gov (United States)

    Schroeder, J. W. R.; Skiff, F.; Howes, G. G.; Kletzing, C. A.; Carter, T. A.; Vincena, S.; Dorfman, S.

    2016-10-01

    Alfvén waves are thought to be a key mechanism for accelerating auroral electrons. Due to inherent limitations of single point measurements, in situ data has been unable to demonstrate a causal relationship between Alfvén waves and accelerated electrons. Electron acceleration occurs in the inner magnetosphere where the Alfvén speed is greater than the electron thermal speed. In these conditions, Alfvén waves can have an electric field aligned with the background magnetic field B0 if the scale of wave structure across B0 is comparable to the electron skin depth. In the Large Plasma Device (LaPD), Alfvén waves are launched in conditions relevant to the inner magnetosphere. The reduced parallel electron distribution function is measured using a whistler-mode wave absorption diagnostic. The linear electron response has been measured as oscillations of the electron distribution function at the Alfvén wave frequency. These measurements agree with linear theory. Current efforts focus on measuring the nonlinear acceleration of electrons that is relevant to auroral generation. We report on recent progress including experiments with a new higher-power Alfvén wave antenna with the goal of measuring nonlinear electron acceleration. This work was supported by the NSF GRFP and by Grants from NSF, DOE, and NASA. Experiments were performed at the Basic Plasma Science Facility which is funded by DOE and NSF.

  2. Capabilities and Advantages of Cloud Computing in the Implementation of Electronic Health Record.

    Science.gov (United States)

    Ahmadi, Maryam; Aslani, Nasim

    2018-01-01

    With regard to the high cost of the Electronic Health Record (EHR), in recent years the use of new technologies, in particular cloud computing, has increased. The purpose of this study was to review systematically the studies conducted in the field of cloud computing. The present study was a systematic review conducted in 2017. Search was performed in the Scopus, Web of Sciences, IEEE, Pub Med and Google Scholar databases by combination keywords. From the 431 article that selected at the first, after applying the inclusion and exclusion criteria, 27 articles were selected for surveyed. Data gathering was done by a self-made check list and was analyzed by content analysis method. The finding of this study showed that cloud computing is a very widespread technology. It includes domains such as cost, security and privacy, scalability, mutual performance and interoperability, implementation platform and independence of Cloud Computing, ability to search and exploration, reducing errors and improving the quality, structure, flexibility and sharing ability. It will be effective for electronic health record. According to the findings of the present study, higher capabilities of cloud computing are useful in implementing EHR in a variety of contexts. It also provides wide opportunities for managers, analysts and providers of health information systems. Considering the advantages and domains of cloud computing in the establishment of HER, it is recommended to use this technology.

  3. Virtual earthquake engineering laboratory with physics-based degrading materials on parallel computers

    Science.gov (United States)

    Cho, In Ho

    For the last few decades, we have obtained tremendous insight into underlying microscopic mechanisms of degrading quasi-brittle materials from persistent and near-saintly efforts in laboratories, and at the same time we have seen unprecedented evolution in computational technology such as massively parallel computers. Thus, time is ripe to embark on a novel approach to settle unanswered questions, especially for the earthquake engineering community, by harmoniously combining the microphysics mechanisms with advanced parallel computing technology. To begin with, it should be stressed that we placed a great deal of emphasis on preserving clear meaning and physical counterparts of all the microscopic material models proposed herein, since it is directly tied to the belief that by doing so, the more physical mechanisms we incorporate, the better prediction we can obtain. We departed from reviewing representative microscopic analysis methodologies, selecting out "fixed-type" multidirectional smeared crack model as the base framework for nonlinear quasi-brittle materials, since it is widely believed to best retain the physical nature of actual cracks. Microscopic stress functions are proposed by integrating well-received existing models to update normal stresses on the crack surfaces (three orthogonal surfaces are allowed to initiate herein) under cyclic loading. Unlike the normal stress update, special attention had to be paid to the shear stress update on the crack surfaces, due primarily to the well-known pathological nature of the fixed-type smeared crack model---spurious large stress transfer over the open crack under nonproportional loading. In hopes of exploiting physical mechanism to resolve this deleterious nature of the fixed crack model, a tribology-inspired three-dimensional (3d) interlocking mechanism has been proposed. Following the main trend of tribology (i.e., the science and engineering of interacting surfaces), we introduced the base fabric of solid

  4. Computer and laboratory simulation in the teaching of neonatal nursing: innovation and impact on learning.

    Science.gov (United States)

    Fonseca, Luciana Mara Monti; Aredes, Natália Del' Angelo; Fernandes, Ananda Maria; Batalha, Luís Manuel da Cunha; Apóstolo, Jorge Manuel Amado; Martins, José Carlos Amado; Rodrigues, Manuel Alves

    2016-10-10

    to evaluate the cognitive learning of nursing students in neonatal clinical evaluation from a blended course with the use of computer and laboratory simulation; to compare the cognitive learning of students in a control and experimental group testing the laboratory simulation; and to assess the extracurricular blended course offered on the clinical assessment of preterm infants, according to the students. a quasi-experimental study with 14 Portuguese students, containing pretest, midterm test and post-test. The technologies offered in the course were serious game e-Baby, instructional software of semiology and semiotechnique, and laboratory simulation. Data collection tools developed for this study were used for the course evaluation and characterization of the students. Nonparametric statistics were used: Mann-Whitney and Wilcoxon. the use of validated digital technologies and laboratory simulation demonstrated a statistically significant difference (p = 0.001) in the learning of the participants. The course was evaluated as very satisfactory for them. The laboratory simulation alone did not represent a significant difference in the learning. the cognitive learning of participants increased significantly. The use of technology can be partly responsible for the course success, showing it to be an important teaching tool for innovation and motivation of learning in healthcare. avaliar a aprendizagem cognitiva de estudantes de enfermagem na avaliação clínica neonatal a partir de um curso semipresencial com uso de simulação por computador e em laboratório; comparar a aprendizagem cognitiva dos estudantes em grupo controle e experimental ao testar a simulação em laboratório; e avaliar o curso semipresencial extracurricular oferecido sobre avaliação clínica do bebê pré-termo, segundo os estudantes. estudo quase-experimental com 14 estudantes portugueses contendo pré-teste, teste intermediário e pós-teste. As tecnologias oferecidas no curso foram serious

  5. Reconciliation of the cloud computing model with US federal electronic health record regulations.

    Science.gov (United States)

    Schweitzer, Eugene J

    2012-01-01

    Cloud computing refers to subscription-based, fee-for-service utilization of computer hardware and software over the Internet. The model is gaining acceptance for business information technology (IT) applications because it allows capacity and functionality to increase on the fly without major investment in infrastructure, personnel or licensing fees. Large IT investments can be converted to a series of smaller operating expenses. Cloud architectures could potentially be superior to traditional electronic health record (EHR) designs in terms of economy, efficiency and utility. A central issue for EHR developers in the US is that these systems are constrained by federal regulatory legislation and oversight. These laws focus on security and privacy, which are well-recognized challenges for cloud computing systems in general. EHRs built with the cloud computing model can achieve acceptable privacy and security through business associate contracts with cloud providers that specify compliance requirements, performance metrics and liability sharing.

  6. Advanced Materials and Electronic Devices Research, Development, Test, and Evaluation Laboratories within DoD

    National Research Council Canada - National Science Library

    1994-01-01

    ... or other DoD Components. The overall audit objective was to determine whether DoD was making redundant investments in Advanced Materials and Microelectronics Research and Development Laboratories...

  7. An Investigative Laboratory Course in Human Physiology Using Computer Technology and Collaborative Writing

    Science.gov (United States)

    FitzPatrick, Kathleen A.

    2004-01-01

    Active investigative student-directed experiences in laboratory science are being encouraged by national science organizations. A growing body of evidence from classroom assessment supports their effectiveness. This study describes four years of implementation and assessment of an investigative laboratory course in human physiology for 65…

  8. EXPERIENCE OF THE ORGANIZATION OF VIRTUAL LABORATORIES ON THE BASIS OF TECHNOLOGIES OF CLOUD COMPUTING

    Directory of Open Access Journals (Sweden)

    V. Oleksyuk

    2014-06-01

    Full Text Available The article investigated the concept of «virtual laboratory». This paper describes models of deploying of cloud technologies in IT infrastructure. The hybrid model is most recent for higher educational institution. The author suggests private cloud platforms to deploying the virtual laboratory. This paper describes the experience of the deployment enterprise cloud in IT infrastructure of Department of Physics and Mathematics of Ternopil V. Hnatyuk National Pedagogical University. The object of the research are virtual laboratories as components of IT infrastructure of higher education. The subject of the research are clouds as base of deployment of the virtual laboratories. Conclusions. The use of cloud technologies in the development virtual laboratories of the is an actual and need of the development. The hybrid model is the most appropriate in the deployment of cloud infrastructure of higher educational institution. It is reasonable to use the private (Cloudstack, Eucalyptus, OpenStack cloud platform in the universities.

  9. Power Electronics Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Waye, Scot

    2015-06-10

    Presentation containing an update for the Power Electronics Thermal Management project in the Electric Drive Train task funded by the Vehicle Technology Office of DOE. This presentation outlines the purpose, plan, and results of research thus far for cooling and material selection strategies to manage heat in power electronic assemblies such as inverters, converters, and chargers.

  10. Electron beam computed tomography and ventilation perfusion scintigraphy in the diagnosis of pulmonary embolism

    International Nuclear Information System (INIS)

    Kettner, Beatrice I.; Sandrock, Dirk; Reisinger, Ingrid; Munz, Dieter L.; Enzweiler, Christian N.H.

    2002-01-01

    The purpose of this study, performed in patients with suspected pulmonary embolism (PE), was to compare V/Q scans and electron beam computed tomography (CT) scans on a patient-by-patient and segment-by-segment basis. Both a segment-based and a lobe-based analysis was performed in those patients positive for PE. The diagnosis of PE was assumed on the basis of a mismatch at V/Q scanning or a filling defect in a pulmonary vessel at contrast-enhanced electron beam CT. In 37/45 patients (24 female, 21 male, 58±16 years) with suspected PE, the diagnosis of PE was confirmed or excluded by both modalities, resulting in a correlation of 82% between electron beam CT and V/Q scanning. In the 28 patients positive for PE according to one or both modalities, 504 segments were evaluated. Of these 504 segments, 248 (nearly 50%) showed perfusion defects on V/Q scans, of which only 90 (36%) displayed emboli at electron beam CT. Overall, a total of only 135 of the 504 segments (27%) were abnormal at electron beam CT. More than 50% of the patients with discrepant results did not show an embolus at electron beam CT. It is concluded that there is a good correlation (82%) between V/Q scanning and electron beam CT on a patient-by-patient basis but a markedly less good correlation (62%) in a segment-based analysis. (orig.)

  11. Directions of use of electronic resources at training to computer science of students of a teacher training college

    OpenAIRE

    Светлана Анатольева Баженова

    2009-01-01

    Article is devoted questions of use of electronic resources at training to computer science in a teacher training college, principles of pedagogical expediency of use of electronic resources at training are specified computer science and positive aspects of such use for different forms of work of the student and the teacher are allocated.

  12. Retrospective radiation dosimetry using OSL of electronic components: Results of an inter-laboratory comparison

    International Nuclear Information System (INIS)

    Bassinet, C.; Woda, C.; Bortolin, E.; Della Monaca, S.; Fattibene, P.; Quattrini, M.C.; Bulanek, B.; Ekendahl, D.; Burbidge, C.I.; Cauwels, V.; Kouroukla, E.; Geber-Bergstrand, T.; Mrozik, A.; Marczewska, B.; Bilski, P.; Sholom, S.; McKeever, S.W.S.; Smith, R.W.; Veronese, I.

    2014-01-01

    In the framework of the EU-FP7 MULTIBIODOSE project, two protocols using OSL of resistors removed from the circuit board of mobile phones were developed with the aim to use the resistors as fortuitous dosimeters in the event of a large scale radiological accident. This paper presents the results of an inter-laboratory comparison carried out under the umbrella of EURADOS. The two aims of this exercise were the validation of the MULTIBIODOSE protocols by a large number of laboratories and the dissemination of the method with the objective of preparing the basis for a network that could increase Europe's response capacity in the case of a mass casualty radiological emergency. Twelve institutes from eleven European countries and one institute from the USA, with various degrees of expertise in OSL dosimetry, took part in the OSL inter-laboratory comparison. Generally, a good agreement within uncertainties was observed between estimated and nominal doses. - Highlights: • Resistors in mobile phones could function as reliable fortuitous dosimeters in case of a large scale radiological accident. • Two OSL protocols were validated by an inter-laboratory comparison. • It is feasible to set up a network of laboratories so as to increase the measurement capacity

  13. Animal laboratory, interactive and computer based learning, in enhancing basic concepts in physiology: an outlook of 481 undergraduate medical students.

    Science.gov (United States)

    Shore, Najla; Khawar, Shireen; Qutab, Miraa; Ayub, Muhammad

    2013-01-01

    Laboratory exercises are intended to illustrate concepts and add an active learning component to courses. Since 1980s, there has been a decline in animal laboratories in medical physiology courses. Other cost-effective non-aninmal alternatives are being sought. The present study was designed to find out the students' opinion regarding the animal versus computer lab and whether innovative teaching methodologies helped students achieve their goals. Opinions of 481 female in medical students of 2nd and 3rd year MBBS were included in the study. A questionnaire based on animal/computer based experiments and new teaching methodologies in physiology was voluntarily filled in by the students. Majority of students immensely benefited from both the animal lab and other teaching methodologies. Although computer based learning is considered effective in helping students acquire basic concepts, there is evidence that some students acquire a more thorough understanding of the material through more advanced and challenging experience of an animal laboratory. The fact that such labs as well various teaching methods offer distinct educational advantages should be taken into account when courses are designed.

  14. EEDL. Evaluated Electron Data Library of the Lawrence Livermore National Laboratory, USA. Summary documentation

    International Nuclear Information System (INIS)

    Lemmel, H.D.; Perkins, S.T.; Cullen, D.E.; Seltzer, S.M.

    1994-01-01

    A brief summary documentary of the LLNL Evaluated Electron-Interaction Data Library EEDL is given. The data library is available from the IAEA Nuclear Data Section on magnetic tape, costfree, upon request. (author)

  15. Computation of the National Renewable Energy Laboratory Phase-VI rotor in pitch motion during standstill

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Schreck, S.

    2012-01-01

    Previously, computational fluid dynamics (CFD) computations of dynamic stall on wind turbine blades have been performed for stand still conditions with moderate success by among others the present authors. In the present work, numerical investigations are performed to illustrate the possibilities...... detached-eddy simulation computations. The investigation indicates that detailed information and fair agreement with measurements can be obtained.Copyright © 2011 John Wiley & Sons, Ltd....

  16. Computing the Effects of Strain on Electronic States: A Survey of Methods and Issues

    Science.gov (United States)

    2012-12-01

    covered in this report. In section 6, we show computed comparisons of the different methods using models of GaAs, InAs, and aluminum arsenide (AlAs...constants called the Luttinger parameters. Kane (83) studied the band structure of indium antimonide (InSb), whose electronic band structure resembles...Band Structure of Indium Antimonide . J. of Phys. and Chem. of Solids 1957, 1, 249–261. 84. Vurgaftman, I. J.; Meyer, R.; Ram-Mohan, L. R. Band

  17. Plant Layout Analysis by Computer Simulation for Electronic Manufacturing Service Plant

    OpenAIRE

    Visuwan D.; Phruksaphanrat B

    2014-01-01

    In this research, computer simulation is used for Electronic Manufacturing Service (EMS) plant layout analysis. The current layout of this manufacturing plant is a process layout, which is not suitable due to the nature of an EMS that has high-volume and high-variety environment. Moreover, quick response and high flexibility are also needed. Then, cellular manufacturing layout design was determined for the selected group of products. Systematic layout planning (SLP) was used to analyze and de...

  18. Control programs for proportional chambers and electronics on-line with the M-6000 computer

    International Nuclear Information System (INIS)

    Baranov, V.A.

    1978-01-01

    Control programs for hardware in CAMAC standard, for proportional chamber electronics and proportional chambers themselves on-line with the M-6000 computer are described. A subprogram has been developed which enables to realize all functions possible with the KK004 controller. Programs intended to recognize errors in hardware operation were developed together with those providing for a possibility to take curves of delayed coincidences at different strobe widths, and to determine a part of clusters depending on the strobe delay time

  19. Computer control of the beam transport system of the Chalk River electron test accelerator

    International Nuclear Information System (INIS)

    McMichael, G.E.; Kidner, S.H.; Fraser, J.S.

    1977-05-01

    The beam transport system of the Chalk River Electron Test Accelerator comprises steering coils and solenoidal focusing magnets driven by voltage-programmed, current-regulated power supplies. This report describes the beam transport and beam diagnostics systems presently in use. The computer controls all beam transport magnets from a single, allocatable control knob. The system is currently being expanded to two knobs and two readouts. (author)

  20. A computer-controlled electronic system for the ultrasonic NDT of components for nuclear power stations

    International Nuclear Information System (INIS)

    Rehrmann, M.; Harbecke, D.

    1987-01-01

    The paper describes an automatic ultrasonic testing system combined with a computer-controlled electronics system, called IMPULS I, for the non-destructive testing of components of nuclear reactors. The system can be used for both in-service inspection and for inspection during the manufacturing process. IMPUL I has more functions and less components than conventional ultrasonic systems, and the system gives good reproducible test results and is easy to operate. (U.K.)

  1. A Simple and Resource-efficient Setup for the Computer-aided Drug Design Laboratory.

    Science.gov (United States)

    Moretti, Loris; Sartori, Luca

    2016-10-01

    Undertaking modelling investigations for Computer-Aided Drug Design (CADD) requires a proper environment. In principle, this could be done on a single computer, but the reality of a drug discovery program requires robustness and high-throughput computing (HTC) to efficiently support the research. Therefore, a more capable alternative is needed but its implementation has no widespread solution. Here, the realization of such a computing facility is discussed, from general layout to technical details all aspects are covered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. BioEM: GPU-accelerated computing of Bayesian inference of electron microscopy images

    Science.gov (United States)

    Cossio, Pilar; Rohr, David; Baruffa, Fabio; Rampp, Markus; Lindenstruth, Volker; Hummer, Gerhard

    2017-01-01

    In cryo-electron microscopy (EM), molecular structures are determined from large numbers of projection images of individual particles. To harness the full power of this single-molecule information, we use the Bayesian inference of EM (BioEM) formalism. By ranking structural models using posterior probabilities calculated for individual images, BioEM in principle addresses the challenge of working with highly dynamic or heterogeneous systems not easily handled in traditional EM reconstruction. However, the calculation of these posteriors for large numbers of particles and models is computationally demanding. Here we present highly parallelized, GPU-accelerated computer software that performs this task efficiently. Our flexible formulation employs CUDA, OpenMP, and MPI parallelization combined with both CPU and GPU computing. The resulting BioEM software scales nearly ideally both on pure CPU and on CPU+GPU architectures, thus enabling Bayesian analysis of tens of thousands of images in a reasonable time. The general mathematical framework and robust algorithms are not limited to cryo-electron microscopy but can be generalized for electron tomography and other imaging experiments.

  3. Radio frequency single electron transistors: readout for a solid state quantum computer

    International Nuclear Information System (INIS)

    Buehler, T.M.; Reilly, D.J.; Starrett, R.P.; Brenner, R.; Hamilton, A.R.; Clark, R.G.; Court, N.A.; Dzurak, A.S.

    2002-01-01

    Full text: Quantum computers promise unprecedented computational power if they can be scaled to a large number of qubits. Essential to the operation of such a machine is readout: the determination of the final quantum state of the system. In the case of the silicon based solid state architecture proposed by Kane, readout is achieved by determining the direction of a single electron spin via the detection of a spin dependent tunneling event. This requires a highly sensitive electrometer that can detect the motion of a single electron in a timescale less than the spin relaxation time. The Radio Frequency Single Electron Transistor (RF-SET) is a device that possesses both the charge sensitivity (oq ∼ 10 -6 / √Hz), approaching the quantum limit) and fast response required to perform readout in such a system. Here we describe the fabrication and operation of transmission mode RF-SETs and discuss the application of these novel electrometers in the readout of a solid state quantum computer

  4. Maximal thickness of the normal human pericardium assessed by electron-beam computed tomography

    International Nuclear Information System (INIS)

    Delille, J.P.; Hernigou, A.; Sene, V.; Chatellier, G.; Boudeville, J.C.; Challande, P.; Plainfosse, M.C.

    1999-01-01

    The purpose of this study was to determine the maximal value of normal pericardial thickness with an electron-beam computed tomography unit allowing fast scan times of 100 ms to reduce cardiac motion artifacts. Electron-beam computed tomography was performed in 260 patients with hypercholesterolemia and/or hypertension, as these pathologies have no effect on pericardial thickness. The pixel size was 0.5 mm. Measurements could be performed in front of the right ventricle, the right atrioventricular groove, the right atrium, the left ventricle, and the interventricular groove. Maximal thickness of normal pericardium was defined at the 95th percentile. Inter-observer and intra-observer reproducibility studies were assessed from additional CT scans by the Bland and Altman method [24]. The maximal thickness of the normal pericardium was 2 mm for 95 % of cases. For the reproducibility studies, there was no significant relationship between the inter-observer and intra-observer measurements, but all pericardial thickness measurements were ≤ 1.6 mm. Using electron-beam computed tomography, which assists in decreasing substantially cardiac motion artifacts, the threshold of detection of thickened pericardium is statistically established as being 2 mm for 95 % of the patients with hypercholesterolemia and/or hypertension. However, the spatial resolution available prevents a reproducible measure of the real thickness of thin pericardium. (orig.)

  5. Maximal thickness of the normal human pericardium assessed by electron-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Delille, J.P.; Hernigou, A.; Sene, V.; Chatellier, G.; Boudeville, J.C.; Challande, P.; Plainfosse, M.C. [Service de Radiologie Centrale, Hopital Broussais, Paris (France)

    1999-08-01

    The purpose of this study was to determine the maximal value of normal pericardial thickness with an electron-beam computed tomography unit allowing fast scan times of 100 ms to reduce cardiac motion artifacts. Electron-beam computed tomography was performed in 260 patients with hypercholesterolemia and/or hypertension, as these pathologies have no effect on pericardial thickness. The pixel size was 0.5 mm. Measurements could be performed in front of the right ventricle, the right atrioventricular groove, the right atrium, the left ventricle, and the interventricular groove. Maximal thickness of normal pericardium was defined at the 95th percentile. Inter-observer and intra-observer reproducibility studies were assessed from additional CT scans by the Bland and Altman method [24]. The maximal thickness of the normal pericardium was 2 mm for 95 % of cases. For the reproducibility studies, there was no significant relationship between the inter-observer and intra-observer measurements, but all pericardial thickness measurements were {<=} 1.6 mm. Using electron-beam computed tomography, which assists in decreasing substantially cardiac motion artifacts, the threshold of detection of thickened pericardium is statistically established as being 2 mm for 95 % of the patients with hypercholesterolemia and/or hypertension. However, the spatial resolution available prevents a reproducible measure of the real thickness of thin pericardium. (orig.) With 6 figs., 1 tab., 31 refs.

  6. Soft Electronics Enabled Ergonomic Human-Computer Interaction for Swallowing Training.

    Science.gov (United States)

    Lee, Yongkuk; Nicholls, Benjamin; Sup Lee, Dong; Chen, Yanfei; Chun, Youngjae; Siang Ang, Chee; Yeo, Woon-Hong

    2017-04-21

    We introduce a skin-friendly electronic system that enables human-computer interaction (HCI) for swallowing training in dysphagia rehabilitation. For an ergonomic HCI, we utilize a soft, highly compliant ("skin-like") electrode, which addresses critical issues of an existing rigid and planar electrode combined with a problematic conductive electrolyte and adhesive pad. The skin-like electrode offers a highly conformal, user-comfortable interaction with the skin for long-term wearable, high-fidelity recording of swallowing electromyograms on the chin. Mechanics modeling and experimental quantification captures the ultra-elastic mechanical characteristics of an open mesh microstructured sensor, conjugated with an elastomeric membrane. Systematic in vivo studies investigate the functionality of the soft electronics for HCI-enabled swallowing training, which includes the application of a biofeedback system to detect swallowing behavior. The collection of results demonstrates clinical feasibility of the ergonomic electronics in HCI-driven rehabilitation for patients with swallowing disorders.

  7. Soft Electronics Enabled Ergonomic Human-Computer Interaction for Swallowing Training

    Science.gov (United States)

    Lee, Yongkuk; Nicholls, Benjamin; Sup Lee, Dong; Chen, Yanfei; Chun, Youngjae; Siang Ang, Chee; Yeo, Woon-Hong

    2017-04-01

    We introduce a skin-friendly electronic system that enables human-computer interaction (HCI) for swallowing training in dysphagia rehabilitation. For an ergonomic HCI, we utilize a soft, highly compliant (“skin-like”) electrode, which addresses critical issues of an existing rigid and planar electrode combined with a problematic conductive electrolyte and adhesive pad. The skin-like electrode offers a highly conformal, user-comfortable interaction with the skin for long-term wearable, high-fidelity recording of swallowing electromyograms on the chin. Mechanics modeling and experimental quantification captures the ultra-elastic mechanical characteristics of an open mesh microstructured sensor, conjugated with an elastomeric membrane. Systematic in vivo studies investigate the functionality of the soft electronics for HCI-enabled swallowing training, which includes the application of a biofeedback system to detect swallowing behavior. The collection of results demonstrates clinical feasibility of the ergonomic electronics in HCI-driven rehabilitation for patients with swallowing disorders.

  8. Analytical and numerical methods for computing electron partial intensities in the case of multilayer systems

    International Nuclear Information System (INIS)

    Afanas’ev, Victor P.; Efremenko, Dmitry S.; Kaplya, Pavel S.

    2016-01-01

    Highlights: • The OKG-model is extended to finite thickness layers. • An efficient matrix technique for computing partial intensities is proposed. • Good agreement is obtained for computed partial intensities and experimental data. - Abstract: We present two novel methods for computing energy spectra and angular distributions of electrons emitted from multi-layer solids. They are based on the Ambartsumian–Chandrasekhar (AC) equations obtained by using the invariant imbedding method. The first method is analytical and relies on a linearization of AC equations and the use of the small-angle approximation. The corresponding solution is in good agreement with that computed by using the Oswald–Kasper–Gaukler (OKG) model, which is extended to the case of layers of finite thickness. The second method is based on the discrete ordinate formalism and relies on a transformation of the AC equations to the algebraic Ricatti and Lyapunov equations, which are solved by using the backward differential formula. Unlike the previous approach, this method can handle both linear and nonlinear equations. We analyze the applicability of the proposed methods to practical problems of computing REELS spectra. To demonstrate the efficiency of the proposed methods, several computational examples are considered. Obtained numerical and analytical solutions show good agreement with the experimental data and Monte-Carlo simulations. In addition, the impact of nonlinear terms in the Ambartsumian–Chandrasekhar equations is analyzed.

  9. Process for selecting NEAMS applications for access to Idaho National Laboratory high performance computing resources

    Energy Technology Data Exchange (ETDEWEB)

    Michael Pernice

    2010-09-01

    INL has agreed to provide participants in the Nuclear Energy Advanced Mod- eling and Simulation (NEAMS) program with access to its high performance computing (HPC) resources under sponsorship of the Enabling Computational Technologies (ECT) program element. This report documents the process used to select applications and the software stack in place at INL.

  10. 2016 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Runnels, Scott Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bachrach, Harrison Ian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlson, Nils [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Collier, Angela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dumas, William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fankell, Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ferris, Natalie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzalez, Francisco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Griffith, Alec [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guston, Brandon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kenyon, Connor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Benson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mookerjee, Adaleena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parkinson, Christian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peck, Hailee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peters, Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poondla, Yasvanth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, Brandon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shaffer, Nathaniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trettel, Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valaitis, Sonata Mae [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venzke, Joel Aaron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Black, Mason [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demircan, Samet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holladay, Robert Tyler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-22

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transport and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it.

  11. 2015 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Runnels, Scott Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caldwell, Wendy [Arizona State Univ., Mesa, AZ (United States); Brown, Barton Jed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pederson, Clark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Justin [Univ. of California, Santa Cruz, CA (United States); Burrill, Daniel [Univ. of Vermont, Burlington, VT (United States); Feinblum, David [Univ. of California, Irvine, CA (United States); Hyde, David [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Levick, Nathan [Univ. of New Mexico, Albuquerque, NM (United States); Lyngaas, Isaac [Florida State Univ., Tallahassee, FL (United States); Maeng, Brad [Univ. of Michigan, Ann Arbor, MI (United States); Reed, Richard LeRoy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarno-Smith, Lois [Univ. of Michigan, Ann Arbor, MI (United States); Shohet, Gil [Univ. of Illinois, Urbana-Champaign, IL (United States); Skarda, Jinhie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Josey [Missouri Univ. of Science and Technology, Rolla, MO (United States); Zeppetello, Lucas [Columbia Univ., New York, NY (United States); Grossman-Ponemon, Benjamin [Stanford Univ., CA (United States); Bottini, Joseph Larkin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Loudon, Tyson Shane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); VanGessel, Francis Gilbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nagaraj, Sriram [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Price, Jacob [Univ. of Washington, Seattle, WA (United States)

    2015-10-15

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transport and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it. This report includes both the background for the program and the reports from the students.

  12. Computer mapping software and geographic data base development: Oak Ridge National Laboratory user experience

    International Nuclear Information System (INIS)

    Honea, B.; Johnson, P.

    1978-01-01

    As users of computer display tools, our opinion is that the researcher's needs should guide and direct the computer scientist's development of mapping software and data bases. Computer graphic techniques developed for the sake of the computer graphics community tend to be esoteric and rarely suitable for user problems. Two types of users exist for computer graphic tools: the researcher who is generally satisfied with abstract but accurate displays for analysis purposes and the decision maker who requires synoptic and easily comprehended displays relevant to the issues he or she must address. Computer mapping software and data bases should be developed for the user in a generalized and standardized format for ease in transferring and to facilitate the linking or merging with larger analysis systems. Maximum utility of computer mapping tools is accomplished when linked to geographic information and analysis systems. Computer graphic techniques have varying degrees of utility depending upon whether they are used for data validation, analysis procedures or presenting research results

  13. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  14. Advanced R ampersand D for electron and photon beams at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Kirk, H.G.

    1989-08-01

    The Brookhaven Accelerator Test Facility consists of a 50-MeV linear accelerator and a laser system capable of generating short (a few picoseconds) laser pulses at both UV (266 nm) and infrared (10 μm) wavelengths. With these systems in place, the ATF has unique capabilities for the study of fundamental interactions between charged-particle beams and intense electromagnetic radiation. The principal research goals of the Accelerator Test Facility (ATF) axe the following. Laser Acceleration Program: We wig study the principles and techniques of particle acceleration at ultra-high frequencies (up to 30 THz) and with very high acceleration gradients (up to 1 GV/m). Production of Coherent Radiation: We wish to develop the next generation of photon sources with features like (a) short pulses (picoseconds or less), (b) coherence, and (c) high peak power. All of these attributes can be provided by free-electron lasers. High-brightness sources: A common denominator for the above programs is the need for electron beams with very small transverse and longitudinal emittances. We will devote a substantial amount of our resources to the production and understanding of electron beams that have these attributes. We will build advanced electron sources such as switched-power devices and rf guns with photocathodes. Important applications of this line of research include the development of high-luminosity linear colliders and free-electron lasers in the XUV regime

  15. Laboratory investigation of electric charging of dust particles by electrons, ions, and UV radiation

    Science.gov (United States)

    Svestka, Jiri; Pinter, S.; Gruen, E.

    1989-01-01

    In many cosmic environments electric charging of dust particles occurs by electrons, ions, and UV radiation. In case of interstellar dust particles the value of their electric charge can have, for instance, very important consequences for their destruction rate in supernova remnant's shock waves and can globally influence the overall life cycle of dust particles in galaxies. For experimental simulation of charging processes a vacuum chamber was used in which the particles fall through an electron or ion beam of energies up to 10 KeV. The aim of the experiments was to attain maximum charge of dust particles. Furthermore the influence of the rest gas was also determined because electrons and ions produced by collisional ionization of the rest gas can result in significant effects. For measurement particles from 1 to 100 microns from glass, carbon, Al, Fe, MgO, and very loosely bound conglomerates of Al2O3 were used.

  16. Development and implementation of an electronic interface for complex clinical laboratory instruments without a vendor-provided data transfer interface

    Directory of Open Access Journals (Sweden)

    Gary E Blank

    2011-01-01

    Full Text Available Background: Clinical pathology laboratories increasingly use complex instruments that incorporate chromatographic separation, e.g. liquid chromatography, with mass detection for rapid identification and quantification of biochemicals, biomolecules, or pharmaceuticals. Electronic data management for these instruments through interfaces with laboratory information systems (LIS is not generally available from the instrument manufacturers or LIS vendors. Unavailability of a data management interface is a limiting factor in the use of these instruments in clinical laboratories where there is a demand for high-throughput assays with turn-around times that meet patient care needs. Materials and Methods: Professional society guidelines for design and transfer of data between instruments and LIS were used in the development and implementation of the interface. File transfer protocols and support utilities were written to facilitate transfer of information between the instruments and the LIS. An interface was created for liquid chromatography-tandem mass spectroscopy and inductively coupled plasma-mass spectroscopy instruments to manage data in the Sunquest® LIS. Results: Interface validation, implementation and data transfer fidelity as well as training of technologists for use of the interface was performed by the LIS group. The technologists were familiarized with the data verification process as a part of the data management protocol. The total time for the technologists for patient/control sample data entry, assay results data transfer, and results verification was reduced from approximately 20 s per sample to <1 s per sample. Sample identification, results data entry errors, and omissions were eliminated. There was electronic record of the technologist performing the assay runs and data management. Conclusions: Development of a data management interface for complex, chromatography instruments in clinical laboratories has resulted in rapid, accurate

  17. Visualization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Evaluates and improves the operational effectiveness of existing and emerging electronic warfare systems. By analyzing and visualizing simulation results...

  18. Community-Driven Standards-Based Electronic Laboratory Data-Sharing Networks

    OpenAIRE

    Zarcone, Patina; Nordenberg, Dale; Meigs, Michelle; Merrick, Ulrike; Jernigan, Daniel; Hinrichs, Steven H.

    2010-01-01

    Public health laboratories (PHLs) are critical components of the nation's health-care system, serving as stewards of valuable specimens, delivering important diagnostic results to support clinical and public health programs, supporting public health policy, and conducting research. This article discusses the need for and challenges of creating standards-based data-sharing networks across the PHL community, which led to the development of the PHL Interoperability Project (PHLIP). Launched by t...

  19. Theory and computation of the rate of multiphoton two-electron ionization via the direct mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mercouris, Theodoros; Haritos, Costas [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens (Greece)]. E-mails: thmerc@eie.gr; kharit@eie.gr; Nicolaides, Cleanthes A. [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens (GR) and Physics Department, National Technical University, Athens (Greece)]. E-mail: can@eie.gr

    2001-10-14

    This paper discusses aspects of the physics and the computation of rates of multiphoton two-electron ionization of polyelectronic atoms within a non-perturbative, time-independent framework. A fundamental characteristic of the theory is that the physically significant features of the spectrum, of electronic structure and of free-electron channels enter systematically in an N-electron field-dressed resonance trial wavefunction. This many-electron, many-photon theory produces the rate of a particular field-induced process as the imaginary part of a frequency- and intensity-dependent complex eigenvalue obtained from the solution of a suitably constructed non-Hermitian Hamiltonian matrix. The notion of direct two-electron ionization is expressed in terms of a specific form of the trial wavefunction, which consists of configurations with real and complex square-integrable functions, subject to orthogonality constraints so as to exclude the participation of single-ionization channels, assumed to contribute mainly to the sequential path. The applications were done to the two-electron ejection from He by the direct absorption of two linearly polarized photons (photon energy in the range 35.0-55.0 eV) and to H{sup -} from the direct and the sequential absorption of four, three, two and one photons (photon energy in the range 4.08-15.00 eV). The comparison between the rates of the two paths in H{sup -}, for photon energies 7.18-10.5 eV, shows that the direct rate dominates. We also show that in the orbital Hartree-Fock approximation to the initial state, the frequency-dependent rates at the intensity of 1x10{sup 13} W cm{sup -2} differ from those obtained with a correlated wavefunction by about two orders of magnitude. (author)

  20. Computational Chemistry Laboratory: Calculating the Energy Content of Food Applied to a Real-Life Problem

    Science.gov (United States)

    Barbiric, Dora; Tribe, Lorena; Soriano, Rosario

    2015-01-01

    In this laboratory, students calculated the nutritional value of common foods to assess the energy content needed to answer an everyday life application; for example, how many kilometers can an average person run with the energy provided by 100 g (3.5 oz) of beef? The optimized geometries and the formation enthalpies of the nutritional components…

  1. Inter laboratory comparison on Computed Tomography for industrial applications in the slaughterhouses

    DEFF Research Database (Denmark)

    Angel, Jais Andreas Breusch; Christensen, Lars Bager; Cantatore, Angela

    2014-01-01

    Application of CT scanning - CIA-CT”. In the comparison, 4 laboratories from 4 countries were involved, and CT scanned two synthetic phantoms, which were used instead of real pig carcasses. A phantom consists of several polymer components as Poly methyl methacrylate (PMMA), Polyethylene (PE) and Polyvinyl...

  2. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    Science.gov (United States)

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  3. Computer Based Learning in an Undergraduate Physics Laboratory: Interfacing and Instrument Control Using Matlab

    Science.gov (United States)

    Sharp, J. S.; Glover, P. M.; Moseley, W.

    2007-01-01

    In this paper we describe the recent changes to the curriculum of the second year practical laboratory course in the School of Physics and Astronomy at the University of Nottingham. In particular, we describe how Matlab has been implemented as a teaching tool and discuss both its pedagogical advantages and disadvantages in teaching undergraduate…

  4. Psychology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides testing stations for computer-based assessment of cognitive and behavioral Warfighter performance. This 500 square foot configurable space can...

  5. Computer simulation of thermal and fluid systems for MIUS integration and subsystems test /MIST/ laboratory. [Modular Integrated Utility System

    Science.gov (United States)

    Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.

    1975-01-01

    This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.

  6. A simple image processing approach for electronic cleansing in computed tomographic colonography

    Science.gov (United States)

    Yamamoto, S; Iinuma, G; Suzuki, M; Tanaka, T; Muramatsu, Y; Moriyama, N

    2009-01-01

    The prevalence of colon cancer has seen strong demand in screening for colorectal neoplasia, and this has drawn considerable attention to the technological advances in Computed Tomographic Colonography (CTC). With the assistance of an oral contrast agent, an imaging technique known as Electronic Cleansing (EC), can affect virtual cleaning of the computed tomography (CT) images, to remove fecal material that is tagged by the agent. Technical problems can arise with electronic cleansing however, when the air lumen causes distortions to the tagged regions which result in partial volume effects. Combining the simple image arithmetic of an electronic cleansing algorithm, with a vertical motion filter at the fluid level of the bowel, artifacts such as those caused by an air lumen are eliminated. Essentially, the filter becomes a vector for that carries the measurement of vertical motion to neutralise the artifact that is causing partial volume effects. Results demonstrate that despite its simplicity, this technique offers accuracy and is able to successfully maintain the normal intra-colonic structure, while supporting digital leaning of tagged residual material appearing on the colon wall. PMID:21611057

  7. Journal of Computational Electronics: Proceedings of the International Workshop on Computational Electronics (8th) (IWCE-8), Beckman Institute, University of Illinois, 15-18 October 2001. Volume 1, Issue 1-2

    National Research Council Canada - National Science Library

    Ferry, David K

    2002-01-01

    .... The community typically attending IWCE best represents the audience addressed by the Journal of Computational Electronics, but the composition of this community has grown over the years to include...

  8. Hydrogel wound dressing preparation at the laboratory scale by using electron beam and gamma radiation

    International Nuclear Information System (INIS)

    Rapado Raneque, Manuel; Rodriguez Rodriguez, Alejandro; Peniche Covas, Carlos

    2013-01-01

    The present work describes the preparation of hydrogel based on cross-linked networks of poly (N-vinylpirrolidone), PVP, with polyethyleneglicol and agar with 90% water and PVP nancomposites with a synthetic nanoclay, Laponite XLG, for use as burn dressings. These systems were obtained in two ways: using gamma Co-60 and electron beam radiation. The gelation obtained dose was D g = 1.72 kGy. The elastic modulus of hydrogel was independent of the method of irradiation. It was 0.39 MPa for the hydrogel irradiated with gamma Co-60 and 0.38 MPa for electron beam irradiation. The elastic modulus of the nanocomposite membrane was 1.25 MPa, three times higher. These results indicate that the PVP/Laponite XLG nanocomposite hydrogel membrane is the best choice for wound dressing applications due to its high water sorption capacity and its superior mechanical properties.

  9. How Accurate Are Electronic Monitoring Devices? A Laboratory Study Testing Two Devices to Measure Medication Adherence

    Directory of Open Access Journals (Sweden)

    Fabienne Dobbels

    2010-03-01

    Full Text Available In a prospective descriptive laboratory study, 25 Helping Hand™ (HH (10 without and 15 with reminder system and 50 Medication Event Monitoring Systems (MEMS (25 with 18-month and 25 with 2-year battery life were manipulated twice daily following a predefined protocol during 3 consecutive weeks. Accuracy was determined using the fixed manipulation scheme as the reference. Perfect functioning (i.e., total absence of missing registrations and/or overregistrations was observed in 70% of the HH without, 87% of the HH with reminder, 20% MEMS with 18 months, and 100% with 2-year battery life respectively.

  10. Central Laboratory of X-ray and Electron Microscopy Research at the Institute of Physics of the Polish Academy of Sciences, Warsaw

    International Nuclear Information System (INIS)

    Zymierska, D.

    2008-01-01

    The beginning and history of the Central Laboratory of X-ray and Electron Microscopy at the Institute of Physics of the Polish Academy of Sciences in Warsaw is described. Then, recent scientific achievements are presented. Organising activities of the Laboratory staff are also mentioned. (author)

  11. Applications Analysis: Principles and Examples from Various Distributed Computer Applications at Sandia National Laboratories New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, Dennis; Evans, David; Jensen, Dal; Nelson, Spencer

    1999-08-01

    As information systems have become distributed over many computers within the enterprise, managing those applications has become increasingly important. This is an emerging area of work, recognized as such by many large organizations as well as many start-up companies. In this report, we present a summary of the move to distributed applications, some of the problems that came along for the ride, and some specific examples of the tools and techniques we have used to analyze distributed applications and gain some insight into the mechanics and politics of distributed computing.

  12. Design and Configuration of a Medical Imaging Systems Computer Laboratory Syllabus

    Science.gov (United States)

    Selver, M. Alper

    2016-01-01

    Medical imaging systems (MIS) constitute an important emergent subdiscipline of engineering studies. In the context of electrical and electronics engineering (EEE) education, MIS courses cover physics, instrumentation, data acquisition, image formation, modeling, and quality assessment of various modalities. Many well-structured MIS courses are…

  13. A computational study of the electronic properties of one-dimensional armchair phosphorene nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sheng; Zhu, Hao; Eshun, Kwesi; Arab, Abbas; Badwan, Ahmad; Li, Qiliang [Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia 22033 (United States)

    2015-10-28

    We have performed a comprehensive first-principle computational study of the electronic properties of one-dimensional phosphorene nanotubes (PNTs), and the strain effect on the mechanical and electrical properties of PNTs, including the elastic modulus, energy bandstructure, and carrier effective mass. The study has demonstrated that the armchair PNTs have semiconducting properties along the axial direction and the carrier mobility can be significantly improved by compressive strain. The hole mobility increases from 40.7 cm{sup 2}/V s to 197.0 cm{sup 2}/V s as the compressive strain increases to −5% at room temperature. The investigations of size effect on armchair PNTs indicated that the conductance increases significantly as the increasing diameter. Overall, this study indicated that the PNTs have very attractive electronic properties for future application in nanomaterials and devices.

  14. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    Science.gov (United States)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  15. Photon- and electron-stimulated desorption from laboratory models of interstellar ice grains

    International Nuclear Information System (INIS)

    Thrower, J. D.; Abdulgalil, A. G. M.; Collings, M. P.; McCoustra, M. R. S.; Burke, D. J.; Brown, W. A.; Dawes, A.; Holtom, P. J.; Kendall, P.; Mason, N. J.; Jamme, F.; Fraser, H. J.; Rutten, F. J. M.

    2010-01-01

    The nonthermal desorption of water from ice films induced by photon and low energy electron irradiation has been studied under conditions mimicking those found in dense interstellar clouds. Water desorption following photon irradiation at 250 nm relies on the presence of an absorbing species within the H 2 O ice, in this case benzene. Desorption cross sections are obtained and used to derive first order rate coefficients for the desorption processes. Kinetic modeling has been used to compare the efficiencies of these desorption mechanisms with others known to be in operation in dense clouds.

  16. Evaluation of performance of electronic dosimeters for individual monitoring: tests in laboratory

    International Nuclear Information System (INIS)

    Garzon, W.J.; Khoury, H.J.; Barros, V.S.M. de; Medeiros, R.B.

    2015-01-01

    Electronic dosimeters based on direct ion storage technology are being widely used in many countries for individual monitoring in many applications of ionizing radiation. However, their use as routine dosimeter has been established in a few countries due to lack of accreditation or intercomparison programs. The objective of this study is to evaluate the performance of two direct íon storage dosimeters model available in the international market: the Miriom-Instadose-1 and RADOS DIS-1 to be eventually accepted for individual monitoring in Brazil. (author)

  17. MIT Laboratory for Computer Science Progress Report No. 23, July 1985-June 1986

    Science.gov (United States)

    1986-06-01

    factorization, and two other related algorithms (by Rene Schoof and Victor Miller) all were published in the last two years, following a century of theoretical...Dissertation, Math. Department, September 1964; AD 604-730 TR-2 Raphael , B. SIR: A Computer Program for Semantic Information Retrieval, Ph.D

  18. Introducing Creativity in a Design Laboratory for a Freshman Level Electrical and Computer Engineering Course

    Science.gov (United States)

    Burkett, Susan L.; Kotru, Sushma; Lusth, John C.; McCallum, Debra; Dunlap, Sarah

    2014-01-01

    Dunlap, The University of Alabama, USA ABSTRACT In the electrical and computer engineering (ECE) curriculum at The University of Alabama, freshmen are introduced to fundamental electrical concepts and units, DC circuit analysis techniques, operational amplifiers, circuit simulation, design, and professional ethics. The two credit course has both…

  19. Integration of Computational Chemistry into the Undergraduate Organic Chemistry Laboratory Curriculum

    Science.gov (United States)

    Esselman, Brian J.; Hill, Nicholas J.

    2016-01-01

    Advances in software and hardware have promoted the use of computational chemistry in all branches of chemical research to probe important chemical concepts and to support experimentation. Consequently, it has become imperative that students in the modern undergraduate curriculum become adept at performing simple calculations using computational…

  20. Inter-laboratory comparison of medical computed tomography (CT) scanners for industrial applications in the slaughterhouses

    DEFF Research Database (Denmark)

    Christensen, Lars Bager; Angel, Jais Andreas Breusch

    2013-01-01

    Using computed tomography (CT) in the calibration of online grading equipment has been demonstrated to be beneficial over the last years by several institutions using medical CT scanners. The difference in makes and models calls for a standardized (and calibrated) method to be able to quantify di...

  1. A Computer-Based Laboratory Project for the Study of Stimulus Generalization and Peak Shift

    Science.gov (United States)

    Derenne, Adam; Loshek, Eevett

    2009-01-01

    This paper describes materials designed for classroom projects on stimulus generalization and peak shift. A computer program (originally written in QuickBASIC) is used for data collection and a Microsoft Excel file with macros organizes the raw data on a spreadsheet and creates generalization gradients. The program is designed for use with human…

  2. The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science.

    Science.gov (United States)

    Marek, A; Blum, V; Johanni, R; Havu, V; Lang, B; Auckenthaler, T; Heinecke, A; Bungartz, H-J; Lederer, H

    2014-05-28

    Obtaining the eigenvalues and eigenvectors of large matrices is a key problem in electronic structure theory and many other areas of computational science. The computational effort formally scales as O(N(3)) with the size of the investigated problem, N (e.g. the electron count in electronic structure theory), and thus often defines the system size limit that practical calculations cannot overcome. In many cases, more than just a small fraction of the possible eigenvalue/eigenvector pairs is needed, so that iterative solution strategies that focus only on a few eigenvalues become ineffective. Likewise, it is not always desirable or practical to circumvent the eigenvalue solution entirely. We here review some current developments regarding dense eigenvalue solvers and then focus on the Eigenvalue soLvers for Petascale Applications (ELPA) library, which facilitates the efficient algebraic solution of symmetric and Hermitian eigenvalue problems for dense matrices that have real-valued and complex-valued matrix entries, respectively, on parallel computer platforms. ELPA addresses standard as well as generalized eigenvalue problems, relying on the well documented matrix layout of the Scalable Linear Algebra PACKage (ScaLAPACK) library but replacing all actual parallel solution steps with subroutines of its own. For these steps, ELPA significantly outperforms the corresponding ScaLAPACK routines and proprietary libraries that implement the ScaLAPACK interface (e.g. Intel's MKL). The most time-critical step is the reduction of the matrix to tridiagonal form and the corresponding backtransformation of the eigenvectors. ELPA offers both a one-step tridiagonalization (successive Householder transformations) and a two-step transformation that is more efficient especially towards larger matrices and larger numbers of CPU cores. ELPA is based on the MPI standard, with an early hybrid MPI-OpenMPI implementation available as well. Scalability beyond 10,000 CPU cores for problem

  3. Teaching strategies applied to teaching computer networks in Engineering in Telecommunications and Electronics

    Directory of Open Access Journals (Sweden)

    Elio Manuel Castañeda-González

    2016-07-01

    Full Text Available Because of the large impact that today computer networks, their study in related fields such as Telecommunications Engineering and Electronics is presented to the student with great appeal. However, by digging in content, lacking a strong practical component, you can make this interest decreases considerably. This paper proposes the use of teaching strategies and analogies, media and interactive applications that enhance the teaching of discipline networks and encourage their study. It is part of an analysis of how the teaching of the discipline process is performed and then a description of each of these strategies is done with their respective contribution to student learning.

  4. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Vandersypen, L. M. K. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Eendebak, P. T. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 155, 2600 AD Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-05-23

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.

  5. Development of Computer-Based Training to Supplement Lessons in Fundamentals of Electronics

    Directory of Open Access Journals (Sweden)

    Ian P. Benitez

    2016-05-01

    Full Text Available Teaching Fundamentals of Electronics allow students to familiarize with basic electronics concepts, acquire skills in the use of multi-meter test instrument, and develop mastery in testing basic electronic components. Actual teaching and doing observations during practical activities on components pin identification and testing showed that the lack of skills of new students in testing components can lead to incorrect fault diagnosis and wrong pin connection during in-circuit replacement of the defective parts. With the aim of reinforcing students with concrete understanding of the concepts of components applied in the actual test and measurement, a Computer-Based Training was developed. The proponent developed the learning modules (courseware utilizing concept mapping and storyboarding instructional design. Developing a courseware as simulated, activity-based and interactive as possible was the primary goal to resemble the real-world process. A Local area network (LAN-based learning management system was also developed to use in administering the learning modules. The Paired Sample T-Test based on the pretest and post-test result was used to determine whether the students achieved learning after taking the courseware. The result revealed that there is a significant achievement of the students after studying the learning module. The E-learning content was validated by the instructors in terms of contents, activities, assessment and format with a grand weighted mean of 4.35 interpreted as Sufficient. Based from the evaluation result, supplementing with the proposed computer-based training can enhance the teachinglearning process in electronic fundamentals.

  6. Investigating the need for clinicians to use tablet computers with a newly envisioned electronic health record.

    Science.gov (United States)

    Saleem, Jason J; Savoy, April; Etherton, Gale; Herout, Jennifer

    2018-02-01

    The Veterans Health Administration (VHA) has deployed a large number of tablet computers in the last several years. However, little is known about how clinicians may use these devices with a newly planned Web-based electronic health record (EHR), as well as other clinical tools. The objective of this study was to understand the types of use that can be expected of tablet computers versus desktops. Semi-structured interviews were conducted with 24 clinicians at a Veterans Health Administration (VHA) Medical Center. An inductive qualitative analysis resulted in findings organized around recurrent themes of: (1) Barriers, (2) Facilitators, (3) Current Use, (4) Anticipated Use, (5) Patient Interaction, and (6) Connection. Our study generated several recommendations for the use of tablet computers with new health information technology tools being developed. Continuous connectivity for the mobile device is essential to avoid interruptions and clinician frustration. Also, making a physical keyboard available as an option for the tablet was a clear desire from the clinicians. Larger tablets (e.g., regular size iPad as compared to an iPad mini) were preferred. Being able to use secure messaging tools with the tablet computer was another consistent finding. Finally, more simplicity is needed for accessing patient data on mobile devices, while balancing the important need for adequate security. Published by Elsevier B.V.

  7. XVI International symposium on nuclear electronics and VI International school on automation and computing in nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Churin, I.N.

    1995-01-01

    Reports and papers of the 16- International Symposium on nuclear electronics and the 6- International school on automation and computing in nuclear physics and astrophysics are presented. The latest achievements in the field of development of fact - response electronic circuits designed for detecting and spectrometric facilities are studied. The peculiar attention is paid to the systems for acquisition, processing and storage of experimental data. The modern equipment designed for data communication in the computer networks is studied

  8. Device controllers using an industrial personal computer of the PF 2.5-GeV Electron Linac at KEK

    International Nuclear Information System (INIS)

    Otake, Yuji; Yokota, Mitsuhiro; Kakihara, Kazuhisa; Ogawa, Yujiro; Ohsawa, Satoshi; Shidara, Tetsuo; Nakahara, Kazuo

    1992-01-01

    Device controllers for electron guns and slits using an industrial personal computer have been designed and installed in the Photon Factory 2.5-GeV Electron Linac at KEK. The design concept of the controllers is to realize a reliable system and good productivity of hardware and software by using an industrial personal computer and a programmable sequence controller. The device controllers have been working reliably for several years. (author)

  9. Estimating summary statistics for electronic health record laboratory data for use in high-throughput phenotyping algorithms.

    Science.gov (United States)

    Albers, D J; Elhadad, N; Claassen, J; Perotte, R; Goldstein, A; Hripcsak, G

    2018-02-01

    We study the question of how to represent or summarize raw laboratory data taken from an electronic health record (EHR) using parametric model selection to reduce or cope with biases induced through clinical care. It has been previously demonstrated that the health care process (Hripcsak and Albers, 2012, 2013), as defined by measurement context (Hripcsak and Albers, 2013; Albers et al., 2012) and measurement patterns (Albers and Hripcsak, 2010, 2012), can influence how EHR data are distributed statistically (Kohane and Weber, 2013; Pivovarov et al., 2014). We construct an algorithm, PopKLD, which is based on information criterion model selection (Burnham and Anderson, 2002; Claeskens and Hjort, 2008), is intended to reduce and cope with health care process biases and to produce an intuitively understandable continuous summary. The PopKLD algorithm can be automated and is designed to be applicable in high-throughput settings; for example, the output of the PopKLD algorithm can be used as input for phenotyping algorithms. Moreover, we develop the PopKLD-CAT algorithm that transforms the continuous PopKLD summary into a categorical summary useful for applications that require categorical data such as topic modeling. We evaluate our methodology in two ways. First, we apply the method to laboratory data collected in two different health care contexts, primary versus intensive care. We show that the PopKLD preserves known physiologic features in the data that are lost when summarizing the data using more common laboratory data summaries such as mean and standard deviation. Second, for three disease-laboratory measurement pairs, we perform a phenotyping task: we use the PopKLD and PopKLD-CAT algorithms to define high and low values of the laboratory variable that are used for defining a disease state. We then compare the relationship between the PopKLD-CAT summary disease predictions and the same predictions using empirically estimated mean and standard deviation to a

  10. Computer aided heat transfer analysis in a laboratory scaled heat exchanger unit

    International Nuclear Information System (INIS)

    Gunes, M.

    1998-01-01

    In this study. an explanation of a laboratory scaled heat exchanger unit and a software which is developed to analyze heat transfer. especially to use it in heat transfer courses, are represented. Analyses carried out in the software through sample values measured in the heat exchanger are: (l) Determination of heat transfer rate, logarithmic mean temperature difference and overall heat transfer coefficient; (2)Determination of convection heat transfer coefficient inside and outside the tube and the effect of fluid velocity on these; (3)Investigation of the relationship between Nusselt Number. Reynolds Number and Prandtl Number by using multiple non-linear regression analysis. Results are displayed on the screen graphically

  11. Computer-aided design and fabrication of an electron bolus for treatment of the paraspinal muscles

    International Nuclear Information System (INIS)

    Low, Daniel A.; Starkschall, George; Sherman, Neil E.; Bujnowski, Stanley W.; Ewton, James R.; Hogstrom, Kenneth R.

    1995-01-01

    Purpose: demonstrate the technology for the design, fabrication, and verification of an electron bolus used in the preoperative irradiation of a mesenchymal chondrosarcoma in the paraspinal muscle region (T8-T12), in which the target volume overlay a portion of the spinal cord, both lungs, and the right kidney. Methods and Materials: An electron-bolus design algorithm implemented on a three dimensional (3D) radiotherapy treatment planning system designed the bolus to yield a dose distribution that met physician-specified clinical criteria. Electron doses were calculated using a 3D electron pencil-beam dose algorithm. A computer-driven milling machine fabricated the bolus from modeling wax, machining both the patient surface and the beam surface of the bolus. Verification of the bolus fabrication was achieved by repeating the patient's computed tomography (CT) scan with the fabricated bolus in place (directly on the posterior surface of the prone patient) and then recalculating the patient's dose distribution using the 3D radiotherapy treatment planning system. Results: A treatment plan using a 17-MeV posterior electron field with a bolus delivered a superior dose distribution to the patient than did the same plan without a bolus. The bolus plan delivered a slightly increased dose to the target volume as a result of a slightly broader range of doses. There were significant reductions in dose to critical structures (cord, lungs, and kidney) in the bolus plan, as evidenced by dose-volume histograms (DVHs). The patient dose distribution, calculated using CT scan data with the fabricated bolus, showed no significant differences from the planned dose distribution. Conclusions: A bolus can provide considerable sparing of normal tissues when using a posterior electron beam to irradiate the paraspinal muscles. Bolus design and fabrication using the tools described in this paper are adequate for patient treatment. CT imaging of the patient with the bolus in place followed by

  12. Unified parallel C and the computing needs of Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jonathan Leighton; Wen, Zhaofang

    2004-09-01

    As Sandia looks toward petaflops computing and other advanced architectures, it is necessary to provide a programming environment that can exploit this additional computing power while supporting reasonable development time for applications. Thus, they evaluate the Partitioned Global Address Space (PGAS) programming model as implemented in Unified Parallel C (UPC) for its applicability. They report on their experiences in implementing sorting and minimum spanning tree algorithms on a test system, a Cray T3e, with UPC support. They describe several macros that could serve as language extensions and several building-block operations that could serve as a foundation for a PGAS programming library. They analyze the limitations of the UPC implementation available on the test system, and suggest improvements necessary before UPC can be used in a production environment.

  13. Industrial applications of electron beam flue gas treatment - From laboratory to the practice

    International Nuclear Information System (INIS)

    Chmielewski, Andrzej G.

    2007-01-01

    The electron beam technology for flue gas treatment (EBFGT) has been developed in Japan in the early 1980s. Later on, this process was investigated in pilot scale in the USA, Germany, Japan, Poland, Bulgaria and China. The new engineering and process solutions have been developed during the past two decades. Finally industrial plants have been constructed in Poland and China. The high efficiency of SO x and NO x removal was achieved (up to 95% for SO x and up to 70% for NO x ) and by-product is a high quality fertilizer. Since the power of accelerators applied in industrial installation is over 1 MW and requested operational availability of the plant is equal to 8500 h in year, it is a new challenge for radiation processing applications

  14. Non-thermal enhancement of electron-positron pair creation in burning thermonuclear laboratory plasmas

    Science.gov (United States)

    Hill, E. G.; Rose, S. J.

    2014-12-01

    We estimate the number of electron-positron pairs which will be produced during the burning of a Deuterium-Tritium (DT) plasma in conditions that are anticipated will be achieved at the National Ignition Facility. In particular we consider, for the first time, the effect of including the gamma photons produced in a low probability channel of the DT reaction. It is found that non-thermal effects driven by the fusion products are the dominant method of pair production, and lead to a number density of positrons within the capsule in excess of 3 × 1017 cm-3. The positrons are predominately produced by the Bethe-Heitler process and destroyed by two photon annihilation.

  15. The Impact of Internet Virtual Physics Laboratory Instruction on the Achievement in Physics, Science Process Skills and Computer Attitudes of 10th-Grade Students

    Science.gov (United States)

    Yang, Kun-Yuan; Heh, Jia-Sheng

    2007-01-01

    The purpose of this study was to investigate and compare the impact of Internet Virtual Physics Laboratory (IVPL) instruction with traditional laboratory instruction in physics academic achievement, performance of science process skills, and computer attitudes of tenth grade students. One-hundred and fifty students from four classes at one private…

  16. An investigative laboratory course in human physiology using computer technology and collaborative writing.

    Science.gov (United States)

    FitzPatrick, Kathleen A

    2004-12-01

    Active investigative student-directed experiences in laboratory science are being encouraged by national science organizations. A growing body of evidence from classroom assessment supports their effectiveness. This study describes four years of implementation and assessment of an investigative laboratory course in human physiology for 65 second-year students in sports medicine and biology at a small private comprehensive college. The course builds on skills and abilities first introduced in an introductory investigations course and introduces additional higher-level skills and more complex human experimental models. In four multiweek experimental modules, involving neuromuscular, reflex, and cardiovascular physiology, by use of computerized hardware/software with a variety of transducers, students carry out self-designed experiments with human subjects and perform data collection and analysis, collaborative writing, and peer editing. In assessments, including standard course evaluations and the Salgains Web-based evaluation, student responses to this approach are enthusiastic, and gains in their skills and abilities are evident in their comments and in improved performance.

  17. Conquer the FPSO (Floating Production Storage and Off loading) separation challenge using CFD (Computational Fluid Dynamics) and laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kristoffersen, Astrid R.; Hannisdal, Andreas; Amarzguioui, Morad; Wood, Deborah; Tor Andersen [Aibel, Stavanger (Norway)

    2008-07-01

    To have the necessary confidence in a separators' performance, the design must be based on more than simple design rules. A combination of separation testing, computer modelling, and general knowledge of the process is needed. In addition, new technologies can provide enhanced overall performance when it is required. This paper describes how all of these techniques can be combined to get the most out of separator design. We will describe how Aibel has used Computational Fluid Dynamics (CFD), together with laboratory testing, multi-disciplinary knowledge and new technology in order to revolutionize the way we design separators. This paper will present a study of separation performance for one of our customers. A CFD simulation was performed to predict the internal waves inside a separator located on a FPSO, and how these affect separation phenomena. The performance of the theoretical CFD model was verified by laboratory wave experiments. Separation tests were performed to test new solutions which could increase the performance of the process. Based on the CFD simulations and the separation tests, a modification of the separator was proposed. (author)

  18. Data mining technique for a secure electronic payment transaction using MJk-RSA in mobile computing

    Science.gov (United States)

    G. V., Ramesh Babu; Narayana, G.; Sulaiman, A.; Padmavathamma, M.

    2012-04-01

    Due to the evolution of the Electronic Learning (E-Learning), one can easily get desired information on computer or mobile system connected through Internet. Currently E-Learning materials are easily accessible on the desktop computer system, but in future, most of the information shall also be available on small digital devices like Mobile, PDA, etc. Most of the E-Learning materials are paid and customer has to pay entire amount through credit/debit card system. Therefore, it is very important to study about the security of the credit/debit card numbers. The present paper is an attempt in this direction and a security technique is presented to secure the credit/debit card numbers supplied over the Internet to access the E-Learning materials or any kind of purchase through Internet. A well known method i.e. Data Cube Technique is used to design the security model of the credit/debit card system. The major objective of this paper is to design a practical electronic payment protocol which is the safest and most secured mode of transaction. This technique may reduce fake transactions which are above 20% at the global level.

  19. E-commerce, paper and energy use: a case study concerning a Dutch electronic computer retailer

    Energy Technology Data Exchange (ETDEWEB)

    Hoogeveen, M.J.; Reijnders, L. [Open University Netherlands, Heerlen (Netherlands)

    2002-07-01

    Impacts of the application of c-commerce on paper and energy use are analysed in a case study concerning a Dutch electronic retailer (e-tailer) of computers. The estimated use of paper associated with the e-tailer concerned was substantially reduced if compared with physical retailing or traditional mail-order retailing. However, the overall effect of e-tailing on paper use strongly depends on customer behaviour. Some characteristics of c-commerce, as practised by the e-tailer concerned, such as diminished floor space requirements, reduced need for personal transport and simplified logistics, improve energy efficiency compared with physical retailing. Substitution of paper information by online information has an energetic effect that is dependent on the time of online information perusal and the extent to which downloaded information is printed. Increasing distances from producers to consumers, outsourcing, and increased use of computers, associated equipment and electronic networks are characteristics of e-commerce that may have an upward effect on energy use. In this case study, the upward effects thereof on energy use were less than the direct energy efficiency gains. However, the indirect effects associated with increased buying power and the rebound effect on transport following from freefalling travel time, greatly exceeded direct energy efficiency gains. (author)

  20. Lincoln Laboratory Grid

    Data.gov (United States)

    Federal Laboratory Consortium — The Lincoln Laboratory Grid (LLGrid) is an interactive, on-demand parallel computing system that uses a large computing cluster to enable Laboratory researchers to...

  1. Inter-laboratory comparison of medical computed tomography (CT) scanners for industrial applications in the slaughterhouses

    DEFF Research Database (Denmark)

    Christensen, Lars Bager; Angel, Jais Andreas Breusch

    2013-01-01

    Using computed tomography (CT) in the calibration of online grading equipment has been demonstrated to be beneficial over the last years by several institutions using medical CT scanners. The difference in makes and models calls for a standardized (and calibrated) method to be able to quantify......, conventionally recognized to be challenging to medical CT scanners. The web based classification software PigClassWeb has been demonstrated to be a convenient way of handling and comparing CT data in a transparent way, across regions and over time. The phantom set may be used to compare regional differences...

  2. UV-photoelectron spectroscopy of BN indoles: experimental and computational electronic structure analysis.

    Science.gov (United States)

    Chrostowska, Anna; Xu, Senmiao; Mazière, Audrey; Boknevitz, Katherine; Li, Bo; Abbey, Eric R; Dargelos, Alain; Graciaa, Alain; Liu, Shih-Yuan

    2014-08-20

    We present a comprehensive electronic structure analysis of two BN isosteres of indole using a combined UV-photoelectron spectroscopy (UV-PES)/computational chemistry approach. Gas-phase He I photoelectron spectra of external BN indole I and fused BN indole II have been recorded, assessed by density functional theory calculations, and compared with natural indole. The first ionization energies of these indoles are natural indole (7.9 eV), external BN indole I (7.9 eV), and fused BN indole II (8.05 eV). The computationally determined molecular dipole moments are in the order: natural indole (2.177 D) > fused BN indole II (1.512 D) > external BN indole I (0.543 D). The λmax in the UV-vis absorption spectra are in the order: fused BN indole II (292 nm) > external BN indole I (282 nm) > natural indole (270 nm). The observed relative electrophilic aromatic substitution reactivity of the investigated indoles with dimethyliminium chloride as the electrophile is as follows: fused BN indole II > natural indole > external BN indole I, and this trend correlates with the π-orbital coefficient at the 3-position. Nucleus-independent chemical shifts calculations show that the introduction of boron into an aromatic 6π-electron system leads to a reduction in aromaticity, presumably due to a stronger bond localization. Trends and conclusions from BN isosteres of simple monocyclic aromatic systems such as benzene and toluene are not necessarily translated to the bicyclic indole core. Thus, electronic structure consequences resulting from BN/CC isosterism will need to be evaluated individually from system to system.

  3. Overview of the Neutron Radiography and Computed Tomography at the Oak Ridge National Laboratory and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bilheux, Hassina Z [ORNL; Bilheux, Jean-Christophe [ORNL; Tremsin, Anton S [University of California, Berkeley; Santodonato, Louis J [ORNL; Dehoff, Ryan R [ORNL; Kirka, Michael M [ORNL; Bailey, William Barton [ORNL; Keener, Wylie S [ORNL; Herwig, Kenneth W [ORNL

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) Neutron Sciences Directorate (NScD) has installed a neutron imaging (NI) beam line at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beam line produces cold neutrons for a broad range of user research spanning from engineering to material research, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. Recent efforts have focused on increasing flux and spatial resolution. A series of selected engineering applications is presented here. Historically and for more than four decades, neutron imaging (NI) facilities have been installed exclusively at continuous (i.e. reactor-based) neutron sources rather than at pulsed sources. This is mainly due to (1) the limited number of accelerator-based facilities and therefore the fierce competition for beam lines with neutron scattering instruments, (2) the limited flux available at accelerator-based neutron sources and finally, (3) the lack of high efficiency imaging detector technology capable of time-stamping pulsed neutrons with sufficient time resolution. Recently completed high flux pulsed proton-driven neutron sources such as the ORNL Spallation Neutron Source (SNS) at ORNL and the Japanese Spallation Neutron Source (JSNS) of the Japan Proton Accelerator Research Complex (J-PARC) in Japan produce high neutron fluxes that offer new and unique opportunities for NI techniques. Pulsed-based neutron imaging facilities RADEN and IMAT are currently being built at J-PARC and the Rutherford National Laboratory in the U.K., respectively. ORNL is building a pulsed neutron imaging beam line called VENUS to respond to the U.S. based scientific community. A team composed of engineers, scientists and designers has developed a conceptual design of the future VENUS imaging instrument at the SNS.

  4. Laboratory simulations of the mixed solvent extraction recovery of dominate polymers in electronic waste.

    Science.gov (United States)

    Zhao, Yi-Bo; Lv, Xu-Dong; Yang, Wan-Dong; Ni, Hong-Gang

    2017-11-01

    The recovery of four dominant plastics from electronic waste (e-waste) using mixed solvent extraction was studied. The target plastics included polycarbonate (PC), polystyrene (PS), acrylonitrile butadiene styrene (ABS), and styrene acrylonitrile (SAN). The extraction procedure for multi-polymers at room temperature yielded PC, PS, ABS, and SAN in acceptable recovery rates (64%, 86%, 127%, and 143%, respectively, where recovery rate is defined as the mass ratio of the recovered plastic to the added standard polymer). Fourier transform infrared spectroscopy (FTIR) was used to verify the recovered plastics' purity using a similarity analysis. The similarities ranged from 0.98 to 0.99. Another similar process, which was denoted as an alternative method for plastic recovery, was examined as well. Nonetheless, the FTIR results showed degradation may occur over time. Additionally, the recovery cost estimation model of our method was established. The recovery cost estimation indicated that a certain range of proportion of plastics in e-waste, especially with a higher proportion of PC and PS, can achieve a lower cost than virgin polymer product. It also reduced 99.6%, 30.7% and 75.8% of energy consumptions and CO 2 emissions during the recovery of PC, PS and ABS, and reduced the amount of plastic waste disposal via landfill or incineration and associated environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Internal photon and electron dosimetry of the newborn patient—a hybrid computational phantom study

    Science.gov (United States)

    Wayson, Michael; Lee, Choonsik; Sgouros, George; Treves, S. Ted; Frey, Eric; Bolch, Wesley E.

    2012-03-01

    Estimates of radiation absorbed dose to organs of the nuclear medicine patient are a requirement for administered activity optimization and for stochastic risk assessment. Pediatric patients, and in particular the newborn child, represent that portion of the patient population where such optimization studies are most crucial owing to the enhanced tissue radiosensitivities and longer life expectancies of this patient subpopulation. In cases where whole-body CT imaging is not available, phantom-based calculations of radionuclide S values—absorbed dose to a target tissue per nuclear transformation in a source tissue—are required for dose and risk evaluation. In this study, a comprehensive model of electron and photon dosimetry of the reference newborn child is presented based on a high-resolution hybrid-voxel phantom from the University of Florida (UF) patient model series. Values of photon specific absorbed fraction (SAF) were assembled for both the reference male and female newborn using the radiation transport code MCNPX v2.6. Values of electron SAF were assembled in a unique and time-efficient manner whereby the collisional and radiative components of organ dose--for both self- and cross-dose terms—were computed separately. Dose to the newborn skeletal tissues were assessed via fluence-to-dose response functions reported for the first time in this study. Values of photon and electron SAFs were used to assemble a complete set of S values for some 16 radionuclides commonly associated with molecular imaging of the newborn. These values were then compared to those available in the OLINDA/EXM software. S value ratios for organ self-dose ranged from 0.46 to 1.42, while similar ratios for organ cross-dose varied from a low of 0.04 to a high of 3.49. These large discrepancies are due in large part to the simplistic organ modeling in the stylized newborn model used in the OLINDA/EXM software. A comprehensive model of internal dosimetry is presented in this study for

  6. Update on Electronic Dental Record and Clinical Computing Adoption Among Dental Practices in the United States.

    Science.gov (United States)

    Acharya, Amit; Schroeder, Dixie; Schwei, Kelsey; Chyou, Po-Huang

    2017-12-01

    This study sought to re-characterize trends and factors affecting electronic dental record (EDR) and technologies adoption by dental practices and the impact of the Health Information Technology for Economic and Clinical Health (HITECH) act on adoption rates through 2012. A 39-question survey was disseminated nationally over 3 months using a novel, statistically-modeled approach informed by early response rates to achieve a predetermined sample. EDR adoption rate for clinical support was 52%. Adoption rates were higher among: (1) younger dentists; (2) dentists ≤ 15 years in practice; (3) females; and (4) group practices. Top barriers to adoption were EDR cost/expense, cost-benefit ratio, electronic format conversion, and poor EDR usability. Awareness of the Federal HITECH incentive program was low. The rate of chairside computer implementation was 72%. Adoption of EDR in dental offices in the United States was higher in 2012 than electronic health record adoption rates in medical offices and was not driven by the HITECH program. Patient portal adoption among dental practices in the United States remained low. © 2017 Marshfield Clinic.

  7. Dealing with electronic waste: modeling the costs and environmental benefits of computer monitor disposal.

    Science.gov (United States)

    Macauley, Molly; Palmer, Karen; Shih, Jhih-Shyang

    2003-05-01

    The importance of information technology to the world economy has brought about a surge in demand for electronic equipment. With rapid technological change, a growing fraction of the increasing stock of many types of electronics becomes obsolete each year. We model the costs and benefits of policies to manage 'e-waste' by focusing on a large component of the electronic waste stream-computer monitors-and the environmental concerns associated with disposal of the lead embodied in cathode ray tubes (CRTs) used in most monitors. We find that the benefits of avoiding health effects associated with CRT disposal appear far outweighed by the costs for a wide range of policies. For the stock of monitors disposed of in the United States in 1998, we find that policies restricting or banning some popular disposal options would increase disposal costs from about US dollar 1 per monitor to between US dollars 3 and US dollars 20 per monitor. Policies to promote a modest amount of recycling of monitor parts, including lead, can be less expensive. In all cases, however, the costs of the policies exceed the value of the avoided health effects of CRT disposal.

  8. Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization

    Directory of Open Access Journals (Sweden)

    Veliko Donchev

    2013-10-01

    Full Text Available Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials.

  9. Numerical Computation of Optical Properties of Internally Mixed Soot in Biomass Burning Constrained by Field and Laboratory Observations

    Science.gov (United States)

    China, S.; Scarnato, B. V.; Gorkowski, K.; Aiken, A. C.; Liu, S.; Dubey, M. K.; Mazzoleni, C.

    2014-12-01

    Carbonaceous aerosol emitted from biomass burning (BB) contributes significantly to atmospheric aerosol loadings regionally and globally. Direct radiative forcing of BB aerosol is highly uncertain due to its complex composition, morphology and mixing state. Soot particles are the strongest light absorbing aerosols in BB smoke. In BB smoke, soot particles are normally internally mixed with other material and the mixing state can affect their optical properties. In this study we investigated morphology and mixing state of soot particles emitted from BB smoke from field and laboratory measurements. Smoke particles were collected 1) during the Las Conchas wildfire in New Mexico (June, 2011) and 2) at the U.S. Forest Service's Fire Science Laboratory in 2012, during the fourth Fire Laboratory at Missoula Experiment (FLAME-4). Single particles were analyzed with electron microscopy, and were categorized and characterized by their morphology, and mixing state. We found that soot particles were mostly heavily coated. Based on the characterization on field and laboratory samples, synthetic soot particles with various morphologies and mixing states were generated and their optical properties were numerically calculated using the discrete dipole approximation. We used organic material as a coating agent and investigated the spectral dependency of scattering and absorption for internally mixed soot particles. We found enhancement in scattering and absorption when most of the soot particle was embedded within the organic coating. The aim of this study is to improve our understanding of the effect of morphology and mixing on light scattering and absorption by soot particles and ultimately their effects on the direct radiative forcing.

  10. Laboratory Investigation of the Growth and Crystal Structure of Nitric Acid Hydrates by Transmission Electron Microscopy (TEM)

    Science.gov (United States)

    Blake, David F.; Chang, Sherwood (Technical Monitor)

    1994-01-01

    A great deal of recent laboratory work has focussed on the characterization of the nitric acid hydrates, thought to be present in type I Polar Stratospheric Clouds (PSCs). Phase relationships and vapor pressure measurements (1-3) and infrared characterizations (4-5) have been made. However, the observed properties of crystalline solids (composition, melting point, vapor pressure, surface reactivity, thermodynamic stability, extent of solid solution with other components, etc.) are controlled by their crystal structure. The only means of unequivocal structural identification for crystalline solids is diffraction (using electrons, X-rays, neutrons, etc.). Other observed properties of crystalline solids, such as their infrared spectra, their vapor pressure as a function of temperature, etc. yield only indirect information about what phases are present, their relative proportions, or whether they are crystalline or amorphous.

  11. Clinicians’ Evaluation of Computer-Assisted Medication Summarization of Electronic Medical Records

    Science.gov (United States)

    Zhu, Xinxin; Cimin, James J.

    2014-01-01

    Each year thousands of patients die of avoidable medication errors. When a patient is admitted to, transferred within, or discharged from a clinical facility, clinicians should review previous medication orders, current orders and future plans for care, and reconcile differences if there are any. If medication reconciliation is not accurate and systematic, medication errors such as omissions, duplications, dosing errors, or drug interactions may occur and cause harm. Computer-assisted medication applications showed promise as an intervention to reduce medication summarization inaccuracies and thus avoidable medication errors. In this study, a computer-assisted medication summarization application, designed to abstract and represent multi-source time-oriented medication data, was introduced to assist clinicians with their medication reconciliation processes. An evaluation study was carried out to assess clinical usefulness and analyze potential impact of such application. Both quantitative and qualitative methods were applied to measure clinicians' performance efficiency and inaccuracy in medication summarization process with and without the intervention of computer-assisted medication application. Clinicians' feedback indicated the feasibility of integrating such a medication summarization tool into clinical practice workflow as a complementary addition to existing electronic health record systems. The result of the study showed potential to improve efficiency and reduce inaccuracy in clinician performance of medication summarization, which could in turn improve care efficiency, quality of care, and patient safety. PMID:24393492

  12. Clinicians' evaluation of computer-assisted medication summarization of electronic medical records.

    Science.gov (United States)

    Zhu, Xinxin; Cimino, James J

    2015-04-01

    Each year thousands of patients die of avoidable medication errors. When a patient is admitted to, transferred within, or discharged from a clinical facility, clinicians should review previous medication orders, current orders and future plans for care, and reconcile differences if there are any. If medication reconciliation is not accurate and systematic, medication errors such as omissions, duplications, dosing errors, or drug interactions may occur and cause harm. Computer-assisted medication applications showed promise as an intervention to reduce medication summarization inaccuracies and thus avoidable medication errors. In this study, a computer-assisted medication summarization application, designed to abstract and represent multi-source time-oriented medication data, was introduced to assist clinicians with their medication reconciliation processes. An evaluation study was carried out to assess clinical usefulness and analyze potential impact of such application. Both quantitative and qualitative methods were applied to measure clinicians' performance efficiency and inaccuracy in medication summarization process with and without the intervention of computer-assisted medication application. Clinicians' feedback indicated the feasibility of integrating such a medication summarization tool into clinical practice workflow as a complementary addition to existing electronic health record systems. The result of the study showed potential to improve efficiency and reduce inaccuracy in clinician performance of medication summarization, which could in turn improve care efficiency, quality of care, and patient safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Benchmarking Brain-Computer Interfaces Outside the Laboratory: The Cybathlon 2016

    Science.gov (United States)

    Novak, Domen; Sigrist, Roland; Gerig, Nicolas J.; Wyss, Dario; Bauer, René; Götz, Ulrich; Riener, Robert

    2018-01-01

    This paper presents a new approach to benchmarking brain-computer interfaces (BCIs) outside the lab. A computer game was created that mimics a real-world application of assistive BCIs, with the main outcome metric being the time needed to complete the game. This approach was used at the Cybathlon 2016, a competition for people with disabilities who use assistive technology to achieve tasks. The paper summarizes the technical challenges of BCIs, describes the design of the benchmarking game, then describes the rules for acceptable hardware, software and inclusion of human pilots in the BCI competition at the Cybathlon. The 11 participating teams, their approaches, and their results at the Cybathlon are presented. Though the benchmarking procedure has some limitations (for instance, we were unable to identify any factors that clearly contribute to BCI performance), it can be successfully used to analyze BCI performance in realistic, less structured conditions. In the future, the parameters of the benchmarking game could be modified to better mimic different applications (e.g., the need to use some commands more frequently than others). Furthermore, the Cybathlon has the potential to showcase such devices to the general public. PMID:29375294

  14. Benchmarking Brain-Computer Interfaces Outside the Laboratory: The Cybathlon 2016

    Directory of Open Access Journals (Sweden)

    Domen Novak

    2018-01-01

    Full Text Available This paper presents a new approach to benchmarking brain-computer interfaces (BCIs outside the lab. A computer game was created that mimics a real-world application of assistive BCIs, with the main outcome metric being the time needed to complete the game. This approach was used at the Cybathlon 2016, a competition for people with disabilities who use assistive technology to achieve tasks. The paper summarizes the technical challenges of BCIs, describes the design of the benchmarking game, then describes the rules for acceptable hardware, software and inclusion of human pilots in the BCI competition at the Cybathlon. The 11 participating teams, their approaches, and their results at the Cybathlon are presented. Though the benchmarking procedure has some limitations (for instance, we were unable to identify any factors that clearly contribute to BCI performance, it can be successfully used to analyze BCI performance in realistic, less structured conditions. In the future, the parameters of the benchmarking game could be modified to better mimic different applications (e.g., the need to use some commands more frequently than others. Furthermore, the Cybathlon has the potential to showcase such devices to the general public.

  15. EDF: Computing electron number probability distribution functions in real space from molecular wave functions

    Science.gov (United States)

    Francisco, E.; Pendás, A. Martín; Blanco, M. A.

    2008-04-01

    Given an N-electron molecule and an exhaustive partition of the real space ( R) into m arbitrary regions Ω,Ω,…,Ω ( ⋃i=1mΩ=R), the edf program computes all the probabilities P(n,n,…,n) of having exactly n electrons in Ω, n electrons in Ω,…, and n electrons ( n+n+⋯+n=N) in Ω. Each Ω may correspond to a single basin (atomic domain) or several such basins (functional group). In the later case, each atomic domain must belong to a single Ω. The program can manage both single- and multi-determinant wave functions which are read in from an aimpac-like wave function description ( .wfn) file (T.A. Keith et al., The AIMPAC95 programs, http://www.chemistry.mcmaster.ca/aimpac, 1995). For multi-determinantal wave functions a generalization of the original .wfn file has been introduced. The new format is completely backwards compatible, adding to the previous structure a description of the configuration interaction (CI) coefficients and the determinants of correlated wave functions. Besides the .wfn file, edf only needs the overlap integrals over all the atomic domains between the molecular orbitals (MO). After the P(n,n,…,n) probabilities are computed, edf obtains from them several magnitudes relevant to chemical bonding theory, such as average electronic populations and localization/delocalization indices. Regarding spin, edf may be used in two ways: with or without a splitting of the P(n,n,…,n) probabilities into α and β spin components. Program summaryProgram title: edf Catalogue identifier: AEAJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5387 No. of bytes in distributed program, including test data, etc.: 52 381 Distribution format: tar.gz Programming language: Fortran 77 Computer

  16. X-ray computed tomography system for laboratory small-object imaging: Enhanced tomography solutions

    International Nuclear Information System (INIS)

    Kharfi, F.; Yahiaoui, M.L.; Boussahoul, F.

    2015-01-01

    A portable X-ray tomography system has been installed and actually being tested at our medical imaging laboratory. This tomography system employs a combination of scintillator screen and CCD camera as image detector. The limit of spatial resolution of 290 μm of this imaging system is determined by the establishment of its modulation transfer function (MTF). In this work, we present attempts to address some issues such as limited resolution and low contrast through the development of affordable post-acquisition solutions based on the application of super-resolution method (projection onto convex sets, POCS) to create new projections set enabling the reconstruction of an improved 3D image in terms of contrast, resolution and noise. In addition to small-object examination, this tomography system is used for hands-on training activities involving students and scientists. - Highlights: • Characterization of an X-ray tomograph. • Determination of spatial resolution limit by the MTF. • Demonstration of 3D examination capability. • Enhancement of projections by super resolution POCS algorithm. • Enhancement of 3D image reconstruction by projections sets reorganization

  17. Desiderata for computable representations of electronic health records-driven phenotype algorithms.

    Science.gov (United States)

    Mo, Huan; Thompson, William K; Rasmussen, Luke V; Pacheco, Jennifer A; Jiang, Guoqian; Kiefer, Richard; Zhu, Qian; Xu, Jie; Montague, Enid; Carrell, David S; Lingren, Todd; Mentch, Frank D; Ni, Yizhao; Wehbe, Firas H; Peissig, Peggy L; Tromp, Gerard; Larson, Eric B; Chute, Christopher G; Pathak, Jyotishman; Denny, Joshua C; Speltz, Peter; Kho, Abel N; Jarvik, Gail P; Bejan, Cosmin A; Williams, Marc S; Borthwick, Kenneth; Kitchner, Terrie E; Roden, Dan M; Harris, Paul A

    2015-11-01

    Electronic health records (EHRs) are increasingly used for clinical and translational research through the creation of phenotype algorithms. Currently, phenotype algorithms are most commonly represented as noncomputable descriptive documents and knowledge artifacts that detail the protocols for querying diagnoses, symptoms, procedures, medications, and/or text-driven medical concepts, and are primarily meant for human comprehension. We present desiderata for developing a computable phenotype representation model (PheRM). A team of clinicians and informaticians reviewed common features for multisite phenotype algorithms published in PheKB.org and existing phenotype representation platforms. We also evaluated well-known diagnostic criteria and clinical decision-making guidelines to encompass a broader category of algorithms. We propose 10 desired characteristics for a flexible, computable PheRM: (1) structure clinical data into queryable forms; (2) recommend use of a common data model, but also support customization for the variability and availability of EHR data among sites; (3) support both human-readable and computable representations of phenotype algorithms; (4) implement set operations and relational algebra for modeling phenotype algorithms; (5) represent phenotype criteria with structured rules; (6) support defining temporal relations between events; (7) use standardized terminologies and ontologies, and facilitate reuse of value sets; (8) define representations for text searching and natural language processing; (9) provide interfaces for external software algorithms; and (10) maintain backward compatibility. A computable PheRM is needed for true phenotype portability and reliability across different EHR products and healthcare systems. These desiderata are a guide to inform the establishment and evolution of EHR phenotype algorithm authoring platforms and languages. © The Author 2015. Published by Oxford University Press on behalf of the American Medical

  18. The development of remote teaching laboratory access software for multi-slice computed optical tomography for use in undergraduate nuclear education

    International Nuclear Information System (INIS)

    Price, T.J.; Nichita, E.

    2013-01-01

    Internet-based laboratory exercises were developed for a course on biomedical imaging at the University of Ontario Institute of Technology. These exercises used a multi-slice computed optical tomography machine named DeskCAT to instruct students on the principals of computed tomography. User management software was developed which enabled course instructors to quickly set up a computer to accept a series of scheduled remote user connections for a classroom. Laboratory exercises using the DeskCAT machine were developed to be conducted remotely. (author)

  19. Standard-based comprehensive detection of adverse drug reaction signals from nursing statements and laboratory results in electronic health records.

    Science.gov (United States)

    Lee, Suehyun; Choi, Jiyeob; Kim, Hun-Sung; Kim, Grace Juyun; Lee, Kye Hwa; Park, Chan Hee; Han, Jongsoo; Yoon, Dukyong; Park, Man Young; Park, Rae Woong; Kang, Hye-Ryun; Kim, Ju Han

    2017-07-01

    We propose 2 Medical Dictionary for Regulatory Activities-enabled pharmacovigilance algorithms, MetaLAB and MetaNurse, powered by a per-year meta-analysis technique and improved subject sampling strategy. This study developed 2 novel algorithms, MetaLAB for laboratory abnormalities and MetaNurse for standard nursing statements, as significantly improved versions of our previous electronic health record (EHR)-based pharmacovigilance method, called CLEAR. Adverse drug reaction (ADR) signals from 117 laboratory abnormalities and 1357 standard nursing statements for all precautionary drugs ( n   = 101) were comprehensively detected and validated against SIDER (Side Effect Resource) by MetaLAB and MetaNurse against 11 817 and 76 457 drug-ADR pairs, respectively. We demonstrate that MetaLAB (area under the curve, AUC = 0.61 ± 0.18) outperformed CLEAR (AUC = 0.55 ± 0.06) when we applied the same 470 drug-event pairs as the gold standard, as in our previous research. Receiver operating characteristic curves for 101 precautionary terms in the Medical Dictionary for Regulatory Activities Preferred Terms were obtained for MetaLAB and MetaNurse (0.69 ± 0.11; 0.62 ± 0.07), which complemented each other in terms of ADR signal coverage. Novel ADR signals discovered by MetaLAB and MetaNurse were successfully validated against spontaneous reports in the US Food and Drug Administration Adverse Event Reporting System database. The present study demonstrates the symbiosis of laboratory test results and nursing statements for ADR signal detection in terms of their system organ class coverage and performance profiles. Systematic discovery and evaluation of the wide spectrum of ADR signals using standard-based observational electronic health record data across many institutions will affect drug development and use, as well as postmarketing surveillance and regulation. © The Author 2017. Published by Oxford University Press on behalf of the American

  20. Proposed ultraviolet free-electron laser at Brookhaven National Laboratory: A source for time-resolved biochemical spectroscopy

    International Nuclear Information System (INIS)

    Johnson, E.D.; Sutherland, J.C.; Laws, W.R.

    1992-01-01

    Brookhaven National Laboratory is designing an ultraviolet free- electron laser (UV-FEL) user facility that will provide pico-second and sub-picosecond pulses of coherent ultraviolet radiation for wavelengths from 300 to 75 nm. Pulse width will be variable from abut 7 ps to ∼ 200 fs, with repetition rates as high as 10 4 Hz, single pulse energies > 1 mJ and hence peak pulse power >200 MW and average beam power > 10 W. The facility will be capable of ''pump-probe'' experiments utilizing the FEL radiation with: (1) synchronized auxiliary lasers, (2) a second, independently tunable FEL beam, or (3) broad-spectrum, high-intensity x-rays from the adjacent National Synchrotron Light Source. The UV-FEL consists of a high repetition rate recirculating superconducting linear accelerator which feeds pulses of electrons to two magnetic wigglers. Within these two devices, photons from tunable ''conventional'' laser would be frequency multiplied and amplified. By synchronously tuning the seed laser and modulating the energy of the electron beam, tuning of as much as 60% in wavelength is possible between alternating pulses supplied to different experimental stations, with Fourier transform limited resolution. Thus, up to four independent experiments may operate at one time, each with independent control of the wavelength and pulse duration. The UV-FEL will make possible new avenues of inquiry in time studies of diverse field including chemical, surface, and solid state physics, biology and materials science. The experimental area is scheduled to include a station dedicated to biological research. The complement of experimental and support facilities required by the biology station will be determined by the interests of the user community. 7 refs., 5 figs

  1. Edge Simulation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, Sergei I. [Univ. of California, San Diego, CA (United States); Angus, Justin [Univ. of California, San Diego, CA (United States); Lee, Wonjae [Univ. of California, San Diego, CA (United States)

    2018-01-05

    The goal of the Edge Simulation Laboratory (ESL) multi-institutional project is to advance scientific understanding of the edge plasma region of magnetic fusion devices via a coordinated effort utilizing modern computing resources, advanced algorithms, and ongoing theoretical development. The UCSD team was involved in the development of the COGENT code for kinetic studies across a magnetic separatrix. This work included a kinetic treatment of electrons and multiple ion species (impurities) and accurate collision operators.

  2. Computer simulation of containment of electron clouds in a toroidal magnetic field

    International Nuclear Information System (INIS)

    Abe, H.

    1977-01-01

    The quiescent confinement of non-neutral electron clouds in a toroidal magnetic field is confirmed by a computer simulation using a finite-sized particle model. For a uniform density, we obtain 0.08 as the maximum of the ratio q(ω 2 sub(p)/ω 2 sub(c)). This value is larger by a factor of 4 than that achieved in experiments and reasonable from the theoretical and empirical evidence. The stable l =1 dioctron modes, the amplitudes of which can be controlled by the initial conditions, are observed to spoil the confinement time. Various physical quantities such as electrostatic potentials, decay times, and kinetic temperatures are measured and compared with the equilibrium theory. (author)

  3. Three-dimensional computed tomography angiography of coronary artery bypass graft with electron beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Toshiko; Yamauchi, Tatsuo; Kanauchi, Tetsu; Konno, Miyuki; Imai, Kamon; Suwa, Jiro; Onoguchi, Katsuhisa; Hashimoto, Kazuhiro; Horie, Toshinobu [Saitama Cardiovascular and Respiratory Center, Konan (Japan)

    2001-10-01

    Assessment of coronary artery bypass graft patency by three-dimensional reconstructed computed tomography angiography (3D-CTA) derived from electrocardiography-gated contrast-enhanced electron beam tomography (EBT) was evaluated. Thirty-nine patients with 99 grafts (45 arterial grafts and 54 venous grafts) underwent 3D-CTA and selective coronary angiography within a 3-week interval. 3D-CTA images of the coronary bypass grafts were compared with the coronary angiography images used as the control. 3D-CTA defined 42 of 44 arterial grafts as patent (sensitivity: 95%), all 47 venous grafts as patent (sensitivity: 100%) and all 7 venous grafts as occlusive (specificity: 100%). The overall sensitivity and specificity were 98% and 88%, respectively. 3D-CTA is an useful noninvasive technique with adequate sensitivity and specificity to assess coronary artery bypass graft patency. (author)

  4. Electronic Structure Calculations and Adaptation Scheme in Multi-core Computing Environments

    Energy Technology Data Exchange (ETDEWEB)

    Seshagiri, Lakshminarasimhan; Sosonkina, Masha; Zhang, Zhao

    2009-05-20

    Multi-core processing environments have become the norm in the generic computing environment and are being considered for adding an extra dimension to the execution of any application. The T2 Niagara processor is a very unique environment where it consists of eight cores having a capability of running eight threads simultaneously in each of the cores. Applications like General Atomic and Molecular Electronic Structure (GAMESS), used for ab-initio molecular quantum chemistry calculations, can be good indicators of the performance of such machines and would be a guideline for both hardware designers and application programmers. In this paper we try to benchmark the GAMESS performance on a T2 Niagara processor for a couple of molecules. We also show the suitability of using a middleware based adaptation algorithm on GAMESS on such a multi-core environment.

  5. Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Jensen, Anker Degn; Hansen, Thomas Willum

    2015-01-01

    The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder...... gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature...... was affected by the conductivity of the gas, the emissivity of the sample grid, and the conductivity of the grid. Ideally the grid should be polished and made from a material with good conductivity, e.g. copper. With hydrogen gas, which has the highest conductivity of the gases studied, the temperature...

  6. Recent Progress in First-Principles Methods for Computing the Electronic Structure of Correlated Materials

    Directory of Open Access Journals (Sweden)

    Fredrik Nilsson

    2018-03-01

    Full Text Available Substantial progress has been achieved in the last couple of decades in computing the electronic structure of correlated materials from first principles. This progress has been driven by parallel development in theory and numerical algorithms. Theoretical development in combining ab initio approaches and many-body methods is particularly promising. A crucial role is also played by a systematic method for deriving a low-energy model, which bridges the gap between real and model systems. In this article, an overview is given tracing the development from the LDA+U to the latest progress in combining the G W method and (extended dynamical mean-field theory ( G W +EDMFT. The emphasis is on conceptual and theoretical aspects rather than technical ones.

  7. Part 2 of the summary for the electronics, DAQ, and computing working group: Technological developments

    International Nuclear Information System (INIS)

    Slaughter, A.J.

    1993-01-01

    The attraction of hadron machines as B factories is the copious production of B particles. However, the interesting physics lies in specific rare final states. The challenge is selecting and recording the interesting ones. Part 1 of the summary for this working group, open-quote Comparison of Trigger and Data Acquisition Parameters for Future B Physics Experiments close-quote summarizes and compares the different proposals. In parallel with this activity, the working group also looked at a number of the technological developments being proposed to meet the trigger and DAQ requirements. The presentations covered a wide variety of topics, which are grouped into three categories: (1) front-end electronics, (2) level 0 fast triggers, and (3) trigger and vertex processors. The group did not discuss on-line farms or offine data storage and computing due to lack of time

  8. COMPUTATIONAL EFFICIENCY OF A MODIFIED SCATTERING KERNEL FOR FULL-COUPLED PHOTON-ELECTRON TRANSPORT PARALLEL COMPUTING WITH UNSTRUCTURED TETRAHEDRAL MESHES

    Directory of Open Access Journals (Sweden)

    JONG WOON KIM

    2014-04-01

    In this paper, we introduce a modified scattering kernel approach to avoid the unnecessarily repeated calculations involved with the scattering source calculation, and used it with parallel computing to effectively reduce the computation time. Its computational efficiency was tested for three-dimensional full-coupled photon-electron transport problems using our computer program which solves the multi-group discrete ordinates transport equation by using the discontinuous finite element method with unstructured tetrahedral meshes for complicated geometrical problems. The numerical tests show that we can improve speed up to 17∼42 times for the elapsed time per iteration using the modified scattering kernel, not only in the single CPU calculation but also in the parallel computing with several CPUs.

  9. Combined spectroscopic/computational studies of vitamin B12 precursors: geometric and electronic structures of cobinamides.

    Science.gov (United States)

    Reig, Amanda J; Conrad, Karen S; Brunold, Thomas C

    2012-03-05

    Vitamin B(12) (cyanocobalamin) and its biologically active derivatives, methylcobalamin and adenosylcobalamin, are members of the family of corrinoids, which also includes cobinamides. As biological precursors to cobalamins, cobinamides possess the same structural core, consisting of a low-spin Co(3+) ion that is ligated equatorially by the four nitrogens of a highly substituted tetrapyrrole macrocycle (the corrin ring), but differ with respect to the lower axial ligation. Specifically, cobinamides possess a water molecule instead of the nucleotide loop that coordinates axially to Co(3+)cobalamins via its dimethylbenzimidazole (DMB) base. Compared to the cobalamin species, cobinamides have proven much more difficult to study experimentally, thus far eluding characterization by X-ray crystallography. In this study, we have utilized combined quantum mechanics/molecular mechanics (QM/MM) computations to generate complete structural models of a representative set of cobinamide species with varying upper axial ligands. To validate the use of this approach, analogous QM/MM geometry optimizations were carried out on entire models of the cobalamin counterparts for which high-resolution X-ray structural data are available. The accuracy of the cobinamide structures was assessed further by comparing electronic absorption spectra computed using time-dependent density functional theory to those obtained experimentally. Collectively, the results obtained in this study indicate that the DMB → H(2)O lower axial ligand switch primarily affects the energies of the Co 3d(z(2))-based molecular orbital (MO) and, to a lesser extent, the other Co 3d-based MOs as well as the corrin π-based highest energy MO. Thus, while the energy of the lowest-energy electronic transition of cobalamins changes considerably as a function of the upper axial ligand, it is nearly invariant for the cobinamides.

  10. Ab-Initio Computations of Electronic and Related Properties of cubic Lithium Selenide (Li2Se)

    Science.gov (United States)

    Goita, Abdoulaye; Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Bagayoko, Diola

    We present theoretical predictions, from ab-initio, self-consistent calculations, of electronic and related properties of cubic lithium selenide (Li2Se). We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). We performed the computations following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). Our results include electronic energies, total and partial densities of states, effective masses, and the bulk modulus. The theoretical equilibrium lattice constant is 5.882 Å. We found cubic Li2Se to have a direct band gap of 4.363 eV (prediction), at Γ. This gap is 4.065 eV for a room temperature lattice constant of 6.017 Å. The calculated bulk modulus is 31.377 GPa. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.

  11. Electromagnetic computer simulations of collective ion acceleration by a relativistic electron beam

    International Nuclear Information System (INIS)

    Galvez, M.; Gisler, G.R.

    1988-01-01

    A 2.5 electromagnetic particle-in-cell computer code is used to study the collective ion acceleration when a relativistic electron beam is injected into a drift tube partially filled with cold neutral plasma. The simulations of this system reveals that the ions are subject to electrostatic acceleration by an electrostatic potential that forms behind the head of the beam. This electrostatic potential develops soon after the beam is injected into the drift tube, drifts with the beam, and eventually settles to a fixed position. At later times, this electrostatic potential becomes a virtual cathode. When the permanent position of the electrostatic potential is at the edge of the plasma or further up, then ions are accelerated forward and a unidirectional ion flow is obtained otherwise a bidirectional ion flow occurs. The ions that achieve higher energy are those which drift with the negative potential. When the plasma density is varied, the simulations show that optimum acceleration occurs when the density ratio between the beam (n b ) and the plasma (n o ) is unity. Simulations were carried out by changing the ion mass. The results of these simulations corroborate the hypothesis that the ion acceleration mechanism is purely electrostatic, so that the ion acceleration depends inversely on the charge particle mass. The simulations also show that the ion maximum energy increased logarithmically with the electron beam energy and proportional with the beam current

  12. Electron beam diagnostic system using computed tomography and an annular sensor

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  13. Meeting the security requirements of electronic medical records in the ERA of high-speed computing.

    Science.gov (United States)

    Alanazi, H O; Zaidan, A A; Zaidan, B B; Kiah, M L Mat; Al-Bakri, S H

    2015-01-01

    This study has two objectives. First, it aims to develop a system with a highly secured approach to transmitting electronic medical records (EMRs), and second, it aims to identify entities that transmit private patient information without permission. The NTRU and the Advanced Encryption Standard (AES) cryptosystems are secured encryption methods. The AES is a tested technology that has already been utilized in several systems to secure sensitive data. The United States government has been using AES since June 2003 to protect sensitive and essential information. Meanwhile, NTRU protects sensitive data against attacks through the use of quantum computers, which can break the RSA cryptosystem and elliptic curve cryptography algorithms. A hybrid of AES and NTRU is developed in this work to improve EMR security. The proposed hybrid cryptography technique is implemented to secure the data transmission process of EMRs. The proposed security solution can provide protection for over 40 years and is resistant to quantum computers. Moreover, the technique provides the necessary evidence required by law to identify disclosure or misuse of patient records. The proposed solution can effectively secure EMR transmission and protect patient rights. It also identifies the source responsible for disclosing confidential patient records. The proposed hybrid technique for securing data managed by institutional websites must be improved in the future.

  14. Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics

    International Nuclear Information System (INIS)

    Mølgaard Mortensen, Peter; Willum Hansen, Thomas; Birkedal Wagner, Jakob; Degn Jensen, Anker

    2015-01-01

    The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature was affected by the conductivity of the gas, the emissivity of the sample grid, and the conductivity of the grid. Ideally the grid should be polished and made from a material with good conductivity, e.g. copper. With hydrogen gas, which has the highest conductivity of the gases studied, the temperature difference over the TEM grid is less than 5 °C, at what must be considered typical conditions, and it is concluded that the conditions on the sample grid in the ETEM can be considered as isothermal during general use. - Highlights: • Computational fluid dynamics used for mapping flow and temperature in ETEM setup. • Temperature gradient across TEM grid in furnace based heating holder very small in ETEM. • Conduction from TEM grid and gas in addition to radiation from TEM grid most important. • Pressure drop in ETEM limited to the pressure limiting apertures

  15. Computed tomography as a source of electron density information for radiation treatment planning

    International Nuclear Information System (INIS)

    Skrzynski, Witold; Slusarczyk-Kacprzyk, Wioletta; Bulski, Wojciech; Zielinska-Dabrowska, Sylwia; Wachowicz, Marta; Kukolowicz, Pawel F.

    2010-01-01

    Purpose: to evaluate the performance of computed tomography (CT) systems of various designs as a source of electron density (ρ el ) data for treatment planning of radiation therapy. Material and methods: dependence of CT numbers on relative electron density of tissue-equivalent materials (HU-ρ el relationship) was measured for several general-purpose CT systems (single-slice, multislice, wide-bore multislice), for radiotherapy simulators with a single-slice CT and kV CBCT (cone-beam CT) options, as well as for linear accelerators with kV and MV CBCT systems. Electron density phantoms of four sizes were used. Measurement data were compared with the standard HU-ρ el relationships predefined in two commercial treatment-planning systems (TPS). Results: the HU-ρ el relationships obtained with all of the general-purpose CT scanners operating at voltages close to 120 kV were very similar to each other and close to those predefined in TPS. Some dependency of HU values on tube voltage was observed for bone-equivalent materials. For a given tube voltage, differences in results obtained for different phantoms were larger than those obtained for different CT scanners. For radiotherapy simulators and for kV CBCT systems, the information on ρ el was much less precise because of poor uniformity of images. For MV CBCT, the results were significantly different than for kV systems due to the differing energy spectrum of the beam. Conclusion: the HU-ρ el relationships predefined in TPS can be used for general-purpose CT systems operating at voltages close to 120 kV. For nontypical imaging systems (e.g., CBCT), the relationship can be significantly different and, therefore, it should always be measured and carefully analyzed before using CT data for treatment planning. (orig.)

  16. Validation of an Improved Computer-Assisted Technique for Mining Free-Text Electronic Medical Records.

    Science.gov (United States)

    Duz, Marco; Marshall, John F; Parkin, Tim

    2017-06-29

    The use of electronic medical records (EMRs) offers opportunity for clinical epidemiological research. With large EMR databases, automated analysis processes are necessary but require thorough validation before they can be routinely used. The aim of this study was to validate a computer-assisted technique using commercially available content analysis software (SimStat-WordStat v.6 (SS/WS), Provalis Research) for mining free-text EMRs. The dataset used for the validation process included life-long EMRs from 335 patients (17,563 rows of data), selected at random from a larger dataset (141,543 patients, ~2.6 million rows of data) and obtained from 10 equine veterinary practices in the United Kingdom. The ability of the computer-assisted technique to detect rows of data (cases) of colic, renal failure, right dorsal colitis, and non-steroidal anti-inflammatory drug (NSAID) use in the population was compared with manual classification. The first step of the computer-assisted analysis process was the definition of inclusion dictionaries to identify cases, including terms identifying a condition of interest. Words in inclusion dictionaries were selected from the list of all words in the dataset obtained in SS/WS. The second step consisted of defining an exclusion dictionary, including combinations of words to remove cases erroneously classified by the inclusion dictionary alone. The third step was the definition of a reinclusion dictionary to reinclude cases that had been erroneously classified by the exclusion dictionary. Finally, cases obtained by the exclusion dictionary were removed from cases obtained by the inclusion dictionary, and cases from the reinclusion dictionary were subsequently reincluded using Rv3.0.2 (R Foundation for Statistical Computing, Vienna, Austria). Manual analysis was performed as a separate process by a single experienced clinician reading through the dataset once and classifying each row of data based on the interpretation of the free

  17. Electronic structure of BN-aromatics: Choice of reliable computational tools

    Science.gov (United States)

    Mazière, Audrey; Chrostowska, Anna; Darrigan, Clovis; Dargelos, Alain; Graciaa, Alain; Chermette, Henry

    2017-10-01

    The importance of having reliable calculation tools to interpret and predict the electronic properties of BN-aromatics is directly linked to the growing interest for these very promising new systems in the field of materials science, biomedical research, or energy sustainability. Ionization energy (IE) is one of the most important parameters to approach the electronic structure of molecules. It can be theoretically estimated, but in order to evaluate their persistence and propose the most reliable tools for the evaluation of different electronic properties of existent or only imagined BN-containing compounds, we took as reference experimental values of ionization energies provided by ultra-violet photoelectron spectroscopy (UV-PES) in gas phase—the only technique giving access to the energy levels of filled molecular orbitals. Thus, a set of 21 aromatic molecules containing B-N bonds and B-N-B patterns has been merged for a comparison between experimental IEs obtained by UV-PES and various theoretical approaches for their estimation. Time-Dependent Density Functional Theory (TD-DFT) methods using B3LYP and long-range corrected CAM-B3LYP functionals are used, combined with the Δ SCF approach, and compared with electron propagator theory such as outer valence Green's function (OVGF, P3) and symmetry adapted cluster-configuration interaction ab initio methods. Direct Kohn-Sham estimation and "corrected" Kohn-Sham estimation are also given. The deviation between experimental and theoretical values is computed for each molecule, and a statistical study is performed over the average and the root mean square for the whole set and sub-sets of molecules. It is shown that (i) Δ SCF+TDDFT(CAM-B3LYP), OVGF, and P3 are the most efficient way for a good agreement with UV-PES values, (ii) a CAM-B3LYP range-separated hybrid functional is significantly better than B3LYP for the purpose, especially for extended conjugated systems, and (iii) the "corrected" Kohn-Sham result is a

  18. Electronic Structure of the Perylene / Zinc Oxide Interface: A Computational Study of Photoinduced Electron Transfer and Impact of Surface Defects

    KAUST Repository

    Li, Jingrui

    2015-07-29

    The electronic properties of dye-sensitized semiconductor surfaces consisting of pery- lene chromophores chemisorbed on zinc oxide via different spacer-anchor groups, have been studied at the density-functional-theory level. The energy distributions of the donor states and the rates of photoinduced electron transfer from dye to surface are predicted. We evaluate in particular the impact of saturated versus unsaturated aliphatic spacer groups inserted between the perylene chromophore and the semiconductor as well as the influence of surface defects on the electron-injection rates.

  19. Photovoltaic Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NIST's PV characterization laboratory is used to measure the electrical performance and opto-electronic properties of solar cells and modules. This facility consists...

  20. Fiber Bragg grating fabrication for the implementation of sensors in the electronics and optoelectronics laboratory at BUAP

    Science.gov (United States)

    Bracamontes Rodríguez, Y. E.; Beltrán Pérez, G.; Castillo Mixcóatl, J.; Muñoz Aguirre, S.

    2011-09-01

    Fiber Bragg gratings (FBG) are important optical devices since they have been quite successful not only in the field of communications but also in sensor systems and optical fiber lasers. In the sensors area they are generally used as detection elements for different physical parameters such as temperature, strain, flow, etc. In the electronics and optoelectronics laboratory at Benemérita Universidad Autónoma de Puebla (LEyO-BUAP), there are already experimental setups of sensors as well as laser systems, where FBGs are fundamental elements for their adequate performance. However, these FBGs are commercial devices and they present limited characteristics in their transmission profiles, bandwidth and reflectivity. On the other hand, in some occasions, the delivery time from the fabricant to the customer is quite long. Therefore, it is important for LEyO to implement a system to fabricate this kind of devices, which would mean LEyO independence in the technological development. In this work, results of FBGs fabrication based on the phase mask technique are presented. Such mask is optimized for UV and it has a period of 1060 nm. A Nd:YAG pulsed laser with a 5 ns pulse length and an energy of 40 mJ was used as the UV source employing the 4th harmonic generation to obtain a 266 nm wavelength. Ge-doped fiber was used to fabricate the devices.

  1. Operational experience with the Argonne National Laboratory Californium Rare Ion Breeder Upgrade facility and electron cyclotron resonance charge breeder.

    Science.gov (United States)

    Vondrasek, R; Clark, J; Levand, A; Palchan, T; Pardo, R; Savard, G; Scott, R

    2014-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) facility provides low-energy and accelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. A 350 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The ECR charge breeder has achieved stable beam charge breeding efficiencies of 10.1% for (23)Na(7+), 17.9% for (39)K(10+), 15.6% for (84)Kr(17+), and 12.4% for (133)Cs(27+). For the radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The typical breeding times are 10 ms/charge state, but the source can be tuned such that this value increases to 100 ms/charge state with the best breeding efficiency corresponding to the longest breeding times-the variation of efficiencies with breeding time will be discussed. Efforts have been made to characterize and reduce the background contaminants present in the ion beam through judicious choice of q/m combinations. Methods of background reduction are being investigated based upon plasma chamber cleaning and vacuum practices.

  2. Laboratory of Chemical Physics

    Data.gov (United States)

    Federal Laboratory Consortium — Current research in the Laboratory of Chemical Physics is primarily concerned with experimental, theoretical, and computational problems in the structure, dynamics,...

  3. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  4. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  5. Wind Structural Testing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides office space for industry researchers, experimental laboratories, computer facilities for analytical work, and space for assembling components...

  6. FY2007 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitchell [ORNL

    2007-10-01

    as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in

  7. Electronic conductivity of solid and liquid (Mg, Fe)O computed from first principles

    Science.gov (United States)

    Holmström, E.; Stixrude, L.; Scipioni, R.; Foster, A. S.

    2018-05-01

    Ferropericlase (Mg, Fe)O is an abundant mineral of Earth's lower mantle and the liquid phase of the material was an important component of the early magma ocean. Using quantum-mechanical, finite-temperature density-functional theory calculations, we compute the electronic component of the electrical and thermal conductivity of (Mg0.75, Fe0.25)O crystal and liquid over a wide range of planetary conditions: 0-200 GPa, 2000-4000 K for the crystal, and 0-300 GPa, 4000-10,000 K for the liquid. We find that the crystal and liquid are semi-metallic over the entire range studied: the crystal has an electrical conductivity exceeding 103 S/m, whereas that of the liquid exceeds 104 S/m. Our results on the crystal are in reasonable agreement with experimental measurements of the electrical conductivity of ferropericlase once we account for the dependence of conductivity on iron content. We find that a harzburgite-dominated mantle with ferropericlase in combination with Al-free bridgmanite agrees well with electromagnetic sounding observations, while a pyrolitic mantle with a ferric-iron rich bridgmanite composition yields a lower mantle that is too conductive. The electronic component of thermal conductivity of ferropericlase with XFe = 0.19 is negligible (liquid at conditions of the core-mantle boundary are similar to each other (3 ×104 S/m). A crystalline or liquid ferropericlase-rich layer of a few km thickness thus accounts for the high conductance that has been proposed to explain anomalies in Earth's nutation. The electrical conductivity of liquid ferropericlase exceeds that of liquid silica by more than an order of magnitude at conditions of a putative basal magma ocean, thus strengthening arguments that the basal magma ocean could have produced an ancient dynamo.

  8. Development of utility generic functional requirements for electronic work packages and computer-based procedures

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    The Nuclear Electronic Work Packages - Enterprise Requirements (NEWPER) initiative is a step toward a vision of implementing an eWP framework that includes many types of eWPs. This will enable immediate paper-related cost savings in work management and provide a path to future labor efficiency gains through enhanced integration and process improvement in support of the Nuclear Promise (Nuclear Energy Institute 2016). The NEWPER initiative was organized by the Nuclear Information Technology Strategic Leadership (NITSL) group, which is an organization that brings together leaders from the nuclear utility industry and regulatory agencies to address issues involved with information technology used in nuclear-power utilities. NITSL strives to maintain awareness of industry information technology-related initiatives and events and communicates those events to its membership. NITSL and LWRS Program researchers have been coordinating activities, including joint organization of NEWPER-related meetings and report development. The main goal of the NEWPER initiative was to develop a set of utility generic functional requirements for eWP systems. This set of requirements will support each utility in their process of identifying plant-specific functional and non-functional requirements. The NEWPER initiative has 140 members where the largest group of members consists of 19 commercial U.S. nuclear utilities and eleven of the most prominent vendors of eWP solutions. Through the NEWPER initiative two sets of functional requirements were developed; functional requirements for electronic work packages and functional requirements for computer-based procedures. This paper will describe the development process as well as a summary of the requirements.

  9. Atypical aortic dissection (intramural hematoma) of aorta: diagnosis of electron beam computer tomography

    International Nuclear Information System (INIS)

    Jin Jinglin; Dai Ruping; He Sha; Jing Baolian; Bai Hua

    2001-01-01

    Objective: To evaluate the clinical application of electron beam computer tomography (EBCT) in diagnosis of atypical aortic dissection. Methods: Between May 1994 and April 2000, 236 patients with aortic dissection were scanned by electron beam CT (EBCT) from 15000 cases. Out of which, 25 patients (female 4, male 21) were atypical dissection. All patients complained of acute chest pain. Contrast-enhanced EBCT was carried out by Imatron 150-X P system. Continues volume scanning mode (CVS) was performed to obtain 140 slice from aortic arch to iliac bifurcation with slice thickness of 3 mm. Results: The EBCT angiographic (EBCTA) direct features of atypical dissection were as follows: (1) continuous low density crescentic or circle areas along the wall of aorta (25 cases) with CT value of 50-87 HU, 5-23 mm in aortic wall thickness and 16.3 cm in length; (2) displacement of intimal calcification (5 cases); (3) the change of aortic wall thickness with follow up (6/6). The indirect features included: (1) aortic atherosclerotic ulcers (7 cases); (2) atherosclerotic plaque and calcification on the aortic wall (12 cases). According to above features, EBCT can confirm the diagnosis of atypical aortic dissection when the patient has acute chest pain. Among the 25 cases, ascending aorta (Stanford A type) and descending aorta (Stanford B type) were involved in 6 and 19, respectively. In the follow up study with EBCT, intramural hematoma was completely absent in 6 patients after 3 months to 1 year. Conclusion: For the differential diagnosis of acute chest pain, EBCT can confirm the diagnosis of atypical aortic dissection. EBCT is a noninvasive and safe method and it is useful for the follow up study

  10. Diagnostic value of electron-beam computed tomography (EBT). I. cardiac applications

    International Nuclear Information System (INIS)

    Enzweiler, C.N.H.; Lembcke, A.; Rogalla, P.; Taupitz, M.; Wiese, T.H.; Hammm, B.; Becker, C.R.; Reiser, M.F.; Felix, R.; Knollmann, F.D.; Georgi, M.; Weisser, G.; Lehmann, K.J.

    2004-01-01

    Electron beam tomography (EBT) directly competes with other non-invasive imaging modalities, such as multislice computed tomography, magnetic resonance imaging, and echocardiography, in the diagnostic assessment of cardiac diseases. EBT is the gold standard for the detection and quantification of coronary calcium as a preclinical sign of coronary artery disease (CAD). Its standardized examination protocols and the broad experience with this method favor EBT. First results with multislice CT indicate that this new technology may be equivalent to EBT for coronary calcium studies. The principal value of CT-based coronary calcium measurements continues to be an issue of controversy amongst radiologists and cardiologists due to lack of prospective randomized trials. Coronary angiography with EBT is characterized by a high negative predictive value and, in addition, may be indicated in some patients with manifest CAD. It remains to be shown whether coronary angiography with multislice CT is reliable and accurate enough to be introduced into the routine work-up, to replace some of the many strictly diagnostic coronary catheterizations in Germany and elsewhere. Assessment of coronary stent patency with EBT is associated with several problems and in our opinion cannot be advocated as a routine procedure. EBT may be recommended for the evaluation of coronary bypasses to look for bypass occlusions and significant stenoses, which, however, can be equally well achieved with multislice CT. Quantification of myocardial perfusion with EBT could not replace MRI or other modalities in this field. EBT has proven to be accurate, reliable and in some instances equivalent to MRI, which is the gold standard for the quantitative and qualitative evaluation of cardiac function. Some disadvantages not the least of which is the limited distribution of electron beam scanners, favor MRI for functional assessment of the heart. (orig.) [de

  11. Construction and operation of a 10 MeV electron accelerator and associated experimental facilities at Brookhaven National Laboratory, Upton, New York. Environmental assessment

    International Nuclear Information System (INIS)

    1994-02-01

    The purpose of this environmental impact statement is to determine whether there would be significant environmental impacts associated with the construction of an experimental facility at Brookhaven National Laboratory for radiation chemistry research and operation of the 10-MeV electron accelerator proposed for it. The document describes the need for action, alternative actions, the affected environment, and potential environmental impacts

  12. Cost consequences of implementing an electronic decision support system for ordering laboratory tests in primary care: evidence from a controlled prospective study in the Netherlands.

    NARCIS (Netherlands)

    Poley, M.J.; Edelenbos, K.I.; Mosseveld, M.; Wijk, M.A.M. van; Bakker, D. de; Lei, J. van der; Rutten-van Mölken, M.P.M.H.

    2007-01-01

    BACKGROUND: The economic consequences of interventions to promote rational, evidence-based use of laboratory tests by physicians are not yet fully understood. We evaluated the cost consequences of a computer-based, guideline-driven decision-support system (CDSS) for ordering blood tests in primary

  13. Electronic computer prediction of properties of binary refractory transition metal compounds on the base of their simplificated electronic structure

    International Nuclear Information System (INIS)

    Kutolin, S.A.; Kotyukov, V.I.

    1979-01-01

    An attempt is made to obtain calculation equations of macroscopic physico-chemical properties of transition metal refractory compounds (density, melting temperature, Debye characteristic temperature, microhardness, standard formation enthalpy, thermo-emf) using the method of the regression analysis. Apart from the compound composition the argument of the regression equation is the distribution of electron bands of d-transition metals, created by the energy electron distribution in the simplified zone structure of transition metals and approximated by Chebishev polynoms, by the position of Fermi energy on the map of distribution of electron band energy depending upon the value of quasi-impulse, multiple to the first, second and third Brillouin zone for transition metals. The maximum relative error of the regressions obtained as compared with the literary data is 15-20 rel.%

  14. Feasibility of replacing patient specific cutouts with a computer-controlled electron multileaf collimator

    International Nuclear Information System (INIS)

    Eldib, Ahmed; Jin Lihui; Li Jinsheng; Ma, C-M Charlie

    2013-01-01

    A motorized electron multileaf collimator (eMLC) was developed as an add-on device to the Varian linac for delivery of advanced electron beam therapy. It has previously been shown that electron beams collimated by an eMLC have very similar penumbra to those collimated by applicators and cutouts. Thus, manufacturing patient specific cutouts would no longer be necessary, resulting in the reduction of time taken in the cutout fabrication process. Moreover, cutout construction involves handling of toxic materials and exposure to toxic fumes that are usually generated during the process, while the eMLC will be a pollution-free device. However, undulation of the isodose lines is expected due to the finite size of the eMLC. Hence, the provided planned target volume (PTV) shape will not exactly follow the beam's-eye-view of the PTV, but instead will make a stepped approximation to the PTV shape. This may be a problem when the field edge is close to a critical structure. Therefore, in this study the capability of the eMLC to achieve the same clinical outcome as an applicator/cutout combination was investigated based on real patient computed tomographies (CTs). An in-house Monte Carlo based treatment planning system was used for dose calculation using ten patient CTs. For each patient, two plans were generated; one with electron beams collimated using the applicator/cutout combination; and the other plan with beams collimated by the eMLC. Treatment plan quality was compared for each patient based on dose distribution and dose–volume histogram. In order to determine the optimal position of the leaves, the impact of the different leaf positioning strategies was investigated. All plans with both eMLC and cutouts were generated such that 100% of the target volume receives at least 90% of the prescribed dose. Then the percentage difference in dose between both delivery techniques was calculated for all the cases. The difference in the dose received by 10% of the volume of the

  15. Feasibility of replacing patient specific cutouts with a computer-controlled electron multileaf collimator

    Science.gov (United States)

    Eldib, Ahmed; Jin, Lihui; Li, Jinsheng; Ma, C.-M. Charlie

    2013-08-01

    A motorized electron multileaf collimator (eMLC) was developed as an add-on device to the Varian linac for delivery of advanced electron beam therapy. It has previously been shown that electron beams collimated by an eMLC have very similar penumbra to those collimated by applicators and cutouts. Thus, manufacturing patient specific cutouts would no longer be necessary, resulting in the reduction of time taken in the cutout fabrication process. Moreover, cutout construction involves handling of toxic materials and exposure to toxic fumes that are usually generated during the process, while the eMLC will be a pollution-free device. However, undulation of the isodose lines is expected due to the finite size of the eMLC. Hence, the provided planned target volume (PTV) shape will not exactly follow the beam's-eye-view of the PTV, but instead will make a stepped approximation to the PTV shape. This may be a problem when the field edge is close to a critical structure. Therefore, in this study the capability of the eMLC to achieve the same clinical outcome as an applicator/cutout combination was investigated based on real patient computed tomographies (CTs). An in-house Monte Carlo based treatment planning system was used for dose calculation using ten patient CTs. For each patient, two plans were generated; one with electron beams collimated using the applicator/cutout combination; and the other plan with beams collimated by the eMLC. Treatment plan quality was compared for each patient based on dose distribution and dose-volume histogram. In order to determine the optimal position of the leaves, the impact of the different leaf positioning strategies was investigated. All plans with both eMLC and cutouts were generated such that 100% of the target volume receives at least 90% of the prescribed dose. Then the percentage difference in dose between both delivery techniques was calculated for all the cases. The difference in the dose received by 10% of the volume of the

  16. Computer model for determining fracture porosity and permeability in the Conasauga Group, Oak Ridge National Laboratory, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Sledz, J.J.; Huff, D.D.

    1981-04-01

    Joint orientations for the shale and siltstone beds of the Conasauga Group were measured from outcrop exposures on the Oak Ridge National Laboratory Reservation. The data collected from two strike belts (structural trends) were analyzed with the use of the computer and subdivided into individual joint sets. The joint set patterns in the Northern outcrop belt were too complex for orientation prediction; joint formation is believed to be influenced by polyphase deformation. The Southern Conasauga Belt contains an orthogonal joint set consisting of strike and a-c joints in all outcrops measured. These are believed to be tension joints formed during thrust sheet emplacement. Joint length and spacing, measured in the field, were found to be extremely variable within each exposure and highly dependent upon surficial weathering. The measurements from all locations were combined for detailed analysis and trend prediction. Results showed that the joint length and spacing increased with increasing bed thickness in the siltstone, while the bed thickness variations in the shale had little effect on the joints. A computer model was developed by combining the joint orientation, joint spacing, and joint length data collected in the field with subsurface drill core information for the purpose of calculating the fracture porosity and permeability of the rocks. The joint gap width was measured from both outcrop and subsurface samples with ranges from 0.1 mm to 0.7 mm in the siltstones and less than 0.2 mm in the shales. The value for the joint gap width was found to be the major factor in the fracture porosity and permeability calculation.

  17. A structural lattice model for electronic textile: an experimental and computational study

    NARCIS (Netherlands)

    Verberne, C.W.; Van Os, K.; Luitjens, S.B.

    2011-01-01

    Electronic textiles combine textiles with the functionality of electronic applications.To understand the mechanical issues of reliability, mechanical failure and compatibility of these electronic textiles, research has to be performed that focusses on the interplay of the textile with the electronic

  18. Computer Graphics Research Laboratory

    Science.gov (United States)

    1994-01-31

    the distance to avoid and is given in meters. 26 Ex: (avoid " bodybuilder " "ccube" :strength 5.0 :dist 2.0) An AVOID command should be issued for each...traditional animation principles [23] such as anticipation, squash-and- stretch , follow through, and timing. For biped running, Girard [13] com- puted the... stretched out over time, so as to synchronize with preceding and following gestures, and the speech these gestures accompany. An example of gestural

  19. Breast patient setup error assessment: comparison of electronic portal image devices and cone-beam computed tomography matching results

    NARCIS (Netherlands)

    Topolnjak, Rajko; Sonke, Jan-Jakob; Nijkamp, Jasper; Rasch, Coen; Minkema, Danny; Remeijer, Peter; van Vliet-Vroegindeweij, Corine

    2010-01-01

    To quantify the differences in setup errors measured with the cone-beam computed tomography (CBCT) and electronic portal image devices (EPID) in breast cancer patients. Repeat CBCT scan were acquired for routine offline setup verification in 20 breast cancer patients. During the CBCT imaging

  20. A comparison of echocardiographic and electron beam computed tomographic assessment of aortic valve area in patients with valvular aortic stenosis

    NARCIS (Netherlands)

    Piers, Lieuwe H.; Dikkers, Riksta; Tio, Rene A.; van den Berg, Maarten P.; Willems, Tineke P.; Zijlstra, Felix; Oudkerk, Matthijs

    2007-01-01

    The purpose of this study was to compare electron beam computed tomography (EBT) with transthoracic echocardiography (TTE) in determining aortic valve area (AVA). Thirty patients (9 females, 21 males) underwent a contrast-enhanced EBT scan (e-Speed, GE, San Francisco, CA, USA) and TTE within 17 +/-

  1. A computer control system for the PNC high power cw electron linac. Concept and hardware

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, T.; Hirano, K.; Takei, Hayanori; Nomura, Masahiro; Tani, S. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Kato, Y.; Ishikawa, Y.

    1998-06-01

    Design and construction of a high power cw (Continuous Wave) electron linac for studying feasibility of nuclear waste transmutation was started in 1989 at PNC. The PNC accelerator (10 MeV, 20 mA average current, 4 ms pulse width, 50 Hz repetition) is dedicated machine for development of the high current acceleration technology in future need. The computer control system is responsible for accelerator control and supporting the experiment for high power operation. The feature of the system is the measurements of accelerator status simultaneously and modularity of software and hardware for easily implemented for modification or expansion. The high speed network (SCRAM Net {approx} 15 MB/s), Ethernet, and front end processors (Digital Signal Processor) were employed for the high speed data taking and control. The system was designed to be standard modules and software implemented man machine interface. Due to graphical-user-interface and object-oriented-programming, the software development environment is effortless programming and maintenance. (author)

  2. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device

    International Nuclear Information System (INIS)

    Park, Sangsu; Noh, Jinwoo; Choo, Myung-lae; Sheri, Ahmad Muqeem; Jeon, Moongu; Lee, Byung-Geun; Lee, Byoung Hun; Chang, Man; Kim, Young-Bae; Kim, Chang Jung; Hwang, Hyunsang

    2013-01-01

    Efforts to develop scalable learning algorithms for implementation of networks of spiking neurons in silicon have been hindered by the considerable footprints of learning circuits, which grow as the number of synapses increases. Recent developments in nanotechnologies provide an extremely compact device with low-power consumption. In particular, nanoscale resistive switching devices (resistive random-access memory (RRAM)) are regarded as a promising solution for implementation of biological synapses due to their nanoscale dimensions, capacity to store multiple bits and the low energy required to operate distinct states. In this paper, we report the fabrication, modeling and implementation of nanoscale RRAM with multi-level storage capability for an electronic synapse device. In addition, we first experimentally demonstrate the learning capabilities and predictable performance by a neuromorphic circuit composed of a nanoscale 1 kbit RRAM cross-point array of synapses and complementary metal–oxide–semiconductor neuron circuits. These developments open up possibilities for the development of ubiquitous ultra-dense, ultra-low-power cognitive computers. (paper)

  3. Clinical application of electron beam computed tomography in diagnosis of truncus arteriosus

    International Nuclear Information System (INIS)

    Zhang Gejun; Dai Ruping; Cao Cheng; Qi Xiaoou; Bai Hua; Ma Zhanhong; Chen Yao; Mu Feng; Ren Li

    2005-01-01

    Objective: To evaluate value of electron beam computed tomography (EBCT) in diagnosis of truncus arteriosus (TA). Methods: Ten cases of TA with age ranging from 2-month to 24 years were studied. All cases were examined and diagnosed with Imatron C-150 scanner using contrastmedia. The results of EBCT were analyzed and compared with the results of echocardiography (in 10 cases), cardiovascular angiography (in 3 cases) and surgery findings (in 1 case ). Results: EBCT yielded qualitative diagnosis and classification in all 10 cases. Echocardiography revealed qualitative diagnosis in 9 cases, however its classification was accordant to EBCT just in 5 cases. The concomitant abnormalities of TA were found more with EBCT than that with echocardiography. Cardiovascular angiography was performed in 3 cases, yielding inaccurate classification 2 cases. One case of TA was operated just based on the results of echocardiography, EBCT and catheterization. Conclusion: As a noninvasive method, EBCT could yield qualitative diagnosis of TA as well as classification. The results of EBCT examination combining echocardiography and catheterization could guide the operations. (authors)

  4. Examination of Scanning Electron Microscope and Computed Tomography Images of PICA

    Science.gov (United States)

    Lawson, John W.; Stackpoole, Margaret M.; Shklover, Valery

    2010-01-01

    Micrographs of PICA (Phenolic Impregnated Carbon Ablator) taken using a Scanning Electron Microscope (SEM) and 3D images taken with a Computed Tomography (CT) system are examined. PICA is a carbon fiber based composite (Fiberform ) with a phenolic polymer matrix. The micrographs are taken at different surface depths and at different magnifications in a sample after arc jet testing and show different levels of oxidative removal of the charred matrix (Figs 1 though 13). CT scans, courtesy of Xradia, Inc. of Concord CA, were captured for samples of virgin PICA, charred PICA and raw Fiberform (Fig. 14). We use these images to calculate the thermal conductivity (TC) of these materials using correlation function (CF) methods. CF methods give a mathematical description of how one material is embedded in another and is thus ideally suited for modeling composites like PICA. We will evaluate how the TC of the materials changes as a function of surface depth. This work is in collaboration with ETH-Zurich, which has expertise in high temperature materials and TC modeling (including CF methods).

  5. Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics.

    Science.gov (United States)

    Mølgaard Mortensen, Peter; Hansen, Thomas Willum; Birkedal Wagner, Jakob; Degn Jensen, Anker

    2015-05-01

    The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature was affected by the conductivity of the gas, the emissivity of the sample grid, and the conductivity of the grid. Ideally the grid should be polished and made from a material with good conductivity, e.g. copper. With hydrogen gas, which has the highest conductivity of the gases studied, the temperature difference over the TEM grid is less than 5 °C, at what must be considered typical conditions, and it is concluded that the conditions on the sample grid in the ETEM can be considered as isothermal during general use. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Comprehensive evaluation of anomalous pulmonary venous connection by electron beam computed tomography as compared with ultrasound

    International Nuclear Information System (INIS)

    Zhang Shaoxiong; Dai Ruping; Bai Hua; He Sha; Jing Baolian

    1999-01-01

    Objective: To investigate the clinical value of electron beam computed tomography (EBCT) in diagnosis of anomalous pulmonary venous connection. Methods: Retrospective analysis on 14 cases with anomalous pulmonary venous connection was performed using EBCT volume scan. The slice thickness and scan time were 3 mm and 100 ms respectively. Non-ionic contrast medium was applied. Three dimensional reconstruction of EBCT images were carried out on all cases. Meanwhile, ultrasound echocardiography was performed on all patients. Conventional cardiovascular angiography was performed on 8 patients and 2 cases received operation. Results: Ten patients with total anomalous pulmonary venous connection, including 6 cases of supra-cardiac type and 4 cases of cardiac type, were proved by EBCT examination. Among them, 3 cases of abnormal pulmonary venous drainage were not revealed by conventional cardiovascular angiography. Among four patients with partial pulmonary venous connection, including cardiac type in 2 cases, supra-cardiac type and infra-cardiac type in 1 case respectively, only one of them was demonstrated by echocardiography. Conclusion: EBCT has significant value in diagnosis of anomalous pulmonary venous connection which may not be detectable with echocardiography or even cardiovascular angiography

  7. Brain-computer interface research at the University of South Florida Cognitive Psychophysiology Laboratory: the P300 Speller.

    Science.gov (United States)

    Sellers, Eric W; Kübler, Andrea; Donchin, Emanuel

    2006-06-01

    We describe current efforts to implement and improve P300-BCI communication tools. The P300 Speller first described by Farwell and Donchin (in 1988) adapted the so-called oddball paradigm (OP) as the operating principle of the brain-computer interface (BCI) and was the first P300-BCI. The system operated by briefly intensifying each row and column of a matrix and the attended row and column elicited a P300 response. This paradigm has been the benchmark in P300-BCI systems, and in the past few years the P300 Speller paradigm has been solidified as a promising communication tool. While promising, we have found that some people who have amyotrophic lateral sclerosis (ALS) would be better suited with a system that has a limited number of choices, particularly if the 6 x 6 matrix is difficult to use. Therefore, we used the OP to implement a four-choice system using the commands: Yes, No, Pass, and End; we also used three presentation modes: auditory, visual, and auditory and visual. We summarize results from both paradigms and also discuss obstacles we have identified while working with the ALS population outside of the laboratory environment.

  8. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    Energy Technology Data Exchange (ETDEWEB)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  9. Observed Stress Behaviors of 1st-Grade Children Participating in More and Less Developmentally Appropriate Activities in a Computer-based Literacy Laboratory.

    Science.gov (United States)

    Ruckman, Andrea Young; Burts, Diane C.; Pierce, Sarah H.

    1999-01-01

    Examined the relationship between more and less developmentally appropriate learning activities (MDAP, LDAP) and stress and nonstress behaviors of first graders during a computer-based literacy laboratory. Found that children exhibited more stress behaviors during LDAP learning activities than did children during MDAP learning activities. No…

  10. A Different Approach to Have Science and Technology Student-Teachers Gain Varied Methods in Laboratory Applications: A Sample of Computer Assisted POE Application

    Science.gov (United States)

    Saka, Arzu

    2012-01-01

    The purpose of this study is to develop a new approach and assess the application for the science and technology student-teachers to gain varied laboratory methods in science and technology teaching. It is also aimed to describe the computer-assisted POE application in the subject of "Photosynthesis-Light" developed in the context of…

  11. Transabdominal ultrasonography, computed tomography and electronic portal imaging for 3-dimensional conformal radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Jereczek-Fossa, B.A.; Orecchia, R.; Cattani, F.; Garibaldi, C.; Cambria, R.; Valenti, M.; Ciocca, M.; Zerini, D.; Boboc, G.I.; Vavassori, A.; Ivaldi, G.B.; Kowalczyk, A.; Matei, D.V.; Cobelli, O. de

    2007-01-01

    Purpose: To evaluate the feasibility and accuracy of daily B-mode acquisition and targeting ultrasound-based prostate localization (BAT trademark) and to compare it with computed tomography (CT) and electronic portal imaging (EPI) in 3-dimensional conformal radiotherapy (3-D CRT) for prostate cancer. Patients and Methods: Ten patients were treated with 3-D CRT (72 Gy/30 fractions, 2.4 Gy/fraction, equivalent to 80 Gy/40 fractions, for α/β ratio of 1.5 Gy) and daily BAT-based prostate localization. For the first 5 fractions, CT and EPI were also performed in order to compare organ-motion and set-up error, respectively. Results: 287 BAT-, 50 CT- and 46 EPI-alignments were performed. The average BAT-determined misalignments in latero-lateral, antero-posterior and cranio-caudal directions were -0.9 mm ± 3.3 mm, 1.0 mm ± 4.0 mm and -0.9 mm ± 3.8 mm, respectively. The differences between BAT- and CT-determined organ-motion in latero-lateral, antero-posterior and cranio-caudal directions were 2.7 mm ± 1.9 mm, 3.9 ± 2.8 mm and 3.4 ± 3.0 mm, respectively. Weak correlation was found between BAT- and CT-determined misalignments in antero-posterior direction, while no correlation was observed in latero-lateral and cranio-caudal directions. The correlation was more significant when only data of good image-quality patients were analyzed (8 patients). Conclusion: BAT ensures the relative positions of target are the same during treatment and in treatment plan, however, the reliability of alignment is patient-dependent. The average BAT-determined misalignments were small, confirming the prevalence of random errors in 3-D CRT. Further study is warranted in order to establish the clinical value of BAT. (orig.)

  12. Functional imaging with electron-beam computed tompgraphy; Funktionsuntersuchungen des Herzens mit der Elektronenstrahltomographie

    Energy Technology Data Exchange (ETDEWEB)

    Becker, A.; Knez, A.; Haberl, R.; Steinbeck, G. [Medizinische Klinik 1, Klinikum Grosshadern, Muenchen Univ. (Germany); Becker, C.; Bruening, R.; Reiser, M. [Inst. fuer Radiologische Diagnostik, Klinikum Grosshadern, Muenchen Univ. (Germany)

    1998-12-01

    Purpose: Electron-beam computed tomography (EBCT) enables examinations with a very short acquisition time of 50 ms and thus permits cardiac imaging without motion artifacts. Utilizing eight detector rings simultaneous image acquisition in up to eight levels and complete imaging of the whole heart is possible. In studies, functional imaging with EBCT was compared to our angiocardiography, echocardiography, radionuclide, ventriculography and magnetic resonance tomography. Results: A very high correlation between EBCT and direct determination of right and left ventricle (r=0.98 and r=0.99) was demonstrated. Compared to echocardiography, angiocardiography and radionuclide ventriculography, assessment of ventricular function was more precise and more reliable. Discussion: EBCT allows the exact and reliable determination of left and right ventricular function. Also precise assessment of myocardial mass is possible. However, the high radiation exposure and diagnostic effort have to be considered. (orig./AJ) [Deutsch] Zielsetzung: Die Elektronenstrahltomographie ermoeglicht Aufnahmen mit einer aeusserst kurzen Akquisitionszeit von 50 ms. Dadurch erfolgt die artefaktfreie Abbildung des Herzens. Zudem ist mit 2 Detektorringen die simultane Bildakquisition in bis zu 8 Schichten und damit die vollstaendige Abbildung des Herzens moeglich. Wir haben die EBCT mit Angiokardiographie, Echokardiographie, Radionuklidventrikulographie und Magnetresonanztomographie zur Beurteilung von Ventrikelgroesse, Pumpfunktion und Myokardmasse verglichen. Ergebnisse: Es zeigte sich eine sehr gute Korrelation der EBCT mit der direkten Bestimmung der rechten und linken Ventrikelgroesse (r=0,98 und r=0,99). Im Vergleich zu Echokardiographie, Angiokardiographie und Radionuklidventrikulographie ermoeglichte die EBCT eine genauere und zuverlaessigere Bestimmung der ventrikulaeren Funktion. Diskussion: Mit der EBCT kann die rechts- und linksventrikulaere Funktion exakt und zuverlaessig beurteilt werden

  13. A systematic computational study of electronic effects on hydrogen sensitivity of olefin polymerization catalysts (abstract only)

    International Nuclear Information System (INIS)

    Coussens, Betty B; Budzelaar, Peter H M; Friederichs, Nic

    2008-01-01

    One of the important product parameters of polyolefins is their molecular weight (distribution). A common way to control this parameter is to add molecular hydrogen during the polymerization, which then acts as a chain transfer agent. The factors governing the hydrogen sensitivity of olefin polymerization catalysts are poorly understood and have attracted little attention from computational chemists. To explore the electronic factors determining hydrogen sensitivity we performed density functional calculations on a wide range of simple model systems including some metallocenes and a few basic models of heterogeneous catalysts. As a quantitative measure for hydrogen sensitivity we used the ratio of (i) the rate constant for chain transfer to hydrogen to (ii) the rate constant for ethene insertion, k h /k p (see the scheme below), and as a measure of electrophilicity we used the energy of complexation to the probe molecule ammonia. For isolated species in the gas phase, complexation energies appear to dominate the chemistry. Ethene complexes more strongly than hydrogen and with increasing electrophilicity of the metal centre this difference grows; the hydrogen sensitivity decreases accordingly. Although many factors (like catalyst dormancy and deactivation issues) complicate the comparison with experiment, this result seems to agree both in broad terms with the experimental lower hydrogen sensitivity of heterogeneous catalysts, and more specifically with the increased hydrogen sensitivity of highly alkylated or fused metallocenes. The opposite conclusion reached by Blom (see Blom et al 2002 Macromol. Chem. Phys. 203 381-7) is due to the use of a very different measure of electrophilicity, rather than to different experimental data

  14. Clinical and computer-assisted evaluations of the stain removal ability of the Sonicare electronic toothbrush.

    Science.gov (United States)

    McInnes, C; Johnson, B; Emling, R C; Yankell, S L

    1994-01-01

    Two single-blind clinical studies investigated the stain removal properties of Sonicare, a new electronic toothbrush that combines sonic vibrations and dynamic fluid activity with mechanical scrubbing to clean tooth surfaces. In one study, 30 subjects used a 0.12% chlorhexidine mouthrinse (Peridex) for two weeks to accumulate stain, and then were assigned to either Sonicare or a manual toothbrush (Oral-B P-35). The subjects brushed with their assigned device for 2 minutes twice a day. In a second study, 19 subjects with extrinsic stain due to coffee, tea, or tobacco (CTT) causes were randomly assigned to either Sonicare or a manual toothbrush (Crest Complete). These subjects also brushed for 2 minutes twice a day, with additional brushing on the stained areas. Stain on the labial surfaces of the subjects' anterior teeth was evaluated with the Lobene index at the pretrial, 2-week, and 4-week periods. Clinical analysis indicated that use of Sonicare resulted in Peridex stain reductions of 54% and 50% after 2 and 4 weeks, respectively, and reductions in CTT stain of 39% and 82% at similar time points. The manual toothbrush resulted in stain increases of 4% and 24% in the Peridex study and CTT stain decreases of 41% and 39% after 2- and 4-week brushing periods. Computer image analysis was performed on photographic records from the CTT stain study and showed a high correlation with the Lobene index (r = 0.82). The results of these two independent studies indicate that Sonicare is superior to the manual toothbrushes studied in removing both Peridex and CTT stains.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Electronic nature of zwitterionic alkali metal methanides, silanides and germanides - a combined experimental and computational approach.

    Science.gov (United States)

    Li, H; Aquino, A J A; Cordes, D B; Hase, W L; Krempner, C

    2017-02-01

    Zwitterionic group 14 complexes of the alkali metals of formula [C(SiMe 2 OCH 2 CH 2 OMe) 3 M], (M- 1 ), [Si(SiMe 2 OCH 2 CH 2 OMe) 3 M], (M- 2 ), [Ge(SiMe 2 OCH 2 CH 2 OMe) 3 M], (M- 3 ), where M = Li, Na or K, have been prepared, structurally characterized and their electronic nature was investigated by computational methods. Zwitterions M- 2 and M- 3 were synthesized via reactions of [Si(SiMe 2 OCH 2 CH 2 OMe) 4 ] ( 2 ) and [Ge(SiMe 2 OCH 2 CH 2 OMe) 4 ] ( 3 ) with MOBu t (M = Li, Na or K), resp., in almost quantitative yields, while M- 1 were prepared from deprotonation of [HC(SiMe 2 OCH 2 CH 2 OMe) 3 ] ( 1 ) with LiBu t , NaCH 2 Ph and KCH 2 Ph, resp. X-ray crystallographic studies and DFT calculations in the gas-phase, including calculations of the NPA charges confirm the zwitterionic nature of these compounds, with the alkali metal cations being rigidly locked and charge separated from the anion by the internal OCH 2 CH 2 OMe donor groups. Natural bond orbital (NBO) analysis and the second order perturbation theory analysis of the NBOs reveal significant hyperconjugative interactions in M- 1 -M- 3 , primarily between the lone pair and the antibonding Si-O orbitals, the extent of which decreases in the order M- 1 > M- 2 > M- 3 . The experimental basicities and the calculated gas-phase basicities of M- 1 -M- 3 reveal the zwitterionic alkali metal methanides M- 1 to be significantly stronger bases than the analogous silanides M- 2 and germanium M- 3 .

  16. Advantages and Limitations of Anticipating Laboratory Test Results from Regression- and Tree-Based Rules Derived from Electronic Health-Record Data

    OpenAIRE

    Mohammad, Fahim; Theisen-Toupal, Jesse C.; Arnaout, Ramy

    2014-01-01

    Laboratory testing is the single highest-volume medical activity, making it useful to ask how well one can anticipate whether a given test result will be high, low, or within the reference interval ("normal"). We analyzed 10 years of electronic health records--a total of 69.4 million blood tests--to see how well standard rule-mining techniques can anticipate test results based on patient age and gender, recent diagnoses, and recent laboratory test results. We evaluated rules according to thei...

  17. Formalization and computation of quality measures based on electronic medical records

    NARCIS (Netherlands)

    Dentler, K.; Numans, M.E.; ten Teije, A.C.M.; Cornet, R.; de Keizer, N.F.

    2014-01-01

    Objective: Ambiguous definitions of quality measures in natural language impede their automated computability and also the reproducibility, validity, timeliness, traceability, comparability, and interpretability of computed results. Therefore, quality measures should be formalized before their

  18. Formalization and computation of quality measures based on electronic medical records

    NARCIS (Netherlands)

    Dentler, K.; Numans, M.; ten Teije, A.; Cornet, R.; De Keizer, N.

    2013-01-01

    Objective: Ambiguous definitions of quality measures in natural language impede their automated computability and also the reproducibility, validity, timeliness, traceability, comparability, and interpretability of computed results. Therefore, quality measures should be formalized before their

  19. Courant Mathematics and Computing Laboratory, New York University. Progress report No. 54, October 1, 1977--September 30, 1978

    International Nuclear Information System (INIS)

    1978-01-01

    Work is reported in the following areas: applied mathematics (computational fluid dynamics, numerical analysis), computational magnetohydrodynamics, computational physics and chemistry (materials science, quantum many-body systems, chemistry), computer science (CIMS PL/I, Version II; distributed systems and resource sharing, computer design - PUMA; SETL; algorithmic combinatorics), systems programing and user services. The relationship to other projects, list of seminars, and list of publications are also included. The research descriptions are administrative in nature, usually less than a page in length

  20. Comparison of Property-Oriented Basis Sets for the Computation of Electronic and Nuclear Relaxation Hyperpolarizabilities.

    Science.gov (United States)

    Zaleśny, Robert; Baranowska-Łączkowska, Angelika; Medveď, Miroslav; Luis, Josep M

    2015-09-08

    In the present work, we perform an assessment of several property-oriented atomic basis sets in computing (hyper)polarizabilities with a focus on the vibrational contributions. Our analysis encompasses the Pol and LPol-ds basis sets of Sadlej and co-workers, the def2-SVPD and def2-TZVPD basis sets of Rappoport and Furche, and the ORP basis set of Baranowska-Łączkowska and Łączkowski. Additionally, we use the d-aug-cc-pVQZ and aug-cc-pVTZ basis sets of Dunning and co-workers to determine the reference estimates of the investigated electric properties for small- and medium-sized molecules, respectively. We combine these basis sets with ab initio post-Hartree-Fock quantum-chemistry approaches (including the coupled cluster method) to calculate electronic and nuclear relaxation (hyper)polarizabilities of carbon dioxide, formaldehyde, cis-diazene, and a medium-sized Schiff base. The primary finding of our study is that, among all studied property-oriented basis sets, only the def2-TZVPD and ORP basis sets yield nuclear relaxation (hyper)polarizabilities of small molecules with average absolute errors less than 5.5%. A similar accuracy for the nuclear relaxation (hyper)polarizabilites of the studied systems can also be reached using the aug-cc-pVDZ basis set (5.3%), although for more accurate calculations of vibrational contributions, i.e., average absolute errors less than 1%, the aug-cc-pVTZ basis set is recommended. It was also demonstrated that anharmonic contributions to first and second hyperpolarizabilities of a medium-sized Schiff base are particularly difficult to accurately predict at the correlated level using property-oriented basis sets. For instance, the value of the nuclear relaxation first hyperpolarizability computed at the MP2/def2-TZVPD level of theory is roughly 3 times larger than that determined using the aug-cc-pVTZ basis set. We link the failure of the def2-TZVPD basis set with the difficulties in predicting the first-order field

  1. FY 2005 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M

    2005-11-22

    appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its

  2. Hybrid Computation at Louisiana State University.

    Science.gov (United States)

    Corripio, Armando B.

    Hybrid computation facilities have been in operation at Louisiana State University since the spring of 1969. In part, they consist of an Electronics Associates, Inc. (EAI) Model 680 analog computer, an EAI Model 693 interface, and a Xerox Data Systems (XDS) Sigma 5 digital computer. The hybrid laboratory is used in a course on hybrid computation…

  3. {sup 99m}Tc Auger electrons - Analysis on the effects of low absorbed doses by computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Adriana Alexandre S., E-mail: adriana_tavares@msn.co [Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, S/N, 4200-465 Porto (Portugal); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.p [Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, S/N, 4200-465 Porto (Portugal)

    2011-03-15

    We describe here the use of computational methods for evaluation of the low dose effects on human fibroblasts after irradiation with Technetium-99m ({sup 99m}Tc) Auger electrons. The results suggest a parabolic relationship between the irradiation of fibroblasts with {sup 99m}Tc Auger electrons and the total absorbed dose. Additionally, the results on very low absorbed doses may be explained by the bystander effect, which has been implicated on the cell's effects at low doses. Further in vitro evaluation will be worthwhile to clarify these findings.

  4. The Impacts of Attitudes and Engagement on Electronic Word of Mouth (eWOM) of Mobile Sensor Computing Applications

    Science.gov (United States)

    Zhao, Yu; Liu, Yide; Lai, Ivan K. W.; Zhang, Hongfeng; Zhang, Yi

    2016-01-01

    As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human–computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users’ compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user’s compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user—product (brand) relationships. PMID:26999155

  5. The Impacts of Attitudes and Engagement on Electronic Word of Mouth (eWOM of Mobile Sensor Computing Applications

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2016-03-01

    Full Text Available As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human–computer interaction (HCI issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users’ compound attitudes (i.e., affective attitudes, cognitive attitude, engagement and electronic word of mouth (eWOM behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user’s compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user—product (brand relationships.

  6. The Impacts of Attitudes and Engagement on Electronic Word of Mouth (eWOM) of Mobile Sensor Computing Applications.

    Science.gov (United States)

    Zhao, Yu; Liu, Yide; Lai, Ivan K W; Zhang, Hongfeng; Zhang, Yi

    2016-03-18

    As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human-computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users' compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user's compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user-product (brand) relationships.

  7. Modeling and computations of the intramolecular electron transfer process in the two-heme protein cytochrome c4

    DEFF Research Database (Denmark)

    Natzmutdinov, Renat R.; Bronshtein, Michael D.; Zinkicheva, Tamara T.

    2012-01-01

    ligands in both low- and high-spin states by structure-optimized DFT. The computations enable estimating the intramolecular reorganization energy of the ET process for different combinations of low- and high-spin heme couples. Environmental reorganization free energies, work terms (‘‘gating’’) and driving...... performed computational modeling of the intramolecular ET process by a combination of density functional theory (DFT) and quantum mechanical charge transfer theory to disclose reasons for this difference. We first address the electronic structures of the model heme core with histidine and methionine axial...

  8. The auroral electron accelerator

    International Nuclear Information System (INIS)

    Bryant, D.A.; Hall, D.S.

    1989-01-01

    A model of the auroral electron acceleration process is presented in which the electrons are accelerated resonantly by lower-hybrid waves. The essentially stochastic acceleration process is approximated for the purposes of computation by a deterministic model involving an empirically derived energy transfer function. The empirical function, which is consistent with all that is known of electron energization by lower-hybrid waves, allows many, possibly all, observed features of the electron distribution to be reproduced. It is suggested that the process occurs widely in both space and laboratory plasmas. (author)

  9. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitchell [ORNL

    2011-10-01

    The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry

  10. FY2010 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitchell [ORNL

    2010-10-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems

  11. Importance of Accurate Computation of Secondary Electron Emission for ModelingSpacecraft Charging

    OpenAIRE

    Clerc, Sebastien; Dennison, JR

    2005-01-01

    The secondary electron yield is a critical process in establishing the charge balance in spacecraft charging and the subsequent determination of the equilibrium potential. Spacecraft charging codes use a parameterized expression for the secondary electron yield δ(Eo) as a function of incident electron energy, Eo. A critical step in accurately characterizing a particular spacecraft material is establishing the most efficient and accurate way to determine the fitting parameters in terms of the ...

  12. Laboratory astrophysics and atomic physics using the NASA/GSFC microcalorimeter spectrometers at the LLNL electron beam ion trap and radiation properties facility

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.V. [High Energy Density and Astrophysics Division, Lawrence Livermore National Laboratory, 7000 East Avenue Livermore, CA 94551 (United States)]. E-mail: gregbrown@llnl.gov; Beiersdorfer, P. [High Energy Density and Astrophysics Division, Lawrence Livermore National Laboratory, 7000 East Avenue Livermore, CA 94551 (United States); Boyce, K.R. [Laboratory for X-ray Astrophysics, NASA/Goddard Space Flight Center, Greenbelt, MD 20770 (United States); Chen, H. [High Energy Density and Astrophysics Division, Lawrence Livermore National Laboratory, 7000 East Avenue Livermore, CA 94551 (United States); Gu, M.F. [Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 2450, Stanford, CA 94309 (United States); Kahn, S.M. [Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 2450, Stanford, CA 94309 (United States); Kelley, R.L. [Laboratory for X-ray Astrophysics, NASA/Goddard Space Flight Center, Greenbelt, MD 20770 (United States); Kilbourne, C.A. [Laboratory for X-ray Astrophysics, NASA/Goddard Space Flight Center, Greenbelt, MD 20770 (United States); May, M. [High Energy Density and Astrophysics Division, Lawrence Livermore National Laboratory, 7000 East Avenue Livermore, CA 94551 (United States); Porter, F.S. [Laboratory for X-ray Astrophysics, NASA/Goddard Space Flight Center, Greenbelt, MD 20770 (United States); Szymkowiak, A.E. [Yale University, New Haven, CT 06511 (United States); Thorn, D. [High Energy Density and Astrophysics Division, Lawrence Livermore National Laboratory, 7000 East Avenue Livermore, CA 94551 (United States); Widmann, K. [High Energy Density and Astrophysics Division, Lawrence Livermore National Laboratory, 7000 East Avenue Livermore, CA 94551 (United States)

    2006-04-15

    The 32 pixel laboratory microcalorimeter spectrometer built by the NASA/Goddard Space Flight Center (GSFC) is now an integral part of the spectroscopy suite used routinely by the electron beam ion trap and radiative properties group at the Lawrence Livermore National Laboratory. The second generation laboratory instrument, dubbed the XRS/EBIT, is nearly identical to the XRS instrument on the Suzaku X-ray Observatory, formerly Astro-E2. The detector array is from the same processed wafer and uses the same HgTe absorbers. It is being used to measure the photon emission from a variety of radiation sources. These include X-ray emission from laboratory simulated celestial sources, X-ray emission from highly charged ions of Au, and X-ray emission following charge exchange and radiative electron capture. The wide range of applications demonstrates the versatility of a high-resolution, high-efficiency low-temperature detector that is able to collect data continually with minimal operator servicing.

  13. Laboratory astrophysics and atomic physics using the NASA/GSFC microcalorimeter spectrometers at the LLNL Electron Beam Ion Trap and Radiation Properties Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G; Beiersdorfer, P; Boyce, K; Chen, H; Gu, M F; Kahn, S; Kelley, R; Kilbourne, C; May, M; Porter, F S; Szymkowiak, A; Thorn, D; Widmann, K

    2005-08-18

    The 32 pixel laboratory microcalorimeter spectrometer built by the NASA/Goddard Space Flight Center is now an integral part of the spectroscopy suite used routinely by the electron beam ion trap and radiative properties group at the Lawrence Livermore National Laboratory. The second generation laboratory instrument, dubbed the XRS/EBIT, is nearly identical to the XRS instrument on the Suzaku X-ray Observatory, formerly Astro-E2. The detector array is from the same processed wafer and uses the same HgTe absorbers. it is being used to measure the photon emission from a variety of radiation sources. These include x-ray emission from laboratory simulated celestial sources, x-ray emission from highly charged ions of Au, and x-ray emission following charge exchange and radiative electron capture. The wide range of applications demonstrates the versatility of a high-resolution, high-efficiency low temperature detector that is able to collect data continually with minimal operator servicing.

  14. Electron Microscopy Center (EMC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those...

  15. Calculation of dipole polarizability derivatives of adamantane and their use in electron scattering computations

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Paidarová, Ivana; Čársky, Petr

    2016-01-01

    that the polarizability tensor is necessary to correct long-range behavior of DFT functionals used in electron-molecule scattering calculations. The impact of such a long-range correction is demonstrated on elastic and vibrationally inelastic electron collisions with adamantane, a molecule representing a large polyatomic...

  16. Ab initio computation of electron affinities of substituted benzalacetophenones (chalcones): a new approach to substituent effects in organic electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, L.D.; Fry, A.J.; Kurzweil, V.C. [Wesleyan Univ., Middletown, CT (United States). Hall-Atwater Lab.

    2004-12-15

    The electron affinities (EAs) of a training set of 29 monosubstituted benzalacetophenones (chalcones) were computed at the ab initio density functional B3LYP/6-31G* level of theory. The EAs and experimental reduction potentials of the training set are highly linearly correlated (correlation coefficient of 0.969 and standard deviation of 10.8 mV). An additional 72 di-, tri-, and tetrasubstituted chalcones were then synthesized. Their reduction potentials were predicted from computed EAs using the linear correlation derived from the training set. Agreement between the experimental and computed reduction potentials is remarkably good, with a standard deviation of less than 22 mV for this very large set of substances whose potentials extend over a range of almost 700 mV. (Author)

  17. An initio computation of electron affinities of substituted benzalacetophenones (chalcones): a new approach to substituent effects in organic electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, L.D.; Fry, A.J.; Kurzweil, V.C. [Wesleyan University, Middletown, CT (United States). Chemistry Dept.

    2004-12-15

    The electron affinities (EAs) of a training set of 29 monosubstituted benzalacetophenones (chalcones) were computed at the ab initio density functional B3LYP/6-31G level of theory. The EAs and experimental reduction potentials of the training set are highly linearly correlated (correlation coefficient of 0.969 and standard deviation of 10.8 mV). An additional 72 di-, tri-, and tetrasubstituted chalcones were then synthesized. Their reduction potentials were predicted from computed EAs using the linear correlation derived from the training set. Agreement between the experimental and computed reduction potentials is remarkably good, with a standard deviation of less than 22 mV for this very large set of substances whose potentials extend over a range of almost 700 mV. (author)

  18. Lawrence Livermore National Laboratories Perspective on Code Development and High Performance Computing Resources in Support of the National HED/ICF Effort

    Energy Technology Data Exchange (ETDEWEB)

    Clouse, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edwards, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McCoy, M. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, M. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verdon, C. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-07

    Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.

  19. Modeling Photovoltaic Module-Level Power Electronics in the System Advisor Model; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-01

    Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such as DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.

  20. EMRlog Method for Computer Security for Electronic Medical Records with Logic and Data Mining

    Directory of Open Access Journals (Sweden)

    Sergio Mauricio Martínez Monterrubio

    2015-01-01

    Full Text Available The proper functioning of a hospital computer system is an arduous work for managers and staff. However, inconsistent policies are frequent and can produce enormous problems, such as stolen information, frequent failures, and loss of the entire or part of the hospital data. This paper presents a new method named EMRlog for computer security systems in hospitals. EMRlog is focused on two kinds of security policies: directive and implemented policies. Security policies are applied to computer systems that handle huge amounts of information such as databases, applications, and medical records. Firstly, a syntactic verification step is applied by using predicate logic. Then data mining techniques are used to detect which security policies have really been implemented by the computer systems staff. Subsequently, consistency is verified in both kinds of policies; in addition these subsets are contrasted and validated. This is performed by an automatic theorem prover. Thus, many kinds of vulnerabilities can be removed for achieving a safer computer system.

  1. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  2. Gait Analysis Laboratory

    Science.gov (United States)

    1976-01-01

    Complete motion analysis laboratory has evolved out of analyzing walking patterns of crippled children at Stanford Children's Hospital. Data is collected by placing tiny electrical sensors over muscle groups of child's legs and inserting step-sensing switches in soles of shoes. Miniature radio transmitters send signals to receiver for continuous recording of abnormal walking pattern. Engineers are working to apply space electronics miniaturization techniques to reduce size and weight of telemetry system further as well as striving to increase signal bandwidth so analysis can be performed faster and more accurately using a mini-computer.

  3. Improved temporal resolution heart rate variability monitoring-pilot results of non-laboratory experiments targeting future assessment of human-computer interaction.

    Science.gov (United States)

    Hercegfi, Károly

    2011-01-01

    This paper outlines the INTERFACE software ergonomic evaluation methodology and presents new validation results. The INTERFACE methodology is based on a simultaneous assessment of heart rate variability, skin conductance, and other data. The results of using this methodology on-site, in a non-laboratory environment indicate that it is potentially capable of identifying quality attributes of elements of software with a temporal resolution of only a few seconds. This paper presents pilot results supporting this hypothesis, showing empirical evidence in spite of the definitely non-laboratory environment: they indicate that the method is robust enough for practical usability tests. Naturally, in the future these pilot results will have to be followed with further laboratory-based verification and refinement. This paper focuses only on some characteristics of this method, not on an actual analysis of human-computer interaction; however, its results can establish a future practical and objective event-related analysis of software use.

  4. Transport of energetic electrons in solids computer simulation with applications to materials analysis and characterization

    CERN Document Server

    Dapor, Maurizio

    2017-01-01

    This new edition describes all the mechanisms of elastic and inelastic scattering of electrons with the atoms of the target as simple as possible. The use of techniques of quantum mechanics is described in detail for the investigation of interaction processes of electrons with matter. It presents the strategies of the Monte Carlo method, as well as numerous comparisons among the results of the simulations and the experimental data available in the literature. New in this edition is the description of the Mermin theory, a comparison between Mermin theory and Drude theory, a discussion about the dispersion laws, and details about the calculation of the phase shifts that are used in the relativistic partial wave expansion method. The role of secondary electrons in proton cancer therapy is discussed in the chapter devoted to applications. In this context, Monte Carlo results about the radial distribution of the energy deposited in PMMA by secondary electrons generated by energetic proton beams are presented.

  5. Paper versus computer: Feasibility of an electronic medical record in general pediatrics

    NARCIS (Netherlands)

    J. Roukema (Jolt); R.K. Los (Renske); S.E. Bleeker (Sacha); A.M. van Ginneken (Astrid); J. van der Lei (Johan); H.A. Moll (Henriëtte)

    2006-01-01

    textabstractBACKGROUND. Implementation of electronic medical record systems promises significant advances in patient care, because such systems enhance readability, availability, and data quality. Structured data entry (SDE) applications can prompt for completeness, provide greater accuracy and

  6. Efficient Computation of Coherent Synchrotron Radiation Taking into Account 6D Phase Space Distribution of Emitting Electrons

    International Nuclear Information System (INIS)

    Chubar, O.; Couprie, M.-E.

    2007-01-01

    CPU-efficient method for calculation of the frequency domain electric field of Coherent Synchrotron Radiation (CSR) taking into account 6D phase space distribution of electrons in a bunch is proposed. As an application example, calculation results of the CSR emitted by an electron bunch with small longitudinal and large transverse sizes are presented. Such situation can be realized in storage rings or ERLs by transverse deflection of the electron bunches in special crab-type RF cavities, i.e. using the technique proposed for the generation of femtosecond X-ray pulses (A. Zholents et. al., 1999). The computation, performed for the parameters of the SOLEIL storage ring, shows that if the transverse size of electron bunch is larger than the diffraction limit for single-electron SR at a given wavelength -- this affects the angular distribution of the CSR at this wavelength and reduces the coherent flux. Nevertheless, for transverse bunch dimensions up to several millimeters and a longitudinal bunch size smaller than hundred micrometers, the resulting CSR flux in the far infrared spectral range is still many orders of magnitude higher than the flux of incoherent SR, and therefore can be considered for practical use

  7. Computing challenges in the certification of ATLAS Tile Calorimeter front-end electronics during maintenance periods

    International Nuclear Information System (INIS)

    Solans, C; Carrió, F; Valero, A; Kim, H Y; Usai, G; Moreno, P; Reed, R; Sandrock, C; Ruan, X; Shalyugin, A; Schettino, V; Souza, J

    2014-01-01

    After two years of operation of the LHC, the ATLAS Tile calorimeter is undergoing a consolidation process of its front-end electronics. The certification is performed in the experimental area with a portable test-bench which is capable of controlling and reading out one front-end module through dedicated cables. This test-bench has been redesigned to improve the tests of the electronics functionality quality assessment of the data until the end of Phase I.

  8. Computer control of the high-voltage power supply for the DIII-D Electron Cyclotron Heating system

    International Nuclear Information System (INIS)

    Clow, D.D.; Kellman, D.H.

    1991-10-01

    The D3-D Electron Cyclotron Heating (ECH) high voltage power supply is controlled by a computer. Operational control is input via keyboard and mouse, and computer/power supply interface is accomplished with a Computer Assisted Monitoring and Control (CAMAC) system. User-friendly tools allow the design and layout of simulated control panels on the computer screen. Panel controls and indicators can be changed, added or deleted, and simple editing of user-specific processes can quickly modify control and fault logic. Databases can be defined, and control panel functions are easily referred to various data channels. User-specific processes are written and linked using Fortran, to manage control and data acquisition through CAMAC. The resulting control system has significant advantages over the hardware it emulates: changes in logic, layout, and function are quickly and easily incorporated; data storage, retrieval, and processing are flexible and simply accomplished, physical components subject to wear and degradation are minimized. In addition, the system can be expanded to multiplex control of several power supplied, each with its own database, through a single computer and console. 5 refs., 4 figs., 1 tab

  9. Computer control of a scanning electron microscope for digital image processing of thermal-wave images

    Science.gov (United States)

    Gilbert, Percy; Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.

    1987-01-01

    Using a recently developed technology called thermal-wave microscopy, NASA Lewis Research Center has developed a computer controlled submicron thermal-wave microscope for the purpose of investigating III-V compound semiconductor devices and materials. This paper describes the system's design and configuration and discusses the hardware and software capabilities. Knowledge of the Concurrent 3200 series computers is needed for a complete understanding of the material presented. However, concepts and procedures are of general interest.

  10. Creating an Electronic Reference and Information Database for Computer-aided ECM Design

    Science.gov (United States)

    Nekhoroshev, M. V.; Pronichev, N. D.; Smirnov, G. V.

    2018-01-01

    The paper presents a review on electrochemical shaping. An algorithm has been developed to implement a computer shaping model applicable to pulse electrochemical machining. For that purpose, the characteristics of pulse current occurring in electrochemical machining of aviation materials have been studied. Based on integrating the experimental results and comprehensive electrochemical machining process data modeling, a subsystem for computer-aided design of electrochemical machining for gas turbine engine blades has been developed; the subsystem was implemented in the Teamcenter PLM system.

  11. Computational micromechanics analysis of electron hopping and interfacial damage induced piezoresistive response in carbon nanotube-polymer nanocomposites

    International Nuclear Information System (INIS)

    Chaurasia, A K; Seidel, G D; Ren, X

    2014-01-01

    Carbon nanotube (CNT)-polymer nanocomposites have been observed to exhibit an effective macroscale piezoresistive response, i.e., change in macroscale resistivity when subjected to applied deformation. The macroscale piezoresistive response of CNT-polymer nanocomposites leads to deformation/strain sensing capabilities. It is believed that the nanoscale phenomenon of electron hopping is the major driving force behind the observed macroscale piezoresistivity of such nanocomposites. Additionally, CNT-polymer nanocomposites provide damage sensing capabilities because of local changes in electron hopping pathways at the nanoscale because of initiation/evolution of damage. The primary focus of the current work is to explore the effect of interfacial separation and damage at the nanoscale CNT-polymer interface on the effective macroscale piezoresistive response. Interfacial separation and damage are allowed to evolve at the CNT-polymer interface through coupled electromechanical cohesive zones, within a finite element based computational micromechanics framework, resulting in electron hopping based current density across the separated CNT-polymer interface. The macroscale effective material properties and gauge factors are evaluated using micromechanics techniques based on electrostatic energy equivalence. The impact of the electron hopping mechanism, nanoscale interface separation and damage evolution on the effective nanocomposite electrostatic and piezoresistive response is studied in comparison with the perfectly bonded interface. The effective electrostatic/piezoresistive response for the perfectly bonded interface is obtained based on a computational micromechanics model developed in the authors’ earlier work. It is observed that the macroscale effective gauge factors are highly sensitive to strain induced formation/disruption of electron hopping pathways, interface separation and the initiation/evolution of interfacial damage. (paper)

  12. Vectorizing a sequence of conditional branches: The calculation of the class index of two-electron repulsion integrals on CRAY computers

    International Nuclear Information System (INIS)

    The relative advantages of processing a supermatrix or a two-electron integral file for the vector-oriented computation of two-electron interaction matrices in ab initio quantum chemical calculations are discussed briefly. It is concluded that the supermatrix formalism is less appropriate for large molecules. Two vector algorithms are presented for the calculation of the class index characterizing each two-electron repulsion integral. Benchmark tests have been carried out on a CRAY-2 computer; the timings for the new vector algorithms and for the standard scalar computations are reported for the two presently available versions of the CRAY-2 FORTRAN compiler (CFT 77 and CFT-2). (orig.)

  13. Culham Laboratory

    International Nuclear Information System (INIS)

    1980-06-01

    The report contains summaries of work carried out under the following headings: fusion research experiments; U.K. contribution to the JET project; supporting studies; theoretical plasma physics, computational physics and computing; fusion reactor studies; engineering and technology; contract research; external relations; staff, finance and services. Appendices cover main characteristics of Culham fusion experiments, staff, extra-mural projects supported by Culham Laboratory, and a list of papers written by Culham staff. (U.K.)

  14. Examination of the Effects of Dimensionality on Cognitive Processing in Science: A Computational Modeling Experiment Comparing Online Laboratory Simulations and Serious Educational Games

    Science.gov (United States)

    Lamb, Richard L.

    2016-02-01

    Within the last 10 years, new tools for assisting in the teaching and learning of academic skills and content within the context of science have arisen. These new tools include multiple types of computer software and hardware to include (video) games. The purpose of this study was to examine and compare the effect of computer learning games in the form of three-dimensional serious educational games, two-dimensional online laboratories, and traditional lecture-based instruction in the context of student content learning in science. In particular, this study examines the impact of dimensionality, or the ability to move along the X-, Y-, and Z-axis in the games. Study subjects ( N = 551) were randomly selected using a stratified sampling technique. Independent strata subsamples were developed based upon the conditions of serious educational games, online laboratories, and lecture. The study also computationally models a potential mechanism of action and compares two- and three-dimensional learning environments. F test results suggest a significant difference for the main effect of condition across the factor of content gain score with large effect. Overall, comparisons using computational models suggest that three-dimensional serious educational games increase the level of success in learning as measured with content examinations through greater recruitment and attributional retraining of cognitive systems. The study supports assertions in the literature that the use of games in higher dimensions (i.e., three-dimensional versus two-dimensional) helps to increase student understanding of science concepts.

  15. Late enhancement of the left ventricular myocardium in young patients with hypertrophic cardiomyopathy by electron beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Kenichi; Yoshibayashi, Muneo; Tsukano, Shinya; Ono, Yasuo; Arakaki, Yoshio; Naito, Hiroaki; Echigo, Shigeyuki [National Cardiovascular Center, Suita, Osaka (Japan)

    2001-05-01

    In the assessment of myocardial characteristics with computed tomography, late enhancement (intense stain in delayed phase image of contrast enhancement) is an abnormal finding and thought to represent fibrotic change. The purpose of this study was to investigate the clinical importance of late enhancement in young patients with hypertrophic cardiomyopathy. Forty-five patients with hypertrophic cardiomyopathy, aged 1 to 24 years, were examined by electron beam computed tomography. We also assessed the clinical data on these patients. Late enhancement was found in 29 (64%) patients, usually as a patchy, stained area in the myocardium. In 29 patients with late enhancement, seven (24%) has syncopal episode and seven (24%) had a family history of sudden death. In contrast, none (0%) of 16 patients without late enhancement had syncopal episode nor a family history of sudden death (p<0.05). Twenty-four hour electrocardiographic monitoring was performed for 31 patients. Al patients with ventricular tachycardia were in the group with late enhancement [10/23 (43%) vs 0/8 (0%), p<0.05]. Thirty-seven patients were examined by thallium scintigraphy. The perfusion defect was more frequently found in patients with late enhancement than in patients without [14/26 (54%) vs 2/11 (18%), p<0.05]. These data suggest that late enhancement shown with electron beam computed tomography is related to syncopal episode, family history of sudden death, ventricular tachycardia, and myocardial damage in young patients with hypertrophic cardiomyopathy. (author)

  16. Late enhancement of the left ventricular myocardium in young patients with hypertrophic cardiomyopathy by electron beam computed tomography

    International Nuclear Information System (INIS)

    Kurosaki, Kenichi; Yoshibayashi, Muneo; Tsukano, Shinya; Ono, Yasuo; Arakaki, Yoshio; Naito, Hiroaki; Echigo, Shigeyuki

    2001-01-01

    In the assessment of myocardial characteristics with computed tomography, late enhancement (intense stain in delayed phase image of contrast enhancement) is an abnormal finding and thought to represent fibrotic change. The purpose of this study was to investigate the clinical importance of late enhancement in young patients with hypertrophic cardiomyopathy. Forty-five patients with hypertrophic cardiomyopathy, aged 1 to 24 years, were examined by electron beam computed tomography. We also assessed the clinical data on these patients. Late enhancement was found in 29 (64%) patients, usually as a patchy, stained area in the myocardium. In 29 patients with late enhancement, seven (24%) has syncopal episode and seven (24%) had a family history of sudden death. In contrast, none (0%) of 16 patients without late enhancement had syncopal episode nor a family history of sudden death (p<0.05). Twenty-four hour electrocardiographic monitoring was performed for 31 patients. Al patients with ventricular tachycardia were in the group with late enhancement [10/23 (43%) vs 0/8 (0%), p<0.05]. Thirty-seven patients were examined by thallium scintigraphy. The perfusion defect was more frequently found in patients with late enhancement than in patients without [14/26 (54%) vs 2/11 (18%), p<0.05]. These data suggest that late enhancement shown with electron beam computed tomography is related to syncopal episode, family history of sudden death, ventricular tachycardia, and myocardial damage in young patients with hypertrophic cardiomyopathy. (author)

  17. Parallel, distributed and GPU computing technologies in single-particle electron microscopy

    International Nuclear Information System (INIS)

    Schmeisser, Martin; Heisen, Burkhard C.; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger

    2009-01-01

    An introduction to the current paradigm shift towards concurrency in software. Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today’s technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined

  18. PENELOPE, and algorithm and computer code for Monte Carlo simulation of electron-photon showers

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, F.; Fernandez-Varea, J.M.; Baro, J.; Sempau, J.

    1996-10-01

    The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from similar{sub t}o 1 KeV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm.

  19. PENELOPE, an algorithm and computer code for Monte Carlo simulation of electron-photon showers

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, F.; Fernandez-Varea, J.M.; Baro, J.; Sempau, J.

    1996-07-01

    The FORTRAN 77 subroutine package PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary for a wide energy range, from 1 keV to several hundred MeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A simple geometry package permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the simulation package, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm. (Author) 108 refs.

  20. Effects of surface functionalization on the electronic and structural properties of carbon nanotubes: A computational approach

    Science.gov (United States)

    Ribeiro, M. S.; Pascoini, A. L.; Knupp, W. G.; Camps, I.

    2017-12-01

    Carbon nanotubes (CNTs) have important electronic, mechanical and optical properties. These features may be different when comparing a pristine nanotube with other presenting its surface functionalized. These changes can be explored in areas of research and application, such as construction of nanodevices that act as sensors and filters. Following this idea, in the current work, we present the results from a systematic study of CNT's surface functionalized with hydroxyl and carboxyl groups. Using the entropy as selection criterion, we filtered a library of 10k stochastically generated complexes for each functional concentration (5, 10, 15, 20 and 25%). The structurally related parameters (root-mean-square deviation, entropy, and volume/area) have a monotonic relationship with functionalization concentration. Differently, the electronic parameters (frontier molecular orbital energies, electronic gap, molecular hardness, and electrophilicity index) present and oscillatory behavior. For a set of concentrations, the nanotubes present spin polarized properties that can be used in spintronics.

  1. CiSE Computational Physics Challenge Winner: Electron Wave Packet Propagation in Graphene Nanoribbons

    Science.gov (United States)

    Anton, Steven M.

    2008-04-01

    While graphene has been studied by theoreticians for over half a century, the two dimensional crystal lattice has only recently been realized experimentally. As such, theoretical work in the properties of graphene has exploded. A variety of these properties, which are truly exceptional and unique, have engendered much research into carbon based electronics, of which graphene is generally the most fundamental unit. In this thesis, we seek to characterize basic electronic properties of graphene nanoribbons. We begin with a tight-binding model of graphene and an analysis of the electronic band structure of the infinite sheet and semi-infinite nanoribbons. Also employing the spectral method, we create, inject, and propagate various types of wave packets infinite wires. A key effect that is expected is the so called Zitterbewegung oscillation of the wave packet center. Results are compared to theoretical predictions based on analytical methods rather than numerical simulations.

  2. Advantages and limitations of anticipating laboratory test results from regression- and tree-based rules derived from electronic health-record data.

    Directory of Open Access Journals (Sweden)

    Fahim Mohammad

    Full Text Available Laboratory testing is the single highest-volume medical activity, making it useful to ask how well one can anticipate whether a given test result will be high, low, or within the reference interval ("normal". We analyzed 10 years of electronic health records--a total of 69.4 million blood tests--to see how well standard rule-mining techniques can anticipate test results based on patient age and gender, recent diagnoses, and recent laboratory test results. We evaluated rules according to their positive and negative predictive value (PPV and NPV and area under the receiver-operator characteristic curve (ROC AUCs. Using a stringent cutoff of PPV and/or NPV≥0.95, standard techniques yield few rules for sendout tests but several for in-house tests, mostly for repeat laboratory tests that are part of the complete blood count and basic metabolic panel. Most rules were clinically and pathophysiologically plausible, and several seemed clinically useful for informing pre-test probability of a given result. But overall, rules were unlikely to be able to function as a general substitute for actually ordering a test. Improving laboratory utilization will likely require different input data and/or alternative methods.

  3. Advantages and limitations of anticipating laboratory test results from regression- and tree-based rules derived from electronic health-record data.

    Science.gov (United States)

    Mohammad, Fahim; Theisen-Toupal, Jesse C; Arnaout, Ramy

    2014-01-01

    Laboratory testing is the single highest-volume medical activity, making it useful to ask how well one can anticipate whether a given test result will be high, low, or within the reference interval ("normal"). We analyzed 10 years of electronic health records--a total of 69.4 million blood tests--to see how well standard rule-mining techniques can anticipate test results based on patient age and gender, recent diagnoses, and recent laboratory test results. We evaluated rules according to their positive and negative predictive value (PPV and NPV) and area under the receiver-operator characteristic curve (ROC AUCs). Using a stringent cutoff of PPV and/or NPV≥0.95, standard techniques yield few rules for sendout tests but several for in-house tests, mostly for repeat laboratory tests that are part of the complete blood count and basic metabolic panel. Most rules were clinically and pathophysiologically plausible, and several seemed clinically useful for informing pre-test probability of a given result. But overall, rules were unlikely to be able to function as a general substitute for actually ordering a test. Improving laboratory utilization will likely require different input data and/or alternative methods.

  4. COMPUTING

    CERN Document Server

    M. Kasemann

    Overview In autumn the main focus was to process and handle CRAFT data and to perform the Summer08 MC production. The operational aspects were well covered by regular Computing Shifts, experts on duty and Computing Run Coordination. At the Computing Resource Board (CRB) in October a model to account for service work at Tier 2s was approved. The computing resources for 2009 were reviewed for presentation at the C-RRB. The quarterly resource monitoring is continuing. Facilities/Infrastructure operations Operations during CRAFT data taking ran fine. This proved to be a very valuable experience for T0 workflows and operations. The transfers of custodial data to most T1s went smoothly. A first round of reprocessing started at the Tier-1 centers end of November; it will take about two weeks. The Computing Shifts procedure was tested full scale during this period and proved to be very efficient: 30 Computing Shifts Persons (CSP) and 10 Computing Resources Coordinators (CRC). The shift program for the shut down w...

  5. Computer assisted assembly of connectomes from electron micrographs: application to Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Meng Xu

    Full Text Available A rate-limiting step in determining a connectome, the set of all synaptic connections in a nervous system, is extraction of the relevant information from serial electron micrographs. Here we introduce a software application, Elegance, that speeds acquisition of the minimal dataset necessary, allowing the discovery of new connectomes. We have used Elegance to obtain new connectivity data in the nematode worm Caenorhabditis elegans. We analyze the accuracy that can be obtained, which is limited by unresolvable ambiguities at some locations in electron microscopic images. Elegance is useful for reconstructing connectivity in any region of neuropil of sufficiently small size.

  6. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    Science.gov (United States)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  7. Kepler's Laws in an Introductory Astronomy Laboratory: The Influence of a Computer-based Simulation Used With Multiple Variables

    Science.gov (United States)

    Ruzhitskaya, Lanika; French, R. S.; Speck, A.

    2009-05-01

    We report first results from a multi-faceted study employing the lab "Revolution of the Moons of Jupiter" from the CLEA group (Contemporary Laboratory Experiences in Astronomy) in an introductory astronomy laboratory course for nonscience majors. Four laboratory sections participated in the study: two at a traditional four-year public institution in Missouri and two at a two-year community college in California. Students in all sections took identical pre- and post-tests and used the same simulation software. In all sections, students were assigned randomly to work either in pairs or individually. One section at both schools was given a brief mini-lecture on Kepler's laws and introduction to the exercise while the other section at both schools was given no instructions whatsoever. The data allow comparisons between the impact of the simulation with and without instructions and on the influences of peer interactions on learning outcomes.

  8. Progress report No. 53, October 1, 1976--September 30, 1977. [Courant Mathematics and Computing Laboratory, New York University

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    Work in the following areas is considered in this annual report: applied mathematics (partial differential equations) in computational fluid dynamics, numerical analysis, etc.; computational physics and chemistry (partial differential equations); programing languages and compilers and other applications of computer science; and network access methods and applications of the ARPA network. Also discussed is the relation of work done at the Courant Institute to other projects, systems programing and user services, seminars, and publications. Individual reports are a paragraph or so in length. Completed work is reported in the appropriate publications. (RWR)

  9. Efficient method for computing the electronic transport properties of a multiterminal system

    Science.gov (United States)

    Lima, Leandro R. F.; Dusko, Amintor; Lewenkopf, Caio

    2018-04-01

    We present a multiprobe recursive Green's function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green's function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.

  10. Analogue alternative the electronic analogue computer in Britain and the USA, 1930-1975

    CERN Document Server

    Small, James S

    2013-01-01

    We are in the midst of a digital revolution - until recently, the majority of appliances used in everyday life have been developed with analogue technology. Now, either at home or out and about, we are surrounded by digital technology such as digital 'film', audio systems, computers and telephones. From the late 1940s until the 1970s, analogue technology was a genuine alternative to digital, and the two competing technologies ran parallel with each other. During this period, a community of engineers, scientists, academics and businessmen continued to develop and promote the analogue computer.

  11. Data processing of X-ray fluorescence analysis using an electronic computer

    International Nuclear Information System (INIS)

    Yakubovich, A.L.; Przhiyalovskij, S.M.; Tsameryan, G.N.; Golubnichij, G.V.; Nikitin, S.A.

    1979-01-01

    Considered are problems of data processing of multi-element (for 17 elements) X-ray fluorescence analysis of tungsten and molybdenum ores. The analysis was carried out using silicon-lithium spectrometer with the energy resolution of about 300 eV and a 1024-channel analyzer. A characteristic radiation of elements was excited with two 109 Cd radioisotope sources, their general activity being 10 mCi. The period of measurements was 400 s. The data obtained were processed with a computer using the ''Proba-1'' and ''Proba-2'' programs. Data processing algorithms and computer calculation results are presented

  12. New method of computing the contributions of graphs without lepton loops to the electron anomalous magnetic moment in QED

    Science.gov (United States)

    Volkov, Sergey

    2017-11-01

    This paper presents a new method of numerical computation of the mass-independent QED contributions to the electron anomalous magnetic moment which arise from Feynman graphs without closed electron loops. The method is based on a forestlike subtraction formula that removes all ultraviolet and infrared divergences in each Feynman graph before integration in Feynman-parametric space. The integration is performed by an importance sampling Monte-Carlo algorithm with the probability density function that is constructed for each Feynman graph individually. The method is fully automated at any order of the perturbation series. The results of applying the method to 2-loop, 3-loop, 4-loop Feynman graphs, and to some individual 5-loop graphs are presented, as well as the comparison of this method with other ones with respect to Monte Carlo convergence speed.

  13. Mechanism of surface morphology in electron beam melting of Ti6Al4V based on computational flow patterns

    Science.gov (United States)

    Ge, Wenjun; Han, Sangwoo; Fang, Yuchao; Cheon, Jason; Na, Suck Joo

    2017-10-01

    In this study, a 3D numerical model was proposed that uses the computational fluid dynamics (CFD) method to investigate molten pool formation in electron beam melting under different process parameters. Electron beam ray tracking was used to determine energy deposition in the powder bed model. The melt tracks obtained in this study can be divided into three categories: a balling pattern, distortion pattern and straight pattern. The 3D mesoscale model revealed that it is possible to obtain different molten pool temperature distributions, flow patterns and top surface morphologies using different process parameters. Detailed analysis was performed on the formation mechanism of both the balling defect and distortion pattern. The simulation results of the top surface morphology were also compared with experimental results and showed good agreement.

  14. A far-infrared Michelson interferometer for tokamak electron density measurements using computer-generated reference fringes

    International Nuclear Information System (INIS)

    Krug, P.A.; Stimson, P.A.; Falconer, I.S.

    1986-01-01

    A simple far-infrared interferometer which uses the 394 μm laser line from optically-pumped formic acid vapour to measure tokamak electron density is described. This interferometer is unusual in requiring only one detector and a single probing beam since reference fringes during the plasma shot are obtained by computer interpolation between the fringes observed immediately before and after the shot. Electron density has been measured with a phase resolution corresponding to + - 1/20 wavelength fringe shift, which is equivalent to a central density resolution of + - 0.1 x 10 19 m -3 for an assumed parabolic density distribution in a plasma of diameter of 0.2 m, and with a time resolution of 0.2 ms. (author)

  15. Nonlinear excitation of electron cyclotron waves by a monochromatic strong microwave: computer simulation analysis of the MINIX results

    International Nuclear Information System (INIS)

    Matsumoto, H.; Kimura, T.

    1986-01-01

    Triggered by the experimental results of the MINIX, a computer simulation study was initiated on the nonlinear excitation of electrostatic electron cyclotron waves by a monochromatic electromagnetic wave such as the transmitted microwave in the MINIX. The model used assumes that both of the excited waves and exciting (pumping) electromagnetic wave as well as the idler electromagnetic wave propagate in the direction perpendicular to the external magnetic field. The simulation code used for this study was the one-and-two-half dimensional electromagnetic particle code named KEMPO. The simulation result shows the high power electromagnetic wave produces both the backscattered electromagnetic wave and electrostatic electron cyclotron waves as a result of nonlinear parametric instability. Detailed nonlinear microphysics related to the wave excitation is discussed in terms of the nonlinear wave-wave couplings and associated ponderomotive force produced by the high power electromagnetic waves. 2 references, 4 figures

  16. Computational Model of D-Region Ion Production Caused by Energetic Electron Precipitations Based on General Monte Carlo Transport Calculations

    Science.gov (United States)

    Kouznetsov, A.; Cully, C. M.

    2017-12-01

    During enhanced magnetic activities, large ejections of energetic electrons from radiation belts are deposited in the upper polar atmosphere where they play important roles in its physical and chemical processes, including VLF signals subionospheric propagation. Electron deposition can affect D-Region ionization, which are estimated based on ionization rates derived from energy depositions. We present a model of D-region ion production caused by an arbitrary (in energy and pitch angle) distribution of fast (10 keV - 1 MeV) electrons. The model relies on a set of pre-calculated results obtained using a general Monte Carlo approach with the latest version of the MCNP6 (Monte Carlo N-Particle) code for the explicit electron tracking in magnetic fields. By expressing those results using the ionization yield functions, the pre-calculated results are extended to cover arbitrary magnetic field inclinations and atmospheric density profiles, allowing ionization rate altitude profile computations in the range of 20 and 200 km at any geographic point of interest and date/time by adopting results from an external atmospheric density model (e.g. NRLMSISE-00). The pre-calculated MCNP6 results are stored in a CDF (Common Data Format) file, and IDL routines library is written to provide an end-user interface to the model.

  17. Reconstruction and identification of electrons in the Atlas experiment. Setup of a Tier 2 of the computing grid

    International Nuclear Information System (INIS)

    Derue, F.

    2008-03-01

    The origin of the mass of elementary particles is linked to the electroweak symmetry breaking mechanism. Its study will be one of the main efforts of the Atlas experiment at the Large Hadron Collider of CERN, starting in 2008. In most cases, studies will be limited by our knowledge of the detector performances, as the precision of the energy reconstruction or the efficiency to identify particles. This manuscript presents a work dedicated to the reconstruction of electrons in the Atlas experiment with simulated data and data taken during the combined test beam of 2004. The analysis of the Atlas data implies the use of a huge amount of computing and storage resources which brought to the development of a world computing grid. (author)

  18. 77 FR 34063 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Science.gov (United States)

    2012-06-08

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-847] Certain Electronic Devices, Including Mobile.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on May 2, 2012, under section 337 of the Tariff Act of 1930...

  19. 76 FR 22918 - In the Matter of Certain Handheld Electronic Computing Devices, Related Software, and Components...

    Science.gov (United States)

    2011-04-25

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-769] In the Matter of Certain Handheld Electronic.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on March 21, 2011, under section 337 of the Tariff Act of 1930...

  20. 77 FR 27078 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Science.gov (United States)

    2012-05-08

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2896] Certain Electronic Devices, Including Mobile... Comments Relating to the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint...