An Electron-Nucleon Double Spin Solid-State Quantum Computer
Long, G L; Chen, H M; Long, Gui Lu; Ma, Ying-Jun; Chen, Hao-Ming
2003-01-01
An electron-nucleon double spin(ENDOS) solid-state quantum computer scheme is proposed. In this scheme, the qubits are the nuclear spins of phosphorus ion implanted on the (111) surface of $^{28}$Si substrate. An $^{13}$C atom on a scanning tunnelling probe tip is used both to complete single qubit and two-qubit control-not operation, and single qubit measurement. The scheme does not require interactions between qubits, and can accomplish two qubits without the use of SWAP gate. This scheme is scalable, and can be implemented with present-day or near-future technologies.
Structure functions in electron-nucleon deep inelastic scattering
Saleem, M.; Fazal-E-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)
1982-06-26
The phenomenological expressions for the structure functions in electron-nucleon deep inelastic scattering are proposed and are shown to satisfy the experimental data as well as a number of sum rules.
Higher Spin Double Field Theory : A Proposal
Bekaert, Xavier
2016-01-01
We construct a double field theory of higher spin gravity. Employing "semi-covariant" differential geometry, we spell a functional in which each term is completely covariant with respect to $\\mathbf{O}(4,4)$ T-duality, doubled diffeomorphisms, $\\mathbf{Spin}(1,3)$ local Lorentz symmetry and, separately, $\\mathbf{HS}(4)$ higher spin gauge symmetry. We also propose a set of BPS-like conditions whose solutions automatically satisfy the full Euler-Lagrange equations. As such a solution, we derive a linear dilaton vacuum. With extra algebraic constraints further imposed, our BPS proposal reduces to the bosonic Vasiliev equations.
Spin-filtering junctions with double ferroelectric barriers
Ju Yan; Xing Ding-Yu
2009-01-01
An FS/FE/NS/FE/FS double tunnel junction is suggested to have the ability to inject, modulate and detect the spin-polarized current electrically in a single device, where FS is the ferromagnetic semiconductor electrode, NS is the nonmagnetic semiconductor, and FE the ferroelectric barrier. The spin polarization of the current injected into the NS region can be switched between a highly spin-polarized state and a spin unpolarized state. The high spin polarization may be detected by measuring the tunneling magnetoresistance ratio of the double tunnel junction.
Two photon exchange in elastic electron-nucleon scattering
Peter Blunden; Wolodymyr Melnitchouk; John Tjon
2005-06-01
A detailed study of two-photon exchange in unpolarized and polarized elastic electron-nucleon scattering is presented, taking particular account of nucleon finite size effects. Contributions from nucleon elastic intermediate states are found to have a strong angular dependence, which leads to a partial resolution of the discrepancy between the Rosenbluth and polarization transfer measurements of the proton electric to magnetic form factor ratio. The two-photon exchange contribution to the longitudinal polarization transfer ratio P{sub L} is small, whereas the contribution to the transverse polarization transfer ratio P{sub T} is enhanced at backward angles by several percent, increasing with Q{sup 2}. This gives rise to a several percent enhancement of the polarization transfer ratio P{sub T}/P{sub l} at large Q{sup 2} and backward angles. We compare the two-photon exchange effects with data on the ratio of e{sup +p} to e{sup -p} cross sections, which is predicted to be enhanced at backward angles. Finally, we evaluate the corrections to the form factors of the neutron, and estimate the elastic intermediate state contribution to the {sup 3}He form factors.
Spin waves in exchange-coupled double layers in the presence of spin torques
Baláž, Pavel; Barnaś, Józef
2015-03-01
Spin-wave spectra of a double magnetic layer are calculated theoretically in the macroscopic limit. Magnetic dynamics is described in terms of the Landau-Lifshitz-Gilbert equation, and both static (of the Ruderman-Kittel-Kasuya-Yosida type) and dynamic (via spin pumping) interlayer couplings are taken into account. The influence of spin pumping and spin transfer torque on the spin-wave spectra (frequency and damping factor) has been studied for both parallel and antiparallel magnetic configurations. The spin-wave spectrum in the parallel magnetic state is reciprocal, while in the antiparallel configuration it is nonreciprocal. In both cases, a substantial reduction of the spin-wave lifetimes due to spin pumping to the nonmagnetic metallic layers has been found. In the parallel configuration, this reduction appears mainly for optical modes, while in the antiparallel configuration, it is remarkable for all modes. In turn, the spin torque due to spin current flowing from a metallic layer, created for instance by the spin Hall effect, gives rise to significant changes in the damping factors as well, but these modifications depend on the sign of spin current. For one spin current orientation, the spin-wave damping becomes reduced and may disappear for some modes at a specific threshold value of the spin current, indicating magnetic instability in the system due to spin transfer torque. For the opposite spin current, the damping is enhanced, which indicates stabilization of the corresponding magnetic state.
Spin polarization of electrons with Rashba double-refraction
Ramaglia, V Marigliano; Bercioux, D; Cataudella, V; De Filippis, G; Perroni, C A [Coherentia-INFM and Dipartimento di Scienze Fisiche Universita degli Studi Federico II, Naples, I-80126 (Italy)
2004-12-22
We demonstrate how the Rashba spin-orbit coupling in semiconductor heterostructures can produce and control a spin-polarized current without ferromagnetic leads. The key idea is to use spin-double refraction of an electronic beam with a nonzero incidence angle. A region where the spin-orbit coupling is present separates the source and the drain without spin-orbit coupling. We show how the transmission and the beam spin polarization critically depend on the incidence angle. The transmission halves when the incidence angle is greater than a limit angle and a significant spin polarization appears. On increasing the spin-orbit coupling one can obtain the modulation of the intensity and of the spin polarization of the output electronic current when the input current is unpolarized. Our analysis shows the possibility of realizing a spin-field-effect transistor based on the propagation of only one mode with the region with spin-orbit coupling, whereas the original Datta and Das device (1990 Appl. Phys. Lett. 56 665) uses the spin precession that originates from the interference between two modes with orthogonal spin.
Spin projection with double hybrid density functional theory.
Thompson, Lee M; Hratchian, Hrant P
2014-07-21
A spin projected double-hybrid density functional theory is presented that accounts for different scaling of opposite and same spin terms in the second order correction. This method is applied to three dissociation reactions which in the unprojected formalism exhibit significant spin contamination with higher spin states. This gives rise to a distorted potential surface and can lead to poor geometries and energies. The projected method presented is shown to improve the description of the potential over unprojected double hybrid density functional theory. Comparison is made with the reference states of the two double hybrid functionals considered here (B2PLYP and mPW2PLYP) in which the projected potential surface is degraded by an imbalance in the description of dynamic and static correlation.
Double-spin-flip resonance of rhodium nuclei at positive and negative spin temperatures
Tuoriniemi, J.T.; Knuuttila, T.A.; Lefmann, K.
2000-01-01
Sensitive SQUID-NMR measurements were used to study the mutual interactions in the highly polarized nuclear-spin system of rhodium metal. The dipolar coupling gives rise to a weak double-spin-flip resonance. The observed frequency shifts allow deducing separately the dipolarlike contribution...
Bonora, Marco; Becker, James; Saxena, Sunil
2004-10-01
We show the use of the observer blind spots effect for the elimination of electron spin-echo envelope modulation (ESEEM) peaks in double quantum coherence (DQC) electron spin resonance (ESR). The suppression of ESEEM facilitates the routine and unambiguous extraction of distances from DQC-ESR spectra. This is also the first demonstration of this challenging methodology on commercial instrumentation.
Electron spin resonance and spin-valley physics in a silicon double quantum dot.
Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen
2014-05-14
Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.
Spin-dependent thermoelectric transport through double quantum dots
Wang Qiang; Xie Hai-Qing; Jiao Hu-Jun; Li Zhi-Jian; Nie Yi-Hang
2012-01-01
We study the thermoelectric transport through a double-quantum-dot system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green's function in the linear response regime.It is found that the thermoelectric coefficients are strongly dependent on the splitting of the interdot coupling,the relative magnetic configurations,and the spin polarization of leads.In particular,the thermoelectric efficiency can reach a considerable value in the parallel configuration when the effective interdot coupling and the tunnel coupling between the quantum dots and the leads for the spin-down electrons are small.Moreover,the thermoelectric efficiency increases with the intradot Coulomb interaction increasing and can reach very high values at appropriate temperatures.In the presence of the magnetic field,the spin accumulation in the leads strongly suppresses the thermoelectric efficiency,and a pure spin thermopower can be obtained.
Spins of Andreev states in double quantum dots
Su, Zhaoen; Chen, Jun; Yu, Peng; Hocervar, Moira; Plissard, Sebastien; Car, Diana; Tacla, Alexandre; Daley, Andrew; Pekker, David; Bakkers, Erik; Frolov, Sergey
Andreev (or Shiba) states in coupled double quantum dots is an open field. Here we demonstrate the realization of Andreev states in double quantum dots in an InSb nanowire coupled to two NbTiN superconductors. The magnetic field dependence of the Andreev states has been explored to resolve the spins in different double dot configurations. The experiment helps to understand the interplay between pair correlation, exchange energy and charging energy with a well-controlled system. It also opens the possibility to implement Majorana modes in Kitaev chains made of such dots.
Simulating electron spin entanglement in a double quantum dot
Rodriguez-Moreno, M. A.; Hernandez de La Luz, A. D.; Meza-Montes, Lilia
2011-03-01
One of the biggest advantages of having a working quantum-computing device when compared with a classical one, is the exponential speedup of calculations. This exponential increase is based on the ability of a quantum system to create and operate on entangled states. In order to study theoretically the entanglement between two electron spins, we simulate the dynamics of two electron spins in an electrostatically-defined double quantum dot with a finite barrier height between the dots. Electrons are initially confined to separated quantum dots. Barrier height is varied and the spin entanglement as a function of this variation is investigated. The evolution of the system is simulated by using a numerical approach for solving the time-dependent Schrödinger equation for two particles. Partially supported by VIEP-BUAP.
SPIN TILTS IN THE DOUBLE PULSAR REVEAL SUPERNOVA SPIN ANGULAR-MOMENTUM PRODUCTION
Farr, Will M.; Kremer, Kyle; Kalogera, Vassiliki [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Lyutikov, Maxim, E-mail: w-farr@northwestern.edu, E-mail: kylekremer2012@u.northwestern.edu, E-mail: vicky@northwestern.edu, E-mail: lyutikov@purdue.edu [Physics Department, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)
2011-12-01
The system PSR J0737-3039 is the only binary pulsar known to consist of two radio pulsars (PSR J0737-3039 A and PSR J0737-3039 B). This unique configuration allows measurements of spin orientation for both pulsars: pulsar A's spin is tilted from the orbital angular momentum by no more than 14 deg at 95% confidence; pulsar B's by 130 {+-} 1 deg at 99.7% confidence. This spin-spin misalignment requires that the origin of most of B's present-day spin is connected to the supernova that formed pulsar B. Under the simplified assumption of a single, instantaneous kick during the supernova, the spin could be thought of as originating from the off-center nature of the kick, causing pulsar B to tumble to its misaligned state. With this assumption, and using current constraints on the kick magnitude, we find that pulsar B's instantaneous kick must have been displaced from the center of mass of the exploding star by at least 1 km and probably 5-10 km. Regardless of the details of the kick mechanism and the process that produced pulsar B's current spin, the measured spin-spin misalignment in the double pulsar system provides an empirical, direct constraint on the angular momentum production in this supernova. This constraint can be used to guide core-collapse simulations and the quest for understanding the spins and kicks of compact objects.
Dynamic-angle spinning and double rotation of quadrupolar nuclei
Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)
1991-07-01
Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.
The Rashba effect on a double-barrier spin polarizer
Makler, Sergio S.; Guilherme Zelcovit, João; Boselli, Marco A.; da Cunha Lima, Ivan C.
2004-12-01
The Rashba effect on a double-barrier spin polarizer is considered using a formalism that produces accurate results with little computational effort. In previous articles, we proposed a spin polarizer consisting of a well made of a dilute magnetic semiconductor (DMS) enclosed by two non-magnetic barriers. In the absence of Rashba effect, the magnetization of the well produces totally polarized electronic levels separated by 0.15 eV. The highest steady magnetic field obtained in a laboratory could not produce a Zeeman splitting so big. As a consequence the calculated currents are almost totally polarized. The Rashba spin-orbit Hamiltonian produces a spin flip. Therefore, the levels at the well have not well-defined spin polarization and the currents are less polarized. The device presented here would be useful for spintronics because there are DMS ferromagnetic at room temperature. Our tight-binding Hamiltonian, including the Rashba term, is H=HK+HP+HE+HM+H+H+HR . The first term is the kinetic energy. HP describes the double-barrier profile and the third term represent the electric field due to the applied bias. The magnetic HM, the hole-impurity H and the hole-hole H terms are included in the mean field approximation. The profile and the charge distribution are calculated self-consistently. By using a decimation formalism, all these terms are treated exactly. Finally, the Rashba term HR is very small. Therefore, it is treated using second order perturbation theory. The calculation confirm that the Rashba effect on the currents is of second order. Consequently, the resulting depolarization is very small.
The Rashba effect on a double-barrier spin polarizer
Makler, Sergio S. [Instituto de Fisica, Universidade Federal Fluminense, Campus da Praia Vermelha, 24210-340 Niteroi-RJ (Brazil)]. E-mail: sergio@if.uff.br; Guilherme Zelcovit, Joao [Instituto de Fisica, Universidade do Estado de Rio de Janeiro, RJ (Brazil); Boselli, Marco A. [Departamento de Fisica, Universidade Federal de Ouro Preto, MG (Brazil); Cunha Lima, Ivan C. da [Instituto de Fisica, Universidade do Estado de Rio de Janeiro, RJ (Brazil)
2004-12-31
The Rashba effect on a double-barrier spin polarizer is considered using a formalism that produces accurate results with little computational effort. In previous articles, we proposed a spin polarizer consisting of a well made of a dilute magnetic semiconductor (DMS) enclosed by two non-magnetic barriers. In the absence of Rashba effect, the magnetization of the well produces totally polarized electronic levels separated by 0.15eV. The highest steady magnetic field obtained in a laboratory could not produce a Zeeman splitting so big. As a consequence the calculated currents are almost totally polarized. The Rashba spin-orbit Hamiltonian produces a spin flip. Therefore, the levels at the well have not well-defined spin polarization and the currents are less polarized. The device presented here would be useful for spintronics because there are DMS ferromagnetic at room temperature. Our tight-binding Hamiltonian, including the Rashba term, isH=HK+HP+HE+HM+Hh-i+Hh-h+HR.The first term is the kinetic energy. HP describes the double-barrier profile and the third term represent the electric field due to the applied bias. The magnetic HM, the hole-impurity Hh-i and the hole-hole Hh-h terms are included in the mean field approximation. The profile and the charge distribution are calculated self-consistently.By using a decimation formalism, all these terms are treated exactly. Finally, the Rashba term HR is very small. Therefore, it is treated using second order perturbation theory. The calculation confirm that the Rashba effect on the currents is of second order. Consequently, the resulting depolarization is very small.
Spin transport properties in double quantum rings connected in series*
Du Jian; Wang Suxin; Pan Jianghong
2011-01-01
A new model of metal/semiconductor/metal double-quantum-ring connected in series is proposed and the transport properties in this model are theoretically studied. The results imply that the transmission coefficient shows periodic variations with increasing semiconductor ring size. The effects of the magnetic field and Rashba spin-orbit interaction on the transmission coefficient for two kinds of spin state electrons are different. The number of the transmission coefficient peaks is related to the length ratio between the upper ann and the half circumference of the ring. In addition, the transmission coefficient shows oscillation behavior with enhanced external magnetic field, and the corresponding average value is related to the two leads' relative position.
Amaha, S., E-mail: s-amaha@riken.jp [Quantum Spin Information Project, Japan Science and Technology Agency, ICORP, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Quantum Functional System Research Group, RIKEN Center for Emergent Matter Science, RIKEN, 3-1 Wako-shi, Saitama 351-0198 (Japan); Hatano, T. [Quantum Spin Information Project, Japan Science and Technology Agency, ICORP, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Department of Physics, Tohoku University, Sendai-shi, Miyagi 980-8578 (Japan); Tarucha, S. [Quantum Spin Information Project, Japan Science and Technology Agency, ICORP, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Quantum Functional System Research Group, RIKEN Center for Emergent Matter Science, RIKEN, 3-1 Wako-shi, Saitama 351-0198 (Japan); Department of Applied Physics, School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Gupta, J. A.; Austing, D. G. [National Research Council of Canada, M50, Montreal Road, Ottawa, Ontario K1A 0R6 (Canada)
2015-04-27
We investigate nuclear spin pumping with five-electron quadruplet spin states in a spin-blockaded weakly coupled vertical double quantum dot device. Two types of hysteretic steps in the leakage current are observed on sweeping the magnetic field and are associated with bidirectional polarization of nuclear spin. Properties of the steps are understood in terms of bias-voltage-dependent conditions for the mixing of quadruplet and doublet spin states by the hyperfine interaction. The hysteretic steps vanish when up- and down-nuclear spin pumping processes are in close competition.
Active nuclear spin maser oscillation with double cell
Hikota E.
2014-03-01
Full Text Available Uncertainty in the frequency precision of the planned experiment to search for a 129Xe atomic electric dipole moment is dominated by drifts in the frequency shift due to contact interaction of 129Xe with polarized Rb valence electrons. In order to suppress the frequency shift, a double-cell geometry has been adopted for the confinement of 129Xe gas. A new process has been identified to take part in the optical detection of spin precession. The parameters controlling the oscillation of the maser in this new double-cell arrangement were optimized. As a result, the frequency shift has been reduced by a factor of 10 or more from the former single-cell geometry.
Spin blockade and coherent dynamics of high-spin states in a three-electron double quantum dot
Chen, Bao-Bao; Wang, Bao-Chuan; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Hu, Xuedong; Guo, Guo-Ping
2017-01-01
Asymmetry in a three-electron double quantum dot (DQD) allows spin blockade, when spin-3/2 (quadruplet) states and spin-1/2 (doublet) states have different charge configurations. We have observed this DQD spin blockade near the (1,2)-(2,1) charge transition using a pulsed-gate technique and a charge sensor. We, then, use this spin blockade to detect Landau-Zener-Stückelberg interference and coherent oscillations between the spin quadruplet and doublet states. Such studies add to our understandings of coherence and control properties of three-spin states in a double dot, which, in turn, would benefit explorations into various qubit encoding schemes in semiconductor nanostructures.
Dichromatic light halting using double spin coherence gratings
Ham, Byoung S.; Hahn, Joonseong
2011-08-01
Light control by another light has drawn much attention in nonlinear quantum optics. Achieving all-optical control of the refractive index has been a key issue in all-optical information processing. Ultraslow light has been a good candidate for this purpose, where a giant phase shift can be achieved. The recent presentation of stationary light utilizing ultraslow light is an advanced example of such research. The stationary light functions as cavity quantum electrodynamics, where no high-Q-factor mirror pair is needed. In this paper, we report on two-color halted light pulses inside a solid medium, where the trapping time is comparable with that of ultraslow light but is much longer than quantum mapping storage time. The observed two-color halted light is achieved by means of double Raman optical field-excited spin coherence gratings, where slow light enhanced backward nondegenerate four-wave mixing processes play a major role.
Double spin asymmetry in exclusive $\\rho^0$ muoproduction at COMPASS
Alexakhin, V Yu; Alexandrov, Yu A; Alexeev, G D; Amoroso, A; Arbuzov, A; Badelek, B; Balestra, F; Ball, J; Baum, G; Barth, J; Bedfer, Y; Bernet, C; Bertini, R; Bettinelli, M; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, Franco; Bravar, A; Bressan, A; Brona, G; Burtin, E; Bussa, M P; Chapiro, A; Chiosso, M; Cicuttin, A; Colantoni, M L; Costa, S; Crespo, M L; D'Hose, N; Dalla Torre, S; Das, S; Das-Gupta, S S; De Masi, R; Dedek, N; Denisov, O Yu; Dhara, L; Díaz, V; Dinkelbach, A M; Donskov, S V; Dorofeev, V A; Doshita, N; Duic, V; Dünnweber, W; Eversheim, P D; Eyrich, W; Fabro, M; Faessler, M; Falaleev, V; Ferrero, A; Ferrero, L; Finger, M; Finger, M Jr; Fischer, H; Franco, C; Franz, J; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S G; Geyer, R; Giorgi, M; Gobbo, B; Görtz, S; Gorin, A M; Grabmuller, S; Grajek, O A; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; Hannappel, J; Von Harrach, D; Hasegawa, T; Heckmann, J; Hedicke, S; Heinsius, F H; Hermann, R; Hess, C; Hinterberger, F; Von Hodenberg, M; Horikawa, N; Horikawa, S; Ilgner, C; Ioukaev, A I; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Janata, A; Jasinski, P; Joosten, R; Jouravlev, N I; Kabuss, E M; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Komissarov, E V; Kondo, K; Knigsmann, K; Konorov, I; Konstantinov, V F; Korentchenko, A S; Korzenev, A; Kotzinian, A M; Koutchinski, N A; Kuznetsov, O; Kravchuk, N P; Kral, A; Kroumchtein, Z V; Kühn, R; Kunne, Fabienne; Kurek, K; Ladygin, M E; Lamanna, M; Le Goff, J M; Lednev, A A; Lehmann, A; Lichtenstadt, J; Liska, T; Ludwig, I; Maggiora, A; Maggiora, M; Magnon, A; Mallot, G K; Mann, A; Marchand, C; Marroncle, J; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Maksimov, A N; Meyer, W; Mielech, A; Mikhailov, Yu V; Moinester, M A; Mutter, A; Nahle, O; Nagaytsev, A; Nagel, T; Nassalski, J P; Neliba, S; Nerling, F; Neubert, a S; Neyret, D P; Nikolaenko, V I; Nikolaev, K; Olshevskii, A G; Ostrick, M; Padee, A; Pagano, P; Panebianco, S; Panknin, R; Panzieri, D; Paul, S; Pawlukiewicz-Kaminska, B; Peshekhonov, V D; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Procureur, S; Quintans, C; Rajotte, J F; Rapatsky, V; Ramos, S; Reicherz, G; Richter, A; Robinet, F; Rocco, E; Rondio, E; Rozhdestvensky, A M; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Santos, H; Sapozhnikov, M G; Sarkar, S; Savin, I A; Schiavon, Paolo; Schill, C; Schmitt, L; Schonmeier, P; Schroder, W; Shevchenko, O Yu; Siebert, H W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Sugonyaev, V P; Srnka, A; Stinzing, F; Stolarski, M; Sulc, M; Sulej, R; Takabayashi, N; Tchalishev, V V; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Venugopal, G; Virius, M; Vlassov, N V; Vossen, A; Webb, R; Weise, E; Weitzel, Q; Windmolders, R; Wirth, S; Wilicki, W; Zaremba, s K; Zavertyaev, M; Zemlyanichkina, E; Zhao, J; Ziegler, R; Zvyagin, A
2007-01-01
The longitudinal double spin asymmetry A_1^rho for exclusive leptoproduction of rho^0 mesons, mu + N -> mu + N + rho, is studied using the COMPASS 2002 and 2003 data. The measured reaction is incoherent exclusive rho^0 production on polarised deuterons. The Q^2 and x dependence of A_1^rho is presented in a wide kinematical range: 3x10^-3 < Q^2 < 7 (GeV/c)^2 and 5x10^-5 < x < 0.05. The presented results are the first measurements of A_1^rho at small Q2 (Q2 < 0.1 (GeV/c)^2) and small x (x < 3x10^-3). The asymmetry is in general compatible with zero in the whole kinematical range.
Controlling spin-orbit interaction in a ferromagnetic Fe/Au double layer
Samarin, Sergey N.; Artamonov, Oleg M.; Baraban, Alexander P.; Kostylev, Mikhail; Guagliardo, Paul; Williams, James F.
2015-01-01
Using spin-polarized single- and two-electron spectroscopy, we probe exchange and spin-orbit interaction in a double layer of Fe and Au on W(110) and measure the spin asymmetry of the Bloch spectral density function of the sample. In a 5 ML iron film, the spin-orbit contribution to the measured asymmetry of the (e,2e) spectra was not detectable, whereas a deposition of about 1 ML of gold introduced a substantial spin-orbit component in the measured asymmetry. At the same time, this double layer still exhibits ferromagnetic properties: (i) the spectral density function asymmetry demonstrate imbalance of spin-up and spin-down electron densities in the valence band and (ii) the Stoner excitation asymmetry has almost the same value as in a pure Fe film.
Thermopower in parallel double quantum dots with Rashba spin-orbit interaction
Xue Hui-Jie; Lü Tian-Quan; Zhang Hong-Chen; Yin Hai-Tao; Cui Lian; He Ze-Long
2011-01-01
Based on the Green's function technique and the equation of motion approach, this paper theoretically studies the thermoelectric effect in parallel coupled double quantum dots (DQDs), in which Rashba spin-orbit interaction is taken into account. Rashba spin-orbit interaction contributions, even in a magnetic field, are exhibited obviously in the double quantum dots system for the thermoelectric effect. The periodic oscillation of thermopower can be controlled by tunning the Rashba spin-orbit interaction induced phase. The interesting spin-dependent thermoelectric effects will arise which has important influence on thermoelectric properties of the studied system.
Sato, Kazuo; Nakazawa, Shigeki; Rahimi, Robabeh D.; Nishida, Shinsuke; Ise, Tomoaki; Shimoi, Daisuke; Toyota, Kazuo; Morita, Yasushi; Kitagawa, Masahiro; Carl, Parick; Höfner, Peter; Takui, Takeji
2009-06-01
Electrons with the spin quantum number 1/2, as physical qubits, have naturally been anticipated for implementing quantum computing and information processing (QC/QIP). Recently, electron spin-qubit systems in organic molecular frames have emerged as a hybrid spin-qubit system along with a nuclear spin-1/2 qubit. Among promising candidates for QC/QIP from the materials science side, the reasons for why electron spin-qubits such as molecular spin systems, i.e., unpaired electron spins in molecular frames, have potentialities for serving for QC/QIP will be given in the lecture (Chapter), emphasizing what their advantages or disadvantages are entertained and what technical and intrinsic issues should be dealt with for the implementation of molecular-spin quantum computers in terms of currently available spin manipulation technology such as pulse-based electron-nuclear double resonance (pulsed or pulse ENDOR) devoted to QC/QIP. Firstly, a general introduction and introductory remarks to pulsed ENDOR spectroscopy as electron-nuclear spin manipulation technology is given. Super dense coding (SDC) experiments by the use of pulsed ENDOR are also introduced to understand differentiating QC ENDOR from QC NMR based on modern nuclear spin technology. Direct observation of the spinor inherent in an electron spin, detected for the first time, will be shown in connection with the entanglement of an electron-nuclear hybrid system. Novel microwave spin manipulation technology enabling us to deal with genuine electron-electron spin-qubit systems in the molecular frame will be introduced, illustrating, from the synthetic strategy of matter spin-qubits, a key-role of the molecular design of g-tensor/hyperfine-(A-)tensor molecular engineering for QC/QIP. Finally, important technological achievements of recently-emerging CD ELDOR (Coherent-Dual ELectron-electron DOuble Resonance) spin technology enabling us to manipulate electron spin-qubits are described.
Lateral shifts of spin electron beams in antiparallel double {delta}-magnetic-barrier nanostructure
Kong Yonghong [Department of Electronic Engineering, Hunan University Science and Engineering, Hunan 425100 (China); Lu Maowang, E-mail: m_w_lu@126.com [Department of Electronic Engineering, Hunan University Science and Engineering, Hunan 425100 (China); Chen Saiyan; Zhang Guilian [Department of Electronic Engineering, Hunan University Science and Engineering, Hunan 425100 (China)
2012-08-15
We investigate the Goos-Haenchen (GH) effect of spin electron beams in a magnetic-barrier (MB) nanostructure consisting of antiparallel double {delta}-MBs, which can be experimentally realized by depositing two ferromagnetic (FM) stripes on top and bottom of the semiconductor heterostructure. GH shifts for spin electron beams across this type of MB nanostructures, is derived exactly, with the help of the stationary phase method. It is shown that GH shifts depend strongly on the spin directions for double {delta}-MBs with unidentical magnetic strengths, giving rise to a considerable spin polarization effect. It also is shown that spin polarization of GH shifts is closely relative to the separation and magnetic-strength difference of two {delta}-MBs. These interesting properties may provide an alternative scheme to spin-polarize electrons into the semiconductor, and the devices can serve as tunable spin beam splitters. - Highlights: Black-Right-Pointing-Pointer Spin Goos-Haenchen effect of electron beams through a kind of MB nanostructures. Black-Right-Pointing-Pointer GH shift depends greatly on electron-spins, which is used to spin polarize electrons in semiconductor. Black-Right-Pointing-Pointer Spin polarization in GH shift is tunable. Black-Right-Pointing-Pointer A tunable spin beam splitter is achieved.
An, Xing-Tao, E-mail: anxt2005@163.com [School of Sciences, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 (China); Mu, Hui-Ying [Department of Chemistry and Environmental Engineering, Hebei Chemical and Pharmaceutical Vocational Technology College, Shijiazhuang, Hebei 050026 (China); Li, Yu-Xian [College of Physical Science and Information Engineering, Hebei Normal University, and Hebei Advanced Thin Films Laboratory, Shijiazhuang, Hebei 050016 (China); Liu, Jian-Jun [College of Physical Science and Information Engineering, Hebei Normal University, and Hebei Advanced Thin Films Laboratory, Shijiazhuang, Hebei 050016 (China); Physics Department, Shijiazhuang University, Shijiazhuang 050035 (China)
2011-10-31
A four-terminal parallel double quantum dots (QDs) device is proposed to generate and detect the spin polarization in QDs. It is found that the spin accumulation in QDs and the spin-polarized currents in the upper and down leads can be generated when a bias voltage is applied between the left and right leads. It is more interesting that the spin polarization in the QDs can be detected using the upper and down leads. Moreover, the direction and magnitude of the spin polarization in the QDs, and in the upper and down leads can be tuned by the energy levels of QDs and the bias. -- Highlights: → The spin polarization in the quantum dots can be generated and controlled. → The spin polarization in quantum dots can be detected by the nonferromagnetic leads. → The system our studied is a discrete level spin Hall system.
A general formalism for single and double spin asymmetries in inclusive hadron production
D'Alesio, U; Murgia, F
2004-01-01
We present a calculation of single and double spin asymmetries for inclusive hadron production in hadronic collisions. Our approach is based on Leading Order (LO) perturbative QCD and generalized factorization theorems, with full account of intrinsic parton momentum, k_T, effects. This leads to a new class of spin and k_T-dependent distribution and fragmentation functions. Limiting ourselves to consider leading twist functions, we show how they could play a relevant role in producing non-vanishing spin asymmetries.
Enhanced spin-torque in double tunnel junctions using a nonmagnetic-metal spacer
Chen, C. H.; Cheng, Y. H.; Ko, C. W.; Hsueh, W. J., E-mail: hsuehwj@ntu.edu.tw [Nanomagnetism Group, Department of Engineering Science and Ocean Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10660, Taiwan (China)
2015-10-12
This study proposes an enhancement in the spin-transfer torque of a magnetic tunnel junction (MTJ) designed with double-barrier layer structure using a nonmagnetic metal spacer, as a replacement for the ferromagnetic material, which is traditionally used in these double-barrier stacks. Our calculation results show that the spin-transfer torque and charge current density of the proposed double-barrier MTJ can be as much as two orders of magnitude larger than the traditional double-barrier one. In other words, the proposed double-barrier MTJ has a spin-transfer torque that is three orders larger than that of the single-barrier stack. This improvement may be attributed to the quantum-well states that are formed in the nonmagnetic metal spacer and the resonant tunneling mechanism that exists throughout the system.
Strong spin Seebeck effect in Kondo T-shaped double quantum dots
Wójcik, K. P.; Weymann, I.
2017-02-01
We investigate, taking a theoretical approach, the thermoelectric and spin thermoelectric properties of a T-shaped double quantum dot strongly coupled to two ferromagnetic leads, focusing on the transport regime in which the system exhibits the two-stage Kondo effect. We study the dependence of the (spin) Seebeck coefficient, the corresponding power factor and the figure of merit on temperature, leads’ spin polarization and dot level position. We show that the thermal conductance fulfills a modified Wiedemann-Franz law, also in the regime of suppression of subsequent stages of the Kondo effect by the exchange field resulting from the presence of ferromagnets. Moreover, we demonstrate that the spin thermopower is enhanced at temperatures corresponding to the second stage of Kondo screening. Very interestingly, the spin-thermoelectric response of the system is found to be highly sensitive to the spin polarization of the leads. In some cases spin polarization of the order of 1% is sufficient for a strong spin Seebeck effect to occur. This is explained as a consequence of the interplay between the two-stage Kondo effect and the exchange field induced in the double quantum dot. Due to the possibility of tuning the exchange field by the choice of gate voltage, the spin thermopower may also be tuned to be maximal for desired spin polarization of the leads. All calculations are performed with the aid of the numerical renormalization group technique.
High-frequency manipulation of few-electron double quantum dots-toward spin qubits
Kodera, T.; van der Wiel, W. G.; Ono, K.; Sasaki, S.; Fujisawa, T.; Tarucha, S.
2004-04-01
We use a photon-assisted tunneling (PAT) technique to study the high-frequency response of one- and two-electron states in a semiconductor vertically coupled double-dot system. In particular, PAT associated with two-electron spin states in the spin-blockade regime is observed up to the absorption of 10 photons, indicating the preservation of long relaxation times and hence the robustness of our electron spin device under strong microwave irradiation. An alternative double-dot structure with greater flexibility in tuning the inter-dot coupling is presented and its transport characteristics are discussed. This structure is proposed for high-frequency control of two-electron spin states, as required for quantum computation schemes using electron spins in quantum dots.
Kondo, Kenji
2016-01-01
Many researchers have reported on spin filters using linear Rashba spin-orbit interactions (SOI). However, spin filters using square and cubic Rashba SOIs have not yet been reported. We consider that this is because the Aharonov-Casher (AC) phases acquired under square and cubic Rashba SOIs are ambiguous. In this study, we try to derive the AC phases acquired under square and cubic Rashba SOIs from the viewpoint of non-Abelian SU(2) gauge theory. These AC phases can be derived successfully from the non-Abelian SU(2) gauge theory without the completing square methods. Using the results, we investigate the spin filtering in a double quantum dot (QD) Aharonov-Bohm (AB) ring under linear, square, and cubic Rashba SOIs. This AB ring consists of elongated QDs and quasi-one-dimensional quantum nanowires under an external magnetic field. The spin transport is investigated from the left nanowire to the right nanowire in the above structure within the tight-binding approximation. In particular, we focus on the difference of spin filtering among linear, square, and cubic Rashba SOIs. The calculation is performed for the spin polarization by changing the penetrating magnetic flux for the AB ring subject to linear, square, and cubic Rashba SOIs. It is found that perfect spin filtering is achieved for all of the Rashba SOIs. This result indicates that this AB ring under general Rashba SOIs can be a promising device for spin current generation. Moreover, the AB rings under general Rashba SOIs behave in totally different ways in response to penetrating magnetic flux, which is attributed to linear, square, and cubic behaviors in the in-plane momentum. This result enables us to make a clear distinction between linear, square, and cubic Rashba SOIs according to the peak position of the perfect spin filtering.
Spin filtering in a Rashba-Dresselhaus-Aharonov-Bohm double-dot interferometer
Matityahu, Shlomi; Aharony, Amnon; Entin-Wohlman, Ora; Tarucha, Seigo
2013-12-01
We study the spin-dependent transport of spin-1/2 electrons through an interferometer made of two elongated quantum dots or quantum nanowires, which are subject to both an Aharonov-Bohm flux and (Rashba and Dresselhaus) spin-orbit interactions. Similar to the diamond interferometer proposed in our previous papers (Aharony et al 2011 Phys. Rev. B 84 035323; Matityahu et al 2013 Phys. Rev. B 87 205438), we show that the double-dot interferometer can serve as a perfect spin filter due to a spin interference effect. By appropriately tuning the external electric and magnetic fields which determine the Aharonov-Casher and Aharonov-Bohm phases, and with some relations between the various hopping amplitudes and site energies, the interferometer blocks electrons with a specific spin polarization, independent of their energy. The blocked polarization and the polarization of the outgoing electrons is controlled solely by the external electric and magnetic fields and do not depend on the energy of the electrons. Furthermore, the spin filtering conditions become simpler in the linear-response regime, in which the electrons have a fixed energy. Unlike the diamond interferometer, spin filtering in the double-dot interferometer does not require high symmetry between the hopping amplitudes and site energies of the two branches of the interferometer and thus may be more appealing from an experimental point of view.
Spin flipping in ring-coupled-cluster-doubles theory
Klopper, Wim; M. Teale, Andrew; Coriani, Sonia
2011-01-01
We report a critical analysis and comparison of a variety of random-phase-approximation (RPA) based approaches to determine the electronic ground-state energy. Interrelations between RPA variants are examined by numerical examples with particular attention paid to the role of spin-flipped excitat......We report a critical analysis and comparison of a variety of random-phase-approximation (RPA) based approaches to determine the electronic ground-state energy. Interrelations between RPA variants are examined by numerical examples with particular attention paid to the role of spin...
Zhang, Rongchun; Duong, Nghia Tuan; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy
2017-06-22
Solid-state (1)H NMR spectroscopy has attracted much attention in the recent years due to the remarkable spectral resolution improvement by ultrafast magic-angle-spinning (MAS) as well as due to the sensitivity enhancement rendered by proton detection. Although these developments have enabled the investigation of a variety of challenging chemical and biological solids, the proton spectral resolution is still poor for many rigid solid systems owing to the presence of conformational heterogeneity and the unsuppressed residual proton-proton dipolar couplings even with the use of the highest currently feasible sample spinning speed of ∼130 kHz. Although a further increase in the spinning speed of the sample could be beneficial to some extent, there is a need for alternate approaches to enhance the spectral resolution. Herein, by fully utilizing the benefits of double-quantum (DQ) coherences, we propose a single radio frequency channel proton-based 3D pulse sequence that correlates double-quantum (DQ), DQ, and single-quantum (SQ) chemical shifts of protons. In addition to the two-spin homonuclear proximity information, the proposed 3D DQ/DQ/SQ experiment also enables the extraction of three-spin and four-spin proximities, which could be beneficial for revealing the dipolar coupled proton network in the solid state. Besides, the 2D DQ/DQ spectrum sliced at different isotropic SQ chemical shift values of the 3D DQ/DQ/SQ spectrum will also facilitate the identification of DQ correlation peaks and improve the spectral resolution, as it only provides the local homonuclear correlation information associated with the specific protons selected by the SQ chemical shift frequency. The 3D pulse sequence and its efficiency are demonstrated experimentally on small molecular compounds in the solid state. We expect that this approach would create avenues for further developments by suitably combining the benefits of partial deuteration of samples, selective excitation
Quantum Computing via Singlet-Triplet Spin Qubits in Nanowire Double Quantum Dots
XUE Peng
2011-01-01
We propose a new structure for quantum computing via spin qubits with high fidelity.Each spin qubit corresponds to two electrons in a nanowire double quantum dot,with the singlet and one of the triplets as the logical qubit states.The entangling gate is effected by virtual charge dipole transitions.We include noise to show the feasibility of this scheme under current experimental conditions.
Spin-Flip Process through Double Quantum Dots Coupled to Ferromagnetic Leads
YAN Cong-Hua; WU Shao-Quan; HUANG Rui; SUN Wei-Li
2006-01-01
@@ We investigate the spin-flip process through double quantum dots coupled to two ferromagnetic leads in series.By means of the slave-boson mean-field approximation, we calculate the density of states in the Kondo regime for two different configurations of the leads. It is found that transport shows some remarkable properties depending on the spin-flip strength. These effects may be useful in exploiting the role of electronic correlation in spintronics.
Interplay between electron spin and orbital pseudospin in double quantum dots
Park, Sooa; Yang, S. -R. Eric
2005-01-01
We investigate theoretically spin and orbital pseudospin magnetic properties of a molecular orbital in parabolic and elliptic double quantum dots (DQDs). In our many body calculation we include intra- and inter-dot electron-electron interactions, in addition to the intradot exchange interaction of `p' orbitals. We find for parabolic DQDs that, except for the half or completely filled molecular orbital, spins in different dots are ferromagnetically coupled while orbital pseudospins are antifer...
Collective Behavior of a Spin-Aligned Gas of Interwell Excitons in Double Quantum Wells
Larionov, A. V.; Bayer, M.; Hvam, Jørn Märcher;
2005-01-01
The kinetics of a spin-aligned gas of interwell excitons in GaAs/AlGaAs double quantum wells (n–i–n heterostructure) is studied. The temperature dependence of the spin relaxation time for excitons, in which a photoexcited electron and hole are spatially separated between two adjacent quantum wells...... is associated with indirect evidence of the coherence of the collective phase of interwell excitons at temperatures below the critical value....
Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions
Clément, P.-Y.; Baraduc, C., E-mail: claire.baraduc@cea.fr; Chshiev, M.; Diény, B. [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, INAC-SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); Ducruet, C. [Crocus-Technology, 5, Place Robert Schuman, F-38054 Grenoble (France); Vila, L. [Univ. Grenoble Alpes, INAC-SP2M, F-38000 Grenoble, France and CEA, INAC-SP2M, F-38000 Grenoble (France)
2015-09-07
Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.
Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions
Clément, P.-Y.; Baraduc, C.; Ducruet, C.; Vila, L.; Chshiev, M.; Diény, B.
2015-09-01
Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.
Spin Accumulation in a Double Quantum Dot Aharonov-Bohm Interferometer
YIN Hai-Tao; L(U) Tian-Quan; LIU Xiao-Jie; XUE Hui-Jie
2009-01-01
@@ We investigate the spin accumulation in a double quantum dot Aharonov-Bohm (AB) interferometer in which both the Rashba spin-orbit (RSO) interaction and intradot Coulomb interaction are taken into account. Due to the existence of the RSO interaction, the electron, flowing through different arms of the AB ring, will acquire a spin-dependent phase factor in the tunnel-coupling strengths. This phase factor will induce various interesting interference phenomena. It is found that the electrons of the different spin directions can accumulate in the two dots by properly adjusting the bias and the intradot level with a fixed RSO interaction strength. Moreover, both the magnitude and direction of the spin accumulation in each dot can be conveniently controlled and tuned by the gate voltage acting on the dot or the bias on the lead.
Hyperfine and spin-orbit dynamics in GaAs double quantum dots
Shulman, Michael; Nichol, John; Harvey, Shannon; Pal, Arijeet; Halperin, Bertrand; Umansky, Vladimir; Yacoby, Amir
2015-03-01
Semiconductor quantum dots provide a unique platform for single-particle physics and many-body quantum mechanics. In particular, understanding the dynamics of a single electron interacting with a nuclear spin bath is key to improving spin-based quantum information processing, since the hyperfine interaction limits the performance of many spin qubits. We probe the electron-nuclear interaction by measuring the splitting at the anti-crossing between the electron singlet (S) and m =1 triplet (T +) states in a GaAs double quantum dot. Using Landau-Zener sweeps, we find that the size of this splitting varies by more than an order of magnitude depending on the magnitude and direction of the external magnetic field. These results are consistent with a competition between the spin orbit interaction and the hyperfine interaction, even though the extracted spin orbit length is much larger than the size of the double quantum dot. We confirm these results by using Landau-Zener sweeps to measure the high-frequency correlations in the S-T + splitting that arise from the Larmor precession of the nuclei. These unexpected results have implications for improving the performance of spin-based quantum information processing, as well as improving our understanding of the central spin problem.
Anisotropic Pauli Spin Blockade of Holes in a GaAs Double Quantum Dot.
Wang, Daisy Q; Klochan, Oleh; Hung, Jo-Tzu; Culcer, Dimitrie; Farrer, Ian; Ritchie, David A; Hamilton, Alex R
2016-12-14
Electrically defined semiconductor quantum dots are attractive systems for spin manipulation and quantum information processing. Heavy-holes in both Si and GaAs are promising candidates for all-electrical spin manipulation, owing to the weak hyperfine interaction and strong spin-orbit interaction. However, it has only recently become possible to make stable quantum dots in these systems, mainly due to difficulties in device fabrication and stability. Here, we present electrical transport measurements on holes in a gate-defined double quantum dot in a GaAs/AlxGa1-xAs heterostructure. We observe clear Pauli spin blockade and demonstrate that the lifting of this spin blockade by an external magnetic field is highly anisotropic. Numerical calculations of heavy-hole transport through a double quantum dot in the presence of strong spin-orbit coupling show quantitative agreement with experimental results and suggest that the observed anisotropy can be explained by both the anisotropic effective hole g-factor and the surface Dresselhaus spin-orbit interaction.
Spin-orbit effects in carbon-nanotube double quantum dots
Weiss, S; Rashba, E I; Kuemmeth, Ferdinand;
2010-01-01
We study the energy spectrum of symmetric double quantum dots in narrow-gap carbon nanotubes with one and two electrostatically confined electrons in the presence of spin-orbit and Coulomb interactions. Compared to GaAs quantum dots, the spectrum exhibits a much richer structure because of the sp...
Integrable Open Spin Chains and the Doubling Trick in N = 2 SYM with Fundamental Matter
Erler, T G
2006-01-01
We demonstrate that the one-loop anomalous dimension matrix in N = 2 SYM with a single chiral hypermultiplet of fundamental matter, which is dual to AdS_5 X S^5 with a D7-brane filling AdS_5 and wrapped around an $^3 in the S^5, is an integrable open spin chain Hamiltonian. We also use the doubling trick to relate these open spin chains to closed spin chains in pure N = 4 SYM. By using the AdS/CFT correspondence, we find a relation between the corresponding open and closed strings that differs from a simple doubling trick by terms that vanish in the semiclassical limit. We also demonstrate that in some cases the closed string is simpler and easier to study than the corresponding open string, and we speculate on the nature of corrections due to the presence of D-branes that this implies.
The Spin-Plane Double Probe Electric Field Instrument for MMS
Lindqvist, P.-A.; Olsson, G.; Torbert, R. B.; King, B.; Granoff, M.; Rau, D.; Needell, G.; Turco, S.; Dors, I.; Beckman, P.; Macri, J.; Frost, C.; Salwen, J.; Eriksson, A.; Åhlén, L.; Khotyaintsev, Y. V.; Porter, J.; Lappalainen, K.; Ergun, R. E.; Wermeer, W.; Tucker, S.
2016-03-01
The Spin-plane double probe instrument (SDP) is part of the FIELDS instrument suite of the Magnetospheric Multiscale mission (MMS). Together with the Axial double probe instrument (ADP) and the Electron Drift Instrument (EDI), SDP will measure the 3-D electric field with an accuracy of 0.5 mV/m over the frequency range from DC to 100 kHz. SDP consists of 4 biased spherical probes extended on 60 m long wire booms 90∘ apart in the spin plane, giving a 120 m baseline for each of the two spin-plane electric field components. The mechanical and electrical design of SDP is described, together with results from ground tests and calibration of the instrument.
Polar kicks and the spin period - eccentricity relation in double neutron stars
Willems, B; Kalogera, V; Belczynski, K
2007-01-01
We present results of a population synthesis study aimed at examining the role of spin-kick alignment in producing a correlation between the spin period of the first-born neutron star and the orbital eccentricity of observed double neutron star binaries in the Galactic disk. We find spin-kick alignment to be compatible with the observed correlation, but not to alleviate the requirements for low kick velocities suggested in previous population synthesis studies. Our results furthermore suggest low- and high-eccentricity systems may form through two distinct formation channels distinguished by the presence or absence of a stable mass transfer phase before the formation of the second neutron star. The presence of highly eccentric systems in the observed sample of double neutron stars may furthermore support the notion that neutron stars accrete matter when moving through the envelope of a giant companion.
Dvornikov, Maxim
2015-01-01
We study the instability of magnetic fields in a neutron star core driven by the parity violating part of the electron-nucleon interaction in the Standard Model. Assuming a seed field of the order $10^{12}\\thinspace\\text{G}$, that is a common value for pulsars, one obtains its amplification due to such a novel mechanism by about five orders of magnitude, up to $10^{17}\\thinspace\\text{G}$, at time scales $\\sim (10^3 - 10^5)\\thinspace\\text{yr}$. This effect is suggested to be a possible explanation of the origin of the strongest magnetic fields observed in magnetars. The growth of a seed magnetic field energy density is stipulated by the corresponding growth of the magnetic helicity density due to the presence of the anomalous electric current in the Maxwell equation. Such an anomaly is the sum of the two competitive effects: (i) the chiral magnetic effect driven by the difference of chemical potentials for the right and left handed massless electrons and (ii) constant chiral electroweak electron-nucleon intera...
Electron spin coherence and electron nuclear double resonance of Bi donors in natural Si.
George, Richard E; Witzel, Wayne; Riemann, H; Abrosimov, N V; Nötzel, N; Thewalt, Mike L W; Morton, John J L
2010-08-06
Donors in silicon hold considerable promise for emerging quantum technologies, due to their uniquely long electron spin coherence times. Bismuth donors in silicon differ from more widely studied group V donors, such as phosphorous, in several significant respects: They have the strongest binding energy (70.98 meV), a large nuclear spin (I=9/2), and a strong hyperfine coupling constant (A=1475.4 MHz). These larger energy scales allow us to perform a detailed test of theoretical models describing the spectral diffusion mechanism that is known to govern the electron spin decoherence of P donors in natural silicon. We report the electron-nuclear double resonance spectra of the Bi donor, across the range 200 MHz to 1.4 GHz, and confirm that coherence transfer is possible between electron and nuclear spin degrees of freedom at these higher frequencies.
Spin-orbit effects in carbon-nanotube double quantum dots
Weiss, S; Rashba, E I; Kuemmeth, Ferdinand;
2010-01-01
We study the energy spectrum of symmetric double quantum dots in narrow-gap carbon nanotubes with one and two electrostatically confined electrons in the presence of spin-orbit and Coulomb interactions. Compared to GaAs quantum dots, the spectrum exhibits a much richer structure because of the spin...... between the dots. For the two-electron regime, the detailed structure of the spin-orbit split energy spectrum is investigated as a function of detuning between the quantum dots in a 22-dimensional Hilbert space within the framework of a single-longitudinal-mode model. We find a competing effect......-orbit interaction that couples the electron's isospin to its real spin through two independent coupling constants. In a single dot, both constants combine to split the spectrum into two Kramers doublets while the antisymmetric constant solely controls the difference in the tunneling rates of the Kramers doublets...
Intrinsic errors in transporting a single-spin qubit through a double quantum dot
Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.
2017-07-01
Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.
Charge Dynamics and Spin Blockade in a Hybrid Double Quantum Dot in Silicon
Matias Urdampilleta
2015-08-01
Full Text Available Electron spin qubits in silicon, whether in quantum dots or in donor atoms, have long been considered attractive qubits for the implementation of a quantum computer because of silicon’s “semiconductor vacuum” character and its compatibility with the microelectronics industry. While donor electron spins in silicon provide extremely long coherence times and access to the nuclear spin via the hyperfine interaction, quantum dots have the complementary advantages of fast electrical operations, tunability, and scalability. Here, we present an approach to a novel hybrid double quantum dot by coupling a donor to a lithographically patterned artificial atom. Using gate-based rf reflectometry, we probe the charge stability of this double quantum-dot system and the variation of quantum capacitance at the interdot charge transition. Using microwave spectroscopy, we find a tunnel coupling of 2.7 GHz and characterize the charge dynamics, which reveals a charge T_{2}^{*} of 200 ps and a relaxation time T_{1} of 100 ns. Additionally, we demonstrate a spin blockade at the inderdot transition, opening up the possibility to operate this coupled system as a singlet-triplet qubit or to transfer a coherent spin state between the quantum dot and the donor electron and nucleus.
Spin-flip process through double quantum dots coupled to two half-metallic ferromagnetic leads
Yan Cong-Hua; Wu Shao-Quan; Huang Rui; Sun Wei-Li
2008-01-01
We investigate the spin-flip process through double quantum dots coupled to two half-metallic ferromagnetic leads in series.By means of the slave-boson mean-field approximation,we calculate the density of states in the Kondo regime for two different configurations of the leads.It is found that the transport shows some remarkable properties depending on the spin-flip strength.These effects may be useful in exploiting the role of electronic correlation in spintronics.
Spin-Polarized Transport through Parallel Double Quantum Dots Coupled to Ferromagnetic Leads
HOU Tao; WU Shao-Quan; BI Ai-Hua; YANG Fu-Bin; SUN Wei-Li
2008-01-01
We theoretically study the spin-polarized transport phenomena of the parallel double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. The Hamiltonian is solved by means of the equation-of-motion approach. We analyse the transmission probability of this system in both the equilibrium and nonequilibrium cases, and our results reveal that the transport properties show some noticeable characteristics depending upon both the spin-polarized strength p and the value of the magnetic flux Ф. Moreover, in the parallel configuration, the position of the Kondo peak shifts while it remains unchanged for the antiparallel configuration. These effects might have some potential applications in spintronics.
Impact of g -factors and valleys on spin qubits in a silicon double quantum dot
Hwang, J. C. C.; Yang, C. H.; Veldhorst, M.; Hendrickx, N.; Fogarty, M. A.; Huang, W.; Hudson, F. E.; Morello, A.; Dzurak, A. S.
2017-07-01
We define single electron spin qubits in a silicon metal-oxide-semiconductor double quantum dot system. By mapping the qubit resonance frequency as a function of a gate-induced electric field, the spectrum reveals an anticrossing that is consistent with an intervalley spin-orbit coupling. We fit the data from which we extract an intervalley coupling strength of 43 MHz. In addition, we observe a narrow resonance near the primary qubit resonance when we operate the device in the (1 ,1 ) charge configuration. The experimental data are consistent with a simulation involving two weakly exchanged-coupled spins with a Zeeman energy difference of 1 MHz, of the same order as the Rabi frequency. We conclude that the narrow resonance is the result of driven transitions between the T- and T+ triplet states, using an electron spin resonance signal of frequency located halfway between the resonance frequencies of the two individual spins. The findings presented here offer an alternative method of implementing two-qubit gates, of relevance to the operation of larger-scale spin qubit systems.
Transport dépendant du spin dans des doubles jonctions tunnel magnétiques
Rodary, Guillemin
2004-01-01
The purpose of this work is the detection of magnetocurrent in the magnetic tunnel transistor based on a double tunnel junction. This magnetocurrent come from the emission of a spin polarized hot electrons current. Samples have been made by sputtering. A new technique of lithography and etching allowed us to take an electrical contact on each three electrode. We showed the influence of etching on magnetic tunnel junction transport properties. Thanks to these three contacts, we compared the in...
Lin, D.P.; Kevan, L.
1977-05-19
Electron--electron double resonance (ELDOR) has been used to test the validity of the noninteracting spin packet model for inhomogeneously broadened ESR lines. For trapped electrons in 10M NaOD/D/sub 2/O glassy ice the saturation of field-swept ELDOR spectra fits the above mentioned model in contrast to earlier work on trapped electrons in protiated matrices. In the protiated matrix spin diffusion produces significant interaction between the spin packets. The difference between the protiated and deuterated matrices suggests that nuclear relaxation is the mechanism for spin diffusion. The deuterated matrices show no structure in frequency-swept ELDOR spectra due to deuteron spin--flip transitions whereas structure due to proton spin--flips is seen in protiated matrices.
Oxygen-17 NMR in solids by dynamic-angle spinning and double rotation
Chmelka, B. F.; Mueller, K. T.; Pines, A.; Stebbins, J.; Wu, Y.; Zwanziger, J. W.
1989-05-01
IT is widely lamented that despite its unqualified success with spin-1/2 nuclei such as 13C, 29Si and31P, the popular NMR technique of magic-angle spinning (MAS) has experienced a somewhat restricted applicability among quadrupolar nuclei such as 17O, 23Na and 27A1 (refs 1-3). The resolution in the central (1/2 lrarr-1/2) transition of these non-integer quadrupolar spins under MAS is thought to be limited primarily by second-order quadrupolar broadening. Such effects of second-order spatial anisotropy cannot be eliminated by rotation about a fixed axis or by multiple-pulse techniques4,5. More general mechanisms of sample reorientation (refs 6-8 and A. Samoson and A. Pines, manuscript in preparation) can, however, make high-resolution NMR of quadrupolar nuclei feasible. MAS is implemented by spinning a sample about a single axis so that second-rank spherical harmonics (which give rise to first-order broadening through anisotropy of electrical and magnetic interactions) are averaged away. But dynamic-angle-spinning (DAS) and double-rotation (DOR) NMR involve spinning around two axes, averaging away both the second- and fourth-rank spherical harmonics, which are responsible for second-order broadening. Here we present the application of these new techniques to 17O in two minerals, cristobalite (SiO2) and diopside (CaMgSi2O6). This work goes beyond previous results on 23Na (ref. 8) by showing the first experimental results using DAS and by demonstrating the application of DOR to the resolution of distinct oxygen sites in an important class of oxide materials.
Iuga, Dinu; Schäfer, Hartmut; Verhagen, Rieko; Kentgens, Arno P. M.
2000-12-01
We have recently shown that the sensitivity of single- and multiple-quantum NMR experiments of half-integer (N/2) quadrupolar nuclei can be increased significantly by introducing so-called double frequency sweeps (DFS) in various pulse schemes. These sweeps consist of two sidebands generated by an amplitude modulation of the RF carrier. Using a time-dependent amplitude modulation the sidebands can be swept through a certain frequency range. Inspired by the work of Vega and Naor (J. Chem. Phys. 75, 75 (1981)), this is used to manipulate ±(m - 1) ↔ ±m (3/2 ≤ m ≤ N/2) satellite transitions in half-integer spin systems simultaneously. For 23Na (I = 3/2) and 27Al (I = 5/2) spins in single crystals it proved possible to transfer the populations of the outer ±m spin levels to the inner ±1/2 spin levels. A detailed analysis shows that the efficiency of this process is a function of the adiabaticity with which the various spin transitions are passed during the sweep. In powders these sweep parameters have to be optimized to satisfy the appropriate conditions for a maximum of spins in the powder distribution. The effects of sweep rate, sweep range, and RF field strength are investigated both numerically and experimentally. Using a DFS as a preparation period leads to significantly enhanced central transition powder spectra under both static and MAS conditions, compared to single pulse excitation. DFSs prove to be very efficient tools not only for population transfer, but also for coherence transfer. This can be exploited for the multiple- to single-quantum transfer in MQMAS experiments. It is demonstrated, theoretically and experimentally, that DFSs are capable of transferring both quintuple-quantum and triple-quantum coherence into single-quantum coherence in I = 5/2 spin systems. This leads to a significant enhancement in signal-to-noise ratio and strongly reduces the RF power requirement compared to pulsed MQMAS experiments, thus extending their applicability
Measurements of the Proton Spin Polarizabilities with Double-Polarized Compton Scattering
Martel, P P; Aguar-Bartolome, P; Ahrens, J; Akondi, C S; Annand, J R M; Arends, H J; Barnes, W; Beck, R; Bernstein, A; Borisov, N; Braghieri, A; Briscoe, W J; Cherepnya, S; Collicott, C; Costanza, S; Denig, A; Dieterle, M; Downie, E J; Fil'kov, L V; Garni, S; Glazier, D I; Gradl, W; Gurevich, G; Barrientos, P Hall; Hamilton, D; Hornidge, D; Howdle, D; Huber, G M; Jude, T C; Kaeser, A; Kashevarov, V L; Keshelashvili, I; Kondratiev, R; Korolija, M; Krusche, B; Lazarev, A; Lisin, V; Livingston, K; MacGregor, I J D; Mancell, J; Manley, D M; Meyer, W; Middleton, D G; Mushkarenkov, A; Nefkens, B M K; Neganov, A; Nikolaev, A; Oberle, M; Spina, H Ortega; Ostrick, M; Ott, P; Otte, P B; Oussena, B; Pedroni, P; Polonski, A; Polyansky, V; Prakhov, S; Rajabi, A; Reicherz, G; Rostomyan, T; Sarty, A; Schrauf, S; Schumann, S; Sikora, M H; Starostin, A; Steffen, O; Strakovsky, I I; Strub, T; Supek, I; Thiel, M; Tiator, L; Thomas, A; Unverzagt, M; Usov, Y; Watts, D P; Witthauer, L; Werthmüller, D; Wolfes, M
2014-01-01
The spin polarizabilities of the nucleon describe how the spin of the nucleon responds to an incident polarized photon. The most model-independent way to measure the nucleon spin polarizabilities is through polarized Compton scattering. Double-polarized Compton scattering asymmetries on the proton were measured in the $\\Delta(1232)$ region using circularly polarized incident photons and a transversely polarized proton target at the Mainz Microtron. Fits to asymmetry data were performed using a dispersion model calculation and a baryon chiral perturbation theory calculation, and a separation of all four proton spin polarizabilities in the multipole basis was achieved. The analysis based on a dispersion model calculation yields $\\gamma_{E1E1} = -3.5 \\pm 1.2$, $\\gamma_{M1M1}= 3.16 \\pm 0.85$, $\\gamma_{E1M2} = -0.7 \\pm 1.2$, and $\\gamma_{M1E2} = 1.99 \\pm 0.29$, in units of $10^{-4}$ fm$^4$.
Avakian, H; Bosted, P; Elouadrhiri, L; Adhikari, K P; Aghasyan, M; Amaryan, M; Anghinolfi, M; Baghdasaryan, H; Ball, J; Battaglieri, M; Bedlinskiy, I; Biselli, A S; Branford, D; Briscoe, W J; Brooks, W; Carman, D S; Casey, L; Cole, P L; Collins, P; Crabb, D; Crede, V; D& #x27; Angelo, A; Daniel, A; Dashyan, N; DeVita, R; DeSanctis, E; Deur, A; Dey, B; Dhamija, S; Dickson, R; Djalali, C; Dodge, G; Doughty, D; Dupre, R; El Alaoui, A; Eugenio, P; Fegan, S; Fersch, M; Guler, N; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Hassall, N; Heddle, D; Hicks, K; Holtrop, M; Ilieva, Y; Ireland, D G; Isupov, E L; Jawalkar, S S; Jo, H S; Joo, K; Keller, D; Khandaker, M; Khetarpal,; Kim, W; Klein, A; Klein, F J; Konczykowski, P; Kubarovsky, V; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Livingston, K; Lu, H Y; Markov, N; Mayer, M; McAndrew, J; McCracken, M E; McKInnon, B; Meyer, C A; Mineeva, T; Mirazita, M; Mokeev, V; Moreno, B; Moriya, K; Morrison, B; Moutarde, H; Munevar, E; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niroula, M R; Osipenko, M; Ostrovidov, A I; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Anefalos Pereira, S; Perrin, Y; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Protopopescu; Raue, B A; Ricco, G; Ripani, M; Rosner, G; Rossi, P; Sabatie, F; Saini, M S; Salamanca, J; Salgado, C; Schumacher, R A; Seder, E; Seraydaryan, H; Sharabian, Y G; Sober, D I; Sokhan, D; Stapanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Suleiman, R; Taiuti, M; Tedeschi, D J; Tkachenko, S; Ungaro, M; Vernarsky, B; Vineyard, M F; Voutier, E; Watts, D P; Weinstein, L B; Weygand, D P; Wood, M H; Zhang, J; Zhao, B; Zhao, Z W
2010-12-01
We report the first measurement of the transverse momentum dependence of double spin asymmetries in semi-inclusive production of pions in deep inelastic scattering off the longitudinally polarized proton. Data have been obtained using a polarized electron beam of 5.7 GeV with the CLAS detector at the Thomas Jefferson National Accelerator Facility (JLab). A significant non-zero $\\sin2\\phi$ single spin asymmetry was also observed for the first time indicating strong spin-orbit correlations for transversely polarized quarks in the longitudinally polarized proton. The azimuthal modulations of single spin asymmetries have been measured over a wide kinematic range.
Avakian, H; Burkert, V D; Elouadrhiri, L; Adhikari, K P; Aghasyan, M; Amaryan, M; Anghinolfi, M; Baghdasaryan, H; Ball, J; Battaglieri, M; Bedlinskiy, I; Biselli, A S; Branford, D; Briscoe, W J; Brooks, W; Carman, D S; Casey, L; Cole, P L; Collins, P; Crabb, D; Crede, V; D'Angelo, A; Daniel, A; Dashyan, N; DeVita, R; DeSanctis, E; Deur, A; Dey, B; Dhamija, S; Dickson, R; Djalali, C; Dodge, G; Doughty, D; Dupre, R; ElAlaoui, A; Eugenio, P; Fegan, S; Fersch, R; Forest, T A; Fradi, A; Gabrielyan, M Y; Gavalian, G; Gevorgyan, N; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Gohn, W; Gothe, R W; Griffioen, K A; Guidal, M; Guler, N; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Hassall, N; Heddle, D; Hicks, K; Holtrop, M; Ilieva, Y; Ireland, D G; Isupov, E L; Jawalkar, S S; Jo, H S; Joo, K; Keller, D; Khandaker, M; Khetarpal, P; Kim, W; Klein, A; Klein, F J; Konczykowski, P; Kubarovsky, V; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Livingston, K; Lu, H Y; Markov, N; Mayer, M; McAndrew, J; McCracken, M E; McKinnon, B; Meyer, C A; Mineeva, T; Mirazita, M; Mokeev, V; Moreno, B; Moriya, K; Morrison, B; Moutarde, H; Munevar, E; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niroula, M R; Osipenko, M; Ostrovidov, A I; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Pereira, S Anefalos; Perrin, Y; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Raue, B A; Ricco, G; Ripani, M; Rosner, G; Rossi, P; Sabatié, F; Saini, M S; Salamanca, J; Salgado, C; Schumacher, R A; Seder, E; Seraydaryan, H; Sharabian, Y G; Sober, D I; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Suleiman, R; Taiuti, M; Tedeschi, D J; Tkachenko, S; Ungaro, M; Vernarsky, B; Vineyard, M F; Voutier, E; Watts, D P; Weinstein, L B; Weygand, D P; Wood, M H; Zhang, J; Zhao, B; Zhao, Z W
2010-01-01
We report the first measurement of the transverse momentum dependence of double spin asymmetries in semi-inclusive production of pions in deep inelastic scattering off the longitudinally polarized proton. Data have been obtained using a polarized electron beam of 5.7 GeV with the CLAS detector at the Thomas Jefferson National Accelerator Facility (JLab). A significant non-zero $\\sin2\\phi$ single spin asymmetry was also observed for the first time indicating strong spin-orbit correlations for transversely polarized quarks in the longitudinally polarized proton. The azimuthal modulations of single spin asymmetries have been measured over a wide kinematic range.
Courtney, Joseph M; Rienstra, Chad M
2016-08-01
We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately.
Wei, Hai-Rui; Deng, Fu-Guo
2013-07-29
We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.
Chen, C. H.; Tseng, P.; Yang, Y. Y.; Hsueh, W. J.
2017-01-01
Enhancement of thermal spin transfer torque in a double-barrier magnetic tunnel junction with a nonmagnetic-metal spacer is proposed in this study. The results indicate that, given the same temperature difference, thermal spin transfer torque and charge current density for the proposed double barrier magnetic tunnel junction configuration can be approximately twice as much as that of the traditional single-barrier magnetic tunnel junctions. This enhancement can be attributed to the resonant tunneling mechanism in the double-barrier structure.
Transverse Double-Spin Asymmetries for Muon Pair Production in pp-Collisions
Martin, O; Stratmann, M; Vogelsang, W
1999-01-01
We calculate the rapidity dependence of the transverse double-spin asymmetry for the Drell-Yan process to next-to-leading order in the strong coupling. Input transversity distributions are obtained by saturating the Soffer inequality at a low hadronic mass scale. Results for the polarized BNL-RHIC proton-proton collider and the proposed HERA-N fixed-target experiment are presented, and the influence of the limited muon acceptance of the detectors on measurements of the asymmetry is studied in detail.
Spin dipole nuclear matrix elements for double beta decay nuclei by charge-exchange reactions
Ejiri, H
2016-01-01
Spin dipole (SD) strengths for double beta-decay (DBD) nuclei were studied experimentally for the first time by using measured cross sections of (3He,t) charge exchange reactions (CERs). Then SD nuclear matrix elements (NMEs) for low-lying 2- states were derived from the experimental SD strengths by referring to the experimental GT (Gamow-Teller) and F (Fermi) strengths. They are consistent with the empirical SD NMEs based on the quasi-particle model with the empirical effective SD coupling constant. The CERs are used to evaluate the SD NME, which is associated with one of the major components of the neutrino-less DBD NME.
Mutual coherence and spin squeezing in double-well atomic condensates
Jing Hui
2002-12-30
We develop an analytical method for the investigations of quantum dynamics and statistics of double-well atomic condensates with Josephson-like coupling. An interesting collapse and revival phenomenon is shown for any atomic state, and the anti-correlations are revealed between the two atomic modes through an exact result for second-order cross-correlation. Particularly, the possible violation of Cauchy-Schwarz inequality as the sign of nonlocality are exhibited by the combination of intrinsic collisions and external field. The essential difference between the two-mode nonclassical correlation and the collective spin squeezing is also briefly discussed.
The Transversity Function and Double Spin Azimuthal Asymmetry in Semi-Inclusive Pion Leptoproduction
Salvo, E D
2003-01-01
We show that the transverse momentum dependent transversity function coincides with the longitudinal polarization of a quark in a transversely polarized proton. This result suggests an alternative, convenient method for determining transversity, without knowing unusual fragmentation functions. The method consists of measuring the double spin azimuthal asymmetry in semi-inclusive pion leptoproduction by a transversely polarized proton target. The asymmetry, which is twist 3, is estimated to be more than 10% under the most favourable conditions. The experiment we suggest is feasible at facilities like DESY and CERN.
SU(4)-SU(2) crossover and spin-filter properties of a double quantum dot nanosystem
Lopes, V.; Padilla, R. A.; Martins, G. B.; Anda, E. V.
2017-06-01
The SU(4)-SU(2) crossover, driven by an external magnetic field h , is analyzed in a capacitively coupled double quantum dot device connected to independent leads. As one continuously charges the dots from empty to quarter filled, by varying the gate potential Vg, the crossover starts when the magnitude of the spin polarization of the double quantum dot, as measured by - , becomes finite. Although the external magnetic field breaks the SU(4) symmetry of the Hamiltonian, the ground state preserves it in a region of Vg, where - =0 . Once the spin polarization becomes finite, it initially increases slowly until a sudden change occurs, in which (polarization direction opposite to the magnetic field) reaches a maximum and then decreases to negligible values abruptly, at which point an orbital SU(2) ground state is fully established. This crossover from one Kondo state, with emergent SU(4) symmetry, where spin and orbital degrees of freedom all play a role, to another, with SU(2) symmetry, where only orbital degrees of freedom participate, is triggered by a competition between g μBh , the energy gain by the Zeeman-split polarized state and the Kondo temperature TKS U (4 ), the gain provided by the SU(4) unpolarized Kondo-singlet state. At fixed magnetic field, the knob that controls the crossover is the gate potential, which changes the quantum dots occupancies. If one characterizes the occurrence of the crossover by Vgmax, the value of Vg where reaches a maximum, one finds that the function f relating the Zeeman splitting, Bmax, which corresponds to Vgmax, i.e., Bmax=f (Vgmax) , has a similar universal behavior to that of the function relating the Kondo temperature to Vg. In addition, our numerical results show that near the SU(4) Kondo temperature and for relatively small magnetic fields the device has a ground state that restricts the electronic population at the dots to be spin polarized along the magnetic field. These two facts introduce very efficient spin
Hong Xue-Kun; Yang Xi-Feng; Feng Jin-Fu; Liu Yu-Shen
2013-01-01
We propose a Rashba three-terminal double-quantum-dot device to generate a spin-polarized current and manipulate the electron spin in each quantum dot by utilizing the temperature gradient instead of the electric bias voltage.This device possesses a nonresonant tunneling channel and two resonant tunneling channels.The Keldysh nonequilibrium Green's function techniques are employed to determinate the spin-polarized current flowing from the electrodes and the spin accumulation in each quantum dot.We find that their signs and magnitudes are well controllable by the gate voltage or the temperature gradient.This result is attributed to the change in the slope of the transmission probability at the Fermi levels in the low-temperature region.Importantly,an obviously pure spin current can be injected into or extracted from one of the three electrodes by properly choosing the temperature gradient and the gate voltages.Therefore,the device can be used as an ideal thermal generator to produce a pure spin current and manipulate the electron spin in the quantum dot.
Double spin asymmetry in exclusive {rho}{sup 0} muoproduction at COMPASS
Alekseev, M.; Amoroso, A.; Balestra, F.; Bertini, R.; Bussa, M.P.; Chiosso, M.; Colantoni, M.; Costa, S.; Denisov, O.Yu.; Ferrero, A.; Ferrero, L.; Frolov, V.; Garfagnini, R.; Grasso, A.; Maggiora, A.; Maggiora, M.; Panzieri, D.; Piragino, G.; Sosio, S. [INFN Turin and University of Turin, Physics Department, Turin (Italy); Alexakhin, V.Yu.; Alexeev, G.D.; Arbuzov, A.; Finger jr., M.; Gavrichtchouk, O.P.; Gushterski, R.; Guskov, A.; Ioukaev, A.I.; Ivanov, O.; Ivanshin, Yu.; Janata, A.; Jouravlev, N.I.; Komissarov, E.V.; Korentchenko, A.S.; Koutchinski, N.A.; Kravchuk, N.P.; Kroumchtein, Z.V.; Maximov, A.N.; Nagaytsev, A.; Nikolaev, K.; Olshevsky, A.G.; Peshekhonov, D.V.; Peshekhonov, V.D.; Rapatsky, V.; Rozhdestvensky, A.M.; Sapozhnikov, M.G.; Savin, I.A.; Shevchenko, O.Yu.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Tchalishev, V.V.; Tkatchev, L.G.; Vlassov, N.V.; Zemlyanichkina, E. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Alexandrov, Yu.; Zavertyaev, M. [Lebedev Physical Institute, Moscow (Russian Federation); Badelek, B.; Brona, G.; Gazda, R.; Grajek, O.A.; Klimaszewski, K.; Kurek, K.; Nassalski, J.; Pawlukiewicz-Kaminska, B.; Rondio, E.; Sandacz, A.; Wislicki, W. [Soltan Institute for Nuclear Studies and Warsaw University, Warsaw (Poland); Ball, J.; Bedfer, Y.; Bernet, C.; Burtin, E.; d' Hose, N.; Kunne, F.; Le Goff, J.M.; Magnon, A.; Marchand, C.; Marroncle, J.; Neyret, D.P.; Panebianco, S.; Platchkov, S.; Procureur, S.; Robinet, F. [CEA DAPNIA/SPhN Saclay, Gif-sur-Yvette (France); Baum, G.; Gautheron, F. [Universitaet Bielefeld, Fakultaet fuer Physik, Bielefeld (Germany); Barth, J.; Hannappel, J.; Klein, F.; Ostrick, M.; Panknin, R.; Pretz, J.; Windmolders, R. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Bettinelli, M.; Dedek, N.; Duennweber, W.; Faessler, M.; Geyer, R.; Ilgner, C.; Rajotte, J.-F.; Zvyagin, A. [Ludwig-Maximilians-Universitaet Muenchen, Dept. fuer Physik, Munich (Germany)] [and others
2007-10-15
The longitudinal double spin asymmetry A{sub 1} {sup {rho}} for exclusive leptoproduction of {rho}{sup 0} mesons, {mu}+N{yields}{mu}+N+{rho}, is studied using the COMPASS 2002 and 2003 data. The measured reaction is incoherent exclusive {rho}{sup 0} production on polarised deuterons. The Q{sup 2} and x dependence of A{sub 1}{sup {rho}} is presented in a wide kinematical range, 3 x 10{sup -3}
Spin dipole nuclear matrix elements for double beta decay nuclei by charge-exchange reactions
Ejiri, H.; Frekers, D.
2016-11-01
Spin dipole (SD) strengths for double beta-decay (DBD) nuclei were studied experimentally for the first time by using measured cross sections of (3He, t) charge-exchange reactions (CERs). Then SD nuclear matrix elements (NMEs) {M}α ({{SD}}) for low-lying 2- states were derived from the experimental SD strengths by referring to the experimental α = GT (Gamow-Teller) and α = F (Fermi) strengths. They are consistent with the empirical NMEs M({{SD}}) based on the quasi-particle model with the empirical effective SD coupling constant. The CERs are used to evaluate the SD NME, which is associated with one of the major components of the neutrino-less DBD NME.
Dissipatively driven entanglement of two nuclear spin ensembles in a double quantum dot
Schuetz, Martin J.A.; Kessler, Eric M.; Cirac, Juan Ignacio; Giedke, Geza [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany)
2013-07-01
Typically, quantum information schemes have been discussed in the context of isolated many-body systems subject to unitary dynamics. Here, dissipation has been identified as a mechanism that corrupts the useful quantum properties of the system under study. Recently, however, with the advent of novel ideas such as dissipative engineering, a paradigm shift could be observed in quantum physics. More and more approaches actively utilize dissipation as a driving force behind the emergence of coherent quantum phenomena. In this spirit, we propose a transport scheme for an electrically defined double quantum dot in which the two nuclear ensembles in the host environment are actively pumped into an entangled target state. Based on a self-consistent Holstein-Primakoff approximation, we derive an effective quantum master equation for the nuclear spins which features an unique entangled steady state; accordingly, long lasting entanglement is created deterministically. Prospects for the experimental realization of this proposal are briefly discussed.
Longitudinal–transverse double-spin asymmetries in single-inclusive leptoproduction of hadrons
K. Kanazawa
2015-03-01
Full Text Available We analyze the longitudinal–transverse double-spin asymmetry in lepton–nucleon collisions where a single hadron is detected in the final state, i.e., ℓ→N↑→hX. This is a subleading-twist observable in collinear factorization, and we look at twist-3 effects in both the transversely polarized nucleon and the unpolarized outgoing hadron. Results are anticipated for this asymmetry from both HERMES and Jefferson Lab Hall A, and it could be measured as well at COMPASS and a future Electron–Ion Collider. We also perform a numerical study of the distribution term, which, when compared to upcoming experimental results, could allow one to learn about the “worm-gear”-type function g˜(x as well as assess the role of quark–gluon–quark correlations in the initial-state nucleon and twist-3 effects in the fragmenting unpolarized hadron.
Longitudinal double spin asymmetries in single hadron quasi-real photoproduction at high pT
C. Adolph
2016-02-01
Full Text Available We measured the longitudinal double spin asymmetries ALL for single hadron muoproduction off protons and deuterons at photon virtuality Q2<1(GeV/c2 for transverse hadron momenta pT in the range 1 GeV/c to 4 GeV/c. They were determined using COMPASS data taken with a polarised muon beam of 160 GeV/c or 200 GeV/c impinging on polarised 6LiD or NH3 targets. The experimental asymmetries are compared to next-to-leading order pQCD calculations, and are sensitive to the gluon polarisation ΔG inside the nucleon in the range of the nucleon momentum fraction carried by gluons 0.05
Longitudinal double spin asymmetries in single hadron quasi-real photoproduction at high $p_T$
Adolph, C; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anosov, V; Augustyniak, W; Austregesilo, A; Azevedo, C D R; Badełek, B; Balestra, F; Barth, J; Beck, R; Bedfer, Y; Bernhard, J; Bicker, K; Bielert, E R; Birsa, R; Bisplinghoff, J; Bodlak, M; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Büchele, M; Burtin, E; Chang, W-C; Chiosso, M; Choi, I; Chung, S U; Cicuttin, A; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Dziewiecki, M; Efremov, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger jr , M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Fuchey, E; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Giordano, F; Gnesi, I; Gorzellik, M; Grabmüller, S; Grasso, A; Grosse Perdekamp, M; Grube, B; Grussenmeyer, T; Guskov, A; Haas, F; Hahne, D; von Harrach, D; Hashimoto, R; Heinsius, F H; Herrmann, F; Hinterberger, F; Horikawa, N; d'Hose, N; Hsieh, C-Y; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Joosten, R; Jörg, P; Kabuß, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kremser, P; Krinner, F; Kroumchtein, Z V; Kuchinski, N; Kuhn, R; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lichtenstadt, J; Longo, R; Maggiora, A; Magnon, A; Makins, N; Makke, N; Mallot, G K; Marchand, C; Marianski, B; Martin, A; Marzec, J; Matoušek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Miyachi, Y; Montuenga, P; Nagaytsev, A; Nerling, F; Neyret, D; Nikolaenko, V I; Nový, J; Nowak, W-D; Nukazuka, G; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panzieri, D; Parsamyan, B; Paul, S; Peng, J-C; Pereira, F; Pešek, M; Peshekhonov, D V; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Riedl, C; Rossiyskaya, N S; Ryabchikov, D I; Rychter, A; Samoylenko, V D; Sandacz, A; Santos, C; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schmidt, K; Schmieden, H; Schönning, K; Schopferer, S; Selyunin, A; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; Tessaro, S; Tessarotto, F; Thibaud, F; Tosello, F; Tskhay, V; Uhl, S; Veloso, J; Virius, M; Weisrock, T; Wilfert, M; ter Wolbeek, J; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zink, A
2016-01-01
We measured the longitudinal double spin asymmetries $A_{LL}$ for single hadron muo-production off protons and deuterons at photon virtuality $Q^2$ < 1(GeV/$\\it c$)$^2$ for transverse hadron momenta $p_T$ in the range 0.7 GeV/$\\it c$ to 4 GeV/$\\it c$ . They were determined using COMPASS data taken with a polarised muon beam of 160 GeV/$\\it c$ or 200 GeV/$\\it c$ impinging on polarised $\\mathrm{{}^6LiD}$ or $\\mathrm{NH_3}$ targets. The experimental asymmetries are compared to next-to-leading order pQCD calculations, and are sensitive to the gluon polarisation $\\Delta G$ inside the nucleon in the range of the nucleon momentum fraction carried by gluons $0.05 < x_g < 0.2$.
Promising ferrimagnetic double perovskite oxides towards high spin polarization at high temperature
Si-Da Li
2013-01-01
Full Text Available We predict through our first-principles calculations that four double perovskite oxides of Bi2ABO6 (AB = FeMo, MnMo, MnOs, CrOs are half-metallic ferrimagnets. Our calculated results shows that the four optimized structures have negative formation energy, from -0.42 to -0.26 eV per formula unit, which implies that they could probably be realized. In the case of Bi2FeMoO6, the half-metallic gap and Curie temperature are predicted to reach to 0.71 eV and 650 K, respectively, which indicates that high spin polarization could be kept at high temperatures far beyond room temperature. It is believed that some of them could be synthesized soon and would prove useful for spintronic applications.
Zhao, Y X; Aniol, K; Annand, J R M; Averett, T; Benmokhtar, F; Bertozzi, W; Bradshaw, P C; Bosted, P; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J -P; Chen, W; Chirapatpimol, K; Chudakov, E; Cisbani, E; Cornejo, J C; Cusanno, F; Dalton, M; Deconinck, W; de Jager, C W; De Leo, R; Deng, X; Deur, A; Ding, H; Dolph, P A M; Dutta, C; Dutta, D; Fassi, L El; Frullani, S; Gao, H; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Guo, L; Hamilton, D; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, J; Huang, M; Ibrahim, H F; Iodice, M; Jiang, X; Jin, G; Jones, M K; Katich, J; Kelleher, A; Kim, W; Kolarkar, A; Korsch, W; LeRose, J J; Li, X; Li, Y; Lindgren, R; Liyanage, N; Long, E; Lu, H -J; Margaziotis, D J; Markowitz, P; Marrone, S; McNulty, D; Meziani, Z -E; Michaels, R; Moffit, B; Camacho, C Muñoz; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; Peng, J -C; Phillips, S K; Posik, M; Puckett, A J R; Qian, X; Qiang, Y; Rakhman, A; Ransome, R; Riordan, S; Saha, A; Sawatzky, B; Schulte, E; Shahinyan, A; Shabestari, M H; Širca, S; Stepanyan, S; Subedi, R; Sulkosky, V; Tang, L -G; Tobias, W A; Urciuoli, G M; Vilardi, I; Wang, K; Wojtsekhowski, B; Wang, Y; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, B; Zheng, X; Zhu, L; Zhu, X; Zong, X
2015-01-01
We report the measurement of beam-target double-spin asymmetries ($A_\\text{LT}$) in the inclusive production of identified hadrons, $\\vec{e}~$+$~^3\\text{He}^{\\uparrow}\\rightarrow h+X$, using a longitudinally polarized 5.9 GeV electron beam and a transversely polarized $^3\\rm{He}$ target. Hadrons ($\\pi^{\\pm}$, $K^{\\pm}$ and proton) were detected at 16$^{\\circ}$ with an average momentum $$=2.35 GeV/c and a transverse momentum ($p_{T}$) coverage from 0.60 to 0.68 GeV/c. Asymmetries from the $^3\\text{He}$ target were observed to be non-zero for $\\pi^{\\pm}$ production when the target was polarized transversely in the horizontal plane. The $\\pi^{+}$ and $\\pi^{-}$ asymmetries have opposite signs, analogous to the behavior of $A_\\text{LT}$ in semi-inclusive deep-inelastic scattering.
Beam-target double-spin asymmetry in quasielastic electron scattering off the deuteron with CLAS
Mayer, M.; Kuhn, S. E.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Keith, C.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; McKinnon, B.; Meekins, D.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Net, L. A.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pogorelko, O.; Price, J. W.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Sabatié, F.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration
2017-02-01
Background: The deuteron plays a pivotal role in nuclear and hadronic physics, as both the simplest bound multinucleon system and as an effective neutron target. Quasielastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. Purpose: The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground state (due to the D -state admixture) and on the limits of the impulse approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. Information on this reaction can also be used to reduce systematic uncertainties on the determination of neutron form factors or deuteron polarization through quasielastic polarized electron scattering. Method: We measured the beam-target double-spin asymmetry (A||) for quasielastic electron scattering off the deuteron at several beam energies (1.6 -1.7 , 2.5, 4.2, and 5.6 -5.8 GeV ), using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double-spin asymmetries were measured as a function of photon virtuality Q2(0.13 -3.17 (GeV/c ) 2) , missing momentum (pm=0.0 -0.5 GeV /c ), and the angle between the (inferred) spectator neutron and the momentum transfer direction (θn q). Results: The results are compared with a recent model that includes final-state interactions (FSI) using a complete parametrization of nucleon-nucleon scattering, as well as a simplified model using the plane wave impulse approximation (PWIA). We find overall good agreement with both the PWIA and FSI
Casey, Thomas M.; Fanucci, Gail E.
2016-01-01
An understanding of macromolecular conformational equilibrium in biological systems is oftentimes essential to understand function, dysfunction, and disease. For the past few years, our lab has been utilizing site-directed spin labeling (SDSL), coupled with electron paramagnetic resonance (EPR) spectroscopy, to characterize the conformational ensemble and ligand-induced conformational shifts of HIV-1 protease (HIV-1PR). The biomedical importance of characterizing the fractional occupancy of states within the conformational ensemble critically impacts our hypothesis of a conformational selection mechanism of drug-resistance evolution in HIV-1PR. The purpose of the following chapter is to give a timeline perspective of our SDSL EPR approach to characterizing conformational sampling of HIV-1PR. We provide detailed instructions for the procedure utilized in analyzing distance profiles for HIV-1PR obtained from pulsed electron–electron double resonance (PELDOR). Specifically, we employ a version of PELDOR known as double electron–electron resonance (DEER). Data are processed with the software package “DeerAnalysis” (http://www.epr.ethz.ch/software), which implements Tikhonov regularization (TKR), to generate a distance profile from electron spin-echo amplitude modulations. We assign meaning to resultant distance profiles based upon a conformational sampling model, which is described herein. The TKR distance profiles are reconstructed with a linear combination of Gaussian functions, which is then statistically analyzed. In general, DEER has proven powerful for observing structural ensembles in proteins and, more recently, nucleic acids. Our goal is to present our advances in order to aid readers in similar applications. PMID:26477251
Resonant spin-transfer torque in asymmetric double barrier magnetic tunnel junctions (MTJs)
Daqiq, Reza; Ghobadi, Nader
2017-02-01
The substitution effect of a Ferro-magnet (FM) electrode by a half-metallic FM material La0.7Sr0.3MnO3 (LSMO) on charge current and spin-transfer torque (STT) components is studied in MgO-based double barrier magnetic tunnel junctions (DBMTJs) with a middle non-magnetic metal (NM) layer. Using non-equilibrium Green's function (NEGF) formalism, it is observed that the current and STT components show oscillatory behavior due to quantum well states in the middle NM layer and resonant tunneling effect. We also study effect of difference in the thickness of the MgO insulators. Bias dependence demonstrate the magnitude enhancement of the current and in-plane STT in new asymmetric DBMTJs (A-DBMTJs) compared with symmetric DBMTJs (S-DBMTJs), however, perpendicular STT decreases in the A-DBMTJs. Results also show different behavior compared with conventional asymmetric MTJs and spin valves (SVs). Therefore, one can design new memory devices by means of suitable insulator and FM electrodes with proper thicknesses.
Waiting time distribution revealing the internal spin dynamics in a double quantum dot
Ptaszyński, Krzysztof
2017-07-01
Waiting time distribution and the zero-frequency full counting statistics of unidirectional electron transport through a double quantum dot molecule attached to spin-polarized leads are analyzed using the quantum master equation. The waiting time distribution exhibits a nontrivial dependence on the value of the exchange coupling between the dots and the gradient of the applied magnetic field, which reveals the oscillations between the spin states of the molecule. The zero-frequency full counting statistics, on the other hand, is independent of the aforementioned quantities, thus giving no insight into the internal dynamics. The fact that the waiting time distribution and the zero-frequency full counting statistics give a nonequivalent information is associated with two factors. Firstly, it can be explained by the sensitivity to different timescales of the dynamics of the system. Secondly, it is associated with the presence of the correlation between subsequent waiting times, which makes the renewal theory, relating the full counting statistics and the waiting time distribution, no longer applicable. The study highlights the particular usefulness of the waiting time distribution for the analysis of the internal dynamics of mesoscopic systems.
Measurement of the Double Spin Asymmetry in {pi}{sup +} electroproduction with CLAS
Raffaella De Vita
2000-12-01
The present thesis describes the measurement of the double spin asymmetry in the ep {yields} e{pi}{sup +}n reaction. This represents the only existing measurement for this observable. The reaction is identified detecting the scattered electron and the emitted pion and using the missing mass technique to identify the neutron. The asymmetry is evaluated as a function of the four-momentum transfer Q{sup 2}, the invariant mass W and the pion center of mass angle {theta}*. These are in fact the variables that determine the transition amplitudes for the process. The W range of this measurement varies from the pion threshold to a maximum value of 1.8 GeV, exploring the full resonance region. The results obtained with this analysis in the evaluation of the spin asymmetry are presented. The outline of the thesis can be summarized as follows. The first chapter describes the physics motivation that are at the basis of this experiment. The second and third chapters illustrate the design of the CLAS detector and the polarized target. The fourth chapter gives a description of the event reconstruction and to the event selection while the analysis procedure is described in chapter five. Chapter six discusses the results of this measurement, including the evaluation of the systematic uncertainty and the comparison with a physics model.
Airapetian, A; Akopov, Z; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetisyan, E; Belostotski, S; Bianchi, N; Blok, H P; Borissov, A; Bowles, J; Brodski, I; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Nardo, L; De Sanctis, E; Di Nezza, P; Dueren, M; Ehrenfried, M; Elbakian, G; Ellinghaus, F; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Gabbert, D; Gapienko, G; Gapienko, V; Garibaldi, F; Gavrilov, G; Gharibyan, V; Giordano, F; Gliske, S; Golembiovskaya, M; Hartig, M; Hasch, D; Hoek, M; Holler, Y; Hristova, I; Imazu, Y; Ivanilov, A; Jackson, H E; Jo, H S; Joosten, S; Kaiser, R; Karyan, G; Keri, T; Kinney, E; Kisselev, A; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lamb, R; Lapikas, L; Lehmann, I; Lenisa, P; Ruiz, A Lopez; Lorenzon, W; Lu, X -G; Lu, X -R; Ma, B -Q; Mahon, D; Makins, N C R; Manaenkov, S I; Manfre, L; Mao, Y; de la Ossa, B Marianski A Martinez; Marukyan, H; Miller, C A; Miyachi, Y; Movsisyan, A; Murray, M; Mussgiller, A; Nappi, E; Naryshkin, Y; Nass, A; Negodaev, M; Nowak, W -D; Pappalardo, L L; Perez-Benito, R; Raithel, M; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubin, J; Ryckbosch, D; Salomatin, Y; Schaefer, A; Schnell, G; Schueler, K P; Seitz, B; Shibata, T -A; Shutov, V; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stinzing, F; Taroian, S; Terkulov, A; Trzcinski, A; Tytgat, M; Van Haarlem, Y; Van Hulse, C; Veretennikov, D; Vikhrov, V; Vilardi, I; Wang, S; Yaschenko, S; Ye, Z; Yen, S; Zagrebelnyy, V; Zeiler, D; Zihlmann, B; Zupranski, P
2011-01-01
Double-spin asymmetries in exclusive electroproduction of real photons from a transversely polarized hydrogen target are measured with respect to the product of target polarization with beam helicity and beam charge, and with respect to the product of target polarization with beam helicity alone. The asymmetries arise from the deeply virtual Compton scattering process and its interference with the Bethe--Heitler process. They are related to the real part of the same combination of Compton form factors as that determining the transverse target single-spin asymmetries through the imaginary part. The results for the double-spin asymmetries are found to be compatible with zero within the uncertainties of the measurement, and are not incompatible with the predictions of the only available GPD-based calculation.
Zhang Cun-Xi; Nie Yi-Hang; Liang Jiu-Qing
2008-01-01
We have investigated theoretically the field-driven electron-transport through a double-quantum-well semiconductor-heterostructure with spin-orbit coupling. The numerical results demonstrate that the transmission spectra are divided into two sets due to the bound-state level-splitting and each set contains two asymmetric resonance peaks which may be selectively suppressed by changing the difference in phase between two driving fields. When the phase difference changes from O to π, the dip of asymmetric resonance shifts from one side of resonance peak to the other side and the asymmetric Fano resonance degenerates into the symmetric Breit-Wigner resonance at a critical value of phase difference. Within a given range of incident electron energy, the spin polarization of transmission current is completely governed by the phase difference which may be used to realize the tunable spin filtering.
Lagoudakis, K. G.; Fischer, K. A.; Sarmiento, T.; McMahon, P. L.; Radulaski, M.; Zhang, J. L.; Kelaita, Y.; Dory, C.; Müller, K.; Vučković, J.
2017-01-01
Although individual spins in quantum dots have been studied extensively as qubits, their investigation under strong resonant driving in the scope of accessing Mollow physics is still an open question. Here, we have grown high quality positively charged quantum dots embedded in a planar microcavity that enable enhanced light-matter interactions. Under a strong magnetic field in the Voigt configuration, individual positively charged quantum dots provide a double lambda level structure. Using a combination of above-band and resonant excitation, we observe the formation of Mollow triplets on all optical transitions. We find that when the strong resonant drive power is used to tune the Mollow-triplet lines through each other, we observe anticrossings. We also demonstrate that the interaction that gives rise to the anticrossings can be controlled in strength by tuning the polarization of the resonant laser drive. Quantum-optical modeling of our system fully captures the experimentally observed spectra and provides insight on the complicated level structure that results from the strong driving of the double lambda system.
Search for double charmonium decays of the P-wave spin-triplet bottomonium states
Shen, C P; Iijima, T
2012-01-01
Using a sample of 158 million $\\Upsilon(2S)$ events collected with the Belle detector, we search for the first time for double charmonium decays of the $P$-wave spin-triplet bottomonium states ($\\Upsilon(2S) \\to \\gamma \\chi_{bJ}$, $\\chi_{bJ} \\to \\jpsi \\jpsi$, $\\jpsi \\psp$, $\\psp \\psp$ for J=0, 1, and 2). No significant $\\chi_{bJ}$ signal is observed in the double charmonium mass spectra, and we obtain the following upper limits, $\\BR(\\chi_{bJ} \\to \\jpsi \\jpsi)<7.1\\times 10^{-5}$, $2.7\\times 10^{-5}$, $4.5\\times 10^{-5}$, $\\BR(\\chi_{bJ} \\to \\jpsi \\psp)<1.2\\times 10^{-4}$, $1.7\\times 10^{-5}$, $4.9\\times 10^{-5}$, $\\BR(\\chi_{bJ} \\to \\psp \\psp)<3.1\\times 10^{-5}$, $6.2\\times 10^{-5}$, $1.6\\times 10^{-5}$ for J=0, 1, and 2, respectively, at the 90% confidence level. These limits are significantly lower than the central values (with uncertainties of 50% to 70%) predicted using the light cone formalism but are consistent with calculations using the NRQCD factorization approach.
Wei, Hai-Rui; Deng, Fu-Guo
2014-12-18
Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.
Edén, Mattias
2010-05-01
Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.
Fajer, Piotr G [Institute of Molecular Biophysics, Department of Biological Science, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States)
2005-05-11
The recent development of site specific spin labelling and advances in pulsed electron paramagnetic resonance(EPR) have established spin labelling as a viable structural biology technique. Specific protein sites or whole domains can be selectively targeted for spin labelling by cysteine mutagenesis. The secondary structure of the proteins is determined from the trends in EPR signals of labels attached to consecutive residues. Solvent accessibility or label mobility display periodicities along the labelled polypeptide chain that are characteristic of {beta}-strands (periodicity of 2 residues) or {alpha}-helices (3.6 residues). Low-resolution 3D structure of proteins is determined from the distance restraints. Two spin labels placed within 60-70 A of each other create a local dipolar field experienced by the other spin labels. The strength of this field is related to the interspin distance, {proportional_to} r{sup -3}. The dipolar field can be measured by the broadening of the EPR lines for the short distances (8-20 A) or for the longer distances (17-70 A) by the pulsed EPR methods, double electron-electron resonance(DEER) and double quantum coherence (DQC). A brief review of the methodology and its applications to the multisubunit muscle protein troponin is presented below.
Spin-polarized transport through a double Aharonov-Bohm ring in the presence of magnetic impurity
高迎芳; 张永平; 梁九卿
2005-01-01
The Aharonov-Bohm (AB) interference oscillations manifested through transmission of an electron in a mesoscopic device with a double-ring in the presence of a magnetic impurity serving as the spin-flipper are studied. The spin-flipper is demonstrated to indeed cause the partial decoherence of the AB interference. Moreover, it is found that the spinup/down transmission coefficients are asymmetric in the flux reversal while the reflection coefficients as well as that the total transmission coefficient are symmetric.
ZHENG Gong-Ping; QIN Shuai-Feng; WANG Shou-Yang; JIAN Wen-Tian
2013-01-01
The ground states of the ultracold spin-1 atoms trapped in a deep one-dimensional double-well optical superlattice in a weak magnetic field are obtained.It is shown that the ground-state diagrams of the reduced doublewell model are remarkably different for the antiferromagnetic and ferromagnetic condensates.The transition between the singlet state and nematic state is observed for the antiferromagnetic interaction atoms,which can be realized by modulating the tunneling parameter or the quadratic Zeeman energy.An experiment to distinguish the different spin states is suggested.
Tang, Chi-Shung; Tseng, Shu-Ting; Gudmundsson, Vidar; Cheng, Shun-Jen
2015-03-04
We investigate double finger gate (DFG) controlled spin-resolved resonant transport properties in an n-type quantum channel with a Rashba-Zeeman (RZ) subband energy gap. By appropriately tuning the DFG in the strong Rashba coupling regime, resonant state structures in conductance can be found that are sensitive to the length of the DFG system. Furthermore, a hole-like bound state feature below the RZ gap and an electron-like quasi-bound state feature at the threshold of the upper spin branch can be found that is insensitive to the length of the DFG system.
Wen Wu
2007-01-01
Spin polarizer is one of the most important devices for the newly developing field of spintronics, which may revolute the popular information techniques. Here we present a phenomenal model for a novel spin polarizer, which utilizes two back to back ferromagnetic metal/semiconductor Schottky barriers to define a semiconductor transport channel whose length is less than the spin decoherence length of the host semiconductor. Along this channel, conducting electrons move diffusively in momentum space while they keep ballistic motion in spin space. Across the channel, electrons suffer a spin dependent tunneling, which establishes spin polarization along the channel.
Petrović, Vladimir S; Field, Robert W
2008-01-07
The polarization dependence of transition intensities in multiple resonance spectroscopic experiments can provide information useful for making rotational assignments. A formalism to describe the polarization dependence of transition intensities in multiple resonance experiments, particularly for cases when two rotational/fine structure quantum numbers are needed to specify the state of the system, is presented. The formalism is presented in a form usable both when the transitions between the underlying fine structure components are experimentally resolved, as well as when they are unresolved, to form composite lines. This sort of treatment is necessary for cases when the two quantum numbers that specify the fine structure differ significantly, such as is the case at low N, when the difference between J and N becomes comparable to the value of J. Ratios of transition intensities in different experimentally convenient polarization arrangements are evaluated for the case of composite N transitions formed by combining the spin components of a doublet system. The formalism is expressed in a form easily extendable to accommodate experimental cases of more than two excitation steps, or a combination of excitation steps and an external static electric field. This polarization diagnostic has been experimentally applied to assign spectral features in double resonance Rydberg spectra of CaF.
Multiple Majorana zero modes in atomic Fermi double wires with spin-orbit coupling
Wang, Liang-Liang; Gong, Ming; Liu, W.-M.
2017-08-01
Majorana zero modes, quasiparticles with non-Abelian statistics, have gained increasing interest for their fundamental role as building blocks in topological quantum computation. Previous studies have mainly focused on two well-separated Majorana zero modes, which could form two degenerate states serving as one nonlocal qubit for fault-tolerant quantum memory. However, creating and manipulating multiple Majorana zero modes, which could encode more qubits, remain an ongoing research topic. Here we report that multiple Majorana zero modes can exist in atomic Fermi double wires with spin-orbit coupling and perpendicular Zeeman field. This system belongs to the topological BDI class, thus all the topological superfluids are classified by integer numbers. Especially, diverse topological superfluids can be formed in a trap, where the zero energy modes can be found at the interfaces between different topological superfluids. The structure of these zero energy modes in the trap can be engineered by the trapping potential as well as other system parameters. This system would be a significant step towards utilization of Majorana zero modes in quantum computation.
Useinov, Arthur
2011-10-01
Spin-polarization asymmetry is the key parameter in asymmetric voltage behavior (AVB) of the tunnel magnetoresistance (TMR) in magnetic tunnel junctions. In this paper, we study the value of the TMR as a function of the applied voltage Va in the single as well as double barrier magnetic tunnel junctions (SMTJ & DMTJ, which are constructed from CoFeB/MgO interfaces) and numerically estimate the possible difference of the TMR-V a curves for negative and positive voltages in the homojunctions. As a result, we found that AVB may help to determine the exact values of Fermi wave vectors for minority and majority conducting spin sub-bands. Moreover, significant asymmetry of the experimental TMR-Va curves, which arises due to different annealing regimes, is explained by different heights of the tunnel barriers and values of the spin asymmetry. The numerical TMR-V a data are in good agreement with experimental ones. © 2011 IEEE.
Manallah, B.
1986-02-01
A delayed double resonance experiment was carried out using a Robinson-type continuous wave spectrometer. The sample chosen was s-triazine at liquid helium temperature, where the relaxation times are of the order of ten hours. Line pairings between the two Nitrogen-14 NQR sites were confirmed. Emission signals from ν- transitions were observed after successively saturating first the ν- line and then the ν+ line. The results are understood in terms of a simple model of spin population dynamics.
Kaldamäe, L; Körner, J G
2016-01-01
We provide analytical results for the $O(\\alpha_s)$ corrections to the double-spin density matrix elements in the reaction $e^+e^-\\to t\\bar t$. These concern the elements $ll$, $lt$, $ln$, $tt$, $tn$, and $nn$ of the double-spin density matrix elements where $l,t,n$ stand for longitudinal, transverse and normal orientations with respect to the beam frame spanned by the electron and the top quark momentum.
Measurement of the Double Spin Asymmetry in {pi}{sup -} Electroproduction with CLAS
Mehmet Bektasoglu
2002-12-01
The double spin asymmetry {sigma}{sub et}/{sigma}{sub 0} has been measured in {pi}{sup -} electro-production using a polarized electron beam and a polarized ND{sub 3} target, and using a CEBAF Large Acceptance Spectrometer (CLAS). The electron beam was polarized using a GaAs-cathode and the target was polarized via Dynamic Nuclear Polarization. The beam polarization was around 70% and the target polarization was between 10 and 20 percent. The data at 2.5 GeV beam energy and two different magnetic field settings (2250 A and -1500 A) were collected in Hall B at Jefferson Lab in the Fall of 1998. The e{pi}{sup -} channel was selected using the missing mass technique and applying a cut around the proton peak (0.78 GeV{sup 2} < MM{sup 2} < 0.95 GeV{sup 2}). The asymmetry (A{sub 1} + {eta}A{sub 2})/(1+{epsilon}R), where both A{sub 1} and A{sub 2} depend on {theta}*, has been extracted as a function of the invariant mass W for two Q{sup 2} (four-momentum-transfer-squared) bins (0.08 GeV{sup 2} < Q{sup 2} < 0.4 GeV{sup 2} and 0.4 GeV{sup 2} < Q{sup 2} < 1.2 GeV{sup 2}). The results were integrated over the angular acceptance of the channel as well as for a narrower range in {theta}* (0.17 < cos{theta}* < 1). The data have been compared to two phenomenological models, MAID and AO.
Measurement of the Double Spin Asymmetry in π^{-} Electroproduction with CLAS
Bektasoglu, Mehmet [Old Dominion Univ., Norfolk, VA (United States)
2002-12-01
The double spin asymmetry σ_{et}/ σ_{0} has been measured in π^{-} electro-production using a polarized electron beam and a polarized ND_{3} target, and using a CEBAF Large Acceptance Spectrometer (CLAS). The electron beam was polarized using a GaAs-cathode and the target was polarized via Dynamic Nuclear Polarization. The beam polarization was around 70% and the target polarization was between 10 and 20 percent. The data at 2.5 GeV beam energy and two different magnetic field settings (2250 A and -1500 A) were collected in Hall B at Jefferson Lab in the Fall of 1998. The eπ^{-} channel was selected using the missing mass technique and applying a cut around the proton peak (0.78 GeV^{2} < MM^{2} < 0.95 GeV^{2}). The asymmetry (A_{1} + ηA_{2})/(1+ϵR), where both A_{1} and A_{2} depend on θ*, has been extracted as a function of the invariant mass W for two Q^{2} (four-momentum-transfer-squared) bins (0.08 GeV^{2} < Q^{2} < 0.4 GeV^{2} and 0.4 GeV^{2} < Q^{2} < 1.2 GeV^{2}). The results were integrated over the angular acceptance of the channel as well as for a narrower range in θ* (0.17 < cosθ* < 1). The data have been compared to two phenomenological models, MAID and AO.
Surrow, Bernd; Soffer, Jacques; Bourrely, Claude
2016-09-01
The collision of high-energy polarized proton beams at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory provides a powerful way to gain a deeper insight into the spin structure and dynamics of the proton such as the study of the helicity distributions of gluons and quarks / antiquarks based on well established high-energy QCD and W boson processes, respectively. Several studies have been suggested in the past to gain a better understanding of the transversity distribution, in particular the measurement of the transverse double-spin asymmetries (ATT) for Drell-Yan production. Prior NLO calculations for Drell-Yan γ / Z exchange have been used to evaluate ATT for Z production using maximal bounds for the transversity distribution. The transverse double-spin asymmetry for W production is expected to be zero. The status of ATT NLO calculations specifically for γ / Z exchange will be discussed using maximal bounds of transversity distributions within the framework by Bourrely and Soffer.
Spin Tilts in the Double Pulsar Reveal Off-Center Supernova Kick and Tumble
Farr, Will M; Lyutikov, Maxim; Kalogera, Vassiliki
2011-01-01
The system PSR J0737-3039 is the only binary pulsar known to consist of two radio pulsars (PSR J0737-3039 A and PSR J0737-3039 B). This configuration allows measurements of spin orientation for both pulsars: pulsar A's spin is tilted from the orbital angular momentum by no more than 14 degrees; pulsar B's by 130 degrees. This spin-spin misalignment requires that the origin of most of B's spin is its supernova; the spin could originate from a substantial off-center kick, causing pulsar B to tumble to its misaligned state. Under the typical assumption of an instantaneous kick and using current constraints on the kick magnitude, it must have been displaced from the center of mass of the exploding star by at least 1 km and probably 5--10 km. Regardless of the details of the process that produced pulsar B's current spin, the orientation of the spins in the J0737-3039 system provides a direct, unique constraint on angular momentum production in supernovae.
Syryamina, V. N.; Dzuba, S. A.
2012-10-01
Electron paramagnetic resonance (EPR) spectroscopy in the form of pulsed electron-electron double resonance (ELDOR) was applied to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers containing lipids that were spin-labeled at different carbon positions along the lipid acyl chain. Pulsed ELDOR detects motionally induced spin flips of nitrogen nuclei in the nitroxide spin labels, which manifests itself as magnetization transfer (MT) in the nitroxide EPR spectrum. The MT effect was observed over a wide temperature range (100-225 K) on a microsecond time scale. In line with a previous study on molecular glasses [N. P. Isaev and S. A. Dzuba, J. Chem. Phys. 135, 094508 (2011), 10.1063/1.3633241], the motions that induce MT effect were suggested to have the same nature as those in dielectric secondary (β) Johari-Goldstein fast relaxation. The results were compared with literature dielectric relaxation data for POPC bilayers, revealing some common features. Molecular motions resulting in MT are faster for deeper spin labels in the membrane interior. The addition of cholesterol to the bilayer suppresses the lipid motions near the steroid nucleus and accelerates the lipid motions beyond the steroid nucleus, in the bilayer interior. This finding was attributed to the lipid acyl chains being more ordered near the steroid nucleus and less ordered in the bilayer interior. The motions are absent in dry lipids, indicating that the motions are determined by intermolecular interactions in the bilayer.
Beam-target double spin asymmetry in quasi-elastic electron scattering off the deuteron with CLAS
Mayer, Michael
2016-01-01
Quasi-elastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground state (due to the D-state admixture) and on the limits of the Impulse Approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. We measured the beam-target double spin asymmetry for quasi-elastic electron scattering off the deuteron at several beam energies using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. ...
Airapetian, A; Amarian, M; Arrington, J; Aschenauer, E C; Avakian, H; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Bains, B; Baumgarten, C; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Böttcher, Helmut B; Borisov, A; Bouwhuis, M; Brack, J; Brauksiepe, S; Braun, B; Brückner, W; Brüll, A; Budz, P; Bulten, H J; Capitani, G P; Carter, P; Chumney, P; Cisbani, E; Court, G R; Dalpiaz, P F; De Leo, R; De Nardo, L; De Sanctis, E; De Schepper, D; Devitsin, E G; De Witt-Huberts, P K A; Di Nezza, P; Dzhordzhadze, V; Düren, M; Dvoredsky, A P; Elbakian, G M; Ely, J; Fantoni, A; Feshchenko, A; Felawka, L; Ferro-Luzzi, M; Fiedler, K; Filippone, B W; Fischer, H; Fox, B; Franz, J; Frullani, S; Gärber, Y; Garibaldi, F; Garutti, E; Gavrilov, G E; Karibian, V; Golendukhin, A; Graw, G; Grebenyuk, O; Green, P W; Greeniaus, L G; Gute, A; Haeberli, W; Hartig, M; Hasch, D; Heesbeen, D; Heinsius, F H; Henoch, M; Hertenberger, R; Hesselink, W H A; Hofman, G J; Holler, Y; Holt, R J; Hommez, B; Iarygin, G; Iodice, M; Izotov, A A; Jackson, H E; Jgoun, A; Jung, P; Kaiser, R; Kanesaka, J; Kinney, E R; Kiselev, A; Kitching, P; Kobayashi, H; Koch, N; Königsmann, K C; Kolster, H; Korotkov, V A; Kotik, E; Kozlov, V; Krivokhizhin, V G; Kyle, G S; Lagamba, L; Laziev, A; Lenisa, P; Lindemann, T; Lorenzon, W; Makins, N C R; Martin, J W; Marukyan, H O; Masoli, F; McAndrew, M; McIlhany, K; McKeown, R D; Meissner, F; Menden, F; Metz, A; Meyners, N; Miklukho, O; Miller, C A; Milner, R; Muccifora, V; Mussa, R; Nagaitsev, A P; Nappi, E; Naryshkin, Yu; Nass, A; Negodaeva, K; Nowak, Wolf-Dieter; Oganesyan, K A; O'Neill, T G; Openshaw, R; Ouyang, J; Owen, B R; Pate, S F; Potashov, S Yu; Potterveld, D H; Rakness, G; Rappoport, V; Redwine, R P; Reggiani, D; Reolon, A R; Ristinen, R; Rith, K; Robinson, D; Rostomyan, A; Ruh, M; Ryckbosch, D; Sakemi, Y; Sato, F; Savin, I A; Scarlett, C; Schäfer, A; Schill, C; Schmidt, F; Schnell, G; Schüler, K P; Schwind, A; Seibert, J; Seitz, B; Shibata, T A; Shin, T; Shutov, V B; Simani, C; Simon, A; Sinram, K; Steffens, E; Steijger, J J M; Stewart, J; Stösslein, U; Suetsugu, K; Sutter, M F; Szymanowski, L; Taroian, S P; Terkulov, A R; Teryaev, O V; Tessarin, S; Thomas, E; Tipton, B; Tytgat, M; Urciuoli, G M; Van den Brand, J F J; van der Steenhoven, G; Van de Vyver, R; Van Hunen, J J; Vetterli, Martin C; Vikhrov, V V; Vincter, M G; Visser, J; Volk, E; Weiskopf, C; Wendland, J; Wilbert, J; Wise, T; Yen, S; Yoneyama, S; Zohrabyan, H G
2001-01-01
Evidence for a positive longitudinal double-spin asymmetry = 0.24 +-0.11 (stat) +-0.02 (syst) in the cross section for exclusive diffractive rho^0(770) vector meson production in polarised lepton-proton scattering was observed by the HERMES experiment. The longitudinally polarised 27.56 GeV HERA positron beam was scattered off a longitudinally polarised pure hydrogen gas target. The average invariant mass of the photon-proton system has a value of = 4.9 GeV, while the average negative squared four-momentum of the virtual photon is = 1.7 GeV^2. The ratio of the present result to the corresponding spin asymmetry in inclusive deep-inelastic scattering is in agreement with an early theoretical prediction based on the generalised vector meson dominance model.
Pisano, S.; Biselli, A.; Niccolai, S.; Seder, E.; Guidal, M.; Mirazita, M.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bosted, P.; Briscoe, B.; Brock, J.; Brooks, W. K.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crabb, D. G.; Crede, V.; D' Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garcon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, X.; Jo, H. S.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacCormick, M.; MacGregor, Ian J. D.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Meyer, C. A.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Munoz Camacho, C.; Nadel-Turonski, P.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Phelps, W.; Phillips, J. J.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatie, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Skorodumina, I.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Turisini, M.; Ungaro, M.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.
2015-03-19
Single-beam, single-target, and double-spin asymmetries for hard exclusive photon production on the proton e→p→e'p'γ are presented. The data were taken at Jefferson Lab using the CLAS detector and a longitudinally polarized ^{14}NH_{3} target. The three asymmetries were measured in 165 4-dimensional kinematic bins, covering the widest kinematic range ever explored simultaneously for beam and target-polarization observables in the valence quark region. The kinematic dependences of the obtained asymmetries are discussed and compared to the predictions of models of Generalized Parton Distributions. As a result, the measurement of three DVCS spin observables at the same kinematic points allows a quasi-model-independent extraction of the imaginary parts of the H and H~ Compton Form Factors, which give insight into the electric and axial charge distributions of valence quarks in the proton.
Noncollinear Spin-Orbit Magnetic Fields in a Carbon Nanotube Double Quantum Dot
Hels, M. C.; Braunecker, B.; Grove-Rasmussen, K.; Nygârd, J.
2016-12-01
We demonstrate experimentally that noncollinear intrinsic spin-orbit magnetic fields can be realized in a curved carbon nanotube two-segment device. Each segment, analyzed in the quantum dot regime, shows near fourfold degenerate shell structure allowing for identification of the spin-orbit coupling and the angle between the two segments. Furthermore, we determine the four unique spin directions of the quantum states for specific shells and magnetic fields. This class of quantum dot systems is particularly interesting when combined with induced superconducting correlations as it may facilitate unconventional superconductivity and detection of Cooper pair entanglement. Our device comprises the necessary elements.
Wang, Lihua; Zhao, Jianguo; Ding, Bingjun; Guo, Yong
2016-09-01
In this study, we investigated the spin-resolved transport aspects of step-like zigzag graphene ribbons (ZGNRs) with single or double edge-saturated hydrogen using a method that combined the density functional theory with the nonequilibrium Green's function method under the local spin density approximation. We found that, when the ZGNR-based heterojunctions were in a parallel or antiparallel layout, negative differential resistance, the maximum bipolar spin-filtering, and spin-rectifying effects occurred synchronously except for the case of spin-down electrons in the parallel magnetic layouts. Interestingly, these spin-resolved transport properties were almost unaffected by altering the widths of the two component ribbons. Therefore, step-like ZGNR heterojunctions are promising for use in designing high-performance multifunctional spintronic devices.
Wang, Lihua; Zhao, Jianguo; Ding, Bingjun; Guo, Yong
2017-01-01
In this study, we investigated the spin-resolved transport aspects of step-like zigzag graphene ribbons (ZGNRs) with single or double edge-saturated hydrogen using a method that combined the density functional theory with the nonequilibrium Green's function method under the local spin density approximation. We found that, when the ZGNR-based heterojunctions were in a parallel or antiparallel layout, negative differential resistance, the maximum bipolar spin-filtering, and spin-rectifying effects occurred synchronously except for the case of spin-down electrons in the parallel magnetic layouts. Interestingly, these spin-resolved transport properties were almost unaffected by altering the widths of the two component ribbons. Therefore, step-like ZGNR heterojunctions are promising for use in designing high-performance multifunctional spintronic devices.
Giant Spin-Orbit Splitting in Inverted InAs /GaSb Double Quantum Wells
Nichele, Fabrizio; Kjaergaard, Morten; Suominen, Henri J.; Skolasinski, Rafal; Wimmer, Michael; Nguyen, Binh-Minh; Kiselev, Andrey A.; Yi, Wei; Sokolich, Marko; Manfra, Michael J.; Qu, Fanming; Beukman, Arjan J. A.; Kouwenhoven, Leo P.; Marcus, Charles M.
2017-01-01
Transport measurements in inverted InAs /GaSb quantum wells reveal a giant spin-orbit splitting of the energy bands close to the hybridization gap. The splitting results from the interplay of electron-hole mixing and spin-orbit coupling, and can exceed the hybridization gap. We experimentally investigate the band splitting as a function of top gate voltage for both electronlike and holelike states. Unlike conventional, noninverted two-dimensional electron gases, the Fermi energy in InAs /GaSb can cross a single spin-resolved band, resulting in full spin-orbit polarization. In the fully polarized regime we observe exotic transport phenomena such as quantum Hall plateaus evolving in e2/h steps and a nontrivial Berry phase.
Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi
2016-07-01
Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.
Sunahori, Fumie X.; Nagarajan, Ramya; Clouthier, Dennis J.
2015-12-01
The cold boron carbide free radical (BC X 4Σ-) has been produced in a pulsed discharge free jet expansion using a precursor mixture of trimethylborane in high pressure argon. High resolution laser induced fluorescence spectra have been obtained for the B 4Σ--X 4Σ- and E 4Π-X 4Σ- band systems of both 11BC and 10BC. An optical-optical double resonance (OODR) scheme was implemented to study the finer details of both band systems. This involved pumping a single rotational level of the B state with one laser and then recording the various allowed transitions from the intermediate B state to the final E state with a second laser by monitoring the subsequent E-X ultraviolet fluorescence. In this fashion, we were able to prove unambiguously that, contrary to previous studies, the spin-spin constant λ is negative in the ground state and positive in the B 4Σ- excited state. It has been shown that λ″ < 0 is in fact expected based on a semiempirical second order perturbation theory calculation of the magnitude of the spin-spin constant. The OODR spectra have also been used to validate our assignments of the complex and badly overlapped E 4Π-X 4Σ- 0-0 and 1-0 bands of 11BC. The E-X 0-0 band of 10BC was found to be severely perturbed. The ground state main electron configuration is …3σ24σ25σ11π22π0 and the derived bond lengths show that there is a 0.03 Å contraction in the B state, due to the promotion of an electron from the 4σ antibonding orbital to the 5σ bonding orbital. In contrast, the bond length elongates by 0.15 Å in the E state, a result of promoting an electron from the 5σ bonding orbital to the 2π antibonding orbitals.
Sunahori, Fumie X. [Department of Chemistry and Physics, Franklin College, Franklin, Indiana 46131 (United States); Nagarajan, Ramya; Clouthier, Dennis J., E-mail: dclaser@uky.edu [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States)
2015-12-14
The cold boron carbide free radical (BC X {sup 4}Σ{sup −}) has been produced in a pulsed discharge free jet expansion using a precursor mixture of trimethylborane in high pressure argon. High resolution laser induced fluorescence spectra have been obtained for the B {sup 4}Σ{sup −}–X {sup 4}Σ{sup −} and E {sup 4}Π–X {sup 4}Σ{sup −} band systems of both {sup 11}BC and {sup 10}BC. An optical-optical double resonance (OODR) scheme was implemented to study the finer details of both band systems. This involved pumping a single rotational level of the B state with one laser and then recording the various allowed transitions from the intermediate B state to the final E state with a second laser by monitoring the subsequent E–X ultraviolet fluorescence. In this fashion, we were able to prove unambiguously that, contrary to previous studies, the spin-spin constant λ is negative in the ground state and positive in the B {sup 4}Σ{sup −} excited state. It has been shown that λ″ < 0 is in fact expected based on a semiempirical second order perturbation theory calculation of the magnitude of the spin-spin constant. The OODR spectra have also been used to validate our assignments of the complex and badly overlapped E {sup 4}Π–X {sup 4}Σ{sup −} 0-0 and 1-0 bands of {sup 11}BC. The E–X 0-0 band of {sup 10}BC was found to be severely perturbed. The ground state main electron configuration is …3σ{sup 2}4σ{sup 2}5σ{sup 1}1π{sup 2}2π{sup 0} and the derived bond lengths show that there is a 0.03 Å contraction in the B state, due to the promotion of an electron from the 4σ antibonding orbital to the 5σ bonding orbital. In contrast, the bond length elongates by 0.15 Å in the E state, a result of promoting an electron from the 5σ bonding orbital to the 2π antibonding orbitals.
Sunahori, Fumie X; Nagarajan, Ramya; Clouthier, Dennis J
2015-12-14
The cold boron carbide free radical (BC X (4)Σ(-)) has been produced in a pulsed discharge free jet expansion using a precursor mixture of trimethylborane in high pressure argon. High resolution laser induced fluorescence spectra have been obtained for the B (4)Σ(-)-X (4)Σ(-) and E (4)Π-X (4)Σ(-) band systems of both (11)BC and (10)BC. An optical-optical double resonance (OODR) scheme was implemented to study the finer details of both band systems. This involved pumping a single rotational level of the B state with one laser and then recording the various allowed transitions from the intermediate B state to the final E state with a second laser by monitoring the subsequent E-X ultraviolet fluorescence. In this fashion, we were able to prove unambiguously that, contrary to previous studies, the spin-spin constant λ is negative in the ground state and positive in the B (4)Σ(-) excited state. It has been shown that λ″ < 0 is in fact expected based on a semiempirical second order perturbation theory calculation of the magnitude of the spin-spin constant. The OODR spectra have also been used to validate our assignments of the complex and badly overlapped E (4)Π-X (4)Σ(-) 0-0 and 1-0 bands of (11)BC. The E-X 0-0 band of (10)BC was found to be severely perturbed. The ground state main electron configuration is …3σ(2)4σ(2)5σ(1)1π(2)2π(0) and the derived bond lengths show that there is a 0.03 Å contraction in the B state, due to the promotion of an electron from the 4σ antibonding orbital to the 5σ bonding orbital. In contrast, the bond length elongates by 0.15 Å in the E state, a result of promoting an electron from the 5σ bonding orbital to the 2π antibonding orbitals.
Gorcester, Jeff; Rananavare, Shankar B.; Freed, Jack H.
1989-05-01
Electron spin-echo (ESE) and two-dimensional electron-electron double resonance (2D ELDOR) experiments have been performed as a function of director orientation and temperature in the smectic A phase of the liquid crystal S2 for the spin-probe PD-tempone(2×10-3 M). Over the entire temperature range studied (288-323 K) we observe significant 2D ELDOR cross peaks only for ΔMI =±1 indicative of 14N spin-relaxation and negligible Heisenberg exchange. From the angular dependent 14N spin-relaxation rates we obtain the dipolar spectral densities at the hyperfine (hf) frequency, whereas from a combination of ESE and 2D ELDOR we obtain the dipolar and Zeeman-dipolar spectral densities at zero frequency. The angular dependent spectral densities were successfully decomposed into their basic components in accordance with theory. The angular dependent spectral densities at the hf frequency are not predicted by a model of anisotropic rotational diffusion in a nematic orienting potential, but are consistent with predictions of a model due to Moro and Nordio of solute rototranslational diffusion in a McMillan-type potential. The angular dependence also indicates that order director fluctuations in the smectic phase are suppressed at frequencies on the order of 10 MHz. An additional contribution to solute reorientation due to cooperative hydrocarbon chain fluctuations is suggested to account for the behavior of the observed spectral densities at zero frequency. An evaluation of the relevance of several other dynamical models to this experimental work is also presented.
Marumoto, K.; Kato, M.; Kondo, H.; Kuroda, S.; Greenham, N. C.; Friend, R. H.; Shimoi, Y.; Abe, S.
2009-06-01
Electron spin resonance (ESR) and electron-nuclear double resonance (ENDOR) of photogenerated polarons in poly(9,9-dioctylfluorene) (PFO) and its composite with fullerene (C60) using variable photoexcitation energy up to 4.1 eV are reported. For PFO, a light-induced ESR (LESR) signal (g=2.003) is observed below 60 K, and its transient response and excitation spectrum indicate that the observed spins are photogenerated polarons on PFO. For the PFO-C60 composite, two LESR signals of photogenerated positive polarons on PFO (g1=2.003) and radical anions on C60 (g2=1.999) , respectively, are observed below 120 K, which are caused by photoinduced electron transfer from PFO to C60 . A remarkable enhancement of the LESR signals in the excitation spectrum at ˜2.8eV is observed compared with the case of pure PFO. The bimolecular-recombination kinetics of photogenerated charge carriers in the composite are confirmed by the dependence of the LESR on excitation-light intensity and by the decay dynamics. Light-induced ENDOR (LENDOR) signals are clearly observed for excitation around 2.8 eV owing to the highly efficient photoinduced electron transfer in the composite. Broad LENDOR shifts directly reflect the spin-density distribution of the polarons in PFO. We have determined its maximum shift using LENDOR-induced ESR, and have evaluated the maximum spin density on the carbon site coupled to the proton as 0.032. This value is consistent with the theoretical result obtained by Pariser-Parr-Pople (PPP) model, where the spatial extent of the polarons is calculated as ˜3 monomer units of PFO. The calculated LESR spectra of PFO based on the PPP model are consistent with the experimental spectra, which confirm the above spatial extension of the polaron in PFO.
Abelof, Gabriel; Liu, Xiaohui; Petriello, Frank
2016-01-01
We compute the ${\\cal O}(\\alpha^2\\alpha_s^2)$ perturbative corrections to inclusive jet production in electron-nucleon collisions. This process is of particular interest to the physics program of a future Electron Ion Collider (EIC). We include all relevant partonic processes, including deep-inelastic scattering contributions, photon-initiated corrections, and parton-parton scattering terms that first appear at this order. Upon integration over the final-state hadronic phase space we validate our results for the deep-inelastic corrections against the known next-to-next-to-leading order (NNLO) structure functions. Our calculation uses the $N$-jettiness subtraction scheme for performing higher-order computations, and allows for a completely differential description of the deep-inelastic scattering process. We describe the application of this method to inclusive jet production in detail, and present phenomenological results for the proposed EIC. The NNLO corrections have a non-trivial dependence on the jet kinem...
Abelev, B I; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S L; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Callner, J; Catu, O; Cebra, D; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; De Moura, M M; Dedovich, T G; De Phillips, M; Derevshchikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta-Majumdar, M R; Edwards, W R; Efimov, L G; Elhalhuli, E; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; García-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gos, H; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Sen-Gupta, A; Gupta, N; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Horner, M J; Huang, H Z; Hughes, E W; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kurnadi, P; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; La Pointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C H; Lehocka, S; Le Vine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Olson, D; Pachr, M; Pal, S K; Panebratsev, Yu A; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ray, R L; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimansky, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sørensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Tram, V N; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van der Kolk, N; Van Leeuwen, M; Van der Molen, A M; Varma, R; Vasilevski, I M; Vasilev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I K; Yue, Q; Yurevich, V I; Zawisza, M; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X
2007-01-01
We report a new STAR measurement of the longitudinal double-spin asymmetry A_LL for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of $\\sqrt{s}$ = 200 GeV. The data, which cover jet transverse momenta 5 < p_T < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit of polarized deep-inelastic scattering measurements.
Aldaihan, S; Long, J C; Snow, W M
2016-01-01
Various theories beyond the Standard Model predict new particles with masses in the sub-eV range with very weak couplings to ordinary matter which can possess spin-dependent couplings to electrons and nucleons. Present laboratory constraints on exotic spin-dependent interactions with pseudoscalar and axial couplings for exchange boson masses between meV and eV are very poor compared to constraints on spin-independent interactions in the same mass range arising from spin-0 and spin-1 boson exchange. It is therefore interesting to analyze in a general way how one can use the strong experimental bounds on spin-independent interactions to also constrain spin-dependent interactions by considering higher-order exchange processes. The exchange of a pair of bosons between two fermions with spin-dependent couplings will possess contributions which flip spins twice and thereby generate a polarization-independent interaction energy which can add coherently between two unpolarized objects. In this paper we derive the dom...
Study of Double Spin Asymmetries in Inclusive ep Scattering at Jefferson Lab
Kang, Hoyoung [Seoul National Univ. (Korea, Republic of)
2014-08-01
The spin structure of the proton has been investigated in the high Bjorken x and low momentum transfer Q^{2} region. We used Jefferson Lab's polarized electron beam, a polarized target, and a spectrometer to get both the parallel and perpendicular spin asymmetries Apar and Aperp. These asymmetries produced the physics asymmetries A_1 and A_2 and spin structure functions g_1 and g_2. We found Q^{2} dependences of the asymmetries at resonance region and higher-twist effects. Our result increases the available data on the proton spin structure, especially at resonance region with low Q^{2}. Moreover, A_2 and g_2 data show clear Q^{2} evolution, comparing with RSS and SANE-BETA. Negative resonance in A_2 data needs to be examined by theory. It can be an indication of very negative transverse-longitudinal interference contribution at W ~ 1.3 GeV. Higher twist effect appears at the low Q^{2} of 1.9 GeV^{2}, although it is less significant than lower Q^{2} data of RSS. Twist03 matrix element d_2 was calculated using our asymmetry fits evaluation at Q^{2} – 1.9 GeV^{2}. D-bar_2 = -0.0087±0.0014 was obtained by integrating 0.47 ≤ x ≤ 0.87.
Wang, Jiyin; Huang, Shaoyun, E-mail: hqxu@pku.edu.cn, E-mail: syhuang@pku.edu.cn; Lei, Zijin [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Pan, Dong; Zhao, Jianhua [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Xu, H. Q., E-mail: hqxu@pku.edu.cn, E-mail: syhuang@pku.edu.cn [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Division of Solid State Physics, Lund University, Box 118, S-22100 Lund (Sweden)
2016-08-01
We demonstrate direct measurements of the spin-orbit interaction and Landé g factors in a semiconductor nanowire double quantum dot. The device is made from a single-crystal pure-phase InAs nanowire on top of an array of finger gates on a Si/SiO{sub 2} substrate and the measurements are performed in the Pauli spin-blockade regime. It is found that the double quantum dot exhibits a large singlet-triplet energy splitting of Δ{sub ST} ∼ 2.3 meV, a strong spin-orbit interaction of Δ{sub SO} ∼ 140 μeV, and a large and strongly level-dependent Landé g factor of ∼12.5. These results imply that single-crystal pure-phase InAs nanowires are desired semiconductor nanostructures for applications in quantum information technologies.
A fast spinning magnetic white dwarf in the double-degenerate, super-Chandrasekhar system NLTT 12758
Kawka, Adela; Vennes, Stephane; Ferrario, Lilia; Paunzen, Ernst; Wickramasinghe, Dayal T
2016-01-01
We present an analysis of the close double degenerate NLTT 12758, which is comprised of a magnetic white dwarf with a field of about 3.1 MG and an apparently non-magnetic white dwarf. We measured an orbital period of 1.154 days and found that the magnetic white dwarf is spinning around its axis with a period of 23 minutes. An analysis of the atmospheric parameters has revealed that the cooling ages of the two white dwarfs are comparable, suggesting that they formed within a short period of time from each other. Our modelling indicates that the non-magnetic white dwarf is more massive (M=0.83 M_sun) than its magnetic companion (M=0.69 M_sun) and that the total mass of the system is higher than the Chandrasekhar mass. Although the stars will not come into contact over a Hubble time, when they do come into contact, dynamically unstable mass transfer will take place leading to either an accretion induced collapse into a rapidly spinning neutron star or a Type Ia supernova.
Pedersen, Jesper Goor; Zhang, Lei; Gilbert, M.J.
2010-01-01
We explore exchange coupling of a pair of spins in a double dot and in an optical lattice, using the frequency of exchanges in a bosonic path integral, evaluated using Monte Carlo simulation. The algorithm gives insights into the role of correlation through visualization of two-particle probability...
Abraham, A.; Prins, R.; Bokhoven, J.A. van; Eck, E.R.H. van; Kentgens, A.P.M.
2006-01-01
A combination of Al-27 magic-angle spinning (MAS)/multiple quantum (MQ)-MAS, C-13-H-1 CPMAS, and C-13-{Al-27} transfer of population in double-resonance (TRAPDOR) nuclear magnetic resonance (NMR) were used for the structural elucidation of the aluminum alkoxides aluminum ethoxide, aluminum
Magnetism and spin-orbit coupling in Ir-based double perovskites La2-xSrxCoIrO6
Kolchinskaya, A.; Komissinskiy, P.; Yazdi, M. Baghaie; Vafaee, M.; Mikhailova, D.; Narayanan, N.; Ehrenberg, H.; Wilhelm, F.; Rogalev, A.; Alff, L.
2012-06-01
We have studied Ir spin and orbital magnetic moments in the double perovskites La2-xSrxCoIrO6 by x-ray magnetic circular dichroism. In La2CoIrO6, Ir4+ couples antiferromagnetically to the weak ferromagnetic moment of the canted Co2+ sublattice and shows an unusually large negative total magnetic moment (-0.38 μB/f.u.) combined with strong spin-orbit interaction. In contrast, in Sr2CoIrO6, Ir5+ has a paramagnetic moment with almost no orbital contribution. A simple kinetic-energy-driven mechanism including spin-orbit coupling explains why Ir is susceptible to the induction of substantial magnetic moments in the double perovskite structure.
Double-pinned magnetic tunnel junction sensors with spin-valve-like sensing layers
Yuan, Z. H.; Huang, L.; Feng, J. F., E-mail: jiafengfeng@iphy.ac.cn; Wen, Z. C.; Li, D. L.; Han, X. F. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190 (China); Nakano, Takafumi; Naganuma, Hiroshi, E-mail: naganuma@mlab.apph.tohoku.ac.jp [Department of Applied Physics, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Yu, T. [Department of Applied Physics, Tohoku University, Sendai, Miyagi 980-8579 (Japan); College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)
2015-08-07
MgO magnetic tunnel junction (MTJ) sensors with spin-valve-like sensing layers of Ir{sub 22}Mn{sub 78} (6)/Ni{sub 80}Fe{sub 20} (t{sub NiFe} = 20–70)/Ru (0.9)/Co{sub 40}Fe{sub 40}B{sub 20} (3) (unit: nm) have been fabricated. A linear field dependence of magnetoresistance for these MTJ sensors was obtained by carrying out a two-step field annealing process. The sensitivity and linear field range can be tuned by varying the thickness of NiFe layer and annealing temperature, and a high sensitivity of 37%/mT has been achieved in the MTJ sensors with 70 nm NiFe at the optimum annealing temperature of 230 °C. Combining the spin-valve-like sensing structure and a soft magnetic NiFe layer, MTJ sensors with relatively wide field sensing range have been achieved and could be promising for showing high sensitivity magnetic field sensing applications.
Universal Set of Quantum Gates for Double-Dot Exchange-Only Spin Qubits Under Realistic Conditions
de Michielis, Marco; Ferraro, Elena; Rotta, Davide; Mazzeo, Giovanni; Tagliaferri, Marco; Crippa, Alessandro; Fanciulli, Marco; Prati, Enrico
2014-03-01
We report on a universal set of quantum logic gates for hybrid qubits. In a hybrid qubit the information is encoded in the spin state of three electrons elettrostatically confined in a silicon double quantum dot (QD), in (2,1) filling. All electrical operations, reduced fabrication complexity and high scalability are the strengths of this technology. Schrieffer-Wolff effective models for both one and two coupled hybrid qubit are developed including the inescapable exchange interaction between electrons in the same QD. Optimal sequences of exchange interactions creating a complete set of quantum operations, namely Hadamard, π/8 and CNOT gates, are obtained by using a search algorithm, based on simplex and genetic ones. Silicon devices have been designed by SDFT-based program and efforts in its fabrication have produced in-plane inter-QDs distances down to 100 nm by means of electron beam lithography. Double QDs devices operating in few electron filling regime have been preliminary characterized at 4.2 K. Second affiliation: DSM, Università degli Studi di Milano-Bicocca, Via Cozzi 53, I-20125 Milano, Italy.
Anomalous spin state of Fe in double perovskite oxide Sr 2FeWO 6
Kawanaka, H.; Hase, I.; Toyama, S.; Nishihara, Y.
2000-07-01
In the series of Sr 2FeTO 6 (T=4d or 5d), the valence of Fe is 3+ in most of the compounds. However, recently we have found that the Sr 2FeWO 6 has Fe 2+ state. Sr 2FeWO 6 is an insulator with an antiferromagnetic transition temperature of 37 K. From the Mössbauer experiment, below ∼20 K, a center shift of +1.2 mm/ s relative to metallic iron and a quadrupole splitting of 1.9 mm/ s are obtained. The quadrupole splitting has strong temperature dependence. The hyperfine field is ∼110 kOe which seems to be quite small. We concluded that the iron ground state of Sr 2FeWO 6 is Fe 2+ high-spin ( S=2) state.
Double longitudinal spin asymmetries in single hadron photoproduction at high p_T at COMPASS
Levillain, Maxime
This thesis presents a new study aiming at constraining the gluon contribution {\\Delta G} to the 1/2 nucleon spin. The collinear pQCD theoretical framework, on which it is based, deals with asymmetries calculated from cross-sections for single inclusive hadron in the regime of quasi-real photoproduction {Q^2 1 GeV/c). These calculations are done up to Next-to-Leading order with a foreseen inclusion of Next-to-Leading logarithm threshold gluon resummation, only performed for the unpolarised cross-sections yet. This makes the asymmetries sensitive to the gluon polarisation not only through Photon Gluon Fusion {\\gamma* g} but also through resolved {\\gamma*}g processes such as qg or gg. The measurement of the asymmetries is performed for all the COMPASS data available from 2002 to 2011 with a polarised muon beam at 160-200 GeV scattered off a longitudinally polarised target of deuteron ( {_6LiD} for 2002-2006) or proton ({NH_3} for 2007 and 2011). The asymmetries are presented in bins of pT and of pseudorapidity...
Aghasyan, M; The COMPASS collaboration; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anfimov, N V; Anosov, V; Antoshkin, A; Augsten, K; Augustyniak, W; Austregesilo, A; Azevedo, C D R; Badelek, B; Balestra, F; Ball, M; Barth, J; Beck, R; Bedfer, Y; Bernhard, J; Bicker, K; Bielert, E R; Birsa, R; Bodlak, M; Bordalo, P; Bradamante, F; Bressan, A; Buechele, M; Burtsev, V E; Chang, W -C; Chatterjee, C; Chiosso, M; Choi, I; Chumakov, A G; Chung, S -U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Dreisbach, Ch; Duennweber, W; Dusaev, R R; Dziewiecki, M; Efremov, A; Eversheim, P D; Faessler, M; Ferrero, A; Finger, M; Finger jr, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Fuchey, E; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Giarra, J; Giordano, F; Gnesi, I; Gorzellik, M; Grasso, A; Gridin, A; Grosse Perdekamp, M; Grube, B; Grussenmeyer, T; Guskov, A; Hahne, D; Hamar, G; von Harrach, D; Heinsius, F H; Heitz, R; Herrmann, F; Horikawa, N; d'Hose, N; Hsieh, C -Y; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jary, V; Joosten, R; Joerg, P; Kabuss, E; Kerbizi, A; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Koivuniemi, J H; Kolosov, V N; Kondo, K; Koenigsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O M; Kral, Z; Kraemer, M; Kremser, P; Krinner, F; Kroumchtein, Z V; Kulinich, Y; Kunne, F; Kurek, K; Kurjata, R P; Kuznetsov, I I; Kveton, A; Lednev, A A; Levchenko, E A; Levillain, M; Levorato, S; Lian, Y -S; Lichtenstadt, J; Longo, R; Lyubovitskij, V E; Maggiora, A; Magnon, A; Makins, N; Makke, N; Mallot, G K; Mamon, S A; Marianski, B; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G V; Meyer, M; Meyer, W; Mikhailov, Yu V; Mikhasenko, M; Mitrofavov, E; Mitrofanov, N; Miyachi, Y; Moretti, A; Nagaytsev, A; Nerling, F; Neyret, D; Novy, J; Nowak, W -D; Nukazuka, G; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panzieri, D; Parsamyan, B; Paul, S; Peng, J -C; Pereira, F; Pesek, M; Peskova, M; Peshekhonov, D V; Pierre, N; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Riedl, C; Rogacheva, N; Ryabchikov, D I; Rybnikov, A; Rychter, A; Salac, R; Samoylenko, V D; Sandacz, A; Santos, C; Sarkar, S; Savin, I A; Sawada, T; Sbrizzai, G; Schiavon, P; Schmidt, K; Schmieden, H; Schoenning, K; Seder, E; Selyunin, A; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Smolik, J; Srnka, A; Steffen, D; Stolarski, M; Subrt, O; Sulc, M; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Tasevsky, M; Tessaro, S; Tessarotto, F; Thiel, A; Tomsa, J; Tosello, F; Tskhay, V; Uhl, S; Vasilishin, B I; Vauth, A; Veloso, J; Vidon, A; Virius, M; Wallner, S; Weisrock, T; Wilfert, M; ter Wolbeek, J; Zaremba, K; Zavada, P; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M
2017-01-01
We present a precise measurement of the proton longitudinal double-spin asymmetry $A_1^{\\rm p}$ and the proton spin-dependent structure function $g_1^{\\rm p}$ at photon virtualities $0.006~({\\rm GeV}/c)^2< Q^2< 1~ ({\\rm GeV}/c)^2$ in the Bjorken $x$ range of $4 \\times 10^{-5} < x < 4 \\times 10^{-2}$. The results are based on data collected by the COMPASS Collaboration at CERN using muon beam energies of $160~{\\rm GeV}$ and $200~ {\\rm GeV}$. The statistical precision is more than tenfold better than that of the previous measurement in this region. In the whole range of $x$, the measured values of $A_1^{\\rm p}$ and $g_1^{\\rm p}$ are found to be positive. It is for the first time that spin effects are found at such low values of $x$.
Kim, A; Burkert, V; Joo, K; Kim, W; Adhikari, K P; Akbar, Z; Pereira, S Anefalos; Badui, R A; Battaglieri, M; Batourine, V; Bedlinskiy, I; Biselli, A S; Boiarinov, S; Briscoe, W J; Brooks, W K; Bültmann, S; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Chetry, T; Colaneri, L; Cole, P L; Compton, N; Contalbrigo, M; Cortes, O; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Djalali, C; Egiyan, H; Alaoui, A El; Fassi, L El; Eugenio, P; Fedotov, G; Fersch, R; Filippi, A; Fleming, J A; Fradi, A; Garçon, M; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Heddle, D; Hicks, K; Holtrop, M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Jenkins, D; Jiang, H; Jo, H S; Joosten, S; Keller, D; Khachatryan, G; Khandaker, M; Klein, A; Klein, F J; Kubarovsky, V; Kuhn, S E; Kuleshov, S V; Lanza, L; Lenisa, P; Lu, H Y; MacGregor, I J D; Markov, N; Mattione, P; McCracken, M E; McKinnon, B; Mokeev, V; Movsisyan, A; Munevar, E; Nadel-Turonski, P; Net, L A; Niccolai, S; Osipenko, M; Ostrovidov, A I; Paolone, M; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Prok, Y; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Salgado, C; Schumacher, R A; Seder, E; Sharabian, Y G; Skorodumina, Iu; Smith, G D; Sokhan, D; Sparveris, N; Stepanyan, S; Stoler, P; Strakovsky, I I; Strauch, S; Sytnik, V; Taiuti, M; Torayev, B; Ungaro, M; Voskanyan, H; Voutier, E; Watts, D P; Wei, X; Weinstein, L B; Zachariou, N; Zana, L; Zhang, J; Zonta, I
2015-01-01
The target and double spin asymmetries of the exclusive pseudoscalar channel $\\vec e\\vec p\\to ep\\pi^0$ were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of $Q^2$, $x_B$, $-t$ and $\\phi$. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs $\\tilde{H}_T$ and $E_T$, and complement previous measurements of unpolarized structure functions sensitive to the GPDs $H_T$ and $\\bar E_T$. These data provide necessary constraints for chiral-odd GPD parametrizations and will strongly influence existin...
One-step patterning of double tone high contrast and high refractive index inorganic spin-on resist
Zanchetta, E.; Della Giustina, G.; Brusatin, G.
2014-09-01
A direct one-step and low temperature micro-fabrication process, enabling to realize large area totally inorganic TiO2 micro-patterns from a spin-on resist, is presented. High refractive index structures (up to 2 at 632 nm) without the need for transfer processes have been obtained by mask assisted UV lithography, exploiting photocatalytic titania properties. A distinctive feature not shared by any of the known available resists and boosting the material versatility, is that the system behaves either as a positive or as negative tone resist, depending on the process parameters and on the development chemistry. In order to explain the resist double tone behavior, deep comprehension of the lithographic process parameters optimization and of the resist chemistry and structure evolution during the lithographic process, generally uncommon in literature, is reported. Another striking property of the presented resist is that the negative tone shows a high contrast up to 19, allowing to obtain structures resolution down to 2 μm wide. The presented process and material permit to directly fabricate different titania geometries of great importance for solar cells, photo-catalysis, and photonic crystals applications.
Abdullah Ahmed Ali Ahmed
2013-01-01
Full Text Available The coprecipitation method was used to prepare Zn–Al layered double hydroxide (Zn–Al–NO3-LDH at pH 7.5 and different Zn2+/Al3+ molar ratios of 2, 3, 4, 5, and 6. The elemental, structural, and textural properties of prepared samples were studied. The crystallinity of prepared LDH nanostructure decreases as Zn2+/Al3+ molar ratio increases. The electron spin resonance (ESR spectroscopy of different LDH samples showed new ESR spectra. These spectra were produced due to the presence of different phases with formed LDH such as ZnO phase and ZnAl2O4 spinel. At low Zn2+/Al3+ molar ratio, the ESR signals were produced from the presence of free nitrate anions in the LDH interlayer. Above Zn2+/Al3+ = 2, the ESR signals were attributed to the existence of ZnO phase and ZnAl2O4 spinel in the samples. Because the nuclear magnetic moment of 67Zn is lower than 27Al, the increasing in Zn2+/Al3+ molar ratio causes a reduction of the magnetic activity of ZnAl2O4 spinel. Thermal diffusivity versus in situ temperature showed nonlinear relation for different samples due to the changing in the water content of LDH as temperature increases. The dc conductivity of samples decreased as Zn2+/Al3+ molar ratio.
A. Kim
2017-05-01
Full Text Available The target and double spin asymmetries of the exclusive pseudoscalar channel e→p→→epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS. The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, −t and ϕ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and E¯T. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.
Bültmann, S; Bogdanov, A A; Chiang, I H; Chrien, R E; Chwastowski, J; De, K; Drees, A; Gill, R L; Guler, N; Guryn, W; Haguenauer, M; Kanavets, V P; Khodinov, A; Koroleva, L I; Landgraf, J; Li, J; Ljubicic, T A; Lynn, D; Morozov, B V; Nurushev, S B; Ozturk, N; Pawlik, B; Pearson, C; Pile, P; Rijssenbeek, M; Runtzo, M F; Rusek, A; Sakitt, M; Sandacz, A; Strikhanov, M N; Svirida, D N; Tepikian, S; Whitehead, L; Yeung, S; Yip, K
2006-01-01
We present the first measurements of the double spin asymmetries A_NN and A_SS at sqrt{s}=200 GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). The data were collected in the four momentum transfer t range 0.01<|t|<0.03 (GeV/c)^2. The measured asymmetries, which are consistent with zero, allow us to estimate upper limits on the double helicity-flip amplitudes phi_2 and phi_4 at small t as well as on the difference Delta(sigma_T) between the total cross sections for transversely polarized protons with antiparallel or parallel spin orientations.
Oyewumi, K J; Onate, C A; Oluwadare, O J; Yahya, W A
2014-01-01
In recent years, an extensive survey on various wave equations of relativistic quantum mechanics with different types of potential interactions has been a line of great interest. In this regime, special attention has been given to the Dirac equation because the spin-1/2 fermions represent the most frequent building blocks of the molecules and atoms. Motivated by the considerable interest in this equation and its relativistic symmetries (spin and pseudospin) in the presence of solvable potential model, we attempt to obtain the relativistic bound states solution of the Dirac equation with double ring-shaped Kratzer and oscillator potentials under the condition of spin and pseudospin symmetries. The solutions are reported for arbitrary quantum number in a compact form. the analytic bound state energy eigenvalues and the associated upper- and lower-spinor components of two Dirac particles have been found. Several typical numerical results of the relativistic eigenenergies have also been presented. We found that t...
Kravchenko, Polina
2010-10-15
The thesis focuses on two aspects of the HERMES data analysis: the measurement of the semi-inclusive double spin asymmetries and the extraction of quark helicity distributions and quark polarizations of the nucleon from deep-inelastic scattering, as a possible interpretation of the HERMES data. The asymmetries are presented using all possible and accessible information about the HERMES data, including the latest systematic studies provided during the last years by HERMES collaboration. (orig.)
Daqiq, Reza; Ghobadi, Nader
2016-07-15
We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.
Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Aoki, K; Aphecetche, L; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Basye, A T; Bathe, S; Batsouli, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Chand, P; Chang, B S; Chang, W C; Charvet, J-L; Chernichenko, S; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Citron, Z; Cole, B A; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Dairaku, S; Das, K; David, G; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Dubey, A K; Durum, A; Dutta, D; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Eyser, K O; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gunji, T; Gustafsson, H-A; Henni, A Hadj; Haggerty, J S; Hamagaki, H; Han, R; Hartouni, E P; Haruna, K; Haslum, E; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; He, X; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ikeda, Y; Imai, K; Imrek, J; Inaba, M; Isenhower, D; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Jacak, B V; Jia, J; Jin, J; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kang, J H; Kapustinsky, J; Kawall, D; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, B I; Kim, D H; Kim, D J; Kim, E; Kim, S H; Kinney, E; Kiriluk, K; Kiss, A; Kistenev, E; Klay, J; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Koster, J; Kozlov, A; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Layton, D; Lebedev, A; Lee, D M; Lee, K B; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Liebing, P; Liska, T; Litvinenko, A; Liu, H; Liu, M X; Li, X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masek, L; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mikes, P; Miki, K; Milov, A; Mishra, M; Mitchell, J T; Mohanty, A K; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Niita, T; Nouicer, R; Nyanin, A S; O'Brien, E; Oda, S X; Ogilvie, C A; Okada, H; Okada, K; Oka, M; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ruzicka, P; Rykov, V L; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakashita, K; Samsonov, V; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Semenov, V; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunecka, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Themann, H; Thomas, T L; Togawa, M; Toia, A; Tomásek, L; Tomita, Y; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Veicht, A; Velkovska, J; Vertesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Walker, D; Wang, X R; Watanabe, Y; Wei, F; Wessels, J; White, S N; Williamson, S; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zolin, L
2009-07-01
The double helicity asymmetry in neutral pion production for pT=1 to 12 GeV/c was measured with the PHENIX experiment to access the gluon-spin contribution, DeltaG, to the proton spin. Measured asymmetries are consistent with zero, and at a theory scale of micro2=4 GeV2 a next to leading order QCD analysis gives DeltaG[0.02,0.3]=0.2, with a constraint of -0.7
L BRUNO CHANDRASEKAR; K GNANASEKAR; M KARUNAKARAN; R CHANDRAMOHAN
2016-10-01
The effect of ‘Al’ concentration on spin-dependent tunnelling in strained non-magnetic symmetric double-barrier semiconductor has been theoretically investigated. The separation between spin-up and spin-down components, barrier transparency, polarization efficiency and tunnelling lifetime were calculated using the transfer matrix approach. The separation between spin-up and spin-down resonances and tunnelling lifetime were reportedfor the first time in the case of InAs/Ga$_{1−y}$Al$_y$As heterostructures for various ‘Al’ concentrations and for various barrier widths. Cent percentage polarization can be obtained in this strained non-magnetic double-barriersemiconductor even without any external field.
Daqiq, Reza; Ghobadi, Nader
2016-07-01
We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching.
Bhattacharjee, Satadeep; Eriksson, Olle; Sanyal, Biplab
2012-07-25
First principles electronic structure calculations have been performed for the double perovskite Bi(2)CoMnO(6) in its non-centrosymmetric polar state using the generalized gradient approximation plus the Hubbard U approach. We find that the ferromagnetic state is more favored compared to the ferrimagnetic state with both Co and Mn in high spin states. The calculated dynamical charge tensors are anisotropic reflecting a low-symmetry structure of the compound. The magnetic structure dependent phonon frequencies indicate the presence of a weak spin-phonon coupling. Using the Berry phase method, we obtain a spontaneous ferroelectric polarization of 5.88 μC cm(-2), which is close to the experimental value observed for a similar compound, Bi(2)NiMnO(6).
Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cudd, A B; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M
2015-08-28
We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, A_{LL}, in polarized pp collisions at center-of-mass energy sqrt[s]=200 GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC pp data. The measured asymmetries provide evidence at the 3σ level for positive gluon polarization in the Bjorken-x region x>0.05.
Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bultmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sanchez, M Calderon de la Barca; Campbell, J M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cudd, A B; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L -X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I -K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M
2014-01-01
We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $\\sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.
Lin, Jin-Zhong
2017-02-01
In this paper, we study the preparation and nondestructive analysis of photon and spin entangled states with double-sided cavity and nitrogen-vacancy center coupled system, which is efficient in weak-coupling regime. The setups are based on some simple linear optical elements, delay lines and conventional photon detectors, which are feasible with existing experimental technology. Numerical simulation demonstrates that all protocols' fidelities and successful probabilities are high in principle. Therefore, our protocols may be useful for decreasing the experimental requirements for preparation and nondestructive analysis of entangled states.
Horley, Paul P., E-mail: paul.horley@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Kushnir, Mykola Ya. [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky str., 58012 Chernivtsi (Ukraine); Morales-Meza, Mishel [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Sukhov, Alexander [Institut für Physik, Martin-Luther Universität Halle-Wittenberg, 06120 Halle (Saale) (Germany); Rusyn, Volodymyr [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky str., 58012 Chernivtsi (Ukraine)
2016-04-01
We report on complex magnetization dynamics in a forced spin valve oscillator subjected to a varying magnetic field and a constant spin-polarized current. The transition from periodic to chaotic magnetic motion was illustrated with bifurcation diagrams and Hausdorff dimension – the methods developed for dissipative self-organizing systems. It was shown that bifurcation cascades can be obtained either by tuning the injected spin-polarized current or by changing the magnitude of applied magnetic field. The order–chaos transition in magnetization dynamics can be also directly observed from the hysteresis curves. The resulting complex oscillations are useful for development of spin-valve devices operating in harmonic and chaotic modes.
Gangopadhyay, Shruba; Pickett, Warren E.
2016-04-01
High formal valence Os-based double perovskites are a focus of current interest because they display strong interplay of large spin-orbit coupling and strong electronic correlation. Here we present the electronic and magnetic characteristics of a sequence of three cubic Os based double perovskites Ba2A OsO6 (A =Na , Ca, Y), with formal valences of Os +7(d1) ,Os +6(d2) , and Os +5(d3) . For these first principles based calculations we apply an "exact exchange for correlated electrons" functional, with exact exchange applied in a hybrid fashion solely to the Os (5 d ) states. While Ba2NaOsO6 is a reported ferromagnetic Dirac-Mott insulator studied previously, the other two show antiferromagnetic ordering while all retain the undistorted cubic structure. For comparison purposes we have investigated only the ferromagnetic ordered phase. A metal-insulator transition is predicted to occur upon rotating the direction of magnetization in all three materials, reflecting the central role of spin-orbit coupling in these small gap osmates. Surprises arising from comparing formal charge states with the radial charge densities are discussed. Chemical shielding factors and orbital susceptibilities are provided for comparison with future nuclear magnetic resonance data.
Lee, Seung-Eun; Takemura, Yasutaka; Park, Jea-Gun
2016-10-01
A tunneling magneto-resistance (TMR) ratio of ˜163% at an annealing temperature of 400 °C was achieved in a single MgO-based perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a tungsten (W)/tantalum (Ta) seed and W capping layer instead of with a Ta seed and capping layer. This was done by improving the interface perpendicular magnetic anisotropy (i-PMA) characteristic of the Co2Fe6B2 free layer and face-centered-cubic (f.c.c.) crystallinity of the MgO tunneling barrier. In particular, a TMR ratio of ˜141% at an annealing temperature of 400 °C and a thermal stability at room temperature of ˜61 were achieved in a double MgO-based p-MTJ spin valve with W/Ta seed, W spacer, and W capping layers by doubling the i-PMA magnetic moment and increasing slightly magnetic anisotropy field (Hk).
Gálisová, Lucia; Jakubczyk, Dorota
2017-01-01
Ground-state and magnetocaloric properties of a double-tetrahedral chain, in which nodal lattice sites occupied by the localized Ising spins regularly alternate with triangular clusters half filled with mobile electrons, are exactly investigated by using the transfer-matrix method in combination with the construction of the Nth tensor power of the discrete Fourier transformation. It is shown that the ground state of the model is formed by two non-chiral phases with the zero residual entropy and two chiral phases with the finite residual entropy S = NkB ln 2. Depending on the character of the exchange interaction between the localized Ising spins and mobile electrons, one or three magnetization plateaus can be observed in the magnetization process. Their heights basically depend on the values of Landé g-factors of the Ising spins and mobile electrons. It is also evidenced that the system exhibits both the conventional and inverse magnetocaloric effect depending on values of the applied magnetic field and temperature.
Spin orientation in an ultrathin CoO/PtFe double-layer with perpendicular exchange coupling
Lamirand, Anne D.; Soares, Márcio M. [Institut Néel, CNRS and UJF, BP166, 38042 Grenoble (France); Ramos, Aline Y., E-mail: aline.ramos@grenoble.cnrs.fr [Institut Néel, CNRS and UJF, BP166, 38042 Grenoble (France); Tolentino, Hélio C.N.; De Santis, Maurizio [Institut Néel, CNRS and UJF, BP166, 38042 Grenoble (France); Cezar, Julio C. [Laboratório Nacional de Luz Síncrotron-LNLS, CP 6192, 13083-970 Campinas (Brazil); Siervo, Abner de [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas-UNICAMP, 13083-970 Campinas (Brazil)
2015-01-01
We studied by soft X-ray absorption spectroscopy the magnetization axis in a 4 nm thin CoO (111) layer exchange-coupled to an ultra thin L1{sub 0} PtFe layer with perpendicular magnetic anisotropy. The angular dependence of the linear magnetic dichroism at 10 K and the relative variations of the spectral features provide a full description of the spin orientation in this antiferromagnetic layer. The spins are found in the film plane, pointing along the 110 direction. This results is discussed in relation to the film strain and the preferential occupation of t{sub 2g} orbitals. The strong orthogonal coupling between Co and Fe spins should be at the origin of the robustness of the exchange bias effect found in this bilayer system.
Lattice Instability and Competing Spin Structures in the Double Perovskite Insulator Sr2FeOsO6
Avijit Kumar Paul; Manfred Reehuis; Vadim Ksenofontov; Binghai Yan; Andreas Hoser; Többens, Daniel M.; Abdala, Paula M.; Peter Adler; Martin Jansen; Claudia Felser
2013-01-01
The semiconductor Sr2FeOsO6, depending on temperature, adopts two types of spin structures that differ in the spin sequence of ferrimagnetic iron - osmium layers along the tetragonal c-axis. Neutron powder diffraction experiments, 57Fe M\\"ossbauer spectra, and density-functional theory calculations suggest that this behavior arises because a lattice instability resulting in alternating iron-osmium distances fine-tunes the balance of competing exchange interactions. Thus, Sr2FeOsO6 is an examp...
Parno, Diana Seymour [Carnegie Mellon Univ., Pittsburgh, PA (United States)
2011-04-01
The spin structure of protons and neutrons has been an open question for nearly twenty-five years, after surprising experimental results disproved the simple model in which valence quarks were responsible for nearly 100% of the nucleon spin. Diverse theoretical approaches have been brought to bear on the problem, but a shortage of precise data - especially on neutron spin structure - has prevented a thorough understanding. Experiment E06-014, conducted in Hall A of Jefferson Laboratory in 2009, presented an opportunity to add to the world data set for the neutron in the poorly covered valence-quark region. Jefferson Laboratory's highly polarized electron beam, combined with Hall A's facilities for a high-density, highly polarized ^{3}He target, allowed a high-luminosity double-polarized experiment, while the large acceptance of the BigBite spectrometer gave coverage over a wide kinematic range: 0.15 < x < 0.95. In this work, we present the analysis of a portion of the E06-014 data, measured with an incident beam energy of 4.74 GeV and spanning 1.5 < Q^{2} < 5.5 (GeV/c)^{2}. From these data, we extract the longitudinal asymmetry in virtual photon-nucleon scattering, A_{1}, on the ^{3}He nucleus. Combined with the remaining E06-014 data, this will form the basis of a measurement of the neutron asymmetry A^{η}_{1} that will extend the kinematic range of the data available to test models of spin-dependent parton distributions in the nucleon.
Proton form factor ratio, μ_{p}G_{E}^{P}/G_{M}^{P} from double spin asymmetry
Habarakada Liyanage, Anusha Pushpakumari [Hampton Univ., Hampton, VA (United States)
2013-08-01
The form factors are fundamental properties of the nucleon representing the effect of its structure on its response to electromagnetic probes such as electrons. They are functions of the four-momentum transfer squared Q^{2} between the electron and the proton. This thesis reports the results of a new measurement of the ratio of the electric and magnetic form factors of the proton up to Q^{2} = 5.66 (GeV/c)^{2} using the double spin asymmetry with a polarized beam and target. Experiment E07-003 (SANE, Spin Asymmetries of the Nucleon Experiment) was carried out in Hall C at Jefferson Lab in 2009 to study the proton spin structure functions with a dynamically polarized ammonia target and longitudinally polarized electron beam. By detecting elastically scattered protons in the High-Momentum Spectrometer (HMS) in coincidence with the electrons in the Big Electron Telescope Array (BETA), elastic measurements were carried out in parallel. The elastic double spin asymmetry allows one to extract the proton electric to magnetic form factor ratio G^{p}_{E}/G^{p}_{M} at high-momentum transfer, Q^{2}= 5.66 (GeV/c)^{2}. In addition to the coincidence data, inclusively scattered electrons from the polarized ammonia target were detected by HMS, which allows to measure the beam-target asymmetry in the elastic region with the target spin nearly perpendicular to the momentum transfer, and to extract G^{p}_{E}/G^{p}_{M} at low Q^{2}= 2.06 (GeV/c)^{2}. This alternative measurement of G^{p}_{E}/G^{p}_{M} has verified and confirmed the dramatic discrepancy at high Q^{2} between the Rosenbluth and the recoil-polarization-transfer iv method with a different measurement technique and systematic uncertainties uncorrelated to those of the recoil-polarization measurements. The measurement of the form factor ratio at Q^{2} = 2
Zhu, W K; Tong, W; Ling, L; Starr, M; Wang, J M; Yang, W C; Losovyj, Y; Zhou, H D; Wang, Y Q; Lee, P -H; Wang, Y -K; Lu, Chi-Ken; Zhang, S X
2016-01-01
Double-perovskite oxides that contain both 3d and 5d transition metal elements have attracted growing interest as they provide a model system to study the interplay of strong electron interaction and large spin-orbit coupling (SOC). Here, we report on experimental and theoretical studies of the magnetic and electronic properties of double-perovskites (La$_{1-x}$Sr$_x$)$_2$CuIrO$_6$ ($x$ = 0.0, 0.1, 0.2, and 0.3). The undoped La$_2$CuIrO$_6$ undergoes a magnetic phase transition from paramagnetism to antiferromagnetism at T$_N$ $\\sim$ 74 K and exhibits a weak ferromagnetic behavior below $T_C$ $\\sim$ 52 K. Two-dimensional magnetism that was observed in many other Cu-based double-perovskites is absent in our samples, which may be due to the existence of weak Cu-Ir exchange interaction. First-principle density-functional theory (DFT) calculations show canted antiferromagnetic (AFM) order in both Cu$^{2+}$ and Ir$^{4+}$ sublattices, which gives rise to weak ferromagnetism. Electronic structure calculations sugges...
Soffer, Jacques; Bourrely, Claude
2016-01-01
We consider the production of $W$ and $Z / \\gamma^{*}$ gauge bosons in proton-proton collisions at a center-of-mass energy of $\\sqrt{s} = 510 \\mbox{GeV}$ available at RHIC at BNL, operating at high luminosity. We stress the importance of measuring the transverse double-spin asymmetries $A_{TT}$, in connection with available transversely polarized beams with a high degree of polarisation. We will discuss some theoretical issues related to the predicted asymmetries. These studies are contrasted to the 2017 RHIC running operation of transversely polarized beams of mid-rapidity $W$ and $Z$ boson production at a center-of-mass energy of $\\sqrt{s}=510\\,$GeV along with long-term prospects beyond 2020 at RHIC.
Double Spin Asymmetry of Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s)=200 GeV
Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Ta'ani, H; Alexander, J; Andrews, K R; Angerami, A; Aoki, K; Apadula, N; Appelt, E; Aramaki, Y; Armendariz, R; Aschenauer, E C; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Bannier, B; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belmont, R; Ben-Benjamin, J; Bennett, R; Berdnikov, A; Berdnikov, Y; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Broxmeyer, D; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Castera, P; Chen, C -H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; del Valle, Z Conesa; Connors, M; Csanád, M; Csörgő, T; Dairaku, S; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; D'Orazio, L; Efremenko, Y V; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, X; Gonin, M; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gunji, T; Guo, L; Gustafsson, H -Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Harper, C; Hashimoto, K; Haslum, E; Hayano, R; He, X; Hemmick, T K; Hester, T; Hill, J C; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Inaba, M; Iordanova, A; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; John, D; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Kamin, J; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kim, B I; Kim, D J; Kim, E -J; Kim, Y -J; Kim, Y K; Kinney, E; Kiss, Á; Kistenev, E; Kleinjan, D; Kline, P; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotov, D; Král, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Li, X; Lim, S H; Levy, L A Linden; Litvinenko, A; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Manion, A; Manko, V I; Mannel, E; Mao, Y; Masui, H; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Miyachi, Y; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Ogilvie, C A; Oka, M; Okada, K; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, S K; Pate, S F; Pei, H; Peng, J -C; Pereira, H; Peresedov, V; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosendahl, S S E; Rukoyatkin, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Samsonov, V; Sano, S; Sarsour, M; Sato, T; Savastio, M; Sawada, S; Sedgwick, K; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T -A; Shigaki, K; Shim, H H; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Sodre, T; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Themann, H; Thomas, D; Togawa, M; Tomášek, L; Tomášek, M; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Utsunomiya, K; Vale, C; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; Yoo, J S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zelenski, A; Zhou, S; Zolin, L
2012-01-01
We report on the first measurement of double-spin asymmetry, A_LL, of electrons from the decays of hadrons containing heavy flavor in longitudinally polarized p+p collisions at sqrt(s)=200 GeV for p_T= 0.5 to 3.0 GeV/c. The asymmetry was measured at mid-rapidity (|eta|<0.35) with the PHENIX detector at the Relativistic Heavy Ion Collider. The measured asymmetries are consistent with zero within the statistical errors. We obtained a constraint for the polarized gluon distribution in the proton of |Delta g/g(log{_10}x= -1.6^+0.5_-0.4, {mu}=m_T^c)|^2 < 0.033 (1 sigma), based on a leading-order perturbative-quantum-chromodynamics model, using the measured asymmetry.
Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Anderson, D M; Aoyama, R; Aparin, A; Arkhipkin, D; Aschenauer, E C; Ashraf, M U; Attri, A; Averichev, G S; Bai, X; Bairathi, V; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandenburg, J D; Brandin, A V; Brown, D; Bunzarov, I; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Campbell, J M; Cebra, D; Chakaberia, I; Chaloupka, P; Chang, Z; Chatterjee, A; Chattopadhyay, S; Chen, X; Chen, J H; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Elsey, N; Engelage, J; Eppley, G; Esha, R; Esumi, S; Evdokimov, O; Ewigleben, J; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Federicova, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A I; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Horvat, S; Huang, X; Huang, B; Huang, T; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jentsch, A; Jia, J; Jiang, K; Jowzaee, S; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z; Kikoła, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kulathunga, N; Kumar, L; Lacey, R; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, W; Li, C; Li, X; Li, Y; Li, X; Lin, T; Lisa, M A; Liu, F; Liu, Y; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Luo, S; Ma, Y G; Ma, G L; Ma, R; Ma, L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Matis, H S; McDonald, D; McKinzie, S; Meehan, K; Mei, J C; Miller, Z W; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Niida, T; Nogach, L V; Nonaka, T; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V A; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Pile, P; Pluta, J; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Przybycien, M; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Ray, R L; Reed, R; Rehbein, M J; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roth, J D; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Sharma, A; Sharma, M K; Shen, W Q; Shi, Z; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Singha, S; Skoby, M J; Smirnov, N; Smirnov, D; Solyst, W; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sugiura, T; Sumbera, M; Summa, B; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, D N; Tang, A H; Tang, Z; Taranenko, A; Tarnowsky, T; Tawfik, A; Thäder, J; Thomas, J H; Timmins, A R; Tlusty, D; Todoroki, T; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vasiliev, A N; Vertesi, R; Videbæk, F; Vokal, S; Voloshin, S A; Vossen, A; Wang, G; Wang, J S; Wang, F; Wang, Y; Wang, Y; Webb, G; Webb, J C; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xiao, Z G; Xie, W; Xie, G; Xin, K; Xu, H; Xu, Q H; Xu, Y F; Xu, N; Xu, Z; Xu, J; Yang, Y; Yang, S; Yang, Y; Yang, Y; Yang, C; Yang, Q; Ye, Z; Ye, Z; Yi, L; Yip, K; Yoo, I -K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, Y; Zhang, J; Zhang, X P; Zhang, J B; Zhang, Z; Zhang, S; Zhang, J; Zhang, S; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M
2016-01-01
We report the first measurement of the longitudinal double-spin asymmetry $A_{LL}$ for mid-rapidity di-jet production in polarized $pp$ collisions at a center-of-mass energy of $\\sqrt{s} = 200$ GeV. The di-jet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. $A_{LL}$ results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-$x > 0.05$.
De Vita, R
2002-01-01
The double spin asymmetry in the $\\vec{e}\\vec{p}\\to e' \\pi^+ n$ reaction has been measured for the first time in the resonance region for four-momentum transfer $Q^2=0.35-1.5$ GeV$^2$. Data were taken at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using a 2.6 GeV polarized electron beam incident on a polarized solid NH$_3$ target. Comparison with predictions of phenomenological models shows strong sensitivity to resonance contributions. Helicity-1/2 transitions are found to be dominant in the second and third resonance regions. The measured asymmetry is consistent with a faster rise with $Q^2$ of the helicity asymmetry $A_1$ for the $F_{15}(1680)$ resonance than expected from the analysis of the unpolarized data.
Teymoori, Gholamhasan; Pahari, Bholanath; Stevensson, Baltzar; Edén, Mattias
2012-09-01
We report novel symmetry-based radio-frequency (rf) pulse sequences for efficient excitation of double-quantum (2Q) coherences under very fast (>60 kHz) magic-angle spinning (MAS) conditions. The recursively generated pulse-scheme series, R22p1R22p-1(p=1,2,3,…), offers broadband 13C-13C recoupling in organic solids at a very low rf power. No proton decoupling is required. A high-order average Hamiltonian theory analysis reveals a progressively enhanced resonance-offset compensation for increasing p, as verified both by numerical simulations and 2Q filtration NMR experiments on 13C2-glycine, [2,3-13C2]alanine, and [U-13C]tyrosine at 14.1 T and 66 kHz MAS, where the pulse schemes with p⩾3 compare favorably to current state-of-the-art recoupling options.
Xue Hui-Jie; Lü Tian-Quan; Zhang Hong-Chen; Yin Hai-Tao; Cui Lian; He Ze-Long
2012-01-01
The thermoelectric and the thermospin transport properties,including electrical conductivity,Seebeck coefficient,thermal conductivity,and thermoelectric figure of merit,of a parallel coupled double-quantum-dot Aharonov-Bohm interferometer are investigated by means of the Green function technique.The periodic Anderson model is used to describe the quantum dot system,the Rashba spin-orbit interaction and the Zeeman splitting under a magnetic field are considered.The theoretical results show the constructive contribution of the Rashba effect and the influence of the magnetic field on the thermospin effects.We also show theoretically that material with a high figure of merit can be obtained by tuning the Zeeman splitting energy only.
Wang, Xiaoyu; Lu, Zhun
2016-01-01
We study the longitudinal-transverse double-spin asymmetry with a $\\cos\\phi_S$ modulation in semi-inclusive deep inelastic scattering for charged and neutral pions production. We consider the particular case in which the transverse momentum of the final state hadron is integrated out. The corresponding asymmetry may be contributed by two parts: one is the convolution of the twist-3 distribution function $g_{T}(x)$ and the unpolarized fragmentation function $D_1(z)$, the other is related to the coupling of the transversity distribution function $h_1(x)$ and the collinear twist-3 fragmentation function $\\tilde{E}(z)$. We take into account both contributions to predict the $\\cos\\phi_S$ asymmetry at the kinematics of CLAS12 and a future Electron Ion Collider. We find that the asymmetry of pion production at CLAS12 is sizable, and $\\tilde{E}(z)$ plays an important role in the asymmetry in the large-$z$ region.
Stan, Raluca-Maria; Gaina, Roxana; Enachescu, Cristian, E-mail: cristian.enachescu@uaic.ro, E-mail: radu.tanasa@uaic.ro; Stancu, Alexandru [Faculty of Physics, Alexandru Ioan Cuza University, 700506 Iasi (Romania); Tanasa, Radu, E-mail: cristian.enachescu@uaic.ro, E-mail: radu.tanasa@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University, 700506 Iasi (Romania); Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom); Bronisz, Robert [Faculty of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland)
2015-05-07
In this paper, we analyze two types of hysteresis in spin crossover molecular magnets compounds in the framework of the First Order Reversal Curve (FORC) method. The switching between the two stable states in these compounds is accompanied by hysteresis phenomena if the intermolecular interactions are higher than a threshold. We have measured the static thermal hysteresis (TH) and the kinetic light induced thermal hysteresis (LITH) major loops and FORCs for the polycrystalline Fe(II) spin crossover compound [Fe{sub 1−x}Zn{sub x}(bbtr){sub 3}](ClO{sub 4}){sub 2} (bbtr = 1,4-di(1,2,3-triazol-1-yl)butane), either in a pure state (x = 0) or doped with Zn ions (x = 0.33) considering different sweeping rates. Here, we use this method not only to infer the domains distribution but also to disentangle between kinetic and static components of the LITH and to estimate the changes in the intermolecular interactions introduced by dopants. We also determined the qualitative relationship between FORC distributions measured for TH and LITH.
自旋-轨道耦合下冷原子的双反射∗%Double reflection of spin-orbit-coupled cold atoms
黄珍; 曾文; 古艺; 刘利; 周鲁; 张卫平
2016-01-01
随着中性冷原子气体的人造自旋-轨道耦合的实验实现，近年来人们开始关注与之相关的可能应用，其中包括自旋-轨道耦合下原子反射镜的研究。本文在前人研究的基础上，考虑一束自旋-轨道耦合的冷原子气体入射到有限高势垒的情形，通过将部分反射和全反射情况进行对比，发现了与之前研究不同的性质。我们发现，在全反射条件下，反射原子的极化率随入射角变化较大，而随自旋-轨道耦合强度和原子入射能量的变化较小。但在发生部分反射的情况下，反射原子的极化率不仅随入射角变化较大，随自旋-轨道耦合强度和原子的入射能量变化也十分明显。我们仔细研究了自旋-轨道耦合原子气体的反射性质并讨论了其可能的应用。%Artificial spin-orbit coupling in neutral cold atom have been experimentally implemented in alkali-metal atoms. Nowadays people begin to explore its possible applications. One of the most interesting applications is the atomic mirror, which is a key element in atom optics. And spin-orbit coupling provides the atomic beam with the possibility that the atomic spin can flip during its propagation, thus can be used to prepare the quantum-state-selective atomic mirror. In 2008, Juzeliūnas, et al. [Juzeliūnas G, et al. 2008 Phys. Rev. Lett. 100 200405] studied a spin-orbit-coupled matter wave packet of cold atom gas impinging on an infinite step potential created by the optical light field. Results showed that there is not only ordinary specular reflection, but also non-specular one. The reflected atoms split into two beams and double reflection takes place. Based on the previous study, here we consider a matter wave packet of spin-orbit-coupled cold atom gas impinging on a finite step potential created by the optical light field. Due to the effect of the spin-orbit coupling, in addition to the propagating state, the eigenstates of cold atoms
Swanson, Michael A; Kathirvelu, Velavan; Majtan, Tomas; Frerman, Frank E; Eaton, Gareth R; Eaton, Sandra S
2011-03-01
Human electron transfer flavoprotein (ETF) is a soluble mitochondrial heterodimeric flavoprotein that links fatty acid β-oxidation to the main respiratory chain. The crystal structure of human ETF bound to medium chain acyl-CoA dehydrogenase indicates that the flavin adenine dinucleotide (FAD) domain (αII) is mobile, which permits more rapid electron transfer with donors and acceptors by providing closer access to the flavin and allows ETF to accept electrons from at least 10 different flavoprotein dehydrogenases. Sequence homology is high and low-angle X-ray scattering is identical for Paracoccus denitrificans (P. denitrificans) and human ETF. To characterize the orientations of the αII domain of P. denitrificans ETF, distances between enzymatically reduced FAD and spin labels in the three structural domains were measured by double electron-electron resonance (DEER) at X- and Q-bands. An FAD to spin label distance of 2.8 ± 0.15 nm for the label in the FAD-containing αII domain (A210C) agreed with estimates from the crystal structure (3.0 nm), molecular dynamics simulations (2.7 nm), and rotamer library analysis (2.8 nm). Distances between the reduced FAD and labels in αI (A43C) were between 4.0 and 4.5 ± 0.35 nm and for βIII (A111C) the distance was 4.3 ± 0.15 nm. These values were intermediate between estimates from the crystal structure of P. denitrificans ETF and a homology model based on substrate-bound human ETF. These distances suggest that the αII domain adopts orientations in solution that are intermediate between those which are observed in the crystal structures of free ETF (closed) and ETF bound to a dehydrogenase (open).
Spin polarized itinerant electrons in Ca{sub 2}FeMoO{sub 6} double perovskites
Rubi, D. [Institut de Ciencia de Materials de Barcelona, CSIC, Campus U.A.B., 08193 Bellaterra, Catalunya (Spain); Nogues, J. [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Catalunya (Spain); Institut Catala de Recerca i Estudis Avancats (ICREA), 08193 Bellaterra, Catalunya (Spain); Munoz, J.S. [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Catalunya (Spain); Fontcuberta, J. [Institut de Ciencia de Materials de Barcelona, CSIC, Campus U.A.B., 08193 Bellaterra, Catalunya (Spain)]. E-mail: fontcuberta@icmab.es
2006-01-25
We report on magnetic studies of the double perovskite Ca{sub 2}FeMoO{sub 6} in its paramagnetic state. It is found that the effective magnetic moment, extracted from the Curie constant, is magnetic field dependent and it is smaller than that expected in a simple ionic scenario. These experimental results, which are in agreement with early reports on Sr{sub 2}FeMoO{sub 6}, are interpreted as a direct evidence of the antiferromagnetic coupling and polarization of the conduction band in these oxides. A simple mean field model accounts for these observations and enlightens the relevance of itinerant carriers on the strength of the magnetic coupling in these oxides.
Neenu Lekshmi, P.; Savitha Pillai, S. [Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology NIIST, CSIR, Trivandrum 695 019 (India); Suresh, K.G. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076 (India); Santhosh, P.N. [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India); Varma, Manoj Raama, E-mail: manojraamavarma@yahoo.co.uk [Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology NIIST, CSIR, Trivandrum 695 019 (India)
2012-05-05
Highlights: Black-Right-Pointing-Pointer Studied the structure, dielectric and magnetic properties of Sr{sub 2}FeTiO{sub 6} complex double perovskite. Black-Right-Pointing-Pointer The thermal evolution of the lattice parameter and volume shows no structural phase transition. Black-Right-Pointing-Pointer Dielectric data analysis shows a diffuse phase transition characteristics. Black-Right-Pointing-Pointer The diffusion-assisted small-polaron hopping conduction evidences an intermediate-valence state and semiconductor like behaviour. Black-Right-Pointing-Pointer The magnetic characterisation exhibits a non-metallic spin-glass-like state below 16 K. - Abstract: The structure, dielectric and magnetic properties of complex Sr{sub 2}FeTiO{sub 6} double perovskite have been investigated. Reitveld analysis of X-ray powder diffraction pattern reveals that the material is stabilized in a cubic perovskite phase with Pm3{sup Macron }m space group without the B-site cations ordering. The temperature evolution of crystal structural studies indicates the absence of structural changes with temperature. The scanning electron micrograph exhibits heterogeneous grain distribution with average grain size of 1-7.5 {mu}m. The bond valence sum calculations and diffusion-assisted small-polaron hopping conduction mechanism confirm the mixed valence state of Fe/Ti ions. Dielectric spectra show a broad dielectric anomaly coupled with a shift in dielectric maxima towards higher temperature with frequency, exhibiting a typical relaxor ferroelectric behavior. The relaxor behavior has been quantitatively characterized based on the phenomenological parameters (T{sub m}, T{sub B}, {gamma}, {Delta}T{sub relax}). The agreement of dielectric relaxation with non-linear Vogel Fulcher relation indicates that the system is indeed a relaxor exhibiting glassy characteristics. The transport studies show a semiconductor like behavior and a negligible magnetoresistance. Furthermore, the magnetic
Nanda, Kaushik D; Krylov, Anna I
2016-11-28
We present the theory and implementation for calculating static polarizabilities within the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) framework for electronically excited states and its spin-flip variant. We evaluate the second derivatives of the EOM-CCSD Lagrangian with respect to electric-field perturbations. The relaxation of reference molecular orbitals is not included. In our approach, the wave function amplitudes satisfy the 2n + 1 rule and the amplitude-response Lagrange multipliers satisfy the 2n + 2 rule. The new implementation is validated against finite-field and CCSD response-theory calculations of the excited-state polarizabilities of pyrimidine and s-tetrazine. We use the new method to compute static polarizabilities of different types of electronic states (valence, charge-transfer, singlets, and triplets) in open- and closed-shell systems (uracil, p-nitroaniline, methylene, and p-benzyne). We also present an alternative approach for calculating excited-state static polarizabilities as expectation values by using the EOM-CCSD wave functions and energies in the polarizability expression for an exact state. We find that this computationally less demanding approach may show differences up to ∼30% relative to the excited-state polarizabilities computed using the analytic-derivative formalism.
Nanda, Kaushik D.; Krylov, Anna I.
2016-11-01
We present the theory and implementation for calculating static polarizabilities within the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) framework for electronically excited states and its spin-flip variant. We evaluate the second derivatives of the EOM-CCSD Lagrangian with respect to electric-field perturbations. The relaxation of reference molecular orbitals is not included. In our approach, the wave function amplitudes satisfy the 2n + 1 rule and the amplitude-response Lagrange multipliers satisfy the 2n + 2 rule. The new implementation is validated against finite-field and CCSD response-theory calculations of the excited-state polarizabilities of pyrimidine and s-tetrazine. We use the new method to compute static polarizabilities of different types of electronic states (valence, charge-transfer, singlets, and triplets) in open- and closed-shell systems (uracil, p-nitroaniline, methylene, and p-benzyne). We also present an alternative approach for calculating excited-state static polarizabilities as expectation values by using the EOM-CCSD wave functions and energies in the polarizability expression for an exact state. We find that this computationally less demanding approach may show differences up to ˜30 % relative to the excited-state polarizabilities computed using the analytic-derivative formalism.
Mao, Wenjuan; Ma, Bo-Qiang; Schmidt, Ivan
2014-01-01
We investigate the double-spin asymmetries of pion production in semi-inclusive deep inelastic scattering with a longitudinal polarized beam off a transversely polarized proton target. Particularly, we consider the $\\cos\\phi_S$ and $\\cos(2\\phi_h -\\phi_S)$ modulations, which can be interpreted by the convolution of the twist-3 transverse momentum dependent distributions and twist-2 fragmentation functions. Three different origins are taken into account simultaneously for each asymmetry: the $g_T D_1$ term, the $e_T H_1^\\perp$ term, and the $e_T^\\perp H_1^\\perp$ term in the $\\cos\\phi_S$ asymmetry; and the $g_T^\\perp D_1$ term, $e_T H_1^\\perp$ term, and $e_T^\\perp H_1^\\perp$ term in the $\\cos(2\\phi_h -\\phi_S)$ asymmetry. We calculate the four twist-3 distributions $g_T(x,,\\boldsymbol{k}_T^2)$, $g_T^\\perp(x,,\\boldsymbol{k}_T^2)$, $e_T(x,\\boldsymbol{k}_T^2)$, and $e_T^\\perp(x,,\\boldsymbol{k}_T^2)$ in a spectator-diquark model including vector diquarks. Then we predict the two corresponding asymmetries for charged ...
Maruyoshi, Keisuke; Iuga, Dinu; Watts, Abigail E; Hughes, Colan E; Harris, Kenneth D M; Brown, Steven P
2017-07-25
The lower detection limit for 2 distinct crystalline phases by (1)H magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) is investigated for a minority amount of cimetidine (anhydrous polymorph A) in a physical mixture with the anhydrous HCl salt of cimetidine. Specifically, 2-dimensional (1)H double-quantum (DQ) MAS NMR spectra of polymorph A and the anhydrous HCl salt constitute fingerprints for the presence of each of these solid forms. For solid-state NMR data recorded at a (1)H Larmor frequency of 850 MHz and a MAS frequency of 30 kHz on ∼10 mg of sample, it is shown that, by following the pair of cross-peaks at a (1)H DQ frequency of 7.4 + 11.6 = 19.0 ppm that are unique to polymorph A, the level of detection for polymorph A in a physical mixture with the anhydrous HCl salt is a concentration of 1% w/w. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Wang, Xiaoyu; Mao, Wenjuan; Lu, Zhun
2016-10-01
We study the longitudinal-transverse double-spin asymmetry with a cos ϕS modulation in semi-inclusive deep inelastic scattering for charged and neutral pion production. We consider the particular case in which the transverse momentum of the final-state hadron is integrated out. The corresponding asymmetry may be contributed by two parts: one is the convolution of the twist-3 distribution function gT(x ) and the unpolarized fragmentation function D1(z ); the other is related to the coupling of the transversity distribution function h1(x ) and the collinear twist-3 fragmentation function E ˜(z ). We take into account both contributions to predict the cos ϕS asymmetry at the kinematics of CLAS12 and a future Electron Ion Collider. We find that the asymmetry of pion production at CLAS12 is sizable, and E ˜(z ) can play an important role in the asymmetry in the large-z region.
Spin-dependent optical superlattice
Yang, Bing; Dai, Han-Ning; Sun, Hui; Reingruber, Andreas; Yuan, Zhen-Sheng; Pan, Jian-Wei
2017-07-01
We propose and implement a lattice scheme for coherently manipulating atomic spins. Using a vector light shift and a superlattice structure, we demonstrate experimentally its capability on addressing spins in double wells and square plaquettes with subwavelength resolution. The quantum coherence of spin manipulations is verified through measuring atom tunneling and spin exchange dynamics. Our experiment presents a building block for engineering many-body quantum states in optical lattices for realizing quantum simulation and computation tasks.
Manna, Kaustuv [Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany); Sarkar, R. [Technische Univ. Dresden (Germany); Fuchs, S. [Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany); Onykiienko, Y. A. [Technische Univ. Dresden (Germany); Bera, A. K. [Bhabha Atomic Research Centre (BARC), Mumbai (India); Cansever, G. Aslan [Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany); Kamusella, S. [Technische Univ. Dresden (Germany); Maljuk, A. [Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany); Blum, C. G. F. [Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany); Corredor, L. T. [Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany); Wolter, A. U. B. [Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany); Yusuf, S. M. [Bhabha Atomic Research Centre (BARC), Mumbai (India); Frontzek, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Keller, L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Iakovleva, M. [Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany); Russian Academy of Sciences (RAS), Kazan (Russian Federation); Vavilova, E. [Russian Academy of Sciences (RAS), Kazan (Russian Federation); Grafe, H. -J. [Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany); Kataev, V. [Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany); Klauss, H. -H. [Technische Univ. Dresden (Germany); Inosov, D. S. [Technische Univ. Dresden (Germany); Wurmehl, S. [Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany); Technische Univ. Dresden (Germany); Büchner, B. [Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany); Technische Univ. Dresden (Germany)
2016-10-01
This article reports the structural, magnetic, and thermodynamic properties of the double perovskite compound ${{La}}_{2}{{CuIrO}}_{6}$ from x-ray, neutron diffraction, neutron depolarization, dc magnetization, ac susceptibility, specific heat, muon-spin-relaxation ( μ SR ) , electron-spin-resonance (ESR) and nuclear magnetic resonance (NMR) measurements. Below ~113 K, short-range spin-spin correlations occur within the Cu^{2+} sublattice.
王瑞琴; 宫箭†; 武建英; 陈军
2013-01-01
电子的隧穿时间是描述量子器件动态工作范围的重要指标。本文考虑k3 Dresselhaus自旋轨道耦合效应对系统哈密顿量的修正，结合转移矩阵方法和龙格-库塔法来解含时薛定谔方程，进而讨论了电子在非磁半导体对称双势垒结构中的透射系数及隧穿寿命等问题。研究结果发现：由于k3 Dresselhaus自旋轨道耦合效应使自旋简并消除，并在时间域内得到了表达，导致自旋向上和自旋向下电子的透射峰发生了自旋劈裂；不同自旋取向的电子构建时间和隧穿寿命不同，这是导致自旋极化的原因之一；电子的自旋极化在时间上趋于稳定。%Tunneling time is an important factor to describe quantum electronic device. In this paper, the dynamic problem of spin-dependent tunneling is investigated by solving the time-dependent Schr¨odinger equation. The transmission coefficient and tunneling lifetime are discussed by use of mixing transfer-matrix and Runge-Kutta method. The k3 Dresselhaus term is considered to correct the effective Hamiltonian of the system in our calculation. The results show that the transmission peak of the electrons with different spin orien-tations split obviously. The building time and the tunneling lifetime through the double-barrier structure of AlxGa1−xSb material are different for the spin-down electron and spin-up electron. These time-dependent properties depend on the electronic spin orientation. It can be considered as one of reasons for spin polarization to appear. Additionally, the steady spin-polarization emerges in the well due to the k3 Dresselhaus spin-orbit coupling.
Hnybida, Jeff
2016-10-01
We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.
Spin-flux phase in the Kondo lattice model with classical localized spins
Agterberg, DF; Yunoki, S
2000-01-01
We provide numerical evidence that a spin-flux phase exists as a ground state of the Kondo lattice model with classical local spins on a square lattice. This state manifests itself as a double-e magnetic order in the classical spins with spin density at both (0, pi) and (pi ,0) and further exhibits
Friedman, Greg
2004-01-01
This is an introduction to the construction of higher-dimensional knots by spinning methods. Simple spinning of classical knots was introduced by E. Artin in 1926, and several generalizations have followed. These include twist spinning, superspinning or p-spinning, frame spinning, roll spinning, and deform spinning. We survey these constructions and some of their most important applications, as well as some newer hybrids due to the author. The exposition, meant to be accessible to a broad aud...
Sahoo, R. C.; Paladhi, D.; Nath, T. K.
2017-08-01
Single-phase polycrystalline La1.5Ca0.5CoMnO6 double perovskite nanoparticles (∼25 nm) have been synthesized by chemical sol-gel method. We report here the structural, magnetic and transport properties using X-ray diffraction, dc magnetization, ac susceptibility, exchange bias and dc resistivity measurements. The Rietveld refinement of X-ray diffraction pattern reveals that the La1.5Ca0.5CoMnO6 (LCCMO) system crystallizes in orthorhombic structure with pbnm space group. Mn and Co ions are not completely ordered on the B sites due to the presence of about 30% antisite-disorder in the system. The ordering of Co2+ and Mn4+ gives rise to the ferromagnetism below 145 K. A spin glass like ground state has also been observed near 37.6(4) K, arising mainly due to the presence of competing magnetic interactions and antisite-disorder in the LCCMO nanoparticles. The frequency dependence peak shift of the Ac-susceptibility peak in the glassy state follows the critical slowing down model. The observed memory effect in ac susceptibility data reveals the existence of interacting clusters in a competing magnetic interactions state. The presence of noticeable exchange bias effect can be best explained on the basis of uncompensated interface (ferromagnetic/spin-glass) spins of antisite-disordered LCCMO system. This anti-site disordered nanocompound exhibits semiconducting behavior with variable range hopping kind of electronic conduction mechanism in the temperature range of 200-300 K. We have also observed large negative magnetoresistance (-30% at 100 K and 60 kOe) mainly due to the spin-polarized transport across the grain boundaries.
Wu, Haiping, E-mail: mrhpwu@njust.edu.cn [Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094 (China); State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Qian, Yan, E-mail: qianyan@njust.edu.cn [Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094 (China); Tan, Weishi; Kan, Erjun; Lu, Ruifeng; Deng, Kaiming [Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094 (China)
2015-11-06
Double perovskite oxide La{sub 2}CrFeO{sub 6} with the characteristic of ferrimagnetic insulator has been reported by Chakraverty and Lee et al. Engineering the physical properties of materials, including obtaining unusual properties, can be achieved by some measures, and defect-tuning has been one of the most efficient measures. Here, by using density-functional calculations, La vacancy is introduced in La{sub 2}CrFeO{sub 6} and special properties are obtained successfully. The results show that the magnetic phase of La{sub 2}CrFeO{sub 6} would transfer from ferrimagnetic to ferromagnetic ordering as long as La vacancy is introduced. Furthermore, La{sub 1.75}CrFeO{sub 6} shows direct spin gapless semiconductor, and La{sub 1.5}CrFeO{sub 6} behaves as half-metal with the half-metallic gap of 0.42 eV. In the whole range of La vacancy, the electronic configurations of both Cr and Fe ions exhibit high-spin states, the magnetic moment of Fe remains 4.20 μ{sub B}, while that of Cr ions decreases from 2.66 to 1.97 μ{sub B} with increasing the amount of La vacancy. This work opens an alternative way to design spintronic materials, especially for direct spin gapless semiconductors which have never been reported in perovskite oxides. - Highlights: • La vacancy is introduced in La{sub 2}CrFeO{sub 6}. • La{sub 1.75}CrFeO{sub 6} shows the direct spin gapless semiconductor. • La{sub 1.5}CrFeO{sub 6} behaves as half-metal with the half-metallic gap of 0.42 eV.
PHENIX Spin Program, Recent Results
Bazilevsky, A; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, Alberto; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Yu A; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S R; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Büsching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; D'Enterria, D G; Dávid, G; Delagrange, H; Denisov, A; Deshpande, Abhay A; Desmond, E J; Devismes, A; Dietzsch, O; Drapier, O; Drees, A; Drees, K A; Du Rietz, R; Durum, A; Dutta, D; Efremenko, Yu V; El-Chenawi, K F; Enokizono, A; Enyo, H; Esumi, S; Ewell, L A; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Zeev; Frantz, J E; Franz, A; Frawley, A D; Fung, S Y; Garpman, S; Ghosh, K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse-Perdekamp, M; Guryn, W; Gustafsson, Hans Åke; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; Hayashi, N; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G B; Kim, H J; Kistenev, E P; Kiyomichi, A; Kiyoyama, K; Klein-Bösing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V P; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A G; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Man'ko, V I; Mao, Y; Martínez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E A; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Muhlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V A; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saitô, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sørensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarjan, P; Tepe, J D; Thomas, T L; Tojo, J; Torie, H A; Towell, R S; Tserruya, Itzhak; Tsuruoka, H; Tuli, S K; Tydesjo, H; Tyurin, N; van Hecke, H W; Velkovska, J; Velkovsky, M; Veszpremi, V; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E A; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zhou, S J; Zolin, L S; Adler, S S; Bazilevsky, Alexander
2005-01-01
Acceleration of polarized protons in Relativistic Heavy Ion Collider (RHIC) provides unique tool to study the spin structure of the nucleon. We give a brief overview of the PHENIX program to investigate poorly known gluon and flavor decomposed see quark polarization in the proton, utilizing polarized proton collisions at RHIC. We report PHENIX first results on transverse single-spin asymmetry in pi0 and charged hadron production and longitudinal double-spin asymmetry in pi0 production at mid-rapidity.
Flindt, Christian; Sørensen, A. S.; Lukin, M. D.;
2007-01-01
We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control of t...
Hnybida, Jeff
2015-01-01
We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. Thus the sums over spins have been carried out. We focus on the character expansion of Yang-Mills theory which is an approximate heat kernel regularization of BF theory. The boundary data of each $n$-valent node is an element of the Grassmannian Gr(2,$n$) which carries a coherent representation of U($n$) and a geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.
Lee, Seung-Eun; Baek, Jong-Ung; Park, Jea-Gun
2017-09-19
For double MgO-based p-MTJ spin-valves with a top Co2Fe6B2 free layer ex-situ annealed at 400 °C, the insertion of a nanoscale-thickness Fe diffusion barrier between the tungsten (W) capping layer and MgO capping layer improved the face-centered-cubic (f.c.c.) crystallinity of both the MgO capping layer and tunneling barrier by dramatically reducing diffusion of W atoms from the W capping layer into the MgO capping layer and tunneling barrier, thereby enhancing the TMR ratio and thermal stability (Δ). In particular, the TMR ratio was extremely sensitive to the thickness of the Fe barrier; it peaked (154%) at about 0.3 nm (the thickness of only two atomic Fe layers). The effect of the diffusion barrier originated from interface strain.
Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi
2012-01-01
In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.
Noor, Nazia; Koll, Joachim; Radjabian, Maryam; Abetz, Clarissa; Abetz, Volker
2016-03-01
A double-layer hollow fiber is fabricated where an isoporous surface of polystyrene-block-poly(4-vinylpyridine) is fixed on a support layer by co-extrusion. Due to the sulfonation of the support layer material, delamination of the two layers is suppressed without increasing the number of subsequent processing steps for isoporous composite membrane formation. Electron microscope-energy-dispersive X-ray spectroscopy images unveil the existence of a high sulfur concentration in the interfacial region by which in-process H-bond formation between the layers is evidenced. For the very first time, our study reports a facile method to fabricate a sturdy isoporous double-layer hollow fiber.
Shestakova, Pavletta; Willem, Rudolph; Vassileva, Elena
2011-12-23
(1)H HRMAS NMR spectroscopy is applied to gain insight into the chemical and morphological structure of double-network (DN) hydrogels, prepared from poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) and poly(acrylamide) (PAAm). The method enables one to obtain detailed information at the molecular level about the formation of covalent bonds between the two polymer networks through non-reacted double bonds of the cross-linker N,N'-methylene bis(acrylamide) (MBAA). Evidence to the existence of strong hydrogen-bond interactions based on the N-H group of the PAMPS as a hydrogen-bond donor and the C=O group of the PAAm as a hydrogen-bond acceptor is also provided. These findings clarify the origin of the toughening mechanism and the exceptionally strong mechanical properties of DN gels, further supported by microhardness data. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Disentangling the effects of spin-orbit and hyperfine interactions on spin blockade
Nadj-Perge, S.; Frolov, S.M.; Van Tilburg, J.W.W.; Danon, J.; Nazarov, Y.V.; Algra, R.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.
2010-01-01
We have achieved the few-electron regime in InAs nanowire double quantum dots. Spin blockade is observed for the first two half-filled orbitals, where the transport cycle is interrupted by forbidden transitions between triplet and singlet states. Partial lifting of spin blockade is explained by spin
Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bettinelli, M; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M Jr; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Hoppner, Ch; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kunne, F; Kurek, K; Lauser, L; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Morreale, A; Mutter, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Rocco, E; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schluter, T; Schmidt, A; Schmidt, K; Schmitt, L; Schmiden, H; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A
2013-01-01
The gluon polarisation in the nucleon was measured using open charm production by scattering 160 GeV/c polarised muons off longitudinally polarised protons or deuterons. The data were taken by the COMPASS collaboration between 2002 and 2007. A detailed account is given of the analysis method that includes the application of neural networks. Several decay channels of $D^0$ mesons are investigated. Longitudinal spin asymmetries of the D meson production cross-sections are extracted in bins of $D^0$ transverse momentum and energy. At leading order QCD accuracy the average gluon polarisation is determined as $(\\Delta g/g)^{LO}=-0.06 \\pm 0.21 (stat.) \\pm 0.08 (syst.)$ at the scale $ \\approx 13$ (GeV/c)$^2$ and an average gluon momentum fraction $\\approx$ 0.11. The average gluon polarisation is also obtained at next-to-leading order QCD accuracy as $(\\Delta g/g) NLO = -0.13 \\pm 0.15 (stat.) \\pm 0.15 (syst.)$ at the scale $ \\approx $ 13 (GeV/c)$^2$ and $ \\approx $ 0.20.
Spin-Orbit Coupling and Spin Textures in Optical Superlattices
Li, Junru; Shteynas, Boris; Burchesky, Sean; Top, Furkan Cagri; Su, Edward; Lee, Jeongwon; Jamison, Alan O; Ketterle, Wolfgang
2016-01-01
We proposed and demonstrated a new approach for realizing spin orbit coupling with ultracold atoms. We use orbital levels in a double well potential as pseudospin states. Two-photon Raman transitions between left and right wells induce spin-orbit coupling. This scheme does not require near resonant light, features adjustable interactions by shaping the double well potential, and does not depend on special properties of the atoms. A pseudospinor Bose-Einstein condensate spontaneously acquires an antiferromagnetic pseudospin texture which breaks the lattice symmetry similar to a supersolid.
Volino, F. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires
1969-07-01
Solutions of stable free radicals of the nitroxide type have been studied as a function of temperature. In the plastic or globular state, the cyclohexane molecules have rapid rotational and diffusional movements. They transmit this movement to dissolved free radicals. Conversely, measurements by electron spin resonance of the absolute movement of the radicals, and by electron nuclear double resonance of their movement relative to the cyclohexane molecules give very precise methods for local analyses of the movement present in the cyclohexane matrix. The principle of these techniques makes up the 'radical probe method'. (author) [French] Des solutions de radicaux libres stables, du type nitroxyde dans le cyclohexane ont ete etudiees, en fonction de la temperature. Les molecules de cyclohexane, dans l'etat plastique ou globulaire, sont animees de mouvements rapides de rotation sur elles-memes et de diffusion. Elles transmettent leur mobilite aux radicaux libres dissous. Reciproquement, la mesure du mouvement absolu des radicaux, a l'aide de la resonance paramagnetique electronique, et celle du mouvement relatif des radicaux et des molecules de cyclohexane par double resonance electronique-nucleaire, constituent des methodes tres precises pour analyser localement les mouvements presents dans la matrice de cyclohexane. Ce principe et ces techniques constituent la 'methode de la sonde radicalaire'. (auteur)
Zheng, X; Bosted, P; Deur, A; Drozdov, V; Fassi, L El; Kang, Hyekoo; Kovacs, K; Kuhn, S; Long, E; Phillips, S K; Ripani, M; Slifer, K; Smith, L C; Adikaram, D; Akbar, Z; Amaryan, M J; Pereira, S Anefalos; Asryan, G; Avakian, H; Badui, R A; Ball, J; Baltzell, N A; Battaglieri, M; Batourine, V; Bedlinskiy, I; Biselli, A S; Briscoe, W J; Bültmann, S; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Chen, J -P; Chetry, T; Choi, Seonho; Ciullo, G; Clark, L; Colaneri, L; Cole, P L; Compton, N; Contalbrigo, M; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Djalali, C; Dodge, G E; Dupre, R; Egiyan, H; Alaoui, A El; Elouadrhiri, L; Eugenio, P; Fanchini, E; Fedotov, G; Fersch, R; Filippi, A; Fleming, J A; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Gleason, C; Golovach, E; Gothe, R W; Griffioen, K A; Guidal, M; Guler, N; Guo, L; Hanretty, C; Harrison, N; Hattawy, M; Hicks, K; Holtrop, M; Hughes, S M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jenkins, D; Jiang, H; Jo, H S; Joosten, S; Keller, D; Khachatryan, G; Khandaker, M; Kim, A; Kim, W; Klein, F J; Kubarovsky, V; Lanza, L; Lenisa, P; Livingston, K; MacGregor, I J D; Markov, N; McKinnon, B; Mirazita, M; Mokeev, V; Movsisyan, A; Munevar, E; Camacho, C Munoz; Murdoch, G; Nadel-Turonski, P; Net, L A; Ni, A; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Paolone, M; Paremuzyan, R; Park, K; Pasyuk, E; Peng, P; Pisano, S; Pogorelko, O; Price, J W; Puckett, A J R; Raue, B A; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schumacher, R A; Sharabian, Y G; Skorodumina, Iu; Smith, G D; Sokhan, D; Sparveris, N; Stankovic, I; Strakovsky, I I; Strauch, S; Taiuti, M; Tian, Ye; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Weinstein, L B; Wood, M H; Zachariou, N; Zhang, J
2016-01-01
We report measurements of target- and double-spin asymmetries for the exclusive channel $\\vec e\\vec p\\to e\\pi^+ (n)$ in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH$_3$ target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3 and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low $Q^2$ range from $0.0065$ to $0.35$ (GeV$/c$)$^2$. The $Q^2$ access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as $6^\\circ$. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.
Zheng, X.; Adhikari, K. P.; Bosted, P.; Deur, A.; Drozdov, V.; El Fassi, L.; Kang, Hyekoo; Kovacs, K.; Kuhn, S.; Long, E.; Phillips, S. K.; Ripani, M.; Slifer, K.; Smith, L. C.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chen, J.-P.; Chetry, T.; Choi, Seonho; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovach, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Pisano, S.; Pogorelko, O.; Price, J. W.; Puckett, A. J. R.; Raue, B. A.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration
2016-10-01
We report measurements of target- and double-spin asymmetries for the exclusive channel e ⃗p ⃗→e π+(n ) in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH3 target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3, and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low Q2 range from 0.0065 to 0.35 (GeV/c ) 2 . The Q2 access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as 6∘. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID, and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.
Nanda, Kaushik D.; Krylov, Anna I.
2017-06-01
We present static polarizabilities and two-photon absorption (2PA) cross sections for the low-lying electronic states of prototypical diradicals such as benzynes and analogues of m-xylylene and p-quinodimethane computed with the spin-flip equation-of-motion coupled-cluster singles and doubles (EOM-SF-CCSD) method. The static polarizabilities were calculated as analytic second derivatives of the EOM energies, and the 2PA cross sections were calculated using the expectation-value approach. We explain the trends in the nonlinear responses of the SF target states by constructing few-states models based on truncated sum-over-states expressions for these nonlinear properties. By using a Huckel-type treatment of the frontier molecular orbitals that host the unpaired electrons, we rationalize the trends in the dipole interactions between the SF target states relevant in the few-states models. We demonstrate the correlation between the nonlinear responses of these electronic states and the diradical character.
Hu, Kaifeng; Vögeli, Beat; Clore, G Marius
2007-05-02
A carbon-detected TROSY-optimized experiment correlating 1HN, 15N, and 13C' resonances, referred to as c-TROSY-HNCO is presented, in which the 1HN and 15N TROSY effects are maintained in both indirect dimensions, while the directly detected 13C' is doubly TROSY-optimized with respect to 1HN and 15N. A new strategy for sensitivity enhancement, the so-called double echo-antiecho (dEA), is described and implemented in the c-TROSY-HNCO experiment. dEA offers sensitivity enhancement of square root of 2 in both indirect dimensions and is generally applicable to many multidimensional experiments. A carbon-detected HNCO experiment, c-HNCO, without TROSY optimization and sensitivity enhancement is also designed for comparison purposes. Relaxation simulations show that for a protein with a rotational correlation time of 10 ns or larger, the c-TROSY-HNCO experiment displays comparable or higher signal-to-noise (S/N) ratios than the c-HNCO experiment, although the former selects only 1/4 of the initial magnetization relative to the later. The high resolution afforded in the directly detected carbon dimension allows direct measurement of the doublet splitting to extract 1JCalphaC' scalar and 1DCalphaC' residual dipolar couplings. Simulations indicate that the c-TROSY-HNCO experiment offers higher precision (lower uncertainty) compared to the c-HNCO experiment for larger proteins. The experiments are applied to 15N/13C/2H/[Leu,Val]-methyl-protonated IIBMannose, a protein of molecular mass 18.6 kDa with a correlation time of approximately 10 ns at 30 degrees C. The experimental pairwise root-mean-square deviation for the measured 1JCalphaC' couplings obtained from duplicate experiments is 0.77 Hz. By directly measuring the doublet splitting, the experiments described here are expected to be much more tolerant to nonuniform values of 1JCalphaC' (or 1JCalphaC' + 1DCalphaC' for aligned samples) and pulse imperfections due to the smaller number of applied pulses in the "out
Curtright, T.L., E-mail: curtright@miami.edu [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); Van Kortryk, T.S., E-mail: vankortryk@gmail.com [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815 (United States); Zachos, C.K., E-mail: zachos@anl.gov [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815 (United States)
2017-02-05
The number of times spin s appears in the Kronecker product of n spin j representations is computed, and the large n asymptotic behavior of the result is obtained. Applications are briefly sketched. - Highlights: • We give a self-contained derivation of the spin multiplicities that occur in n-fold tensor products of spin-j representations. • We make use of group characters, properties of special functions, and asymptotic analysis of integrals. • We emphasize patterns that arise when comparing different values of j, and asymptotic behavior for large n. • Our methods and results should be useful for various statistical and quantum information theory calculations.
A highly sensitive spin-valve transistor
Erve, van 't O.M.J.; Vlutters, R.; Anil Kumar, P.S.; Kim, S.D.; Jansen, R.; Lodder, J.C.; Hadjipanayis, G.C.
2001-01-01
In this paper we present a spin-valve transistor made with a silicon on insulator wafer as emitter and a double sided polished Si wafer as collector. Using vacuum metal bonding we obtain a three terminal device in which a spin-valve layer is sandwiched between two Si wafers. We measure a 217% change
Del Bene, Janet E; Alkorta, Ibon; Elguero, José
2009-01-13
Ab initio EOM-CCSD and SOPPA calculations with the Ahlrichs (qzp,qz2p) basis set have been carried out to evaluate one-, two-, and three-bond spin-spin coupling constants for molecules HmXYHn and HmXYHn for X, Y = (13)C, (15)N, and (17)O, and selected (19)F-substituted derivatives. In the great majority of cases, EOM-CCSD one-bond C-C, C-N, C-O, C-F, N-N, N-O, and N-F coupling constants and three-bond F-F coupling constants are smaller in absolute value than the corresponding SOPPA coupling constants, with the EOM-CCSD values in better agreement with experimental data. SOPPA tends to significantly overestimate the absolute values of large one- and three-bond couplings involving fluorine. The majority of two-bond SOPPA coupling constants are in better agreement with experiment than EOM-CCSD, although differences between EOM-CCSD and experimental values are not dramatic. A statistical analysis of thirty EOM-CCSD and SOPPA coupling constants versus experimental coupling constants demonstrates that better agreement with experiment is found when EOM-CCSD is the computational method.
Engle, Jonathan
2013-01-01
The spin foam framework provides a way to define the dynamics of canonical loop quantum gravity in a spacetime covariant way, by using a path integral over histories of quantum states which can be interpreted as `quantum space-times'. This chapter provides a basic introduction to spin foams aimed principally at beginning graduate students and, where possible, at broader audiences.
Bovier, Anton
2007-01-01
Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.
Bouchiat, C.; Piketty, C.A. (Lab. de Physique Theorique, Ecole Normale Superieure, 75 - Paris (France))
1991-10-24
We present first a computation of the nuclear anapole moment of thallium by a method developed previously by the authors. Then we perform a detailed analysis of the spin dependent parity violating electron-nucleon potential generated by the hyperfine coupling perturbation upon the pseudoscalar interaction of the electron with the weak charge of the nucleus. This effect is found to be of order {alpha}G{sub F}A{sup 2/3} and represents, depending upon the nucleus, (10-70)% of the anapole moment contribution. In the case of thallium, it compensates almost exactly the contribution associated with the axial hadronic neutral current. This fact, together with other arguments given in the paper, makes thallium a favoured candidate for the anapole moment search provided accurate enough experiments can be performed. (orig.).
Bouchiat, C.; Piketty, C. A.
1991-10-01
We present first a computation of the nuclear anapole moment of thallium by a method developed previously by the authors. Then we perform a detailed analysis of the spin dependent parity violating electron-nucleon potential generated by the hyperfine coupling perturbation upon the pseudoscalar interaction of the electron with the weak charge of the nucleus. This effect is found to be of order αG FA {2}/{3} and represents, depending upon the nucleus, (10-70)% of the anapole moment contribution. In the case of thallium, it compensates almost exactly the contribution associated with the axial hadronic neutral current. This fact, together with other arguments given in the paper, makes thallium a favoured candidate for the anapole moment search provided accurate enough experiments can be performed.
Calculations of the indirect nuclear spin-spin coupling constants of PbH4
Kirpekar, Sheela; Sauer, Stephan P. A.
1999-01-01
We report ab initio calculations of the indirect nuclear spin-spin coupling constants of PbH4 using a basis set which was specially optimized for correlated calculations of spin-spin coupling constants. All nonrelativistic contributions and the most important part of the spin-orbit correction were...... approximation and the second-order polarization propagator approximation with coupled-cluster singles and doubles amplitudes. The effects of nuclear motion were investigated by calculating the coupling constants as a function of the totally symmetric stretching coordinate. We find that the Fermi contact term...
TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect
Saburo Takahashi and Sadamichi Maekawa
2008-01-01
Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.
Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael
2004-01-01
This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...
Radiative corrections and parity violating electron-nucleon scattering
S. Barkanova; A. Aleksejevs; P.G. Blunden
2002-11-01
Radiative corrections to the parity-violating asymmetry measured in elastic electron-proton scattering are analyzed in the framework of the Standard Model. We include the complete set of one-loop contributions to one quark current amplitudes. The contribution of soft photon emission to the asymmetry is also calculated, giving final results free of infrared divergences. The one quark radiative corrections, when combines with previous work on many quark effects and recent SAMPLE experimental data, are used to place some new constraints on electroweak form factors of the nucleon.
Radiative corrections and parity-violating electron-nucleon scattering
Barkanova, S; Blunden, P G
2002-01-01
Radiative corrections to the parity-violating asymmetry measured in elastic electron-proton scattering are analyzed in the framework of the Standard Model. We include the complete set of one-loop contributions to one quark current amplitudes. The contribution of soft photon emission to the asymmetry is also calculated, giving final results free of infrared divergences. The one quark radiative corrections, when combined with previous work on many quark effects and recent SAMPLE experimental data, are used to place some new constraints on electroweak form factors of the nucleon.
Conceptual design study of the GSI electron-nucleon collider
NONE
1997-07-01
Design concepts, beam-beam instability, ion bunch cooling, intrabeam scattering, conventional collective effects, lattice design, polarization control, injection chain, basic technical systems, cost estimations, time schedule.
Classical gravitational spin-spin interaction
Bonnor, W. B.
2002-01-01
I obtain an exact, axially symmetric, stationary solution of Einstein's equations for two massless spinning particles. The term representing the spin-spin interaction agrees with recently published approximate work. The spin-spin force appears to be proportional to the inverse fourth power of the coordinate distance between the particles.
Spin-Orbit induced semiconductor spin guides
Valin-Rodriguez, Manuel; Puente, Antonio; Serra, Llorens
2002-01-01
The tunability of the Rashba spin-orbit coupling allows to build semiconductor heterostructures with space modulated coupling intensities. We show that a wire-shaped spin-orbit modulation in a quantum well can support propagating electronic states inside the wire only for a certain spin orientation and, therefore, it acts as an effective spin transmission guide for this particular spin orientation.
Sun, Qing-feng; Guo, Hong; Wang, Jian
2003-06-27
We propose and investigate a spin-cell device which provides the necessary spin-motive force to drive a spin current for future spintronic circuits. Our spin cell has four basic characteristics: (i) it has two poles so that a spin current flows in from one pole and out from the other pole, and in this way a complete spin circuit can be established; (ii) it has a source of energy to drive the spin current; (iii) it maintains spin coherence so that a sizable spin current can be delivered; (iv) it drives a spin current without a charge current. The proposed spin cell for spin current should be realizable using technologies presently available.
Localization of matter and fermion resonances on double walls
Liang, Jun; Duan, Yi-Shi
2009-10-01
We investigate the possibility of localizing various matter fields on the double walls. For spin 0 scalar field, massless zero mode can be normalized on the double walls. However, for spin 1 vector field, the zero mode is not localized on the double walls. In the paper [C.A.S. Almeida, M.M. Ferreira Jr., A.R. Gomes, R. Casana, arxiv:arXiv:0901.3543 [hep-th
Localization of matter and fermion resonances on double walls
Liang Jun, E-mail: liangjunbeijing@yahoo.com.c [Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000 (China); Duan Yishi [Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000 (China)
2009-10-26
We investigate the possibility of localizing various matter fields on the double walls. For spin 0 scalar field, massless zero mode can be normalized on the double walls. However, for spin 1 vector field, the zero mode is not localized on the double walls. In the paper [C.A.S. Almeida, M.M. Ferreira Jr., A.R. Gomes, R. Casana, (arXiv:0901.3543) [hep-th
Positivity bounds on double parton distributions
Diehl, Markus; Kasemets, Tomas
2013-03-15
Double hard scattering in proton-proton collisions is described in terms of double parton distributions. We derive bounds on these distributions that follow from their interpretation as probability densities, taking into account all possible spin correlations between two partons in an unpolarized proton. These bounds constrain the size of the polarized distributions and can for instance be used to set upper limits on the effects of spin correlations in double hard scattering. We show that the bounds are stable under leading-order DGLAP evolution to higher scales.
Complete spin contamination-free MP2 method
Nishida, Manami; Lim, Fang-Han; Hori, Yuta; Ida, Tomonori; Mizuno, Motohiro
2017-02-01
To improve the unrestricted second-order Møller-Plesset (UMP2) method, we propose a method in which spin contamination is eliminated due to spin adaptation of the double excitation space based on the unitary group approach (UGA), because the UMP2 calculations intrinsically involve spin contamination from the double excitation space. Numerical results for the activation energies of several radical reactions show that this UGA-UMP2 method offers substantial improvement over the UMP2 method. Furthermore, the UGA-SUMP2 method, which completely eliminates the spin contamination from both the reference and excitation space present in UMP2 calculations, is also formulated.
Spin squeezing in nonlinear spin coherent states
Wang, Xiaoguang
2001-01-01
We introduce the nonlinear spin coherent state via its ladder operator formalism and propose a type of nonlinear spin coherent state by the nonlinear time evolution of spin coherent states. By a new version of spectroscopic squeezing criteria we study the spin squeezing in both the spin coherent state and nonlinear spin coherent state. The results show that the spin coherent state is not squeezed in the x, y, and z directions, and the nonlinear spin coherent state may be squeezed in the x and...
Brahms, N
2010-01-01
The dynamics of a large quantum spin coupled parametrically to an optical resonator is treated in analogy with the motion of a cantilever in cavity optomechanics. New spin optodynamic phenonmena are predicted, such as cavity-spin bistability, optodynamic spin-precession frequency shifts, coherent amplification and damping of spin, and the spin optodynamic squeezing of light.
Wigner function studies of spin transport in dilute magnetic semiconductor barrier structures
Grubin, Harold L.
2004-12-01
The spin dependent Wigner function is implemented to obtain the IV characteristics of a double barrier resonant tunneling diode with DMS layers. The structure distinguishes between spin-up and spin-down carriers, each of which experiences resonance at different magnetic field dependent bias levels. The results demonstrate the magnetic field dependence of the IV characteristics and illustrate the magnetic field dependence of relative spin-up and spin-down carriers.
Spin-Circuit Representation of Spin Pumping
Roy, Kuntal
2017-07-01
Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.
A coherent beam splitter for electronic spin states.
Petta, J R; Lu, H; Gossard, A C
2010-02-05
Rapid coherent control of electron spin states is required for implementation of a spin-based quantum processor. We demonstrated coherent control of electronic spin states in a double quantum dot by sweeping an initially prepared spin-singlet state through a singlet-triplet anticrossing in the energy-level spectrum. The anticrossing serves as a beam splitter for the incoming spin-singlet state. When performed within the spin-dephasing time, consecutive crossings through the beam splitter result in coherent quantum oscillations between the singlet state and a triplet state. The all-electrical method for quantum control relies on electron-nuclear spin coupling and drives single-electron spin rotations on nanosecond time scales.
Circuit quantum electrodynamics with a spin qubit.
Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R
2012-10-18
Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.
Diffractive vector meson leptoproduction and spin effects
Goloskokov, S V
2006-01-01
We analyse spin effects in diffractive vector meson leptoproduction at small $x$ on the basis of the generalized parton distribution (GPD) approach. We take into account quark transverse degrees of freedom in the hard subprocess. We calculate amplitudes for the longitudinally and transversely polarized photons and vector mesons. Our results on the cross section and spin density matrix elements (SDME) are in fair agreement with the DESY experiments. Predictions for HERMES and COMPASS energy range are made. The predicted double spin longitudinal $A_{LL}$ asymmetry is not small at HERMES energies
Daly, Ruth A
2009-01-01
Beam powers and black hole masses of 48 extended radio sources are combined to obtain lower bounds on the spins and magnetic field strengths of supermassive black holes. This is done in the context of the models of Blandford & Znajek (1977) (the 'BZ' model) and Meier (1999); a parameterization for bounds in the context of other models is suggested. The bounds obtained for very powerful classical double radio sources in the BZ model are consistent with black hole spins of order unity for sources at high redshift. The black hole spins are largest for the highest redshift sources and decrease for sources at lower redshift; the sources studied have redshifts between zero and two. Lower power radio sources associated with central dominant galaxies may have black hole spins that are significantly less than one. Combining this analysis with other results suggests that the maximum values of black hole spin associated with powerful radio galaxies decline from values of order unity at a redshift of 2 to values of o...
Spin currents, spin torques, and the concept of spin superfluidity
Rückriegel, Andreas; Kopietz, Peter
2017-03-01
In magnets with noncollinear spin configuration the expectation value of the conventionally defined spin current operator contains a contribution which renormalizes an external magnetic field and hence affects only the precessional motion of the spin polarization. This term, which has been named angular spin current by Sun and Xie [Phys. Rev. B 72, 245305 (2005)], 10.1103/PhysRevB.72.245305, does not describe the translational motion of magnetic moments. We give a prescription for how to separate these two types of spin transport and show that the translational movement of the spin is always polarized along the direction of the local magnetization. We also show that at vanishing temperature the classical magnetic order parameter in magnetic insulators cannot carry a translational spin current and elucidate how this affects the interpretation of spin supercurrents.
Davies ENDOR revisited: Enhanced sensitivity and nuclear spin relaxation
Tyryshkin, Alexei M.; Morton, John J. L.; Ardavan, Arzhang; Lyon, S. A.
2006-01-01
Over the past 50 years, electron-nuclear double resonance (ENDOR) has become a fairly ubiquitous spectroscopic technique, allowing the study of spin transitions for nuclei which are coupled to electron spins. However, the low spin number sensitivity of the technique continues to pose serious limitations. Here we demonstrate that signal intensity in a pulsed Davies ENDOR experiment depends strongly on the nuclear relaxation time T1n, and can be severely reduced for long T1n. We suggest a devel...
Elsaesser, Thomas; Kievit, Robert; Simons, Jan
1994-01-01
Double Trouble highlights the career of Dutch scriptwriter and television producer Chiem van Houweninge, well-known for his long-running TV comedy series and as author of episodes for TV detective series. Double Trouble gives Van Houweninge's own views on writing and filming in television prime impo
Elsaesser, Thomas; Kievit, Robert; Simons, Jan
1994-01-01
Double Trouble highlights the career of Dutch scriptwriter and television producer Chiem van Houweninge, well-known for his long-running TV comedy series and as author of episodes for TV detective series. Double Trouble gives Van Houweninge's own views on writing and filming in television prime
Spin-locking and cross-polarization under magic-angle spinning of uniformly labeled solids.
Hung, Ivan; Gan, Zhehong
2015-07-01
Spin-locking and cross-polarization under magic-angle spinning are investigated for uniformly (13)C and (15)N labeled solids. In particular, the interferences from chemical shift anisotropy, and (1)H heteronuclear and (13)C homonuclear dipolar couplings are identified. The physical origin of these interferences provides guidelines for selecting the best (13)C and (15)N polarization transfer rf fields. Optimal settings for both the zero- and double-quantum cross-polarization transfer mechanisms are recommended.
ZHANG Peng-Fei; RUAN Tu-Nan
2001-01-01
A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.
Takemura, Yasutaka; Lee, Du-Yeong; Lee, Seung-Eun; Park, Jea-Gun
2016-12-01
For the double MgO based perpendicular magnetic tunneling junction (p-MTJ) spin-valves with a top Co2Fe6B2 free layer ex situ annealed at 400 °C, the tunneling-magnetoresistance ratio (TMR) strongly depended on the platinum (Pt) seed layer thickness (t Pt): it peaked (˜134%) at a specific t Pt (3.3 nm). The TMR ratio was initially and slightly increased from 113%-134% by the enhancement of the magnetic moment of the Co2Fe6B2 pinned layer when t Pt increased from 2.0-3.3 nm, and then rapidly decreased from 134%-38.6% by the degrading face-centered-cubic crystallinity of the MgO tunneling barrier when t Pt increased from 3.3-14.3 nm.
Magnetic Nanostructures Spin Dynamics and Spin Transport
Farle, Michael
2013-01-01
Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.
ENHANCING PROFITABILITY OF A SPINNING
MARSAL Feliu
2014-05-01
Full Text Available Systematic control of the rheological behavior of the ravings in an installation facility dynamometer constant elongation gradient is proposed in this paper. It is an application for all types of spinning both shortfibers as long fibers. Industrial experiments conducted show that this control drawing of the spinning frame is optimized, getting more regular yarns mass with greater industrial profitability. This work is applied to a spinning worsted manufactures fine yarns with high quality requirement The fundamental thesis of our work is that the rheological control of the roving, output from roving frame, either torsional or friction, helps to increase the profitability of the spinning frame and get higher quality yarns. Rheology is the science of movement of the fibers within a fibrous vein, is a sliver or roving from the graph tribocharging-elongation another fundamental concept appears in our analysis: the isocarric elongation. Empirically, we defined this elongation as the difference between the elongation percentage corresponding to half the determined maximum tribocharge on the ascending and descending branches of the tribo-charging elongation curve. The application of these techniques to former machines to roving frame in conventional wool process also allows us to adjust the machines with more speed, reducing the time and product (waste required a change in manufacturing. To increase, for example, the feed of a gill, increase the difficult y for drafting in the following step. These difficulties are directly related to the value of the doubling and drafting that applies: the more doubling and drafting, the greater the difficulty in later steps.
Continuous spin gauge field in (A)dS space
Metsaev, R R
2016-01-01
Totally symmetric continuous spin field propagating in (A)dS is studied. Lagrangian gauge invariant formulation for such field is developed. Lagrangian of continuous spin field is constructed in terms of double traceless tensor fields, while gauge transformations are constructed in terms of traceless gauge transformation parameters. de Donder like gauge condition that leads to simple gauge fixed Lagrangian is found. Gauge-fixed Lagrangian invariant under global BRST transformations is presented. The BRST Lagrangian is used for computation of a partition function. It is demonstrated that the partition function of the continuous spin field is equal to one. Various decoupling limits of the continuous spin field are also studied.
Decoherence dynamics of a single spin versus spin ensemble
Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.
2008-01-01
We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian free-induct
Decoherence dynamics of a single spin versus spin ensemble
Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.
2008-01-01
We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian
Spin-polarized spin excitation spectroscopy
Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J, E-mail: lothseb@us.ibm.com, E-mail: heinrich@almaden.ibm.com [IBM Research Division, Almaden Research Center, San Jose, CA 95120 (United States)
2010-12-15
We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu{sub 2}N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.
Magnons, Spin Current and Spin Seebeck Effect
Maekawa, Sadamichi
2012-02-01
When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).
Entangled spins and ghost-spins
Jatkar, Dileep P
2016-01-01
We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in arXiv:1602.06505 [hep-th] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves), the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the gho...
Lv, Yi-Fei; Xiang, Jian-Yong; Wen, Fu-Sheng; Lv, Wei-Ming; Hu, Wen-Tao; Liu, Zhong-Yuan
2015-03-01
Single phase of Fe3+-doped α-Ga2-xFexO3 (α-GFxO, x = 0.1, 0.2, 0.3, 0.4) is synthesized by treating the β-Ga2-xFexO3 (β-GFxO) precursors at high temperatures and high pressures. Rietveld refinements of the X-ray diffraction data show that the lattice constants increase monotonically with the increase of Fe3+ content. Calorimetric measurements show that the temperature of the phase transition from α-GFxO to β-GFxO increases, while the associated enthalpy change decreases upon increasing Fe3+ content. The optical energy gap deduced from the reflectance measurement is found to decrease monotonically with the increase in Fe3+ content. From the measurements of magnetic field-dependent magnetization and temperature-dependent inverse molar susceptibility, we find that the superexchange interaction between Fe3+ ions is antiferromagnetic. Remnant magnetization is observed in the Fe3+-doped α-GFxO and is attributed to the spin glass in the magnetic sublattice. At high Fe3+ doping level (x = 0.4), two evident peaks are observed in the image part of the AC susceptibility . The frequency dependence in intensity of these two peaks as well as two spin freezing temperatures observed in the DC magnetization measurements of α-GF0.4O is suggested to be the behavior of two spin glasses. Project supported by the National Basic Research Program of China (Grant No. 2010CB731605), the National Science Fund for Distinguished Young Scholars of China (Grant No. 51025103), the National Natural Science Foundation of China (Grant Nos. 51172198 and 51102206), the Natural Science Foundation of Hebei Province, China (Grant No. E2014203144), the Science Foundation for the Excellent Youth Scholars from Universities and Colleges of Hebei Province, China (Grant No. YQ2014009), and the Research Program of the College Science & Technology of Hebei Province, China (Grant No. QN2014047).
Allada, K; Aniol, K; Annand, J R M; Averett, T; Benmokhtar, F; Bertozzi, W; Bradshaw, P C; Bosted, P; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J -P; Chen, W; Chirapatpimol, K; Chudakov, E; Cisbani, E; Cornejo, J C; Cusanno, F; Dalton, M; Deconinck, W; de Jager, C W; De Leo, R; Deng, X; Deur, A; Ding, H; Dolph, P A M; Dutta, C; Dutta, D; Fassi, L El; Frullani, S; Gao, H; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Guo, L; Hamilton, D; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, J; Huang, M; Ibrahim, H F; Iodice, M; Jiang, X; Jin, G; Jones, M K; Katich, J; Kelleher, A; Kim, W; Kolarkar, A; Korsch, W; LeRose, J J; Li, X; Li, Y; Lindgren, R; Liyanage, N; Long, E; Lu, H -J; Margaziotis, D J; Markowitz, P; Marrone, S; McNulty, D; Meziani, Z -E; Michaels, R; Moffit, B; Camacho, C Munoz; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; Peng, J -C; Phillips, S K; Posik, M; Puckett, A J R; Qian, X; Qiang, Y; Rakhman, A; Ransome, R; Riordan, S; Saha, A; Sawatzky, B; Schulte, E; Shahinyan, A; Shabestari, M H; Sirca, S; Stepanyan, S; Subedi, R; Sulkosky, V; Tang, L -G; Tobias, A; Urciuoli, G M; Vilardi, I; Wang, K; Wang, Y; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, B; Zheng, X; Zhu, L; Zhu, X; Zong, X
2013-01-01
We report the first measurement of target single-spin asymmetries (A$_N$) in the inclusive hadron production reaction, $e $+$ ^3\\text{He}^{\\uparrow}\\rightarrow h+X$, using a transversely polarized $^3$He target at an electron-nucleon center-of-mass energy $\\sqrt{s}$=3.45 GeV. The experiment was conducted at Jefferson Lab in Hall A using a 5.9-GeV electron beam. Three types of hadrons ($\\pi^{\\pm}$, $\\text{K}^{\\pm}$ and proton) were detected with an average momentum $$=2.35 GeV/c, and an average transverse momentum $$=0.64 GeV/c. The observed asymmetry strongly depends on the type of hadron. A positive asymmetry is observed for $\\pi^+$ and $\\text{K}^+$. A negative asymmetry is observed for $\\pi^{-}$. The magnitudes of the asymmetries follow $|A^{\\pi^-}| < |A^{\\pi^+}| < |A^{K^+}|$. The K$^{-}$ and proton asymmetries are consistent with zero within the experimental uncertainties. The $\\pi^{+}$ and $\\pi^{-}$ asymmetries measured for the $^3$He target and extracted for neutrons are opposite in sign with a sma...
Spin Rotation of Formalism for Spin Tracking
Luccio,A.
2008-02-01
The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.
Physics and application of persistent spin helix state in semiconductor heterostructures
Kohda, Makoto; Salis, Gian
2017-07-01
In order to utilize the spin degree of freedom in semiconductors, control of spin states and transfer of the spin information are fundamental requirements for future spintronic devices and quantum computing. Spin orbit (SO) interaction generates an effective magnetic field for moving electrons and enables spin generation, spin manipulation and spin detection without using external magnetic field and magnetic materials. However, spin relaxation also takes place due to a momentum dependent SO-induced effective magnetic field. As a result, SO interaction is considered to be a double-edged sword facilitating spin control but preventing spin transport over long distances. The persistent spin helix (PSH) state solves this problem since uniaxial alignment of the SO field with SU(2) symmetry enables the suppression of spin relaxation while spin precession can still be controlled. Consequently, understanding the PSH becomes an important step towards future spintronic technologies for classical and quantum applications. Here, we review recent progress of PSH in semiconductor heterostructures and its device application. Fundamental physics of SO interaction and the conditions of a PSH state in semiconductor heterostructures are discussed. We introduce experimental techniques to observe a PSH and explain both optical and electrical measurements for detecting a long spin relaxation time and the formation of a helical spin texture. After emphasizing the bulk Dresselhaus SO coefficient γ, the application of PSH states for spin transistors and logic circuits are discussed.
Controlling the optical spin Hall effect with light
Lafont, O; Lewandowski, P; Kwong, N H; Chan, K P; Babilon, M; Leung, P T; Galopin, E; Lemaitre, A; Tignon, J; Schumacher, S; Baudin, E; Binder, R
2016-01-01
The optical spin Hall effect (OSHE) is a transport phenomenon of exciton polaritons in semiconductor microcavities, caused by the polaritonic spin-orbit interaction, that leads to the formation of spin textures. In the semiconductor cavity, the physical basis of the spin orbit coupling is an effective magnetic field caused by the splitting of transverse-electric and transverse-magnetic (TE-TM) modes. The spin textures can be observed in the near field (local spin distribution of polaritons), and as light polarization patterns in the more readily observable far field. For future applications in spinoptronic devices, a simple and robust control mechanism, which establishes a one-to-one correspondence between stationary incident light intensity and far-field polarization pattern, is needed. We present such a control scheme, which is made possible by a specific double-microcavity design.
Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi
2017-01-01
We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.
Incommensurate Spiral Order from Double-Exchange Interactions
Azhar, Maria; Mostovoy, Maxim
2017-01-01
The double-exchange model describing interactions of itinerant electrons with localized spins is usually used to explain ferromagnetism in metals. We show that for a variety of crystal lattices of different dimensionalities and for a wide range of model parameters, the ferromagnetic state is unstable against a noncollinear spiral magnetic order. We revisit the phase diagram of the double-exchange model on a triangular lattice and show in a large part of the diagram the incommensurate spiral state has a lower energy than the previously discussed commensurate states. These results indicate that double-exchange systems are inherently frustrated and can host unconventional spin orders.
Cederwall, Martin
2016-01-01
A geometry of superspace corresponding to double field theory is developed, with type II supergravity in D=10 as the main example. The formalism is based on an orthosymplectic extension OSp(d,d|2s) of the continuous T-duality group. Covariance under generalised super-diffeomorphisms is manifest. Ordinary superspace is obtained as a solution of the orthosymplectic section condition. A systematic study of curved superspace Bianchi identities is performed, and a relation to a double pure spinor superfield cohomology is established. A Ramond-Ramond superfield is constructed as an infinite-dimensional orthosymplectic spinor. Such objects in minimal orbits under the OSp supergroup ("pure spinors") define super-sections.
Gratia, Pierre [Department of Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Hu, Wayne [Department of Astronomy and Astrophysics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Joyce, Austin [Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Ribeiro, Raquel H. [School of Physics and Astronomy, Queen Mary University of London,Mile End Road, London, E1 4NS (United Kingdom)
2016-06-15
Attempts to modify gravity in the infrared typically require a screening mechanism to ensure consistency with local tests of gravity. These screening mechanisms fit into three broad classes; we investigate theories which are capable of exhibiting more than one type of screening. Specifically, we focus on a simple model which exhibits both Vainshtein and kinetic screening. We point out that due to the two characteristic length scales in the problem, the type of screening that dominates depends on the mass of the sourcing object, allowing for different phenomenology at different scales. We consider embedding this double screening phenomenology in a broader cosmological scenario and show that the simplest examples that exhibit double screening are radiatively stable.
Najdanova, Marija; Gräsing, Daniel; Alia, A; Matysik, Jörg
2017-07-26
The origin of the functional symmetry break in bacterial photosynthesis challenges since several decades. Although structurally very similar, the two branches of cofactors in the reaction center (RC) protein complex act very differently. Upon photochemical excitation, an electron is transported along one branch, while the other remains inactive. Photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) (13) C NMR revealed that the two bacteriochlorophyll cofactors forming the "Special Pair" donor dimer are already well distinguished in the electronic ground state. These previous studies are relying solely on (13) C-(13) C correlation experiments as radio-frequency-driven recoupling (RFDR) and dipolar-assisted rotational resonance (DARR). Obviously, the chemical-shift assignment is difficult in a dimer of tetrapyrrole macrocycles, having eight pyrrole rings of similar chemical shifts. To overcome this problem, an INADEQUATE type of experiment using a POST C7 symmetry-based approach is applied to selectively isotope-labeled bacterial RC of Rhodobacter (R.) sphaeroides wild type (WT). We, therefore, were able to distinguish unresolved sites of the macromolecular dimer. The obtained chemical-shift pattern is in-line with a concentric assembly of negative charge within the common center of the Special Pair supermolecule in the electronic ground state. © 2017 The American Society of Photobiology.
Spin Transport by Collective Spin Excitations
Hammel, P. Chris
We report studies of angular momentum transport in insulating materials. Our measurements reveal efficient spin pumping from high wavevector k spin waves in thin film Y3Fe5O12 (YIG): spin pumping is independent of wavevector up to k ~ 20 μm-1. Optical detection of YIG FMR by NV centers in diamond reveals a role for spin waves in this insulator-to-insulator spin transfer process. Spin transport is typically suppressed by insulating barriers, but we find that fluctuating antiferromagnetic correlations enable efficient spin transport at nm-scale thicknesses in insulating antiferromagnets, even in the absence of long-range order, and that the spin decay length increases with the strength of the antiferromagnetic correlations. This research is supported by the U.S. DOE through Grants DE-FG02-03ER46054 and DE-SC0001304, by the NSF MRSEC program through Grant No. 1420451 and by the Army Research Office through Grant W911NF0910147.
Dynamic nuclear spin polarization
Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)
1996-11-01
Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.
Gutperle, Michael; Kraus, Per
2011-01-01
.... We find solutions that generalize the BTZ black hole and carry spin-3 charge. The black hole entropy formula yields a result for the asymptotic growth of the partition function at finite spin-3 chemical potential...
Arbitrary Spin Galilean Oscillator
Hagen, C R
2014-01-01
The so-called Dirac oscillator was proposed as a modification of the free Dirac equation which reproduces many of the properties of the simple harmonic oscillator but accompanied by a strong spin-orbit coupling term. It has yet to be extended successfully to the arbitrary spin S case primarily because of the unwieldiness of general spin Lorentz invariant wave equations. It is shown here using the formalism of totally symmetric multispinors that the Dirac oscillator can, however, be made to accommodate spin by incorporating it into the framework of Galilean relativity. This is done explicitly for spin zero and spin one as special cases of the arbitrary spin result. For the general case it is shown that the coefficient of the spin-orbit term has a 1/S behavior by techniques which are virtually identical to those employed in the derivation of the g-factor carried out over four decades ago.
Magnetism in Re-based ferrimagnetic double perovskites
Winkler, A.; Narayanan, N.; Mikhailova, D.; Bramnik, K. G.; Ehrenberg, H.; Fuess, H.; Vaitheeswaran, G.; Kanchana, V.; Wilhelm, F.; Rogalev, A.; Kolchinskaya, A.; Alff, L.
2009-07-01
We have investigated spin and orbital magnetic moments of the Re 5d ion in the double perovskites A2FeReO6 (A=Ba, Sr, Ca) by x-ray magnetic circular dichroism (XMCD) at the Re L2, 3 edges. In these ferrimagnetic compounds, an unusually large negative spin and positive orbital magnetic moment at the Re atoms was detected. The presence of a finite spin magnetic moment in a 'non-magnetic' double perovskite as observed in the double perovskite Sr2ScReO6 proves that Re has also a small, but finite intrinsic magnetic moment. We further show for the examples of Ba and Ca that the usually neglected alkaline earth ions undoubtedly also contribute to the magnetism in the ferrimagnetic double perovskites.
Magnetism in Re-based ferrimagnetic double perovskites
Winkler, A; Narayanan, N; Mikhailova, D; Bramnik, K G; Ehrenberg, H; Fuess, H; Kolchinskaya, A; Alff, L [Technische Universitaet Darmstadt, Petersenstrasse 23, 64287 Darmstadt (Germany); Vaitheeswaran, G; Kanchana, V [Royal Institute of Technology (KTH), Brinellvaegen 23, 10044 Stockholm (Sweden); Wilhelm, F; Rogalev, A [European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, BP 220, 38043 Grenoble Cedex 9 (France)], E-mail: alff@oxide.tu-darmstadt.de
2009-07-15
We have investigated spin and orbital magnetic moments of the Re 5d ion in the double perovskites A{sub 2}FeReO{sub 6} (A=Ba, Sr, Ca) by x-ray magnetic circular dichroism (XMCD) at the Re L{sub 2,3} edges. In these ferrimagnetic compounds, an unusually large negative spin and positive orbital magnetic moment at the Re atoms was detected. The presence of a finite spin magnetic moment in a 'non-magnetic' double perovskite as observed in the double perovskite Sr{sub 2}ScReO{sub 6} proves that Re has also a small, but finite intrinsic magnetic moment. We further show for the examples of Ba and Ca that the usually neglected alkaline earth ions undoubtedly also contribute to the magnetism in the ferrimagnetic double perovskites.
Control and measurement of electron spins in semiconductor quantum dots
Kouwenhoven, L.P.; Elzerman, J.M.; Hanson, R.; Willems van Beveren, L.H.; Vandersypen, L.M.K. [ERATO Mesoscopic Correlation Project, Delft University of Technology, Delft (Netherlands); Kavli Institute of Nanoscience Delft (Netherlands)
2006-11-15
We present an overview of experimental steps taken towards using the spin of a single electron trapped in a semiconductor quantum dot as a spin qubit [Loss and DiVincenzo, Phys. Rev. A 57, 120 (1998)]. Fabrication and characterization of a double quantum dot containing two coupled spins has been achieved, as well as initialization and single-shot read-out of the spin state. The relaxation time T {sub 1} of single-spin and two-spin states was found to be on the order of a millisecond, dominated by spin-orbit interactions. The time-averaged dephasing time T{sub 2}{sup *}, due to fluctuations in the ensemble of nuclear spins in the host semiconductor, was determined to be on the order of several tens of nanoseconds. Coherent manipulation of single-spin states can be performed using a microfabricated wire located close to the quantum dot, while two-spin interactions rely on controlling the tunnel barrier connecting the respective quantum dots [Petta et al., Science 309, 2180 (2005)]. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Cross, Rod
2013-01-01
Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…
Cross, Rod
2013-01-01
Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…
New Results from Spin Physics at RHIC
Fatemi, Renee
2009-05-01
The sign and magnitude of the gluon spin contribution (δG) to the spin of the proton has been a topic of intense interest and speculation since inclusive deep inelastic scattering experiments found the total quark spin contribution to be surprisingly small. Starting in 2002, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab has provided access to longitudinally and transversely polarized proton collisions. Both PHENIX and STAR, the two largest collaborations at RHIC, have used this data to complete a series of inclusive hadron and jet double spin asymmetry (ALL) measurements. The mid-rapidity 0̂ and jet results, now included in a global analysis of existing world data, are shown to provide significant constraints on δG within their range of kinematic sensitivity. Recent inclusive pion and jet ALL measurements will be presented. Plans to measure ALL in correlation channels, for example di-jets and photon-jets, and parity violating asymmetries for identified W^+/- in future longitudinal proton runs will be discussed. In addition to a successful δG program, the RHIC-Spin community is actively contributing to the new and rapidly expanding frontier within nucleon structure studies of transverse spin measurements. Quantum Chromodynamics predicts an extremely small (mq√s) spin asymmetry for leading hadron production in the reaction p^p->h+X. Contrary to expectations, transverse single-spin asymmetries (SSA) of up to 30% were discovered in forward particle production more than three decades ago, and surprisingly, asymmetries of the same magnitude have been found to persist at current RHIC center-of-mass energies. The most recent forward 0̂ and η SSA from STAR and PHENIX, as well as charged hadron measurements from the BRAHMS collaboration, will be discussed and compared with theoretical predictions.
2008-01-01
The government has been introducing a string of policies to stabilize the economy and cushion the impact of the global eco-nomic slowdown since October.These policies are generally deemed"timely"and"necessary,"but not a long-term cure for problems in China’s economy.Renowned economist Wu Jinglian says the country must address its"double imbalance"and further reform its economic growth mode.He made his comments at the First Annual Global Management Forum on December 6 in Shanghai.Excerptsf ollow:
双重轿抛1080°直旋站轿的训练研究%1080° Straight Double Spin Cast Sedan Sedan＇s Training and Research Station
徐润
2011-01-01
＂2009- 2012 International skill rating rules＂, the video game world by viewing the past, throw on a double car until 1080° rotation station sedan training research. Scoring rules require new cycle technology, the arts, are difficult to reach 10 points, which requires 2min30s into the whole time, the action must have a core of special difficulty. This is also the charm of movement skills, and also the new rule changes, complete set of one of the important artistic presentation.%结合《2009—2012国际技巧评分规则》，通过对以往世界比赛录像的观看，对双重轿抛1080°直旋站轿的训练进行研究。新周期的评分规则要求技术、艺术、难度都达到10分，这就要求在2min30s放入整套时间内，专项动作必须要有核心难度。这也是技巧运动的魅力所在，也是新规则变化后，完善整套编排艺术性的重要条件之一。
Inverse spin Hall effect by spin injection
Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.
2007-09-01
Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.
Spin supplementary conditions for spinning compact binaries
Mikóczi, Balázs
2016-01-01
We consider the different spin supplementary conditions (SSC) for a spinning compact binary with the leading-order spin-orbit (SO) interaction. The Lagrangian of the binary system can be constructed but it is acceleration-dependent in two cases of SSC. We rewrite the generalized Hamiltonian formalism proposed by Ostrogradsky and compute the conservative quantities and the dissipative part of relative motion during the gravitational radiation of each SSCs. We give the orbital elements and observed quantities of the SO dynamics, for instance the energy and the orbital angular momentum losses and waveforms and discuss their SSC dependence.
Mellado, Paula
Spin ice in magnetic pyrochlore oxides is a peculiar magnetic state. Like ordinary water ice, these materials are in apparent violation with the third law of thermodynamics, which dictates that the entropy of a system in thermal equilibrium vanishes as its temperature approaches absolute zero. In ice, a "zero-point" entropy is retained down to low temperatures thanks to a high number of low-energy positions of hydrogen ions associated with the Bernal-Fowler ice-rules. Spins in pyrochlore oxides Ho2Ti 2O7 and Dy2Ti2O7 exhibit a similar degeneracy of ground states and thus also have a sizable zero-point entropy. A recent discovery of excitations carrying magnetic charges in pyrochlore spin ice adds another interesting dimension to these magnets. This thesis is devoted to a theoretical study of a two-dimensional version of spin ice whose spins reside on kagome, a lattice of corner-sharing triangles. It covers two aspects of this frustrated classical spin system: the dynamics of artificial spin ice in a network of magnetic nanowires and the thermodynamics of crystalline spin ice. Magnetization dynamics in artificial spin ice is mediated by the emission, propagation and absorption of domain walls in magnetic nanowires. The dynamics shows signs of self-organized behavior such as avalanches. The theoretical model compares favorably to recent experiments. The thermodynamics of the microscopic version of spin ice on kagome is examined through analytical calculations and numerical simulations. The results show that, in addition to the high-temperature paramagnetic phase and the low-temperature phase with magnetic order, spin ice on kagome may have an intermediate phase with fluctuating spins and ordered magnetic charges. This work is concluded with a calculation of the entropy of kagome spin ice at zero temperature when one of the sublattices is pinned by an applied magnetic field and the system breaks up into independent spin chains, a case of dimensional reduction.
Ren Min; Zhang Lei; Hu Jiu-Ning; Dong Hao; Deng Ning; Chen Pei-Yi
2009-01-01
This paper proposes a symmetry ensemble model for the magnetic dynamics caused by spin transfer torque in nanoscale pseudo-spin-valves, in which individual spin moments in the free layer are considered as subsystems to form a spinor ensemble. The magnetization dynamics equation of the ensemble was developed. By analytically investigating the equation, many magnetization dynamics properties excited by polarized current reported in experiments, such as double spin wave modes and the abrupt frequency jump, can be successfully explained. It is pointed out that an external field is not necessary for spin wave emitting (SWE) and a novel perpendicular configuration structure can provide much higher SWE efficiency in zero magnetic field.
Exploring the Spin Structure of the Proton with Two-Body Partonic Scattering at RHIC
Sowinski, J
2007-01-01
The STAR collaboration at the Relativistic Heavy Ion Collider is using polarized proton beams at sqrt{s} = 200 GeV to study the spin structure of the proton. The first results for the double spin helicity dependence of inclusive jet production are presented along with projections for additional data taken in 2005 and 2006. When fully analyzed these data sets should place strong constraints on the possible contribution of gluonic spin to the proton spin as expressed by Delta G. Future studies using 2-jet or photon-jet coincidences to map out the gluon spin distribution vs. the gluon's momentum fraction of the proton are discussed.
Slow spin relaxation in dipolar spin ice.
Orendac, Martin; Sedlakova, Lucia; Orendacova, Alzbeta; Vrabel, Peter; Feher, Alexander; Pajerowski, Daniel M.; Cohen, Justin D.; Meisel, Mark W.; Shirai, Masae; Bramwell, Steven T.
2009-03-01
Spin relaxation in dipolar spin ice Dy2Ti2O7 and Ho2Ti2O7 was investigated using the magnetocaloric effect and susceptibility. The magnetocaloric behavior of Dy2Ti2O7 at temperatures where the orientation of spins is governed by ``ice rules`` (T Tice) revealed thermally activated relaxation; however, the resulting temperature dependence of the relaxation time is more complicated than anticipated by a mere extrapolation of the corresponding high temperature data [1]. A susceptibility study of Ho2Ti2O7 was performed at T > Tice and in high magnetic fields, and the results suggest a slow relaxation of spins analogous to the behavior reported in a highly polarized cooperative paramagnet [2]. [1] J. Snyder et al., Phys. Rev. Lett. 91 (2003) 107201. [2] B. G. Ueland et al., Phys. Rev. Lett. 96 (2006) 027216.
Spinning particles and higher spin field equations
Bastianelli, Fiorenzo; Corradini, Olindo; Latini, Emanuele
2015-01-01
Relativistic particles with higher spin can be described in first quantization using actions with local supersymmetry on the worldline. First, we present a brief review of these actions and their use in first quantization. In a Dirac quantization scheme the field equations emerge as Dirac constraints on the Hilbert space, and we outline how they lead to the description of higher spin fields in terms of the more standard Fronsdal-Labastida equations. Then, we describe how these actions can be extended so that the propagating particle is allowed to take different values of the spin, i.e. carry a reducible representation of the Poincar\\'e group. This way one may identify a four dimensional model that carries the same degrees of freedom of the minimal Vasiliev's interacting higher spin field theory. Extensions to massive particles and to propagation on (A)dS spaces are also briefly commented upon.
Johansson, Mikael P; Sundholm, Dage
2004-02-15
We recently performed detailed analyses of the electronic structure of low-spin iron porphyrins using density-functional theory (DFT). Both the spin-density distributions of the oxidized, ferric forms, as well as the changes in total charge density upon reduction to the ferrous forms have been explored. Here, we compare the DFT results with wave-function theory, more specifically, with the approximate singles and doubles coupled-cluster method (CC2). Different spin states are considered by studying representative models of low spin, intermediate spin, and high spin species. The CC2 calculations corroborate the DFT results; the spin density exhibits the same amount of molecular spin polarization, and the charge delocalization is of comparable magnitude. Slight differences in the descriptions are noted and discussed.
Nuclear spin interferences in bulk water at room temperature
Grucker, Jules; Belaga, Edward; Baudon, Jacques; Grucker, Daniel
2007-01-01
Nuclear spin interference effects generated in a macroscopic sample of 10ml degassed water are detected in a simple NMR experiment. A \\pi/2 - \\tau - \\pi/2 RF double pulse sequence (Ramsey sequence) is applied to the water sample immersed in a static magnetic field B0 " 4.7T. For a homogeneity of B0 of the order of \\Delta B0/B0 = 2 . 10^{-8}, the nuclear spin interference term is controlled with a maximum relative deviation of 9.7 %. These results are a first step to manipulation of nuclear spin coherence of water molecules.
Pulsed EPR in the method of spin labels and probes
Dzuba, Sergei A [Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)
2007-08-31
Various pulsed EPR in the method of spin labels and probes based on electron spin echo spectroscopy (spin echo envelope modulation through electron-nuclear interactions, electron-electron double resonance, echo detected EPR, etc.) are considered. These methods provide information on the conformations of complex biomolecules, nanostructure of matter, depth of water penetration into biological membranes, supramolecular structure of multicomponent systems (membrane-peptide, etc.), co-operative orientational dynamics of molecules and dynamic low-temperature transitions in disordered molecular media and biosystems.
Pulsed EPR in the method of spin labels and probes
Dzuba, Sergei A.
2007-08-01
Various pulsed EPR in the method of spin labels and probes based on electron spin echo spectroscopy (spin echo envelope modulation through electron-nuclear interactions, electron-electron double resonance, echo detected EPR, etc.) are considered. These methods provide information on the conformations of complex biomolecules, nanostructure of matter, depth of water penetration into biological membranes, supramolecular structure of multicomponent systems (membrane-peptide, etc.), co-operative orientational dynamics of molecules and dynamic low-temperature transitions in disordered molecular media and biosystems.
Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect
Danon, Jeroen
2013-08-06
Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.
Search for Spin Filtering By Electron Tunneling Through Ferromagnetic EuS Barriers in Pbs
Figielski, T.; Morawski, A.; Wosinski, T.; Wrotek, S.; Makosa, A.; Lusakowska, E.; Story, T.; Sipatov, A. Yu.; Szczerbakow, A.; Grasza, K.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Perpendicular transport through single- and double-barrier heterostructures consisting of ferromagnetic EuS layers embedded into PbS matrix was investigated. Manifestations of both resonant tunneling and spin filtering through EuS barrier have been observed.
Spin caloritronics in graphene
Ghosh, Angsula; Frota, H. O. [Department of Physics, Federal University of Amazonas, Av. Rodrigo Octavio 3000-Japiim, 69077-000 Manaus, AM (Brazil)
2015-06-14
Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
2015-07-15
Progress Report (ONR Award No. N00014-14-1-0804) Quantum Spin Gyroscope August 2014-July 2015 Report Type: Annual Report Primary Contact E-mail... Quantum Spin Gyroscope Grant/Contract Number: N00014-14-1-0804 Principal Investigator Name: Paola Cappellaro Program Manager: Richard Tommy Willis...required large volumes. Our project aims at overcoming these drawbacks by developing a novel solid-state quantum spin gyro- scope associated with the
Torczynski, John R.
2000-01-01
A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.
Spin dynamics of bilayer manganites
Tapan Chatterji
2004-07-01
The results of inelastic and quasi-elastic neutron scattering investigations on the 40% hole-doped quasi-2D bilayer manganites La1.2Sr1.8Mn2O7 have been reviewed. The complete set of exchange interactions have been determined on the basis of a localized Heisenberg model. However, the spin wave dispersion in La1.2Sr1.8Mn2O7 shows softening close to the zone boundary and are also heavily damped especially close to the zone boundary and deviate from that expected for a simple Heisenberg model. A minimal double exchange model including quantum corrections can reproduce these effects qualitatively but falls short of quantitative agreement.
Coupling spin qubits via superconductors
Leijnse, Martin; Flensberg, Karsten
2013-01-01
We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....
Picosecond Spin Seebeck Effect
Kimling, Johannes; Choi, Gyung-Min; Brangham, Jack T.; Matalla-Wagner, Tristan; Huebner, Torsten; Kuschel, Timo; Yang, Fengyuan; Cahill, David G.
2017-02-01
We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect in normal metal /Y3Fe5 O12 bilayers driven by an interfacial temperature difference between electrons and magnons. The measured time evolution of spin accumulation induced by laser excitation indicates transfer of angular momentum across normal metal /Y3Fe5 O12 interfaces on a picosecond time scale, too short for contributions from a bulk temperature gradient in an yttrium iron garnet. The product of spin-mixing conductance and the interfacial spin Seebeck coefficient determined is of the order of 108 A m-2 K-1 .
Picosecond spin Seebeck effect
Kimling, Johannes; Choi, Gyung-Min; Brangham, Jack T.; Matalla-Wagner, Tristan; Huebner, Torsten; Kuschel, Timo; Yang, Fengyuan; Cahill, David G.
2016-01-01
We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect driven by an interfacial temperature difference between itinerant electrons and magnons. The measured time-evolution of spin accumulation induced by laser-excitation indicates transfer of angular momentum across Au/Y$_3$Fe$_5$O$_{12}$ and Cu/Y$_3$Fe$_5$O$_{12}$ interfaces on a picosecond time-scale. The product of spin-mixing conductance and interfacial spin Seebeck coefficient determined is...
Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans
1975-01-01
The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...
Exchange bias in Fe/Cr double superlattices.
Jiang, J. S.; Felcher, G. P.; Inomata, A.; Goyette, R.; Nelson, C.; Bader, S. D.
1999-11-30
Utilizing the oscillatory interlayer exchange coupling in Fe/Cr superlattices, we have constructed ''double superlattice'' structures where a ferromagnetic (F) and an antiferromagnetic (AF) Fe/Cr superlattice are coupled through a Cr spacer. The minor hysteresis loops in the magnetization are shifted from zero field, i.e., the F superlattice is exchange biased by the AF one. The double superlattices are sputter-deposited with (211) epitaxy and possess uniaxial in-plane magnetic anisotropy. The magnitude of the bias field is satisfactorily described by the classic formula for collinear spin structures. The coherent structure and insensitivity to atomic-scale roughness makes it possible to determine the spin distribution by polarized neutron reflectivity, which confirms that the spin structure is collinear. The magnetic reversal behavior of the double superlattices suggests that a realistic model of exchange bias needs to address the process of nucleating local reverse domains.
Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.
2016-06-14
A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.
Kwak, Seung Ki
The existence of momentum and winding modes of closed string on a torus leads to a natural idea that the field theoretical approach of string theory should involve winding type coordinates as well as the usual space-time coordinates. Recently developed double field theory is motivated from this idea and it implements T-duality manifestly by doubling the coordinates. In this thesis we will mainly focus on the double field theory formulation of different string theories in its low energy limit: bosonic, heterotic, type II and its massive extensions, and N = 1 supergravity theory. In chapter 2 of the thesis we study the equivalence of different formulations of double field theory. There are three different formulations of double field theory: background field E formulation, generalized metric H formulation, and frame field EAM formulation. Starting from the frame field formalism and choosing an appropriate gauge, the equivalence of the three formulations of bosonic theory are explicitly verified. In chapter 3 we construct the double field theory formulation of heterotic strings. The global symmetry enlarges to O( D, D + n) for heterotic strings and the enlarged generalized metric features this symmetry. The structural form of bosonic theory can directly be applied to the heterotic theory with the enlarged generalized metric. In chapter 4 we develop a unified framework of double field theory for type II theories. The Ramond-Ramond potentials fit into spinor representations of the duality group O( D, D) and the theory displays Spin+( D, D) symmetry with its self-duality relation. For a specific form of RR 1-form the theory reduces to the massive deformation of type IIA theory due to Romans. In chapter 5 we formulate the N = 1 supersymmetric extension of double field theory including the coupling to n abelian vector multiplets. This theory features a local O(1, 9 + n) x O(1, 9) tangent space symmetry under which the fermions transform. (Copies available exclusively from
Close, Frank
1995-01-01
This talk summarises the discussions during the conference on the spin structure of the nucleon held at Erice; July 1995. The summary focuses on where we have come, where we are now, and the emerging questions that direct where we go next in the quest to understand the nucleon spin.
Antiferromagnetic spin Seebeck effect.
Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand
2016-03-03
We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.
Antiferromagnetic Spin Seebeck Effect
Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand
2016-03-01
We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2 . A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30 nm )/Pt (4 nm) grown by molecular beam epitaxy on a MgF2 (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9 T ) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.
Single spin magnetic resonance
Wrachtrup, Jörg; Finkler, Amit
2016-08-01
Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.
Hawkes, N
1999-01-01
RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).
Bahr, Benjamin; Kamiński, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy
2010-01-01
The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as the main tool. An equivalence relation we impose in the set of the operator spin foams allows to split the faces and the edges of the foams. The consistency with that relation requires introduction of the (familiar for the BF theory) face amplitude. The operator spin foam models are defined quite generally. Imposing a maximal symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with demanding consistency with splitting the edges, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the EPRL or FK models. That makes...
Double Conditional Expectation
HU Di-he
2004-01-01
The concept of double conditional expectation is introduced. A series of properties for the double conditional expectation are obtained several convergence theorems and Jensen inequality are proved. Finally we discuss the special cases and application for double conditional expectation.
Antiferromagnetic spin Seebeck Effect
Wu, SM; W. Zhang; Kc, A; Borisov, P.; Pearson, JE; Jiang, JS; Lederman, D.; Hoffmann, A.; Bhattacharya, A
2015-01-01
We report on the observation of the spin Seebeck effect in antiferromagnetic MnF_{2}. A device scale on-chip heater is deposited on a bilayer of MnF_{2} (110) (30 nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF_{2} (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF_{2} through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop t...
Fractionalized spin-wave continuum in kagome spin liquids
Mei, Jia-Wei; Wen, Xiao-Gang
Motivated by spin-wave continuum (SWC) observed in recent neutron scattering experiments in Herbertsmithite, we use Gutzwiller-projected wave functions to study dynamic spin structure factor S (q , ω) of spin liquid states on the kagome lattice. Spin-1 excited states in spin liquids are represented by Gutzwiller-projected two-spinon excited wave functions. We investigate three different spin liquid candidates, spinon Fermi-surface spin liquid (FSL), Dirac spin liquid (DSL) and random-flux spin liquid (RSL). FSL and RSL have low energy peaks in S (q , ω) at K points in the extended magnetic Brillouin zone, in contrast to experiments where low energy peaks are found at M points. There is no obviuos contradiction between DSL and neutron scattering measurements. Besides a fractionalized spin (i.e. spin-1/2), spinons in DSL carry a fractionalized crystal momentum which is potentially detectable in SWC in the neutron scattering measurements.
Ising Transition in Dimerized XY Quantum Spin Chain
YE Fei; DING Guo-Hui; XU Bo-Wei
2002-01-01
We proposed a simple spin-1/2 model which provides an exactly solvable example to study the Ising criticality with central charge c = 1/2.By mapping it onto the real Majorana fermions,the Ising critical behavior is explored explicitly,although its bosonized form is not the double frequency sine-Gordon model.
Controlling spin–orbit interaction in a ferromagnetic Fe/Au double layer
Samarin, Sergey N.; Kostylev, Mikhail; Williams, James F. [School of Physics, The University of Western Australia, Perth, Western Australia 6009 (Australia); Artamonov, Oleg M.; Baraban, Alexander P. [Research Institute of Physics, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Guagliardo, Paul [Centre for Microscopy, Characterisation and Analysis, the University of Western Australia, Perth, Western Australia 6009 (Australia)
2015-01-26
Using spin-polarized single- and two-electron spectroscopy, we probe exchange and spin–orbit interaction in a double layer of Fe and Au on W(110) and measure the spin asymmetry of the Bloch spectral density function of the sample. In a 5 ML iron film, the spin-orbit contribution to the measured asymmetry of the (e,2e) spectra was not detectable, whereas a deposition of about 1 ML of gold introduced a substantial spin-orbit component in the measured asymmetry. At the same time, this double layer still exhibits ferromagnetic properties: (i) the spectral density function asymmetry demonstrate imbalance of spin-up and spin-down electron densities in the valence band and (ii) the Stoner excitation asymmetry has almost the same value as in a pure Fe film.
Spin transport at interfaces with spin-orbit coupling: Formalism
Amin, V. P.; Stiles, M. D.
2016-09-01
We generalize magnetoelectronic circuit theory to account for spin transfer to and from the atomic lattice via interfacial spin-orbit coupling. This enables a proper treatment of spin transport at interfaces between a ferromagnet and a heavy-metal nonmagnet. This generalized approach describes spin transport in terms of drops in spin and charge accumulations across the interface (as in the standard approach), but additionally includes the responses from in-plane electric fields and offsets in spin accumulations. A key finding is that in-plane electric fields give rise to spin accumulations and spin currents that can be polarized in any direction, generalizing the Rashba-Edelstein and spin Hall effects. The spin accumulations exert torques on the magnetization at the interface when they are misaligned from the magnetization. The additional out-of-plane spin currents exert torques via the spin-transfer mechanism on the ferromagnetic layer. To account for these phenomena we also describe spin torques within the generalized circuit theory. The additional effects included in this generalized circuit theory suggest modifications in the interpretations of experiments involving spin-orbit torques, spin pumping, spin memory loss, the Rashba-Edelstein effect, and the spin Hall magnetoresistance.
Spin Hall and spin Nernst effects in graphene with intrinsic and Rashba spin-orbit interactions
Zhu Guo-Bao
2012-01-01
The spin Hall and spin Nernst effects in graphene are studied based on Green's function formalism.We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in the Kane-Mele model with various structures.When both intrinsic and Rashba spin-orbit interactions are present,their interplay leads to some characteristics of the dependence of spin Hall and spin Nernst conductivities on the Fermi level.When the Rashba spin-orbit interaction is smaller than intrinsic spin-orbit coupling,a weak kink in the conductance appears.The kink disappears and a divergence appears when the Rashba spin-orbit interaction enhances.When the Rashba spin-orbit interaction approaches and is stronger than intrinsic spin-orbit coupling,the divergence becomes more obvious.
Guiding Spin Spirals by Local Uniaxial Strain Relief.
Hsu, Pin-Jui; Finco, Aurore; Schmidt, Lorenz; Kubetzka, André; von Bergmann, Kirsten; Wiesendanger, Roland
2016-01-08
We report on the influence of uniaxial strain relief on the spin spiral state in the Fe double layer grown on Ir(111). Scanning tunneling microscopy (STM) measurements reveal areas with reconstruction lines resulting from uniaxial strain relief due to the lattice mismatch of Fe and Ir atoms, as well as pseudomorphic strained areas. Magnetic field-dependent spin-polarized STM measurements of the reconstructed Fe double layer reveal cycloidal spin spirals with a period on the nm scale. Globally, the spin spiral wave fronts are guided along symmetry-equivalent [112̅] crystallographic directions of the fcc(111) substrate. On an atomic scale the spin spiral propagation direction is linked to the [001] direction of the bcc(110)-like Fe, leading to a zigzag shaped wave front. The isotropically strained pseudomorphic areas also exhibit a preferred magnetic periodicity on the nm scale but no long-range order. We find that already for local strain relief with a single set of reconstruction lines a strict guiding of the spin spiral is realized.
The paramagnetic properties of ferromagnetic mixed-spin chain system
Hu, Ai-Yuan, E-mail: huaiyuanhuyuanai@126.com; Wu, Zhi-Min; Cui, Yu-Ting; Qin, Guo-Ping
2015-01-15
The double-time Green's function method is used to investigate the paramagnetic properties of ferromagnetic mixed-spin chain system within the random-phase approximation and Anderson–Callen's decoupling approximation. The analytic expressions of the transverse susceptibility, longitudinal susceptibility and correlation length are obtained under transverse and longitudinal magnetic field. Using the analytic expressions of the transverse and longitudinal susceptibility to fit the experimental results, our results well agree with experimental data and the results from the high temperature series expansion within a simple Padé approximation. - Highlights: • We investigate the magnetic properties of a ferromagnetic mixed-spin chain system. • We use the double-time temperature-dependent Green's function technique. • Different single-ion anisotropy values for different spin values are considered. • Our results agree with experimental data and the results from the other theoretical methods.
Tina Boikos
2008-01-01
@@ The alarm has just gone off. Do I really have to get up? I wonder. Originally, signing up for an early-morning spinning class seemed like a good idea; it jump-starts the day with some well-needed exercise.
Large spin-orbit torques in Pt/Co-Ni/W heterostructures
Yu, Jiawei; Qiu, Xuepeng; Legrand, William; Yang, Hyunsoo
2016-07-01
The spin orbit torques (SOTs) in perpendicularly magnetized Co-Ni multilayers sandwiched between two heavy metals (HM) have been studied. By exploring various HM materials, we show an efficient enhancement or cancellation of the total SOT, depending on the combination of the two HM materials. The maximum SOT effective field is obtained in Pt/Co-Ni/W heterostructures. We also model our double HM system and show that the effective spin Hall angle has a peak value at certain HM thicknesses. Measuring the SOT in Pt/Co-Ni/W for various W thicknesses confirms an effective spin Hall angle up to 0.45 in our double HM system.
2'-Alkynylnucleotides: A Sequence- and Spin Label-Flexible Strategy for EPR Spectroscopy in DNA.
Haugland, Marius M; El-Sagheer, Afaf H; Porter, Rachel J; Peña, Javier; Brown, Tom; Anderson, Edward A; Lovett, Janet E
2016-07-27
Electron paramagnetic resonance (EPR) spectroscopy is a powerful method to elucidate molecular structure through the measurement of distances between conformationally well-defined spin labels. Here we report a sequence-flexible approach to the synthesis of double spin-labeled DNA duplexes, where 2'-alkynylnucleosides are incorporated at terminal and internal positions on complementary strands. Post-DNA synthesis copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions with a variety of spin labels enable the use of double electron-electron resonance experiments to measure a number of distances on the duplex, affording a high level of detailed structural information.
JIANG Wei; ZHU Cheng-Bo; WANG Wei; ZHANG Fan
2009-01-01
Spin-wave theory is used to study magnetic properties of ferromagnetic double layers with a ferrimagnetic interlayer coupling at zero temperature.The spin-wave spectra and four sublattices magnetizations and internal energy are calculated by employing retarded Green function technique.The sublattice magnetizations at ground state are smaller than their classical values, owing to the zero-point quantum fluctuations of the spins.
Electron-nuclear interaction in 13C nanotube double quantum dots
Churchill, Hugh Olen Hill; Bestwick, Andrew J.; Harlow, Jennifer W.; Kuemmeth, Ferdinand; Marcos, David; Stwertka, Carolyn H.; Watson, Susan K.; Marcus, Charles Masamed
2008-01-01
For coherent electron spins, hyperfine coupling to nuclei in the host material can either be a dominant source of unwanted spin decoherence or, if controlled effectively, a resource allowing storage and retrieval of quantum information. To investigate the effect of a controllable nuclear environment on the evolution of confined electron spins, we have fabricated and measured gate-defined double quantum dots with integrated charge sensors made from single-walled carbon nanotubes with a variabl...
Angular correlations in the double Drell-Yan process
Kasemets, Tomas; Diehl, Markus
2012-10-15
We study the impact of parton correlations on the double Drell-Yan process, i.e. on the production of two electroweak gauge bosons by double parton scattering in a single proton-proton collision. Spin correlations between two partons in a proton are shown to change the overall rate of the process and to induce characteristic angular correlations between the decay leptons of the two gauge bosons.
Gates, W. G.
1982-05-01
Bendix product applications require the capability of fabricating heavy gage, high strength materials. Five commercial sources have been identified that have the capability of spin forming metal thicknesses greater than 9.5 mm and four equipment manufacturers produce machines with this capability. Twelve assemblies selected as candidates for spin forming applications require spin forming of titanium, 250 maraging steel, 17-4 pH stainless steel, Nitronic 40 steel, 304 L stainless steel, and 6061 aluminum. Twelve parts have been cold spin formed from a 250 maraging steel 8.1 mm wall thickness machine preform, and six have been hot spin formed directly from 31.8-mm-thick flat plate. Thirty-three Ti-6Al-4V titanium alloy parts and 26 17-4 pH stainless steel parts have been hot spin formed directly from 31.8-mm-thick plate. Hot spin forming directly from plate has demonstrated the feasibility and favorable economics of this fabrication technique for Bendix applications.
Hunter, G; Hunter, Geoffrey; Schlifer, Ian
2005-01-01
The recently established existence of spherical harmonic functions, $Y_\\ell^{m}(\\theta,\\phi)$ for half-odd-integer values of $\\ell$ and $m$, allows for the introduction into quantum chemistry of explicit electron spin-coordinates; i.e. spherical polar angles $\\theta_s, \\phi_s$, that specify the orientation of the spin angular momentum vector in space. In this coordinate representation the spin angular momentum operators, $S^2, S_z$, are represented by the usual differential operators in spherical polar coordinates (commonly used for $L^2, L_z$), and their electron-spin eigenfunctions are $\\sqrt{\\sin\\theta_s} \\exp(\\pm\\phi_s/2)$. This eigenfunction representation has the pedagogical advantage over the abstract spin eigenfunctions, $\\alpha, \\beta,$ that ``integration over spin coordinates'' is a true integration (over the angles $\\theta_s, \\phi_s$). In addition they facilitate construction of many electron wavefunctions in which the electron spins are neither parallel nor antiparallel, but inclined at an interme...
Representation of Spin Group Spin(p, q)
无
2007-01-01
The representation (&)(p, q) of spin group Spin(p, q) in any dimensional space is given by induction, and the relation between two representations, which are obtained in two kinds of inductions from Spin(p, q) to Spin(p + 1, q + 1)are studied.
SPIN Tutorial: How to Become a SPIN Doctor
Ruys, T.C.; Bosnacki, D.; Leue, S.
2002-01-01
SPIN is a model checker for the verification of software systems. SPIN uses a high level language called PROMELA to specify systems descriptions. The goal of this tutorial is to introduce novice users to both PROMELA and SPIN. The tutorial itself is divided into two parts. The BASIC SPIN part is tar
Spin drift and spin diffusion currents in semiconductors
M Idrish Miah
2008-01-01
Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.
Spin transfer torque with spin diffusion in magnetic tunnel junctions
Manchon, Aurelien
2012-08-09
Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.
Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-01-15
The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.
McWeeny, Roy
2004-01-01
Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp
2013-01-01
This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can - within a single book - obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated
SPINning parallel systems software.
Matlin, O.S.; Lusk, E.; McCune, W.
2002-03-15
We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin.
Correlation Functions and Spin
Tyc, T
2000-01-01
The k-electron correlation function of a free chaotic electron beam is derived with the spin degree of freedom taken into account. It is shown that it can be expressed with the help of correlation functions for a polarized electron beam of all orders up to k and the degree of spin polarization. The form of the correlation function suggests that if the electron beam is not highly polarized, observing multi-particle correlations should be difficult. The result can be applied also to chaotic photon beams, the degree of spin polarization being replaced by the degree of polarization.
Garcia, Y.; Ksenofontov, V.; Campbell, S. J.; Lord, J. S.; Boland, Y.; Gütlich, P.
2004-12-01
The reversible thermal spin transition which occurs in [Fe(phen)2(NCS)2] around T1/2 177 K has been investigated by muon spin relaxation (μSR) (10-280 K). The depolarisation curves are well described by two Lorentzian lines represent fast and slow components in the decay curves, with the initial asymmetry parameter of the fast component found to track the spin transition in [Fe(phen)2(NCS)2]. Comparison of zero-field and transverse field (20 Oe) μSR measurements shows that diamagnetic muonic species occur over the entire temperature range.
Method for estimating spin-spin interactions from magnetization curves
Tamura, Ryo; Hukushima, Koji
2017-02-01
We develop a method to estimate the spin-spin interactions in the Hamiltonian from the observed magnetization curve by machine learning based on Bayesian inference. In our method, plausible spin-spin interactions are determined by maximizing the posterior distribution, which is the conditional probability of the spin-spin interactions in the Hamiltonian for a given magnetization curve with observation noise. The conditional probability is obtained with the Markov chain Monte Carlo simulations combined with an exchange Monte Carlo method. The efficiency of our method is tested using synthetic magnetization curve data, and the results show that spin-spin interactions are estimated with a high accuracy. In particular, the relevant terms of the spin-spin interactions are successfully selected from the redundant interaction candidates by the l1 regularization in the prior distribution.
Spin on a 4D Feynman Checkerboard
Foster, Brendan Z
2016-01-01
We discretize the Weyl equation for a massless, spin-1/2 particle on a time-diagonal, hypercubic spacetime lattice with null faces. The amplitude for a step of right-handed chirality is proportional to the spin projection operator in the step direction, while for left-handed it is the orthogonal projector. Iteration yields a path integral for the retarded propagator, with matrix path amplitude proportional to the product of projection operators. This assigns the amplitude $i^{\\pm T}\\, {3}^{-B/2}\\,2^{-N}$ to a path with $N$ steps, $B$ bends, and $T$ right-handed minus left-handed bends, where the sign corresponds to the chirality. Fermion doubling does not occur in this discrete scheme. A Dirac mass $m$ introduces the amplitude $i\\epsilon m$ to flip chirality in any given time step $\\epsilon$, and a Majorana mass similarly introduces a charge conjugation amplitude.
Spin on a 4D Feynman Checkerboard
Foster, Brendan Z.; Jacobson, Ted
2017-01-01
We discretize the Weyl equation for a massless, spin-1/2 particle on a time-diagonal, hypercubic spacetime lattice with null faces. The amplitude for a step of right-handed chirality is proportional to the spin projection operator in the step direction, while for left-handed it is the orthogonal projector. Iteration yields a path integral for the retarded propagator, with matrix path amplitude proportional to the product of projection operators. This assigns the amplitude i ± T 3- B/2 2- N to a path with N steps, B bends, and T right-handed minus left-handed bends, where the sign corresponds to the chirality. Fermion doubling does not occur in this discrete scheme. A Dirac mass m introduces the amplitude i 𝜖 m to flip chirality in any given time step 𝜖, and a Majorana mass similarly introduces a charge conjugation amplitude.
Spin on a 4D Feynman Checkerboard
Foster, Brendan Z.; Jacobson, Ted
2016-11-01
We discretize the Weyl equation for a massless, spin-1/2 particle on a time-diagonal, hypercubic spacetime lattice with null faces. The amplitude for a step of right-handed chirality is proportional to the spin projection operator in the step direction, while for left-handed it is the orthogonal projector. Iteration yields a path integral for the retarded propagator, with matrix path amplitude proportional to the product of projection operators. This assigns the amplitude i ±T 3-B/2 2-N to a path with N steps, B bends, and T right-handed minus left-handed bends, where the sign corresponds to the chirality. Fermion doubling does not occur in this discrete scheme. A Dirac mass m introduces the amplitude i 𝜖 m to flip chirality in any given time step 𝜖, and a Majorana mass similarly introduces a charge conjugation amplitude.
Spin Physics with STAR at RHIC
Kiryluk, J
2004-01-01
STAR collected data in proton-proton collisions at sqrt(s)=200 GeV with transverse and longitudinal beam polarizations during the initial running periods in 2002--2004 at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. Results on the single transverse spin asymmetries in the production of high energy forward neutral pions and of forward charged hadrons will be presented. Data have been obtained for double longitudinal asymmetries in inclusive jet production in 2003 and 2004. These data provide sensitivity to the polarization of gluons in the proton. In the future, we aim to determine the gluon polarization over a wide kinematic range using coincidences of direct photons and jets. Furthermore, we aim to determine the polarizations of the u, bar(u), d and bar(d) quarks in the proton by measuring single longitudinal spin asymmetries in the production of weak bosons at sqrt(s) = 500$ GeV.
Comments on higher-spin holography
Bekaert, Xavier; Mourad, Jihad
2012-01-01
The conjectured holographic duality between vector models with quartic interaction and higher-spin field theory in the bulk is reviewed, with emphasis on some versions and generalisations (higher dimensions, beyond the singlet sector, etc) which have not been much investigated yet. The strongest form of the conjecture assumes that it holds for any (not necessarily large) number of massless scalar fields and for any value of the coupling constant. Since the quartic interaction is of double-trace type, the exact duality (for any value of the coupling constant) automatically follows from its validity at the Gaussian fixed point (for vanishing coupling constant). The validity of the latter also implies that unbroken higher spin symmetries should prevent quantum corrections in the bulk.
Self-similarity of proton spin and z-scaling
Tokarev, M
2015-01-01
The concept of z-scaling previously developed for analysis of inclusive reactions in proton-proton collisions is applied for description of processes with polarized particles. Hypothesis of self-similarity of the proton spin structure is discussed. The possibility of extracting information on spin-dependent fractal dimensions of hadrons and fragmentation process from the cross sections and asymmetries is justified. The double longitudinal spin asymmetry A_{LL} of jet and pi0-meson production and the coefficient of polarization transfer D_{LL} measured in proton-proton collisions at sqrt s = 200 GeV at RHIC are analyzed in the framework of z-scaling. The spin-dependent fractal dimension of proton is estimated.
Spin pumping and inverse spin Hall effects—Insights for future spin-orbitronics (invited)
Zhang, Wei, E-mail: zwei@anl.gov; Jungfleisch, Matthias B.; Jiang, Wanjun; Fradin, Frank Y.; Pearson, John E.; Hoffmann, Axel, E-mail: hoffmann@anl.gov [Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Sklenar, Joseph; Ketterson, John B. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States)
2015-05-07
Quantification of spin-charge interconversion has become increasingly important in the fast-developing field of spin-orbitronics. Pure spin current generated by spin pumping acts as a sensitive probe for many bulk and interface spin-orbit effects, which has been indispensable for the discovery of many promising new spin-orbit materials. We apply spin pumping and inverse spin Hall effect experiments, as a useful metrology, and study spin-orbit effects in a variety of metals and metal interfaces. We quantify the spin Hall effects in Ir and W using the conventional bilayer structures and discuss the self-induced voltage in a single layer of ferromagnetic permalloy. Finally, we extend our discussions to multilayer structures and quantitatively reveal the spin current flow in two consecutive normal metal layers.
When measured spin polarization is not spin polarization
Dowben, P. A.; Wu, Ning; Binek, Christian
2011-05-01
Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO2 and Cr2O3 illustrate some of the complications which hinders comparisons of spin polarization values.
ANALYSIS ON THE SPINNING FORCES IN FLEXIBLE SPINNING OF CONES
Xia Qinxiang; Susumu Shima
2003-01-01
Flexible spinning is a new type of spinning process where spin-forming is performed without using a mandrel. Combining shearing and rolling processes, the calculation formulas of thespinning forces in flexible spinning of cones is presented. The effects of the main processing parameters, such as gripping force G applied to the blank by the inner roller, the feed rate of rollersfand the roundness radius of outer roller ro, on the spinning forces are analyzed experimentally and theoretically.
On Nonlinear Higher Spin Curvature
Manvelyan, Ruben(Yerevan Physics Institute, Alikhanian Br. St. 2, Yerevan, 0036, Armenia); Mkrtchyan, Karapet; Rühl, Werner; Tovmasyan, Murad
2011-01-01
We present the first nonlinear term of the higher spin curvature which is covariant with respect to deformed gauge transformations that are linear in the field. We consider in detail the case of spin 3 after presenting spin 2 as an example, and then construct the general spin s quadratic term of the deWit-Freedman curvature.
On nonlinear higher spin curvature
Manvelyan, Ruben, E-mail: manvel@physik.uni-kl.d [Department of Physics, Erwin Schroedinger Strasse, Technical University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern (Germany); Yerevan Physics Institute, Alikhanian Br. Str. 2, 0036 Yerevan (Armenia); Mkrtchyan, Karapet, E-mail: karapet@yerphi.a [Department of Physics, Erwin Schroedinger Strasse, Technical University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern (Germany); Yerevan Physics Institute, Alikhanian Br. Str. 2, 0036 Yerevan (Armenia); Ruehl, Werner, E-mail: ruehl@physik.uni-kl.d [Department of Physics, Erwin Schroedinger Strasse, Technical University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern (Germany); Tovmasyan, Murad, E-mail: mtovmasyan@ysu.a [Yerevan Physics Institute, Alikhanian Br. Str. 2, 0036 Yerevan (Armenia)
2011-05-09
We present the first nonlinear term of the higher spin curvature which is covariant with respect to deformed gauge transformations that are linear in the field. We consider the case of spin 3 after presenting spin 2 as an example, and then construct the general spin s quadratic term of the de Wit-Freedman curvature.
International Spin Physics 2014 Summary
Milner, Richard G
2015-01-01
The Stern-Gerlach experiment and the origin of electron spin are described in historical context. SPIN 2014 occurs on the fortieth anniversary of the first International High Energy Spin Physics Symposium at Argonne in 1974. A brief history of the international spin conference series is presented.
Search for electric dipole moment in 129Xe atom using active nuclear spin maser
Ichikawa Y.
2014-03-01
Full Text Available An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.
Double Double Cation Order in the High-Pressure Perovskites MnRMnSbO6.
Solana-Madruga, Elena; Arévalo-López, Ángel M; Dos Santos-García, Antonio J; Urones-Garrote, Esteban; Ávila-Brande, David; Sáez-Puche, Regino; Attfield, J Paul
2016-08-01
Cation ordering in ABO3 perovskites adds to their chemical variety and can lead to properties such as ferrimagnetism and magnetoresistance in Sr2 FeMoO6 . Through high-pressure and high-temperature synthesis, a new type of "double double perovskite" structure has been discovered in the family MnRMnSbO6 (R=La, Pr, Nd, Sm). This tetragonal structure has a 1:1 order of cations on both A and B sites, with A-site Mn(2+) and R(3+) cations ordered in columns and Mn(2+) and Sb(5+) having rock salt order on the B sites. The MnRMnSbO6 double double perovskites are ferrimagnetic at low temperatures with additional spin-reorientation transitions. The ordering direction of ferrimagnetic Mn spins in MnNdMnSbO6 changes from parallel to [001] below TC =76 K to perpendicular below the reorientation transition at 42 K at which Nd moments also order. Smaller rare earths lead to conventional monoclinic double perovskites (MnR)MnSbO6 for Eu and Gd.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)
2015-05-07
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris
2015-05-01
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Dynamical theory of spin relaxation
Field, Timothy R.; Bain, Alex D.
2013-02-01
The dynamics of a spin system is usually calculated using the density matrix. However, the usual formulation in terms of the density matrix predicts that the signal will decay to zero, and does not address the issue of individual spin dynamics. Using stochastic calculus, we develop a dynamical theory of spin relaxation, the origins of which lie in the component spin fluctuations. This entails consideration of random pure states for individual protons, and how these pure states are correctly combined when the density matrix is formulated. Both the lattice and the spins are treated quantum mechanically. Such treatment incorporates both the processes of spin-spin and (finite temperature) spin-lattice relaxation. Our results reveal the intimate connections between spin noise and conventional spin relaxation.
Action principles for higher and fractional spin gravities
Arias, Cesar; Boulanger, Nicolas; Sezgin, Ergin; Sundell, Per; Torres-Gomez, Alexander; Valenzuela, Mauricio
2016-01-01
We review various off-shell formulations for interacting higher-spin systems in dimensions 3 and 4. Associated with higher-spin systems in spacetime dimension 4 is a Chern-Simons action for a superconnection taking its values in a direct product of an infinite-dimensional algebra of oscillators and a Frobenius algebra. A crucial ingredient of the model is that it elevates the rigid closed and central two-form of Vasiliev's theory to a dynamical 2-form and doubles the higher-spin algebra, thereby considerably reducing the number of possible higher spin invariants and giving a nonzero effective functional on-shell. The two action principles we give for higher-spin systems in 3D are based on Chern-Simons and BF models. In the first case, the theory we give unifies higher-spin gauge fields with fractional-spin fields and an internal sector. In particular, Newton's constant is related to the coupling constant of the internal sector. In the second case, the BF action we review gives the fully nonlinear Prokushkin-V...
Wilson, John C.
1995-01-01
Aerodynamic plates stop litter from spinning during hoisting by helicopter. Features of proposed litter-spinning retarders include convenience of deployment and independence from ground restraint. Retarder plate(s) folded flat against bottom of litter during storage or while litter is loaded. Plate(s) held in storage position by latch that releases manually or automatically as litter is hoisted. Upon release, springs move plates into deployed position.
Spin polarizability of hyperons
K B Vijaya Kumar
2014-11-01
We review the recent progress of the theoretical understanding of spin polarizabilities of the hyperon in the framework of (3) heavy baryon chiral perturbation theory (HBChPT). We present the results of a systematic leading-order calculation of hyperon Compton scattering and extract the forward spin polarizability (0) of hyperons. The results obtained for $_0$ in the case of nucleons agree with the known results of (2) HBChPT when kaon loops are not considered.
Spin transport in nanoscale spin valves and magnetic tunnel junctions
Patibandla, Sridhar
Spintronics or electronics that utilizes the spin degree of freedom of a single charge carrier (or an ensemble of charge carriers) to store, process, sense or communicate data and information is a rapidly burgeoning field in electronics. In spintronic devices, information is encoded in the spin polarization of a single carrier (or multiple carriers) and the spin(s) of these carrier(s) are manipulated for device operation. This strategy could lead to devices with low power consumption. This dissertation investigates spin transport in one dimensional and two dimensional semiconductors, with a view to applications in spintronic devices. This dissertation is arranged as follows: Chapter 1 gives a detailed introduction and necessary background to understand aspects of spin injection into a semiconductor from a spin polarized source such as a ferromagnet, and spin polarized electron transport in the semiconductor. Chapter 2 discusses the nanoporous alumina technique that is employed to fabricate nanowires and nanowire spin valves for the investigation of spin transport in 1D semiconductors. Chapter 3 investigates the spin transport in quasi one-dimensional spin valves with germanium spacer layer. These spin valves with 50nm in diameter and 1 mum length were fabricated using the porous alumina technique. Spin transport in nanoscale germanium spin valves was demonstrated and the spin relaxation lengths and the spin relaxation times were calculated. Chapter 4 discusses spin transport studies conducted in bulk high purity germanium with a view to comparing spin relaxation mechanisms in low mobility nanowires and high mobility bulk structures. Lateral spin valve with tunnel injectors were employed in this study and the spin transport measurements were conducted at various temperatures. The spin relaxation rates were measured as a function of temperature which allowed us to distinguish between two different mechanisms---D'yakonov-Perel' and Elliott-Yafet---that dominate spin
Quark-gluon double parton distributions in the light-front dressed quark model
Kasemets, Tomas
2016-01-01
We study parton distributions for two partons, a quark and a gluon, in the light-front dressed quark model, with focus on correlations between the two partons. The model calculation leads to sizable spin-spin and spin-kinematic correlations of interest for studies of double parton scattering (DPS) in high-energy collisions. In particular, we find that the transverse dependence of the double parton distributions (DPDs) does not factorize within the model. The results gives insight to the strengths of correlations in different kinematical regions, which can help in constructing input DPDs in cross section calculations.
Decoherence and localization in the double well model
Lemos, G B; De Faria, J G P; Terra-Cunha, M O; Nemes, M C; Lemos, Gabriela Barreto
2005-01-01
We use a spin-1/2 model to analyze tunnelling in a double well system coupled to an external reservoir. We consider different noise sources such as fluctuations on the height and central position of the barrier and propose an experiment to observe these effects in trapped ions or atoms.
Multiple Nuclear Polarization States in a Double Quantum Dot
Danon, J.; Vink, I.T.; Koppens, F.H.L.; Nowack, K.C.; Vandersypen, L.M.K.; Nazarov, Y.V.
2009-01-01
We observe multiple stable states of nuclear polarization and nuclear self-tuning over a large range of fields in a double quantum dot under conditions of electron spin resonance. The observations can be understood within an elaborated theoretical rate equation model for the polarization in each of
Spin Hall effect induced spin transfer through an insulator
Chen, Wei; Sigrist, Manfred; Manske, Dirk
2016-09-01
When charge current passes through a normal metal that exhibits the spin Hall effect, spin accumulates at the edge of the sample in the transverse direction. We predict that this spin accumulation, or spin voltage, enables quantum tunneling of spin through an insulator or vacuum to reach a ferromagnet without transferring charge. In a normal metal/insulator/ferromagnetic insulator trilayer (such as Pt/oxide/YIG), the quantum tunneling explains the spin-transfer torque and spin pumping that exponentially decay with the thickness of the insulator. In a normal metal/insulator/ferromagnetic metal trilayer (such as Pt/oxide/Co), the spin transfer in general does not decay monotonically with the thickness of the insulator. Combining with the spin Hall magnetoresistance, this tunneling mechanism points to the possibility of a tunneling spectroscopy that can probe the magnon density of states of a ferromagnetic insulator in an all-electrical and noninvasive manner.
Spin photonics and spin-photonic devices with dielectric metasurfaces
Liu, Yachao; Ke, Yougang; Zhou, Xinxing; Luo, Hailu; Wen, Shuangchun
2015-01-01
Dielectric metasurfaces with spatially varying birefringence and high transmission efficiency can exhibit exceptional abilities for controlling the photonic spin states. We present here some of our works on spin photonics and spin-photonic devices with metasurfaces. We develop a hybrid-order Poincare sphere to describe the evolution of spin states of wave propagation in the metasurface. Both the Berry curvature and the Pancharatnam-Berry phase on the hybrid-order Poincare sphere are demonstrated to be proportional to the variation of total angular momentum. Based on the spin-dependent property of Pancharatnam-Berry phase, we find that the photonic spin Hall effect can be observed when breaking the rotational symmetry of metasurfaces. Moreover, we show that the dielectric metasurfaces can provide great flexibility in the design of novel spin-photonic devices such as spin filter and spin-dependent beam splitter.
Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction
Ortiz Pauyac, Christian
2016-06-19
In the present thesis we introduce the reader to the ﬁeld of spintronics and explore new phenomena, such as spin transfer torques, spin ﬁltering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin ﬁltering. In Chap. 3 we discuss the Rashba torque in ferromagnetic ﬁlms, and in Chap. 4 we study spin Hall eﬀect and spin swapping in ferromagnetic ﬁlms, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.
Green-Schwarz superstring on doubled-yet-gauged spacetime
Park, Jeong-Hyuck
2016-01-01
We construct a world-sheet action for Green-Schwarz superstring in terms of doubled-yet-gauged spacetime coordinates. For an arbitrarily curved NS-NS background, the action possesses $\\mathbf{O}(10,10)$ T-duality, $\\mathbf{Spin}(1,9)\\times\\mathbf{Spin}(9,1)$ Lorentz symmetry, coordinate gauge symmetry, spacetime doubled-yet-gauged diffeomorphisms, world-sheet diffeomorphisms and Weyl symmetry. Further, restricted to flat backgrounds, it enjoys maximal spacetime supersymmetry and kappa-symmetry. After the auxiliary coordinate gauge symmetry potential being integrated out, our action can consistently reduce to the original undoubled Green-Schwarz action. Thanks to the twofold spin groups, the action is unique: it is specific choices of the NS-NS backgrounds that distinguish IIA or IIB, as well as lead to non-Riemannian or non-relativistic superstring a la Gomis-Ooguri which might deserve the nomenclature, type IIC.
Magnetocaloric effect in quantum spin-s chains
A. Honecker
2009-01-01
Full Text Available We compute the entropy of antiferromagnetic quantum spin-s chains in an external magnetic field using exact diagonalization and Quantum Monte Carlo simulations. The magnetocaloric effect, i. e., temperature variations during adiabatic field changes, can be derived from the isentropes. First, we focus on the example of the spin-s=1 chain and show that one can cool by closing the Haldane gap with a magnetic field. We then move to quantum spin-s chains and demonstrate linear scaling with s close to the saturation field. In passing, we propose a new method to compute many low-lying excited states using the Lanczos recursion.
The double identity of linguistic doubling.
Berent, Iris; Bat-El, Outi; Brentari, Diane; Dupuis, Amanda; Vaknin-Nusbaum, Vered
2016-11-29
Does knowledge of language consist of abstract principles, or is it fully embodied in the sensorimotor system? To address this question, we investigate the double identity of doubling (e.g., slaflaf, or generally, XX; where X stands for a phonological constituent). Across languages, doubling is known to elicit conflicting preferences at different levels of linguistic analysis (phonology vs. morphology). Here, we show that these preferences are active in the brains of individual speakers, and they are demonstrably distinct from sensorimotor pressures. We first demonstrate that doubling in novel English words elicits divergent percepts: Viewed as meaningless (phonological) forms, doubling is disliked (e.g., slaflaf linguistic preferences doubly dissociate from sensorimotor demands: A single stimulus can elicit diverse percepts, yet these percepts are invariant across stimulus modality--for speech and signs. These conclusions are in line with the possibility that some linguistic principles are abstract, and they apply broadly across language modality.
Faber, Rasmus; Sauer, Stephan P A; Gauss, Jürgen
2017-02-14
We present the first analytical implementation of CC3 second derivatives using the spin-unrestricted approach. This allows, for the first time, the calculation of nuclear spin-spin coupling constants (SSCC) relevant to NMR spectroscopy at the CC3 level of theory in a fully analytical manner. CC3 results for the SSCCs of a number of small molecules and their fluorine substituted derivatives are compared with the corresponding coupled cluster singles and doubles (CCSD) results obtained using specialized basis sets. For one-bond couplings the change when going from CCSD to CC3 is typically 1-3%, but much higher corrections were found for (1)JCN in FCN, 15.7%, and (1)JOF in OF2, 6.4%. The changes vary significantly in the case of multibond couplings, with differences of up to 10%, and even 13.6% for (3)JFH in fluoroacetylene. Calculations at the coupled cluster singles, doubles, and triples (CCSDT) level indicate that the most important contributions arising from connected triple excitations in the coupled cluster expansion are accounted for at the CC3 level. Thus, we believe that the CC3 method will become the standard approach for the calculation of reference values of nuclear spin-spin coupling constants.
Large spin-filtering effect in Ti-doped defective zigzag graphene nanoribbon.
Tawfik, Sherif Abdulkader; Cui, X Y; Ringer, S P; Stampfl, C
2016-06-28
Through first-principles calculations using the nonequilibrium Green's function formalism together with density functional theory, we study the conductance of double-vacancy zigzag graphene nanoribbons doped with four transition metal atoms Ti, V, Cr and Fe. We show that Ti doping induces large spin-filtering with an efficiency in excess of 90% for bias voltages below 0.5 V, while the other metal adatoms do not induce large spin filtering. This is despite the fact that the Ti dopant possesses small spin moment, while large moments reside on V, Cr and Fe dopants. Our analysis shows that the suppression of transmission in the spin-down channel in the Ti-doped graphene nanoribbon, thus the large spin filtering efficiency, is due to transmission anti-resonance arising from destructive quantum interference. These findings suggest that the decoration of graphene with titanium, and possibly other transition metals, can act as effective spin filters for nanospintronic applications.
Spin seebeck effect and thermal colossal magnetoresistance in graphene nanoribbon heterojunction.
Ni, Yun; Yao, Kailun; Fu, Huahua; Gao, Guoying; Zhu, Sicong; Wang, Shuling
2013-01-01
Spin caloritronics devices are very important for future development of low-power-consumption technology. We propose a new spin caloritronics device based on zigzag graphene nanoribbon (ZGNR), which is a heterojunction consisting of single-hydrogen-terminated ZGNR (ZGNR-H) and double-hydrogen-terminated ZGNR (ZGNR-H2). We predict that spin-up and spin-down currents flowing in opposite directions can be induced by temperature difference instead of external electrical bias. The thermal spin-up current is considerably large and greatly improved compared with previous work in graphene. Moreover, the thermal colossal magnetoresistance is obtained in our research, which could be used to fabricate highly-efficient spin caloritronics MR devices.
Charge sensing and spin-related transport property of p-channel silicon quantum dots
Yamaoka, Yu; Iwasaki, Kazuma; Oda, Shunri; Kodera, Tetsuo
2017-04-01
We demonstrate the detection of single hole tunneling through physically defined silicon quantum dots (QDs) by charge sensing. We estimate capacitive couplings between the QDs and tuning gates by simulation based on the Monte Carlo method. In addition, an investigation of spin-related transport is presented. Pauli spin blockade is observed in double QDs, where hole transport is blocked by forbidden transitions between triplet and singlet states. The magnetic field dependence of the leakage current in Pauli spin blockade shows a dip characteristic at zero field, which is explained by spin relaxation due to spin–orbit coupling with phonons. We extract the dip width B C ∼ 65 mT and a spin relaxation rate Γrel ∼ 55 MHz. The small dip width and high spin relaxation rate reflect a strong spin–orbit coupling.
Salberger, Olof
2016-01-01
We introduce a new model of interacting spin 1/2. It describes interaction of three nearest neighbors. The Hamiltonian can be expressed in terms of Fredkin gates. The Fredkin gate (also known as the CSWAP gate) is a computational circuit suitable for reversible computing. Our construction generalizes the work of Ramis Movassagh and Peter Shor. Our model can be solved by means of Catalan combinatorics in the form of random walks on the upper half of a square lattice [Dyck walks]. Each Dyck path can be mapped to a wave function of the spins. The ground state is an equally weighted superposition of Dyck walks [instead of Motzkin walks]. We can also express it as a matrix product state. We further construct the model of interacting spins 3/2 and greater half-integer spins. The models with higher spins require coloring of Dyck walks. We construct SU(k) symmetric model [here k is the number of colors]. The leading term of the entanglement entropy is then proportional to the square root of the length of the lattice ...
Spin Structures in Magnetic Nanoparticles
Mørup, Steen; Brok, Erik; Frandsen, Cathrine
2013-01-01
Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...... canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation....... Here, we give a short review of anomalous spin structures in nanoparticles....
Dephasing and hyperfine interaction in carbon nanotubes double quantum dots
Reynoso, Andres Alejandro; Flensberg, Karsten
2012-01-01
We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C......-13 nuclei. Due to the valley and spin degrees of freedom, four bounded states exist for any given longitudinal mode in the quantum dot. At zero magnetic field, the spin-orbit coupling and the valley mixing split those four states into two Kramers doublets. The valley-mixing term for a given dot...... is determined by the intradot disorder; this leads to (i) states in the Kramers doublets belonging to different dots being different, and (ii) nonzero interdot tunneling amplitudes between states belonging to different doublets. We show that these amplitudes give rise to new avoided crossings, as a function...
Generation and storage of double slow light pulses in a solid
Fan Yun-Fei; Wang Hai-Hua; Wang Rong; Zhang Xiao-Jun; Kang Zhi-Hui; Wu Jin-Hui; Zhang Han-Zhuang; Gao Jin-Yue
2012-01-01
We experimentally study the generation and storage of double slow light pulses in a Pr3+:Y2SiO5 crystal.Under electromagnetically induced transparency,a single signal pulse is stored in the spin coherence of the crystal. By simultaneously switching on two control fields to recall the stored information,the spin coherence is converted into two slow light pulses with distinct frequencies.Furthermore,the storage and controlled retrieval of double slow light pulses are obtained by manipulating the control fields.This study of double slow light pulses may have practical applications in information processing and all-optical networks.
The Cambridge Double Star Atlas
MacEvoy, Bruce; Tirion, Wil
2015-12-01
Preface; What are double stars?; The binary orbit; Double star dynamics; Stellar mass and the binary life cycle; The double star population; Detecting double stars; Double star catalogs; Telescope optics; Preparing to observe; Helpful accessories; Viewing challenges; Next steps; Appendices: target list; Useful formulas; Double star orbits; Double star catalogs; The Greek alphabet.
SU(4) Kondo entanglement in double quantum dot devices
Bonazzola, Rodrigo; Andrade, J. A.; Facio, Jorge I.; García, D. J.; Cornaglia, Pablo S.
2017-08-01
We analyze, from a quantum information theory perspective, the possibility of realizing an SU(4) entangled Kondo regime in semiconductor double quantum dot devices. We focus our analysis on the ground-state properties and consider the general experimental situation where the coupling parameters of the two quantum dots differ. We model each quantum dot with an Anderson-type Hamiltonian including an interdot Coulomb repulsion and tunnel couplings for each quantum dot to independent fermionic baths. We find that the spin and pseudospin entanglements can be made equal, and the SU(4) symmetry recovered, if the gate voltages are chosen in such a way that the average charge occupancies of the two quantum dots are equal, and the double occupancy on the double quantum dot is suppressed. We present density matrix renormalization group numerical results for the spin and pseudospin entanglement entropies, and analytical results for a simplified model that captures the main physics of the problem.
... medlineplus.gov/ency/article/007328.htm Double outlet right ventricle To use the sharing features on this page, please enable JavaScript. Double outlet right ventricle (DORV) is a heart disease that is ...
Spin rectification induced by spin Hall magnetoresistance at room temperature
Wang, P.; Jiang, S. W.; Luan, Z. Z.; Zhou, L. F.; Ding, H. F.; Zhou, Y.; Tao, X. D.; Wu, D.
2016-09-01
We have experimentally and theoretically investigated the dc voltage generation in the heterostructure of Pt and yttrium iron garnet under the ferromagnetic resonance. Besides a symmetric Lorenz line shape dc voltage, an antisymmetric Lorenz line shape dc voltage is observed in field scan, which can solely originate from the spin rectification effect due to the spin Hall magnetoresistance. The angular dependence of the dc voltage is theoretically analyzed by taking into account both the spin pumping and the spin rectification effects. We find that the experimental results are in excellent agreement with the theoretical model, further identifying the spin Hall magnetoresistance origin of the spin rectification effect. Moreover, the spin pumping and the spin rectification effects are quantitatively separated by their different angular dependence at particular experimental geometry.
Spin filter and spin valve in ferromagnetic graphene
Song, Yu; Dai, Gang
2015-06-01
We propose and demonstrate that a EuO-induced and top-gated graphene ferromagnetic junction can be simultaneously operated as a spin filter and a spin valve. We attribute such a remarkable result to a coexistence of a half-metal band and a common energy gap for opposite spins in ferromagnetic graphene. We show that both the spin filter and the spin valve can be effectively controlled by a back gate voltage, and they survive for practical metal contacts and finite temperature. Specifically, larger single spin currents and on-state currents can be reached with contacts with work functions similar to graphene, and the spin filter can operate at higher temperature than the spin valve.
Spin-Orbit Twisted Spin Waves: Group Velocity Control
Perez, F.; Baboux, F.; Ullrich, C. A.; D'Amico, I.; Vignale, G.; Karczewski, G.; Wojtowicz, T.
2016-09-01
We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC), Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave. The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel applications in spin-wave routing devices and for the realization of lenses for spin waves.
Semiclassical spin transport in spin-orbit-coupled bands.
Culcer, Dimitrie; Sinova, Jairo; Sinitsyn, N A; Jungwirth, T; MacDonald, A H; Niu, Q
2004-07-23
Motivated by recent interest in novel spintronics effects, we develop a semiclassical theory of spin transport that is valid for spin-orbit coupled bands. Aside from the obvious convective term in which the average spin is transported at the wave packet group velocity, the spin current has additional contributions from the wave packet's spin and torque dipole moments. Electric field corrections to the group velocity and carrier spin contribute to the convective term. Summing all terms we obtain an expression for the intrinsic spin-Hall conductivity of a hole-doped semiconductor, which agrees with the Kubo formula prediction for the same quantity. We discuss the calculation of spin accumulation, which illustrates the importance of the torque dipole near the boundary of the system.
Quantum spin transistor with a Heisenberg spin chain
Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.
2016-01-01
Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438
Quantum spin transistor with a Heisenberg spin chain
Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.
2016-10-01
Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.
Kato, Akio
2006-11-14
The invention provides methods for chromosome doubling in plants. The technique overcomes the low yields of doubled progeny associated with the use of prior techniques for doubling chromosomes in plants such as grasses. The technique can be used in large scale applications and has been demonstrated to be highly effective in maize. Following treatment in accordance with the invention, plants remain amenable to self fertilization, thereby allowing the efficient isolation of doubled progeny plants.
Paramagnetic Spin Seebeck Effect
Wu, Stephen M.; Pearson, John E.; Bhattacharya, Anand
2015-05-01
We report the observation of the longitudinal spin Seebeck effect in paramagnetic insulators. By using a microscale on-chip local heater, we generate a large thermal gradient confined to the chip surface without a large increase in the total sample temperature. Using this technique at low temperatures (<20 K ), we resolve the paramagnetic spin Seebeck effect in the insulating paramagnets Gd3Ga5O12 (gadolinium gallium garnet) and DyScO3 (DSO), using either W or Pt as the spin detector layer. By taking advantage of the strong magnetocrystalline anisotropy of DSO, we eliminate contributions from the Nernst effect in W or Pt, which produces a phenomenologically similar signal.
Alday, Luis F
2013-01-01
We analyze the properly normalized three-point correlator of two protected scalar operators and one higher spin twist-two operator in N=4 super Yang-Mills, in the limit of large spin j. The relevant structure constant can be extracted from the OPE of the four-point correlator of protected scalar operators. We show that crossing symmetry of the four point correlator plus a judicious guess for the perturbative structure of the three-point correlator, allow to make a prediction for the structure constant at all loops in perturbation theory, up to terms that remain finite as the spin becomes large. Furthermore, the expression for the structure constant allows to propose an expression for the all loops four-point correlator G(u,v), in the limit u,v -> 0. Our predictions are in perfect agreement with the large j expansion of results available in the literature.
Rackham, Neil
1995-01-01
True or false? In selling high-value products or services: "closing" increases your chance of success; it is essential to describe the benefits of your product or service to the customer; objection handling is an important skill; and open questions are more effective than closed questions. All false, says Neil Rackham. He and his team studied more than 35,000 sales calls made by 10,000 sales people in 23 countries over 12 years. Their findings revealed that many of the methods developed for selling low-value goods just don't work for major sales. Rackham went on to introduce his SPIN-selling method, where SPIN describes the whole selling process - Situation questions, Problem questions, Implication questions, Need-payoff questions. SPIN-selling provides you with a set of simple and practical techniques which have been tried in many of today's leading companies with dramatic improvements to their sales performance.
Exertional Rhabdomyolysis after Spinning.
Jeong, Youjin; Kweon, Hyuk-Jung; Oh, Eun-Jung; Ahn, Ah-Leum; Choi, Jae-Kyung; Cho, Dong-Yung
2016-11-01
Any strenuous muscular exercise may trigger rhabdomyolysis. We report an episode of clinically manifested exertional rhabdomyolysis due to stationary cycling, commonly known as spinning. Reports of spinning-related rhabdomyolysis are rare in the English literature, and the current case appears to be the first such case reported in South Korea. A previously healthy 21-year-old Asian woman presented with severe thigh pain and reddish-brown urinary discoloration 24-48 hours after attending a spinning class at a local gymnasium. Paired with key laboratory findings, her symptoms were suggestive of rhabdomyolysis. She required hospital admission to sustain renal function through fluid resuscitation therapy and fluid balance monitoring. Because exertional rhabdomyolysis may occur in any unfit but otherwise healthy individual who indulges in stationary cycling, the potential health risks of this activity must be considered.
Miller, Jan D; Hupka, Jan; Aranowski, Robert
2012-11-20
A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.
Contucci, Pierluigi
2013-01-01
Presenting and developing the theory of spin glasses as a prototype for complex systems, this book is a rigorous and up-to-date introduction to their properties. The book combines a mathematical description with a physical insight of spin glass models. Topics covered include the physical origins of those models and their treatment with replica theory; mathematical properties like correlation inequalities and their use in the thermodynamic limit theory; main exact solutions of the mean field models and their probabilistic structures; and the theory of the structural properties of the spin glass phase such as stochastic stability and the overlap identities. Finally, a detailed account is given of the recent numerical simulation results and properties, including overlap equivalence, ultrametricity and decay of correlations. The book is ideal for mathematical physicists and probabilists working in disordered systems.
Ganichev, Sergey D.; Bel'Kov, Vasily V.; Tarasenko, Sergey A.; Danilov, Sergey N.; Giglberger, Stephan; Hoffmann, Christoph; Ivchenko, Eougenious L.; Weiss, Dieter; Wegscheider, Werner; Gerl, Christian; Schuh, Dieter; Stahl, Joachim; de Boeck, Jo; Borghs, Gustaaf; Prettl, Wilhelm
2006-09-01
The generation, manipulation and detection of spin-polarized electrons in low-dimensional semiconductors are at the heart of spintronics. Pure spin currents, that is, fluxes of magnetization without charge current, are quite attractive in this respect. A paradigmatic example is the spin Hall effect, where an electrical current drives a transverse spin current and causes a non-equilibrium spin accumulation observed near the sample boundary. Here we provide evidence for an another effect causing spin currents which is fundamentally different from the spin Hall effect. In contrast to the spin Hall effect, it does not require an electric current to flow: without bias the spin separation is achieved by spin-dependent scattering of electrons in media with suitable symmetry. We show, by free-carrier absorption of terahertz (THz) radiation, that spin currents flow in a wide range of temperatures. Moreover, the experimental results provide evidence that simple electron gas heating by any means is already sufficient to yield spin separation due to spin-dependent energy-relaxation processes.
Fabrication of ?-Carrageenan Fibers by Wet Spinning: Spinning Parameters
Lingyan Kong; Gregory R. Ziegler
2011-01-01
This study demonstrates the fabrication of κ-carrageenan fibers by a wet-spinning method and discusses three important spinning parameters: coagulation bath composition, spinning rate and post-spinning mechanical drawing. The as-spun fiber diameter decreased with KCl and ethanol concentration in the coagulation bath. In general, the ultimate tensile stress and elongation at break both increased for KCl concentration from 0.1 to 0.5 M with and without ethanol, with no significant change above ...
A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor
Hu, Yongjie; Churchill, Hugh; Reilly, David
2007-01-01
: the predominance of spin-zero nuclei suppresses the hyperfine interaction and chemical synthesis creates a clean and defect-free system with highly controllable properties. Here we present a top gate-defined double quantum dot based on Ge/Si heterostructure nanowires with fully tunable coupling between the dots......Coupled electron spins in semiconductor double quantum dots hold promise as the basis for solid-state qubits. To date, most experiments have used III-V materials, in which coherence is limited by hyperfine interactions. Ge/Si heterostructure nanowires seem ideally suited to overcome this limitation...... and to the leads. We also demonstrate a novel approach to charge sensing in a one-dimensional nanostructure by capacitively coupling the double dot to a single dot on an adjacent nanowire. The double quantum dot and integrated charge sensor serve as an essential building block required to form a solid-state spin...
2008-01-01
This book presents recent scientific achievements in the investigation of magnetization dynamics in confined magnetic systems. Introduced by Bloch as plane waves of magnetization in unconfined ferromagnets, spin waves currently play an important role in the description of very small magnetic systems ranging from microelements, which form the basis of magnetic sensors, to magnetic nano-contacts. The spin wave confinement effect was experimentally discovered in the 1990s in permalloy microstripes. The diversity of systems where this effect is observed has been steadily growing since then, and
Artru, X
2002-01-01
Contents : 1. Pre-history 2. Transversity versus helicity 3. The massless limit. "Cardan" and "see-saw" transformations 4. Transversity distribution delta q(x). The diquark spectator model 5. Soffer inequality 6. Tensor charge sum rule 7. t-channel analysis 8. Selection rules for delta q(x) measurements 9. Evolution with Q squared 10. Quark polarimetry. The sheared-jet (Collins) effect 11. Single-spin asymmetries in inclusive experiments 12. Quark distribution dependent on both spin and transverse momentum 13. First evidence of quark transversity
Obukhov, Y N
2001-01-08
The gravitational effects in the relativistic quantum mechanics are investigated. The exact Foldy-Wouthuysen transformation is constructed for the Dirac particle coupled to the static spacetime metric. As a direct application, we analyze the nonrelativistic limit of the theory. The new term describing the specific spin (gravitational moment) interaction effect is recovered in the Hamiltonian. The comparison of the true gravitational coupling with the purely inertial case demonstrates that the spin relativistic effects do not violate the equivalence principle for the Dirac fermions.
Chao, Alexander W.; Courant, Ernest D.
2007-01-01
As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δνspin of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δνspin is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an analysis
Chao, Alexander W.; /SLAC; Courant, Ernest D.; /Brookhaven
2006-12-01
As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving
Coherent spin mixing dynamics in thermal $^{87}$Rb spin-1 and spin-2 gases
He, Xiaodong; Li, Xiaoke; Wang, Fudong; Xu, Zhifang; Wang, Dajun
2015-01-01
We study the non-equilibrium coherent spin mixing dynamics in ferromagnetic spin-1 and antiferromagnetic spin-2 thermal gases of ultracold $^{87}$Rb atoms. Long lasting spin population oscillations with magnetic field dependent resonances are observed in both cases. Our observations are well reproduced by Boltzmann equations of the Wigner distribution function. Compared to the equation of motion of spinor Bose-Einstein condensates, the only difference here is a factor of two increase in the spin-dependent interaction, which is confirmed directly in the spin-2 case by measuring the relation between the oscillation amplitude and the sample's density.
Spin Caloritronic Phenomena Driven by Spin-orbit Coupling
Chen, Y.-T.
2014-01-01
In this thesis, we report several effects in spintronics and spin caloritronics related to relativistic spin-orbit coupling. In Chapter 2, we discuss the relativistic spin caloritronicHall effects in terms of a semiclassical theory for anomalous thermoelectric effects in ferromagnetic metals due to
Spin injection and perpendicular spin transport in graphite nanostructures
Banerjee, T.; van der Wiel, Wilfred Gerard; Jansen, R.
2010-01-01
Organic- and carbon-based materials are attractive for spintronics because their small spin-orbit coupling and low hyperfine interaction is expected to give rise to large spin-relaxation times. However, the corresponding spin-relaxation length is not necessarily large when transport is via weakly
Indirect NMR spin-spin coupling constants in diatomic alkali halides.
Jaszuński, Michał; Antušek, Andrej; Demissie, Taye B; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth
2016-12-28
We report the Nuclear Magnetic Resonance (NMR) spin-spin coupling constants for diatomic alkali halides MX, where M = Li, Na, K, Rb, or Cs and X = F, Cl, Br, or I. The coupling constants are determined by supplementing the non-relativistic coupled-cluster singles-and-doubles (CCSD) values with relativistic corrections evaluated at the four-component density-functional theory (DFT) level. These corrections are calculated as the differences between relativistic and non-relativistic values determined using the PBE0 functional with 50% exact-exchange admixture. The total coupling constants obtained in this approach are in much better agreement with experiment than the standard relativistic DFT values with 25% exact-exchange, and are also noticeably better than the relativistic PBE0 results obtained with 50% exact-exchange. Further improvement is achieved by adding rovibrational corrections, estimated using literature data.
Bai, Long; Zhang, Rong; Duan, Chen-Long
2012-12-10
: Using the nonequilibrium Green's function method, we theoretically study the Andreev reflection(AR) in a four-terminal Aharonov-Bohm interferometer containing a coupled double quantum dot with the Rashba spin-orbit interaction (RSOI) and the coherent indirect coupling via two ferromagnetic leads. When two ferromagnetic electrodes are in the parallel configuration, the spin-up conductance is equal to the spin-down conductance due to the absence of the RSOI. However, for the antiparallel alignment, the spin-polarized AR occurs resulting from the crossed AR (CAR) and the RSOI. The effects of the coherent indirect coupling, RSOI, and magnetic flux on the Andreev-reflected tunneling magnetoresistance are analyzed at length. The spin-related current is calculated, and a distinct swap effect emerges. Furthermore, the pure spin current can be generated due to the CAR when two ferromagnets become two half metals. It is found that the strong RSOI and the large indirect coupling are in favor of the CAR and the production of the strong spin current. The properties of the spin-related current are tunable in terms of the external parameters. Our results offer new ways to manipulate the spin-dependent transport.
Organic semiconductors: What makes the spin relax?
Bobbert, Peter A.
2010-04-01
Spin relaxation in organic materials is expected to be slow because of weak spin-orbit coupling. The effects of deuteration and coherent spin excitation show that the spin-relaxation time is actually limited by hyperfine fields.
Abé, Christoph; Klose, Daniel; Dietrich, Franziska; Ziegler, Wolfgang H.; Polyhach, Yevhen; Jeschke, Gunnar; Steinhoff, Heinz-Jürgen
2012-03-01
Double electron electron resonance (DEER) spectroscopy has been established as a valuable method to determine distances between spin labels bound to protein molecules. Caused by selective excitation of molecular orientations DEER primary data also depend on the mutual orientation of the spin labels. For a doubly spin labeled variant of the cytoskeletal protein vinculin tail strong orientation selection can be observed already at X-band frequencies, which allows us to reduce the problem to the relative orientation of two molecular axes and the spin-spin axis parameterized by three angles. A full grid search of parameter space reveals that the DEER experiment introduces parameter-space symmetry higher than the symmetry of the spin Hamiltonian. Thus, the number of equivalent parameter sets is twice as large as expected and the relative orientation of the two spin labels is ambiguous. Except for this inherent ambiguity the most probable relative orientation of the two spin labels can be determined with good confidence and moderate uncertainty by global fitting of a set of five DEER experiments at different offsets between pump and observer frequency. The experiment provides restraints on the angles between the z axis of the nitroxide molecular frame and the spin-spin vector and on the dihedral between the two z axes. When using the same type of label at both sites, assignment of the angle restraints is ambiguous and the sign of the dihedral restraint is also ambiguous.
Coherence transfer and electron T1-, T2-relaxation in nitroxide spin labels
Marsh, Derek
2017-01-01
Abragam's double-commutator spin operator method is used to analyse: 1) electron coherence transfer by intermolecular dipolar interaction between spin-label radicals, and 2) longitudinal and transverse electron spin relaxation by rotational modulation of the Zeeman and nitrogen-hyperfine anisotro......Abragam's double-commutator spin operator method is used to analyse: 1) electron coherence transfer by intermolecular dipolar interaction between spin-label radicals, and 2) longitudinal and transverse electron spin relaxation by rotational modulation of the Zeeman and nitrogen......-hyperfine anisotropies of isolated nitroxide spin labels. Results compatible with earlier treatments by Redfield theory are obtained without specifically evaluating matrix elements. Extension to single-transition operators for isolated nitroxides predicts electron coherence transfer by pseudosecular electron......-nuclear dipolar interaction, in the absence of intermolecular dipolar coupling. This explains earlier experimental findings that coherence transfer (specifically dispersion-like distortion of the EPR absorption line shape) does not extrapolate to zero at low concentrations of nitroxide spin labels....
TRANSVERSITY SINGLE SPIN ASYMMETRIES.
BOER,D.
2001-04-27
The theoretical aspects of two leading twist transversity single spin asymmetries, one arising from the Collins effect and one from the interference fragmentation functions, are reviewed. Issues of factorization, evolution and Sudakov factors for the relevant observables are discussed. These theoretical considerations pinpoint the most realistic scenarios towards measurements of transversity.
Antiferromagnetic spin-orbitronics
Manchon, Aurelien
2015-05-01
Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.
Bergshoeff, E.; Sezgin, E.; Townsend, P.K.
1988-01-01
Several alternative actions for a bosonic membrane have recently been proposed. We show that a linearly realized locally world-volume-supersymmetric (spinning membrane) extension of any of these actions implies an analogous extension of the standard Dirac membrane action. We further show that a
Hamp, James; Dutton, Sian; Mourigal, Martin; Mukherjee, Paromita; Paddison, Joseph; Ong, Harapan; Castelnovo, Claudio
Spin ice materials provide a rare instance of emergent gauge symmetry and fractionalisation in three dimensions: the effective degrees of freedom of the system are emergent magnetic monopoles, and the extensively many `ice rule' ground states are those devoid of monopole excitations. Two-dimensional (kagome) analogues of spin ice have also been shown to display a similarly rich behaviour. In kagome ice however the ground-state `ice rule' condition implies the presence everywhere of magnetic charges. As temperature is lowered, an Ising transition occurs to a charge-ordered state, which can be mapped to a dimer covering of the dual honeycomb lattice. A second transition, of Kosterlitz-Thouless or three-state Potts type, occurs to a spin-ordered state at yet lower temperatures, due to small residual energy differences between charge-ordered states. Inspired by recent experimental capabilities in growing spin ice samples with selective (layered) substitution of non-magnetic ions, in this work we investigate the fate of the two ordering transitions when individual kagome layers are brought together to form a three-dimensional pyrochlore structure coupled by long range dipolar interactions. We also consider the response to substitutional disorder and applied magnetic fields.
Urdampilleta, M.; Klyatskaya, S.; Cleuziou, J.-P.; Ruben, M.; Wernsdorfer, W.
2011-07-01
Magnetic molecules are potential building blocks for the design of spintronic devices. Moreover, molecular materials enable the combination of bottom-up processing techniques, for example with conventional top-down nanofabrication. The development of solid-state spintronic devices based on the giant magnetoresistance, tunnel magnetoresistance and spin-valve effects has revolutionized magnetic memory applications. Recently, a significant improvement of the spin-relaxation time has been observed in organic semiconductor tunnel junctions, single non-magnetic molecules coupled to magnetic electrodes have shown giant magnetoresistance and hybrid devices exploiting the quantum tunnelling properties of single-molecule magnets have been proposed. Herein, we present an original spin-valve device in which a non-magnetic molecular quantum dot, made of a single-walled carbon nanotube contacted with non-magnetic electrodes, is laterally coupled through supramolecular interactions to TbPc2 single-molecule magnets (Pc=phthalocyanine). Their localized magnetic moments lead to a magnetic field dependence of the electrical transport through the single-walled carbon nanotube, resulting in magnetoresistance ratios up to 300% at temperatures less than 1 K. We thus demonstrate the functionality of a supramolecular spin valve without magnetic leads. Our results open up prospects of new spintronic devices with quantum properties.
Peskin, Michael E
1994-01-01
This is a broad-brush introduction to the theory of spin in quantum field theory, presented at the 1993 SLAC Summer Institute. It may be useful for beginning students. (text only; complete paper with figures available by anonymous ftp from preprint.slac.stanford.edu, in the directory pub/preprints/hep-ph/9405)
Polyoxometalates as spin qubits
Gaita-Ariño, A.; Aldamen, M.; Clemente-Juan, J.-M.; Coronado, E.; Lehmann, J.; Loss, D.; Stamp, P.
2008-03-01
Polyoxometalates (POMs) are discrete fragments of metal oxides, clusters of regular MOn polyhedra. POMs show a remarkable flexibility in composition, structure and charge state, and thus can be designed according to specific electric and magnetic needs. The two localized spins with S = 1/2 on the V atoms in [PMo12O40(VO)2]^q- can be coupled through the delocalized electrons of the central core. This system was recently used for a theoretical scheme involving two-qubit gates and readout: the electrical manipulation of the molecular redox potential changes the charge of the core and thus the effective magnetic exchange between the qubits. Polyoxometalates can encapsulate magnetic ions, protecting them by a diamagnetic shell of controlled geometry. A great potential of POMs as spin qubits is that they can be constructed using only even elements, such as O, W, Mo and/or Si. Thus, there is a high abundance of polyoxometalate molecules without any nuclear spin, which could result in unusually low decoherence rates. There is currently an effort involving highly anisotropic, high magnetic moment, lanthanide@polyoxometalate molecules acting as spin qubits.
Spin dynamics in general relativity
Saravanan, S.
2016-01-01
Since all astrophysical objects spin, it is important to study the dynamics of spinning objects in curved space-time. The dynamics of spinning particles are described with a covariant Hamiltonian formalism. In this formalism, the closed set of equations of motion are obtained from Poisson-Dirac
Mechanical generation of spin current
Mamoru eMatsuo
2015-07-01
Full Text Available We focus the recent results on spin-current generation from mechanical motion such as rigid rotation and elastic deformations. Spin transport theory in accelerating frames is constructed by using the low energy expansion of the generally covariant Dirac equation. Related issues on spin-manipulation by mechanical rotation are also discussed.
Spin transport in graphene nanostructures
Guimaraes, M. H. D.; van den Berg, J. J.; Vera-Marun, I. J.; Zomer, P. J.; van Wees, B. J.
2014-01-01
Graphene is an interesting material for spintronics, showing long spin relaxation lengths even at room temperature. For future spintronic devices it is important to understand the behavior of the spins and the limitations for spin transport in structures where the dimensions are smaller than the spi
Spin Injection in Indium Arsenide
Mark eJohnson
2015-08-01
Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.
When measured spin polarization is not spin polarization
Dowben, P A; Wu Ning; Binek, Christian, E-mail: pdowben@unl.edu [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0299 (United States)
2011-05-04
Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO{sub 2} and Cr{sub 2}O{sub 3} illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)
When measured spin polarization is not spin polarization.
Dowben, P A; Wu, Ning; Binek, Christian
2011-05-04
Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO(2) and Cr(2)O(3) illustrate some of the complications which hinders comparisons of spin polarization values. © 2011 IOP Publishing Ltd
Spin-sensitive atom mirror via spin-orbit interaction
Zhou, Lu; Zheng, Ren-Fei; Zhang, Weiping
2016-11-01
Based on the spin-orbit coupling recently implemented in a neutral cold-atom gas, we propose a scheme to realize spin-dependent scattering of cold atoms. In particular we consider a matter wave packet of cold-atom gas impinging upon a step potential created by the optical light field, inside of which the atoms are subject to spin-orbit interaction. We show that the proposed system can act as a spin polarizer or spin-selective atom mirror for the incident atomic beam. The principle and the operating parameter regime of the system are carefully discussed.
Two-Dimensional Electron-Spin Resonance
Freed, Jack H.
2000-03-01
The extension of the concepts of 2D-NMR to ESR posed significant technological challenges, especially for liquids. ESR relaxation times are very short, as low as 10-15 ns. for T_2's. Spectral bandwidths are 100-250 MHz for nitroxide spin labels. Adequate coverage is obtained with 3-5 ns. π/2 (9-17 GHz) microwave pulses into a small low Q resonator. Dead-times are currently 25-30 ns. Additional requirements are rapid phase shifting for phase cycling, nsec. data acquisition, and fast repetition rates (10-100 kHz). 2D-ELDOR (electron-electron double resonance), which is a 3-pulse 2D-exchange experiment, takes about 30 minutes with just 0.5 nanomole spin-probe in solution (SNR 200). 2D-ELDOR is very useful in studies of molecular dynamics and local structure in complex fluids. For such media, the slow rotational dynamics requires a theory based upon the stochastic Liouville equation which enables quantitative interpretation of 2D-ELDOR experiments. In studies of spin-probes in a liquid crystal new insights could be obtained on the dynamic structure in different phases. One obtains, in addition to ordering and reorientation rates of the probes, details of the local dynamic cage: its orienting potential and (slow) relaxation rate. 2D-ELDOR overcomes the loss of resolution resulting from microscopically ordered but macroscopically disordered complex fluids. This is illustrated by studies of the dynamic structure of lipid membrane vesicles, and the effects of adding a peptide. The short dead times enable the observation of both the bulk lipids and the more immobilized lipids that coat (or are trapped) by the (aggregates of) peptides. Also, new developments of multi-quantum (2D) FT-ESR from nitroxide spin labels interacting by dipolar interactions show considerable promise in measuring distances of ca. 15-70A in macromolecules.
Andrei V. Afanasev; Stanley J. Brodsky; Carl E. Carlson; Yu-Chun Chen; Marc Vanderhaeghen
2005-01-01
We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer by using a quark-parton representation of virtual Compton scattering. We thus can relate the two-photon exchange amplitude to the generalized parton distributions which also enter in other wide angle scattering processes. We find that the interference of one- and two-photon exchange contribution is able to substantially resolve the difference between electric form factor measurements from Rosenbluth and polarization transfer experiments.
Inertial effect on spin-orbit coupling and spin transport
Basu, B.; Chowdhury, Debashree
2013-08-01
We theoretically study the renormalization of inertial effects on the spin dependent transport of conduction electrons in a semiconductor by taking into account the interband mixing on the basis of k→ṡp→ perturbation theory. In our analysis, for the generation of spin current we have used the extended Drude model where the spin-orbit coupling plays an important role. We predict enhancement of the spin current resulting from the renormalized spin-orbit coupling effective in our model in cubic and non-cubic crystals. Attention has been paid to clarify the importance of gauge fields in the spin transport of this inertial system. A theoretical proposition of a perfect spin filter has been done through the Aharonov-Casher like phase corresponding to this inertial system. For a time dependent acceleration, effect of k→ ṡp→ perturbation on the spin current and spin polarization has also been addressed. Furthermore, achievement of a tunable source of polarized spin current through the non uniformity of the inertial spin-orbit coupling strength has also been discussed.
Thermal creation of a spin current by Seebeck spin tunneling
Jansen, R.; Le Breton, J. C.; Deac, A. M.; Saito, H.; Yuasa, S.
2013-09-01
The thermoelectric analog of spin-polarized tunneling, namely Seebeck spin tunneling, is a recently discovered phenomenon that arises from the spin-dependent Seebeck coefficient of a magnetic tunnel contact. In a tunnel junction with one ferromagnetic electrode and one non-magnetic electrode, a temperature difference between the two electrodes creates a spin current across the contact. Here, the basic principle and the observation of Seebeck spin tunneling are described. It is shown how it can be used to create a spin accumulation in silicon driven by a heat flow across a magnetic tunnel contact, without a charge tunnel current. The sign of the spin current depends on the direction of the heat flow, whereas its magnitude is anisotropic, i.e., dependent on the absolute orientation of the magnetization of the ferromagnet. The connection between Seebeck spin tunneling and the tunnel magneto-Seebeck effect, observed in metal magnetic tunnel junctions, is also clarified. Seebeck spin tunneling may be used to convert waste heat into useful thermal spin currents that aid or replace electrical spin current, and thereby improve the energy efficiency of spintronic devices and technologies.
Spin-polarized transport in a normal/ferromagnetic/normal zigzag graphene nanoribbon junction
Tian Hong-Yu; Wang Jun
2012-01-01
We investigate the spin-dependent electron transport in single and double normal/ferromagnetic/normal zigzag graphene nanoribbon (NG/FG/NG) junctions.The ferromagnetism in the FG region originates from the spontaneous magnetization of the zigzag graphene nanoribbon.It is shown that when the zigzag-chain number of the ribbon is even and only a single transverse mode is actived,the single NG/FG/NG junction can act as a spin polarizer and/or a spin analyzer because of the valley selection rule and the spin-exchange field in the FG,while the double NG/FG/NG/FG/NG junction exhibits a quantum switching effect,in which the on and the off states switch rapidly by varying the cross angle between two FG magnetizations.Our findings may shed light on the application of magnetized graphene nanoribbons to spintronics devices.
Entanglement Entropy in Random Quantum Spin-S Chains
Saguia, A; Continentino, M A; Sarandy, M S
2007-01-01
We discuss the scaling of entanglement entropy in the random singlet phase (RSP) of disordered quantum magnetic chains of general spin-S. Through an analysis of the general structure of the RSP, we show that the entanglement entropy scales logarithmically with the size of a block and we provide a closed expression for this scaling. This result is applicable for arbitrary quantum spin chains in the RSP, being dependent only on the magnitude S of the spin. Remarkably, the logarithmic scaling holds for the disordered chain even if the pure chain with no disorder does not exhibit conformal invariance, as is the case for Heisenberg integer spin chains. Our conclusions are supported by explicit evaluations of the entanglement entropy for random spin-1 and spin-3/2 chains using an asymptotically exact real-space renormalization group approach.
Spin-optical metamaterial route to spin-controlled photonics.
Shitrit, Nir; Yulevich, Igor; Maguid, Elhanan; Ozeri, Dror; Veksler, Dekel; Kleiner, Vladimir; Hasman, Erez
2013-05-10
Spin optics provides a route to control light, whereby the photon helicity (spin angular momentum) degeneracy is removed due to a geometric gradient onto a metasurface. The alliance of spin optics and metamaterials offers the dispersion engineering of a structured matter in a polarization helicity-dependent manner. We show that polarization-controlled optical modes of metamaterials arise where the spatial inversion symmetry is violated. The emerged spin-split dispersion of spontaneous emission originates from the spin-orbit interaction of light, generating a selection rule based on symmetry restrictions in a spin-optical metamaterial. The inversion asymmetric metasurface is obtained via anisotropic optical antenna patterns. This type of metamaterial provides a route for spin-controlled nanophotonic applications based on the design of the metasurface symmetry properties.
Spin-transfer torque induced spin waves in antiferromagnetic insulators
Daniels, Matthew; Guo, Wei; Stocks, G. Malcolm; Xiao, Di; Xiao, Jiang
2015-03-01
We explore the possibility of exciting spin waves in insulating antiferromagnetic films by injecting spin current at the surface. We analyze both magnetically compensated and uncompensated interfaces. We find that the spin current induced spin-transfer torque can excite spin waves in insulating antiferromagnetic materials and that the chirality of the excited spin wave is determined by the polarization of the injected spin current. Furthermore, the presence of magnetic surface anisotropy can greatly increase the accessibility of these excitations. Supported by NSF EFRI-1433496 (M.W.D), U.S. DOE Office of Basic Energy Sciences, Materials Sciences and Engineering (D.X. & G.M.S.), Major State Basic Research Project of China and National Natural Science Foundation of China (W.G. and J.X.).
Spin anisotropy and slow dynamics in spin glasses.
Bert, F; Dupuis, V; Vincent, E; Hammann, J; Bouchaud, J-P
2004-04-23
We report on an extensive study of the influence of spin anisotropy on spin glass aging dynamics. New temperature cycle experiments allow us to compare quantitatively the memory effect in four Heisenberg spin glasses with various degrees of random anisotropy and one Ising spin glass. The sharpness of the memory effect appears to decrease continuously with the spin anisotropy. Besides, the spin glass coherence length is determined by magnetic field change experiments for the first time in the Ising sample. For three representative samples, from Heisenberg to Ising spin glasses, we can consistently account for both sets of experiments (temperature cycle and magnetic field change) using a single expression for the growth of the coherence length with time.
Spin-Currents and Spin-Pumping Forces for Spintronics
Henri-Jean Drouhin
2011-01-01
Full Text Available A general definition of the Spintronics concept of spin-pumping is proposed as generalized forces conjugated to the spin degrees of freedom in the framework of the theory of mesoscopic non-equilibrium thermodynamics. It is shown that at least three different kinds of spin-pumping forces and associated spin-currents can be defined in the most simple spintronics system: the Ferromagnetic/Non-Ferromagnetic metal interface. Furthermore, the generalized force associated with the ferromagnetic collective variable is also introduced on an equal footing to describe the coexistence of the spin of the conduction electrons (paramagnetic spins attached to s-band electrons and the ferromagnetic-order parameter. The dynamical coupling between these two kinds of magnetic degrees of freedom is presented and interpreted in terms of spin-transfer effects.
Spin-disordered superfluid state for spin-1 bosons with fractional spin and statistics
2002-01-01
We study a strongly correlated spin-1 Bose gas in 2D space by using the projective construction. A spin-disordered superfluid state is constructed and proposed as a candidate competing with the conventional polar condensate when interaction is antiferromagnetic. This novel state has a non-trivial topological order whose low energy excitations carry fractional spin, charge, and statistics. The spin excitations become gapless only at the edge and are described by level-1 SU(2) Kac-Moody algebra...
The Spin Structure of the Proton in the Resonance Region
Fatemi, Renee H. [Univ. of Virginia, Charlottesville, VA (United States)
2002-01-01
Inclusive double spin asymmetries have been measured for $\\vec{p}$($\\vec{e}$,e') using the CLAS detector and a polarized ^{15}NH_{3} target at Jefferson Lab in 1998. The virtual photon asymmetry A_{1}, the longitudinal spin structure function, g_{1} (x, Q^{2}), and the first moment Γ$1\\atop{p}$, have been extracted for a Q^{2} range of 0.15-2.0 GeV^{2}. These results provide insight into the low Q^{2} evolution of spin dependent asymmetries and structure functions as well as the transition of Γ$1\\atop{p}$ from the photon point, where the Gerasimov, Drell and Hearn Sum Rule is expected to be satisfied, to the deep inelastic region.
Tunable Few-Electron Quantum Dots as Spin Qubits
Elzerman, Jeroen; Hanson, Ronald; Greidanus, Jacob; Willems van Beveren, Laurens; de Franceschi, Silvano; Vandersypen, Lieven; Tarucha, Seigo; Kouwenhoven, Leo
2003-03-01
Recently it was proposed to make a quantum bit using the spin of an electron in a quantum dot. We present the first experimental steps towards realizing a system of two coupled qubits. The Zeeman splitting between the two spin states defining the qubit is measured for a one-electron dot in a parallel magnetic field. For a two-electron dot, we control the spin singlet-triplet energy difference with a perpendicular magnetic field, and we induce a transition from singlet to triplet ground state. We find relaxation from triplet to singlet to be extremely slow (> 1 mus), which is promising for quantum computing. We couple two few-electron dots, creating the first fully tunable few-electron double dot. Its charge configuration can be read out with a nearby QPC acting as an integrated charge detector.
The Spin Structure of the Proton in the Resonance Region
Renee Fatemi
2002-01-01
Inclusive double spin asymmetries have been measured for {rvec p}({rvec e},e{prime}) using the CLAS detector and a polarized {sup 15}NH{sub 3} target at Jefferson Lab in 1998. The virtual photon asymmetry A{sub 1}, the longitudinal spin structure function, g{sub 1} (x, Q{sup 2}), and the first moment {Gamma}{sub 1}{sup p}, have been extracted for a Q{sup 2} range of 0.15-2.0 GeV{sup 2}. These results provide insight into the low Q{sup 2} evolution of spin dependent asymmetries and structure functions as well as the transition of {Gamma}{sub 1}{sup p} from the photon point, where the Gerasimov, Drell and Hearn Sum Rule is expected to be satisfied, to the deep inelastic region.
Spin physics program in Jefferson Lab’s Hall C
Rondon, Oscar A. [University of Virginia, Charlottesville, VA
2015-04-01
The nucleon spin structure has been studied at Jefferson Lab’s Hall C in experiments RSS (E01-006) and SANE (E07-003), which measured double spin asymmetries using the U. of Virginia solid polarized target and CEBAF’s 6 GeV polarized electrons. The proton longitudinal spin structure g 1 and transverse structure g 2 have been investigated at kinematics extending from the elastic point to DIS, for four-momenta squared ranging from 0.8 to 5 GeV2. The neutron structures have been measured in the region of the nucleon resonances at 1.3 GeV2 on a deuteron target. Results of both experiments will be highlighted. A brief survey of approved experiments for the 12 GeV program will also be presented.
Spin physics program in Jefferson Lab’s Hall C
Rondón, Oscar A. [Institute for Nuclear and Particle Physics, University of Virginia, Charlottesville, VA 22903 (United States)
2015-04-10
The nucleon spin structure has been studied at Jefferson Lab’s Hall C in experiments RSS (E01-006) and SANE (E07-003), which measured double spin asymmetries using the U. of Virginia solid polarized target and CEBAF’s 6 GeV polarized electrons. The proton longitudinal spin structure g{sub 1} and transverse structure g{sub 2} have been investigated at kinematics extending from the elastic point to DIS, for four-momenta squared ranging from 0.8 to 5 GeV{sup 2}. The neutron structures have been measured in the region of the nucleon resonances at 1.3 GeV{sup 2} on a deuteron target. Results of both experiments will be highlighted. A brief survey of approved experiments for the 12 GeV program will also be presented.
Magic-angle turning with double acquisition.
Matsunaga, Tatsuya; Takegoshi, K
2017-01-01
The double-acquisition scheme for efficient data collection of hypercomplex data (the States method) of a two-dimensional experiment is adopted to magic-angle hopping (MAH) and magic-angle turning (MAT) experiments, which are powerful methods to measure the principal values of the chemical shift anisotropy (CSA) in a powder sample. It is shown that the double acquisition MAT (DAMAT) sequence realizes the S/N ratio comparable to or better than those of other variants of the MAH/MAT sequences. In addition, we show that DAMAT has preferable features that there are no spinning sidebands in the indirect dimension, and no spectral shearing is necessary. Copyright © 2016 Elsevier Inc. All rights reserved.
Bhattacharya, Aniruddha; Baten, Md Zunaid; Bhattacharya, Pallab, E-mail: pkb@umich.edu [Center for Photonic and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)
2016-01-25
We report the measurement of diffusive electronic spin transport characteristics in an epitaxial wurtzite GaN lateral spin valve at room temperature. Hanle spin precession and non-local spin accumulation measurements have been performed with the spin valves fabricated with FeCo/MgO spin contacts. Electron spin relaxation length and spin-flip lifetime of 176 nm and 37 ps, respectively, are derived from analysis of results obtained from four-terminal Hanle spin precession measurements at 300 K. The role of dislocations and defects in bulk GaN has also been examined in the context of electronic spin relaxation dynamics.
Bhattacharya, Aniruddha; Baten, Md Zunaid; Bhattacharya, Pallab
2016-01-01
We report the measurement of diffusive electronic spin transport characteristics in an epitaxial wurtzite GaN lateral spin valve at room temperature. Hanle spin precession and non-local spin accumulation measurements have been performed with the spin valves fabricated with FeCo/MgO spin contacts. Electron spin relaxation length and spin-flip lifetime of 176 nm and 37 ps, respectively, are derived from analysis of results obtained from four-terminal Hanle spin precession measurements at 300 K. The role of dislocations and defects in bulk GaN has also been examined in the context of electronic spin relaxation dynamics.
Spin injection and spin accumulation in all-metal mesoscopic spin valves
Jedema, FJ; Nijboer, MS; Filip, AT; van Wees, BJ
2003-01-01
We study the electrical injection and detection of spin accumulation in lateral ferromagnetic-metal-nonmagnetic-metal-ferromagnetic-metal (F/N/F) spin valve devices with transparent interfaces. Different ferromagnetic metals, Permalloy (Py), cobalt (Co), and nickel (Ni), are used as electrical spin
Thermodynamic equivalence of spin systems
Beltman, J.M. (Katholieke Universiteit Nijmegen (Netherlands))
1975-01-01
The thermodynamic equilibrium properties of systems composed of classical spin /sup 1///sub 2/ particles (Ising spins) are studied. Given an interaction pattern between the Ising spins the main problem is to calculate the equilibrium state(s) of the system. The point put forward here is the existence of many thermodynamical equivalent spin coordinate systems. As a consequence of this phenomenon the interaction pattern of a system may be very intricate when described with respect to one spin coordinate system whereas it may become simple with respect to another one and vice versa. A systematic investigation of this phenomenon is made. (FR)
On the spin wave multifractal spectra in magnetic multilayers
Bezerra, C. G.; Albuquerque, E. L.; , E. Nogueira, Jr.
The multifractal properties of spin wave bandwidths in quasiperiodic magnetic multilayers are studied. The profiles of the bandwidths are analyzed and the f( α) function is calculated for different values of the dimensionless in-plane wave vector kxa and for four different sequences: Fibonacci, double-period, Thue-Morse and Rudin-Shapiro. We note that the f( α) spectra is qualitatively the same for different values of kxa.
Monotonic Property in Field Algebra of G-Spin Model
蒋立宁
2003-01-01
Let F be the field algebra of G-spin model, D(G) the double algebra of a finite group G and D(H) the sub-Hopf algerba of D(G) determined by the subgroup H of G. The paper builds a correspondence between D(H) and the D(H)-invariant sub-C*-algebra AH in F, and proves that the correspondence is strictly monotonic.
An exact solution on the ferromagnetic Face-Cubic spin model on a Bethe lattice
Ohanyan, V. R.; Ananikyan, L. N.; Ananikian, N. S.
2006-01-01
The lattice spin model with $Q$--component discrete spin variables restricted to have orientations orthogonal to the faces of $Q$-dimensional hypercube is considered on the Bethe lattice, the recursive graph which contains no cycles. The partition function of the model with dipole--dipole and quadrupole--quadrupole interaction for arbitrary planar graph is presented in terms of double graph expansions. The latter is calculated exactly in case of trees. The system of two recurrent relations wh...
Effect of Quantum Point Contact Measurement on Electron Spin State in Quantum Dots
ZHU Fei-Yun; TU Tao; HAO Xiao-Jie; GUO Guang-Can; GUO Guo-Ping
2009-01-01
We study the time evolution of two electron spin states in a double quantum-dot system, which includes a nearby quantum point contact (QPC) as a measurement device. We find that the QPC measurement induced decoherence is in the microsecond timescale. We also find that the enhanced QPC measurement will trap the system in its initial spin states, which is consistent with the quantum Zeno effect.
Zheng, X.; Adhikari, K. P.; Bosted, P.; Deur, A.; Drozdov, V.; El Fassi, L.; Kang, Hyekoo; Kovacs, K.; Kuhn, S.; Long, E.; Phillips, S. K.; Ripani, M.; Slifer, K.; Smith, L. C.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chen, J. -P.; Chetry, T.; Choi, Seonho; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D' Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovach, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Pisano, S.; Pogorelko, O.; Price, J. W.; Puckett, A. J. R.; Raue, B. A.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.
2016-10-01
We report measurements of target- and double-spin asymmetries for the exclusive channel $\overrightarrow{e}\overrightarrow{p}\to e{\pi}^{+}\left(n\right)$ in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH3 target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3, and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low Q^{2} range from 0.0065 to 0.35 (GeV/c)^{2}. The Q^{2} access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as 6 degrees. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID, and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.
Spin interference in silicon one-dimensional rings
Bagraev, N T [Ioffe Physico-Technical Institute RAS, 194021, St. Petersburg (Russian Federation); Galkin, N G [Ioffe Physico-Technical Institute RAS, 194021, St. Petersburg (Russian Federation); Gehlhoff, W [Technische Universitaet Berlin, D-10623, Berlin (Germany); Klyachkin, L E [Ioffe Physico-Technical Institute RAS, 194021, St. Petersburg (Russian Federation); Malyarenko, A M [Ioffe Physico-Technical Institute RAS, 194021, St. Petersburg (Russian Federation); Shelykh, I A [School of Physics and Astronomy, University of Southampton, SO17 1BJ Southampton (United Kingdom)
2007-03-15
We present the first findings of the spin transistor effect in the Rashba gate-controlled ring embedded in the p-type self-assembled silicon quantum well that is prepared on the n-type Si (100) surface. The coherence and phase sensitivity of the spin-dependent transport of holes are studied by varying the value of the external magnetic field and the top gate voltage that are applied perpendicularly to the plane of the double-slit ring and revealed by the Aharonov-Bohm (AB) and Aharonov-Casher (AC) conductance oscillations, respectively. Firstly, the amplitude and phase sensitivity of the 0.7.(2e{sup 2}/h) feature of the hole quantum conductance staircase revealed by the quantum point contact inserted in the one of the arms of the double-slit ring are found to result from the interplay of the spontaneous spin polarization and the Rashba spin-orbit interaction (SOI). Secondly, the values of the AC conductance oscillations caused by the Rashba SOI are found to take the fractional form with both the plateaus and steps as a function of the top gate voltage.
Spin interference in silicon one-dimensional rings
Bagraev, N T [Ioffe Physico-Technical Institute, RAS, 194021 St Petersburg (Russian Federation); Galkin, N G [Ioffe Physico-Technical Institute, RAS, 194021 St Petersburg (Russian Federation); Gehlhoff, W [Institut fuer Festkoerperphysik, TU Berlin, D-10623 Berlin (Germany); Klyachkin, L E [Ioffe Physico-Technical Institute, RAS, 194021 St Petersburg (Russian Federation); Malyarenko, A M [Ioffe Physico-Technical Institute, RAS, 194021 St Petersburg (Russian Federation); Shelykh, I A [Physics and Astronomy School, University of Southampton, Highfield, Southampton, S017 1BJ (United Kingdom)
2006-11-15
We present the first findings of the spin transistor effect in a Rashba gate-controlled ring embedded in a p-type self-assembled silicon quantum well that is prepared on an n-type Si(100) surface. The coherence and phase sensitivity of the spin-dependent transport of holes are studied by varying the values of the external magnetic field and the bias voltage that are applied perpendicularly to the plane of the double-slit ring. First, the amplitude and phase sensitivity of the 0.7 x (2e{sup 2}/h) feature of the hole quantum conductance staircase revealed by the quantum point contact inserted in one of the arms of the double-slit ring are found to result from the interplay of the spontaneous spin polarization and the Rashba spin-orbit interaction. Second, the quantum scatterers connected to two one-dimensional leads and the quantum point contact inserted are shown to define the amplitude and the phase of the Aharonov-Bohm and the Aharonov-Casher conductance oscillations. (letter to the editor)
Hovhannisyan, V V; Strečka, J; Ananikian, N S
2016-03-02
The spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins is rigorously solved using the transfer-matrix method. In particular, exact results for the ground state, magnetization process and specific heat are presented and discussed. It is shown that further-neighbor interaction between nodal spins gives rise to three novel ground states with a translationally broken symmetry, but at the same time, does not increases the total number of intermediate plateaus in a zero-temperature magnetization curve compared with the simplified model without this interaction term. The zero-field specific heat displays interesting thermal dependencies with a single- or double-peak structure.
Lorcé, Cédric
2014-01-01
The proton spin puzzle issue focused the attention on the parton spin and orbital angular momentum contributions to the proton spin. However, a complete characterization of the proton spin structure requires also the knowledge of the parton spin-orbit correlation. We showed that this quantity can be expressed in terms of moments of measurable parton distributions. Using the available phenomenological information about the valence quarks, we concluded that this correlation is negative, meaning that the valence quark spin and kinetic orbital angular momentum are, in average, opposite. The quark spin-orbit correlation can also be expressed more intuitively in terms of relativistic phase-space distributions, which can be seen as the mother distributions of the standard generalized and transverse-momentum dependent parton distributions. We present here for the first time some examples of the general multipole decomposition of these phase-space distributions.
Efficient spin transport through polyaniline
Mendes, J. B. S.; Alves Santos, O.; Gomes, J. P.; Assis, H. S.; Felix, J. F.; Rodríguez-Suárez, R. L.; Rezende, S. M.; Azevedo, A.
2017-01-01
By using the spin pumping process, we show that it is possible to transport a pure spin current across layers of conducting polyaniline (PANI) with several hundred nanometers sandwiched between a film of the ferrimagnetic insulator yttrium iron garnet (YIG) and a thin layer of platinum. The spin current generated by microwave-driven ferromagnetic resonance of the YIG film, injected through the YIG/PANI interface, crosses the whole PANI layer and then is injected into the Pt layer. By means of the inverse spin Hall effect in the Pt, the spin current is converted into charge current and electrically detected as a dc voltage. We measured a spin diffusion length in PANI of 590 ± 40 nm, which is very large compared with normal metals, demonstrating that PANI can be used as an efficient spin current conductor and poor charge current conductor, opening the path towards spintronics applications based in this very attractive material.
Spin-Controlled Conductivity in a Thiophene-Functionalized Iron-Bis(dicarbollide)
Beach, Benjamin; Sauriol, Dustin; Derosa, Pedro
2016-04-01
The relationship between spin state and conductivity is studied for a thiophene-functionalized iron(III)-bis(dicarbollide) with one or two thiophenes at each end of the cage. Iron has a high ground state spin that can be adjusted by external electromagnetic fields to produce different magnetic states. The hypothesis explored here is that changes in the spin state of these Fe-containing molecules can lead to significant changes in molecular conductivity. Two examples of the possible application of such spin-dependent conductivity are its use as a molecular switch, the basic building block in digital logic, or as a memory bit. The molecules were first optimized using the Becke-3 Lee-Yang-Parr functional (B3LYP) with the 6-31G(d) basis set. A relaxed molecular geometry at each spin state was then placed between gold electrodes to conduct spin-polarized electron transport calculations with the density functional theory/non-equilibrium Green's functions formalism. The revised Perdew-Burke-Ernzerhf solids exchange-correlation functional (PBES) with double zeta polarized basis set was used. The result of these calculations show that the conductivity increases with the spin state. The cage structure is shown to exhibit fully delocalized molecular orbitals (MOs) appropriate for high conductivity and thus, in this system, the conductivity depends on the position of the MOs relative to the Fermi level. Minority spins are responsible for the conductivity of the doublet spin state while majority spins dominate for the quartet and sextet spin states as they are found closer to the Fermi level when they are occupied. Energy calculations predict a difference in energy between the more and the less conductive spin states (sextet and doublet respectively) that is 15-20 times greater than the thermal energy, which would imply stability at room temperature; however, the energy difference is sufficiently small that transitions between spin states can be induced.
., Nuruzzaman [Hampton Univ., Hampton, VA (United States)
2014-12-01
The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system
Unintegrated double parton distributions
Golec-Biernat, K
2016-01-01
We present the construction of unintegrated double parton distribution functions which include dependence on transverse momenta of partons. We extend the formulation which was used to obtain the single unintegrated parton distributions from the standard, integrated parton distribution functions. Starting from the homogeneous part of the evolution equations for the integrated double parton distributions, we construct the unintegrated double parton distributions as the convolutions of the integrated double distributions and the splitting functions, multiplied by the Sudakov form factors. We show that there exist three domains of external hard scales which require three distinct forms of the unintegrated double distributions. The additional transverse momentum dependence which arises through the Sudakov form factors leads to non-trivial correlations in the parton momenta. We also discuss the non-homogeneous contribution to the unintegrated double parton distributions, which arises due to the splitting of a singl...
Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; Cantoni, M.
2016-10-01
The measurement of the spin diffusion length and/or lifetime in semiconductors is a key issue for the realisation of spintronic devices, exploiting the spin degree of freedom of carriers for storing and manipulating information. In this paper, we address such parameters in germanium (0 0 1) at room temperature (RT) by three different measurement methods. Exploiting optical spin orientation in the semiconductor and spin filtering across an insulating MgO barrier, the dependence of the resistivity on the spin of photo-excited carriers in Fe/MgO/Ge spin photodiodes (spin-PDs) was electrically detected. A spin diffusion length of 0.9 ± 0.2 µm was obtained by fitting the photon energy dependence of the spin signal by a mathematical model. Electrical techniques, comprising non-local four-terminal and Hanle measurements performed on CoFeB/MgO/Ge lateral devices, led to spin diffusion lengths of 1.3 ± 0.2 µm and 1.3 ± 0.08 µm, respectively. Despite minor differences due to experimental details, the order of magnitude of the spin diffusion length is the same for the three techniques. Although standard electrical methods are the most employed in semiconductor spintronics for spin diffusion length measurements, here we demonstrate optical spin orientation as a viable alternative for the determination of the spin diffusion length in semiconductors allowing for optical spin orientation.
Spin Funneling for Enhanced Spin Injection into Ferromagnets
Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo
2016-07-01
It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.
Zhuo CHEN; Zhang Ju LIU; Yun He SHENG
2014-01-01
In this paper, we construct a category of short exact sequences of vector bundles and prove that it is equivalent to the category of double vector bundles. Moreover, operations on double vector bundles can be transferred to operations on the corresponding short exact sequences. In particular, we study the duality theory of double vector bundles in term of the corresponding short exact sequences. Examples including the jet bundle and the Atiyah algebroid are discussed.
Chen, Zhuo; Liu, Zhangju; Sheng, Yunhe
2011-01-01
In this paper, we construct a category of short exact sequences of vector bundles and prove that it is equivalent to the category of double vector bundles. Moreover, operations on double vector bundles can be transferred to operations on the corresponding short exact sequences. In particular, we study the duality theory of double vector bundles in term of the corresponding short exact sequences. Examples including the jet bundle and the Atiyah algebroid are discussed.
UNILATERAL INCOMPLETE DOUBLE URETER
Kaini
2013-04-01
Full Text Available ABSTRACT: Double ureter is a result of premature division of t he ureteric bud. The ureters may join in the lower third of their course and open thr ough a common orifice into the bladder. If they open independently into the bladder, the ureter draining the upper pelvis opens into the bladder below the opening of the other ureter. Patie nts with double ureter or double pelvis are more likely to develop urinary infection and calculi .
Gómez, Sandra; Oppel, Markus; González, Leticia
2017-09-01
The possibility to discriminate the ortho and para nuclear spin isomers of 1,1-difluoroethylene via their excited state dynamics is studied using wavepacket propagations including non-adiabatic couplings. The two nuclear spin isomers are connected via a torsional motion around the double bond. Photo-excitation induces a different interference pattern, with different torsional periods - a fact that can be exploited to distinguish, and eventually separate the nuclear spin isomers using femtosecond pump-probe experiments. The inclusion of non-adiabatic couplings results in a slowdown of the wavepacket, increasing the torsional periods of the nuclear spin isomers.
Spin diffusion length of Permalloy using spin absorption in lateral spin valves
Sagasta, Edurne; Omori, Yasutomo; Isasa, Miren; Otani, YoshiChika; Hueso, Luis E.; Casanova, Fèlix
2017-08-01
We employ the spin absorption technique in lateral spin valves to extract the spin diffusion length of Permalloy (Py) as a function of temperature and resistivity. A linear dependence of the spin diffusion length with the conductivity of Py is observed, evidencing that the Elliott-Yafet mechanism is the dominant spin relaxation mechanism in Permalloy. Completing the dataset with additional data found in the literature, we obtain λPy = (0.91 ± 0.04) (fΩm2)/ρPy.
Green's function study of a mixed spin-1 and spin-3/2 Heisenberg ferrimagnetic system
Mert, Guelistan, E-mail: gmert@selcuk.edu.tr [Department of Physics, Selcuk University, 42075 Kampues Konya (Turkey)
2012-09-15
The magnetic properties of a mixed spin-1 and spin-3/2 Heisenberg ferrimagnetic system on a square lattice are investigated by using the double-time temperature-dependent Green's function technique. In order to decouple the higher order Green's functions, Anderson and Callen's decoupling and random phase approximations have been used. The nearest- and next-nearest-neighbor interactions and the single-ion anisotropies are considered and their effects on compensation and critical temperature are studied. - Highlights: Black-Right-Pointing-Pointer We investigate the magnetic properties of a mixed spin-1 and spin-3/2 Heisenberg ferrimagnetic system on a square lattice. Black-Right-Pointing-Pointer We use the double-time temperature-dependent Green's function technique. Black-Right-Pointing-Pointer Nearest- and next-nearest-neighbor interactions and single-ion anisotropies are considered. Black-Right-Pointing-Pointer Their effects on compensation and critical temperature are studied. Black-Right-Pointing-Pointer We determined the conditions satisfied by critical and compensation temperatures.
Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca
2012-05-01
Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.
Friedrich, Jan Michael
2006-01-01
Results for the spin structure of the nucleon from the COMPASS data taking periods 2002 to 2004 are presented. The quark contribution to the nucleon spin, following from a QCD fit to the new data, turns out to be significantly larger than it was derived from the previous world data. The new data favour, on the other side, a comparatively small gluon polarisation in the range $x_{g} \\approx$ 0.1. In the data taken with the deuteron target polarised transversely, the related asymmetries are found to be small on the level of accuracy reached so far, indicating a cancellation of the proton and neutron contributions. This is in agreement, for both the Collins and the Sivers asymmetry, with recent theoretical calculations. Also, a step towards the understanding of angular momentum contributions with COMPASS is taken by the evaluation of asymmetries in exclusive vector meson production.
Large Spin Perturbation Theory
Alday, Luis F
2016-01-01
We consider conformal field theories around points of large twist degeneracy. Examples of this are theories with weakly broken higher spin symmetry and perturbations around generalised free fields. At the degenerate point we introduce twist conformal blocks. These are eigenfunctions of certain quartic operators and encode the contribution, to a given four-point correlator, of the whole tower of intermediate operators with a given twist. As we perturb around the degenerate point, the twist degeneracy is lifted. In many situations this breaking is controlled by inverse powers of the spin. In such cases the twist conformal blocks can be decomposed into a sequence of functions which we systematically construct. Decomposing the four-point correlator in this basis turns crossing symmetry into an algebraic problem. Our method can be applied to a wide spectrum of conformal field theories in any number of dimensions and at any order in the breaking parameter. As an example, we compute the spectrum of various theories ...
Whitfield, J D; Biamonte, J D
2012-01-01
Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground state subspace encoding the truth tables of Boolean formulas. The ground state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground state embeddings found in both classical optimization as well as adiabatic quantum optimization.
Florakis, Ioannis; Tsulaia, Mirian
2014-01-01
We consider the Sp(2n) invariant formulation of higher spin fields on flat and curved backgrounds of constant curvature.In this formulation an infinite number of higher spin fields are packed into single scalar and spinor master fields (hyperfields) propagating on extended spaces, to be called hyperspaces, parametrized by tensorial coordinates.We show that the free field equations on flat and AdS-like hyperspaces are related to each other by a generalized conformal transformation of the scalar and spinor master fields. We compute the four--point functions on a flat hyperspace for both scalar and spinor master fields, thus extending the two-- and three--point function results of arXiv:hep-th/0312244. Then using the generalized conformal transformation we derive two--, three-- and four--point functions on AdS--like hyperspace from the corresponding correlators on the flat hyperspace.
A hidden BFKL / XXX s = -1/2 spin chain mapping
Romagnoni, Alberto
2011-01-01
A new mapping between the BFKL equation and Beisert's representation of the XXX Heisenberg ferromagnet with spin s = - 1/2 is given. The action of the Hamiltonian operator of a spin chain with SL(2) invariance on a symmetric double copy of a harmonic oscillator excited state is shown to be identical to the action of the BFKL Hamiltonian on the gluon Green function for the azimuthal-angle averaged forward scattering case. A natural mapping between the gluon Green function, discretized in virtuality space, and the double harmonic oscillator excited state emerges.
Lord, Michael D; Mandel, Stanley W; Wager, Jeffrey D
2002-06-01
Spinouts rarely take off; most, in fact, fall into one or more of four traps that doom them from the start. Some companies spin out ventures that are too close to the core of their businesses, in effect selling off their crown jewels. Sometimes, a parent company uses the spinout primarily to pawn off debt or expenses or to quickly raise external capital for itself. Other times, a company may try to spin out an area of its business that lacks one or more of the critical legs of a successful company--a coherent business model, say, or a solid financial base. And in many cases, parent companies can't bring themselves to sever their ownership ties and give up control of their spinouts. R.J. Reynolds, the tobacco giant, managed to avoid these traps when it successfully spun out a most unlikely venture, the pharmaceutical company Targacept. As the story illustrates, the problem with spinouts is similar to the problem of rich children. Their parents have the wherewithal to spoil them or shelter them or cling to them, but what they need is tough love and discipline--much the same discipline that characterizes successful start-ups. R.J. Reynolds recognized that it didn't know that much about the pharmaceutical business and couldn't merely try to spin out a small clone of itself. It had to treat the venture as if it were essentially starting from scratch, with a passionate entrepreneurial leader, a solid business plan, help from outside partners in the industry, and ultimately substantial venture backing. That these lessons are less obvious to executives contemplating spinning out ventures closer to their core businesses may be why so many spinouts fail.
Gukov, S G
1997-01-01
The evidently supersymmetric four-dimensional Wess-Zumino model with quenched disorder is considered at the one-loop level. The infrared fixed points of a beta-function form the moduli space $M = RP^2$ where two types of phases were found: with and without replica symmetry. While the former phase possesses only a trivial fixed point, this point become unstable in the latter phase which may be interpreted as a spin glass phase.
Immirzi, Giorgio
2016-01-01
I discuss how to impose causality on spin-foam models, separating forward and backward propagation, turning a given triangulation to a 'causal set', and giving asymptotically the exponential of the Regge action, not a cosine. I show the equivalence of the prescriptions which have been proposed to achieve this. Essential to the argument is the closure condition for the 4-simplices, all made of space-like tetrahedra.
Kowalewski, Grzegorz
1997-05-01
Applications of rather routine high speed photography techniques for research of some textile technologies invented, developed, improved or investigated by the Technical University of Lodz are presented. The following technologies and processes are mentioned: sewing, knitting, spinning, texturing, weaving (including pneumatic methods employed in some technologies). Rotating prism cameras, microsecond flash guns, stereo photography have been mainly applied. Most HSP applications and examples are illustrated by a video presentation.
Harrington, James, Jr.
2000-01-01
Current goals are to: (1) Strengthen the science and engineering capabilities of MU-SPIN institutions in research and education via computer networks; (2) Involve and prepare minority institutions and principal investigators to successfully participate in competitive research and education processes via computer networks; and (3) Develop training and education mechanisms to support, sustain and evolve the institutional network infrastructure, thereby generating a better, prepared pool of candidates to contribute to NASA's missions.
One-dimensional spinon spin currents
Hirobe, Daichi; Sato, Masahiro; Kawamata, Takayuki; Shiomi, Yuki; Uchida, Ken-Ichi; Iguchi, Ryo; Koike, Yoji; Maekawa, Sadamichi; Saitoh, Eiji
2017-01-01
Quantum spin fluctuation in a low-dimensional or frustrated magnet breaks magnetic ordering while keeping spin correlation. Such fluctuation has been a central topic in magnetism because of its relevance to high-Tc superconductivity and topological states. However, utilizing such spin states has been quite difficult. In a one-dimensional spin-1/2 chain, a particle-like excitation called a spinon is known to be responsible for spin fluctuation in a paramagnetic state. Spinons behave as a Tomonaga-Luttinger liquid at low energy, and the spin system is often called a quantum spin chain. Here we show that a quantum spin chain generates and carries spin current, which is attributed to spinon spin current. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow even in an atomic channel owing to long-range spin fluctuation.
Nonergodic dynamics of nuclear spin 1/2 with equal constants of spin-spin interaction
Rudavets, M G
2002-01-01
The exact solution of the nuclear spins polarization evolution in the system with the similar q-constant spin-spin interaction (SSI) between all spin pairs is obtained in the case when only one (the first) spin was polarized at the initial time moment. It is shown that polarization of the first spin P sub 1 (t) has the form of periodical pulsations in the time with the 4 pi/g period. The P sub 1 (t) function changes in each period from the initial value P(0) = 1 up to 1/3 value during the time period of the t approx = 4 pi/Ng order, when the spins number is N >= 1 and remains in the P sub 1 (t) 1/3 state practically during the whole period. The simple classical model within the frames of the average field theory explains the physical cause of the nonergodic dynamics of the considered system
Minimal Model of Spin-Transfer Torque and Spin Pumping Caused by the Spin Hall Effect.
Chen, Wei; Sigrist, Manfred; Sinova, Jairo; Manske, Dirk
2015-11-20
In the normal-metal-ferromagnetic-insulator bilayer (such as Pt/Y_{3}Fe_{5}O_{12}) and the normal-metal-ferromagnetic-metal-oxide trilayer (such as Pt/Co/AlO_{x}) where spin injection and ejection are achieved by the spin Hall effect in the normal metal, we propose a minimal model based on quantum tunneling of spins to explain the spin-transfer torque and spin pumping caused by the spin Hall effect. The ratio of their dampinglike to fieldlike component depends on the tunneling wave function that is strongly influenced by generic material properties such as interface s-d coupling, insulating gap, and layer thickness, yet the spin relaxation plays a minor role. The quantified result renders our minimal model an inexpensive tool for searching for appropriate materials.
Persistent spin currents in a triple-terminal quantum ring with three arms*
Du Jian; Wang Suxin; Pan Jianghong; Duan Xiuzhi
2011-01-01
A new model of a triple-terminal quantum ring with three arms is proposed. We develop an equivalent method for reducing the triple-terminal quantum ring to the double-terminal quantum ring and calculate the persistent spin currents in this model. The results indicate that the persistent spin currents show behavior of nonperiodic and unequal amplitude oscillation with increasing semiconductor ring size when the total magnetic flux is zero.However, when the total magnetic flux is non-zero, the persistent spin currents make periodic equal amplitude oscillations with increasing AB magnetic flux intensity. At the same time, the two kinds of spin state persistent spin currents have the same frequency and amplitude but the inverse phase. In addition, the Rashba spin-orbit interaction affects the phase and the phase difference of the persistent spin currents. The average persistent spin currents relate to the arm length and the terminal position as well as the distribution of the magnetic flux in each arm. Furthermore,our results indicate that the AB magnetic flux has different influences on the two kinds of spin state electrons.
Out-of-equilibrium dynamics of photoexcited spin-state concentration waves.
Marino, A; Buron-Le Cointe, M; Lorenc, M; Toupet, L; Henning, R; DiChiara, A D; Moffat, K; Bréfuel, N; Collet, E
2015-01-01
The spin crossover compound [FeIIH2L2-Me][PF6]2 presents a two-step phase transition. In the intermediate phase, a spin state concentration wave (SSCW) appears resulting from a symmetry breaking (cell doubling) associated with a long-range order of alternating high and low spin molecular states. By combining time-resolved optical and X-ray diffraction measurements on a single crystal, we study how such a system responds to femtosecond laser excitation and we follow in real time the erasing and rewriting of the SSCW.
Spin correlations and new physics in τ-lepton decays at the LHC
Hayreter, Alper [Department of Natural and Mathematical Sciences, Ozyegin University,Istanbul, 34794 (Turkey); Valencia, German [Department of Physics, Iowa State University,Ames, IA, 50011 (United States)
2015-07-31
We use spin correlations to constrain anomalous τ-lepton couplings at the LHC including its anomalous magnetic moment, electric dipole moment and weak dipole moments. Single spin correlations are ideal to probe interference terms between the SM and new dipole-type couplings as they are not suppressed by the τ-lepton mass. Double spin asymmetries give rise to T-odd correlations useful to probe CP violation purely within the new physics amplitudes, as their appearance from interference with the SM is suppressed by m{sub τ}. We compare our constraints to those obtained earlier on the basis of deviations from the Drell-Yan cross-section.
Spin dynamics and magneto-optical response in charge-neutral tunnel-coupled quantum dots
Gawełczyk, Michał; Machnikowski, Paweł
2017-04-01
We model the electron and hole spin dynamics in an undoped double quantum dot structure, considering the carrier tunneling between quantum dots. Taking the presence of an additional in-plane or tilted magnetic field into account, we enable the simulation of magneto-optical experiments, like the time-resolved Kerr rotation measurement, which are currently performed on such structures to probe the temporal spin dynamics. With our model, we reproduce the experimentally observed effect of the extension of the spin polarization lifetime caused by spatial charge separation, which may occur in structures of this type. Moreover, we provide a number of qualitative predictions concerning the necessary conditions for observation of this effect as well as about possible channels of its suppression, including the spin–orbit coupling, which leads to tunneling of carriers accompanied by a spin flip. We also consider the impact of the magnetic field tilting, which results in an interesting spin polarization dynamics.
Time-dependent tunneling of spin-polarized electrons in coupled quantum wells
Cruz, H; Luis, D [Departamento de Fisica Basica, Universidad de La Laguna, 38204 La Laguna, Tenerife (Spain)], E-mail: hcruz@ull.es
2008-02-15
We have solved the in-plane momentum-dependent effective-mass nonlinear Schroedinger equation for a spin-polarized electron wave packet in a InAs double quantum well system with an interlayer voltage. Considering a time-dependent Hartree potential, we have calculated the spin-polarized nonlinear electron dynamics between both quantum wells at different in-plane momentum values and applied bias. The spin-splitting caused by the Rashba effect is combined with the level matching between the spin dependent resonant tunneling levels making possible the observed local spin density oscillations which depend on the applied bias value. The filtering efficiency has been studied using time-dependent calculations.
Diffusion equation and spin drag in spin-polarized transport
Flensberg, Karsten; Jensen, Thomas Stibius; Mortensen, Asger
2001-01-01
We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equation, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron interactions are important, because they tend to equilibrate the momentum of the two-spin...... species. This "spin drag" effect enhances the resistivity of the system. The enhancement is stronger the lower the dimension is, and should be measurable in, for example, a two-dimensional electron gas with ferromagnetic contacts. We also include spin-flip scattering, which has two effects......: it equilibrates the spin density imbalance and, provided it has a non-s-wave component, also a current imbalance....
Graphene spin diode: Strain-modulated spin rectification
Wang, Yunhua; Wang, B., E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [Sino-French Institute of Nuclear Engineering and Technology, School of Physics and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Yulan, E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China)
2014-08-04
Strain effects on spin transport in a ferromagnetic/strained/normal graphene junction are explored theoretically. It is shown that the spin-resolved Fermi energy range can be controlled by the armchair direction strain because the strain-induced pseudomagnetic field suppresses the current. The spin rectification effect for the bias reversal occurs because of a combination of ferromagnetic exchange splitting and the broken spatial symmetry of the junction. In addition, the spin rectification performance can be tuned remarkably by manipulation of the strains. In view of this strain-modulated spin rectification effect, we propose that the graphene-based ferromagnetic/strained/normal junction can be used as a tunable spin diode.
Bell's inequality for n spin-s particles
Cabello, A
2002-01-01
Mermin's inequality for n spin-1/2 particles and two dichotomic observables [Phys. Rev. Lett. 65, 1838 (1990)] is generalized to n spin-s particles and two maximal observables. It is shown that some multiparty multilevel Greenberger-Horne-Zeilinger states [A. Cabello, Phys. Rev. A 63, 022104 (2001)] maximally violate this inequality for any s. For a fixed n, the magnitude of violation is constant for any s, which provides a simple demonstration of the conclusion reached by Gisin and Peres for two spin-s particles in the singlet state [Phys. Lett. A 162, 15 (1992)]. For a fixed s, the violation grows exponentially with n, which provides a generalization to any s of Mermin's conclusion for n spin-1/2 particles.
Low-spin models for higher-spin Lagrangians
Francia, Dario
2011-01-01
Higher-spin theories are most commonly modelled on the example of spin 2. While this is appropriate for the description of free irreducible spin-s particles, alternative options could be equally interesting. In particular Maxwell's equations provide the effective model for maximally reducible theories of higher spins inspired by the tensionless limit of the open string. For both options, as well as for their fermionic counterparts, one can extend the analogy beyond the equations for the gauge potentials, formulating the corresponding Lagrangians in terms of higher-spin curvatures. The associated non-localities are effectively due to the elimination of auxiliary fields and do not modify the spectrum. Massive deformations of these theories are also possible, and in particular in this contribution we propose a generalisation of the Proca Lagrangian for the Maxwell-inspired geometric theories.
Spinning particle approach to higher spin field theory
Corradini, Olindo, E-mail: Olindo.Corradini@bo.infn.it [Centro de Estudios en Fisica y Matematicas Basicas y Aplicadas Universidad Autonoma de Chiapas, Tuxtla Gutierrez, Chiapas (Mexico); Dipartimento di Fisica, Universita di Bologna via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna via Irnerio 46, I-40126 Bologna (Italy)
2011-04-01
We shortly review on the connection between higher-spin gauge field theories and supersymmetric spinning particle models. In such approach the higher spin equations of motion are linked to the first-class constraint algebra associated with the quantization of particle models. Here we consider a class of spinning particle models characterized by local O(N)-extended supersymmetry since these models are known to provide an alternative approach to the geometric formulation of higher spin field theory. We describe the canonical quantization of the models in curved target space and discuss the obstructions that appear in presence of an arbitrarily curved background. We then point out the special role that conformally flat spaces appear to have in such models and present a derivation of the higher-spin curvatures for maximally symmetric spaces.
Quantum annealing with manufactured spins.
Johnson, M W; Amin, M H S; Gildert, S; Lanting, T; Hamze, F; Dickson, N; Harris, R; Berkley, A J; Johansson, J; Bunyk, P; Chapple, E M; Enderud, C; Hilton, J P; Karimi, K; Ladizinsky, E; Ladizinsky, N; Oh, T; Perminov, I; Rich, C; Thom, M C; Tolkacheva, E; Truncik, C J S; Uchaikin, S; Wang, J; Wilson, B; Rose, G
2011-05-12
Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins; however, finding such a ground state remains computationally difficult. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. If it could be harnessed, quantum annealing might improve on known methods for solving certain types of problem. However, physical investigation of quantum annealing has been largely confined to microscopic spins in condensed-matter systems. Here we use quantum annealing to find the ground state of an artificial Ising spin system comprising an array of eight superconducting flux quantum bits with programmable spin-spin couplings. We observe a clear signature of quantum annealing, distinguishable from classical thermal annealing through the temperature dependence of the time at which the system dynamics freezes. Our implementation can be configured in situ to realize a wide variety of different spin networks, each of which can be monitored as it moves towards a low-energy configuration. This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples. Moreover, with an increased number of spins, such a system may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.
Multifrequency study of a double-double radio galaxy J1706+4340
Marecki, A; Machalski, J
2016-01-01
We report the outcome of multifrequency radio observations of a double-double radio source J1706+4340 carried out with the Very Large Array and Giant Metrewave Radio Telescope. After supplementing our own data with those available in the literature, we collected a considerable set of radio measurements covering the range from 74 to 8460 MHz. This has enabled us to perform a comprehensive review of physical properties of the source and its dynamical evolution analysis. In particular, we found that, while the age of the large-scale outer lobes is in the range 260-300 Myr, the renewal of the jet activity, which is directly responsible for the double-double structure, took place only about 12 Myr ago after about 27-Myr long period of quiescence. Another important property of J1706+4340 we found is that the injection spectral indices and the jet powers for the inner and the outer doubles are very similar. This implies that it is the spin of the supermassive black hole rather than e.g. an instability of the accreti...
Spin-flip noise in a multiterminal spin valve
Belzig, Wolfgang; Zareyan, Malek
2004-01-01
We study shot noise and cross-correlations in a four terminal spin-valve geometry using a Boltzmann-Langevin approach. The Fano factor (shot noise to current ratio) depends on the magnetic configuration of the leads and the spin-flip processes in the normal metal. In a four-terminal geometry, spin-flip processes are particularly prominent in the cross-correlations between terminals with opposite magnetization.
Potapov, Alexey; Epel, Boris; Goldfarb, Daniella
2008-02-01
A new, triple resonance, pulse electron paramagnetic resonance (EPR) sequence is described. It provides spin links between forbidden electron spin transitions (ΔMS=±1, ΔMI≠0) and allowed nuclear spin transitions (ΔMI=±1), thus, facilitating the assignment of nuclear frequencies to their respective electron spin manifolds and paramagnetic centers. It also yields the relative signs of the hyperfine couplings of the different nuclei. The technique is based on the combination of electron-nuclear double resonance (ENDOR) and electron-electron double resonance (ELDOR)-detected NMR experiments in a way similar to the TRIPLE experiment. The feasibility and the information content of the method are demonstrated first on a single crystal of Cu-doped L-histidine and then on a frozen solution of a Cu-histidine complex.
Spin-seebeck effect: a phonon driven spin distribution.
Jaworski, C M; Yang, J; Mack, S; Awschalom, D D; Myers, R C; Heremans, J P
2011-05-06
Here we report on measurements of the spin-Seebeck effect in GaMnAs over an extended temperature range alongside the thermal conductivity, specific heat, magnetization, and thermoelectric power. The amplitude of the spin-Seebeck effect in GaMnAs scales with the thermal conductivity of the GaAs substrate and the phonon-drag contribution to the thermoelectric power of the GaMnAs, demonstrating that phonons drive the spin redistribution. A phenomenological model involving phonon-magnon drag explains the spatial and temperature dependence of the measured spin distribution.
Spin-orbit mediated control of spin qubits
Flindt, Christian; Sørensen, A.S; Flensberg, Karsten
2006-01-01
We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots, enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by temporarily displacing the electrons. For two-qubit operations the coupling mechanism is based...... on a combination of the spin-orbit coupling and the mutual long-ranged Coulomb interaction. Compared to existing schemes using the exchange coupling, the spin-orbit induced coupling is less sensitive to random electrical fluctuations in the electrodes defining the quantum dots....
High-field spin dynamics of antiferromagnetic quantum spin chains
Enderle, M.; Regnault, L.P.; Broholm, C.;
2000-01-01
The characteristic internal order of macroscopic quantum ground states in one-dimensional spin systems is usually not directly accessible, but reflected in the spin dynamics and the field dependence of the magnetic excitations. In high magnetic fields quantum phase transitions are expected. We...... present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...
CP observables with spin spin correlations in chargino production
Bartl, A.; Hohenwarter-Sodek, K.; Kernreiter, T.; Kittel, O.; Terwort, M.
2008-10-01
We study the CP-violating terms of the spin-spin correlations in chargino production ee→χ˜1±χ˜2∓, and their subsequent two-body decays into sneutrinos plus leptons. We propose novel CP-sensitive observables with the help of T-odd products of the spin-spin terms. These terms depend on the polarizations of both charginos, with one polarization perpendicular to the production plane. We identify two classes of CP-sensitive observables; one requires the reconstruction of the production plane, the other not. Our framework is the Minimal Supersymmetric Standard Model with complex parameters.
Barabash, A S
2011-01-01
The present status of double beta decay experiments is reviewed. The results of the most sensitive experiments are discussed. Proposals for future double beta decay experiments with a sensitivity to the $$ at the level of (0.01--0.1) eV are considered.
Bergshoeff, Eric A.; Riccioni, Fabio; Alvarez-Gaumé, L.
2011-01-01
We probe doubled geometry with dual fundamental branes. i.e. solitons. Restricting ourselves first to solitonic branes with more than two transverse directions we find that the doubled geometry requires an effective wrapping rule for the solitonic branes which is dual to the wrapping rule for fundam
Double parton scattering. A tale of two partons
Kasemets, Tomas
2013-08-15
Double parton scattering in proton-proton collisions can give sizable contributions to final states in parts of phase space. We investigate the correlations between the partons participating in the two hard interactions of double parton scattering. With a detailed calculation of the differential cross section for the double Drell-Yan process we demonstrate how initial state correlations between the partons affect the rate and distribution of final state particles. We present our results with focus on correlations between the polarizations of the partons. In particular transversely polarized quarks lead to a dependence of the cross section on angles between final state particles of the two hard interactions, and thereby on the invariant mass of particle pairs. The size of the spin correlations, and therewith the degree to which the final state particles are correlated, depends on unknown double parton distributions. We derive positivity bounds on the double parton distributions that follow from their interpretation as probability densities, taking into account all possible spin correlations between two partons in an unpolarized proton. We show that the bounds are stable under homogeneous leading-order DGLAP evolution to higher scales. We make direct use of the positivity bounds in numerical investigations on the double DGLAP evolution for two linearly polarized gluons and for two transversely polarized quarks. We find that the linearly polarized gluons are likely to be negligible at high scales but that transversely polarized quarks can still play a significant role. We examine the dependence of the double parton distributions on the transverse distance between the two partons, and therewith between the two hard interactions. We further study the interplay between transverse and longitudinal variables of the distributions, as well as the impact of the differences in integration limits between the evolution equations for single and double parton distributions. (orig.)
Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles
Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.
2015-11-01
Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.
Polarizing a stored proton beam by spin-flip?
Oellers, Dieter Gerd Christian
2010-04-15
The present thesis discusses the extraction of the electron-proton spin-flip cross-section. The experimental setup, the data analysis and the results are pictured in detail. The proton is described by a QCD-based parton model. In leading twist three functions are needed. The quark distribution, the helicity distribution and the transversity distribution. While the first two are well-known, the transversity distribution is largely unknown. A self-sufficient measurement of the transversity is possible in double polarized proton-antiproton scattering. This rises the need of a polarized antiproton beam. So far spin filtering is the only tested method to produce a polarized proton beam, which may be capable to hold also for antiprotons. In-situ polarization build-up of a stored beam either by selective removal or by spin-flip of a spin-(1)/(2) beam is mathematically described. A high spin-flip cross-section would create an effective method to produce a polarized antiproton beam by polarized positrons. Prompted by conflicting calculations, a measurement of the spin-flip cross-section in low-energy electron-proton scattering was carried out. This experiment uses the electron beam of the electron cooler at COSY as an electron target. The depolarization of the stored proton beam is detected. An overview of the experiment is followed by detailed descriptions of the cycle setup, of the electron target and the ANKE silicon tracking telescopes acting as a beam polarimeter. Elastic protondeuteron scattering is the analyzing reaction. The event selection is depicted and the beam polarization is calculated. Upper limits of the two electron-proton spin-flip cross-sections {sigma} {sub parallel} and {sigma} {sub perpendicular} {sub to} are deduced using the likelihood method. (orig.)
Quantum Cryptography in Spin Networks
DENG Hong-Liang; FANG Xi-Ming
2007-01-01
In this paper we propose a new scheme of long-distance quantum cryptography based on spin networks with qubits stored in electron spins of quantum dots. By conditional Faraday rotation, single photon polarization measurement, and quantum state transfer, maximal-entangled Bell states for quantum cryptography between two long-distance parties are created. Meanwhile, efficient quantum state transfer over arbitrary distances is obtained in a spin chain by a proper choice of coupling strengths and using spin memory technique improved. We also analyse the security of the scheme against the cloning-based attack which can be also implemented in spin network and discover that this spin network cloning coincides with the optimal fidelity achieved by an eavesdropper for entanglement-based cryptography.
Accurate ab initio spin densities
Boguslawski, Katharina; Legeza, Örs; Reiher, Markus
2012-01-01
We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys. 2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CA...
D. H. Berman
2014-03-01
Full Text Available Resonant behavior involving spin-orbit entangled states occurs for spin transport along a narrow channel defined in a two-dimensional electron gas, including an apparent rapid relaxation of the spin polarization for special values of the channel width and applied magnetic field (so-called ballistic spin resonance. A fully quantum-mechanical theory for transport using multiple subbands of the one-dimensional system provides the dependence of the spin density on the applied magnetic field and channel width and position along the channel. We show how the spatially nonoscillating part of the spin density vanishes when the Zeeman energy matches the subband energy splittings. The resonance phenomenon persists in the presence of disorder.
BRST theory for continuous spin
Bengtsson, Anders K. H.
2013-10-01
Some puzzling aspects of higher spin field theory in Minkowski space-time, such as the tracelessness constraints and the search for an underlying physical principle, are discussed. A connecting idea might be provided by the recently much researched continuous spin representations of the Poincaré group. The Wigner equations, treated as first class constraints, yields to a four-constraint BRST formulation. The resulting field theory, generalizing free higher spin field theory, is one among a set of higher spin theories that can be related to previous work on unconstrained formulations. In particular, it is conjectured that the unconstrained higher spin theory of Francia and Sagnotti is a limit of a continuous spin theory. Furthermore, a simple analysis of the constraint structure reveals a hint of a physical rationale behind the trace constraints.
BRST Theory for Continuous Spin
Bengtsson, Anders K H
2013-01-01
Some puzzling aspects of higher spin field theory in Minkowski space-time, such as the tracelessness constraints and the search for an underlying physical principle, are discussed. A connecting idea might be provided by the recently much researched continuous spin representations of the Poincar\\'e group. The Wigner equations, treated as first class constraints, yields to a four-constraint BRST formulation. The resulting field theory, generalizing free higher spin field theory, is one among a set of higher spin theories that can be related to previous work on unconstrained formulations. In particular, it is conjectured that the unconstrained higher spin theory of Francia and Sagnotti is a limit of a continuous spin theory. Furthermore, a simple analysis of the constraint structure reveals a hint of a physical rationale behind the trace constraints.
Exploring the proton spin structure
Lorcé, Cédric
2015-01-01
Understanding the spin structure of the proton is one of the main challenges in hadronic physics. While the concepts of spin and orbital angular momentum are pretty clear in the context of non-relativistic quantum mechanics, the generalization of these concepts to quantum field theory encounters serious difficulties. It is however possible to define meaningful decompositions of the proton spin that are (in principle) measurable. We propose a summary of the present situation including recent developments and prospects of future developments.
Spin currents in metallic nanostructures
Czeschka, Franz Dominik
2011-09-05
A pure spin current, i.e., a flow of angular momentum without accompanying net charge current, is a key ingredient in the field of spintronics. In this thesis, we experimentally investigated two different concepts for pure spin current sources suggested by theory. The first is based on a time-dependent magnetization precession which ''pumps'' a pure spin current into an adjacent non-magnetic conductor. Our experiments quantitatively corroborated important predictions expected theoretically for this approach, including the dependence of the spin current on the sample geometry and the microwave power. Even more important, we could show for the first time that the spin pumping concept is viable in a large variety of ferromagnetic materials and that it only depends on the magnetization damping. Therefore, our experiments established spin pumping as generic phenomenon and demonstrated that it is a powerful way to generate pure spin currents. The second theoretical concept is based on the conversion of charge currents into spin currents in non-magnetic nanostructures via the spin Hall effect. We experimentally investigated this approach in H-shaped, metallic nanodevices, and found that the predictions are linked to requirements not realizable with the present experimental techniques, neither in sample fabrication nor in measurement technique. Indeed, our experimental data could be consistently understood by a spin-independent transport model describing the transition from diffusive to ballistic transport. In addition, the implementation of advanced fabrication and measurement techniques allowed to discover a new non-local phenomenon, the non-local anisotropic magnetoresistance. Finally, we also studied spin-polarized supercurrents carried by spin-triplet Cooper pairs. We found that low resistance interfaces are a key requirement for further experiments in this direction. (orig.)
ENHANCING PROFITABILITY OF A SPINNING
MARSAL Feliu
2014-01-01
Systematic control of the rheological behavior of the ravings in an installation facility dynamometer constant elongation gradient is proposed in this paper. It is an application for all types of spinning both shortfibers as long fibers. Industrial experiments conducted show that this control drawing of the spinning frame is optimized, getting more regular yarns mass with greater industrial profitability. This work is applied to a spinning worsted manufactures fine yarns with high quality ...
Demonstration of the Double Penning Trap Technique with a Single Proton
Mooser, A; Franke, K.; Kracke, H.; Leiteritz, C.; Rodegheri, C.C.; Nagahama, H.; Schneider, G.; Smorra, C.; Blaum, K.; Matsuda, Y.; Quint, W.; Walz, J.; Yamazaki, Y.; Ulmer, S.; Yamazaki, Y; Ulmer, S
2013-01-01
Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the continuous Stern-Gerlach effect was applied. This first demonstration of the double Penning trap technique with a single proton suggests that the antiproton magnetic moment measurement can potentially be improved by three orders of magnitude or more.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spinning. 23.221 Section 23.221 Aeronautics... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Spinning § 23.221 Spinning. (a...-turn spin or a three-second spin, whichever takes longer, in not more than one additional turn...
Electron-Spin Filters Based on the Rashba Effect
Ting, David Z.-Y.; Cartoixa, Xavier; McGill, Thomas C.; Moon, Jeong S.; Chow, David H.; Schulman, Joel N.; Smith, Darryl L.
2004-01-01
Semiconductor electron-spin filters of a proposed type would be based on the Rashba effect, which is described briefly below. Electron-spin filters more precisely, sources of spin-polarized electron currents have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-based electronics). There have been a number of successful demonstrations of injection of spin-polarized electrons from diluted magnetic semiconductors and from ferromagnetic metals into nonmagnetic semiconductors. In contrast, a device according to the proposal would be made from nonmagnetic semiconductor materials and would function without an applied magnetic field. The Rashba effect, named after one of its discoverers, is an energy splitting, of what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. The present proposal evolved from recent theoretical studies that suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling. Accordingly, a device according to the proposal would be denoted an asymmetric resonant interband tunneling diode [a-RITD]. An a-RITD could be implemented in a variety of forms, the form favored in the proposal being a double-barrier heterostructure containing an asymmetric quantum well. It is envisioned that a-RITDs would be designed and fabricated in the InAs/GaSb/AlSb material system for several reasons: Heterostructures in this material system are strong candidates for pronounced Rashba spin splitting because InAs and GaSb exhibit large spin-orbit interactions and because both InAs and GaSb would be available for the construction of highly asymmetric
On the search for magnetic correlations in double perovskites
Hammerath, Franziska [Institute for Solid State Physics, Dresden Technical University (Germany); IFW Dresden, Institute for Solid State Research (Germany); Sarkar, Rajib; Kamusella, Sirko; Klauss, H.H. [Institute for Solid State Physics, Dresden Technical University (Germany); Baines, C. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, Villigen (Switzerland); Dey, T.; Aslan Cansever, Gizem; Manna, Kaustuv; Zimmermann, Andreas; Maljuk, Andrey; Sturza, Mihai; Efremov, Dmitriy; Wurmehl, Sabine; Buechner, Bernd [IFW Dresden, Institute for Solid State Research (Germany)
2016-07-01
The cubic double perovskite Ba{sub 2}YIrO{sub 6} has been investigated by the local probe techniques NMR and μSR. Both methods confirm the absence of long range order in this compound, but observe signatures of magnetic correlations: The NMR spin-lattice relaxation rate suggests the presence of growing magnetic correlations at low temperatures. An increase of the μSR spin-lattice relaxation rate confirms the presence of weak magnetism. These findings cannot be explained by the recently suggested excitonic type of magnetism, but also go beyond a simple nonmagnetic ground state picture of the 5d{sup 4} (J{sub eff}=0) electronic configuration of Ir{sup 5+}. In the monoclinic analog Sr{sub 2}YIrO{sub 6}, the NMR line width and spin-lattice relaxation rates reveal a nonmagnetic behavior, in contrast to a first report, but in line with a recent study.
Spin manipulation in nanoscale superconductors.
Beckmann, D
2016-04-27
The interplay of superconductivity and magnetism in nanoscale structures has attracted considerable attention in recent years due to the exciting new physics created by the competition of these antagonistic ordering phenomena, and the prospect of exploiting this competition for superconducting spintronics devices. While much of the attention is focused on spin-polarized supercurrents created by the triplet proximity effect, the recent discovery of long range quasiparticle spin transport in high-field superconductors has rekindled interest in spin-dependent nonequilibrium properties of superconductors. In this review, the experimental situation on nonequilibrium spin injection into superconductors is discussed, and open questions and possible future directions of the field are outlined.
Spin precession in anisotropic media
Raes, B.; Cummings, A. W.; Bonell, F.; Costache, M. V.; Sierra, J. F.; Roche, S.; Valenzuela, S. O.
2017-02-01
We generalize the diffusive model for spin injection and detection in nonlocal spin structures to account for spin precession under an applied magnetic field in an anisotropic medium, for which the spin lifetime is not unique and depends on the spin orientation. We demonstrate that the spin precession (Hanle) line shape is strongly dependent on the degree of anisotropy and on the orientation of the magnetic field. In particular, we show that the anisotropy of the spin lifetime can be extracted from the measured spin signal, after dephasing in an oblique magnetic field, by using an analytical formula with a single fitting parameter. Alternatively, after identifying the fingerprints associated with the anisotropy, we propose a simple scaling of the Hanle line shapes at specific magnetic field orientations that results in a universal curve only in the isotropic case. The deviation from the universal curve can be used as a complementary means of quantifying the anisotropy by direct comparison with the solution of our generalized model. Finally, we applied our model to graphene devices and find that the spin relaxation for graphene on silicon oxide is isotropic within our experimental resolution.