WorldWideScience

Sample records for electron microscopy observation

  1. Correction of bubble size distributions from transmission electron microscopy observations

    International Nuclear Information System (INIS)

    Kirkegaard, P.; Eldrup, M.; Horsewell, A.; Skov Pedersen, J.

    1996-01-01

    Observations by transmission electron microscopy of a high density of gas bubbles in a metal matrix yield a distorted size distribution due to bubble overlap and bubble escape from the surface. A model is described that reconstructs 3-dimensional bubble size distributions from 2-dimensional projections on taking these effects into account. Mathematically, the reconstruction is an ill-posed inverse problem, which is solved by regularization technique. Extensive Monte Carlo simulations support the validity of our model. (au) 1 tab., 32 ills., 32 refs

  2. Observations of silicon carbide by high resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Smith, D.J.; Jepps, N.W.; Page, T.F.

    1978-01-01

    High resolution transmission electron microscopy techniques, principally involving direct lattice imaging, have been used as part of a study of the crystallography and phase transformation mechanics of silicon carbide polytypes. In particular, the 3C (cubic) and 6H (hexagonal) polytypes have been examined together with partially transformed structural mixtures. Although direct observation of two-dimensional atomic structures was not possible at an operating voltage of 100 kV, considerable microstructural information has been obtained by careful choice of the experimental conditions. In particular, tilted beam observations of the 0.25 nm lattice fringes have been made in the 3C polytype for two different brace 111 brace plane arrays in order to study the dimensions and coherency of finely-twinned regions together with brace 0006 brace and brace 1 0 bar1 2 brace lattice images in the 6H polytype which allow the detailed stacking operations to be resolved. Lower resolution lattice images formed with axial illumination have also been used to study the nature of the 3C → 6H transformation and results are presented showing that the transformation interface may originate with fine twinning of the 3C structure followed by growth of the resultant 6H regions. Observations have been made of the detailed stepped structure of this interface together with the stacking fault distribution in the resultant 6H material. (author)

  3. Observation of Magnetic Induction Distribution by Scanning Interference Electron Microscopy

    Science.gov (United States)

    Takahashi, Yoshio; Yajima, Yusuke; Ichikawa, Masakazu; Kuroda, Katsuhiro

    1994-09-01

    A scanning interference electron microscope (SIEM) capable of observing magnetic induction distribution with high sensitivity and spatial resolution has been developed. The SIEM uses a pair of fine coherent scanning probes and detects their relative phase change by magnetic induction, giving raster images of microscopic magnetic distributions. Its performance has been demonstrated by observing magnetic induction distributed near the edge of a recorded magnetic storage medium. Obtained images are compared with corresponding images taken in the scanning Lorentz electron microscope mode using the same microscope, and the differences between them are discussed.

  4. Electron Microscopy Observation of Biomineralization within Wood Tissues of Kurogaki

    Directory of Open Access Journals (Sweden)

    Kazue Tazaki

    2017-07-01

    Full Text Available Interactions between minerals and microorganisms play a crucial role in living wood tissues. However, living wood tissues have never been studied in the field. Fortunately, we found several kurogaki (black persimmon; Diospyros kaki trees at Tawara in Kanazawa, Ishikawa, Japan. Here, we report the characterization of kurogaki based on scanning electron microscopy equipped with energy-dispersive spectroscopy (SEM-EDS and transmission electron microscopy (TEM, associated with inductively coupled plasma-mass spectrometry (ICP-MS analyses, X-ray fluorescence analyses (XRF and X-ray powder diffraction (XRD analyses. This study aims to illustrate the ability of various microorganisms associated with biominerals within wood tissues of kurogaki, as shown by SEM-EDS elemental content maps and TEM images. Kurogaki grows very slowly and has extremely hard wood, known for its striking black and beige coloration, referred to as a “peacock pattern”. However, the scientific data for kurogaki are very limited. The black “peacock pattern” of the wood mainly comprises cellulose and high levels of crystal cristobalite. As per the XRD results, the black taproot contains mineralized 7 Å clays (kaolinite, cellulose, apatite and cristobalite associated with many microorganisms. The chemical compositions of the black and beige portions of the black persimmon tree were obtained by ICP-MS analyses. Particular elements such as abundant Ca, Mg, K, P, Mn, Ba, S, Cl, Fe, Na, and Al were concentrated in the black region, associated with Pb and Sr elements. SEM-EDS semi-qualitative analyses of kurogaki indicated an abundance of P and Ca in microorganisms in the black region, associated with Pb, Sr, S, Mn, and Mg elements. On the other hand, XRF and XRD mineralogical data showed that fresh andesite, weathered andesite, and the soils around the roots of kurogaki correlate with biomineralization of the black region in kurogaki roots, showing clay minerals (kaolinite and

  5. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    International Nuclear Information System (INIS)

    Lunov, O.; Churpita, O.; Zablotskii, V.; Jäger, A.; Dejneka, A.; Deyneka, I. G.; Meshkovskii, I. K.; Syková, E.; Kubinová, Š.

    2015-01-01

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy

  6. New Environmental Scanning Electron Microscopy and Observation of Live Nature

    Czech Academy of Sciences Publication Activity Database

    Neděla, Vilém; Tihlaříková, Eva; Shiojiri, M.

    2013-01-01

    Roč. 6, 1-2 (2013), s. 1-5 ISSN 2228-9038 R&D Projects: GA ČR GAP102/10/1410; GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : ESEM * detection systems * methodology * live samples Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  7. Formation of hot spots in a superconductor observed by low-temperature scanning electron microscopy

    International Nuclear Information System (INIS)

    Eichele, R.; Seifert, H.; Huebener, R.P.

    1981-01-01

    Low-temperature scanning electron microscopy can be used for the direct observation of hot spots in a superconductor. Experiments performed at 2.10 K with tim films demonstrating the method are reported

  8. Spatiotemporal Observation of Electron-Impact Dynamics in Photovoltaic Materials Using 4D Electron Microscopy

    KAUST Repository

    Shaheen, Basamat; Sun, Jingya; Yang, Ding-Shyue; Mohammed, Omar F.

    2017-01-01

    information can be obtained using the one-of-a-kind methodology of scanning ultrafast electron microscopy (S-UEM). Here, we address the fundamental issue of how the thickness of the absorber layer may significantly affect the charge carrier dynamics

  9. Microstructure of NiTi orthodontic wires observations using transmission electron microscopy

    OpenAIRE

    Ferčec, J.; Jenko, D.; Buchmeister, B.; Rojko, F.; Budič, B.; Kosec, B.; Rudolf, R.

    2014-01-01

    This work presents the results of the microstructure observation of six different types of NiTi orthodontic wires by using Transmission Electron Microscopy (TEM). Within these analyses the chemical compositions of each wire were observed in different places by applying the EDS detector. Namely, the chemical composition in the orthodontic wires is very important because it shows the dependence between the phase temperatures and mechanical properties. Microstructure observations showed that ort...

  10. Spatiotemporal Observation of Electron-Impact Dynamics in Photovoltaic Materials Using 4D Electron Microscopy

    KAUST Repository

    Shaheen, Basamat

    2017-05-17

    Understanding light-triggered charge carrier dynamics near photovoltaic-material surfaces and at interfaces has been a key element and one of the major challenges for the development of real-world energy devices. Visualization of such dynamics information can be obtained using the one-of-a-kind methodology of scanning ultrafast electron microscopy (S-UEM). Here, we address the fundamental issue of how the thickness of the absorber layer may significantly affect the charge carrier dynamics on material surfaces. Time-resolved snapshots indicate that the dynamics of charge carriers generated by electron impact in the electron-photon dynamical probing regime is highly sensitive to the thickness of the absorber layer, as demonstrated using CdSe films of different thicknesses as a model system. This finding not only provides the foundation for potential applications of S-UEM to a wide range of devices in the fields of chemical and materials research, but also has impact on the use and interpretation of electron beam-induced current for optimization of photoactive materials in these devices.

  11. METHOD FOR OBSERVATION OF DEEMBEDDED SECTIONS OF FISH GONAD BY SCANNING ELECTRON MICROSCOPY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This article reports a method for examining the intracellular structure of fish gonads using a scanning electron microscope(SEM). The specimen preparation procedure is similar to that for transmission electron microscopy wherein samples cut into semi-thin sections are fixed and embedded in plastic. The embedment matrix was removed by solvents. Risen-free specimens could be observed by SEM. The morphology of matured sperms in the gonad was very clear, and the oocyte internal structures appeared in three-dimensional images. Spheroidal nucleoli and yolk vesicles and several bundles of filaments adhered on the nucleoli could be viewed by SEM for the first time.

  12. Morphologic differences observed by scanning electron microscopy according to the reason for pseudophakic IOL explantation

    DEFF Research Database (Denmark)

    Fernandez-Buenaga, Roberto; Alio, Jorge L.; Ramirez, Jose M.

    2015-01-01

    Purpose To compare variations in surface morphology, as studied by scanning electron microscopy (SEM), of explanted intraocular lenses (IOLs) concerning the cause leading to the explantation surgery. Methods In this prospective multicenter study, explanted IOLs were analyzed by SEM and energy...... explanted due to dislocation demonstrated calcifications in 8 lenses (50%), salt precipitates in 6 cases (37.5%), and erythrocytes and fibrosis/fibroblasts in 2 cases (12.5%). In the refractive error cases, the SEM showed proteins in 5 cases (45.5%) and salt precipitates in 4 lenses (36.4%). In IOL...... opacification, the findings were calcifications in 2 of the 3 lenses (66.6%) and proteins in 2 lenses (66.6%). Conclusions A marked variation in surface changes was observed by SEM. Findings did not correlate with cause for explantation. Scanning electron microscopy is a useful tool that provides exclusive...

  13. THREE-DIMENSIONAL OBSERVATIONS ON THICK BIOLOGICAL SPECIMENS BY HIGH VOLTAGE ELECTRON MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Tetsuji Nagata

    2011-05-01

    Full Text Available Thick biological specimens prepared as whole mount cultured cells or thick sections from embedded tissues were stained with histochemical reactions, such as thiamine pyrophosphatase, glucose-6-phosphatase, cytochrome oxidase, acid phosphatase, DAB reactions and radioautography, to observe 3-D ultrastructures of cell organelles producing stereo-pairs by high voltage electron microscopy at accerelating voltages of 400-1000 kV. The organelles demonstrated were Golgi apparatus, endoplasmic reticulum, mitochondria, lysosomes, peroxisomes, pinocytotic vesicles and incorporations of radioactive compounds. As the results, those cell organelles were observed 3- dimensionally and the relative relationships between these organelles were demonstrated.

  14. Direct observations of the MOF (UiO-66) structure by transmission electron microscopy

    KAUST Repository

    Zhu, Liangkui; Zhang, Daliang; Xue, Ming; Li, Huan; Qiu, Shilun

    2013-01-01

    As a demonstration of ab initio structure characterizations of nano metal organic framework (MOF) crystals by high resolution transmission electron microscopy (HRTEM) and electron diffraction tomography methods, a Zr-MOF (UiO-66) structure

  15. Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Lucas R. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Bakalis, Evangelos [Dipartimento; Ramírez-Hernández, Abelardo [Materials; Institute; Kammeyer, Jacquelin K. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Park, Chiwoo [Department; de Pablo, Juan [Materials; Institute; Zerbetto, Francesco [Dipartimento; Patterson, Joseph P. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Laboratory; Gianneschi, Nathan C. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States

    2017-11-16

    Amphiphilic small molecules and polymers form commonplace nanoscale macromolecular compartments and bilayers, and as such are truly essential components in all cells and in many cellular processes. The nature of these architectures, including their formation, phase changes, and stimuli-response behaviors, is necessary for the most basic functions of life, and over the past half-century, these natural micellar structures have inspired a vast diversity of industrial products, from biomedicines to detergents, lubricants, and coatings. The importance of these materials and their ubiquity have made them the subject of intense investigation regarding their nanoscale dynamics with increasing interest in obtaining sufficient temporal and spatial resolution to directly observe nanoscale processes. However, the vast majority of experimental methods involve either bulk-averaging techniques including light, neutron, and X-ray scattering, or are static in nature including even the most advanced cryogenic transmission electron microscopy techniques. Here, we employ in situ liquid-cell transmission electron microscopy (LCTEM) to directly observe the evolution of individual amphiphilic block copolymer micellar nanoparticles in solution, in real time with nanometer spatial resolution. These observations, made on a proof-of-concept bioconjugate polymer amphiphile, revealed growth and evolution occurring by unimer addition processes and by particle-particle collision-and-fusion events. The experimental approach, combining direct LCTEM observation, quantitative analysis of LCTEM data, and correlated in silico simulations, provides a unique view of solvated soft matter nanoassemblies as they morph and evolve in time and space, enabling us to capture these phenomena in solution.

  16. Electron microscopy for Engineers

    International Nuclear Information System (INIS)

    Jones, I P

    2009-01-01

    This paper reviews the application of (mainly) Transmission Electron Microscopy (TEM) in an engineering context. The first two sections are TEM and chemical in nature; the final three sections are more general and include aspects of Scanning Electron Microscopy (SEM).

  17. Electron Microscopy Center (EMC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those...

  18. Electron microscopy of surfaces

    International Nuclear Information System (INIS)

    Venables, J.A.

    1981-01-01

    Electron beam techniques used to study clean surfaces and surface processes on a microscopic scale are reviewed. Recent experimental examples and possible future developments are discussed. Special emphasis is given to (i) transmission diffraction and microscopy techniques, including atomic imaging; (ii) Auger microscopy on bulk and thin film samples; (iii) secondary electron microscopy, especially low energy secondaries for work-function imaging and photoelectron imaging; and (iv) reflection electron microscopy and diffraction. (orig.)

  19. Observation of ionomer in catalyst ink of polymer electrolyte fuel cell using cryogenic transmission electron microscopy

    International Nuclear Information System (INIS)

    Takahashi, Shinichi; Shimanuki, Junichi; Mashio, Tetsuya; Ohma, Atsushi; Tohma, Hajime; Ishihara, Ayumi; Ito, Yoshiko; Nishino, Yuri; Miyazawa, Atsuo

    2017-01-01

    Optimizing the catalyst layer structure is one of the key issues for improving performance despite lower platinum loading. The catalyst ink, consisting of platinum-loaded carbon particles and ionomer dispersed in an aqueous solvent, is a key factor for controlling the structure of the catalyst layer because the catalyst layer is prepared in a wet coating process. For that purpose, we visualized the nanostructure of the ionomer in the catalyst ink by cryogenic electron microscopy, especially cryogenic transmission electron microscopy (cryo-TEM). By cryo-TEM, it was revealed that ionomer molecules formed rod-like aggregates macro-homogeneously in the solvent, and a similar morphology was observed in a carbon-particle-containing solvent. In contrast, ionomer aggregates in the catalyst ink containing platinum nanoparticles loaded on carbon particles were denser in the vicinity of the platinum-loaded carbon particles. That can be attributed to strong interaction between platinum nanoparticles and sulfonic acid groups in the ionomer. It also implies that a good understanding of ionomer morphology in the catalyst ink can play an important role in controlling the catalyst layer microstructure for reducing platinum loading.

  20. Direct observations of the MOF (UiO-66) structure by transmission electron microscopy

    KAUST Repository

    Zhu, Liangkui

    2013-01-01

    As a demonstration of ab initio structure characterizations of nano metal organic framework (MOF) crystals by high resolution transmission electron microscopy (HRTEM) and electron diffraction tomography methods, a Zr-MOF (UiO-66) structure was determined and further confirmed by Rietveld refinements of powder X-ray diffraction. HRTEM gave direct imaging of the channels. © 2013 The Royal Society of Chemistry.

  1. Nano features of Al/Au ultrasonic bond interface observed by high resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Ji Hongjun; Li Mingyu; Kim, Jong-Myung; Kim, Dae-Won; Wang Chunqing

    2008-01-01

    Nano-scale interfacial details of ultrasonic AlSi1 wire wedge bonding to a Au/Ni/Cu pad were investigated using high resolution transmission electron microscopy (HRTEM). The intermetallic phase Au 8 Al 3 formed locally due to diffusion and reaction activated by ultrasound at the Al/Au bond interface. Multilayer sub-interfaces roughly parallel to the wire/pad interface were observed among this phase, and interdiffusional features near the Au pad resembled interference patterns, alternately dark and bright bars. Solid-state diffusion theory cannot be used to explain why such a thick compound formed within milliseconds at room temperature. The major formation of metallurgical bonds was attributed to ultrasonic cyclic vibration

  2. In Situ Transmission Electron Microscopy Observation of Nanostructural Changes in Phase-Change Memory

    KAUST Repository

    Meister, Stefan

    2011-04-26

    Phase-change memory (PCM) has been researched extensively as a promising alternative to flash memory. Important studies have focused on its scalability, switching speed, endurance, and new materials. Still, reliability issues and inconsistent switching in PCM devices motivate the need to further study its fundamental properties. However, many investigations treat PCM cells as black boxes; nanostructural changes inside the devices remain hidden. Here, using in situ transmission electron microscopy, we observe real-time nanostructural changes in lateral Ge2Sb2Te5 (GST) PCM bridges during switching. We find that PCM devices with similar resistances can exhibit distinct threshold switching behaviors due to the different initial distribution of nanocrystalline and amorphous domains, explaining variability of switching behaviors of PCM cells in the literature. Our findings show a direct correlation between nanostructure and switching behavior, providing important guidelines in the design and operation of future PCM devices with improved endurance and lower variability. © 2011 American Chemical Society.

  3. Microstructure of NiTi orthodontic wires observations using transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    J. Ferčec

    2014-10-01

    Full Text Available This work presents the results of the microstructure observation of six different types of NiTi orthodontic wires by using Transmission Electron Microscopy (TEM. Within these analyses the chemical compositions of each wire were observed in different places by applying the EDS detector. Namely, the chemical composition in the orthodontic wires is very important because it shows the dependence between the phase temperatures and mechanical properties. Microstructure observations showed that orthodontic wires consist of nano-sized grains containing precipitates of Ti2Ni and/or TiC. The first precipitated Ti2Ni are rich in Ti, while the precipitated TiC is rich in C. Further investigation showed that there was a difference in average grain size in the NiTi matrix. The sizes of grains in orthodontic wires are in the range from approximately 50 to 160 nm and the sizes of precipitate are in the range from 0,3 μm to 5 μm.

  4. Scanning electron microscopy observations of the interaction between Trichoderma harzianum and perithecia of Gibberella zeae.

    Science.gov (United States)

    Inch, S; Gilbert, J

    2011-01-01

    Chronological events associated with the interaction between a strain of Trichoderma harzianum, T472, with known biological control activity against perithecial production of G. zeae, were studied with scanning electron microscopy to investigate the mechanisms of control. Large clusters of perithecia consisting of 5-15 perithecia formed on the autoclaved, mulched wheat straw inoculated with G. zeae alone (control) with an average of 157 perithecia per plate. Small clusters consisting of 3-6 and an average of 15 perithecia per plate perithecia formed on straw that was treated with T. harzianum. The mature perithecia from straw treated with T. harzianum produced less pigment and were lighter in color than those from the control plates. Furthermore the cells of the outer wall of these perithecia were abnormal in appearance and unevenly distributed across the surface. Immature perithecia were colonized by T. harzianum approximately 15 d after inoculation (dai) with the biocontrol agent and pathogen. Few perithecia were colonized at later stages. The affected perithecia collapsed 21 dai, compared to the perithecia in the control samples that began to collapse 28 dai. Abundant mycelium of T. harzianum was seen on the perithecia of treated samples. Perithecial structures may be resistant to penetration by the mycelium because direct penetration was not observed. Trichoderma harzianum colonized the substrate quickly and out-competed the pathogen, G. zeae.

  5. Micaceous occlusions in kaolinite observed by ultramicrotomy and high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S Y [Univ. of Wisconsin, Madison; Jackson, M L; Brown, J L

    1975-01-01

    The layer structure of kaolinite from Twiggs, Georgia, and fire-clay type kaolinite (Frantex B, from France, particle size separates 2 0.2 ..mu..m was studied by high resolution electron microscopy after embedment in Spurr low-viscosity Epoxy media and thin sectioning normal to the (001) planes by an ultramicrotome. Images of the (001) planes (viewed edge-on) of both kaolinites were spaced at 7 A and generally aligned in parallel, with occasional bending into more widely spaced images of about 10 A interval. Some of the 10 A images converged to 7 A at one or both ends, forming ellipse-shaped islands 80 to 130 A thick and 300 to 500 A long. The island areas and interleaved 10 A layers between 7 A layers may represent a residue of incomplete weathering of mica to kaolinite. The proportions of micaceous occlusions were too small and the layer sequences too irregular to be detected by X-ray diffraction. The lateral continuity of the layers through the 7-10-7 A sequence in a kaolinite particle would partially interrupt or prevent expansion in dimethyl sulfoxide (DMSO) and other kaolinite intercalating media. Discrete mica particles were also observed with parallel images at 10 A, as impurities in both kaolinites. The small K content of the chemical analyses of the kaolinite samples is accounted for as interlayer K, not only in discrete mica particles but also in the micaceous occlusions.

  6. Indium hydroxide to oxide decomposition observed in one nanocrystal during in situ transmission electron microscopy studies

    International Nuclear Information System (INIS)

    Miehe, Gerhard; Lauterbach, Stefan; Kleebe, Hans-Joachim; Gurlo, Aleksander

    2013-01-01

    The high-resolution transmission electron microscopy (HR-TEM) is used to study, in situ, spatially resolved decomposition in individual nanocrystals of metal hydroxides and oxyhydroxides. This case study reports on the decomposition of indium hydroxide (c-In(OH) 3 ) to bixbyite-type indium oxide (c-In 2 O 3 ). The electron beam is focused onto a single cube-shaped In(OH) 3 crystal of {100} morphology with ca. 35 nm edge length and a sequence of HR-TEM images was recorded during electron beam irradiation. The frame-by-frame analysis of video sequences allows for the in situ, time-resolved observation of the shape and orientation of the transformed crystals, which in turn enables the evaluation of the kinetics of c-In 2 O 3 crystallization. Supplementary material (video of the transformation) related to this article can be found online at (10.1016/j.jssc.2012.09.022). After irradiation the shape of the parent cube-shaped crystal is preserved, however, its linear dimension (edge) is reduced by the factor 1.20. The corresponding spotted selected area electron diffraction (SAED) pattern representing zone [001] of c-In(OH) 3 is transformed to a diffuse strongly textured ring-like pattern of c-In 2 O 3 that indicates the transformed cube is no longer a single crystal but is disintegrated into individual c-In 2 O 3 domains with the size of about 5–10 nm. The induction time of approximately 15 s is estimated from the time-resolved Fourier transforms. The volume fraction of the transformed phase (c-In 2 O 3 ), calculated from the shrinkage of the parent c-In(OH) 3 crystal in the recorded HR-TEM images, is used as a measure of the kinetics of c-In 2 O 3 crystallization within the framework of Avrami–Erofeev formalism. The Avrami exponent of ∼3 is characteristic for a reaction mechanism with fast nucleation at the beginning of the reaction and subsequent three-dimensional growth of nuclei with a constant growth rate. The structural transformation path in reconstructive

  7. Scanning electron microscopy observations of failures of implant overdenture bars: a case series report.

    Science.gov (United States)

    Waddell, J Neil; Payne, Alan G T; Swain, Michael V; Kieser, Jules A

    2010-03-01

    Soldered or cast bars are used as a standard of care in attachment systems supporting maxillary and mandibular implant overdentures. When failures of these bars occur, currently there is a lack of evidence in relation to their specific etiology, location, or nature. To investigate the failure process of a case series of six failed soldered bars, four intact soldered bars, and one intact cast milled bar, which had been supporting implant overdentures. A total of 11 different overdenture bars were removed from patients with different configuration of opposing arches. A failed bar (FB) group (n = 6) had failed soldered overdenture bars, which were recovered from patients following up to 2 years of wear before requiring prosthodontic maintenance and repair. An intact bar (IB) group (n = 5) had both soldered bars and a single cast milled bar, which had been worn by patients for 2 to 5 years prior to receiving other aspects of prosthodontic maintenance. All bars were examined using scanning electron microscopy to establish the possible mode of failure (FB) or to identify evidence of potential failure in the future (IB). Evidence of a progressive failure mode of corrosion fatigue and creep were observed on all the FB and IB usually around the solder areas and nonoxidizing gold cylinder. Fatigue and creep were also observed in all the IB. Where the level of corrosion was substantial, there was no evidence of wear from the matrices of the attachment system. Evidence of an instantaneous failure mode, ductile and brittle overload, was observed on the fracture surfaces of all the FB, within the solder and the nonoxidizing gold cylinders, at the solder/cylinder interface. Corrosion, followed by corrosion fatigue, appears to be a key factor in the onset of the failure process for overdenture bars in this case series of both maxillary and mandibular overdentures. Limited sample size and lack of standardization identify trends only but prevent broad interpretation of the findings.

  8. Indium hydroxide to oxide decomposition observed in one nanocrystal during in situ transmission electron microscopy studies

    Science.gov (United States)

    Miehe, Gerhard; Lauterbach, Stefan; Kleebe, Hans-Joachim; Gurlo, Aleksander

    2013-02-01

    The high-resolution transmission electron microscopy (HR-TEM) is used to study, in situ, spatially resolved decomposition in individual nanocrystals of metal hydroxides and oxyhydroxides. This case study reports on the decomposition of indium hydroxide (c-In(OH)3) to bixbyite-type indium oxide (c-In2O3). The electron beam is focused onto a single cube-shaped In(OH)3 crystal of {100} morphology with ca. 35 nm edge length and a sequence of HR-TEM images was recorded during electron beam irradiation. The frame-by-frame analysis of video sequences allows for the in situ, time-resolved observation of the shape and orientation of the transformed crystals, which in turn enables the evaluation of the kinetics of c-In2O3 crystallization. Supplementary material (video of the transformation) related to this article can be found online at 10.1016/j.jssc.2012.09.022. After irradiation the shape of the parent cube-shaped crystal is preserved, however, its linear dimension (edge) is reduced by the factor 1.20. The corresponding spotted selected area electron diffraction (SAED) pattern representing zone [001] of c-In(OH)3 is transformed to a diffuse strongly textured ring-like pattern of c-In2O3 that indicates the transformed cube is no longer a single crystal but is disintegrated into individual c-In2O3 domains with the size of about 5-10 nm. The induction time of approximately 15 s is estimated from the time-resolved Fourier transforms. The volume fraction of the transformed phase (c-In2O3), calculated from the shrinkage of the parent c-In(OH)3 crystal in the recorded HR-TEM images, is used as a measure of the kinetics of c-In2O3 crystallization within the framework of Avrami-Erofeev formalism. The Avrami exponent of ˜3 is characteristic for a reaction mechanism with fast nucleation at the beginning of the reaction and subsequent three-dimensional growth of nuclei with a constant growth rate. The structural transformation path in reconstructive decomposition of c-In(OH)3 to c

  9. Electron microscope observation of single - crystalline beryllium thin foils; Observation de lames minces monocristallines de beryllium en microscopie electronique

    Energy Technology Data Exchange (ETDEWEB)

    Antolin, J; Poirier, J P; Dupouy, J M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    Thin foils prepared from single crystalline beryllium simples deformed at room temperature, have been observed by transmission electron microscopy. The various deformation modes have been investigated separately, from their early stages and their characteristic dislocation configurations have been observed. Basal slip is characterized at is outset by the presence of numerous dipoles and elongated prismatic loops. More pronounced cold work leads to the formation of dislocation tangles and bundles which eventually give a cellular structure. Prismatic slip begins by the cross-slip of dislocations from the basal plane into the prismatic plane. A cellular structure is equally observed in heavily deformed samples. Sessile dislocations have been observed in twin boundaries; they are produced by reactions between slip dislocations and twin dislocations. Finally, the study of samples quenched from 1100 deg. C and annealed at 200 deg. C has shown that the observed loops lie in prismatic planes and have a Burgers vector b 1/3<1 1 2-bar 0>. (authors) [French] On a observe en microscopie electronique par transmission des lames minces tirees d'eprouvettes monocristallines de beryllium deformees a l'ambiante. On a etudie separement les differents modes de deformation a partir de leur stade elementaire en observant les configurations de dislocations caracteristiques. Le glissement basal est caracterise a son debut par la presence de nombreux dipoles et de boucles prismatiques allongees. Des ecrouissages plus forts conduisent a la formation d'echeveaux et de gerbes qui finissent par donner une structure cellulaire. Le glissement prismatique debute par le glissement des dislocations hors du plan de base dans les plans prismatiques. On trouve egalement une structure cellulaire pour de forts ecrouissages. Dans les joints de macle, on a observe des dislocations sessiles formees par la reaction entre dislocations de macle et dislocations de glissement. Enfin l'etude d

  10. Correlation of ''twins'' observed by optical microscopy and transmission electron microscopy in YBa2Cu3O7/sub -//sub x/ superconductors

    International Nuclear Information System (INIS)

    Hoff, H.A.; Singh, A.K.; Pande, C.S.

    1988-01-01

    By using transmission electron microscopy and optical microscopy on the same specimens, the patterns of light- and dark-contrast lines seen in reflected polarized light were shown to be an interference pattern due to the variable spacing of suboptical microtwins. These microtwins are mostly [110] reflection twins. The [110] twinning was observed to be cyclic and occasionally pseudotetragonal because of the progressive cycling of contact twin domains. Within a domain, and occasionally in a whole grain, the [110] reflection twins occurred as polysynthetic lamellae. The morphology of the domain structure can be explained from the theory of martensitic transformation

  11. Electron microscopy (nonbiological)

    International Nuclear Information System (INIS)

    Cowley, J.M.

    1986-01-01

    The period 1982-1985, which is covered by this review, has seen major advances in the capabilities of the commercially available instruments. The new electron microscopes operating in the range of 300-400 keV have provided important improvements in the resolution available and in the possibilities for microanalysis of very small specimen areas. Correspondingly there has been a broadening in the range of possible applications of the techniques. Electron microscopy has become a much more powerful tool for studies of semiconductors and catalysts, for example, and offers promise of a major revolution in surface science. The major industrial laboratories, in particular, are investing in million-dollar instruments and in the highly skilled scientists needed to run them because the capabilities of the new instruments are seen to have immediate practical applications to current industrial research. Unfortunately all of the new instruments and most of the skilled users come from overseas. The American instrument industry, although showing some limited signs of life, is not yet in a position to compete in this lucrative market and the training of electron optics specialists in this country is far from meeting the demand. The increased sophistication required for both the operation of the instruments and the interpretation of the observation requires that the quality as well as the quantity of trainees must be improved. 62 references

  12. Electron microscopy and diffraction

    International Nuclear Information System (INIS)

    Gjoennes, J.; Olsen, A.

    1986-01-01

    This report is a description of research activities and plans at the electron microscopy laboratorium, Physics Department, University of Oslo. Since the first electron microscope was installed in 1968, the research has covered inorganic structures, physical metallurgy, as well as theory of electron scattering and the development of methods in this field. The current plans involve efforts in the development of crystallographic and spectroscopic methods

  13. Direct observation of surface reconstruction and termination on a complex metal oxide catalyst by electron microscopy

    KAUST Repository

    Zhu, Yihan

    2012-03-19

    On the surface: The surface reconstruction of an MoVTeO complex metal oxide catalyst was observed directly by various electron microscopic techniques and the results explain the puzzling catalytic behavior. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Direct observation of dopant distribution in GaAs compound semiconductors using phase-shifting electron holography and Lorentz microscopy.

    Science.gov (United States)

    Sasaki, Hirokazu; Otomo, Shinya; Minato, Ryuichiro; Yamamoto, Kazuo; Hirayama, Tsukasa

    2014-06-01

    Phase-shifting electron holography and Lorentz microscopy were used to map dopant distributions in GaAs compound semiconductors with step-like dopant concentration. Transmission electron microscope specimens were prepared using a triple beam focused ion beam (FIB) system, which combines a Ga ion beam, a scanning electron microscope, and an Ar ion beam to remove the FIB damaged layers. The p-n junctions were clearly observed in both under-focused and over-focused Lorentz microscopy images. A phase image was obtained by using a phase-shifting reconstruction method to simultaneously achieve high sensitivity and high spatial resolution. Differences in dopant concentrations between 1 × 10(19) cm(-3) and 1 × 10(18) cm(-3) regions were clearly observed by using phase-shifting electron holography. We also interpreted phase profiles quantitatively by considering inactive layers induced by ion implantation during the FIB process. The thickness of an inactive layer at different dopant concentration area can be measured from the phase image. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Electron microscopy in metallurgy

    International Nuclear Information System (INIS)

    Loretto, M.H.

    1980-01-01

    The aim of this paper is to review briefly the contribution which (TEM) transmission electron microscopy (including high voltage electron microscopy (HVEM)) has made to metallurgy. Since it is straightforward with modern electron microscopes to extract the crystallographic information which provides the basis for any interpretation, the major problem in most metallurgical work lies in assessing how the structure (which TEM has characterised) has arisen and which properties of the specimen can be understood in terms of this structure. Radiation damage, quenching, phase transformations, grain boundaries and plastic deformation have been the main fields in which TEM has contributed significantly. After briefly summarising the role of TEM in each field, examples of recent work will be used to indicate current TEM activity in physical metallurgy. (author)

  16. Scanning electron microscopy and histopathological observations of Beauveria bassiana infection of Colorado potato beetle larvae.

    Science.gov (United States)

    Duan, Yulin; Wu, Hui; Ma, Zhiyan; Yang, Liu; Ma, Deying

    2017-10-01

    Beauveria bassiana is a potential candidate for use as an environmentally friendly bio-pesticide. We studied the infection process and histopathology of B. bassiana strain NDBJJ-BFG infection of the Colorado potato beetle (Leptinotarsa decemlineata) using scanning electron microscopy and hematoxylin-eosin staining of tissue sections. The results show that the fungus penetrated the insect epidermis through germ tubes and appressoria after spraying the larvae with conidial suspensions. The conidia began to germinate after 24 h and invade the epidermis. After 48 h, the conidia invaded the larvae with germ tubes and began to enter the haemocoel. By 72 h, hyphae had covered the host surface and had colonized the body cavity. The dermal layer was dissolved, muscle tissues were ruptured and adipose tissue was removed. The mycelium had damaged the intestinal wall muscles, and invaded into intestinal wall and midfield cells resulting in cell separation and tracheal deformation. After 96 h of inoculation, the internal structure of the larvae was destroyed. The research shows that B. bassiana NDBJJ-BFG surface inoculation resulted in a series of histopathological changes to the potato beetle larvae that proved lethal within 72 h. This indicated that this fungus has a high pathogenicity to Colorado potato beetle larvae. Copyright © 2017. Published by Elsevier Ltd.

  17. Superconductivity and electron microscopy

    International Nuclear Information System (INIS)

    Hawkes, P.W.; Valdre, U.

    1977-01-01

    In this review article, two aspects of the role of superconductivity in electron microscopy are examined: (i) the development of superconducting devices (mainly lenses) and their incorporation in electron microscopes; (ii) the development of electron microscope techniques for studying fundamental and technological problems associated with superconductivity. The first part opens with a brief account of the relevant properties of conventional lenses, after which the various types of superconducting lenses are described and their properties compared. The relative merits and inconveniences of superconducting and conventional lenses are examined, particular attention being paid to the spherical and chromatic aberration coefficients at accelerating voltages above a megavolt. This part closes with a survey of the various microscope designs that have been built or proposed, incorporating superconducting components. In the second part, some methods that have been or might be used in the study of superconductivity in the electron microscope are described. A brief account of the types of application for which they are suitable is given. (author)

  18. Investigation of the aluminium-aluminium oxide reversible transformation as observed by hot stage electron microscopy.

    Science.gov (United States)

    Grove, C. A.; Judd, G.; Ansell, G. S.

    1972-01-01

    Thin foils of high purity aluminium and an Al-Al2O3 SAP type of alloy were oxidised in a specially designed hot stage specimen chamber in an electron microscope. Below 450 C, amorphous aluminium oxide formed on the foil surface and was first detectable at foil edges, holes, and pits. Islands of aluminium then nucleated in this amorphous oxide. The aluminium islands displayed either a lateral growth with eventual coalescence with other islands, or a reoxidation process which caused the islands to disappear. The aluminium island formation was determined to be related to the presence of the electron beam. A mechanism based upon electron charging due to the electron beam was proposed to explain the nucleation, growth, coalescence, disappearance, and geometry of the aluminium islands.

  19. Observations of localised dielectric excitations, secondary events and ionisation damage by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Howie, A.

    1988-01-01

    In the scanning transmission electron microscope (STEM) a high intensity /approximately/0.5nm diameter, probe of 100 keV electrons is formed. This can be positioned to collect energy loss spectra from surfaces, interfaces, small spheres or other particles at controlled values of impact parameter or can be scanned across the object (usually a thin film) to produce high resolution images formed from a variety of signals - small angle or large angle (Z contrast) elastic scattering, inelastic scattering (both valence and core losses), secondary electron emission and x-ray or optical photon emission. The high spatial resolution achievable in a variety of simple structures raises many unsolved theoretical problems concerning the generation, propagation and decay of excitations in inhomogeneous media. These range from quite well posed problems in the mathematical physics of dielectric excitation to problems of plasmon propagation and rather more exotic and less well understood problems of radiation damage. 15 refs., 4 figs

  20. Transmission electron microscopy: direct observation of crystal structure in refractory ceramics.

    Science.gov (United States)

    Shaw, T M; Thomas, G

    1978-11-10

    Using high-resolution multibeam interference techniques in the transmission electron microscope, images have been obtained that make possible a real-space structure analysis of a beryllium-silicon-nitrogen compound. The results illustrate the usefulness of lattice imaging in the analysis of local crystal structure in these technologically promising ceramic materials.

  1. OBSERVATION OF MAGNETIC DOMAINS IN IRRADIATED TRANSITION METALS BY HIGH VOLTAGE ELECTRON MICROSCOPY

    OpenAIRE

    Ono , F.; Jakubovics , J.; Maeta , H.

    1988-01-01

    The effect of irradiation on the movement of domain walls was studied in ferromagnetic transition metals by using a high voltage electron microscope. In iron, a domain wall became easily movable at a 300 kV irradiation. The mobility was less affected in cobalt, while in nickel the effect was the greatest.

  2. Direct observation of the growth of voids in multifilamentary superconducting materials via hot stage scanning electron microscopy

    International Nuclear Information System (INIS)

    Wang, J.L.F.; Holthuis, J.T.; Pickus, M.R.; Lindberg, R.W.

    1978-11-01

    The need for large high field magnetic devices has focused attention on multifilamentary superconductors based on A15 compounds such as Nb 3 Sn. The commercial bronze process for fabricating multifilamentary superconducting Nb 3 Sn wires was developed. A major problem is strain sensitivity when long reaction times are employed. An improved hot stage for the scanning electron microscope was constructed to study the formation of the A15 phase by solid state diffusion. The nucleation and growth of voids near the interface of the A15 phase (Nb 3 Sn) and matrix were observed, monitored, and recorded on video tape. Successive layers of material heated in the hot stage were subsequently removed and the new surfaces were re-examined, using SEM-EDX and optical microscopy, to confirm the fact that the observed porosity was indeed a bulk rather than a surface phenomenon. These voids are considered to be a primary cause for degrading the mechanical, thermal and superconducting properties

  3. Electrical and electron microscopy observations on defects in ion implanted silicon

    International Nuclear Information System (INIS)

    Ling, H.

    1978-01-01

    Silicon single crystals were implanted with 100 keV phosphorus ions to a dose of 2 x 10 16 ions/cm 2 at both room-temperature and 600 0 C. They were isochronally annealed at temperatures ranging from 400 0 C to 900 0 C. Sheet resistivity measurements of the specimens were taken after each anneal, together with corresponding transmission electron micrographs

  4. Liquid-solid phase transition of Ge-Sb-Te alloy observed by in-situ transmission electron microscopy

    International Nuclear Information System (INIS)

    Berlin, Katja; Trampert, Achim

    2017-01-01

    Melting and crystallization dynamics of the multi-component Ge-Sb-Te alloy have been investigated by in-situ transmission electron microscopy (TEM). Starting point of the phase transition study is an ordered hexagonal Ge 1 Sb 2 Te 4 thin film on Si(111) where the crystal structure and the chemical composition are verified by scanning TEM and electron energy-loss spectroscopy, respectively. The in-situ observation of the liquid phase at 600°C including the liquid-solid and liquid-vacuum interfaces and their movements was made possible due to an encapsulation of the TEM sample. The solid-liquid interface during melting displays a broad and diffuse transition zone characterized by a vacancy induced disordered state. Although the velocities of interface movements are measured to be in the nanometer per second scale, both, for crystallization and solidification, the underlying dynamic processes are considerably different. Melting reveals linear dependence on time, whereas crystallization exhibits a non-linear time-dependency featuring a superimposed start-stop motion. Our results may provide valuable insight into the atomic mechanisms at interfaces during the liquid-solid phase transition of Ge-Sb-Te alloys. - Highlights: • In-situ TEM observation of liquid Ge-Sb-Te phase transition due to encapsulation. • During melting: Observation of non-ordered interface transition due to premelting. • During solidification: Observation of non-linear time-dependent crystallization.

  5. Liquid-solid phase transition of Ge-Sb-Te alloy observed by in-situ transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Katja, E-mail: katja.berlin@pdi-berlin.de; Trampert, Achim

    2017-07-15

    Melting and crystallization dynamics of the multi-component Ge-Sb-Te alloy have been investigated by in-situ transmission electron microscopy (TEM). Starting point of the phase transition study is an ordered hexagonal Ge{sub 1}Sb{sub 2}Te{sub 4} thin film on Si(111) where the crystal structure and the chemical composition are verified by scanning TEM and electron energy-loss spectroscopy, respectively. The in-situ observation of the liquid phase at 600°C including the liquid-solid and liquid-vacuum interfaces and their movements was made possible due to an encapsulation of the TEM sample. The solid-liquid interface during melting displays a broad and diffuse transition zone characterized by a vacancy induced disordered state. Although the velocities of interface movements are measured to be in the nanometer per second scale, both, for crystallization and solidification, the underlying dynamic processes are considerably different. Melting reveals linear dependence on time, whereas crystallization exhibits a non-linear time-dependency featuring a superimposed start-stop motion. Our results may provide valuable insight into the atomic mechanisms at interfaces during the liquid-solid phase transition of Ge-Sb-Te alloys. - Highlights: • In-situ TEM observation of liquid Ge-Sb-Te phase transition due to encapsulation. • During melting: Observation of non-ordered interface transition due to premelting. • During solidification: Observation of non-linear time-dependent crystallization.

  6. In-situ observation of the alpha/beta cristobalite transition using high voltage electron microscopy

    International Nuclear Information System (INIS)

    Meike, A.; Glassley, W.

    1989-10-01

    A high temperature water vapor phase is expected to persist in the vicinity of high level radioactive waste packages for several hundreds of years. The authors have begun an investigation of the structural and chemical effects of water on cristobalite because of its abundance in the near field environment. A high voltage transmission electron microscope (HVEM) investigation of bulk synthesized α-cristobalite to be used in single phase dissolution and precipitation kinetics experiments revealed the presence β-cristobalite, quartz and amorphous silica, in addition to α-cristobalite. Consequently, this apparent metastable persistence of β-cristobalite and amorphous silica during the synthesis of α-cristobalite was investigated using a heating stage and an environmental cell installed in the HVEM that allowed the introduction of either dry CO 2 or a CO 2 + H 2 O vapor. Preliminary electron diffraction evidence suggests that the presence of water vapor affected the α-β transition temperature. Water vapor may also be responsible for the development of an amorphous silica phase at the transition that may persist over an interval of several tens of degrees. The amorphous phase was not documented during the dry heating experiments. 20 refs., 7 figs., 5 tabs

  7. In-situ observation of the alpha/beta cristobalite transition using high voltage electron microscopy

    International Nuclear Information System (INIS)

    Meike, A.; Glassley, W.E.

    1990-01-01

    A high temperature water vapor phase is expected to persist in the vicinity of high level radioactive waste packages for several hundreds of years. The authors have begun an investigation of the structural and chemical effects of water on cristobalite because of its abundance in the near field environment. A high voltage transmission electron microscope (HVEM) investigation of bulk synthesized α-cristobalite to be used in single phase dissolution and precipitation kinetics experiments revealed the presence β-cristobalite, quartz and amorphous silica, in addition to α-cristobalite. Consequently, this apparent metastable persistence of β-cristobalite and amorphous silica during the synthesis of α-cristobalite was investigated using a heating stage and an environmental cell installed in the HVEM that allowed the introduction of either dry CO 2 or a CO 2 + H 2 O vapor. Preliminary electron diffraction evidence suggests that the presence of water vapor affected the α-β transition temperature. Water vapor may also be responsible for the development of an amorphous silica phase at the transition that may persist over an interval of several tens of degrees. The amorphous phase was not documented during the dry heating experiments

  8. Electron microscopy observations of helium bubble-void transition effects in nimonic PE16 alloys

    International Nuclear Information System (INIS)

    Mazey, D.J.; Nelson, R.S.

    1980-01-01

    High-nickel alloys based on the Nimonic PE16 composition have been injected at temperatures of 525 0 C and 625 0 C with 1000 ppm helium to produce a high gas-bubble concentration and subsequently irradiated with 36 MeV nickel ions. Extensive heterogeneous nucleation of bubbles is observed on faulted interstitial loops and dislocations. Evidence is found in standard PE16 alloy for bimodal bubble plus void distributions which persist during nickel-ion irradiation to 30 and 60 dpa at 625 0 C and result in a low void volume swelling of approximately 1%. The observations can be correlated with the critical bubble/void transition radius which is calculated from theory to be approximately 4.4 nm. Pre-injection of helium into a 'matrix' PE16 (low Si, Ti and Al) alloy produced an initial bubble population whose average size was above the calculated transition radius such that all bubbles eventually grew as voids during subsequent nickel-ion irradiation up to 60 dpa at 625 0 C where the void volume swelling reached approximately 12%. The observations are discussed briefly and related to theoretical predictions of the bubble/void transition radius. (author)

  9. Observation of lens aberrations for high resolution electron microscopy II: Simple expressions for optimal estimates

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, W. Owen, E-mail: wos1@cam.ac.uk

    2015-04-15

    This paper lists simple closed-form expressions estimating aberration coefficients (defocus, astigmatism, three-fold astigmatism, coma / misalignment, spherical aberration) on the basis of image shift or diffractogram shape measurements as a function of injected beam tilt. Simple estimators are given for a large number of injected tilt configurations, optimal in the sense of least-squares fitting of all the measurements, and so better than most reported previously. Standard errors are given for most, allowing different approaches to be compared. Special attention is given to the measurement of the spherical aberration, for which several simple procedures are given, and the effect of foreknowledge of this on other aberration estimates is noted. Details and optimal expressions are also given for a new and simple method of analysis, requiring measurements of the diffractogram mirror axis direction only, which are simpler to make than the focus and astigmatism measurements otherwise required. - Highlights: • Optimal estimators for CTEM lens aberrations are more accurate and/or use fewer observations. • Estimators have been found for defocus, astigmatism, three-fold astigmatism, coma and spherical aberration. • Estimators have been found relying on diffractogram shape, image shift and diffractogram orientation only, for a variety of beam tilts. • The standard error for each estimator has been found.

  10. Neuroanatomy from Mesoscopic to Nanoscopic Scales: An Improved Method for the Observation of Semithin Sections by High-Resolution Scanning Electron Microscopy.

    Science.gov (United States)

    Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel

    2018-01-01

    Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM).

  11. Scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1970-05-15

    The JSM-11 scanning electron microscope at CRNL has been used extensively for topographical studies of oxidized metals, fracture surfaces, entomological and biological specimens. A non-dispersive X-ray attachment permits the microanalysis of the surface features. Techniques for the production of electron channeling patterns have been developed. (author)

  12. Electron microscopy of nuclear zirconium alloys

    International Nuclear Information System (INIS)

    Versaci, R.A.; Ipohorski, Miguel

    1986-01-01

    Transmission electron microscopy observations of the microstructure of zirconium alloys used in fuel sheaths of nuclear power reactors are reported. Specimens were observed after different thermal and mechanical treatment, similar to those actually used during fabrication of the sheaths. Electron micrographs and electron diffraction patterns of second phase particles present in zircaloy-2 and zircaloy-4 were also obtained, as well as some characteristic parameters. Images of oxides and hydrides most commonly present in zirconium alloys are also shown. Finally, the structure of a Zr-2,5Nb alloy used in CANDU reactors pressure tubes, is observed by electron microscopy. (Author) [es

  13. Electronic Blending in Virtual Microscopy

    Science.gov (United States)

    Maybury, Terrence S.; Farah, Camile S.

    2010-01-01

    Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…

  14. Electron microscopy of boron carbide before and after electron irradiation

    International Nuclear Information System (INIS)

    Stoto, T.; Zuppiroli, L.; Beauvy, M.; Athanassiadis, T.

    1984-06-01

    The microstructure of boron carbide has been studied by electron microscopy and related to the composition of the material. After electron irradiations in an usual transmission electron microscope and in a high voltage electron microscope at different temperatures and fluxes no change of these microstructures have been observed but a sputtering of the surface of the samples, which has been studied quantitatively [fr

  15. Electron microscopy and forensic practice

    Science.gov (United States)

    Kotrlý, Marek; Turková, Ivana

    2013-05-01

    Electron microanalysis in forensic practice ranks among basic applications used in investigation of traces (latents, stains, etc.) from crime scenes. Applying electron microscope allows for rapid screening and receiving initial information for a wide range of traces. SEM with EDS/WDS makes it possible to observe topography surface and morphology samples and examination of chemical components. Physical laboratory of the Institute of Criminalistics Prague use SEM especially for examination of inorganic samples, rarely for biology and other material. Recently, possibilities of electron microscopy have been extended considerably using dual systems with focused ion beam. These systems are applied mainly in study of inner micro and nanoparticles , thin layers (intersecting lines in graphical forensic examinations, analysis of layers of functional glass, etc.), study of alloys microdefects, creating 3D particles and aggregates models, etc. Automated mineralogical analyses are a great asset to analysis of mineral phases, particularly soils, similarly it holds for cathode luminescence, predominantly colour one and precise quantitative measurement of their spectral characteristics. Among latest innovations that are becoming to appear also at ordinary laboratories are TOF - SIMS systems and micro Raman spectroscopy with a resolution comparable to EDS/WDS analysis (capable of achieving similar level as through EDS/WDS analysis).

  16. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  17. Illuminating Electron Microscopy of Photocatalysts

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    .1% of the surface of the planet with a device that converts solar energy into a useable form at 10% efficiency would give more than the present worldwide consumption of fossil energy. Photocatalysts are of fundamental interest for sustainable energy research because they provide a viable route for converting solar...... energy into chemical bonds. By means of Transmission Electron Microscopy (TEM) it is possible to gain insight in the fundamentals of their reaction mechanisms, chemical behaviour, structure and morphology before, during and after reaction using in situ investigations. In particular, the environmental TEM...... the microscope that allows electron microscopy under nonconventional TEM conditions and new kinds of in situ spectroscopy....

  18. Correlated Light Microscopy and Electron Microscopy

    NARCIS (Netherlands)

    Sjollema, Klaas A.; Schnell, Ulrike; Kuipers, Jeroen; Kalicharan, Ruby; Giepmans, Ben N. G.; MullerReichert, T; Verkade, P

    2012-01-01

    Understanding where, when, and how biomolecules (inter)act is crucial to uncover fundamental mechanisms in cell biology. Recent developments in fluorescence light microscopy (FLM) allow protein imaging in living cells and at the near molecular level. However, fluorescence microscopy only reveals

  19. Illuminating Electron Microscopy of Photocatalysts

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    Photocatalysts are of fundamental interest for sustainable energy research because of their wide range of applications and great potential for state of the art and future usages [1]. By means of Transmission Electron Microscopy (TEM) it is possible to give a deep insight in the structure, composi...

  20. Transmission electron microscopy of bone

    NARCIS (Netherlands)

    Everts, Vincent; Niehof, Anneke; Tigchelaar-Gutter, Wikky; Beertsen, Wouter

    2012-01-01

    This chapter describes procedures to process mineralized tissues obtained from different sources for transmission electron microscopy (TEM). Methods for fixation, resin embedding, staining of semi-thin sections and ultrathin sections are presented. In addition, attention will be paid to processing

  1. Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition.

    Science.gov (United States)

    Shi, Jian; Li, Zhaodong; Kvit, Alexander; Krylyuk, Sergiy; Davydov, Albert V; Wang, Xudong

    2013-01-01

    Understanding the evolution of amorphous and crystalline phases during atomic layer deposition (ALD) is essential for creating high quality dielectrics, multifunctional films/coatings, and predictable surface functionalization. Through comprehensive atomistic electron microscopy study of ALD TiO2 nanostructures at designed growth cycles, we revealed the transformation process and sequence of atom arrangement during TiO2 ALD growth. Evolution of TiO2 nanostructures in ALD was found following a path from amorphous layers to amorphous particles to metastable crystallites and ultimately to stable crystalline forms. Such a phase evolution is a manifestation of the Ostwald-Lussac Law, which governs the advent sequence and amount ratio of different phases in high-temperature TiO2 ALD nanostructures. The amorphous-crystalline mixture also enables a unique anisotropic crystal growth behavior at high temperature forming TiO2 nanorods via the principle of vapor-phase oriented attachment.

  2. Transmission electron microscopy of amyloid fibrils.

    Science.gov (United States)

    Gras, Sally L; Waddington, Lynne J; Goldie, Kenneth N

    2011-01-01

    Transmission Electron Microscopy of negatively stained and cryo-prepared specimens allows amyloid fibrils to be visualised at high resolution in a dried or a hydrated state, and is an essential method for characterising the morphology of fibrils and pre-fibrillar species. We outline the key steps involved in the preparation and observation of samples using negative staining and cryo-electron preservation. We also discuss methods to measure fibril characteristics, such as fibril width, from electron micrographs.

  3. Bridging fluorescence microscopy and electron microscopy

    NARCIS (Netherlands)

    Giepmans, Ben N. G.

    Development of new fluorescent probes and fluorescence microscopes has led to new ways to study cell biology. With the emergence of specialized microscopy units at most universities and research centers, the use of these techniques is well within reach for a broad research community. A major

  4. CNNs for electron microscopy segmentation

    OpenAIRE

    García-Amorena García, Pablo

    2013-01-01

    In the framework of Biomedicine, mitochondria are known to play an important role in neural function. Recent studies show mitochondrial morphology to be crucial to cellular physiology and synaptic function, and a link between mitochondrial defects and neuro-degenerative diseases is strongly suspected. Electron microscopy (EM), with its very high resolution in all three directions, is one of the key tools to look more closely into these tissues, but the huge amounts of data it produces m...

  5. The vacancy order-disorder transition in Ba2YCu3Osub(7-delta) observed by means of electron diffraction and electron microscopy

    International Nuclear Information System (INIS)

    Tendeloo, G. Van; Amelinckx, S.; Zandbergen, H.W.

    1987-01-01

    It is shown by means of electron microscopy and electron diffraction that the ''structural'' vacancies in Ba 2 YCu 3 Osub(7-delta) undergo an order-disorder transformation accompanied by a change in symmetry from orthorhombic to tetragonal. A superstructure due to the ordering of vacancies was found in certain crystal parts; it leads to doubling of the asub(0) parameter. It is shown that the ordering of the vacancies is important for the superconducting behaviour. In order to obtain a high Tsub(c) superconductor the final heat treatment is crucial. (author)

  6. In situ high-resolution transmission electron microscopy synthesis observation of nanostructured carbon coated LiFePO 4

    Science.gov (United States)

    Trudeau, M. L.; Laul, D.; Veillette, R.; Serventi, A. M.; Mauger, A.; Julien, C. M.; Zaghib, K.

    In situ high-resolution transmission electron microscopy (HRTEM) studies of the structural transformations that occur during the synthesis of carbon-coated LiFePO 4 (C-LiFePO 4) and heat treatment to elevated temperatures were conducted in two different electron microscopes. Both microscopes have sample holders that are capable of heating up to 1500 °C, with one working under high vacuum and the other capable of operating with the sample surrounded by a low gaseous environment. The C-LiFePO 4 samples were prepared using three different compositions of precursor materials with Fe(0), Fe(II) or Fe(III), a Li-containing salt and a polyethylene- block-poly(ethylene glycol)-50% ethylene oxide or lactose. The in situ TEM studies suggest that low-cost Fe(0) and a low-cost carbon-containing compound such as lactose are very attractive precursors for mass production of C-LiFePO 4, and that 700 °C is the optimum synthesis temperature. At temperatures higher than 800 °C, LiFePO 4 has a tendency to decompose. The same in situ measurements have been made on particles without carbon coat. The results show that the homogeneous deposit of the carbon deposit at 700 °C is the result of the annealing that cures the disorder of the surface layer of bare LiFePO 4. Electrochemical tests supported the conclusion that the C-LiFePO 4 derived from Fe(0) is the most attractive for mass production.

  7. Dynamic environmental transmission electron microscopy observation of platinum electrode catalyst deactivation in a proton-exchange-membrane fuel cell.

    Science.gov (United States)

    Yoshida, Kenta; Xudong, Zhang; Bright, Alexander N; Saitoh, Koh; Tanaka, Nobuo

    2013-02-15

    Spherical-aberration-corrected environmental transmission electron microscopy (AC-ETEM) was applied to study the catalytic activity of platinum/amorphous carbon electrode catalysts in proton-exchange-membrane fuel cells (PEMFCs). These electrode catalysts were characterized in different atmospheres, such as hydrogen and air, and a conventional high vacuum of 10(-5) Pa. A high-speed charge coupled device camera was used to capture real-time movies to dynamically study the diffusion and reconstruction of nanoparticles with an information transfer down to 0.1 nm, a time resolution below 0.2 s and an acceleration voltage of 300 kV. With such high spatial and time resolution, AC-ETEM permits the visualization of surface-atom behaviour that dominates the coalescence and surface-reconstruction processes of the nanoparticles. To contribute to the development of robust PEMFC platinum/amorphous carbon electrode catalysts, the change in the specific surface area of platinum particles was evaluated in hydrogen and air atmospheres. The deactivation of such catalysts during cycle operation is a serious problem that must be resolved for the practical use of PEMFCs in real vehicles. In this paper, the mechanism for the deactivation of platinum/amorphous carbon electrode catalysts is discussed using the decay rate of the specific surface area of platinum particles, measured first in a vacuum and then in hydrogen and air atmospheres for comparison.

  8. Electron holography for polymer microscopy

    International Nuclear Information System (INIS)

    Joy, D.C.

    1992-01-01

    Electron holography provides a radically new approach to the problem of imaging objects such as macromolecules, which exhibit little or no contrast when viewed in the conventional transmission electron microscope (TEM). This is overcome in electron holography by using the macromolecule as a phase object. Computer reconstruction of the hologram then allows the phase to be viewed as an image, and amplified. Holography requires a TEM with a field emission gun, and with an electro-static biprism to produce the interference pattern. The hologram requires a similar radiation dose to conventional microscopy but many different images (e.g. a through focal series) can be extracted from the same hologram. Further developments of the technique promise to combine high contrast imaging of the bulk of the macromolecule together with high spatial resolution imaging of surface detail

  9. Spin-polarized scanning electron microscopy

    International Nuclear Information System (INIS)

    Kohashi, Teruo

    2014-01-01

    Spin-Polarized Scanning Electron Microscopy (Spin SEM) is one way for observing magnetic domain structures taking advantage of the spin polarization of the secondary electrons emitted from a ferromagnetic sample. This principle brings us several excellent capabilities such as high-spatial resolution better than 10 nm, and analysis of magnetization direction in three dimensions. In this paper, the principle and the structure of the spin SEM is briefly introduced, and some examples of the spin SEM measurements are shown. (author)

  10. Direct in situ transmission electron microscopy observation of Al push up during early stages of the Al-induced layer exchange

    International Nuclear Information System (INIS)

    Birajdar, B.I.; Antesberger, T.; Butz, B.; Stutzmann, M.; Spiecker, E.

    2012-01-01

    The mechanism of Al transport during Al-induced layer exchange and crystallization of amorphous Si (a-Si) has been investigated by in situ and analytical transmission electron microscopy. Significant grain boundary realignment and coarsening of Al grains close to the Si crystallization growth front as well as push up of excess Al into the a-Si layer at distances even a few micrometers away from the crystallization front were observed. Stress-mediated diffusion of Al is postulated to explain the experimental observations.

  11. Electron Microscopy of Intracellular Protozoa

    Science.gov (United States)

    1988-12-20

    Classification) " ELECTRON MICROSCOPY OF INTRACELLULAR PROTOZOA 12. PERSONAL AUTHOR(S) Aikawa, Masamichi 13a. TYPE OF REPORT I13b. TIME COVERED 114...authors suggest that anti-CS protein antibody is important in reducing the prevalence of malaria with increasing age among persons in such areas and... Hygine 33, 220-226. 0Giudice, G.D., Engers, H.D., Tougne, C., Biro, S.S., Weiss, N., Verdini, A.S., Pessi, A., Degremont, A.A., Freyvogel, T.A., Lambert

  12. Electron Microscopy Society of Southern Africa : proceedings

    International Nuclear Information System (INIS)

    Snyman, H.C.; Coetzee, J.; Coubrough, R.I.

    1987-01-01

    The proceedings of the 26th annual conference of the Electron Microscopy Society of Southern Africa are presented. Papers were presented on the following topics: techniques and instrumentation used in electron microscopy, and applications of electron microscopy in the life sciences, including applications in medicine, zoology, botany and microbiology. The use of electron microscopy in the physical sciences was also discussed. Separate abstracts were prepared for seven of the papers presented. The remaining papers were considered outside the subject scope of INIS

  13. In Situ High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO2 Nanotubes Under Lithiation.

    Science.gov (United States)

    Cheong, Jun Young; Chang, Joon Ha; Kim, Sung Joo; Kim, Chanhoon; Seo, Hyeon Kook; Shin, Jae Won; Yuk, Jong Min; Lee, Jeong Yong; Kim, Il-Doo

    2017-12-01

    We trace Sn nanoparticles (NPs) produced from SnO2 nanotubes (NTs) during lithiation initialized by high energy e-beam irradiation. The growth dynamics of Sn NPs is visualized in liquid electrolytes by graphene liquid cell transmission electron microscopy. The observation reveals that Sn NPs grow on the surface of SnO2 NTs via coalescence and the final shape of agglomerated NPs is governed by surface energy of the Sn NPs and the interfacial energy between Sn NPs and SnO2 NTs. Our result will likely benefit more rational material design of the ideal interface for facile ion insertion.

  14. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    Science.gov (United States)

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  15. Electron microscopy of atmospheric particles

    Science.gov (United States)

    Huang, Po-Fu

    Electron microscopy coupled with energy dispersive spectrometry (EM/EDS) is a powerful tool for single particle analysis. However, the accuracy with which atmospheric particle compositions can be quantitatively determined by EDS is often hampered by substrate-particle interactions, volatilization losses in the low pressure microscope chamber, electron beam irradiation and use of inaccurate quantitation factors. A pseudo-analytical solution was derived to calculate the temperature rise due to the dissipation of the electron energy on a particle-substrate system. Evaporative mass loss for a spherical cap-shaped sulfuric acid particle resting on a thin film supported by a TEM grid during electron beam impingement has been studied. Measured volatilization rates were found to be in very good agreement with theoretical predictions. The method proposed can also be used to estimate the vapor pressure of a species by measuring the decay of X-ray intensities. Several types of substrates were studied. We found that silver-coated silicon monoxide substrates give carbon detection limits comparable to commercially available substrates. An advantage of these substrates is that the high thermal conductivity of the silver reduces heating due to electron beam impingement. In addition, exposure of sulfuric acid samples to ammonia overnight substantially reduces sulfur loss in the electron beam. Use of size-dependent k-factors determined from particles of known compositions shows promise for improving the accuracy of atmospheric particle compositions measured by EM/EDS. Knowledge accumulated during the course of this thesis has been used to analyze atmospheric particles (Minneapolis, MN) selected by the TDMA and collected by an aerodynamic focusing impactor. 'Less' hygroscopic particles, which do not grow to any measurable extent when humidified to ~90% relative humidity, included chain agglomerates, spheres, flakes, and irregular shapes. Carbon was the predominant element detected in

  16. Electron Microscopy of Intracellular Protozoa.

    Science.gov (United States)

    1980-08-01

    often with disrupted plasma membranes and a matrix which was vacuolated and less electron- dense than normal (figure 7). The merozoites were covered...Plasmodium brasilianum. J. Infect. Dis., 75: 1-32. -~ ~.Clak, .A., Allison, A.C., Cox, F.E., 1976. Protection of mice against Babesia and Plasmodium with BCG ...binding trypanosome were observed in each case (Fig 6). Lack of enhanced uptake by cells of BCG -treated mice. BCG (Mycobacterium bovis) treatment of mice

  17. Observations and Modeling of the Green Ocean Amazon 2014/15: Transmission Electron Microscopy Analysis of Aerosol Particles Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Buseck, Peter [Arizona State Univ., Tempe, AZ (United States)

    2016-03-01

    During two Intensive Operational Periods (IOP), we collected samples at 3-hour intervals for transmission electron microscopy analysis. The resulting transmission electron microscopy images and compositions were analyzed for the samples of interest. Further analysis will be done especially for the plume of interest. We found solid spherical organic particles from rebounded samples collected with Professor Scot Martin’s group (Harvard University). Approximately 30% of the rebounded particles at 95% relative humidity were spherical organic particles. Their sources and formation process are not known, but such spherical particles could be solid and will have heterogeneous chemical reactions. We observed many organic particles that are internally mixed with inorganic elements such as potassium and nitrogen. They are either homogeneously mixed or have inorganic cores with organic aerosol coatings. Samples collected from the Manaus, Brazil, pollution plume included many nano-size soot particles mixed with organic material and sulfate. Aerosol particles from clean periods included organic aerosol particles, sulfate, sea salt, dust, and primary biogenic aerosol particles. There was more dust, primary biogenic aerosol, and tar balls in samples taken during IOP1 than those taken during IOP2. Many dust particles were found between March 2 and 3.

  18. Transmission electron microscopy observations on phase transformations during aluminium/mullite composites formation by gas pressure infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Pawlyta, M., E-mail: miroslawa.pawlyta@polsl.pl [Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Konarskiego 18A, 44-100 Gliwice (Poland); Tomiczek, B.; Dobrzański, L.A.; Kujawa, M. [Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Konarskiego 18A, 44-100 Gliwice (Poland); Bierska-Piech, B. [Silesian Centre for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland)

    2016-04-15

    The porous ceramic preforms were manufactured using the powder metallurgy technique. First, the start-up material (halloysite with the addition of carbon fibres as the pore-forming agent) was slowly heated to 800 °C and then sintered at 1300 °C. Degradation of the carbon fibres enabled the open canals to form. At the end of the sintering process, the porous ceramic material consisting mainly of two phases (mullite and cristobalite) was formed, without any residual carbon content. During infiltration, the liquid metal filled the empty spaces (pores) effectively and formed the three-dimensional network of metal in the ceramic. The cristobalite was almost entirely decomposed. In the areas of its previous occurrence, there are new pores, only in the ceramic grains. The mullite, which was formed from halloysite during annealing, crystallized in the Pbam orthorhombic space group, with the (3Al{sub 2}O{sub 3}·2SiO{sub 2}) stoichiometric composition. The mullite structure does not change during the infiltration. The composite components are tightly connected. A transition zone between the ceramics and the metal, having the thickness of about 200 nm, was formed. The nanocrystalline zone, identified as γ-Al{sub 2}O{sub 3}, was formed by diffusing the product of the cristobalite decomposition into the aluminium alloy matrix. There is an additional, new phase, identified as (Mg,Si)Al{sub 2}O{sub 4} in the outer parts of the transition zone. - Highlights: • Phase changes after the infiltration of aluminium into porous mullite preforms were observed by TEM. • TEM observations confirm that during infiltration cristobalite was decomposed and the structure of mullite did not change. • Between the ceramic and the metal, a transition zone comprising a layer of γ-Al{sub 2}O{sub 3} and (Mg,Si)Al{sub 2}O{sub 4} was formed.

  19. Scanning electron microscopy and micro-analyses

    International Nuclear Information System (INIS)

    Brisset, F.; Repoux, L.; Ruste, J.; Grillon, F.; Robaut, F.

    2008-01-01

    Scanning electron microscopy (SEM) and the related micro-analyses are involved in extremely various domains, from the academic environments to the industrial ones. The overall theoretical bases, the main technical characteristics, and some complements of information about practical usage and maintenance are developed in this book. high-vacuum and controlled-vacuum electron microscopes are thoroughly presented, as well as the last generation of EDS (energy dispersive spectrometer) and WDS (wavelength dispersive spectrometer) micro-analysers. Beside these main topics, other analysis or observation techniques are approached, such as EBSD (electron backscattering diffraction), 3-D imaging, FIB (focussed ion beams), Monte-Carlo simulations, in-situ tests etc.. This book, in French language, is the only one which treats of this subject in such an exhaustive way. It represents the actualized and totally updated version of a previous edition of 1979. It gathers the lectures given in 2006 at the summer school of Saint Martin d'Heres (France). Content: 1 - electron-matter interactions; 2 - characteristic X-radiation, Bremsstrahlung; 3 - electron guns in SEM; 4 - elements of electronic optics; 5 - vacuum techniques; 6 - detectors used in SEM; 7 - image formation and optimization in SEM; 7a - SEM practical instructions for use; 8 - controlled pressure microscopy; 8a - applications; 9 - energy selection X-spectrometers (energy dispersive spectrometers - EDS); 9a - EDS analysis; 9b - X-EDS mapping; 10 - technological aspects of WDS; 11 - processing of EDS and WDS spectra; 12 - X-microanalysis quantifying methods; 12a - quantitative WDS microanalysis of very light elements; 13 - statistics: precision and detection limits in microanalysis; 14 - analysis of stratified samples; 15 - crystallography applied to EBSD; 16 - EBSD: history, principle and applications; 16a - EBSD analysis; 17 - Monte Carlo simulation; 18 - insulating samples in SEM and X-ray microanalysis; 18a - insulating

  20. Observation of two-dimensional p-type dopant diffusion across a p+-InP/n–-InGaAs interface using scanning electron microscopy

    International Nuclear Information System (INIS)

    Tsurumi, Daisuke; Hamada, Kotaro; Kawasaki, Yuji

    2013-01-01

    Scanning electron microscopy (SEM) with potential calculations has been shown to be effective for the detection of p-type dopant diffusion, even across a Zn doped p + -InP/non-doped n – -InGaAs/n + -InP heterojunction. Heterojunction samples were observed using SEM and the electrostatic potential was calculated from Zn concentration profiles obtained by secondary ion mass spectrometry. The sensitivity of SEM for the potential was derived from the SEM observations and potential calculation results. The results were then used to investigate the dependence of the SEM contrast on the Zn diffusion length across the p + -InP/non-doped n – -InGaAs interface. Accurate dopant mapping was difficult when the Zn diffusion length was shorter than 30 nm, because the heterojunction affects the potential at the interface. However, accurate dopant mapping was possible when the Zn diffusion length was longer than 30 nm, because the factor dominating the potential variation was not the heterojunction, but rather Zn diffusion 30 nm distant from the interface. Thus, Zn diffusion further than 30 nm from a Zn-doped p + -InP/non-doped n – -InGaAs interface can be effectively detected by secondary electron (SE) imaging. SE imaging with potential calculations can be widely used for accurate dopant mapping, even at heterojunctions, and is, therefore, expected to be of significant assistance to the compound semiconductor industry.

  1. Transmission Electron Microscopy of Minerals and Rocks

    Science.gov (United States)

    McLaren, Alex C.

    1991-04-01

    Of the many techniques that have been applied to the study of crystal defects, none has contributed more to our understanding of their nature and influence on the physical and chemical properties of crystalline materials than transmission electron microscopy (TEM). TEM is now used extensively by an increasing number of earth scientists for direct observation of defect microstructures in minerals and rocks. Transmission Electron Microscopy of Rocks and Minerals is an introduction to the principles of the technique and is the only book to date on the subject written specifically for geologists and mineralogists. The first part of the book deals with the essential physics of the transmission electron microscope and presents the basic theoretical background required for the interpretation of images and electron diffraction patterns. The final chapters are concerned with specific applications of TEM in mineralogy and deal with such topics as planar defects, intergrowths, radiation-induced defects, dislocations and deformation-induced microstructures. The examples cover a wide range of rock-forming minerals from crustal rocks to those in the lower mantle, and also take into account the role of defects in important mineralogical and geological processes.

  2. Fast electron microscopy via compressive sensing

    Science.gov (United States)

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  3. Histological and electron microscopy observations on the testis and spermatogenesis of the butterfly Dione juno (Cramer, 1779) and Agraulis vanillae (Linnaeus, 1758) (Lepidoptera: Nymphalidae).

    Science.gov (United States)

    Mari, Isabelle Pereira; Gigliolli, Adriana Aparecida Sinópolis; Nanya, Satiko; Portela-Castro, Ana Luiza de Brito

    2018-03-20

    Lepidopteran species present an interesting case of sperm polymorphism and testicular fusion. The study of these features are of great importance in understanding the reproductive biology of these insects, especially in the case of those considered pests. Dione juno and Agraulis vanillae stand out as the most important pests of passion fruit (Passiflora sp.) crops in Brazil. Therefore, the objective of the present study was to characterize the testes and germ cells of Dione juno and Agraulis vanillae at different life stages, using light microscopy and scanning and transmission electron microscopy, to understand the maturation mechanisms of the male gametes in these species. The study showed that the larvae of both species have a pair of brown kidney-shaped testes, covered by epithelial cells which divide the organ into four follicles. The testes are full of spermatogonia which begin to differentiate in the third larval instar. In the fifth larval instar, spermatozoa can be observed. When they enter the prepupal stage the testes begin a fusion process that is completed in the adult insects, where they present as spherical organs divided into eight follicles, containing all the cells of the germ line. Spermatogenesis occurs centripetally, and in both species, sperm dimorphism is observed, where two different types of spermatozoa are formed, eupyrene (nucleated) and apyrene (anucleate), which differ in morphology and function. Apart from contributing to scientific basic research on the reproductive biology of these insects, the present study provides important data that can aid in research on the physiology, systematics, and control of these species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Transmission Electron Microscopy Physics of Image Formation

    CERN Document Server

    Kohl, Helmut

    2008-01-01

    Transmission Electron Microscopy: Physics of Image Formation presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fifth edition includes discussion of recent progress, especially in the area of aberration correction and energy filtering; moreover, the topics introduced in the fourth edition have been updated. Transmission Electron Microscopy: Physics of Image Formation is written f...

  5. Ultrafast Science Opportunities with Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    DURR, HERMANN; Wang, X.J., ed.

    2016-04-28

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes the Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.

  6. Mechanisms of decoherence in electron microscopy

    International Nuclear Information System (INIS)

    Howie, A.

    2011-01-01

    The understanding and where possible the minimisation of decoherence mechanisms in electron microscopy were first studied in plasmon loss, diffraction contrast images but are of even more acute relevance in high resolution TEM phase contrast imaging and electron holography. With the development of phase retrieval techniques they merit further attention particularly when their effect cannot be eliminated by currently available energy filters. The roles of electronic excitation, thermal diffuse scattering, transition radiation and bremsstrahlung are examined here not only in the specimen but also in the electron optical column. Terahertz-range aloof beam electronic excitation appears to account satisfactorily for recent observations of decoherence in electron holography. An apparent low frequency divergence can emerge for the calculated classical bremsstrahlung event probability but can be ignored for photon wavelengths exceeding the required coherence distance or path lengths in the equipment. Most bremsstrahlung event probabilities are negligibly important except possibly in large-angle bending magnets or mandolin systems. A more reliable procedure for subtracting thermal diffuse scattering from diffraction pattern intensities is proposed.

  7. Mechanisms of decoherence in electron microscopy.

    Science.gov (United States)

    Howie, A

    2011-06-01

    The understanding and where possible the minimisation of decoherence mechanisms in electron microscopy were first studied in plasmon loss, diffraction contrast images but are of even more acute relevance in high resolution TEM phase contrast imaging and electron holography. With the development of phase retrieval techniques they merit further attention particularly when their effect cannot be eliminated by currently available energy filters. The roles of electronic excitation, thermal diffuse scattering, transition radiation and bremsstrahlung are examined here not only in the specimen but also in the electron optical column. Terahertz-range aloof beam electronic excitation appears to account satisfactorily for recent observations of decoherence in electron holography. An apparent low frequency divergence can emerge for the calculated classical bremsstrahlung event probability but can be ignored for photon wavelengths exceeding the required coherence distance or path lengths in the equipment. Most bremsstrahlung event probabilities are negligibly important except possibly in large-angle bending magnets or mandolin systems. A more reliable procedure for subtracting thermal diffuse scattering from diffraction pattern intensities is proposed. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Mechanisms of decoherence in electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Howie, A., E-mail: ah30@cam.ac.uk [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2011-06-15

    The understanding and where possible the minimisation of decoherence mechanisms in electron microscopy were first studied in plasmon loss, diffraction contrast images but are of even more acute relevance in high resolution TEM phase contrast imaging and electron holography. With the development of phase retrieval techniques they merit further attention particularly when their effect cannot be eliminated by currently available energy filters. The roles of electronic excitation, thermal diffuse scattering, transition radiation and bremsstrahlung are examined here not only in the specimen but also in the electron optical column. Terahertz-range aloof beam electronic excitation appears to account satisfactorily for recent observations of decoherence in electron holography. An apparent low frequency divergence can emerge for the calculated classical bremsstrahlung event probability but can be ignored for photon wavelengths exceeding the required coherence distance or path lengths in the equipment. Most bremsstrahlung event probabilities are negligibly important except possibly in large-angle bending magnets or mandolin systems. A more reliable procedure for subtracting thermal diffuse scattering from diffraction pattern intensities is proposed.

  9. Microscopy of electronic wave function

    International Nuclear Information System (INIS)

    Harb, M.

    2010-01-01

    This work of thesis aims to visualize, on a position sensitive detector, the spatial oscillations of slow electrons (∼ meV) emitted by a threshold photoionization in the presence of an external electric field. The interference figure obtained represents the square magnitude of electronic wavefunction. This fundamental work allows us to have access to the electronic dynamics and thus to highlight several quantum mechanisms that occur at the atomic scale (field Coulomb, electron/electron interaction..). Despite the presence an electronic core in Li atom, we have succeeded, experimentally and for the first time, in visualizing the wave function associated with the quasi-discrete Stark states coupled to the ionization continuum. Besides, using simulations of wave packet propagation, based on the 'Split-operator' method, we have conducted a comprehensive study of the H, Li and Cs atoms while revealing the significant effects of the Stark resonances. A very good agreement, on and off resonances, was obtained between simulated and experimental results. In addition, we have developed a generalized analytical model to understand deeply the function of VMI (Velocity-Map Imaging) spectrometer. This model is based on the paraxial approximation; it is based on matrix optics calculation by making an analogy between the electronic trajectory and the light beam. An excellent agreement was obtained between the model predictions and the experimental results. (author)

  10. Observation of superconducting fluxons by transmission electron microscopy: A Fourier space approach to calculate the electron optical phase shifts and images

    International Nuclear Information System (INIS)

    Beleggia, M.; Pozzi, G.

    2001-01-01

    An approach is presented for the calculation of the electron optical phase shift experienced by high-energy electrons in a transmission electron microscope, when they interact with the magnetic field associated with superconducting fluxons in a thin specimen tilted with respect to the beam. It is shown that by decomposing the vector potential in its Fourier components and by calculating the phase shift of each component separately, it is possible to obtain the Fourier transform of the electron optical phase shift, which can be inverted either analytically or numerically. It will be shown how this method can be used to recover the result, previously obtained by the real-space approach, relative to the case of a straight flux tube perpendicular to the specimen surfaces. Then the method is applied to the case of a London fluxon in a thin film, where the bending and the broadening of the magnetic-field lines due to the finite specimen thickness are now correctly taken into account and not treated approximately by means of a parabolic fit. Finally, it will be shown how simple models for the pancake structure of the fluxon can be analyzed within this framework and the main features of electron transmission images predicted

  11. Direct transmission electron microscopy observations of martensitic transformations in Ni-rich NiTi single crystals during in situ cooling and straining

    International Nuclear Information System (INIS)

    Kroeger, A.; Dziaszyk, S.; Frenzel, J.; Somsen, Ch.; Dlouhy, A.; Eggeler, G.

    2008-01-01

    We investigate martensitic transformations using transmission electron microscopy (TEM) in compression aged Ni-rich NiTi single crystals with one family of Ni 4 Ti 3 precipitates. Small cylinders from a Ni-rich NiTi single crystal with a Ni content of 51.0 at.% were compression aged at 550 deg. C in the [1 1 1] B2 direction for different aging times. Differential scanning calorimetry (DSC) investigations show that a three-step martensitic transformation (three DSC peaks on cooling from the high temperature regime) can be observed for aging times of 4 ks. In situ cooling TEM investigations reveal that the first peak on cooling is associated with a transformation from B2 to R-phase, starting from all precipitate/matrix interfaces. On further cooling, the B19'-phase appears and grows along precipitate/matrix interfaces (second step). With further decreasing temperature, the remaining R-phase between the precipitates transforms to B19' (third peak). In situ TEM straining experiments of B2 above the martensitic start temperature reveal that first some microstructural regions directly transform in microscopic burst like events from B2 to B19'. On further straining, the B19'-phase grows along precipitate/matrix interfaces. However, no formation of R-phase precedes the formation of stress-induced B19'

  12. Intercalation-etching of graphene on Pt(111) in H2 and O2 observed by in-situ low energy electron microscopy

    Institute of Scientific and Technical Information of China (English)

    Wei; Wei; Caixia; Meng; Qiang; Fu; Xinhe; Bao

    2017-01-01

    Graphene layers are often exposed to gaseous environments in their synthesis and application processes, and interactions of graphene surfaces with molecules particularly H2 and O2 are of great importance in their physico-chemical properties. In this work, etching of graphene overlayers on Pt(111) in H2 and O2 atmospheres were investigated by in-situ low energy electron microscopy. Significant graphene etching was observed in 10-5 Torr H2 above 1023 K, which occurs simultaneously at graphene island edges and interiors with a determined reaction barrier at 5.7 eV. The similar etching phenomena were found in 10.7 Torr O2 above 973 K, while only island edges were reacted between 823 and 923 K. We suggest that etching of graphene edges is facilitated by Pt-aided hydrogenation or oxidation of edge carbon atoms while intercalation-etching is attributed to etching at the interiors at high temperatures. The different findings with etching in O2 and H2 depend on competitive adsorption, desorption, and diffusion processes of O and H atoms on Pt surface, as well as intercalation at the graphene/Pt interface.

  13. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  14. Electron microscopy at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Gronsky, R.

    1983-11-01

    The direct imaging of atomic structure in solids has become increasingly easier to accomplish with modern transmission electron microscopes, many of which have an information retrieval limit near 0.2 nm point resolution. Achieving better resolution, particularly with any useful range of specimen tilting, requires a major design effort. This presentation describes the new Atomic Resolution Microscope (ARM), recently put into operation at the Lawrence Berkeley Laboratory. Capable of 0.18 nm or better interpretable resolution over a voltage range of 400 kV to 1000 kV with +- 40/sup 0/ biaxial specimen tilting, the ARM features a number of new electron-optical and microprocessor-control designs. These are highlighted, and its atomic resolution performance demonstrated for a selection of inorganic crystals.

  15. Electron microscopy at atomic resolution

    International Nuclear Information System (INIS)

    Gronsky, R.

    1983-11-01

    The direct imaging of atomic structure in solids has become increasingly easier to accomplish with modern transmission electron microscopes, many of which have an information retrieval limit near 0.2 nm point resolution. Achieving better resolution, particularly with any useful range of specimen tilting, requires a major design effort. This presentation describes the new Atomic Resolution Microscope (ARM), recently put into operation at the Lawrence Berkeley Laboratory. Capable of 0.18 nm or better interpretable resolution over a voltage range of 400 kV to 1000 kV with +- 40 0 biaxial specimen tilting, the ARM features a number of new electron-optical and microprocessor-control designs. These are highlighted, and its atomic resolution performance demonstrated for a selection of inorganic crystals

  16. Scanning electron microscopy of bone.

    Science.gov (United States)

    Boyde, Alan

    2012-01-01

    This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.

  17. Ultrafast electron microscopy integrated with a direct electron detection camera

    Directory of Open Access Journals (Sweden)

    Young Min Lee

    2017-07-01

    Full Text Available In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM, which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time.

  18. Ultrafast electron microscopy integrated with a direct electron detection camera.

    Science.gov (United States)

    Lee, Young Min; Kim, Young Jae; Kim, Ye-Jin; Kwon, Oh-Hoon

    2017-07-01

    In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM), which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time.

  19. Ultrathin sectioning for electron microscopy

    DEFF Research Database (Denmark)

    Rostgaard, Jørgen; Qvortrup, K

    1989-01-01

    During an electron microscopical study of the localization of the nucleoside diphosphatase IDPase in Reissner's membrane of the inner ear, it was discovered that the distilled water in the knife trough produced an annoying artefact. It dissolved all the lead phosphate reaction product from...... the sections, and thus converted a positive phosphatase reactivity to a false negative one. The water in the knife trough had a pH of approximately 5.4. Calculations showed that this is an expected acidity, if CO2 in the air equilibrates with distilled water, and that there is 200,000 times more acid...

  20. National Center for Electron Microscopy users' guide

    International Nuclear Information System (INIS)

    1987-01-01

    The National Center for Electron Microscopy (NCEM) in the Materials and Molecular Research Division of the Lawrence Berkeley Laboratory is a high voltage electron microscope facility for ultra-high resolution or dynamic in-situ studies. This guide describes the instruments and their specifications, support instrumentation, and user policies. Advice as to travel and accommodations is provided in the guide. (FI)

  1. Secondary electron spectroscopy and Auger microscopy at high spatial resolution. Application to scanning electron microscopy

    International Nuclear Information System (INIS)

    Le Gressus, Claude; Massignon, Daniel; Sopizet, Rene

    1979-01-01

    Secondary electron spectroscopy (SES), Auger electron spectroscopy (AES) and electron energy loss spectroscopy (ELS) are combined with ultra high vacuum scanning microscopy (SEM) for surface analysis at high spatial resolution. Reliability tests for the optical column for the vacuum and for the spectrometer are discussed. Furthermore the sensitivity threshold in AES which is compatible with a non destructive surface analysis at high spatial resolution is evaluated. This combination of all spectroscopies is used in the study of the beam damage correlated with the well known secondary electron image (SEI) darkening still observed in ultra high vacuum. The darkening is explained as a bulk decontamination of the sample rather than as a surface contamination from the residual vacuum gas [fr

  2. Monochromated scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Rechberger, W.; Kothleitner, G.; Hofer, F.

    2006-01-01

    Full text: Electron energy-loss spectroscopy (EELS) has developed into an established technique for chemical and structural analysis of thin specimens in the (scanning) transmission electron microscope (S)TEM. The energy resolution in EELS is largely limited by the stability of the high voltage supply, by the resolution of the spectrometer and by the energy spread of the source. To overcome this limitation a Wien filter monochromator was recently introduced with commercially available STEMs, offering the advantage to better resolve EELS fine structures, which contain valuable bonding information. The method of atomic resolution Z-contrast imaging within an STEM, utilizing a high-angle annular dark-field (HAADF) detector can perfectly complement the excellent energy resolution, since EELS spectra can be collected simultaneously. In combination with a monochromator microscope not only high spatial resolution images can be recorded but also high energy resolution EELS spectra are attainable. In this work we investigated the STEM performance of a 200 kV monochromated Tecnai F20 with a high resolution Gatan Imaging Filter (HR-GIF). (author)

  3. Experiences with remote electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Parvin, Bahram

    2002-02-22

    With the advent of a rapidly proliferating international computer network, it became feasible to consider remote operation of instrumentation normally operated locally. For modern electron microscopes, the growing automation and computer control of many instrumental operations facilitated the task of providing remote operation. In order to provide use of NCEM TEMs by distant users, a project was instituted in 1995 to place a unique instrument, a Kratos EM-1500 operating at 1.5MeV, on-line for remote use. In 1996, the Materials Microcharacterization Collaboratory (MMC) was created as a pilot project within the US Department of Energy's DOE2000 program to establish national collaboratories to provide access via the Internet to unique or expensive DOE research facilities as well as to expertise for remote collaboration, experimentation, production, software development, modeling, and measurement. A major LBNL contribution to the MMC was construction of DeepView, a microscope-independent computer-control system that could be ported to other MMC members to provide a common graphical user-interface (GUI) for control of any MMC instrument over the wide area network.

  4. Advanced Electron Microscopy in Materials Physics

    International Nuclear Information System (INIS)

    Zhu, Y.; Jarausch, K.

    2009-01-01

    Aberration correction has opened a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes and extending information limits. The imaging and analytical performance of these corrector-equipped microscopes affords an unprecedented opportunity to study structure-property relationships of matter at the atomic scale. This new generation of microscopes is able to retrieve high-quality structural information comparable to neutron and synchrotron x-ray experiments, but with local atomic resolution. These advances in instrumentation are accelerating the research and development of various functional materials ranging from those for energy generation, conversion, transportation and storage to those for catalysis and nano-device applications. The dramatic improvements in electron-beam illumination and detection also present a host of new challenges for the interpretation and optimization of experiments. During 7-9 November 2007, a workshop, entitled 'Aberration Corrected Electron Microscopy in Material Physics', was convened at the Center for Functional Nanomaterials, Brookhaven National Laboratories (BNL) to address these opportunities and challenges. The workshop was co-sponsored by Hitachi High Technologies, a leader in electron microscopy instrumentation, and BNL's Institute of Advanced Electron Microscopy, a leader in materials physics research using electron microscopy. The workshop featured presentations by internationally prominent scientists working at the frontiers of electron microscopy, both on developing instrumentation and applying it in materials physics. The meeting, structured to stimulate scientific exchanges and explore new capabilities, brought together ∼100 people from over 10 countries. This special issue complies many of the advances in instrument performance and materials physics reported by the invited speakers and attendees at the workshop.

  5. Electron microscopy at reduced levels of irradiation

    International Nuclear Information System (INIS)

    Kuo, I.A.M.

    1975-05-01

    Specimen damage by electron radiation is one of the factors that limits high resolution electron microscopy of biological specimens. A method was developed to record images of periodic objects at a reduced electron exposure in order to preserve high resolution structural detail. The resulting image would tend to be a statistically noisy one, as the electron exposure is reduced to lower and lower values. Reconstruction of a statistically defined image from such data is possible by spatial averaging of the electron signals from a large number of identical unit cells. (U.S.)

  6. Metal shadowing for electron microscopy.

    Science.gov (United States)

    Hendricks, Gregory M

    2014-01-01

    Metal shadowing of bacteria, viruses, isolated molecules, and macromolecular assemblies is another high-resolution method for observing the ultrastructure of biological specimens. The actual procedure for producing a metal shadow is relatively simple; a heavy metal is evaporated from a source at an oblique angle to the specimen. The metal atoms pile up on the surfaces that face the source, but the surfaces away from the source are shielded and receive little metal deposit, creating a "shadow." However, the process of producing biological specimens that are suitable for metal shadowing can be very complex. There are a whole host of specimen preparation techniques that can precede metal shadowing, and all provide superior preservation in comparison to air drying, a required step in negative staining procedures. The physical forces present during air drying (i.e., surface tension of the water-air interface) will literally crush most biological specimens as they dry. In this chapter I explain the development of and procedures for the production of biological specimens from macromolecular assemblies (e.g., DNA and RNA), purified isolated molecules (e.g., proteins), and isolated viruses and bacteria preparations suitable for metal shadowing. A variation on this basic technique is to rotate the specimen during the metal deposition to produce a high-resolution three-dimensional rendering of the specimen.

  7. Quantitative transmission electron microscopy at atomic resolution

    International Nuclear Information System (INIS)

    Allen, L J; D'Alfonso, A J; Forbes, B D; Findlay, S D; LeBeau, J M; Stemmer, S

    2012-01-01

    In scanning transmission electron microscopy (STEM) it is possible to operate the microscope in bright-field mode under conditions which, by the quantum mechanical principle of reciprocity, are equivalent to those in conventional transmission electron microscopy (CTEM). The results of such an experiment will be presented which are in excellent quantitative agreement with theory for specimens up to 25 nm thick. This is at variance with the large contrast mismatch (typically between two and five) noted in equivalent CTEM experiments. The implications of this will be discussed.

  8. Active Pixel Sensors for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Denes, P. [Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: pdenes@lbl.gov; Bussat, J.-M. [Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lee, Z.; Radmillovic, V. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2007-09-01

    The technology used for monolithic CMOS imagers, popular for cell phone cameras and other photographic applications, has been explored for charged particle tracking by the high-energy physics community for several years. This technology also lends itself to certain imaging detector applications in electron microscopy. We have been developing such detectors for several years at Lawrence Berkeley National Laboratory, and we and others have shown that this technology can offer excellent point-spread function, direct detection and high readout speed. In this paper, we describe some of the design constraints peculiar to electron microscopy and summarize where such detectors could play a useful role.

  9. Zeolites - a high resolution electron microscopy study

    International Nuclear Information System (INIS)

    Alfredsson, V.

    1994-10-01

    High resolution transmission electron microscopy (HRTEM) has been used to investigate a number of zeolites (EMT, FAU, LTL, MFI and MOR) and a member of the mesoporous M41S family. The electron optical artefact, manifested as a dark spot in the projected centre of the large zeolite channels, caused by insufficient transfer of certain reflections in the objective lens has been explained. The artefact severely hinders observation of materials confined in the zeolite channels and cavities. It is shown how to circumvent the artefact problem and how to image confined materials in spite of disturbance caused by the artefact. Image processing by means of a Wiener filter has been applied for removal of the artefact. The detailed surface structure of FAU has been investigated. Comparison of experimental micrographs with images simulated using different surface models indicates that the surface can be terminated in different ways depending on synthesis methods. The dealuminated form of FAU (USY) is covered by an amorphous region. Platinum incorporated in FAU has a preponderance to aggregate in the (111) twin planes, probably due to a local difference in cage structure with more spacious cages. It is shown that platinum is intra-zeolitic as opposed to being located on the external surface of the zeolite crystal. This could be deduced from tomography of ultra-thin sections among observations. HRTEM studies of the mesoporous MCM-41 show that the pores have a hexagonal shape and also supports the mechanistic model proposed which involves a cooperative formation of a mesophase including the silicate species as well as the surfactant. 66 refs, 24 figs

  10. Stenostomum cf. leucops (Platyhelminthes in Thailand: a surface observation using scanning electron microscopy and phylogenetic analysis based on 18S ribosomal DNA sequences

    Directory of Open Access Journals (Sweden)

    Arin Ngamniyom

    2016-02-01

    Full Text Available The genus Stenostomum contains small turbellaria that are widely distributed in freshwater environments worldwide. However, there are only rare reports or studies of this genus from Thailand. Therefore, the objective of this study was to report S. cf. leucops in Thailand collected from Pathum Thani Province. The worm morphology and surface topography using scanning electron microscopy were determined. Moreover, the phylogenetic tree of S. cf. leucops was analysed with 17 flatworms based on the 18S ribosomal DNA sequences. The phylogenetic relationship shared a common ancestry of Catenulida species, and S. cf. leucops displayed a monophyletic pattern within Stenostomum spp. The results of the morphological and molecular data are discussed. These results may increase the knowledge of freshwater microturbellarians in Thailand.

  11. Direct observation of dislocation dissociation and Suzuki segregation in a Mg–Zn–Y alloy by aberration-corrected scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Yang Zhiqing; Chisholm, Matthew F.; Duscher, Gerd; Ma Xiuliang; Pennycook, Stephen J.

    2013-01-01

    Crystal defects in a plastically deformed Mg–Zn–Y alloy have been studied on the atomic scale using aberration-corrected scanning transmission electron microscopy, providing important structural data for understanding the material’s deformation behavior and strengthening mechanisms. Atomic scale structures of deformation stacking faults resulting from dissociation of different types of dislocations have been characterized experimentally, and modeled. Suzuki segregation of Zn and Y along stacking faults formed through dislocation dissociation during plastic deformation at 300 °C is confirmed experimentally on the atomic level. The stacking fault energy of the Mg–Zn–Y alloy is evaluated to be in the range of 4.0–10.3 mJ m −2 . The newly formed nanometer-wide stacking faults with their Zn/Y segregation in Mg grains play an important role in the superior strength of this alloy at elevated temperatures.

  12. In situ observation of the impact of surface oxidation on the crystallization mechanism of GeTe phase-change thin films by scanning transmission electron microscopy

    Science.gov (United States)

    Berthier, R.; Bernier, N.; Cooper, D.; Sabbione, C.; Hippert, F.; Noé, P.

    2017-09-01

    The crystallization mechanisms of prototypical GeTe phase-change material thin films have been investigated by in situ scanning transmission electron microscopy annealing experiments. A novel sample preparation method has been developed to improve sample quality and stability during in situ annealing, enabling quantitative analysis and live recording of phase change events. Results show that for an uncapped 100 nm thick GeTe layer, exposure to air after fabrication leads to composition changes which promote heterogeneous nucleation at the oxidized surface. We also demonstrate that protecting the GeTe layer with a 10 nm SiN capping layer prevents nucleation at the surface and allows volume nucleation at a temperature 50 °C higher than the onset of crystallization in the oxidized sample. Our results have important implications regarding the integration of these materials in confined memory cells.

  13. Direct observation of gliding dislocations interactions with defects in irradiated niobium single crystals by means of the high voltage electronic microscopy (HVEM)

    International Nuclear Information System (INIS)

    Otero, M.P.

    1985-01-01

    The interactions of gliding dislocations with defects in irradiated niobium that result in the formation of dislocations channels. The effects in the mechanical behaviour of [941]- and [441]- oriented Nb single crystals due to oxygen addition, neutron and electron irradiation was observed either by macroscopic deformation in a Instron machine or 'in-situ' deformation in the HVEM-High Voltage Electron Microscope. Some specimens were irradiated at IPNS-Intense Pulsed Neutron Source, at 325 K, with 5 x 10 17 n/cm 2 , others were irradiated with electrons in the HVEM. The interactions between gliding dislocations with clusters point defects and dislocations were observed. The primary mechanism for removal of the clusters by the gliding dislocations was the 'sweeping' of the clusters along with the gliding dislocations. As to the point defects, they were 'swept' by the gliding dislocations and left as aligned loops close to the intersections of the gliding dislocations with the upper and lower specimen surfaces. For the illustration of this phenomena, a schematic drawing was made. The mechanism of 'bowing-out' interaction of dislocations with defect clusters was also observed. The reported anomalous slip observed to operate in the [941]- oriented Nb was also directly observed and a qualitive explanation along with a schematic drawing was proposed. This would explain the softenig observed after the yield stress in the [941]- oriented Nb deformed in the Instron machine. (Author) [pt

  14. New developments in transmission electron microscopy for nanotechnology

    International Nuclear Information System (INIS)

    Wang, Z.L.

    2003-01-01

    High-resolution transmission electron microscopy (HRTEM) is one of the most powerful tools used for characterizing nanomaterials, and it is indispensable for nanotechnology. This paper reviews some of the most recent developments in electron microscopy techniques for characterizing nanomaterials. The review covers the following areas: in-situ microscopy for studying dynamic shape transformation of nanocrystals; in-situ nanoscale property measurements on the mechanical, electrical and field emission properties of nanotubes/nanowires; environmental microscopy for direct observation of surface reactions; aberration-free angstrom-resolution imaging of light elements (such as oxygen and lithium); high-angle annular-dark-field scanning transmission electron microscopy (STEM); imaging of atom clusters with atomic resolution chemical information; electron holography of magnetic materials; and high-spatial resolution electron energy-loss spectroscopy (EELS) for nanoscale electronic and chemical analysis. It is demonstrated that the picometer-scale science provided by HRTEM is the foundation of nanometer-scale technology. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  15. Scanning electron microscopy of superficial white onychomycosis*

    Science.gov (United States)

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  16. Scanning electron microscopy of primary bone tumors

    International Nuclear Information System (INIS)

    Pool, R.R.; Kerner, B.

    1975-01-01

    Critical-point-drying of tumor tissue fixed in a glutaraldehyde-paraformaldehyde solution and viewed by scanning electron microscopy (SEM) provides a 3-dimensional view of tumor cells and their matrices. This report describes the SEM appearance of three primary bone tumors: a canine osteosarcoma of the distal radius, a feline chondrosarcoma of the proximal tibia and a canine fibrosarcoma of the proximal humerus. The ultrastructural morphology is compared with the histologic appearance of each tumor

  17. Magnetic circular dichroism in electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Rusz, Ján; Novák, Pavel; Rubino, S.; Hébert, C.; Schattschneider, P.

    2008-01-01

    Roč. 113, č. 1 (2008), s. 599-604 ISSN 0587-4246. [CSMAG'07. Košice, 09.07.2007-12.07.2007] EU Projects: European Commission(XE) 508971 - CHIRALTEM Institutional research plan: CEZ:AV0Z10100521 Keywords : magnetic circular dichroism * electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.321, year: 2008

  18. Electron microscopy of nanostructured semiconductor materials

    International Nuclear Information System (INIS)

    Neumann, Wolfgang

    2003-01-01

    For various material systems of low dimensions, including multilayers, islands, and quantum dots, the potential applicability of transmission electron microscopy (TEM) is demonstrated. Conventional TEM is applied to elucidate size, shape, and arrangement of nanostructures, whereas high-resolution imaging is used for visualizing their atomic structure. In addition, microchemical peculiarities of the nanoscopic objects are investigated by analytical TEM techniques (energy-filtered TEM, energy-dispersive X-ray spectroscopy)

  19. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Transmission electron microscopy in micro-nanoelectronics

    CERN Document Server

    Claverie, Alain

    2013-01-01

    Today, the availability of bright and highly coherent electron sources and sensitive detectors has radically changed the type and quality of the information which can be obtained by transmission electron microscopy (TEM). TEMs are now present in large numbers not only in academia, but also in industrial research centers and fabs.This book presents in a simple and practical way the new quantitative techniques based on TEM which have recently been invented or developed to address most of the main challenging issues scientists and process engineers have to face to develop or optimize sem

  1. Scanning electron microscopy of semiconductor materials

    International Nuclear Information System (INIS)

    Bresse, J.F.; Dupuy, M.

    1978-01-01

    The use of scanning electron microscopy in semiconductors opens up a large field of use. The operating modes lending themselves to the study of semiconductors are the induced current, cathodoluminescence and the use of the potential contrast which can also be applied very effectively to the study of the devices (planar in particular). However, a thorough knowledge of the mechanisms of the penetration of electrons, generation and recombination of generated carriers in a semiconductor is necessary in order to attain a better understanding of the operating modes peculiar to semiconductors [fr

  2. Electronic and structural aspects of spin transitions observed by optical microscopy. The case of [Fe(ptz)6](BF4)2.

    Science.gov (United States)

    Chong, Christian; Mishra, Haritosh; Boukheddaden, Kamel; Denise, Stéphane; Bouchez, Guillaume; Collet, Eric; Ameline, Jean-Claude; Naik, Anil D; Garcia, Yann; Varret, François

    2010-02-11

    The colorimetric analysis of images recorded with an optical microscope during the onset of the spin crossover transformation allows monitoring separately the involved electronic and structural aspects, through the separation of resonant absorption and scattering effects. Complementary information can also be obtained by using the polarized modes of the microscope. These potentialities are illustrated by the observation of [Fe(ptz)(6)](BF(4))(2) single crystals during the onset of the thermal transitions in the 110-140 K range. We characterized the interplay between the electronic (HS LS) and structural (order disorder) transformations. Elastic stresses and mechanical effects (hopping, self-cleavage) generated by the volume change upon electronic transition are also illustrated, with their impact on the photoswitching properties of the crystals.

  3. Transmission Electron Microscopy and Diffractometry of Materials

    CERN Document Server

    Fultz, Brent

    2013-01-01

    This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes la...

  4. Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

    2011-01-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  5. Elemental mapping in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Allen, L J; D'Alfonso, A J; Lugg, N R; Findlay, S D; LeBeau, J M; Stemmer, S

    2010-01-01

    We discuss atomic resolution chemical mapping in scanning transmission electron microscopy (STEM) based on core-loss electron energy loss spectroscopy (EELS) and also on energy dispersive X-ray (EDX) imaging. Chemical mapping using EELS can yield counterintuitive results which, however, can be understood using first principles calculations. Experimental chemical maps based on EDX bear out the thesis that such maps are always likely to be directly interpretable. This can be explained in terms of the local nature of the effective optical potential for ionization under those imaging conditions. This is followed by an excursion into the complementary technique of elemental mapping using energy-filtered transmission electron microscopy (EFTEM) in a conventional transmission electron microscope. We will then consider the widely used technique of Z-contrast or high-angle annular dark field (HAADF) imaging, which is based on phonon excitation, where it has recently been shown that intensity variations can be placed on an absolute scale by normalizing the measured intensities to the incident beam. Results, showing excellent agreement between theory and experiment to within a few percent, are shown for Z-contrast imaging from a sample of PbWO 4 .

  6. Scanning electron microscopy of coal macerals

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.R.; White, A.; Deegan, M.D.

    1986-02-01

    Individual macerals separated from some United Kingdom coals of Carboniferous age and bituminous rank were examined by scanning electron microscopy. In each case a specific morphology characteristic of the macerals studied could be recognized. Collinite (a member of the vitrinite maceral group) was recognizable in all samples by its angular shape and characteristic fracture patterns, the particles (30-200 ..mu..m) frequently showing striated or laminated surface. Sporinite particles had no well defined shape and were associated with more detrital material than were the other macerals studied. This detritus was shown by conventional light microscopy to be the maceral micrinite. Fusinite was remarkable in having a chunky needle form, with lengths of up to 200 ..mu..m. 8 references.

  7. Head-facial hemangiomas studied with scanning electron microscopy.

    Science.gov (United States)

    Cavallotti, Carlo; Cavallotti, Chiara; Giovannetti, Filippo; Iannetti, Giorgio

    2009-11-01

    Hemangiomas of the head or face are a frequent vascular pathology, consisting in an embryonic dysplasia that involves the cranial-facial vascular network. Hemangiomas show clinical, morphological, developmental, and structural changes during their course. Morphological, structural, ultrastructural, and clinical characteristics of head-facial hemangiomas were studied in 28 patients admitted in our hospital. Nineteen of these patients underwent surgery for the removal of the hemangiomas, whereas 9 patients were not operated on. All the removed tissues were transferred in our laboratories for the morphological staining. Light microscopy, transmission electron microscopy, and scanning electron microscopy techniques were used for the observation of all microanatomical details. All patients were studied for a clinical diagnosis, and many were subjected to surgical therapy. The morphological results revealed numerous microanatomical characteristics of the hemangiomatous vessels. The observation by light microscopy shows the afferent and the efferent vessels for every microhemangioma. All the layers of the arterial wall are uneven. The lumen of the arteriole is entirely used by a blood clot. The observation by transmission electron microscopy shows that it was impossible to see the limits of the different layers (endothelium, medial layer, and adventitia) in the whole wall of the vessels. Moreover, both the muscular and elastic components are disarranged and replaced with connective tissue. The observation by scanning electron microscopy shows that the corrosion cast of the hemangioma offers 3 periods of filling: initially with partial filling of the arteriolar and of the whole cast, intermediate with the entire filling of the whole cast (including arteriole and venule), and a last period with a partial emptying of the arteriolar and whole cast while the venule remains totally injected with resin. Our morphological results can be useful to clinicians for a precise

  8. Electron scattering cross sections pertinent to electron microscopy

    International Nuclear Information System (INIS)

    Inokuti, M.

    1978-01-01

    Some elements of the physics that determine cross sections are discussed, and various sources of data are indicated that should be useful for analytical microscopy. Atoms, molecules, and to some extent, solids are considered. Inelastic and elastic scattering of electrons and some solid-state effects are treated. 30 references

  9. Scanning electron microscopy and transmission electron microscopy study of hot-deformed gamma-TiAl-based alloy microstructure.

    Science.gov (United States)

    Chrapoński, J; Rodak, K

    2006-09-01

    The aim of this work was to assess the changes in the microstructure of hot-deformed specimens made of alloys containing 46-50 at.% Al, 2 at.% Cr and 2 at.% Nb (and alloying additions such as carbon and boron) with the aid of scanning electron microscopy and transmission electron microscopy techniques. After homogenization and heat treatment performed in order to make diverse lamellae thickness, the specimens were compressed at 1000 degrees C. Transmission electron microscopy examinations of specimens after the compression test revealed the presence of heavily deformed areas with a high density of dislocation. Deformation twins were also observed. Dynamically recrystallized grains were revealed. For alloys no. 2 and no. 3, the recovery and recrystallization processes were more extensive than for alloy no. 1.

  10. Sample Preparation and Imaging of Exosomes by Transmission Electron Microscopy.

    Science.gov (United States)

    Jung, Min Kyo; Mun, Ji Young

    2018-01-04

    Exosomes are nano-sized extracellular vesicles secreted by body fluids and are known to represent the characteristics of cells that secrete them. The contents and morphology of the secreted vesicles reflect cell behavior or physiological status, for example cell growth, migration, cleavage, and death. The exosomes' role may depend highly on size, and the size of exosomes varies from 30 to 300 nm. The most widely used method for exosome imaging is negative staining, while other results are based on Cryo-Transmission Electron Microscopy, Scanning Electron Microscopy, and Atomic Force Microscopy. The typical exosome's morphology assessed through negative staining is a cup-shape, but further details are not yet clear. An exosome well-characterized through structural study is necessary particular in medical and pharmaceutical fields. Therefore, function-dependent morphology should be verified by electron microscopy techniques such as labeling a specific protein in the detailed structure of exosome. To observe detailed structure, ultrathin sectioned images and negative stained images of exosomes were compared. In this protocol, we suggest transmission electron microscopy for the imaging of exosomes including negative staining, whole mount immuno-staining, block preparation, thin section, and immuno-gold labelling.

  11. Bright field electron microscopy of biological specimens

    International Nuclear Information System (INIS)

    Johansen, B.V.

    1976-01-01

    A preirradiation procedure is described which preserves negatively stained morphological features in bright field electron micrographs to a resolution of about 1.2 nm. Prior to microscopy the pre-irradiation dose (1.6 x 10 -3 C cm -2 ) is given at low electron optical magnification at five different areas on the grid (the centre plus four 'corners'). This pre-irradiation can be measured either with a Faraday cage or through controlled exposure-developing conditions. Uranyl formate stained T2 bacteriophages and stacked disk aggregates of Tobacco Mosaic Virus (TMV) protein served as test objects. A comparative study was performed on specimens using either the pre-irradiation procedure or direct irradiation by the 'minimum beam exposure' technique. Changes in the electron diffraction pattern of the stain-protein complex and the disappearance of certain morphological features in the specimens were both used in order to compare the pre-irradiation method with the direct exposure technique. After identical electron exposures the pre-irradiation approach gave a far better preservation of specimen morphology. Consequently this procedure gives the microscopist more time to select and focus appropriate areas for imaging before deteriorations take place. The investigation also suggested that microscopy should be carried out between 60,000 and 100,000 times magnification. Within this magnification range, it is possible to take advantage of the phase contrast transfer characteristics of the objective lens while the electron load on the object is kept at a moderate level. Using the pre-irradiation procedure special features of the T2 bacteriophage morphology could be established. (author)

  12. Handling of biological specimens for electron microscopy

    International Nuclear Information System (INIS)

    Bullock, G.

    1987-01-01

    There are many different aspects of specimen preparation procedure which need to be considered in order to achieve good results. Whether using the scanning or transmission microscope, the initial handling procedures are very similar and are selected for the information required. Handling procedures and techniques described are: structural preservation; immuno-and histo-chemistry; x-ray microanalysis and autoradiography; dehydration and embedding; mounting and coating specimens for scanning electron microscopy; and sectioning of resin embedded material. With attention to detail and careful choice of the best available technique, excellent results should be obtainable whatever the specimen. 6 refs

  13. Electron microscopy - principles of radiation protection

    International Nuclear Information System (INIS)

    1990-01-01

    This 8 minute programme explains the nature of the possible radiation hazard in Electron Microscopy and outlines the ways in which modern equipment is designed and made so that in normal use the worker is not exposed to radiation. The interlock principle is explained and illustrated by an example from the field of X-ray crystallography. By filming machines while they were dismantled for servicing, details of several internal safety devices have been included. In this way workers who normally use the equipment as a 'black box' get some insight into the principles and practice of radiation protection in the field. (author)

  14. Nano, Queensland and cryo-electron microscopy

    International Nuclear Information System (INIS)

    McDowall, A.W.

    2002-01-01

    Full text: In a recent review the authors, Wolfgang Baumeister and Alasdair Steven wrote, '....there is immense opportunity for Cryo-EM, especially as boosted by merging crystallographic structures of individual subunits into moderate resolution Cryo-EM density maps of whole complexes. Electron tomography has now advanced to the point where it is a realistic goal to glimpse molecular machines operating inside cells....' This statement gives testament to the advances made over the past 25 years by many labs around the world to the area of microscopy referred to as Cryo-EM and related 3-D computing technologies. Australian scientific societies have been eager followers of this progress and heard first hand of the new developments in the field at the 1984 ACEM-8 (2). Since those early days the ACEM and other Australian/NZ societies have sponsored numerous researchers and workshops in the field of Cryo-EM to their conferences, Helin Sabil, Wah Chiu, Ron Milligan, Richard Henderson and Werner Kuhlbrandt to name only a few. These visits have stimulated a desire from Australian/NZ researchers to establish collaborations and access to prominent labs in the USA and Europe, where the means and knowledge to provide Cryo EM and 3D reconstruction technology for studying macromolecular complexes is well established. However, Australia has not been backward in seeking to provide its home research community with access to a base in biological molecular microscopy and electron crystallography technology. Since the last ACEM we have seen the emergence of a number of crucial factors, which will make the establishment of a national research facility in this field an operational reality in early 2003. Well publicized is the development of Australia's newest and perhaps most unique research institute, the institute for Molecular Bioscience (IMB) to open at the University of Queensland (UQ) in 2002. The IMB will be the platform for a new research group in advanced computational 3D

  15. Emission sources in scanning electron microscopy

    International Nuclear Information System (INIS)

    Malkusch, W.

    1990-01-01

    Since the beginning of the commercial scanning electron microscopy, there are two kinds of emission sources generally used for generation of the electron beam. The first group covers the cathodes heated directly and indirectly (tungsten hair-needle cathodes and lanthanum hexaboride single crystals, LaB 6 cathode). The other group is the field emission cathodes. The advantages of the thermal sources are their low vacuum requirement and their high beam current which is necessary for the application of microanalysis units. Disadvantages are the short life and the low resolution. Advantages of the field emission cathode unambiguously are the possibilities of the very high resolution, especially in the case of low acceleration voltages. Disadvantages are the necessary ultra-high vacuum and the low beam current. An alternative source is the thermally induced ZrO/W field emission cathode which works stably as compared to the cold field emission and does not need periodic flashing for emitter tip cleaning. (orig.) [de

  16. Electron Microscopy of Nanostructures in Cells

    DEFF Research Database (Denmark)

    Købler, Carsten

    with cells is therefore increasingly more relevant from both an engineering and a toxicological viewpoint. My work involves developing and exploring electron microscopy (EM) for imaging nanostructures in cells, for the purpose of understanding nanostructure-cell interactions in terms of their possibilities...... in science and concerns in toxicology. In the present work, EM methods for imaging nanostructure-cell interactions have been explored, and the complex interactions documented and ordered. In particular the usability of the focused ion beam scanning electron microscope (FIB-SEM) was explored. Using EM...... in literature. Furthermore, EM proved valuable as it revealed an unnoticed CNT effect. FIB-SEM helped establish that the effect was linked to eosionophilic crystalline pneumonia (ECP)....

  17. Characterization of high Tc materials and devices by electron microscopy

    National Research Council Canada - National Science Library

    Browning, Nigel D; Pennycook, Stephen J

    2000-01-01

    ..., and microanalysis by scanning transmission electron microscopy. Ensuing chapters examine identi®cation of new superconducting compounds, imaging of superconducting properties by lowtemperature scanning electron microscopy, imaging of vortices by electron holography and electronic structure determination by electron energy loss spectro...

  18. Direct observation and analysis of york-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    Directory of Open Access Journals (Sweden)

    Shunsuke Asahina

    2014-11-01

    Full Text Available Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in york-shell materials of Au@C, Ru/Pt@C, Au@TiO2, and Pt@Polymer. Progresses in the following categories were shown for the york-shell materials: (i resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii sample preparation for observing internal structures; and (iii X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.

  19. Direct observation and analysis of yolk-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, Shunsuke; Suga, Mitsuo; Takahashi, Hideyuki [JEOL Ltd., SM Business Unit, Tokyo (Japan); Young Jeong, Hu [Graduate School of EEWS, WCU/BK21+, KAIST, Daejeon 305-701 (Korea, Republic of); Galeano, Carolina; Schüth, Ferdi [Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Mülheim (Germany); Terasaki, Osamu, E-mail: terasaki@mmk.su.se, E-mail: terasaki@kaist.ac.kr [Graduate School of EEWS, WCU/BK21+, KAIST, Daejeon 305-701 (Korea, Republic of); Department of Materials and Environmental Chemistry, Berzelii Centre EXSELENT on Porous Materials, Stockholm University, SE-10691 Stockholm (Sweden)

    2014-11-01

    Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in yolk-shell materials of Au@C, Ru/Pt@C, Au@TiO{sub 2}, and Pt@Polymer. Progresses in the following categories were shown for the yolk-shell materials: (i) resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii) sample preparation for observing internal structures; and (iii) X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.

  20. Cryo-electron microscopy of membrane proteins.

    Science.gov (United States)

    Goldie, Kenneth N; Abeyrathne, Priyanka; Kebbel, Fabian; Chami, Mohamed; Ringler, Philippe; Stahlberg, Henning

    2014-01-01

    Electron crystallography is used to study membrane proteins in the form of planar, two-dimensional (2D) crystals, or other crystalline arrays such as tubular crystals. This method has been used to determine the atomic resolution structures of bacteriorhodopsin, tubulin, aquaporins, and several other membrane proteins. In addition, a large number of membrane protein structures were studied at a slightly lower resolution, whereby at least secondary structure motifs could be identified.In order to conserve the structural details of delicate crystalline arrays, cryo-electron microscopy (cryo-EM) allows imaging and/or electron diffraction of membrane proteins in their close-to-native state within a lipid bilayer membrane.To achieve ultimate high-resolution structural information of 2D crystals, meticulous sample preparation for electron crystallography is of outmost importance. Beam-induced specimen drift and lack of specimen flatness can severely affect the attainable resolution of images for tilted samples. Sample preparations that sandwich the 2D crystals between symmetrical carbon films reduce the beam-induced specimen drift, and the flatness of the preparations can be optimized by the choice of the grid material and the preparation protocol.Data collection in the cryo-electron microscope using either the imaging or the electron diffraction mode has to be performed applying low-dose procedures. Spot-scanning further reduces the effects of beam-induced drift. Data collection using automated acquisition schemes, along with improved and user-friendlier data processing software, is increasingly being used and is likely to bring the technique to a wider user base.

  1. Weak-beam electron microscopy of radiation-induced segregation

    International Nuclear Information System (INIS)

    Saka, H.

    1983-01-01

    The segregation of solute atoms to dislocations during irradiation by 1 MeV electrons in a HVEM was studied by measuring the dissociation width of extended dislocations in Cu-5.1 at.%Si, Cu-5.3 at.%Ge, Ag-9.4 at.% In and Ag-9.6 at.%Al alloys. 'Weak-beam' electron microscopy was used. In Cu-Si (oversized solute), Cu-Ge (oversize) and Ag-Al (undersize), solute enrichment was observed near dislocations, while in Ag-In (oversize) solute depletion was observed. The results are discussed in terms of current mechanisms for radiation-induced segregation. (author)

  2. Characterization of nanomaterials with transmission electron microscopy

    KAUST Repository

    Anjum, Dalaver H.

    2016-08-01

    The field of nanotechnology is about research and development on materials whose at least one dimension is in the range of 1 to 100 nanometers. In recent years, the research activity for developing nano-materials has grown exponentially owing to the fact that they offer better solutions to the challenges faced by various fields such as energy, food, and environment. In this paper, the importance of transmission electron microscopy (TEM) based techniques is demonstrated for investigating the properties of nano-materials. Specifically the nano-materials that are investigated in this report include gold nano-particles (Au-NPs), silver atom-clusters (Ag-ACs), tantalum single-atoms (Ta-SAs), carbon materials functionalized with iron cobalt (Fe-Co) NPs and titania (TiO2) NPs, and platinum loaded Ceria (Pt-CeO2) Nano composite. TEM techniques that are employed to investigate nano-materials include aberration corrected bright-field TEM (BF-TEM), high-angle dark-field scanning TEM (HAADF-STEM), electron energy-loss spectroscopy (EELS), and BF-TEM electron tomography (ET). With the help presented of results in this report, it is proved herein that as many TEM techniques as available in a given instrument are essential for a comprehensive nano-scale analysis of nanomaterials.

  3. Electronic microscopy application in artificial minerals

    International Nuclear Information System (INIS)

    Gomez, L E.

    1995-07-01

    One of the uses of electronic microscopy in combination with the analysis microprobe EDAX is to characterize the properties of the minerals. The technique consist of studying the chemical composition by elements or by oxides of particles which can be enlarged successfully up to 100000x. With the help of the optical microscope one is able to determine the textual characteristics, the form, cleavage and other cristallographic properties which, combined with microprobe analysis enable one to determine its classification. The industrial processes which use ovens usually have problems due to the formation of impurities, spots and abnormal aspects which are reflected in a lower quality of the final material produced. These types of defects appear in minerals which are made in laboratories; knowing the natural minerals one can exercise a better quality control since this permits to know the behaviour of the raw material at a particular temperature and its reactions depending on the additives used

  4. Transmission electron microscopy and diffractometry of materials

    CERN Document Server

    Fultz, Brent

    2001-01-01

    This book teaches graduate students the concepts of trans- mission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materi- als. It emphasizes themes common to both techniques, such as scattering from atoms and the formation and analysis of dif- fraction patterns. It also describes unique aspects of each technique, especially imaging and spectroscopy in the TEM. The textbook thoroughly develops both introductory and ad- vanced-level material, using over 400 accompanying illustra- tions. Problems are provided at the end of each chapter to reinforce key concepts. Simple citatioins of rules are avoi- ded as much as possible, and both practical and theoretical issues are explained in detail. The book can be used as both an introductory and advanced-level graduate text since sec- tions/chapters are sorted according to difficulty and grou- ped for use in quarter and semester courses on TEM and XRD.

  5. Improved methods for high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  6. Thermal diffuse scattering in transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, B.D.; D' Alfonso, A.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D. [School of Physics, Monash University, Victoria 3800 (Australia); Van Dyck, D. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); LeBeau, J.M. [North Carolina State University, Raleigh, NC 27695-7907 (United States); Stemmer, S. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States); Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2011-12-15

    In conventional transmission electron microscopy, thermal scattering significantly affects the image contrast. It has been suggested that not accounting for this correctly is the main cause of the Stobbs factor, the ubiquitous, large contrast mismatch found between theory and experiment. In the case where a hard aperture is applied, we show that previous conclusions drawn from work using bright field scanning transmission electron microscopy and invoking the principle of reciprocity are reliable in the presence of thermal scattering. In the aperture-free case it has been suggested that even the most sophisticated mathematical models for thermal diffuse scattering lack in their numerical implementation, specifically that there may be issues in sampling, including that of the contrast transfer function of the objective lens. We show that these concerns can be satisfactorily overcome with modest computing resources; thermal scattering can be modelled accurately enough for the purpose of making quantitative comparison between simulation and experiment. Spatial incoherence of the source is also investigated. Neglect or inadequate handling of thermal scattering in simulation can have an appreciable effect on the predicted contrast and can be a significant contribution to the Stobbs factor problem. -- Highlights: Black-Right-Pointing-Pointer We determine the numerical requirements for accurate simulation of TDS in CTEM. Black-Right-Pointing-Pointer TDS can be simulated to high precision using the Born-Oppenheimer model. Black-Right-Pointing-Pointer Such calculations establish the contribution of TDS to the Stobbs factor problem. Black-Right-Pointing-Pointer Treating spatial incoherence using envelope functions increases image contrast. Black-Right-Pointing-Pointer Rigorous treatment of spatial incoherence significantly reduces image contrast.

  7. Analyzing Lysosome-Related Organelles by Electron Microscopy

    KAUST Repository

    Hurbain, Ilse

    2017-04-29

    Intracellular organelles have a particular morphological signature that can only be appreciated by ultrastructural analysis at the electron microscopy level. Optical imaging and associated methodologies allow to explore organelle localization and their dynamics at the cellular level. Deciphering the biogenesis and functions of lysosomes and lysosome-related organelles (LROs) and their dysfunctions requires their visualization and detailed characterization at high resolution by electron microscopy. Here, we provide detailed protocols for studying LROs by transmission electron microscopy. While conventional electron microscopy and its recent improvements is the method of choice to investigate organelle morphology, immunoelectron microscopy allows to localize organelle components and description of their molecular make up qualitatively and quantitatively.

  8. Proceedings of 10. Conference on Electron Microscopy of Solids

    International Nuclear Information System (INIS)

    1999-01-01

    The new technical solutions and methodical variants of electron microscopy i. e. transmission electron microscopy and scanning electron microscopy have been presented. Development of new methods and microscope constructions which became more and more sophisticated causes the progress in possible applications. The broad spectrum of such applications in metallurgy, materials science, chemical engineering, electronics, physical chemistry, solid state physics, mineralogy and other branches of science and technique have been performed and discussed at the conference

  9. Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles.

    Science.gov (United States)

    Killingsworth, Murray C; Bobryshev, Yuri V

    2016-08-07

    A method is described whereby quantum dot (QD) nanoparticles can be used for correlative immunocytochemical studies of human pathology tissue using widefield fluorescence light microscopy and transmission electron microscopy (TEM). To demonstrate the protocol we have immunolabeled ultrathin epoxy sections of human somatostatinoma tumor using a primary antibody to somatostatin, followed by a biotinylated secondary antibody and visualization with streptavidin conjugated 585 nm cadmium-selenium (CdSe) quantum dots (QDs). The sections are mounted on a TEM specimen grid then placed on a glass slide for observation by widefield fluorescence light microscopy. Light microscopy reveals 585 nm QD labeling as bright orange fluorescence forming a granular pattern within the tumor cell cytoplasm. At low to mid-range magnification by light microscopy the labeling pattern can be easily recognized and the level of non-specific or background labeling assessed. This is a critical step for subsequent interpretation of the immunolabeling pattern by TEM and evaluation of the morphological context. The same section is then blotted dry and viewed by TEM. QD probes are seen to be attached to amorphous material contained in individual secretory granules. Images are acquired from the same region of interest (ROI) seen by light microscopy for correlative analysis. Corresponding images from each modality may then be blended to overlay fluorescence data on TEM ultrastructure of the corresponding region.

  10. Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy.

    Science.gov (United States)

    Popescu, Laurentiu M; Gherghiceanu, Mihaela; Suciu, Laura C; Manole, Catalin G; Hinescu, Mihail E

    2011-09-01

    This study describes a novel type of interstitial (stromal) cell - telocytes (TCs) - in the human and mouse respiratory tree (terminal and respiratory bronchioles, as well as alveolar ducts). TCs have recently been described in pleura, epicardium, myocardium, endocardium, intestine, uterus, pancreas, mammary gland, etc. (see www.telocytes.com ). TCs are cells with specific prolongations called telopodes (Tp), frequently two to three per cell. Tp are very long prolongations (tens up to hundreds of μm) built of alternating thin segments known as podomers (≤ 200 nm, below the resolving power of light microscope) and dilated segments called podoms, which accommodate mitochondria, rough endoplasmic reticulum and caveolae. Tp ramify dichotomously, making a 3-dimensional network with complex homo- and heterocellular junctions. Confocal microscopy reveals that TCs are c-kit- and CD34-positive. Tp release shed vesicles or exosomes, sending macromolecular signals to neighboring cells and eventually modifying their transcriptional activity. At bronchoalveolar junctions, TCs have been observed in close association with putative stem cells (SCs) in the subepithelial stroma. SCs are recognized by their ultrastructure and Sca-1 positivity. Tp surround SCs, forming complex TC-SC niches (TC-SCNs). Electron tomography allows the identification of bridging nanostructures, which connect Tp with SCs. In conclusion, this study shows the presence of TCs in lungs and identifies a TC-SC tandem in subepithelial niches of the bronchiolar tree. In TC-SCNs, the synergy of TCs and SCs may be based on nanocontacts and shed vesicles.

  11. Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.

    Science.gov (United States)

    Svitkina, Tatyana M

    2017-05-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An electron microscopy appraisal of tensile fracture in metallic glasses

    International Nuclear Information System (INIS)

    Matthews, D.T.A.; Ocelik, V.; Bronsveld, P.M.; De Hosson, J.Th.M.

    2008-01-01

    Three glass-forming alloy compositions were chosen for ribbon production and subsequent electron microscopy studies. In situ tensile testing with transmission electron microscopy (TEM), followed by ex situ TEM and ex situ scanning electron microscopy (SEM), allowed the deformation processes in tensile fracture of metallic glasses to be analysed. In situ shear band propagation was found to be jump-like, with the jump sites correlating with the formation of secondary shear bands. The effect of structural relaxation by in situ heating is also discussed. Nanocrystallization near the fracture surface was observed; however, no crystallization was also reported in the same sample and the reasons for this are discussed. Both the TEM and the SEM observations confirmed the presence of a liquid-like layer on or near the fracture surface of the ribbons. The formation of a liquid-like layer was characterized by the vein geometries and vein densities on the fracture surfaces and its dependence on shear displacement, δ, is discussed. A simple model is adapted to relate the temperature rise during shear banding to the glass transition and melting temperatures and this is used to explain the variety of fracture surfaces which are developed for macroscopically identical tensile testing of metallic glasses together with features which exhibit local melting

  13. The electron microscopy facility at the LNLS

    International Nuclear Information System (INIS)

    Ugarte, D.; Zanchet, D.; Silva, P.C.; Araujo, S.R. de; Bettini, J.; Gonzalez, J.C.; Nakabayashi, D.B.

    2004-01-01

    Full text: The Electron Microscopy Laboratory (LME, Lab. Microscopia Eletronica) is one of the multi user facilities of the Laboratorio Nacional de Luz Sincrotron (LNLS). It has been in operation since the beginning of 1999 to provide spatial high resolution tools, making the LNLS a unique center for advanced characterization of materials. The equipment installed at the LME can be brie y described as: a) a Low Vacuum Scanning Electron Microscope (SEM, JSM-5900LV) with microanalysis and crystallographic mapping capabilities; b) a Field Emission Gun SEM (JSM-6330F); c) a 300 kV High Resolution Transmission Electron Microscope (HRTEM, JEM 3010 URP, 1.7 A Point Res.) with TV Camera, Multi-Scan CCD Camera and X-ray Si(Li) detector; and d) a complete sample preparation laboratory for EM studies A simple procedure allows access to the LME instruments, firstly a short research project must be submitted for evaluation of viability and relevance; subsequently the training microscope sessions are scheduled. It is important to remark that EM is a routine characterization tool and the researchers have to operate the microscope by themselves; for that a training period is necessary, which may vary from 1-2 weeks for a SEM to 2-4 months for the HRTEM. Our staff addresses a great effort to the formation of human resources in order to allow inexperienced Users to become capable of acquiring and interpreting data for their research projects. Since its installation, the LME has trained more than 300 Users in EM techniques. In 2003, the number of projects developed was: 36 in the HRTEM, 16 in the FEG-SEM and 48 in the LV-SEM. This means that just the HRTEM has operated 2157 hours. The constant increase of users in addition to the more exigent EM studies being proposed indicates the necessity of an expansion of the LME by the purchase of a 200 kV FEG-TEM oriented for nano-analysis and Electron Energy Loss Spectroscopy.. (author)

  14. Imaging Cytoskeleton Components by Electron Microscopy.

    Science.gov (United States)

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell.

  15. Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM

    International Nuclear Information System (INIS)

    Hirano, Kazumi; Kinoshita, Takaaki; Uemura, Takeshi; Motohashi, Hozumi; Watanabe, Yohei; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Sato, Mari; Suga, Mitsuo; Maruyama, Yuusuke; Tsuji, Noriko M.; Yamamoto, Masayuki; Nishihara, Shoko; Sato, Chikara

    2014-01-01

    Correlative light-electron microscopy of cells in a natural environment of aqueous liquid facilitates high-throughput observation of protein complex formation. ASEM allows the inverted SEM to observe the wet sample from below, while an optical microscope observes it from above quasi-simultaneously. The disposable ASEM dish with a silicon nitride (SiN) film window can be coated variously to realize the primary-culture of substrate-sensitive cells in a few milliliters of culture medium in a stable incubator environment. Neuron differentiation, neural networking, proplatelet-formation and phagocytosis were captured by optical or fluorescence microscopy, and imaged at high resolution by gold-labeled immuno-ASEM with/without metal staining. Fas expression on the cell surface was visualized, correlated to the spatial distribution of F-actin. Axonal partitioning was studied using primary-culture neurons, and presynaptic induction by GluRδ2-N-terminus-linked fluorescent magnetic beads was correlated to the presynaptic-marker Bassoon. Further, megakaryocytes secreting proplatelets were captured, and P-selectins with adherence activity were localized to some of the granules present by immuno-ASEM. The phagocytosis of lactic acid bacteria by dendritic cells was also imaged. Based on these studies, ASEM correlative microscopy promises to allow the study of various mesoscopic-scale dynamics in the near future. - Highlights: • In situ correlative light electron microscopy of samples in open solution by ASEM. • Primary cultures for in-solution CLEM by developing SiN-film coating methods • First visualization of fluorescent magnetic beads in aqueous solution by CLEM. • Presynaptic induction of neurons by GluRδ2-N-terminus-coated beads studied by CLEM. • Axonal partitioning, bacterial phagocytosis, platelet formation imaged by CLEM

  16. Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kazumi; Kinoshita, Takaaki [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577 (Japan); Uemura, Takeshi [Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Motohashi, Hozumi [Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Watanabe, Yohei; Ebihara, Tatsuhiko [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Nishiyama, Hidetoshi [JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo 196-8558 (Japan); Sato, Mari [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Suga, Mitsuo [JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo 196-8558 (Japan); Maruyama, Yuusuke; Tsuji, Noriko M. [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Yamamoto, Masayuki [Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Nishihara, Shoko, E-mail: shoko@soka.ac.jp [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577 (Japan); Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan)

    2014-08-01

    Correlative light-electron microscopy of cells in a natural environment of aqueous liquid facilitates high-throughput observation of protein complex formation. ASEM allows the inverted SEM to observe the wet sample from below, while an optical microscope observes it from above quasi-simultaneously. The disposable ASEM dish with a silicon nitride (SiN) film window can be coated variously to realize the primary-culture of substrate-sensitive cells in a few milliliters of culture medium in a stable incubator environment. Neuron differentiation, neural networking, proplatelet-formation and phagocytosis were captured by optical or fluorescence microscopy, and imaged at high resolution by gold-labeled immuno-ASEM with/without metal staining. Fas expression on the cell surface was visualized, correlated to the spatial distribution of F-actin. Axonal partitioning was studied using primary-culture neurons, and presynaptic induction by GluRδ2-N-terminus-linked fluorescent magnetic beads was correlated to the presynaptic-marker Bassoon. Further, megakaryocytes secreting proplatelets were captured, and P-selectins with adherence activity were localized to some of the granules present by immuno-ASEM. The phagocytosis of lactic acid bacteria by dendritic cells was also imaged. Based on these studies, ASEM correlative microscopy promises to allow the study of various mesoscopic-scale dynamics in the near future. - Highlights: • In situ correlative light electron microscopy of samples in open solution by ASEM. • Primary cultures for in-solution CLEM by developing SiN-film coating methods • First visualization of fluorescent magnetic beads in aqueous solution by CLEM. • Presynaptic induction of neurons by GluRδ2-N-terminus-coated beads studied by CLEM. • Axonal partitioning, bacterial phagocytosis, platelet formation imaged by CLEM.

  17. Scanning transmission electron microscopy imaging and analysis

    CERN Document Server

    Pennycook, Stephen J

    2011-01-01

    Provides the first comprehensive treatment of the physics and applications of this mainstream technique for imaging and analysis at the atomic level Presents applications of STEM in condensed matter physics, materials science, catalysis, and nanoscience Suitable for graduate students learning microscopy, researchers wishing to utilize STEM, as well as for specialists in other areas of microscopy Edited and written by leading researchers and practitioners

  18. Examination of living fungal spores by scanning electron microscopy

    International Nuclear Information System (INIS)

    Read, N.D.; Lord, K.M.

    1991-01-01

    Ascospores of Sordaria macrospora germinated and produced hyphae exhibiting normal growth and differentiation after examination by scanning electron microscopy and following numerous, different preparative protocols. Seventy-nine to ninety-nine percent of the ascospores retained normal viability after being observed in the fully frozen-hydrated, partially freeze-dried, and vacuum-dried states at accelerating voltages of 5 and 40 keV. Hyphae did not survive these treatments. From these observations it is concluded that ascospores of S. macrospora can remain in a state of suspended animation while being observed in the scanning electron microscope. The ascospores also survived, but with reduced viability: 6 h in glutaraldehyde and formaldehyde, 6 h in OsO4, or 2 h in glutaraldehyde and formaldehyde followed by 2 h in OsO 4 . However, the ascospores did not germinate after dehydration in ethanol. (author)

  19. In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles.

    Science.gov (United States)

    Liu, Yang; Hudak, Nicholas S; Huber, Dale L; Limmer, Steven J; Sullivan, John P; Huang, Jian Yu

    2011-10-12

    Lithiation-delithiation cycles of individual aluminum nanowires (NWs) with naturally oxidized Al(2)O(3) surface layers (thickness 4-5 nm) were conducted in situ in a transmission electron microscope. Surprisingly, the lithiation was always initiated from the surface Al(2)O(3) layer, forming a stable Li-Al-O glass tube with a thickness of about 6-10 nm wrapping around the NW core. After lithiation of the surface Al(2)O(3) layer, lithiation of the inner Al core took place, which converted the single crystal Al to a polycrystalline LiAl alloy, with a volume expansion of about 100%. The Li-Al-O glass tube survived the 100% volume expansion, by enlarging through elastic and plastic deformation, acting as a solid electrolyte with exceptional mechanical robustness and ion conduction. Voids were formed in the Al NWs during the initial delithiation step and grew continuously with each subsequent delithiation, leading to pulverization of the Al NWs to isolated nanoparticles confined inside the Li-Al-O tube. There was a corresponding loss of capacity with each delithiation step when arrays of NWs were galvonostatically cycled. The results provide important insight into the degradation mechanism of lithium-alloy electrodes and into recent reports about the performance improvement of lithium ion batteries by atomic layer deposition of Al(2)O(3) onto the active materials or electrodes.

  20. On some aspects of high voltage electron microscopy

    International Nuclear Information System (INIS)

    Jouffrey, B.; Trinquier, J.

    1987-01-01

    The present paper deals with high voltage electron microscopy (HVEM). It is an overview on this domain due to the pionneer work of G. Dupouy which has permitted to perform a new kind of electron microscopy. Since this time, HVEM has shown its interest in high resolution, irradiations, chemical analysis, in situ experiments

  1. Electron microscopy study of advanced heterostructures for optoelectronics

    NARCIS (Netherlands)

    Katcki, J.; Ratajczak, J.; Phillipp, F.; Muszalski, J.; Bugajski, M.; Chen, J.X.; Fiore, A.

    2003-01-01

    The application of cross-sectional transmission electron microscopy and SEM to the investigation of optoelectronic devices are reviewed. Special attention was paid to the electron microscopy assessment of the growth perfection of such crucial elements of the devices like quantum wells, quantum dots,

  2. Time resolved electron microscopy for in situ experiments

    International Nuclear Information System (INIS)

    Campbell, Geoffrey H.; McKeown, Joseph T.; Santala, Melissa K.

    2014-01-01

    Transmission electron microscopy has functioned for decades as a platform for in situ observation of materials and processes with high spatial resolution. Yet, the dynamics often remain elusive, as they unfold too fast to discern at these small spatial scales under traditional imaging conditions. Simply shortening the exposure time in hopes of capturing the action has limitations, as the number of electrons will eventually be reduced to the point where noise overtakes the signal in the image. Pulsed electron sources with high instantaneous current have successfully shortened exposure times (thus increasing the temporal resolution) by about six orders of magnitude over conventional sources while providing the necessary signal-to-noise ratio for dynamic imaging. We describe here the development of this new class of microscope and the principles of its operation, with examples of its application to problems in materials science

  3. Time resolved electron microscopy for in situ experiments

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Geoffrey H., E-mail: ghcampbell@llnl.gov; McKeown, Joseph T.; Santala, Melissa K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-12-15

    Transmission electron microscopy has functioned for decades as a platform for in situ observation of materials and processes with high spatial resolution. Yet, the dynamics often remain elusive, as they unfold too fast to discern at these small spatial scales under traditional imaging conditions. Simply shortening the exposure time in hopes of capturing the action has limitations, as the number of electrons will eventually be reduced to the point where noise overtakes the signal in the image. Pulsed electron sources with high instantaneous current have successfully shortened exposure times (thus increasing the temporal resolution) by about six orders of magnitude over conventional sources while providing the necessary signal-to-noise ratio for dynamic imaging. We describe here the development of this new class of microscope and the principles of its operation, with examples of its application to problems in materials science.

  4. Evaluation of Detrimental Effects on Mechanical Properties of Zry-4 Due to Hydrogen Absorption by means of Scanning Electron Microscopy (SEM) In-Situ Observation of Crack Propagation

    International Nuclear Information System (INIS)

    Fernandez, L; Fernandez, G.E; Bertolino, G; Meyer, G

    2001-01-01

    The study of mechanical properties degradation of zirconium alloys due to hydrides assumes fundamental importance in the nuclear industry.During normal nuclear reactors operation, structural parts absorbed hydrogen generated from radiolysis of water, causing detrimental effects on mechanical properties.As a consequence, these materials are easily cracked in the presence of mechanical solicitation due to loss of ductility of the hydride-phase.The presence of cracks indicates fracture mechanic as the most suitable methodology in the study of mechanical properties degradation.In this work we used the crack tip opening displacement (CTOD) criteria to evaluate the detrimental effects on mechanical properties with the observation in SEM of crack propagation.The samples used were SEN (B) of Zry-4 and cathodic homogenous charged with hydrogen concentrations lower than 400 ppm

  5. Stereoscopic and photometric surface reconstruction in scanning electron microscopy

    International Nuclear Information System (INIS)

    Scherer, S.

    2000-01-01

    The scanning electron microscope (SEM) is one of the most important devices to examine microscopic structures as it offers images of a high contrast range with a large depth of focus. Nevertheless, three-dimensional measurements, as desired in fracture mechanics, have previously not been accomplished. This work presents a system for automatic, robust and dense surface reconstruction in scanning electron microscopy combining new approaches in shape from stereo and shape from photometric stereo. The basic theoretical assumption for a known adaptive window algorithm is shown not to hold in scanning electron microscopy. A constraint derived from this observation yields a new, simplified, hence faster calculation of the adaptive window. The correlation measure itself is obtained by a new ordinal measure coefficient. Shape from photometric stereo in the SEM is formulated by relating the image formation process with conventional photography. An iterative photometric ratio reconstruction is invented based on photometric ratios of backscatter electron images. The performance of the proposed system is evaluated using ground truth data obtained by three alternative shape recovery devices. Most experiments showed relative height accuracy within the tolerances of the alternative devices. (author)

  6. Particles and waves in electron optics and microscopy

    CERN Document Server

    Pozzi, Giulio

    2016-01-01

    Advances in Imaging and Electron Physics merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. * Contains contributions from leading authorities on the subject matter* Informs and updates all the latest developments in the field of imaging and electron physics* Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electron, and ion emission with a valuable resource* Features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image pro...

  7. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    Science.gov (United States)

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  8. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    Science.gov (United States)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In

  9. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1993-01-01

    "Transmission Electron Microscopy" presents the theory of image and contrastformation, and the analytical modes in transmission electron microscopy Theprinciples of particle and wave optics of electrons are described Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast Also analysed are the kinetical and dynamical theories of electron diffraction and their applications for crystal-structure determination and imaging of lattices and their defects X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods The third edition includes a brief discussionof Schottky emission guns, some clarification of minor details, and references to the recent literature

  10. Time-Resolved Scanning Electron Microscopy

    National Research Council Canada - National Science Library

    Weber, Peter M

    2006-01-01

    .... The pulsed electron beam is obtained by rapidly switching the electron emission of a field emission tip using the AC electric field arising from exposure to the intense electromagnetic radiation...

  11. Near-infrared branding efficiently correlates light and electron microscopy.

    Science.gov (United States)

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  12. Resolution Versus Error for Computational Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Luzi, Lorenzo; Stevens, Andrew; Yang, Hao; Browning, Nigel D.

    2017-07-01

    Images that are collected via scanning transmission electron microscopy (STEM) can be undersampled to avoid damage to the specimen while maintaining resolution [1, 2]. We have used BPFA to impute missing data and reduce noise [3]. The reconstruction is typically evaluated using the peak signal-to-noise ratio (PSNR). This measure is too conservative for STEM images and we propose that the Fourier ring correlation (FRC) is used instead to evaluate the reconstruction. We are not concerned with exact reconstruction of the truth image, and therefore PSNR is a conservative estimation of the quality of the reconstruction. Instead, we are concerned with the visual resolution of the image and whether atoms can be distinguished. We have evaluated the reconstruction of a simulated STEM image using the FRC and compared the results with the PSNR measurements. The FRC captures the resolution of the image and is not affected by a large MSE if the atom peaks are still distinguishable. The noisy and reconstructed images are shown in Figure 1. The simulated STEM image was sampled at 100%, 80%, 40%, and 20% of the original pixels to simulate an undersampled scan. The reconstruction was done using BPFA with a patch size of 10 x 10 and no overlapping patches. Not having overlapping patches produces inferior results but they are still acceptable. The dictionary size is 64 and 30 iterations were completed during each reconstruction. The 100% image was denoised instead of reconstructed. Poisson noise was applied to the simulated image with λ values of 500, 50, and 5 to simulate lower imaging dose. The original simulated STEM image was also included in our calculations and was generated using a dose of 1000. The simulated STEM image is 100 by 100 pixels and has essentially no high frequency components. The image reconstruction tends to smooth the data, also resulting in no high frequency components. This causes the FRC of the two images to be large at higher resolutions and may be

  13. Electron microscopy studies of ion implanted silicon

    International Nuclear Information System (INIS)

    Seshan, K.

    1975-11-01

    The nature of defects resulting from the implantation of phosphorous ions into doped silicon and a model of how they form are reported. This involved an electron microscope study of the crystallographic defects (in the 300A size range in concentration of 10 15 /cm 3 ) that form upon annealing. Images formed by these crystallographic defects are complex and that nonconventional imaging techniques are required for their characterization. The images of these small defects (about 300A) are sensitive to various parameters, such as foil thickness, their position in the foil, and diffracting conditions. The defects were found to be mostly interstitial hexagonal Frank loops lying on the four [111] planes and a few perfect interstitial loops; these loops occurred in concentrations of about 10 16 /cm 3 . In addition, ''rod like'' linear defects that are shown to be interstitial are also found in concentrations of 10 13 /cm 3 . It was found that the linear defects require boron for their formation. A model is proposed to account for the interstitial defects. The number of point defects that make up the defects is of the same order as the number of implanted ions. The model predicts that only interstitial loops ought to be observed in agreement with several recent investigations. Dislocation models of the loops are examined and it is shown that phosphorous ions could segregate to the Frank loops, changing their displacement vectors to a/x[111]. (x greater than 3) thus explaining the contrast effects observed. It would also explain the relative electrical inactivity of P + ion implants

  14. Transmission Electron Microscopy of Itokawa Regolith Grains

    Science.gov (United States)

    Keller, Lindsay P.; Berger, E. L.

    2013-01-01

    Introduction: In a remarkable engineering achievement, the JAXA space agency successfully recovered the Hayabusa space-craft in June 2010, following a non-optimal encounter and sur-face sampling mission to asteroid 25143 Itokawa. These are the first direct samples ever obtained and returned from the surface of an asteroid. The Hayabusa samples thus present a special op-portunity to directly investigate the evolution of asteroidal sur-faces, from the development of the regolith to the study of the effects of space weathering. Here we report on our preliminary TEM measurements on two Itokawa samples. Methods: We were allocated particles RA-QD02-0125 and RA-QD02-0211. Both particles were embedded in low viscosity epoxy and thin sections were prepared using ultramicrotomy. High resolution images and electron diffraction data were ob-tained using a JEOL 2500SE 200 kV field-emission scanning-transmission electron microscope. Quantitative maps and anal-yses were obtained using a Thermo thin-window energy-dispersive x-ray (EDX) spectrometer. Results: Both particles are olivine-rich (Fo70) with µm-sized inclusions of FeS and have microstructurally complex rims. Par-ticle RA-QD02-0125 is rounded and has numerous sub-µm grains attached to its surface including FeS, albite, olivine, and rare melt droplets. Solar flare tracks have not been observed, but the particle is surrounded by a continuous 50 nm thick, stuctur-ally disordered rim that is compositionally similar to the core of the grain. One of the surface adhering grains is pyrrhotite show-ing a S-depleted rim (8-10 nm thick) with nanophase Fe metal grains (<5 nm) decorating the outermost surface. The pyrrhotite displays a complex superstructure in its core that is absent in the S-depleted rim. Particle RA-QD02-0211 contains solar flare particle tracks (2x109 cm-2) and shows a structurally disordered rim 100 nm thick. The track density corresponds to a surface exposure of 103-104 years based on the track production rate

  15. [Scanning electron microscopy observation of the growth of osteoblasts on Ti-24Nb-4Zr-8Sn modified by micro-arc oxidation and alkali-heat treatment and implant-bone interface].

    Science.gov (United States)

    Han, Xue; Liu, Hong-Chen; Wang, Dong-Sheng; Li, Shu-Jun; Yang, Rui

    2011-01-01

    To observe the efficacy of micro-arc oxidation and alkali-heat treatment (MAH) on Ti-24Nb-4Zr-8Sn (Ti2448). Disks (diameter of 14.5 mm, thickness of 1 mm) and cylinders (diameter of 3 mm, height of 10 mm) were fabricated from Ti2448 alloy. Samples were divided into three groups: polished (Ti2448), micro-arc oxidation(MAO-Ti2448), micro-arc oxidation and alkali-heat treatment (MAH-Ti2448). MC3T3-E1 osteoblastic cells were cultured on the disks and cell morphology was observed with scanning electron microscopy (SEM) aftre 3 days. The cylinder samples were implanted in the tibia of dogs and implant-bone interface was observed with SEM after 3 months. A rough and porous structure was shown in both MAO and MAH group. The MC3T3-E1 cells on the MAH-Ti2448 discs spread fully in intimate contact with the underlying coarse surface through active cytoskeletal extentions. Osseointegration was formed in the implant-bone interface in MAH samples. MAH treatment can provide a more advantageous Ti2448 surface to osteoblastic cells than MAO treatment does, and the former can improve the implant-bone integration.

  16. Electron Microscopy of Ebola Virus-Infected Cells.

    Science.gov (United States)

    Noda, Takeshi

    2017-01-01

    Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.

  17. Investigation of porous asphalt microstructure using optical and electron microscopy.

    Science.gov (United States)

    Poulikakos, L D; Partl, M N

    2010-11-01

    Direct observations of porous asphalt concrete samples in their natural state using optical and electron microscopy techniques led to useful information regarding the microstructure of two mixes and indicated a relationship between microstructure and in situ performance. This paper presents evidence that suboptimal microstructure can lead to premature failure thus making a first step in defining well or suboptimal performing pavements with a bottom-up approach (microstructure). Laboratory and field compaction produce different samples in terms of the microstructure. Laboratory compaction using the gyratory method has produced more microcracks in mineral aggregates after the binder had cooled. Well-performing mixes used polymer-modified binders, had a more homogeneous void structure with fewer elongated voids and better interlocking of the aggregates. Furthermore, well-performing mixes showed better distribution of the mastic and better coverage of the aggregates with bitumen. Low vacuum scanning electron microscopy showed that styrene butadiene styrene polymer modification in binder exists in the form of discontinuous globules and not continuous networks. A reduction in the polymer phase was observed as a result of aging and in-service use. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  18. Quantifying Chemical and Electrochemical Reactions in Liquids by in situ Electron Microscopy

    DEFF Research Database (Denmark)

    Canepa, Silvia

    and developing a robust imaging analysis method for quantitatively understand chemical and electrochemical process during in situ liquid electron microscopy. By using two custom-made liquid cells (an electrochemical scanning electron microscopy (EC-SEM) platform and Liquid Flow S/TEM holder) beam...... of electrochemical deposition of copper (Cu) by electrochemical liquid scanning electron microscopy (EC-SEM) was done in order to direct observe the formation of dendritic structures. Finally the shape evolution from solid to hollow structures through galvanic replacement reactions were observed for different silver...

  19. The principle of electron microscopy; SEM and TEM

    International Nuclear Information System (INIS)

    Fauzi, S.H.

    1992-01-01

    The article reviews the principle of electron microscopy which is used in scanning electron microscope (SEM) and transmission electron microscope (TEM). These instruments are important for the examination and analysis of the microstructural properties of solid objects. Relevance physical concept lies behind the devices are given. The main components of each device are also discussed

  20. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1997-01-01

    Transmission Electron Microscopy presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray micronanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fourth edition includes discussion of recent progress, especially in the area of Schottky emission guns, convergent-beam electron diffraction, electron tomography, holography and the high resolution of crystal lattices.

  1. Visualizing aquatic bacteria by light and transmission electron microscopy.

    Science.gov (United States)

    Silva, Thiago P; Noyma, Natália P; Duque, Thabata L A; Gamalier, Juliana P; Vidal, Luciana O; Lobão, Lúcia M; Chiarini-Garcia, Hélio; Roland, Fábio; Melo, Rossana C N

    2014-01-01

    The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.

  2. A Comparative Scanning Electron Microscopy Evaluation of Smear ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... scanning electron microscopy evaluation of smear layer removal with chitosan and .... this compound has considerably increased its concentration in rivers and .... of the images was done by three investigators who calibrated ...

  3. Analyzing Lysosome-Related Organelles by Electron Microscopy

    KAUST Repository

    Hurbain, Ilse; Romao, Maryse; Bergam, Ptissam; Heiligenstein, Xavier; Raposo, Graç a

    2017-01-01

    and their dynamics at the cellular level. Deciphering the biogenesis and functions of lysosomes and lysosome-related organelles (LROs) and their dysfunctions requires their visualization and detailed characterization at high resolution by electron microscopy. Here

  4. The C-S-H gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C-S-H, AFm and AFt phase compositions

    International Nuclear Information System (INIS)

    Famy, C.; Brough, A.R.; Taylor, H.F.W.

    2003-01-01

    Scanning electron microscopy (SEM) microanalyses of the calcium-silicate-hydrate (C-S-H) gel in Portland cement pastes rarely represent single phases. Essential experimental requirements are summarised and new procedures for interpreting the data are described. These include, notably, plots of Si/Ca against other atom ratios, 3D plots to allow three such ratios to be correlated and solution of linear simultaneous equations to test and quantify hypotheses regarding the phases contributing to individual microanalyses. Application of these methods to the C-S-H gel of a 1-day-old mortar identified a phase with Al/Ca=0.67 and S/Ca=0.33, which we consider to be a highly substituted ettringite of probable composition C 6 A 2 S-bar 2 H 34 or {Ca 6 [Al(OH) 6 ] 2 ·24H 2 O}(SO 4 ) 2 [Al(OH) 4 ] 2 . If this is true for Portland cements in general, it might explain observed discrepancies between observed and calculated aluminate concentrations in the pore solution. The C-S-H gel of a similar mortar aged 600 days contained unsubstituted ettringite and an AFm phase with S/Ca=0.125

  5. Dysprosium disilicide nanostructures on silicon(001) studied by scanning tunneling microscopy and transmission electron microscopy

    International Nuclear Information System (INIS)

    Ye Gangfeng; Nogami, Jun; Crimp, Martin A.

    2006-01-01

    The microstructure of self-assembled dysprosium silicide nanostructures on silicon(001) has been studied by scanning tunneling microscopy and transmission electron microscopy. The studies focused on nanostructures that involve multiple atomic layers of the silicide. Cross-sectional high resolution transmission electron microscopy images and fast Fourier transform analysis showed that both hexagonal and orthorhombic/tetragonal silicide phases were present. Both the magnitude and the anisotropy of lattice mismatch between the silicide and the substrate play roles in the morphology and epitaxial growth of the nanostructures formed

  6. High-resolution electron microscopy and its applications.

    Science.gov (United States)

    Li, F H

    1987-12-01

    A review of research on high-resolution electron microscopy (HREM) carried out at the Institute of Physics, the Chinese Academy of Sciences, is presented. Apart from the direct observation of crystal and quasicrystal defects for some alloys, oxides, minerals, etc., and the structure determination for some minute crystals, an approximate image-contrast theory named pseudo-weak-phase object approximation (PWPOA), which shows the image contrast change with crystal thickness, is described. Within the framework of PWPOA, the image contrast of lithium ions in the crystal of R-Li2Ti3O7 has been observed. The usefulness of diffraction analysis techniques such as the direct method and Patterson method in HREM is discussed. Image deconvolution and resolution enhancement for weak-phase objects by use of the direct method are illustrated. In addition, preliminary results of image restoration for thick crystals are given.

  7. Electron Microscopy Analysis of the Nucleolus of Trypanosoma cruzi

    Science.gov (United States)

    López-Velázquez, Gabriel; Hernández, Roberto; López-Villaseñor, Imelda; Reyes-Vivas, Horacio; Segura-Valdez, María De L.; Jiménez-García, Luis F.

    2005-08-01

    The nucleolus is the main site for synthesis and processing of ribosomal RNA in eukaryotes. In mammals, plants, and yeast the nucleolus has been extensively characterized by electron microscopy, but in the majority of the unicellular eukaryotes no such studies have been performed. Here we used ultrastructural cytochemical and immunocytochemical techniques as well as three-dimensional reconstruction to analyze the nucleolus of Trypanosoma cruzi, which is an early divergent eukaryote of medical importance. In T. cruzi epimastigotes the nucleolus is a spherical intranuclear ribonucleoprotein organelle localized in a relatively central position within the nucleus. Dense fibrillar and granular components but not fibrillar centers were observed. In addition, nuclear bodies resembling Cajal bodies were observed associated to the nucleolus in the surrounding nucleoplasm. Our results provide additional morphological data to better understand the synthesis and processing of the ribosomal RNA in kinetoplastids.

  8. Electron microscopy studies of materials used for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Andrei, Carmen M.

    2004-07-01

    Concerns over global warming and air pollution have stimulated the concept of the ''Hydrogen Economy'' and the potential extensive use of hydrogen as an energy carrier. Hydrogen storage in a solid matrix has become one of the promising solutions for vehicular applications. In this study, several transmission electron microscopy (TEM) techniques such as high resolution (HR), electron diffraction, energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS) and energy-filtered transmission electron microscopy (EFT EM) as well as scanning electron microscopy (SEM) have been used to study the microstructure of materials related to hydrogen storage applications. Some of the results are compared with powder X-ray diffraction (PXD) data. A TbNiAl compound processed by the hydrogenation-disproportionation-desorption-recombination (HDDR) route has been studied using a combination of SEM, TEM and PXD. Information about the variations in the composition and surface topography in both disproportionation and recombination stages is given by the SEM backscattered electrons and secondary electrons images. The crystallites that have undergone the recombination process were found smaller in size. The sodium alanate, NaAIH4 is one of the most promising candidate materials for hydrogen storage. Ti additives are effective at reducing the reaction temperatures and improving the efficiency of the kinetics. The microstructure of NaAlH4 with TiF3 additive has been examined after the initial ball milling and after 15 cycles, using TEM, SEM and EDS. The effect of the additive on particle morphology, grain size and distribution of the phases has been studied. The additive has uneven distribution in the sample after initial ball milling. After 15 cycles, EDS maps show some combination of Ti with the alanate phase. No significant change in grain size of the Na/Al rich particles between the ball milled and 15 cycled sample was observed. The LiAlD4

  9. Atomic resolution three-dimensional electron diffraction microscopy

    International Nuclear Information System (INIS)

    Miao Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; Hodgson, Keith O.; O'Keefe, Michael A.

    2002-01-01

    We report the development of a novel form of diffraction-based 3D microscopy to overcome resolution barriers inherent in high-resolution electron microscopy and tomography. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a nanocrystal can be determined ab initio at a resolution of 1 Angstrom from 29 simulated noisy diffraction patterns. This new form of microscopy can be used to image the 3D structures of nanocrystals and noncrystalline samples, with resolution limited only by the quality of sample diffraction

  10. Processing scarce biological samples for light and transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    P Taupin

    2008-06-01

    Full Text Available Light microscopy (LM and transmission electron microscopy (TEM aim at understanding the relationship structure-function. With advances in biology, isolation and purification of scarce populations of cells or subcellular structures may not lead to enough biological material, for processing for LM and TEM. A protocol for preparation of scarce biological samples is presented. It is based on pre-embedding the biological samples, suspensions or pellets, in bovine serum albumin (BSA and bis-acrylamide (BA, cross-linked and polymerized. This preparation provides a simple and reproducible technique to process biological materials, present in limited quantities that can not be amplified, for light and transmission electron microscopy.

  11. Atmospheric scanning electron microscope for correlative microscopy.

    Science.gov (United States)

    Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J

    2012-01-01

    The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Electron microscopy of cyanobacterial membrane proteins

    NARCIS (Netherlands)

    Folea, Ioana Mihaela

    2008-01-01

    The main focus of this thesis is photosynthetic protein complexes, and their organization within the membrane of cyanobacteria. In cyanobacteria large proteins catalyze the light reactions of photosynthesis. One of the key proteins is photosystem II. We have found for the first time by electron

  13. Scanning transmission low-energy electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Hovorka, Miloš; Konvalina, Ivo; Unčovský, M.; Frank, Luděk

    2011-01-01

    Roč. 55, č. 4 (2011), 2:1-6 ISSN 0018-8646 R&D Projects: GA AV ČR IAA100650902; GA MŠk ED0017/01/01 Institutional research plan: CEZ:AV0Z20650511 Keywords : TEM * STEM * SEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.723, year: 2011

  14. In situ transmission electron microscopy and scanning transmission electron microscopy studies of sintering of Ag and Pt nanoparticles

    International Nuclear Information System (INIS)

    Asoro, M.A.; Ferreira, P.J.; Kovar, D.

    2014-01-01

    Transmission electron microscopy and scanning transmission electron microscopy studies were conducted in situ on 2–5 nm Pt and 10–40 nm Ag nanoparticles to study mechanisms for sintering and to measure relevant sintering kinetics in nanoscale particles. Sintering between two separated particles was observed to initiate by either (1) diffusion of the particles on the sample support or (2) diffusion of atoms or small clusters of atoms to the neck region between the two particles. After particle contact, the rate of sintering was controlled by atomic surface diffusivity. The surface diffusivity was determined as a function of particle size and temperature from experimental measurements of the rate of neck growth of the particles. The surface diffusivities did not show a strong size effect for the range of particle sizes that were studied. The surface diffusivity for Pt nanoparticles exhibited the expected Arrhenius temperature dependence and did not appear to be sensitive to the presence of surface contaminants. In contrast, the surface diffusivity for Ag nanoparticles was affected by the presence of impurities such as carbon. The diffusivities for Ag nanoparticles were consistent with previous measurements of bulk surface diffusivities for Ag in the presence of C, but were significantly slower than those obtained from pristine Ag

  15. High Resolution Electron Microscopy in Materials Science

    International Nuclear Information System (INIS)

    Amelinckx, S.

    1986-01-01

    This paper illustrates different operating modes of the electron microscope and shows the image formation in an ideal microscope. Diffraction contrast is used in the study of crystal defects, such as dislocations and planar interfaces. Methods are surveyed which give at least a rudimentary image of the lattice and therefore make use of at least two interfering beams. Special attention is given to images which also carry structural information and therefore imply the use of many beams. The underlying theory is discussed as are the theories of Van Dyck, Spence and Cowley. These are illustrated by means of a number of recent case studies

  16. Transmission electron microscopy of mercury metal

    KAUST Repository

    Anjum, Dalaver H.

    2016-03-28

    Summary: Transmission electron microcopy (TEM) analysis of liquid metals, especially mercury (Hg), is difficult to carry out because their specimen preparation poses a daunting task due to the unique surface properties of these metals. This paper reports a cryoTEM study on Hg using a novel specimen preparation technique. Hg metal is mixed with water using sonication and quenched in liquid ethane cryogen. This technique permits research into the morphological, phase and structural properties of Hg at nanoscale dimensions. © 2016 Royal Microscopical Society.

  17. Study of Hydrated Lime in Environmental Scanning Electron Microscopy

    Czech Academy of Sciences Publication Activity Database

    Tihlaříková, Eva; Neděla, Vilém; Rovnaníková, P.

    2013-01-01

    Roč. 19, S2 (2013), s. 1644-1645 ISSN 1431-9276 R&D Projects: GA ČR GAP102/10/1410; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Hydrated Lime * Environmental Scanning Electron Microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.757, year: 2013

  18. Characterization of Polycaprolactone Films Biodeterioration by Scanning Electron Microscopy

    Czech Academy of Sciences Publication Activity Database

    Hrubanová, Kamila; Voberková, S.; Hermanová, S.; Krzyžánek, Vladislav

    2014-01-01

    Roč. 20, S3 (2014), s. 1950-1951 ISSN 1431-9276 R&D Projects: GA MŠk EE.2.3.20.0103; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : polycaprolactone films * biodeterioration * scanning electron microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.877, year: 2014

  19. Electron microscopy and plastic deformation of industrial austenitic stainless steels

    International Nuclear Information System (INIS)

    Thomas, Barry

    1976-01-01

    The different mechanisms of plastic deformation observed in austenitic stainless steels are described and the role of transmission electron microscopy in the elucidation of the mechanisms is presented. At temperatures below 0,5Tm, different variants of dislocation glide are competitive: slip of perfect and partial dislocations, mechanical twinning and strain-induced phase transformations. The predominance of one or other of these mechanisms can be rationalized in terms of the temperature and composition dependence of the stacking fault energy and the thermodynamic stability of the austenite. At temperatures above 0,5Tm dislocation climb and diffusion of point defects become increasingly important and at these temperatures recovery, recrystallization and precipitation can also occur during deformation [fr

  20. Investigation of ceramic devices by analytical electron microscopy techniques

    International Nuclear Information System (INIS)

    Shiojiri, M.; Saijo, H.; Isshiki, T.; Kawasaki, M.; Yoshioka, T.; Sato, S.; Nomura, T.

    1999-01-01

    Ceramics are widely used as capacitors and varistors. Their electrical properties depend on the structure, which is deeply influenced not only by the composition of raw materials and additives but also by heating treatments in the production process. This paper reviews our investigations of SrTiO 3 ceramic devices, which have been performed using various microscopy techniques such as high-resolution transmission electron microscopy (HRTEM), cathodoluminescence scanning electron microscopy (CLSEM), field emission SEM (FE-SEM), energy dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and high angle annular dark field (HAADF) imaging method in a FE-(scanning) transmission electron microscope(FE-(S)TEM). (author)

  1. Electron microscopy methods in studies of cultural heritage sites

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com; Kovalchuk, M. V.; Yatsishina, E. B. [National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-11-15

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient “nanotechnologies”; hence, their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.

  2. Electron microscopy methods in studies of cultural heritage sites

    Science.gov (United States)

    Vasiliev, A. L.; Kovalchuk, M. V.; Yatsishina, E. B.

    2016-11-01

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient "nanotechnologies"; hence, their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.

  3. Electron microscopy methods in studies of cultural heritage sites

    International Nuclear Information System (INIS)

    Vasiliev, A. L.; Kovalchuk, M. V.; Yatsishina, E. B.

    2016-01-01

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient “nanotechnologies”; hence, their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.

  4. Contributed review: Review of integrated correlative light and electron microscopy.

    Science.gov (United States)

    Timmermans, F J; Otto, C

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  5. Contributed Review: Review of integrated correlative light and electron microscopy

    International Nuclear Information System (INIS)

    Timmermans, F. J.; Otto, C.

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy

  6. Nanoparticle sizing: a comparative study using atomic force microscopy, transmission electron microscopy, and ferromagnetic resonance

    International Nuclear Information System (INIS)

    Lacava, L.M.; Lacava, B.M.; Azevedo, R.B.; Lacava, Z.G.M.; Buske, N.; Tronconi, A.L.; Morais, P.C.

    2001-01-01

    Atomic force microscopy (AFM), transmission electron microscopy (TEM), and ferromagnetic resonance (FMR) were used to unfold the nanoparticle size of a ferrofluid sample. Compared to TEM, the AFM method showed a nanoparticle diameter (D m ) reduction of 20% and standard deviation (σ) increase of 15%. The differences in D m and σ were associated with the AFM tip and the nanoparticle concentration on the substrate

  7. Electron beam effects in auger electron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Fontaine, J.M.; Duraud, J.P.; Le Gressus, C.

    1979-01-01

    Electron beam effects on Si(100) and 5% Fe/Cr alloy samples have been studied by measurements of the secondary electron yield delta, determination of the surface composition by Auger electron spectroscopy and imaging with scanning electron microscopy. Variations of delta as a function of the accelerating voltage Esub(p) (0.5 -9 Torr has no effect on technological samples covered with their reaction layers; the sensitivities to the beam depend rather on the earlier mechanical, thermal and chemical treatment of the surfaces. (author)

  8. Scanning Electron Microscopy with Samples in an Electric Field

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Hovorka, Miloš; Mikmeková, Šárka; Mikmeková, Eliška; Müllerová, Ilona; Pokorná, Zuzana

    2012-01-01

    Roč. 5, č. 12 (2012), s. 2731-2756 ISSN 1996-1944 R&D Projects: GA ČR GAP108/11/2270; GA TA ČR TE01020118; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : scanning electron microscopy * slow electrons * low energy SEM * low energy STEM * cathode lens Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.247, year: 2012

  9. Scanning electron microscopy of the neuropathology of murine cerebral malaria

    Directory of Open Access Journals (Sweden)

    Brenneis Christian

    2006-11-01

    Full Text Available Abstract Background The mechanisms leading to death and functional impairments due to cerebral malaria (CM are yet not fully understood. Most of the knowledge about the pathomechanisms of CM originates from studies in animal models. Though extensive histopathological studies of the murine brain during CM are existing, alterations have not been visualized by scanning electron microscopy (SEM so far. The present study investigates the neuropathological features of murine CM by applying SEM. Methods C57BL/6J mice were infected with Plasmodium berghei ANKA blood stages. When typical symptoms of CM developed perfused brains were processed for SEM or light microscopy, respectively. Results Ultrastructural hallmarks were disruption of vessel walls, parenchymal haemorrhage, leukocyte sequestration to the endothelium, and diapedesis of macrophages and lymphocytes into the Virchow-Robin space. Villous appearance of observed lymphocytes were indicative of activated state. Cerebral oedema was evidenced by enlargement of perivascular spaces. Conclusion The results of the present study corroborate the current understanding of CM pathophysiology, further support the prominent role of the local immune system in the neuropathology of CM and might expose new perspectives for further interventional studies.

  10. Medipix 2 detector applied to low energy electron microscopy

    International Nuclear Information System (INIS)

    Gastel, R. van; Sikharulidze, I.; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, S.J. van der

    2009-01-01

    Low energy electron microscopy (LEEM) and photo-emission electron microscopy (PEEM) traditionally use microchannel plates (MCPs), a phosphor screen and a CCD-camera to record images and diffraction patterns. In recent years, however, MCPs have become a limiting factor for these types of microscopy. Here, we report on a successful test series using a solid state hybrid pixel detector, Medipix 2, in LEEM and PEEM. Medipix 2 is a background-free detector with an infinite dynamic range, making it very promising for both real-space imaging and spectroscopy. We demonstrate a significant enhancement of both image contrast and resolution, as compared to MCPs. Since aging of the Medipix 2 detector is negligible for the electron energies used in LEEM/PEEM, we expect Medipix to become the detector of choice for a new generation of systems.

  11. Medipix 2 detector applied to low energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gastel, R. van, E-mail: R.vanGastel@utwente.nl [University of Twente, MESA Institute for Nanotechnology, P.O. Box 217, NL-7500 AE Enschede (Netherlands); Sikharulidze, I. [Leiden University, Leiden Institute of Chemistry, P.O. Box 9502, NL-2300 RA Leiden (Netherlands); Schramm, S. [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands); Abrahams, J.P. [Leiden University, Leiden Institute of Chemistry, P.O. Box 9502, NL-2300 RA Leiden (Netherlands); Poelsema, B. [University of Twente, MESA Institute for Nanotechnology, P.O. Box 217, NL-7500 AE Enschede (Netherlands); Tromp, R.M. [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands); IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Molen, S.J. van der [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands)

    2009-12-15

    Low energy electron microscopy (LEEM) and photo-emission electron microscopy (PEEM) traditionally use microchannel plates (MCPs), a phosphor screen and a CCD-camera to record images and diffraction patterns. In recent years, however, MCPs have become a limiting factor for these types of microscopy. Here, we report on a successful test series using a solid state hybrid pixel detector, Medipix 2, in LEEM and PEEM. Medipix 2 is a background-free detector with an infinite dynamic range, making it very promising for both real-space imaging and spectroscopy. We demonstrate a significant enhancement of both image contrast and resolution, as compared to MCPs. Since aging of the Medipix 2 detector is negligible for the electron energies used in LEEM/PEEM, we expect Medipix to become the detector of choice for a new generation of systems.

  12. Biological applications of phase-contrast electron microscopy.

    Science.gov (United States)

    Nagayama, Kuniaki

    2014-01-01

    Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.

  13. Bauxite and bauxite residue, characterization and electron microscopy study

    International Nuclear Information System (INIS)

    Antunes, M.L.P.; Conceicao, F.T.; Toledo, S.P.; Kiyohara, P.K.

    2012-01-01

    Through the Bayer process, bauxite is refined and alumina is produced. In this process, a highly alkaline residue, red mud is generated and its disposal represents an environmental problem. The aim of this paper is to present the characterization of Brazilian bauxite and Brazilian red mud by: X-ray diffraction, specific surface area, chemical composition analysis by ICP-MS, transmission electron microscopy (TEM) and energy dispersive X-ray spectrometry (EDS), and scanning electron microscopy (SEM) and discuss possible applications of this residue. The results identify as a constituent of both materials: Al 2 O 3 , Fe 2 O 3 , TiO 2 and SiO 2 and the presence of Na 2 O in residue. The analysis by electron microscopy of Bauxite shows particles with hexagonal shape and red mud shows small particles size. (author)

  14. Evaluations of carbon nanotube field emitters for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Hitoshi, E-mail: nakahara@nagoya-u.jp [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2009-11-30

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I-V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6x10{sup 9} A/m{sup 2} sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  15. Evaluations of carbon nanotube field emitters for electron microscopy

    Science.gov (United States)

    Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi

    2009-11-01

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  16. Laboratory design for high-performance electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Turner, John H.; Hetherington, Crispin J.D.; Cullis, A.G.; Carragher, Bridget; Jenkins, Ron; Milgrim, Julie; Milligan,Ronald A.; Potter, Clinton S.; Allard, Lawrence F.; Blom, Douglas A.; Degenhardt, Lynn; Sides, William H.

    2004-04-23

    Proliferation of electron microscopes with field emission guns, imaging filters and hardware spherical aberration correctors (giving higher spatial and energy resolution) has resulted in the need to construct special laboratories. As resolutions improve, transmission electron microscopes (TEMs) and scanning transmission electron microscopes (STEMs) become more sensitive to ambient conditions. State-of-the-art electron microscopes require state-of-the-art environments, and this means careful design and implementation of microscope sites, from the microscope room to the building that surrounds it. Laboratories have been constructed to house high-sensitive instruments with resolutions ranging down to sub-Angstrom levels; we present the various design philosophies used for some of these laboratories and our experiences with them. Four facilities are described: the National Center for Electron Microscopy OAM Laboratory at LBNL; the FEGTEM Facility at the University of Sheffield; the Center for Integrative Molecular Biosciences at TSRI; and the Advanced Microscopy Laboratory at ORNL.

  17. Simultaneous correlative scanning electron and high-NA fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Nalan Liv

    Full Text Available Correlative light and electron microscopy (CLEM is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown.

  18. Study of single-electron excitations by electron microscopy

    International Nuclear Information System (INIS)

    Craven, A.J.; Gibson, J.M.; Howie, A.; Spalding, D.R.

    1978-01-01

    The inelastic scattering of fast electrons by the excitation of L-shell electrons at a stacking fault in silicon has been studied with a scanning transmission electron microscope. It was found that the bright-field stacking fault contrast is preserved in the filtered L-shell-loss signal at 100 eV. This result is discussed in terms of the delocalization of the excitation mechanism. It is concluded that localization effects will typically become significant only for energy transfers greater than 1 keV from a fast electron of energy 80 keV. (author)

  19. Correlative Analysis of Immunoreactivity in Confocal Laser-Scanning Microscopy and Scanning Electron Microscopy with Focused Ion Beam Milling

    Directory of Open Access Journals (Sweden)

    Takahiro eSonomura

    2013-02-01

    Full Text Available Three-dimensional reconstruction of ultrastructure of rat brain with minimal effort has recently been realized by scanning electron microscopy combined with focused ion beam milling (FIB-SEM. Because application of immunohistochemical staining to electron microscopy has a great advantage in that molecules of interest are specifically localized in ultrastructures, we here tried to apply immunocytochemistry to FIB-SEM and correlate immunoreactivity in confocal laser-scanning microcopy (CF-LSM with that in FIB-SEM. The dendrites of medium-sized spiny neurons in rat neostriatum were visualized with a recombinant viral vector, which labeled the infected neurons with membrane-targeted GFP in a Golgi stain-like fashion, and thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2. After detecting the sites of terminals apposed to the dendrites in CF-LSM, GFP and VGluT2 immunoreactivities were further developed for electron microscopy by the immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB methods, respectively. In the contrast-inverted FIB-SEM images, silver precipitation and DAB deposits were observed as fine dark grains and diffuse dense profiles, respectively, indicating that these immunoreactivities were easily recognizable as in the images of transmission electron microscopy. In the sites of interest, some appositions were revealed to display synaptic specialization of asymmetric type. The present method is thus useful in the three-dimensional analysis of immunocytochemically differentiated synaptic connection in the central neural circuit.

  20. Helium ion microscopy and energy selective scanning electron microscopy - two advanced microscopy techniques with complementary applications

    Science.gov (United States)

    Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.

    2014-06-01

    Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.

  1. Acute radiation nephritis. Light and electron microscopic observations

    International Nuclear Information System (INIS)

    Kapur, S.; Chandra, R.; Antonovych, T.

    1977-01-01

    Light and electron microscopy were used to observe acute radiation nephritis. By light microscopy the changes were of fibrinoid necrosis of the arteries and arterioles with segmental necrosis of the glomerular tufts. By electron microscopy the endocapillary cells reacted by hypertrophy and hyperplasia with increase in cytoplasmic organelles. In addition, disruption of endothelial and epithelial cells from the basement membranes were seen. It is concluded that the electron microscopic changes were unique and may be helpful in differentiating the necrotizing glomerulitis seen in other conditions, especially malignant hypertension

  2. Transmission electron microscopy study of unhydrided,dehydrided and annealed LaNi5

    NARCIS (Netherlands)

    Veirman, de A.E.M.; Staals, A.A.; Notten, P.H.L.

    1994-01-01

    The influence of hydrogen absorption on the microstructure of LaNi5 powders has been investigated by transmission electron microscopy. At the surface of the unhydrided and dehydrided LaNi5 grains a reaction layer is observed. By means of selected area electron diffraction this layer is found to

  3. Metodologia para observação da camada de cera em maçãs, utilizando microscopia eletrônica de varredura Methodology for observation of the wax layer in apples, using scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Luis Antônio Suita de Castro

    2002-12-01

    sample preparation. The usual procedures cause serious damages to the wax layer or even eliminate it because of its solubilization by some of the reagents. Several researchers have kept the samples at very low temperature (-90ºC during the preparation. Wax observations in Brazil by using electronic scanning microscope have been performed, however in some of them results were not consistent. A relatively simple procedure at the Laboratory of Electron Microscopy at Embrapa Temperate Climate has been tried to overcome such difficulties. Such procedure consists of collecting a small piece of the fruit epidermis (1cm² taken from the equatorial part of the apples. After sampling it the piece of epidermis is placed on a glass slide hold by the extremes with a sticky tape. The sample on glass slide is kept for 72 hours into a dessicator containing drierite for the sample dehydration. Then, small pieces of the sample (2 mm² were taken and hold on stubs followed by metalization in gold. Following that, the sample is observed using a Zeiss (DSM - 940A electronic microscope at a working distance of 15 mm and acceleration voltage of 10 KV. The obtained images made possible to evaluate the action of some experimental treatments which have been used on apples during cold storage.

  4. A rapid method of reprocessing for electronic microscopy of cut histological in paraffin

    International Nuclear Information System (INIS)

    Hernandez Chavarri, F.; Vargas Montero, M.; Rivera, P.; Carranza, A.

    2000-01-01

    A simple and rapid method is described for re-processing of light microscopy paraffin sections to observe they under transmission electron microscopy (TEM) and scanning electron microscopy (SEM) The paraffin-embedded tissue is sectioned and deparaffinized in toluene; then exposed to osmium vapor under microwave irradiation using a domestic microwave oven. The tissues were embedded in epoxy resin, polymerized and ultrathin sectioned. The method requires a relatively short time (about 30 minutes for TEM and 15 for SEM), and produces a reasonable quality of the ultrastructure for diagnostic purposes. (Author) [es

  5. Photo electron emission microscopy of polarity-patterned materials

    International Nuclear Information System (INIS)

    Yang, W-C; Rodriguez, B J; Gruverman, A; Nemanich, R J

    2005-01-01

    This study presents variable photon energy photo electron emission microscopy (PEEM) of polarity-patterned epitaxial GaN films, and ferroelectric LiNbO 3 (LNO) single crystals and PbZrTiO 3 (PZT) thin films. The photo electrons were excited with spontaneous emission from the tunable UV free electron laser (FEL) at Duke University. We report PEEM observation of polarity contrast and measurement of the photothreshold of each polar region of the materials. For a cleaned GaN film with laterally patterned Ga- and N-face polarities, we found a higher photoelectric yield from the N-face regions compared with the Ga-face regions. Through the photon energy dependent contrast in the PEEM images of the surfaces, we can deduce that the threshold of the N-face region is less than ∼4.9 eV while that of the Ga-face regions is greater than 6.3 eV. In both LNO and PZT, bright emission was detected from the negatively poled domains, indicating that the emission threshold of the negative domain is lower than that of the positive domain. For LNO, the measured photothreshold was ∼4.6 eV at the negative domain and ∼6.2 eV at the positive domain, while for PZT, the threshold of the negative domain was less than 4.3 eV. Moreover, PEEM observation of the PZT surface at elevated temperatures displayed that the domain contrast disappeared near the Curie temperature of ∼300 deg. C. The PEEM polarity contrast of the polar materials is discussed in terms of internal screening from free carriers and defects and the external screening due to adsorbed ions

  6. Photo electron emission microscopy of polarity-patterned materials

    Science.gov (United States)

    Yang, W.-C.; Rodriguez, B. J.; Gruverman, A.; Nemanich, R. J.

    2005-04-01

    This study presents variable photon energy photo electron emission microscopy (PEEM) of polarity-patterned epitaxial GaN films, and ferroelectric LiNbO3 (LNO) single crystals and PbZrTiO3 (PZT) thin films. The photo electrons were excited with spontaneous emission from the tunable UV free electron laser (FEL) at Duke University. We report PEEM observation of polarity contrast and measurement of the photothreshold of each polar region of the materials. For a cleaned GaN film with laterally patterned Ga- and N-face polarities, we found a higher photoelectric yield from the N-face regions compared with the Ga-face regions. Through the photon energy dependent contrast in the PEEM images of the surfaces, we can deduce that the threshold of the N-face region is less than ~4.9 eV while that of the Ga-face regions is greater than 6.3 eV. In both LNO and PZT, bright emission was detected from the negatively poled domains, indicating that the emission threshold of the negative domain is lower than that of the positive domain. For LNO, the measured photothreshold was ~4.6 eV at the negative domain and ~6.2 eV at the positive domain, while for PZT, the threshold of the negative domain was less than 4.3 eV. Moreover, PEEM observation of the PZT surface at elevated temperatures displayed that the domain contrast disappeared near the Curie temperature of ~300 °C. The PEEM polarity contrast of the polar materials is discussed in terms of internal screening from free carriers and defects and the external screening due to adsorbed ions.

  7. An overview on bioaerosols viewed by scanning electron microscopy

    International Nuclear Information System (INIS)

    Wittmaack, K.; Wehnes, H.; Heinzmann, U.; Agerer, R.

    2005-01-01

    Bioaerosols suspended in ambient air were collected with single-stage impactors at a semiurban site in southern Germany during late summer and early autumn. Sampling was mostly carried out at a nozzle velocity of 35 m/s, corresponding to a minimum aerodynamic diameter (cut-off diameter) of aerosol particles of 0.8 μm. The collected particles, sampled for short periods (∼15 min) to avoid pile-up, were characterized by scanning electron microscopy (SEM). The observed bioaerosols include brochosomes, fungal spores, hyphae, insect scales, hairs of plants and, less commonly, bacteria and epicuticular wax. Brochosomes, which serve as a highly water repellent body coating of leafhoppers, are hollow spheroids with diameters around 400 nm, resembling C 60 or footballs (soccer balls). They are usually airborne not as individuals but in the form of large clusters containing up to 10,000 individual species or even more. Various types of spores and scales were observed, but assignment turned out be difficult due to the large number of fungi and insects from which they may have originated. Pollens were observed only once. The absence these presumably elastic particles suggests that they are frequently lost, at the comparatively high velocities, due to bounce-off from the nonadhesive impaction surfaces

  8. An overview on bioaerosols viewed by scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wittmaack, K. [GSF-National Research Centre for Environment and Health, Institute of Radiation Protection, 85758 Neuherberg (Germany)]. E-mail: wittmaack@gsf.de; Wehnes, H. [GSF-National Research Centre for Environment and Health, Institute of Pathology, 85758 Neuherberg (Germany); Heinzmann, U. [GSF-National Research Centre for Environment and Health, Institute of Pathology, 85758 Neuherberg (Germany); Agerer, R. [Ludwig-Maximilians University Munich, Department Biology, Biodiversity Research: Mycology, Menzinger Stasse 67, 80638 Munich (Germany)

    2005-06-15

    Bioaerosols suspended in ambient air were collected with single-stage impactors at a semiurban site in southern Germany during late summer and early autumn. Sampling was mostly carried out at a nozzle velocity of 35 m/s, corresponding to a minimum aerodynamic diameter (cut-off diameter) of aerosol particles of 0.8 {mu}m. The collected particles, sampled for short periods ({approx}15 min) to avoid pile-up, were characterized by scanning electron microscopy (SEM). The observed bioaerosols include brochosomes, fungal spores, hyphae, insect scales, hairs of plants and, less commonly, bacteria and epicuticular wax. Brochosomes, which serve as a highly water repellent body coating of leafhoppers, are hollow spheroids with diameters around 400 nm, resembling C{sub 60} or footballs (soccer balls). They are usually airborne not as individuals but in the form of large clusters containing up to 10,000 individual species or even more. Various types of spores and scales were observed, but assignment turned out be difficult due to the large number of fungi and insects from which they may have originated. Pollens were observed only once. The absence these presumably elastic particles suggests that they are frequently lost, at the comparatively high velocities, due to bounce-off from the nonadhesive impaction surfaces.

  9. Transmission electron microscopy of weakly deformed alkali halide crystals

    International Nuclear Information System (INIS)

    Strunk, H.

    1976-01-01

    Transmission electron microscopy (TEM) is applied to the investigation of the dislocation arrangement of [001]-orientated alkali halide crystals (orientation four quadruple slip) deformed into stage I of the work-hardenig curve. The investigations pertain mainly to NaCl - (0.1-1) mole-% NaBr crystals, because these exhibit a relatively long stage I. The time available for observing the specimens is limited by the ionization radiation damage occuring in the microscope. An optimum reduction of the damage rate is achieved by a combination of several experimental techniques that are briefly outlined. The crystals deform essentially in single glide. According to the observations, stage I deformation of pure and weakly alloyed NaCl crystals is characterized by the glide of screw dislocations, which bow out between jogs and drag dislocation dipoles behind them. In crystals with >= 0.5 mole-% NaBr this process is not observed to occur. This is attributed to the increased importance of solid solution hardening. (orig.) [de

  10. Thin dielectric film thickness determination by advanced transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, A.C.; Foran, B.; Kisielowski, C.; Muller, D.; Pennycook, S.; Principe, E.; Stemmer, S.

    2003-09-01

    High Resolution Transmission Electron Microscopy (HR-TEM) has been used as the ultimate method of thickness measurement for thin films. The appearance of phase contrast interference patterns in HR-TEM images has long been confused as the appearance of a crystal lattice by non-specialists. Relatively easy to interpret crystal lattice images are now directly observed with the introduction of annular dark field detectors for scanning TEM (STEM). With the recent development of reliable lattice image processing software that creates crystal structure images from phase contrast data, HR-TEM can also provide crystal lattice images. The resolution of both methods was steadily improved reaching now into the sub Angstrom region. Improvements in electron lens and image analysis software are increasing the spatial resolution of both methods. Optimum resolution for STEM requires that the probe beam be highly localized. In STEM, beam localization is enhanced by selection of the correct aperture. When STEM measurement is done using a highly localized probe beam, HR-TEM and STEM measurement of the thickness of silicon oxynitride films agree within experimental error. In this paper, the optimum conditions for HR-TEM and STEM measurement are discussed along with a method for repeatable film thickness determination. The impact of sample thickness is also discussed. The key result in this paper is the proposal of a reproducible method for film thickness determination.

  11. Cryo-Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM)-in-SEM for Bio- and Organo-Mineral Interface Characterization in the Environment.

    Science.gov (United States)

    Wille, Guillaume; Hellal, Jennifer; Ollivier, Patrick; Richard, Annie; Burel, Agnes; Jolly, Louis; Crampon, Marc; Michel, Caroline

    2017-12-01

    Understanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4',6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7-11 µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.

  12. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    Science.gov (United States)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  13. Observation of multicellular spinning behavior of Proteus mirabilis by atomic force microscopy and multifunctional microscopy.

    Science.gov (United States)

    Liu, Yanxia; Deng, Yuanxin; Luo, Shuxiu; Deng, Yu; Guo, Linming; Xu, Weiwei; Liu, Lei; Liu, Junkang

    2014-01-01

    This study aimed to observe the multicellular spinning behavior of Proteus mirabilis by atomic force microscopy (AFM) and multifunctional microscopy in order to understand the mechanism underlying this spinning movement and its biological significance. Multifunctional microscopy with charge-coupled device (CCD) and real-time AFM showed changes in cell structure and shape of P. mirabilis during multicellular spinning movement. Specifically, the morphological characteristics of P. mirabilis, multicellular spinning dynamics, and unique movement were observed. Our findings indicate that the multicellular spinning behavior of P. mirabilis may be used to collect nutrients, perform colonization, and squeeze out competitors. The movement characteristics of P. mirabilis are vital to the organism's biological adaptability to the surrounding environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Optimising electron microscopy experiment through electron optics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Y. [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse France (France); Hitachi High-Technologies Corporation, 882, Ichige, Hitachinaka, Ibaraki 312-8504 (Japan); Gatel, C.; Snoeck, E. [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse France (France); Houdellier, F., E-mail: florent.houdellier@cemes.fr [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse France (France)

    2017-04-15

    We developed a new type of electron trajectories simulation inside a complete model of a modern transmission electron microscope (TEM). Our model incorporates the precise and real design of each element constituting a TEM, i.e. the field emission (FE) cathode, the extraction optic and acceleration stages of a 300 kV cold field emission gun, the illumination lenses, the objective lens, the intermediate and projection lenses. Full trajectories can be computed using magnetically saturated or non-saturated round lenses, magnetic deflectors and even non-cylindrical symmetry elements like electrostatic biprism. This multi-scale model gathers nanometer size components (FE tip) with parts of meter length (illumination and projection systems). We demonstrate that non-trivial TEM experiments requiring specific and complex optical configurations can be simulated and optimized prior to any experiment using such model. We show that all the currents set in all optical elements of the simulated column can be implemented in the real column (I2TEM in CEMES) and used as starting alignment for the requested experiment. We argue that the combination of such complete electron trajectory simulations in the whole TEM column with automatic optimization of the microscope parameters for optimal experimental data (images, diffraction, spectra) allows drastically simplifying the implementation of complex experiments in TEM and will facilitate the development of advanced use of the electron microscope in the near future. - Highlights: • Using dedicated electron optics software, we calculate full electrons trajectories inside a modern transmission electron microscope. • We have determined how to deal with multi-scale electron optics elements like high voltage cold field emission source. • W • e have succeed to model both weak and strong magnetic lenses whether in saturated or unsaturated conditions as well as electrostatic biprism and magnetic deflectors. • We have applied this model

  15. Optimising electron microscopy experiment through electron optics simulation

    International Nuclear Information System (INIS)

    Kubo, Y.; Gatel, C.; Snoeck, E.; Houdellier, F.

    2017-01-01

    We developed a new type of electron trajectories simulation inside a complete model of a modern transmission electron microscope (TEM). Our model incorporates the precise and real design of each element constituting a TEM, i.e. the field emission (FE) cathode, the extraction optic and acceleration stages of a 300 kV cold field emission gun, the illumination lenses, the objective lens, the intermediate and projection lenses. Full trajectories can be computed using magnetically saturated or non-saturated round lenses, magnetic deflectors and even non-cylindrical symmetry elements like electrostatic biprism. This multi-scale model gathers nanometer size components (FE tip) with parts of meter length (illumination and projection systems). We demonstrate that non-trivial TEM experiments requiring specific and complex optical configurations can be simulated and optimized prior to any experiment using such model. We show that all the currents set in all optical elements of the simulated column can be implemented in the real column (I2TEM in CEMES) and used as starting alignment for the requested experiment. We argue that the combination of such complete electron trajectory simulations in the whole TEM column with automatic optimization of the microscope parameters for optimal experimental data (images, diffraction, spectra) allows drastically simplifying the implementation of complex experiments in TEM and will facilitate the development of advanced use of the electron microscope in the near future. - Highlights: • Using dedicated electron optics software, we calculate full electrons trajectories inside a modern transmission electron microscope. • We have determined how to deal with multi-scale electron optics elements like high voltage cold field emission source. • W • e have succeed to model both weak and strong magnetic lenses whether in saturated or unsaturated conditions as well as electrostatic biprism and magnetic deflectors. • We have applied this model

  16. Study of the niobium dehydrogenation process by transmission electron microscopy

    International Nuclear Information System (INIS)

    Bulhoes, I.A.M.; Akune, K.

    1983-01-01

    The evolution of the micro-structure of Nb-H, during the dehydrogenation process through thermal treatment, has been studied by Transmission Electron Microscopy. The results are used in order to interpret the variation of the line resolution of Electron Channeling Pattern (ECP) of Nb-H as a function of isochronous annealing temperature. It is concluded that the improvement of the ECP line resolution is enhanced of β hydrate in Nb. (Author) [pt

  17. Surface properties and microporosity of polyhydroxybutyrate under scanning electron microscopy

    International Nuclear Information System (INIS)

    Raouf, A.A.; Samsudin, A.R.; Samian, R.; Akool, K.; Abdullah, N.

    2004-01-01

    This study was designed to investigate the surface properties especially surface porosity of polyhydroxybutyrate (PHB) using scanning electron microscopy. PHB granules were sprinkled on the double-sided sticky tape attached on a SEM aluminium stub and sputtered with gold (10nm thickness) in a Polaron SC515 Coater, following which the samples were placed into the SEM specimen chamber for viewing and recording. Scanning electron micrographs with different magnification of PHB surface revealed multiple pores with different sizes. (Author)

  18. Electron Microscopy Characterization of Vanadium Dioxide Thin Films and Nanoparticles

    Science.gov (United States)

    Rivera, Felipe

    relationships accounts for the majority of the VO_2 grains observed, due to the sapphire substrate's geometry there were variations within these rules that changed the orientation of VO_2 grains with respect to the substrate's normal direction. 2) For the TiO_2, a substrate with a lower lattice mismatch, we observe the expected relationship where the rutile VO_2 [100], [110], and [001] crystal directions lie parallel to the TiO_2 substrate's [100], [110], and [001] crystal directions respectively. 3) For the amorphous SiO_2 layer, all VO_2 crystals that were measurable (those that grew to the thickness of the deposited film) had a preferred orientation with the the rutile VO_2[001] crystal direction tending to lie parallel to the plane of the specimen. The use of transmission electron microscopy (TEM) is presented as a tool for further characterization studies of this material and its applications. In this work TEM diffraction patterns taken from cross-sections of particles of the a- and r-cut sapphire substrates not only solidified the predominant family mentioned, but also helped lift the ambiguity present in the rutile VO_2{100} axes. Finally, a focused-ion beam technique for preparation of cross-sectional TEM samples of metallic thin films deposited on polymer substrates is demonstrated.

  19. Electron cloud observations: a retrospective

    International Nuclear Information System (INIS)

    Harkay, K.

    2004-01-01

    A growing number of observations of electron cloud effects (ECEs) have been reported in positron and proton rings. Low-energy, background electrons ubiquitous in high-intensity particle accelerators. Amplification of electron cloud (EC) can occur under certain operating conditions, potentially giving rise to numerous effects that can seriously degrade accelerator performance. EC observations and diagnostics have contributed to a better understanding of ECEs, in particular, details of beam-induced multipacting and cloud saturation effects. Such experimental results can be used to provide realistic limits on key input parameters for modeling efforts and analytical calculations to improve prediction capability. Electron cloud effects are increasingly important phenomena in high luminosity, high brightness, or high intensity machines - Colliders, Storage rings, Damping rings, Heavy ion beams. EC generation and instability modeling increasingly complex and benchmarked against in situ data: (delta), (delta) 0 , photon reflectivity, and SE energy distributions important. Surface conditioning and use of solenoidal windings in field-free regions are successful cures: will they be enough? What are new observations and how do they contribute to body of work and understanding physics of EC?

  20. The structure of spinach Photosystem I studied by electron microscopy

    NARCIS (Netherlands)

    Boekema, Egbert J.; Wynn, R. Max; Malkin, Richard

    1990-01-01

    The structure of three types of Photosystem I (PS I) complex isolated from spinach chloroplasts was studied by electron microscopy and computer image analysis. Molecular projections (top views and side views) of a native PS I complex (PSI-200), an antenna-depleted PS I complex (PSI-100) and the PS I

  1. Collaboration at the Nanoscale: Exploring Viral Genetics with Electron Microscopy

    Science.gov (United States)

    Duboise, S. Monroe; Moulton, Karen D.; Jamison, Jennifer L.

    2009-01-01

    The Maine Science Corps is a project sponsored by the National Science Foundation's (NSF) Graduate Teaching Fellows in K-12 Education (GK-12 ) program. Through this program, the University of Southern Maine's (USM) virology and transmission electron microscopy (TEM) research group provides high school teachers and students in rural areas with…

  2. Electron microscopy studies on MoS2 nanocrystals

    DEFF Research Database (Denmark)

    Hansen, Lars Pilsgaard

    Industrial-style MoS2-based hydrotreating catalysts are studied using electron microscopy. The MoS2 nanostructures are imaged with single-atom sensitivity to reveal the catalytically important edge structures. Furthermore, the in-situ formation of MoS2 crystals is imaged for the first time....

  3. Microstructure of lead zirconium titanate (PZT) by electron microscopy

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng JuLin

    1989-01-01

    Transmission and high-resolution electron microscopy reveal the microtexture of lead zirconium titanate ceramics. Fine scale (≤ 500 Aangstroem) ferroelastic and ferroelectric twin domains, as well as dislocations were found in a complex texture. Correlations between stoichiometry, microstructure and piezoelectric properties are discussed. 6 refs., 3 figs

  4. Ultrastructure of Proechinophthirus zumpti (Anoplura, Echinophthiriidae by scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Dolores del Carmen Castro

    2002-09-01

    Full Text Available The ultrastructure of Proechinophthirus zumpti Werneck, 1955, mainly the external chorionic features of the egg, is described through electronic microscopy techniques. This species was first cited in Argentina, infesting Arctocephalus australis (Zimmermann, 1873. The morphological adaptations of adults and nymphs are described in both species of Proechinophthirus parasitic on Otariidae: P. fluctus (Ferris, 1916 and P. zumpti.

  5. Automated data collection in single particle electron microscopy

    Science.gov (United States)

    Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget

    2016-01-01

    Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944

  6. A national facility for biological cryo-electron microscopy

    International Nuclear Information System (INIS)

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback

  7. Ion source for thinning of specimen in transmission electron microscopy

    International Nuclear Information System (INIS)

    Hammer, K.; Rothe, R.

    1983-01-01

    Thinning of specimen for transmission electron microscopy is carried out by means of sputtering. Construction, design, and operation parameters of an ion source are presented. Because the plasma is produced by means of hollow cathode glow discharges, no special focusing system is used

  8. Modeling of Image Formation in Cryo-Electron Microscopy

    NARCIS (Netherlands)

    Vulovic, M.

    2013-01-01

    Knowledge of the structure of biological specimens is crucial for understanding life. Cryo-electron microscopy (cryo-EM) permits structural studies of biological specimen at their near-native state. The research performed in this thesis represents one of two subprojects of the FOM industrial

  9. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    The distribution of arsenic (As) and cadmium (Cd) in himematsutake was analyzed using scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX). The atomic percentage of the metals was confirmed by inductively coupled plasma-mass spectrometer (ICP-MS). Results show that the accumulation of ...

  10. A direct electron detector for time-resolved MeV electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vecchione, T.; Denes, P.; Jobe, R. K.; Johnson, I. J.; Joseph, J. M.; Li, R. K.; Perazzo, A.; Shen, X.; Wang, X. J.; Weathersby, S. P.; Yang, J.; Zhang, D.

    2017-03-01

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.

  11. Direct observation of rectified motion of vortices by Lorentz microscopy

    Indian Academy of Sciences (India)

    We have investigated the vortex dynamics for the `ratchet' operation in a niobium superconductor via a direct imaging of Lorentz microscopy. We directly observe one-directional selective motion of field-gradient-driven vortices along fabricated channels. This results from the rectification of vortices in a spatially asymmetric ...

  12. Electron microscopy of intermediate filaments: teaming up with atomic force and confocal laser scanning microscopy.

    Science.gov (United States)

    Kreplak, Laurent; Richter, Karsten; Aebi, Ueli; Herrmann, Harald

    2008-01-01

    Intermediate filaments (IFs) were originally discovered and defined by electron microscopy in myoblasts. In the following it was demonstrated and confirmed that they constitute, in addition to microtubules and microfilaments, a third independent, general filament system in the cytoplasm of most metazoan cells. In contrast to the other two systems, IFs are present in cells in two principally distinct cytoskeletal forms: (i) extended and free-running filament arrays in the cytoplasm that are integrated into the cytoskeleton by associated proteins of the plakin type; and (ii) a membrane- and chromatin-bound thin 'lamina' of a more or less regular network of interconnected filaments made from nuclear IF proteins, the lamins, which differ in several important structural aspects from cytoplasmic IF proteins. In man, more than 65 genes code for distinct IF proteins that are expressed during embryogenesis in various routes of differentiation in a tightly controlled manner. IF proteins exhibit rather limited sequence identity implying that the different types of IFs have distinct biochemical properties. Hence, to characterize the structural properties of the various IFs, in vitro assembly regimes have been developed in combination with different visualization methods such as transmission electron microscopy of fixed and negatively stained samples as well as methods that do not use staining such as scanning transmission electron microscopy (STEM) and cryoelectron microscopy as well as atomic force microscopy. Moreover, with the generation of both IF-type specific antibodies and chimeras of fluorescent proteins and IF proteins, it has become possible to investigate the subcellular organization of IFs by correlative fluorescence and electron microscopic methods. The combination of these powerful methods should help to further develop our understanding of nuclear architecture, in particular how nuclear subcompartments are organized and in which way lamins are involved.

  13. Scanning electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1985-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions, imaging modes, the interpretation of micrographs and the use of quantitative modes "in scanning electron microscopy (SEM). lt forms a counterpart to Transmission Electron Microscopy (Vol. 36 of this Springer Series in Optical Sciences) . The book evolved from lectures delivered at the University of Münster and from a German text entitled Raster-Elektronenmikroskopie (Springer-Verlag), published in collaboration with my colleague Gerhard Pfefferkorn. In the introductory chapter, the principles of the SEM and of electron­ specimen interactions are described, the most important imaging modes and their associated contrast are summarized, and general aspects of eiemental analysis by x-ray and Auger electron emission are discussed. The electron gun and electron optics are discussed in Chap. 2 in order to show how an electron probe of small diameter can be formed, how the elec­ tron beam can be blanked at high fre...

  14. In situ Transmission Electron Microscopy of catalyst sintering

    DEFF Research Database (Denmark)

    DeLaRiva, Andrew T.; Hansen, Thomas Willum; Challa, Sivakumar R.

    2013-01-01

    Recent advancements in the field of electron microscopy, such as aberration correctors, have now been integrated into Environmental Transmission Electron Microscopes (TEMs), making it possible to study the behavior of supported metal catalysts under operating conditions at atomic resolution. Here......, we focus on in situ electron microscopy studies of catalysts that shed light on the mechanistic aspects of catalyst sintering. Catalyst sintering is an important mechanism for activity loss, especially for catalysts that operate at elevated temperatures. Literature from the past decade is reviewed...... along with our recent in situ TEM studies on the sintering of Ni/MgAl2O4 catalysts. These results suggest that the rapid loss of catalyst activity in the earliest stages of catalyst sintering could result from Ostwald ripening rather than through particle migration and coalescence. The smallest...

  15. Proceedings of 11. Conference on Electron Microscopy of Solids

    International Nuclear Information System (INIS)

    2002-01-01

    The conference is the cyclically organised discussion forum on problems connected with application of different electron microscopy techniques for the study of solid state materials. The main topics of 11 conference on Electron Microscopy of Solids held in Krynica (PL) in 2002 was: application of TEM in materials science; analytical techniques and orientation imaging in materials science; high resolution TEM in electronic materials; TEM and SEM application in ceramic and composites; advanced TEM techniques; advanced analytical and orientation imaging techniques; application of TEM in investigations of amorphous and nanocrystalline material; Intermetallic and superalloys; TEM application in martensite alloys; TEM and SEM application in research of iron base alloys; TEM studies of deformed alloys; TEM application in thin films and surface layer studies; TEM and SEM application in materials science

  16. Very low energy scanning electron microscopy in nanotechnology

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Hovorka, Miloš; Mika, Filip; Mikmeková, Eliška; Mikmeková, Šárka; Pokorná, Zuzana; Frank, Luděk

    2012-01-01

    Roč. 9, 8/9 (2012), s. 695-716 ISSN 1475-7435 R&D Projects: GA MŠk OE08012; GA MŠk ED0017/01/01; GA AV ČR IAA100650902 Institutional research plan: CEZ:AV0Z20650511 Keywords : scanning electron microscopy * very low energy electrons * cathode lens * grain contrast * strain contrast * imaging of participates * dopant contrast * very low energy STEM * graphene Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.087, year: 2012

  17. Applications of transmission electron microscopy in the materials and mineral sciences

    International Nuclear Information System (INIS)

    Murr, L.E.

    1975-01-01

    Unique capabilities of transmission electron microscopy in characterizing the structure and properties of metals, minerals, and other crystaline materials are illustrated and compared with observations in the scanning electron and field-ion microscopes. Contrast mechanisms involving both mass-thickness and diffraction processes are illustrated, and examples presented of applications of bright and dark-field techiques. Applications of the electron microscope in the investigation of metallurgical and mineralogical problems are outlined with representative examples [pt

  18. Seeing in 4D with electrons: development of ultrafast electron microscopy at Caltech

    International Nuclear Information System (INIS)

    Baskin, J.S.; Zewail, A.H.

    2014-01-01

    The vision to develop 4D electron microscopy, a union of the capabilities of electron microscopy with ultrafast techniques to capture clearly defined images of the nano-scale structure of a material at each step in the course of its chemical or physical transformations, has been pursued at Caltech for the last decade. In this contribution, we will give a brief overview of the capabilities of three currently active Caltech 4D microscopy laboratories. Ongoing work is illustrated by a description of the most recent application of photon-induced near-field electron microscopy (PINEM), a field made possible only by the development of the 4D ultrafast electron microscopy (UEM). An appendix gives the various applications made so far and the historic roots of the development at Caltech. (authors)

  19. The art in science: electron microscopy and paintings conservation

    International Nuclear Information System (INIS)

    Waters, L.

    2003-01-01

    Full text: When examining a painting, a conservator uses many different and complementary methods of analysis to build an understanding of the materials and way the painting was constructed. Common methods of examination include x-radiography, infrared reflectography, ultraviolet fluorescence and optical microscopy of the surface of the painting. Minute samples of paint prepared as cross-sections are sometimes taken for optical examination under the microscope, and it is these that can, conveniently, be further analysed with electron microscopy to yield another level of information. Electron microscopy has a valuable role to play within the examination of paintings, be it for pigment identification alone, or at the other end of the spectrum, for informing issues around the attribution of works of art. This paper provides an overview of the use of electron microscopy in the conservation of paintings by discussing examples of work undertaken by the National Gallery of Victoria and the CSIRO. Work described includes the problem of distinguishing between restorers' original paint in a landscape by Arthur Streeton, and the examination of the ground or priming layer in a Rembrandt portrait which clarified its attribution to his studio. Copyright (2003) Australian Microbeam Analysis Society

  20. Use of atomic force microscopy and transmission electron microscopy for correlative studies of bacterial capsules.

    Science.gov (United States)

    Stukalov, Oleg; Korenevsky, Anton; Beveridge, Terry J; Dutcher, John R

    2008-09-01

    Bacteria can possess an outermost assembly of polysaccharide molecules, a capsule, which is attached to their cell wall. We have used two complementary, high-resolution microscopy techniques, atomic force microscopy (AFM) and transmission electron microscopy (TEM), to study bacterial capsules of four different gram-negative bacterial strains: Escherichia coli K30, Pseudomonas aeruginosa FRD1, Shewanella oneidensis MR-4, and Geobacter sulfurreducens PCA. TEM analysis of bacterial cells using different preparative techniques (whole-cell mounts, conventional embeddings, and freeze-substitution) revealed capsules for some but not all of the strains. In contrast, the use of AFM allowed the unambiguous identification of the presence of capsules on all strains used in the present study, including those that were shown by TEM to be not encapsulated. In addition, the use of AFM phase imaging allowed the visualization of the bacterial cell within the capsule, with a depth sensitivity that decreased with increasing tapping frequency.

  1. Composition quantification of electron-transparent samples by backscattered electron imaging in scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Müller, E., E-mail: erich.mueller@kit.edu; Gerthsen, D.

    2017-02-15

    The contrast of backscattered electron (BSE) images in scanning electron microscopy (SEM) depends on material parameters which can be exploited for composition quantification if some information on the material system is available. As an example, the In-concentration in thin In{sub x}Ga{sub 1−x}As layers embedded in a GaAs matrix is analyzed in this work. The spatial resolution of the technique is improved by using thin electron-transparent specimens instead of bulk samples. Although the BSEs are detected in a comparably small angular range by an annular semiconductor detector, the image intensity can be evaluated to determine the composition and local thickness of the specimen. The measured intensities are calibrated within one single image to eliminate the influence of the detection and amplification system. Quantification is performed by comparison of experimental and calculated data. Instead of using time-consuming Monte-Carlo simulations, an analytical model is applied for BSE-intensity calculations which considers single electron scattering and electron diffusion. - Highlights: • Sample thickness and composition are quantified by backscattered electron imaging. • A thin sample is used to achieve spatial resolution of few nanometers. • Calculations are carried out with a time-saving electron diffusion model. • Small differences in atomic number and density detected at low electron energies.

  2. Electron microscopy investigations of changes in morphology and conductivity of LiFePO4/C electrodes

    DEFF Research Database (Denmark)

    Scipioni, Roberto; Jørgensen, Peter S.; Ngo, Duc-The

    2016-01-01

    In this work we study the structural degradation of a laboratory Li-ion battery LiFePO4/Carbon Black (LFP/CB) cathode by various electron microscopy techniques including low kV Focused Ion Beam (FIB)/Scanning Electron Microscopy (SEM) 3D tomography. Several changes are observed in FIB/SEM images...

  3. Parainfluenza virus type 5 (PIV-5) morphology revealed by cryo-electron microscopy.

    Science.gov (United States)

    Terrier, Olivier; Rolland, Jean-Paul; Rosa-Calatrava, Manuel; Lina, Bruno; Thomas, Daniel; Moules, Vincent

    2009-06-01

    The knowledge of parainfluenza type 5 (PIV-5) virion morphology is essentially based on the observation of negatively stained preparations in conventional transmission electron microscopy (CTEM). In this study, the ultrastructure of frozen-hydrated intact PIV-5 was examined by cryo-electron microscopy (cryo-EM). Cryo-EM revealed a majority of spherical virions (70%), with a lower pleiomorphy than originally observed in CTEM. Phospholipid bilayer thickness, spike length and glycoprotein spikes density were measured. About 2000 glycoprotein spikes were present in an average-sized spherical virion. Altogether, these data depict a more precise view of PIV-5 morphology.

  4. Human enamel structure studied by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Wen, S.L.

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references

  5. Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases.

    Science.gov (United States)

    Stoll, Joshua D; Kolmakov, Andrei

    2012-12-21

    Due to its ultrahigh electron transmissivity in a wide electron energy range, molecular impermeability, high electrical conductivity and excellent mechanical stiffness, suspended graphene membranes appear to be a nearly ideal window material for in situ (in vivo) environmental electron microscopy of nano- and mesoscopic objects (including bio-medical samples) immersed in liquids and/or in dense gaseous media. In this paper, taking advantage of a small modification of the graphene transfer protocol onto metallic and SiN supporting orifices, reusable environmental cells with exchangeable graphene windows have been designed. Using colloidal gold nanoparticles (50 nm) dispersed in water as model objects for scanning electron microscopy in liquids as proof of concept, different conditions for imaging through the graphene membrane were tested. Limiting factors for electron microscopy in liquids, such as electron beam induced water radiolysis and damage of the graphene membrane at high electron doses, are discussed.

  6. A Mobile Nanoscience and Electron Microscopy Outreach Program

    Science.gov (United States)

    Coffey, Tonya; Kelley, Kyle

    2013-03-01

    We have established a mobile nanoscience laboratory outreach program in Western NC that puts scanning electron microscopy (SEM) directly in the hands of K-12 students and the general public. There has been a recent push to develop new active learning materials to educate students at all levels about nanoscience and nanotechnology. Previous projects, such as Bugscope, nanoManipulator, or SPM Live! allowed remote access to advanced microscopies. However, placing SEM directly in schools has not often been possible because the cost and steep learning curve of these technologies were prohibitive, making this project quite novel. We have developed new learning modules for a microscopy outreach experience with a tabletop SEM (Hitachi TM3000). We present here an overview of our outreach and results of the assessment of our program to date.

  7. Diffraction and microscopy with attosecond electron pulse trains

    Science.gov (United States)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Attosecond spectroscopy1-7 can resolve electronic processes directly in time, but a movie-like space-time recording is impeded by the too long wavelength ( 100 times larger than atomic distances) or the source-sample entanglement in re-collision techniques8-11. Here we advance attosecond metrology to picometre wavelength and sub-atomic resolution by using free-space electrons instead of higher-harmonic photons1-7 or re-colliding wavepackets8-11. A beam of 70-keV electrons at 4.5-pm de Broglie wavelength is modulated by the electric field of laser cycles into a sequence of electron pulses with sub-optical-cycle duration. Time-resolved diffraction from crystalline silicon reveals a propagates in space and time. This unification of attosecond science with electron microscopy and diffraction enables space-time imaging of light-driven processes in the entire range of sample morphologies that electron microscopy can access.

  8. 35 years of electron microscopy in Costa Rica

    International Nuclear Information System (INIS)

    Hernandez Chavarria, Francisco

    2011-01-01

    Electron microscopy has celebrated in 2009 the XXXV anniversary in Costa Rica. The history of the electron microscopy was initiated with the donation of a microscope by Japan and the establishment of the Unidad de Microscopia Electronica (UME), which later, has been consolidated as the Centro de Investigacion en Estructuras Microscopicas (CIEMic) of the Universidad de Costa Rica (UCR). This center has realized its own research and has gave support to different units of the UCR, state universities and the private sector. Currently, the CIEMic has had two transmission electron microscopes (TEM) and two scanning electron microscopes (SEM), besides of optical microscopy equipment, including a laser confocal microscope. The two fundamental types of electron microscopes (TEM and SEM) have generated different images. While the first has had a resolution that has allowed to analyze virus, usually their images have been flat; however, with some special techniques can obtain three-dimensional images. The image in the TEM is generated by electrons that have passed through the sample, and to interact with its atoms have changed its energy and trajectory. This, at the end, has impacted on a photosensitive screen that has become in flashes, whose intensity has depended on its energy and form the image. Meanwhile, in the MER, the image has been normal type, although with less resolution. The electrons in the MER are focused on a small area of the sample in which have interacted with the atoms of this, and has generated a a series of signals, including the most used were the secondary electrons and characteristic X-rays. In both cases, an electron from beam has generated in the filament a collision against an electron of the sample and has given part of its energy to the degree of release of its atom and issued out of the sample; this has been called secondary electrons. X-rays have been generated when an electron of the same atom that has lost the secondary electron, but in an

  9. In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratio

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Duchstein, Linus Daniel Leonhard; Chiarello, Gian Luca

    2014-01-01

    Silica-supported, bimetallic Cu-Ni nanomaterials were prepared with different ratios of Cu to Ni by incipient wetness impregnation without a specific calcination step before reduction. Different in situ characterization techniques, in particular transmission electron microscopy (TEM), X-ray...... diffraction (XRD), and X-ray absorption spectroscopy (XAS), were applied to follow the reduction and alloying process of Cu-Ni nanoparticles on silica. In situ reduction of Cu-Ni samples with structural characterization by combined synchrotron XRD and XAS reveals a strong interaction between Cu and Ni species......, which results in improved reducibility of the Ni species compared with monometallic Ni. At high Ni concentrations silica-supported Cu-Ni alloys form a homogeneous solid solution of Cu and Ni, whereas at lower Ni contents Cu and Ni are partly segregated and form metallic Cu and Cu-Ni alloy phases. Under...

  10. In situ transmission electron microscopy for magnetic nanostructures

    DEFF Research Database (Denmark)

    Ngo, Duc-The; Kuhn, Luise Theil

    2016-01-01

    Nanomagnetism is a subject of great interest because of both application and fundamental aspects in which understanding of the physical and electromagnetic structure of magnetic nanostructures is essential to explore the magnetic properties. Transmission electron microscopy (TEM) is a powerful tool...... that allows understanding of both physical structure and micromagnetic structure of the thin samples at nanoscale. Among TEM techniques, in situ TEM is the state-of-the-art approach for imaging such structures in dynamic experiments, reconstructing a real-time nanoscale picture of the properties......-structure correlation. This paper aims at reviewing and discussing in situ TEM magnetic imaging studies, including Lorentz microscopy and electron holography in TEM, applied to the research of magnetic nanostructures....

  11. Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Brisson, Alain R

    2017-01-01

    Extracellular vesicles (EVs) are cell-derived vesicles that are present in blood and other body fluids. EVs raise major interest for their diverse physiopathological roles and their potential biomedical applications. However, the characterization and quantification of EVs constitute major challenges, mainly due to their small size and the lack of methods adapted for their study. Electron microscopy has made significant contributions to the EV field since their initial discovery. Here, we describe the use of two transmission electron microscopy (TEM) techniques for imaging and quantifying EVs. Cryo-TEM combined with receptor-specific gold labeling is applied to reveal the morphology, size, and phenotype of EVs, while their enumeration is achieved after high-speed sedimentation on EM grids.

  12. Microfabricated high-bandpass foucault aperture for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  13. Combined time-lapse cinematography and immuno-electron microscopy.

    Science.gov (United States)

    Balfour, B M; Goscicka, T; MacKenzie, J L; Gautam, A; Tate, M; Clark, J

    1990-04-01

    A method was developed to record interactions between mobile non-adherent immunocytes by time-lapse cinematography and then to study the same cells by immuno-electron microscopy, using monoclonal antibodies against surface components. For this purpose a modified stage was designed to fit an inverted microscope. The attachment included a device to cool the culture chamber with N2 gas, a micro-injector for monoclonal antibody and immuno-gold treatment, and two pairs of washing needles to change the medium without disturbance. The technique was first employed to study the formation of aggregates around the antigen-presenting cells in cultures containing cells from hyper-immunized animals. Recently peripheral blood cells from normal subjects and patients with immune deficiency syndromes were stimulated with pokeweed mitogen, cluster formation was recorded, and the cells were processed for immuno-electron microscopy.

  14. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-01-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  15. An adjustable electron achromat for cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M., E-mail: rtromp@us.ibm.com [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Leiden Institute of Physics, Kamerlingh Onnes Laboratory, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-12-15

    Chromatic aberration correction in light optics began with the invention of a two-color-corrected achromatic crown/flint lens doublet by Chester Moore Hall in 1730. Such color correction is necessary because any single glass shows dispersion (i.e. its index of refraction changes with wavelength), which can be counteracted by combining different glasses with different dispersions. In cathode lens microscopes (such as Photo Electron Emission Microscopy – PEEM) we encounter a similar situation, where the chromatic aberration coefficient of the cathode lens shows strong dispersion, i.e. depends (non-linearly) on the energy with which the electrons leave the sample. Here I show how a cathode lens in combination with an electron mirror can be configured as an adjustable electron achromat. The lens/mirror combination can be corrected at two electron energies by balancing the settings of the electron mirror against the settings of the cathode lens. The achromat can be adjusted to deliver optimum performance, depending on the requirements of a specific experiment. Going beyond the achromat, an apochromat would improve resolution and transmission by a very significant margin. I discuss the requirements and outlook for such a system, which for now remains a wish waiting for fulfilment. - Highlights: • The properties of cathode objective lens plus electron mirror are discussed. • In analogy with light-optical achromats, cathode lens plus mirror can be configured as an electron achromat. • Unlike light optics, the electron achromat can be adjusted to best fulfill experimental requirements.

  16. Image formation and image analysis in electron microscopy

    International Nuclear Information System (INIS)

    Heel, M. van.

    1981-01-01

    This thesis covers various aspects of image formation and image analysis in electron microscopy. The imaging of relatively strong objects in partially coherent illumination, the coherence properties of thermionic emission sources and the detection of objects in quantum noise limited images are considered. IMAGIC, a fast, flexible and friendly image analysis software package is described. Intelligent averaging of molecular images is discussed. (C.F.)

  17. In Situ Electron Microscopy of Lactomicroselenium Particles in Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Gabor Nagy

    2016-06-01

    Full Text Available Electron microscopy was used to test whether or not (a in statu nascendi synthesized, and in situ measured, nanoparticle size does not differ significantly from the size of nanoparticles after their purification; and (b the generation of selenium is detrimental to the bacterial strains that produce them. Elemental nano-sized selenium produced by probiotic latic acid bacteria was used as a lactomicroselenium (lactomicroSel inhibitor of cell growth in the presence of lactomicroSel, and was followed by time-lapse microscopy. The size of lactomicroSel produced by probiotic bacteria was measured in situ and after isolation and purification. For these measurements the TESLA BS 540 transmission electron microscope was converted from analog (aTEM to digital processing (dTEM, and further to remote-access internet electron microscopy (iTEM. Lactobacillus acidophilus produced fewer, but larger, lactomicroSel nanoparticles (200–350 nm than Lactobacillus casei (L. casei, which generated many, smaller lactomicroSel particles (85–200 nm and grains as a cloudy, less electrodense material. Streptococcus thermophilus cells generated selenoparticles (60–280 nm in a suicidic manner. The size determined in situ in lactic acid bacteria was significantly lower than those measured by scanning electron microscopy after the isolation of lactomicroSel particles obtained from lactobacilli (100–500 nm, but higher relative to those isolated from Streptococcus thermopilus (50–100 nm. These differences indicate that smaller lactomicroSel particles could be more toxic to the producing bacteria themselves and discrepancies in size could have implications with respect to the applications of selenium nanoparticles as prebiotics.

  18. Demonstration of Polysaccharide Capsule in Campylobacter jejuni Using Electron Microscopy

    OpenAIRE

    Karlyshev, Andrey V.; McCrossan, Maria V.; Wren, Brendan W.

    2001-01-01

    Recently, we reported that Campylobacter jejuni, an important gastrointestinal pathogen, has the genetic determinants to produce a capsular polysaccharide (Karlyshev et al., Mol. Microbiol. 35:529–541, 2000). Despite these data, the presence of a capsule in these bacteria has remained controversial. In this study we stain C. jejuni cells with the cationic dye Alcian blue and demonstrate for the first time by electron microscopy that C. jejuni cells produce a polysaccharide capsule that is ret...

  19. Cross-sectional transmission electron microscopy of semiconductors

    International Nuclear Information System (INIS)

    Sadana, D.K.

    1982-10-01

    A method to prepare cross-sectional (X) semiconductor specimens for transmission electron microscopy (TEM) has been described. The power and utility of XTEM has been demonstrated. It has been shown that accuracy and interpretation of indirect structural-defects profiling techniques, namely, MeV He + channeling and secondary ion mass spectrometry (SIMS) can be greatly enhanced by comparing their results with those obtained by XTEM from the same set of samples

  20. Application of Colloidal Palladium Nanoparticles for Labeling in Electron Microscopy

    Czech Academy of Sciences Publication Activity Database

    Vancová, Marie; Šlouf, Miroslav; Langhans, Jan; Pavlová, Eva; Nebesářová, Jana

    2011-01-01

    Roč. 17, č. 5 (2011), s. 810-816 ISSN 1431-9276 R&D Projects: GA AV ČR KAN200520704; GA AV ČR KJB600960906; GA ČR GAP205/10/0348 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z40500505 Keywords : electron microscopy * colloidal palladium * nanoparticles * labeling * salivary glands * Ixodes ricinus Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.007, year: 2011

  1. Reciprocity relations in transmission electron microscopy: A rigorous derivation.

    Science.gov (United States)

    Krause, Florian F; Rosenauer, Andreas

    2017-01-01

    A concise derivation of the principle of reciprocity applied to realistic transmission electron microscopy setups is presented making use of the multislice formalism. The equivalence of images acquired in conventional and scanning mode is thereby rigorously shown. The conditions for the applicability of the found reciprocity relations is discussed. Furthermore the positions of apertures in relation to the corresponding lenses are considered, a subject which scarcely has been addressed in previous publications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Electron microscopy and plastic deformation of HCP metals and alloys

    International Nuclear Information System (INIS)

    Poirier, J.-P.; Le Hazif, Roger

    1976-01-01

    The recent literature on the slip systems of the h.c.p. metals is reviewed and the contribution of transmission electron microscopy assessed. It is now clear that the stress-strain curves and the dislocation configurations in the slip plane are very similar, whether the principal slip system is basal or prismatic. The important problem of the relative ease of slip systems is linked to the ease of splitting of dislocations in the slip planes and to the electronic band structure of the metal [fr

  3. Early studies of placental ultrastructure by electron microscopy

    DEFF Research Database (Denmark)

    Carter, A M; Enders, A C

    2016-01-01

    many other scientists to Washington University in St. Louis. Work on human placental ultrastructure was initiated at Cambridge and Kyoto whilst domestic animals were initially studied by Björkman in Stockholm and electron micrographs of bat placenta were published by Wimsatt of Cornell University......BACKGROUND: Transmission electron microscopy (TEM) was first applied to study placental ultrastructure in the 1950's. We review those early studies and mention the scientists that employed or encouraged the use of TEM. FINDINGS: Among the pioneers Edward W. Dempsey was a key figure who attracted...

  4. Experiments in electron microscopy: from metals to nerves

    International Nuclear Information System (INIS)

    Unwin, Nigel

    2015-01-01

    Electron microscopy has advanced remarkably as a tool for biological structure research since the development of methods to examine radiation-sensitive unstained specimens and the introduction of cryo-techniques. Structures of biological molecules at near-atomic resolution can now be obtained from images of single particles as well as crystalline arrays. It has also become possible to analyze structures of molecules in their functional context, i.e. in their natural membrane or cellular setting, and in an ionic environment like that in living tissue. Electron microscopy is thus opening ways to answer definitively questions about physiological mechanisms. Here I recall a number of experiments contributing to, and benefiting from the technical advances that have taken place. I begin—in the spirit of this crystallography series—with some biographical background, and then sketch the path to an analysis by time-resolved microscopy of the opening mechanism of an ion channel (nicotinic acetylcholine receptor). This analysis illustrates how electron imaging can be combined with freeze-trapping to illuminate a transient biological event: in our case, chemical-to-electrical transduction at the nerve-muscle synapse. (invited comment)

  5. Navigating 3D electron microscopy maps with EM-SURFER.

    Science.gov (United States)

    Esquivel-Rodríguez, Juan; Xiong, Yi; Han, Xusi; Guang, Shuomeng; Christoffer, Charles; Kihara, Daisuke

    2015-05-30

    The Electron Microscopy DataBank (EMDB) is growing rapidly, accumulating biological structural data obtained mainly by electron microscopy and tomography, which are emerging techniques for determining large biomolecular complex and subcellular structures. Together with the Protein Data Bank (PDB), EMDB is becoming a fundamental resource of the tertiary structures of biological macromolecules. To take full advantage of this indispensable resource, the ability to search the database by structural similarity is essential. However, unlike high-resolution structures stored in PDB, methods for comparing low-resolution electron microscopy (EM) density maps in EMDB are not well established. We developed a computational method for efficiently searching low-resolution EM maps. The method uses a compact fingerprint representation of EM maps based on the 3D Zernike descriptor, which is derived from a mathematical series expansion for EM maps that are considered as 3D functions. The method is implemented in a web server named EM-SURFER, which allows users to search against the entire EMDB in real-time. EM-SURFER compares the global shapes of EM maps. Examples of search results from different types of query structures are discussed. We developed EM-SURFER, which retrieves structurally relevant matches for query EM maps from EMDB within seconds. The unique capability of EM-SURFER to detect 3D shape similarity of low-resolution EM maps should prove invaluable in structural biology.

  6. System and method for compressive scanning electron microscopy

    Science.gov (United States)

    Reed, Bryan W

    2015-01-13

    A scanning transmission electron microscopy (STEM) system is disclosed. The system may make use of an electron beam scanning system configured to generate a plurality of electron beam scans over substantially an entire sample, with each scan varying in electron-illumination intensity over a course of the scan. A signal acquisition system may be used for obtaining at least one of an image, a diffraction pattern, or a spectrum from the scans, the image, diffraction pattern, or spectrum representing only information from at least one of a select subplurality or linear combination of all pixel locations comprising the image. A dataset may be produced from the information. A subsystem may be used for mathematically analyzing the dataset to predict actual information that would have been produced by each pixel location of the image.

  7. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1984-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions and image interpretation in transmission electron mic­ roscopy. The book evolved from lectures delivered at the University of Munster and is a revised version of the first part of my earlier book Elek­ tronenmikroskopische Untersuchungs- und Priiparationsmethoden, omitting the part which describes specimen-preparation methods. In the introductory chapter, the different types of electron microscope are compared, the various electron-specimen interactions and their applications are summarized and the most important aspects of high-resolution, analytical and high-voltage electron microscopy are discussed. The optics of electron lenses is discussed in Chapter 2 in order to bring out electron-lens properties that are important for an understanding of the function of an electron microscope. In Chapter 3, the wave optics of elec­ trons and the phase shifts by electrostatic and magnetic fields are introduced; Fresne...

  8. Axial ion-electron emission microscopy of IC radiation hardness

    Science.gov (United States)

    Doyle, B. L.; Vizkelethy, G.; Walsh, D. S.; Swenson, D.

    2002-05-01

    A new system for performing radiation effects microscopy (REM) has been developed at Sandia National Laboratory in Albuquerque. This system combines two entirely new concepts in accelerator physics and nuclear microscopy. A radio frequency quadrupole (RFQ) linac is used to boost the energy of ions accelerated by a conventional Tandem Van de Graaff-Pelletron to velocities of 1.9 MeV/amu. The electronic stopping power for heavy ions is near a maximum at this velocity, and their range is ˜20 μm in Si. These ions therefore represent the most ionizing form of radiation in nature, and are nearly ideal for performing single event effects testing of integrated circuits. Unfortunately, the energy definition of the RFQ-boosted ions is rather poor (˜ a few %), which makes problematic the focussing of such ions to the submicron spots required for REM. To circumvent this problem, we have invented ion electron emission microscopy (IEEM). One can perform REM with the IEEM system without focussing or scanning the ion beam. This is because the position on the sample where each ion strikes is determined by projecting ion-induced secondary electrons at high magnification onto a single electron position sensitive detector. This position signal is then correlated with each REM event. The IEEM system is now mounted along the beam line in an axial geometry so that the ions pass right through the electron detector (which is annular), and all of the electrostatic lenses used for projection. The beam then strikes the sample at normal incidence which results in maximum ion penetration and removes a parallax problem experienced in an earlier system. Details of both the RFQ-booster and the new axial IEEM system are given together with some of the initial results of performing REM on Sandia-manufactured radiation hardened integrated circuits.

  9. Electron microscopy study of antioxidant interaction with bacterial cells

    Science.gov (United States)

    Plotnikov, Oleg P.; Novikova, Olga V.; Konnov, Nikolai P.; Korsukov, Vladimir N.; Gunkin, Ivan F.; Volkov, Uryi P.

    2000-10-01

    To maintain native microorganisms genotype and phenotype features a lyophylization technique is widely used. However in this case cells are affected by influences of vacuum and low temperature that cause a part of the cells population to be destruction. Another factor reduced microorganisms vitality is formation of reactive oxygen forms that damage certain biological targets (such as DNA, membranes etc.) Recently to raise microorganism's resistance against adverse condition natural and synthetic antioxidants are used. Antioxidant- are antagonists of free radicals. Introduction of antioxidants in protective medium for lyophylization increase bacteria storage life about 2,0-4,8 fold in comparison with reference samples. In the article the main results of our investigation of antioxidants interaction with microorganism cells is described. As bacteria cells we use vaccine strain yersinia pestis EV, that were grown for 48 h at 28 degree(s)C on the Hottinger agar (pH 7,2). Antioxidants are inserted on the agar surface in specimen under test. To investigate a localization of antioxidants for electron microscopy investigation, thallium organic antioxidants were used. The thallium organic compounds have an antioxidant features if thallium is in low concentration (about 1(mu) g/ml). The localization of the thallium organic antioxidants on bacteria Y. pestis EV is visible in electron microscopy images, thallium being heavy metal with high electron density. The negatively stained bacteria and bacteria thin sections with thallium organic compounds were investigated by means of transmission electron microscopy. The localization of the thallium organic compounds is clearly visible in electron micrographs as small dark spots with size about 10-80nm. Probably mechanisms of interaction of antioxidants with bacteria cells are discussed.

  10. Probing cytotoxicity of nanoparticles and organic compounds using scanning proton microscopy, scanning electron microscopy and fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong Yongpeng [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China)], E-mail: yongpengt@yahoo.com.cn; Li Changming [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Liang Feng [Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen Jianmin [Shenzhen Municipal Hospital for Chronic Disease Control and Prevention, Guangdong 518020 (China); Zhang Hong; Liu Guoqing; Sun Huibin [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China); Luong, John H.T. [Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, H4P 2R2 (Canada)

    2008-12-15

    Scanning proton microscopy, scanning electron microscopy (SEM) and fluorescence microscopy have been used to probe the cytotoxicity effect of benzo[a]pyrene (BaP), ethidium bromide (EB) and nanoparticles (ZnO, Al{sub 2}O{sub 3} and TiO{sub 2}) on a T lymphoblastic leukemia Jurkat cell line. The increased calcium ion (from CaCl{sub 2}) in the culture medium stimulated the accumulation of BaP and EB inside the cell, leading to cell death. ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles, however, showed a protective effect against these two organic compounds. Such inorganic nanoparticles complexed with BaP or EB which became less toxic to the cell. Fe{sub 2}O{sub 3} nanoparticles as an insoluble particle model scavenged by macrophage were investigated in rats. They were scavenged out of the lung tissue about 48 h after infection. This result suggest that some insoluble inorganic nanoparticles of PM (particulate matters) showed protective effects on organic toxins induced acute toxic effects as they can be scavenged by macrophage cells. Whereas, some inorganic ions such as calcium ion in PM may help environmental organic toxins to penetrate cell membrane and induce higher toxic effect.

  11. Nanoscale electrowetting effects observed by using friction force microscopy.

    Science.gov (United States)

    Revilla, Reynier; Guan, Li; Zhu, Xiao-Yang; Yang, Yan-Lian; Wang, Chen

    2011-06-21

    We report the study of electrowetting (EW) effects under strong electric field on poly(methyl methacrylate) (PMMA) surface by using friction force microscopy (FFM). The friction force dependence on the electric field at nanometer scale can be closely related to electrowetting process based on the fact that at this scale frictional behavior is highly affected by capillary phenomena. By measuring the frictional signal between a conductive atomic force microscopy (AFM) tip and the PMMA surface, the ideal EW region (Young-Lippmann equation) and the EW saturation were identified. The change in the interfacial contact between the tip and the PMMA surface with the electric field strength is closely associated with the transition from the ideal EW region to the EW saturation. In addition, a reduction of the friction coefficient was observed when increasing the applied electric field in the ideal EW region. © 2011 American Chemical Society

  12. In-situ reduction of promoted cobalt oxide supported on alumina by environmental transmission electron microscopy

    DEFF Research Database (Denmark)

    Dehghan, Roya; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2011-01-01

    the reactivity of the nanoparticles and the importance of controlling the gas composition and specimen temperature during this type of experiment. Similar behaviour was observed for a non-promoted catalyst. Imaging and analysis of the promoted sample before and after reduction indicated a uniform distribution...... resolution transmission electron microscopy and scanning transmission electron microscopy imaging. The cobalt particles were mainly face centred cubic while some hexagonal close packed particles were also found. Reoxidation of the sample upon cooling to room temperature, still under flowing H2, underlines...

  13. Investigation of Nematode Diversity using Scanning Electron Microscopy and Fluorescent Microscopy

    Science.gov (United States)

    Seacor, Taylor; Howell, Carina

    2013-03-01

    Nematode worms account for the vast majority of the animals in the biosphere. They are colossally important to global public health as parasites, and to agriculture both as pests and as beneficial inhabitants of healthy soil. Amphid neurons are the anterior chemosensory neurons in nematodes, mediating critical behaviors including chemotaxis and mating. We are examining the cellular morphology and external anatomy of amphid neurons, using fluorescence microscopy and scanning electron microscopy, respectively, of a wide range of soil nematodes isolated in the wild. We use both classical systematics (e.g. diagnostic keys) and molecular markers (e.g. ribosomal RNA) to classify these wild isolates. Our ultimate aim is to build a detailed anatomical database in order to dissect genetic pathways of neuronal development and function across phylogeny and ecology. Research supported by NSF grants 092304, 0806660, 1058829 and Lock Haven University FPDC grants

  14. Studies on the mechanism of replication of adenovirus DNA. III. Electron microscopy of replicating DNA

    NARCIS (Netherlands)

    Ellens, D.J.; Sussenbach, J.S.; Jansz, H.S.

    1974-01-01

    Replicating Ad5 DNA was isolated from nuclei of infected KB cells and studied by electron microscopy. Branched as well as unbranched linear intermediates were observed containing extended regions of single-stranded DNA. The relationship between the branched and unbranched structures was studied

  15. Low energy electron microscopy imaging using Medipix2 detector

    International Nuclear Information System (INIS)

    Sikharulidze, I.; Gastel, R. van; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, S.J. van der

    2011-01-01

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  16. Low energy electron microscopy imaging using Medipix2 detector

    Energy Technology Data Exchange (ETDEWEB)

    Sikharulidze, I., E-mail: irakli@chem.leidenuniv.nl [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Gastel, R. van [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Schramm, S. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); Abrahams, J.P. [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Poelsema, B. [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Tromp, R.M. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Molen, S.J. van der [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands)

    2011-05-15

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  17. The role of electron irradiation history in liquid cell transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Trevor H.; Mehta, Hardeep S.; Park, Chiwoo; Kelly, Ryan T.; Shokuhfar, Tolou; Evans, James E.

    2018-04-20

    In situ liquid cell transmission electron microscopy (LC-TEM) allows dynamic nanoscale characterization of systems in a hydrated state. Although powerful, this technique remains impaired by issues of repeatability that limit experimental fidelity and hinder the identification and control of some variables underlying observed dynamics. We detail new LC- TEM devices that improve experimental reproducibility by expanding available imaging area and providing a platform for investigating electron flux history on the sample. Irradiation history is an important factor influencing LC-TEM results that has, to this point, been largely qualitatively and not quantitatively described. We use these devices to highlight the role of cumulative electron flux history on samples from both nanoparticle growth and biological imaging experiments and demonstrate capture of time zero, low-dose images on beam-sensitive samples. In particular, the ability to capture pristine images of biological samples, where the acquired image is the first time that the cell experiences significant electron flux, allowed us to determine that nanoparticle movement compared to the cell membrane was a function of cell damage and therefore an artifact rather than visualizing cell dynamics in action. These results highlight just a subset of the new science that is accessible with LC-TEM through the new multiwindow devices with patterned focusing aides.

  18. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography

    Science.gov (United States)

    Jesse, S.; Chi, M.; Belianinov, A.; Beekman, C.; Kalinin, S. V.; Borisevich, A. Y.; Lupini, A. R.

    2016-05-01

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called “big-data” methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. However, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy.

  19. Low energy electron point source microscopy: beyond imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Andre; Goelzhaeuser, Armin [Physics of Supramolecular Systems and Surfaces, University of Bielefeld, Postfach 100131, 33501 Bielefeld (Germany)

    2010-09-01

    Low energy electron point source (LEEPS) microscopy has the capability to record in-line holograms at very high magnifications with a fairly simple set-up. After the holograms are numerically reconstructed, structural features with the size of about 2 nm can be resolved. The achievement of an even higher resolution has been predicted. However, a number of obstacles are known to impede the realization of this goal, for example the presence of electric fields around the imaged object, electrostatic charging or radiation induced processes. This topical review gives an overview of the achievements as well as the difficulties in the efforts to shift the resolution limit of LEEPS microscopy towards the atomic level. A special emphasis is laid on the high sensitivity of low energy electrons to electrical fields, which limits the structural determination of the imaged objects. On the other hand, the investigation of the electrical field around objects of known structure is very useful for other tasks and LEEPS microscopy can be extended beyond the task of imaging. The determination of the electrical resistance of individual nanowires can be achieved by a proper analysis of the corresponding LEEPS micrographs. This conductivity imaging may be a very useful application for LEEPS microscopes. (topical review)

  20. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    Science.gov (United States)

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  1. Prospects for hybrid pixel detectors in electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.

    2001-01-01

    The current status of CCD-based detectors for cryo-electron microscopy of membrane and other proteins is described briefly, highlighting the strengths and weaknesses of the technique. Over the past few years CCD detectors have been used extensively in electron crystallography of membrane proteins, and in particular, in the study of the molecular transitions which take place during the photo-cycle of the light-driven proton pump bacteriorhodopsin. Direct-detection methods, which avoid the intermediate stages of converting the electron energy into light, offer the possibility of improved spatial resolution compared to CCD detectors; in addition, photon counting and noise-free readout should improve the signal-to-noise ratio

  2. Transmission Electron Microscopy of the Gastrointestinal Tract of Nile Perch Lates niloticus

    OpenAIRE

    Namulawa, V. T; Kato, C. D; Nyatia, E; Rutaisire, J; Britz, P. J

    2015-01-01

    The ultrastructure of the gastrointestinal tract of Nile perch was described using Transmission Electron Microscopy standard procedures. Investigations revealed the presence of mucous cells, blood vessels and oil droplets plus several nerve cells and muscle bundles in the oral cavity. Further observations revealed columnar epithelial cells in the oesophagus, with a ragged surface, high electron dense cytoplasm, intercellular spaces, mitochondria and mucus granules. The lamina propria of the o...

  3. An electromechanical material testing system for in situ electron microscopy and applications

    OpenAIRE

    Zhu, Yong; Espinosa, Horacio D.

    2005-01-01

    We report the development of a material testing system for in situ electron microscopy (EM) mechanical testing of nanostructures. The testing system consists of an actuator and a load sensor fabricated by means of surface micromachining. This previously undescribed nanoscale material testing system makes possible continuous observation of the specimen deformation and failure with subnanometer resolution, while simultaneously measuring the applied load electronically with nanonewton resolution...

  4. SEGMENTATION OF MITOCHONDRIA IN ELECTRON MICROSCOPY IMAGES USING ALGEBRAIC CURVES.

    Science.gov (United States)

    Seyedhosseini, Mojtaba; Ellisman, Mark H; Tasdizen, Tolga

    2013-01-01

    High-resolution microscopy techniques have been used to generate large volumes of data with enough details for understanding the complex structure of the nervous system. However, automatic techniques are required to segment cells and intracellular structures in these multi-terabyte datasets and make anatomical analysis possible on a large scale. We propose a fully automated method that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy (EM) images. The main idea is to use algebraic curves to extract shape features together with texture features from image patches. Then, these powerful features are used to learn a random forest classifier, which can predict mitochondria locations precisely. Finally, the algebraic curves together with regional information are used to segment the mitochondria at the predicted locations. We demonstrate that our method outperforms the state-of-the-art algorithms in segmentation of mitochondria in EM images.

  5. Ultrahigh Voltage Electron Microscopy Links Neuroanatomy and Neuroscience/Neuroendocrinology

    Directory of Open Access Journals (Sweden)

    Hirotaka Sakamoto

    2012-01-01

    Full Text Available The three-dimensional (3D analysis of anatomical ultrastructures is extremely important in most fields of biological research. Although it is very difficult to perform 3D image analysis on exact serial sets of ultrathin sections, 3D reconstruction from serial ultrathin sections can generally be used to obtain 3D information. However, this technique can only be applied to small areas of a specimen because of technical and physical difficulties. We used ultrahigh voltage electron microscopy (UHVEM to overcome these difficulties and to study the chemical neuroanatomy of 3D ultrastructures. This methodology, which links UHVEM and light microscopy, is a useful and powerful tool for studying molecular and/or chemical neuroanatomy at the ultrastructural level.

  6. Generation and application of bessel beams in electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM, Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Harris, Jérémie [Department of Physics, University of Ottawa, 25 Templeton St., Ottawa, Ontario, Canada K1N 6N5 (Canada); Gazzadi, Gian Carlo [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Balboni, Roberto [CNR-IMM Bologna, Via P. Gobetti 101, 40129 Bologna (Italy); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Dennis, Mark R. [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W.; Karimi, Ebrahim [Department of Physics, University of Ottawa, 25 Templeton St., Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2016-07-15

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. - Highlights: • Bessel beams with different convergence, topological charge, visible fringes are demonstrated. • The relation between the Fresnel hologram and the probe shape is explained by detailed calculations and experiments. • Among the holograms here presented the highest relative efficiency is 37%, the best result ever reached for blazed holograms.

  7. A high sensitivity imaging detector for electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.; Andrews, H.N.; Henderson, R.

    1995-01-01

    A camera for electron microscopy based on a low readout noise cooled-CCD is described in this paper. The primary purpose of this camera is to record electron diffraction from ordered arrays of proteins but also has potential applications in imaging, electron tomography and for the automatic alignment of the electron microscope. Electrons (energy similar 120 kV) which are scattered by the specimen to form the image, which is normally recorded on film, are converted to visible photons in a polycrystalline phosphor and the resulting image is stored on the CCD (EEV 05-20, 1152 by 814, 22.5 μm square pixels). The main advantages of using CCDs include a large dynamic range, very good linearity and the possibility of immediate access to the data which is in a digitised form capable of further processing on-line during the experiment. We have built specially designed CCD ''drive'' electronics in a VME crate, interfaced to a Sun Sparcstation, for controlling the CCD operations. Data reduction programs have been installed, previously used off-line, to speed up data processing, and provide analysed data within a few minutes after the exposure. (orig.)

  8. High-resolution electron microscopy of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  9. Generation and application of bessel beams in electron microscopy

    International Nuclear Information System (INIS)

    Grillo, Vincenzo; Harris, Jérémie; Gazzadi, Gian Carlo; Balboni, Roberto; Mafakheri, Erfan; Dennis, Mark R.; Frabboni, Stefano; Boyd, Robert W.; Karimi, Ebrahim

    2016-01-01

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. - Highlights: • Bessel beams with different convergence, topological charge, visible fringes are demonstrated. • The relation between the Fresnel hologram and the probe shape is explained by detailed calculations and experiments. • Among the holograms here presented the highest relative efficiency is 37%, the best result ever reached for blazed holograms.

  10. Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells

    KAUST Repository

    Ali, Haider; Yang, Xinbo; Weber, Klaus; Schoenfeld, Winston V.; Davis, Kristopher O.

    2017-01-01

    In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21

  11. Contribution of scanning Auger microscopy to electron beam damage study

    International Nuclear Information System (INIS)

    Fontaine, J.M.

    1983-04-01

    Electron bombardment can produce surface modifications of the analysed sample. The electron beam effects on solid surfaces which have been discussed in the published literature can be classified into the following four categories: (1) heating and its consequent effects, (2) charge accumulation in insulators and its consequent effects, (3) electron stimulated adsorption (ESA), and (4) electron stimulated desorption and/or decomposition (ESD). In order to understand the physico-chemical processes which take place under electron irradiation in an Al-O system, we have carried out experiments in which, effects, such as heating, charging and gas contamination, were absent. Our results point out the role of an enhanced surface diffusion of oxygen during electron bombardment of an Al (111) sample. The importance of this phenomenon and the contribution of near-elastic scattering of the primary electrons (5 keV) to the increase of the oxidation degree observed on Al (111) are discussed, compared to the generally studied effects

  12. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels

    2010-01-18

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2-3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. © 2010 Microscopy Society of America.

  13. Progress and applications of in situ transmission electron microscopy

    International Nuclear Information System (INIS)

    Wang Rongming; Liu Jialong; Song Yuanjun

    2015-01-01

    Recent progress in the application of in situ transmission electron microscopy (TEM) is briefly reviewed. It is emphasized that the development of advanced in situ TEM techniques makes it possible to investigate the evolution of materials under heat, strain, magnetic field, electric field or chemical reaction environments on the atomic scale. The mechanism of the microstructure evolution under various conditions and the relationship between the atomic structures and their properties can be obtained, which is beneficial for the design of new materials with tailored properties. The clarification of the structure-property relationship will help to develop new materials and solve related basic problems in the field of condensed matter physics. (authors)

  14. Analysis of archaeological materials through Scanning electron microscopy

    International Nuclear Information System (INIS)

    Camacho, A.; Tenorio C, D.; Elizalde, S.; Mandujano, C.; Cassiano, G.

    2005-01-01

    With the purpose to know the uses and the chemical composition of some cultural objects in the pre hispanic epoch this work presents several types of analysis for identifying them by means of the Scanning electron microscopy and its techniques as the Functional analysis of artifacts based on the 'tracks of use' analysis, also the X-ray spectroscopy and the X-ray dispersive energy (EDS) are mentioned, all of them allowing a major approach to the pre hispanic culture in Mexico. (Author)

  15. Fracture characteristics of uranium alloys by scanning electron microscopy

    International Nuclear Information System (INIS)

    Koger, J.W.; Bennett, R.K. Jr.

    1976-10-01

    The fracture characteristics of uranium alloys were determined by scanning electron microscopy. The fracture mode of stress-corrosion cracking (SCC) of uranium-7.5 weight percent niobium-2.5 weight percent zirconium (Mulberry) alloy, uranium--niobium alloys, and uranium--molybdenum alloys in aqueous chloride solutions is intergranular. The SCC fracture surface of the Mulberry alloy is characterized by very clean and smooth grain facets. The tensile-overload fracture surfaces of these alloys are characteristically ductile dimple. Hydrogen-embrittlement failures of the uranium alloys are brittle and the fracture mode is transgranular. Fracture surfaces of the uranium-0.75 weight percent titanium alloys are quasi cleavage

  16. Droplet Epitaxy Image Contrast in Mirror Electron Microscopy

    Science.gov (United States)

    Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.

    2017-01-01

    Image simulation methods are applied to interpret mirror electron microscopy (MEM) images obtained from a movie of GaAs droplet epitaxy. Cylindrical symmetry of structures grown by droplet epitaxy is assumed in the simulations which reproduce the main features of the experimental MEM image contrast, demonstrating that droplet epitaxy can be studied in real-time. It is therefore confirmed that an inner ring forms at the droplet contact line and an outer ring (or skirt) occurs outside the droplet periphery. We believe that MEM combined with image simulations will be increasingly used to study the formation and growth of quantum structures.

  17. Transmission electron microscopy investigation of Bi-2223/Ag tapes

    DEFF Research Database (Denmark)

    Andersen, L.G.; Bals, S.; Tendeloo, G. Van

    2001-01-01

    during the tape processing, (3) a study of the grain boundaries on an atomic scale, including intergrowth investigations. Tapes with different process parameters have been compared with respect to the microstructure. A fully processed tape has on the average 50% thicker Bi-2223 grains than a tape after......The microstructure of (Bi,Pb)(2)Sr2Ca2CuOx (Bi-2223) tapes has been investigated by means of transmission electron microscopy (TEM) and high-resolution TEM. The emphasis has been placed on: (1) an examination of the grain morphology and size, (2) grain and colony boundary angles, which are formed...

  18. The thin layer technique and its application to electron microscopy

    International Nuclear Information System (INIS)

    Ranc, G.

    1957-10-01

    This work deals with the technique of thin layers obtained by evaporation under vacuum, in the thickness range extending from a few monoatomic layers to several hundred angstroms. The great theoretical and practical interest of these layers has, it is well known, given rise to many investigations from Faraday onwards. Within the necessarily restricted limits of this study, we shall approach the problem more particularly from the point of view of: - their production; - their use in electron microscopy. A critical appraisal is made, in the light of present-day knowledge, based on our personal experience and on an extensive bibliography which we have collected on the subject. (author) [fr

  19. Direct single electron detection with a CMOS detector for electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.; Henderson, R.; Pryddetch, M.; Allport, P.; Evans, A.

    2005-01-01

    We report the results of an investigation into the use of a monolithic active pixel sensor (MAPS) for electron microscopy. MAPS, designed originally for astronomers at the Rutherford Appleton Laboratories, was installed in a 120 kV electron microscope (Philips CM12) at the MRC Laboratory in Cambridge for tests which included recording single electrons at 40 and 120 keV, and measuring signal-to-noise ratio (SNR), spatial resolution and radiation sensitivity. Our results show that, due to the excellent SNR and resolution, it is possible to register single electrons. The radiation damage to the detector is apparent with low doses and gets progressively greater so that its lifetime is limited to 600,000-900,000 electrons/pixel (very approximately 10-15 krad). Provided this detector can be radiation hardened to reduce its radiation sensitivity several hundred fold and increased in size, it will provide excellent performance for all types of electron microscopy

  20. Electronic structure classifications using scanning tunneling microscopy conductance imaging

    International Nuclear Information System (INIS)

    Horn, K.M.; Swartzentruber, B.S.; Osbourn, G.C.; Bouchard, A.; Bartholomew, J.W.

    1998-01-01

    The electronic structure of atomic surfaces is imaged by applying multivariate image classification techniques to multibias conductance data measured using scanning tunneling microscopy. Image pixels are grouped into classes according to shared conductance characteristics. The image pixels, when color coded by class, produce an image that chemically distinguishes surface electronic features over the entire area of a multibias conductance image. Such open-quotes classedclose quotes images reveal surface features not always evident in a topograph. This article describes the experimental technique used to record multibias conductance images, how image pixels are grouped in a mathematical, classification space, how a computed grouping algorithm can be employed to group pixels with similar conductance characteristics in any number of dimensions, and finally how the quality of the resulting classed images can be evaluated using a computed, combinatorial analysis of the full dimensional space in which the classification is performed. copyright 1998 American Institute of Physics

  1. Advanced electron microscopy characterization of nanomaterials for catalysis

    Directory of Open Access Journals (Sweden)

    Dong Su

    2017-04-01

    Full Text Available Transmission electron microscopy (TEM has become one of the most powerful techniques in the fields of material science, inorganic chemistry and nanotechnology. In terms of resolutions, advanced TEM may reach a high spatial resolution of 0.05 nm, a high energy-resolution of 7 meV. In addition, in situ TEM can help researchers to image the process happened within 1 ms. This paper reviews the recent technical progresses of applying advanced TEM characterization on nanomaterials for catalysis. The text is organized based on the perspective of application: for example, size, composition, phase, strain, and morphology. The electron beam induced effect and in situ TEM are also introduced. I hope this review can help the scientists in related fields to take advantage of advanced TEM to their own researches. Keywords: Advanced TEM, Nanomaterials, Catalysts, In situ

  2. Experimental transmission electron microscopy studies and phenomenological model of bismuth-based superconducting compounds

    International Nuclear Information System (INIS)

    Elboussiri, Khalid

    1991-01-01

    The main part of this thesis is devoted to an experimental study by transmission electron microscopy of the different phases of the superconducting bismuth cuprates Bi_2Sr_2Ca_n_-_1Cu_nO_2_n_+_4. In high resolution electron microscopy, the two types of incommensurate modulation realized in these compounds have been observed. A model of structure has been proposed from which the simulated images obtained are consistent with observations. The medium resolution images correlated with the electron diffraction data have revealed existence of a multi-soliton regime with latent lock in phases of commensurate periods between 4b and 10b. At last, a description of different phases of these compounds as a result of superstructures from a disordered perovskite type structure is proposed (author) [fr

  3. Structural defects in multiferroic BiMnO3 studied by transmission electron microscopy and electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Yang, H.; Chi, Z. H.; Yao, L. D.; Zhang, W.; Li, F. Y.; Jin, C. Q.; Yu, R. C.

    2006-01-01

    The multiferroic material BiMnO 3 synthesized under high pressure has been systematically studied by transmission electron microscopy and electron energy-loss spectroscopy, and some important structural defects are revealed in this multiferroic material. The frequently observed defects are characterized to be Σ3(111) twin boundaries, Ruddlesden-Popper [Acta Crystallogr. 11, 54 (1958)] antiphase boundaries, and a p p superdislocations connected with a small segment of Ruddlesden-Popper defect. These defects are present initially in the as-synthesized sample. In addition, we find that ordered voids (oxygen vacancies) are easily introduced into the multiferroic BiMnO 3 by electron-beam irradiation

  4. A national facility for biological cryo-electron microscopy.

    Science.gov (United States)

    Saibil, Helen R; Grünewald, Kay; Stuart, David I

    2015-01-01

    Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  5. Collaborative Computational Project for Electron cryo-Microscopy

    International Nuclear Information System (INIS)

    Wood, Chris; Burnley, Tom; Patwardhan, Ardan; Scheres, Sjors; Topf, Maya; Roseman, Alan; Winn, Martyn

    2015-01-01

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed

  6. Collaborative Computational Project for Electron cryo-Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Chris; Burnley, Tom [Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom); Patwardhan, Ardan [European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom); Scheres, Sjors [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Topf, Maya [University of London, Malet Street, London WC1E 7HX (United Kingdom); Roseman, Alan [University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Winn, Martyn, E-mail: martyn.winn@stfc.ac.uk [Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom)

    2015-01-01

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed.

  7. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  8. Transmission electron microscopy a textbook for materials science

    CERN Document Server

    Williams, David B

    1996-01-01

    Electron microscopy has revolutionized our understanding the extraordinary intellectual demands required of the mi­ of materials by completing the processing-structure-prop­ croscopist in order to do the job properly: crystallography, erties links down to atomistic levels. It now is even possible diffraction, image contrast, inelastic scattering events, and to tailor the microstructure (and meso structure ) of materials spectroscopy. Remember, these used to be fields in them­ to achieve specific sets of properties; the extraordinary abili­ selves. Today, one has to understand the fundamentals ties of modem transmission electron microscopy-TEM­ of all of these areas before one can hope to tackle signifi­ instruments to provide almost all of the structural, phase, cant problems in materials science. TEM is a technique of and crystallographic data allow us to accomplish this feat. characterizing materials down to the atomic limits. It must Therefore, it is obvious that any curriculum in modem mate­ be use...

  9. Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles.

    Directory of Open Access Journals (Sweden)

    Julien Burlaud-Gaillard

    Full Text Available The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy. CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.

  10. Observing electron motion in molecules

    International Nuclear Information System (INIS)

    Chelkowski, S; Yudin, G L; Bandrauk, A D

    2006-01-01

    We study analytically the possibility for monitoring electron motion in a molecule using two ultrashort laser pulses. The first prepares a coherent superposition of two electronic molecular states whereas the second (attosecond pulse) photoionizes the molecule. We show that interesting information about electron dynamics can be obtained from measurement of the photoelectron spectra as a function of the time delay between two pulses. In particular, asymmetries in photoelectron angular distribution provide a simple signature of the electron motion within the initial time-dependent coherently coupled two molecular states. Both asymmetries and electron spectra show very strong two-centre interference patterns. We illustrate these effects using as an example a dissociating hydrogen molecular ion probed by the attosecond pulses

  11. Transmission Electron Microscopy of a CMSX-4 Ni-Base Superalloy Produced by Selective Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Alireza B. Parsa

    2016-10-01

    Full Text Available In this work, the microstructures of superalloy specimens produced using selective electron beam melting additive manufacturing were characterized. The materials were produced using a CMSX-4 powder. Two selective electron beam melting processing strategies, which result in higher and lower effective cooling rates, are described. Orientation imaging microscopy, scanning transmission electron microscopy and conventional high resolution transmission electron microscopy are used to investigate the microstructures. Our results suggest that selective electron beam melting processing results in near equilibrium microstructures, as far as γ′ volume fractions, the formation of small amounts of TCP phases and the partitioning behavior of the alloy elements are concerned. As expected, higher cooling rates result in smaller dendrite spacings, which are two orders of magnitude smaller than observed during conventional single crystal casting. During processing, columnar grains grow in <100> directions, which are rotated with respect to each other. There are coarse γ/γ′ microstructures in high angle boundary regions. Dislocation networks form low angle boundaries. A striking feature of the as processed selective electron beam melting specimens is their high dislocation density. From a fundamental point of view, this opens new possibilities for the investigation of elementary dislocation processes which accompany solidification.

  12. Microscopy Observations of Habitable Space in Biochar for Colonization by Fungal Hyphae From Soil

    Institute of Scientific and Technical Information of China (English)

    Noraini M. Jaafar; Peta L. Clode; Lynette K. Abbott

    2014-01-01

    Biochar is a potential micro-environment for soil microorganisms but evidence to support this suggestion is limited. We explored imaging techniques to visualize and quantify fungal colonization of habitable spaces in a biochar made from a woody feedstock. In addition to characterization of the biochar, it was necessary to optimize preparation and observation methodologies for examining fungal colonization of the biochar. Biochar surfaces and pores were investigated using several microscopy techniques. Biochar particles were compared in soilless media and after deposition in soil. Scanning electron microscopy (SEM) observations and characterization of the biochar demonstrated structural heterogeneity within and among biochar particles. Fungal colonization in and on biochar particles was observed using light, fluorescence and electron microscopy. Fluorescent brightener RR 2200 was more effective than Calcolfuor White as a hyphal stain. Biochar retrieved from soil and observed using lfuorescence microscopy exhibited distinct hyphal networks on external biochar surfaces. The extent of hyphal colonization of biochar incubated in soil was much less than for biochar artiifcially inoculated with fungi in a soilless medium. The location of fungal hyphae was more clearly visible using SEM than with lfuorescence microscopy. Observations of biochar particles colonized by hyphae from soil posed a range of dififculties including obstruction by the presence of soil particles on biochar surfaces and inside pores. Extensive hyphal colonization of the surface of the biochar in the soilless medium contrasted with limited hyphal colonization of pores within the biochar. Both visualization and quantiifcation of hyphal colonization of surfaces and pores of biochar were restricted by two-dimensional imaging associated with uneven biochar surfaces and variable biochar pore structure. There was very little colonization of biochar from hyphae in the agricultural soil used in this study.

  13. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    Science.gov (United States)

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Characterization of strained semiconductor structures using transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oezdoel, Vasfi Burak

    2011-08-15

    Today's state-of-the-art semiconductor electronic devices utilize the charge transport within very small volumes of the active device regions. The structural, chemical and optical material properties in these small dimensions can critically affect the performance of these devices. The present thesis is focused on the nanometer scale characterization of the strain state in semiconductor structures using transmission electron microscopy (TEM). Although high-resolution TEM has shown to provide the required accuracy at the nanometer scale, optimization of imaging conditions is necessary for accurate strain measurements. An alternative HRTEM method based on strain mapping on complex-valued exit face wave functions is developed to reduce the artifacts arising from objective lens aberrations. However, a much larger field of view is crucial for mapping strain in the active regions of complex structures like latest generation metal-oxide-semiconductor field-effect transistors (MOSFETs). To overcome this, a complementary approach based on electron holography is proposed. The technique relies on the reconstruction of the phase shifts in the diffracted electron beams from a focal series of dark-field images using recently developed exit-face wave function reconstruction algorithm. Combining high spatial resolution, better than 1 nm, with a field of view of about 1 {mu}m in each dimension, simultaneous strain measurements on the array of MOSFETs are possible. Owing to the much lower electron doses used in holography experiments when compared to conventional quantitative methods, the proposed approach allows to map compositional distribution in electron beam sensitive materials such as InGaN heterostructures without alteration of the original morphology and chemical composition. Moreover, dark-field holography experiments can be performed on thicker specimens than the ones required for high-resolution TEM, which in turn reduces the thin foil relaxation. (orig.)

  15. Active pixel sensor array as a detector for electron microscopy.

    Science.gov (United States)

    Milazzo, Anna-Clare; Leblanc, Philippe; Duttweiler, Fred; Jin, Liang; Bouwer, James C; Peltier, Steve; Ellisman, Mark; Bieser, Fred; Matis, Howard S; Wieman, Howard; Denes, Peter; Kleinfelder, Stuart; Xuong, Nguyen-Huu

    2005-09-01

    A new high-resolution recording device for transmission electron microscopy (TEM) is urgently needed. Neither film nor CCD cameras are systems that allow for efficient 3-D high-resolution particle reconstruction. We tested an active pixel sensor (APS) array as a replacement device at 200, 300, and 400 keV using a JEOL JEM-2000 FX II and a JEM-4000 EX electron microscope. For this experiment, we used an APS prototype with an area of 64 x 64 pixels of 20 microm x 20 microm pixel pitch. Single-electron events were measured by using very low beam intensity. The histogram of the incident electron energy deposited in the sensor shows a Landau distribution at low energies, as well as unexpected events at higher absorbed energies. After careful study, we concluded that backscattering in the silicon substrate and re-entering the sensitive epitaxial layer a second time with much lower speed caused the unexpected events. Exhaustive simulation experiments confirmed the existence of these back-scattered electrons. For the APS to be usable, the back-scattered electron events must be eliminated, perhaps by thinning the substrate to less than 30 microm. By using experimental data taken with an APS chip with a standard silicon substrate (300 microm) and adjusting the results to take into account the effect of a thinned silicon substrate (30 microm), we found an estimate of the signal-to-noise ratio for a back-thinned detector in the energy range of 200-400 keV was about 10:1 and an estimate for the spatial resolution was about 10 microm.

  16. Preliminary Study of In Vivo Formed Dental Plaque Using Confocal Microscopy and Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    KA. Al-Salihi

    2009-12-01

    Full Text Available Objective: Confocal laser scanning microscopy (CLSM is relatively a new light microscopical imaging technique with a wide range of applications in biological sciences. The primary value of CLSM for the biologist is its ability to provide optical sections from athree-dimensional specimen. The present study was designed to assess the thickness and content of in vivo accumulated dental plaque using CLSM and scanning electron microscopy (SEM.Materials and Methods: Acroflat lower arch splints (acrylic appliance were worn by five participants for three days without any disturbance. The formed plaques were assessed using CLSM combined with vital fluorescence technique and SEM.Results: In this study accumulated dental plaque revealed varied plaque microflora vitality and thickness according to participant’s oral hygiene. The thickness of plaque smears ranged from 40.32 to 140.72 μm and 65.00 to 128.88 μm for live (vital and dead accumulated microorganisms, respectively. Meanwhile, the thickness of plaque on the appliance ranged from 101 μm to 653 μm. CLSM revealed both dead and vital bacteria on the surface of the dental plaque. In addition, SEM revealed layers of various bacterial aggregations in all dental plaques.Conclusion: This study offers a potent non-invasive tool to evaluate and assess the dental plaque biofilm, which is a very important factor in the development of dental caries.

  17. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Cosgriff, Eireann C.; D' Alfonso, Adrian J.; Morgan, Andrew J.; Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Takeguchi, Masaki [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Quantum Dot Research Center, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

    2011-06-15

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. -- Research Highlights: {yields} The confocal probe image in a scanning confocal electron microscopy image reveals information about the thickness and height of the crystalline layer. {yields} The form of the contrast in a three-dimensional bright-field scanning confocal electron microscopy image can be explained in terms of the confocal probe image. {yields} Despite the complicated form of the contrast in bright-field scanning confocal electron microscopy, we see that depth information is transferred on a 10 nm scale.

  18. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    Science.gov (United States)

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  19. Structural studies of glasses by transmission electron microscopy and electron diffraction

    International Nuclear Information System (INIS)

    Kashchieva, E.P.

    1997-01-01

    The purpose of this work is to present information about the applications of transmission electron microscopy (TEM) and electron diffraction (ED) for structural investigations of glasses. TEM investigations have been carried out on some binary and on a large number of ternary borate-telluride systems where glass-forming oxides, oxides of transitional elements and modified oxides of elements from I, II and III groups in the periodic table, are used as third component. The large experimental data given by TEM method allows the fine classification of the micro-heterogeneities. A special case of micro-heterogeneous structure with technological origin occurs near the boundary between the 2 immiscible liquids obtained at macro-phase separation. TEM was also used for the direct observation of the glass structure and we have studied the nano-scale structure of borate glasses obtained at slow and fast cooling of the melts. The ED possesses advantages for analysis of amorphous thin films or micro-pastilles and it is a very useful technique for study in materials containing simultaneously light and heavy elements. A comparison between the possibilities of the 3 diffraction techniques (X-ray diffraction, neutron diffraction and ED) is presented

  20. Robust image alignment for cryogenic transmission electron microscopy.

    Science.gov (United States)

    McLeod, Robert A; Kowal, Julia; Ringler, Philippe; Stahlberg, Henning

    2017-03-01

    Cryo-electron microscopy recently experienced great improvements in structure resolution due to direct electron detectors with improved contrast and fast read-out leading to single electron counting. High frames rates enabled dose fractionation, where a long exposure is broken into a movie, permitting specimen drift to be registered and corrected. The typical approach for image registration, with high shot noise and low contrast, is multi-reference (MR) cross-correlation. Here we present the software package Zorro, which provides robust drift correction for dose fractionation by use of an intensity-normalized cross-correlation and logistic noise model to weight each cross-correlation in the MR model and filter each cross-correlation optimally. Frames are reliably registered by Zorro with low dose and defocus. Methods to evaluate performance are presented, by use of independently-evaluated even- and odd-frame stacks by trajectory comparison and Fourier ring correlation. Alignment of tiled sub-frames is also introduced, and demonstrated on an example dataset. Zorro source code is available at github.com/CINA/zorro. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Transmission electron microscopy in molecular structural biology: A historical survey.

    Science.gov (United States)

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Electron microscopy study of radiation effects in boron carbide

    International Nuclear Information System (INIS)

    Stoto, T.

    1987-03-01

    Boron carbide is a disordered non-stoechiometric material with a strongly microtwinned polycristallyne microstructure. This ceramic is among the candidate materials for the first wall coating in fusion reactor and is used as a neutron absorber in the control rods of fast breeder reactors. The present work deals with the nature of radiation damage in this solid. Because of helium internal production, neutron irradiated boron carbide is affected by swelling and by a strong microcracking which can break up a pellet in fine powder. These processes are rather intensitive to the irradiation parameters (temperature, flux and even neutron spectrum). Transmission electron microscopy of samples irradiated by the fast neutrons of a reactor, the electrons of a high voltage electron microscope and of samples implanted with helium ions was used to understand the respective roles of helium and point defects in the processes of swelling and microcracking. The design of an irradiation chamber for helium implantation at controlled temperature from 600 to 1700 0 C was an important technical part of this work [fr

  3. Trends in the Electron Microscopy Data Bank (EMDB).

    Science.gov (United States)

    Patwardhan, Ardan

    2017-06-01

    Recent technological advances, such as the introduction of the direct electron detector, have transformed the field of cryo-EM and the landscape of molecular and cellular structural biology. This study analyses these trends from the vantage point of the Electron Microscopy Data Bank (EMDB), the public archive for three-dimensional EM reconstructions. Over 1000 entries were released in 2016, representing almost a quarter of the total number of entries (4431). Structures at better than 6 Å resolution now represent one of the fastest-growing categories, while the share of annually released tomography-related structures is approaching 20%. The use of direct electron detectors is growing very rapidly: they were used for 70% of the structures released in 2016, in contrast to none before 2011. Microscopes from FEI have an overwhelming lead in terms of usage, and the use of the RELION software package continues to grow rapidly after having attained a leading position in the field. China is rapidly emerging as a major player in the field, supplementing the US, Germany and the UK as the big four. Similarly, Tsinghua University ranks only second to the MRC Laboratory for Molecular Biology in terms of involvement in publications associated with cryo-EM structures at better than 4 Å resolution. Overall, the numbers point to a rapid democratization of the field, with more countries and institutes becoming involved.

  4. Investigating the mesostructure of ordered porous silica nanocomposites by transmission electron microscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bullita, S.; Casula, M. F., E-mail: casulaf@unica.it [INSTM and Department of Chemical and Geological Science, University of Cagliari, Monserrato (Canada) (Italy); Piludu, M. [Department of Biomedical Sciences, University of Cagliari, Monserrato (Canada) (Italy); Falqui, A. [INSTM and Department of Chemical and Geological Science, University of Cagliari, Monserrato (Canada) Italy and KAUST-King Abdullah University of Science and Technology, Jeddah (Saudi Arabia); Carta, D. [INSTM and Department of Chemical and Geological Science, University of Cagliari, Monserrato (Canada), Italy and Faculty of Physical Sciences and Engineering, University of Southampton, Southampton (United Kingdom); Corrias, A. [INSTM and Department of Chemical and Geological Science, University of Cagliari, Monserrato (Canada) Italy and School of Physical Sciences, Ingram Building, University of Kent, Canterbury (United Kingdom)

    2014-10-21

    Nanocomposites made out of FeCo alloy nanocrystals supported onto pre-formed mesoporous ordered silica which features a cubic arrangement of pores (SBA-16) were investigated. Information on the effect of the nanocrystals on the mesostructure (i.e. pore arrangement symmetry, pore size, and shape) were deduced by a multitechnique approach including N2 physisorption, low angle X-ray diffraction, and Transmission electron microscopy. It is shown that advanced transmission electron microscopy techniques are required, however, to gain direct evidence on key compositional and textural features of the nanocomposites. In particular, electron tomography and microtomy techniques make clear that the FeCo nanocrystals are located within the pores of the SBA-16 silica, and that the ordered mesostructure of the nanocomposite is retained throughout the observed specimen.

  5. Electron microscopy study of red mud after seawater neutralisation

    International Nuclear Information System (INIS)

    Toledo, S.P.; Kiyohara, P.K.; Antunes, M.L.P.; Frost, Ray

    2012-01-01

    Red Mud, residue of Bayer process for extracting alumina from bauxite, is produced in large quantity. This residue is very alkaline and can cause damage to health and the environment. One way to minimize the environmental impact of this residue is neutralization by sea water. The Brazilian Red Mud was treated with sea water. It appears that the initial pH of the samples is reduced to 8. The analysis by x-ray diffraction allows to identify the formation of hydrotalcite and aragonite. The transmission electron microscopy images show that this consists of particles with dimensions between 0.02 to 2 μm. It was possible to identify by EDS/MET particles of magnesium, confirming the formation of hydrotalcite. (author)

  6. The role of electron microscopy in the UKAEA Northern Division

    International Nuclear Information System (INIS)

    Sumerling, R.; Cawthorn, C.; Slattery, G.; Bilsby, C.F.

    1983-01-01

    The role of electron microscopy in the Northern Division of the UKAEA is to assist in the development of safe and efficient nuclear power, particularly in optimising fuel element performance, but also to solve the materials problems which arise in both nuclear and non-nuclear plant. Some of the fuel element investigations under-taken in the past 25 years are reviewed under six headings: compatibility of different materials - fuel, cladding and coolant; dimensional stability of the fuel element; heat transfer from fuel to coolant; fission gas release from the fuel; cladding integrity and causes of failure; and safety. The various types of thermal reactor and fast reactors pose different materials problems, but similarities abound and often experience with one system can be of value in another. Current investigations are discussed. (U.K.)

  7. Visualization of bacterial polysaccharides by scanning transmission electron microscopy.

    Science.gov (United States)

    Wolanski, B S; McAleer, W J; Hilleman, M R

    1983-04-01

    Highly purified capsular polysaccharides of Neisseria meningitidis groups A, B, and C have been visualized by high resolution Scanning Transmission Electron Microscopy (STEM). Spheroidal macromolecules approximately 200 A in diameter are characteristic of the Meningococcus A and C polysaccharides whereas filaments that are 400-600 A in length are found in Meningococcus B polysaccharide preparations. Filaments are occasionally found associated with the spheroidal Meningococcus A and C polysaccharides and it is proposed that these structures are composed of a long (1-4 microns) filament or filaments that are arranged in spheroidal molecules or micelles of high molecular weight. The Meningococcus B polysaccharide, by contrast, is a short flexuous filament or strand of relatively low molecular weight. A relationship between morphology and antigenicity is proposed.

  8. Optimization of permanganic etching of polyethylenes for scanning electron microscopy

    International Nuclear Information System (INIS)

    Naylor, K.L.; Phillips, P.J.

    1983-01-01

    The permanganic etching technique has been studied as a function of time, temperature, and concentration for a series of polyethylenes. Kinetic studies show that a film of reaction products builds up on the surface, impeding further etching, an effect which is greatest for the lowest-crystallinity polymers. SEM studies combined with EDS show that the film contains sulfur, potassium and some manganese. An artifact is produced by the etching process which is impossible to remove by washing procedures if certain limits of time, temperature, and concentration are exceeded. For lower-crystallinity polyethylenes multiple etching and washing steps were required for optimal resolution. Plastic deformation during specimen preparation, whether from scratches or freeze fracturing, enhances artifact formation. When appropriate procedures are used, virtually artifact-free surfaces can be produced allowing a combination of permanganic etching and scanning electron microscopy to give a rapid method for detailed morphological characterization of bulk specimens

  9. Transmission electron microscopy analysis of hydroxyapatite nanocrystals from cattle bones

    International Nuclear Information System (INIS)

    Patel, Sangeeta; Wei, Shanghai; Han, Jie; Gao, Wei

    2015-01-01

    In this present study, hydroxyapatite which was obtained from cattle bones has been heat treated at temperature 400 °C and 600 °C. The microstructure after the treatment has been studied in detail using Transmission electron microscopy (TEM) and X-ray diffraction techniques. The TEM results indicate that natural bone consists of collagen and hydroxyapatite nano-crystals which are needle shaped. The heat treatment influences the crystallinity and growth of these hydroxyapatite nano-crystals known as ‘crystal maturation’ or ‘crystal ageing’. - Highlights: • Hydroxyapatite is obtained from cattle bones. • Material has been characterised using XRD and TEM. • Crystal growth and orientation has been studied in detail.

  10. Analytical electron microscopy of neutron-irradiated reactor alloys

    International Nuclear Information System (INIS)

    Thomas, L.E.

    1982-01-01

    Exposure to the high neutron fluxes and temperatures from 400 to 650 0 C in the core region of a fast breeder reactor profoundly alters the microstructure and properties of structural steels and superalloys. The development of irradiation-induced voids, dislocations and precipitates, as well as segregation of alloying elements on a microscopic scale has been related to macroscopic swelling, creep, hardening and embrittlement which occur during prolonged exposures in reactor. Microanalytical studies using TEM/STEM methods, primarily energy dispersive x-ray (EDX) microanalysis, have greatly aided understanding of alloy behavior under irradiation. The main uses of analytical electron microscopy in studying irradiated alloys have been the identification of irradiation-induced precipitates and determination of the changes in local composition due to irradiation-induced solute segregation

  11. Transmission electron microscopy analysis of hydroxyapatite nanocrystals from cattle bones

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Sangeeta, E-mail: spt658@aucklanduni.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Wei, Shanghai [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Han, Jie [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL (United States); Gao, Wei [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand)

    2015-11-15

    In this present study, hydroxyapatite which was obtained from cattle bones has been heat treated at temperature 400 °C and 600 °C. The microstructure after the treatment has been studied in detail using Transmission electron microscopy (TEM) and X-ray diffraction techniques. The TEM results indicate that natural bone consists of collagen and hydroxyapatite nano-crystals which are needle shaped. The heat treatment influences the crystallinity and growth of these hydroxyapatite nano-crystals known as ‘crystal maturation’ or ‘crystal ageing’. - Highlights: • Hydroxyapatite is obtained from cattle bones. • Material has been characterised using XRD and TEM. • Crystal growth and orientation has been studied in detail.

  12. Characterization of nanomaterials in food by electron microscopy

    DEFF Research Database (Denmark)

    Dudkiewicz, Agnieszka; Tiede, Karen; Löschner, Katrin

    2011-01-01

    (e.g., size and shape).This review presents an overview of electron microscopy (EM)-based methods that have been, or have the potential to be, applied to imaging ENMs in foodstuffs. We provide an overview of approaches to sample preparation, including drying, chemical treatment, fixation......Engineered nanomaterials (ENMs) are increasingly being used in the food industry. In order to assess the efficacy and the risks of these materials, it is essential to have access to methods that not only detect the nanomaterials, but also provide information on the characteristics of the materials...... and cryogenic methods. We then describe standard and non-standard EM-based approaches that are available for imaging prepared samples. Finally, we present a strategy for selecting the most appropriate method for a particular foodstuff....

  13. Scanning electron microscopy of Strongylus spp. in zebra.

    Science.gov (United States)

    Els, H J; Malan, F S; Scialdo-Krecek, R C

    1983-12-01

    The external ultrastructure of the anterior and posterior extremities of the nematodes, Strongylus asini , Strongylus vulgaris, Strongylus equinus and Strongylus edentatus, was studied with scanning electron microscopy (SEM). Fresh specimens of S. asini were collected from the caecum, ventral colon and vena portae of Equus burchelli and Equus zebra hartmannae ; S. vulgaris from the caecum, colon and arteria ileocolica of E. burchelli ; S. equinus from the ventral colon of E. z. hartmannae and S. edentatus from the caecum and ventral colon of both zebras , during surveys of parasites in zebras in the Etosha Game Reserve, South West Africa/Namibia, and the Kruger National Park, Republic of South Africa. The worms were cleaned, fixed and mounted by standard methods and photographed in a JEOL JSM - 35C scanning electron microscope (SEM) operating at 12kV . The SEM showed the following differences: the tips of the external leaf-crowns varied and were fine and delicate in S. asini , coarse and broad in S. vulgaris and, in S. equinus and S. edentatus, closely adherent, separating into single elements for half their length. The excretory pores showed only slight variation, and the morphology of the copulatory bursae did not differ from those seen with light microscopy. The genital cones differed markedly: S. asini had a ventral triangular projection and laterally 2 finger-like projections: in S. vulgaris there were numerous bosses on the lateral and ventral aspects of the cone; in S. equinus 2 finger-like processes projected laterocaudally ; and in S. edentatus 2 pairs of papilla-like processes projected laterally on the ventral aspects, and a pair of rounded projections and a pair of hair-like structures adorned the dorsal aspects.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Nano-structured thin films : a Lorentz transmission electron microscopy and electron holography study

    NARCIS (Netherlands)

    Hosson, J.Th.M. de; Raedt, H.A. De; Zhong, ZY; Saka, H; Kim, TH; Holm, EA; Han, YF; Xie, XS

    2005-01-01

    This paper aims at applying advanced transmission electron microscopy (TEM) to functional materials, such as ultra-soft magnetic films for high-frequency inductors, to reveal the structure-property relationship. The ultimate goal is to delineate a more quantitative way to obtain information of the

  15. Radiation defects in Te-implanted germanium. Electron microscopy and computer simulation studies

    International Nuclear Information System (INIS)

    Kalitzova, M.G.; Karpuzov, D.S.; Pashov, N.K.

    1985-01-01

    Direct observation of radiation damage induced by heavy ion implantation in crystalline germanium by means of high-resolution electron microscopy is reported. The dark-field lattice imaging mode is used, under conditions suitable for object-like imaging. Conventional TEM is used for estimating the efficiency of creating visibly damaged regions. Heavy ion damage clusters with three types of inner structure are observed: with near-perfect crystalline cores, and with metastable and stable amorphous cores. The MARLOWE computer code is used to simulate the atomic collision cascades and to obtain the lateral spread distributions of point defects created. A comparison of high-resolution electron microscopy (HREM) with computer simulation results shows encouraging agreement for the average cluster dimensions and for the lateral spread of vacancies and interstitials. (author)

  16. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy

    NARCIS (Netherlands)

    Faas, F.G.A.; Bárcena, M.A.; Agronskaia, A.V.; Gerritsen, H.C.; Moscicka, K.B.; Diebolder, C.A.; Driel, L.F.; Limpens, R.W.A.L.; Bos, E.; Ravelli, R.B.G.; Koning, R.I.; Koster, A.J.

    2013-01-01

    Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain

  17. Morphological classification of bioaerosols from composting using scanning electron microscopy

    International Nuclear Information System (INIS)

    Tamer Vestlund, A.; Al-Ashaab, R.; Tyrrel, S.F.; Longhurst, P.J.; Pollard, S.J.T.; Drew, G.H.

    2014-01-01

    Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samples were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors

  18. Recent applications of scanning electron microscopy; Neueste Anwendungen der Rasterelektronenmikroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Sten; Moverare, Johan; Peng, Ru [Linkoeping Univ. (Sweden). Dept. of Management and Engineering

    2013-07-01

    A few examples were shown of how to use SEM to study phenomena that are not normally visible and possible to identify by introducing a known phenomenon called Electron Channeling. The channeling is best utilized in a FEG SEM not because of the in lens detection system but due to the fact that the highly coherent high electron density probe is creating a high contrast image with a resolution that is high enough to image crystal defects on a dislocation level. The fact that diffraction phenomena are involved in channeling is also of great importance for the contrast formation. The technique allows the user to choose to either just take a picture or decide if the image should be based on careful determination of the Bragg condition. The biggest advantage with channeling in addition the good contrast produced is the possibility to literally combine it with other techniques like EBSD. In fact, it is also possible to use thin foils to combine ECCI, EBSD, EDS and STEM in a modern FEG SEM. The development of a eucentric specimen stage of the same class as a TEM stage would allow even more advanced microscopy in SEM. (orig.)

  19. Morphological classification of bioaerosols from composting using scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tamer Vestlund, A. [Institute for Energy and Resource Technology, Environmental Science and Technology Department, School of Applied Sciences, Cranfield University, Building 40, Bedfordshire MK43 0AL (United Kingdom); FIRA International Ltd., Maxwell Road, Stevenage, Herts SG1 2EW (United Kingdom); Al-Ashaab, R.; Tyrrel, S.F.; Longhurst, P.J.; Pollard, S.J.T. [Institute for Energy and Resource Technology, Environmental Science and Technology Department, School of Applied Sciences, Cranfield University, Building 40, Bedfordshire MK43 0AL (United Kingdom); Drew, G.H., E-mail: g.h.drew@cranfield.ac.uk [Institute for Energy and Resource Technology, Environmental Science and Technology Department, School of Applied Sciences, Cranfield University, Building 40, Bedfordshire MK43 0AL (United Kingdom)

    2014-07-15

    Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samples were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.

  20. In situ measurements and transmission electron microscopy of carbon nanotube field-effect transistors

    International Nuclear Information System (INIS)

    Kim, Taekyung; Kim, Seongwon; Olson, Eric; Zuo Jianmin

    2008-01-01

    We present the design and operation of a transmission electron microscopy (TEM)-compatible carbon nanotube (CNT) field-effect transistor (FET). The device is configured with microfabricated slits, which allows direct observation of CNTs in a FET using TEM and measurement of electrical transport while inside the TEM. As demonstrations of the device architecture, two examples are presented. The first example is an in situ electrical transport measurement of a bundle of carbon nanotubes. The second example is a study of electron beam radiation effect on CNT bundles using a 200 keV electron beam. In situ electrical transport measurement during the beam irradiation shows a signature of wall- or tube-breakdown. Stepwise current drops were observed when a high intensity electron beam was used to cut individual CNT bundles in a device with multiple bundles

  1. Molecular tips for scanning tunneling microscopy: intermolecular electron tunneling for single-molecule recognition and electronics.

    Science.gov (United States)

    Nishino, Tomoaki

    2014-01-01

    This paper reviews the development of molecular tips for scanning tunneling microscopy (STM). Molecular tips offer many advantages: first is their ability to perform chemically selective imaging because of chemical interactions between the sample and the molecular tip, thus improving a major drawback of conventional STM. Rational design of the molecular tip allows sophisticated chemical recognition; e.g., chiral recognition and selective visualization of atomic defects in carbon nanotubes. Another advantage is that they provide a unique method to quantify electron transfer between single molecules. Understanding such electron transfer is mandatory for the realization of molecular electronics.

  2. Magnetic Force Microscopy Observation of Perpendicular Recording Head Remanence

    Science.gov (United States)

    Dilekrojanavuti, P.; Saengkaew, K.; Cheowanish, I.; Damrongsak, B.

    2017-09-01

    In this work, magnetic force microscopy (MFM) was utilized to observe the magnetic write head remanence, which is the remaining out-of-plane magnetic field on magnetic write heads after a write current is turned off. This remnant field can write unwanted tracks or erase written tracks on a magnetic media. The write head remanence can also occur from device and slider fabrication, either by applying current to the write coil during the inspection or biasing the external magnetic field to magnetic recording heads. This remanence can attract magnetic nanoparticles, which is suspended in cleaning water or surrounding air, and cause device contamination. MFM images were used to examine locations of the remnant field on the surface of magnetic recording heads. Experimental results revealed that the remanence occurred mostly on the shield and is dependent on the initial direction of magnetic moments. In addition, we demonstrated a potential use of MFM imaging to investigate effects of different etching gases on the head remanence.

  3. New developments in electron microscopy for serial image acquisition of neuronal profiles.

    Science.gov (United States)

    Kubota, Yoshiyuki

    2015-02-01

    Recent developments in electron microscopy largely automate the continuous acquisition of serial electron micrographs (EMGs), previously achieved by laborious manual serial ultrathin sectioning using an ultramicrotome and ultrastructural image capture process with transmission electron microscopy. The new systems cut thin sections and capture serial EMGs automatically, allowing for acquisition of large data sets in a reasonably short time. The new methods are focused ion beam/scanning electron microscopy, ultramicrotome/serial block-face scanning electron microscopy, automated tape-collection ultramicrotome/scanning electron microscopy and transmission electron microscope camera array. In this review, their positive and negative aspects are discussed. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity

    International Nuclear Information System (INIS)

    Schorb, Martin; Briggs, John A.G.

    2014-01-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. - Highlights: • Workflow for correlated cryo-fluorescence and cryo-electron microscopy. • Cryo-fluorescence microscopy setup incorporating a high numerical aperture objective. • Fluorescent signals located in cryo-electron micrographs with 50 nm spatial precision

  5. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Schorb, Martin [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Briggs, John A.G., E-mail: john.briggs@embl.de [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany)

    2014-08-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. - Highlights: • Workflow for correlated cryo-fluorescence and cryo-electron microscopy. • Cryo-fluorescence microscopy setup incorporating a high numerical aperture objective. • Fluorescent signals located in cryo-electron micrographs with 50 nm spatial precision.

  6. A new method to characterize dopant profiles in NMOSFETs using conventional transmission electron microscopy

    International Nuclear Information System (INIS)

    Kawamura, Kazuo; Ikeda, Kazuto; Terauchi, Masami

    2004-01-01

    We have developed a new method using conventional transmission electron microscopy (TEM) to obtain two dimensional dopant profiles in silicon and applied it to 40 nm-gate-length N + /p metal oxide semiconductor field effect transistors (MOSFETs). The results are consistent with those of selective-chemically etched samples observed by TEM. This method, using focused ion beam (FIB) sample preparation and conventional TEM, has the great advantage of simple sample preparation and high spatial resolution compared to other characterization methods, such as atomic capacitance microscopy, spreading resistance microscopy, and TEM combined with selective chemical etching. This indicates that this method can be applicable to the analysis of FETs at the 65 nm or smaller node

  7. Electron microscopy analyses and electrical properties of the layered Bi2WO6 phase

    International Nuclear Information System (INIS)

    Taoufyq, A.; Ait Ahsaine, H.; Patout, L.; Benlhachemi, A.; Ezahri, M.

    2013-01-01

    The bismuth tungstate Bi 2 WO 6 was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2 1 non centrosymmetric space group previously proposed for this phase. The layers Bi 2 O 2 2+ and WO 4 2− have been directly evidenced from the HRTEM images. The electrical properties of Bi 2 WO 6 compacted pellets systems were determined from electrical impedance spectrometry (EIS) and direct current (DC) analyses, under air and argon, between 350 and 700 °C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 °C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi 2 WO 6 phase, with a representation of the cell dimensions (b and c vectors). The Bi 2 O 2 2+ and WO 4 2− sandwiches are visible in the IFFT image. - Highlights: • Using transmission electron microscopy, we visualize the layered structure of Bi 2 WO 6 . • Electrical analyses under argon gas show some increase in conductivity. • The phase transition at 660 °C is evidenced from electrical modification

  8. Correlating Intravital Multi-Photon Microscopy to 3D Electron Microscopy of Invading Tumor Cells Using Anatomical Reference Points

    Science.gov (United States)

    Karreman, Matthia A.; Mercier, Luc; Schieber, Nicole L.; Shibue, Tsukasa; Schwab, Yannick; Goetz, Jacky G.

    2014-01-01

    Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D) mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis. PMID:25479106

  9. Surface morphology of the endolymphatic duct in the rat. A scanning electron microscopy study

    DEFF Research Database (Denmark)

    Qvortrup, K; Rostgaard, Jørgen; Bretlau, P

    1995-01-01

    microscopy was attained by coating of the specimens with osmium tetroxide and thiocarbohydrazide followed by a continuous dehydration procedure. This technique permitted, for the first time, an investigation of the surface morphology of the epithelial cells in the endolymphatic duct. Three types of cells......Following intracardiac vascular perfusion fixation of 8 rats with glutaraldehyde in a buffered and oxygenated blood substitute, the vestibular aqueduct and endolymphatic duct were opened by microsurgery of the resulting 16 temporal bones. Optimum preservation of the epithelium for scanning electron...... were identified with the scanning electron microscope. A polygonal and oblong epithelial cell was observed in the largest number throughout the duct, and in the juxtasaccular half of the duct, two additional types of epithelial cells were observed. The scanning electron microscopic observations...

  10. Study and structural and chemical characterization of human dental smalt by electron microscopy

    International Nuclear Information System (INIS)

    Belio R, I.A.; Reyes G, J.

    1998-01-01

    The study of human dental smalt has been subject to investigation for this methods with electron microscopy, electron diffraction, X-ray diffraction and image simulation programs have been used with the purpose to determine its chemical and structural characteristics of the organic and inorganic materials. This work has been held mainly for the characterization of hydroxyapatite (Ca) 10 (PO 4 ) 6 (OH 4 ) 2 , inorganic material which conforms the dental smalt in 97%, so observing its structural unity which is composed by the prisms and these by crystals and atoms. It was subsequently initiated the study of the organic material, with is precursor of itself. (Author)

  11. Transmission Electron Microscopy as Key Technique for the Characterization of Telocytes.

    Science.gov (United States)

    Cantarero, Irene; Luesma, Maria Jose; Alvarez-Dotu, Jose Miguel; Muñoz, Eduardo; Junquera, Concepcion

    2016-01-01

    It was 50 years ago when the details of cellular structure were first observed with an electron microscope (EM). Today, transmission electron microscopy (TEM) still provides the highest resolution detail of cellular ultrastructure. The existence of telocytes (TCs) has been described by Hinescu and Popescu in 2005 and up to now, many studies have been done in different tissues. EM has been fundamental in identification and recognition of TC and relationship between TC and stem cells (SCs) in recent years. We present a review on the importance of TEM to provide major advances in the knowledge of the biology of these cells.

  12. Specimen preparation by ion beam slope cutting for characterization of ductile damage by scanning electron microscopy.

    Science.gov (United States)

    Besserer, Hans-Bernward; Gerstein, Gregory; Maier, Hans Jürgen; Nürnberger, Florian

    2016-04-01

    To investigate ductile damage in parts made by cold sheet-bulk metal forming a suited specimen preparation is required to observe the microstructure and defects such as voids by electron microscopy. By means of ion beam slope cutting both a targeted material removal can be applied and mechanical or thermal influences during preparation avoided. In combination with scanning electron microscopy this method allows to examine voids in the submicron range and thus to analyze early stages of ductile damage. In addition, a relief structure is formed by the selectivity of the ion bombardment, which depends on grain orientation and microstructural defects. The formation of these relief structures is studied using scanning electron microscopy and electron backscatter diffraction and the use of this side effect to interpret the microstructural mechanisms of voids formation by plastic deformation is discussed. A comprehensive investigation of the suitability of ion beam milling to analyze ductile damage is given at the examples of a ferritic deep drawing steel and a dual phase steel. © 2016 Wiley Periodicals, Inc.

  13. Electron microscopy study of microbial mat in the North Fiji basin hydrothermal vent

    Science.gov (United States)

    Park, H.; Kim, J. W.; Lee, J. W.

    2017-12-01

    Hydrothermal vent systems consisting of hydrothermal vent, hydrothermal sediment and microbial mat are widely spread around the ocean, particularly spreading axis, continental margin and back-arc basin. Scientists have perceived that the hydrothermal systems, which reflect the primeval earth environment, are one of the best places to reveal the origin of life and extensive biogeochemical process of microbe-mineral interaction. In the present study multiline of analytical methods (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)) were utilized to investigate the mineralogy/chemistry of microbe-mineral interaction in hydrothermal microbial mat. Microbial mat samples were recovered by Canadian scientific submersible ROPOS on South Pacific North Fiji basin KIOST hydrothermal vent expedition 1602. XRD analysis showed that red-colored microbial mat contains Fe-oxides and Fe-oxyhydroxides. Various morphologies of minerals in the red-colored microbial mat observed by SEM are mainly showed sheath shaped, resembled with Leptothrix microbial structure, stalks shaped, similar with Marioprofundus microbial structure and globule shaped microbial structures. They are also detected with DNA analysis. The cross sectional observation of microbial structures encrusted with Fe-oxide and Fe-oxyhydroxide at a nano scale by Transmission Electron Microscopy (TEM) and Focused Ion Beam (FIB) technique was developed to verify the structural/biogeochemical properties in the microbe-mineral interaction. Systematic nano-scale measurements on the biomineralization in the microbial mat leads the understandings of biogeochemical environments around the hydrothermal vent.

  14. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    International Nuclear Information System (INIS)

    Figuera, Juan de la; Vergara, Lucía; N'Diaye, Alpha T.; Quesada, Adrian; Schmid, Andreas K.

    2013-01-01

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along directions. ► Magnetic domain wall structures include wide Néel-caps

  15. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); Vergara, Lucía [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); N' Diaye, Alpha T. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Quesada, Adrian [Instituto de Cerámica y Vidrio, CSIC, Calle Kelsen 5, 28049, Madrid (Spain); Schmid, Andreas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-07-15

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface <110> directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along <110> directions. ► Magnetic domain wall structures include wide Néel-caps.

  16. Light propagation and interaction observed with electrons

    Energy Technology Data Exchange (ETDEWEB)

    Word, Robert C.; Fitzgerald, J.P.S.; Könenkamp, R., E-mail: rkoe@pdx.edu

    2016-01-15

    We discuss possibilities for a microscopic optical characterization of thin films and surfaces based on photoemission electron microscopy. We show that propagating light with wavelengths across the visible range can readily be visualized, and linear and non-linear materials properties can be evaluated non-invasively with nanometer spatial resolution. While femtosecond temporal resolution can be achieved in pump-probe-type experiments, the interferometric approach presented here has typical image frame times of ~200 fs. - Highlights: • Non-linear photoemission electron micrographs are analyzed. • Optical properties of transparent and metallic thin films are determined. • Light propagation, surface plasmon resonances and energy transfer are discussed.

  17. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy

    Science.gov (United States)

    Sindern, Sven; Meyer, F. Michael

    2016-09-01

    Increasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy. Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized. Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown. SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become

  18. Fossil micro-organisms evidenced by electronic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prashnowsky, A.A.; Oberlies, F.; Burger, K.

    1983-04-01

    Fossil microorganisms in colonies and in the form of isolated cells (iron bacteria, fungi, actinomycetes etc.) were detected by electron microscopy of rocks containing remains of plant roots, carbonaceous substance, and strata of clay iron stone with ooids. These findings suggest an environment favourable to bacterial activity during sedimentation in the Upper Carboniferous and during the later processes of peat and coal formation. They also suggest that bacterial processes are an important factor in coal formation. Accurate data on coal formation can only be obtained by systematic biochemical studies. Analyses of the defined organic substances provide a better understanding of the conversion processes of the original substances. For example, the results of sterine analysis provide information on the mycoplancton, phytoplancton and zooplancton of the Upper Carboniferous. For some types of rock, the ratio of saponifiable to non-saponifiable constituents of the organic compounds yield information on stability under various geochemical conditions. The interactions between the various groups of microorganisms also play a major role in the solution of ecological problems.

  19. Scanning electron microscopy and roughness study of dental composite degradation.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; Cortez, Louise Ribeiro; Zarur, Raquel de Oliveira; Martin, Airton Abrahão

    2012-04-01

    Our aim was to test the hypothesis that the use of mouthwashes, consumption of soft drinks, as well as the type of light curing unit (LCU), would change the surface roughness (Ra) and morphology of a nanofilled composite resin (Z350® 3M ESPE). Samples (80) were divided into eight groups: Halogen LCU, group 1, saliva (control); group 2, Pepsi Twist®; group 3, Listerine®; group 4, Colgate Plax®; LED LCU, group 5, saliva; group 6, Pepsi Twist®; group 7, Listerine®; group 8, Colgate Plax®. Ra values were measured at baseline, and after 7 and 14 days. One specimen of each group was prepared for scanning electron microscopy analysis after 14 days. The data were subjected to multifactor analysis of variance at a 95% confidence followed by Tukey's honestly significant difference post-hoc test. All the treatments resulted in morphological changes in composite resin surface, and the most significant change was in Pepsi Twist® groups. The samples of G6 had the greatest increase in Ra. The immersion of nanofilled resin in mouthwashes with alcohol and soft drink increases the surface roughness. Polymerization by halogen LCU (reduced light intensity) associated with alcohol contained mouthwash resulted in significant roughness on the composite.

  20. Cryogenic transmission electron microscopy nanostructural study of shed microparticles.

    Directory of Open Access Journals (Sweden)

    Liron Issman

    Full Text Available Microparticles (MPs are sub-micron membrane vesicles (100-1000 nm shed from normal and pathologic cells due to stimulation or apoptosis. MPs can be found in the peripheral blood circulation of healthy individuals, whereas elevated concentrations are found in pregnancy and in a variety of diseases. Also, MPs participate in physiological processes, e.g., coagulation, inflammation, and angiogenesis. Since their clinical properties are important, we have developed a new methodology based on nano-imaging that provides significant new data on MPs nanostructure, their composition and function. We are among the first to characterize by direct-imaging cryogenic transmitting electron microscopy (cryo-TEM the near-to-native nanostructure of MP systems isolated from different cell types and stimulation procedures. We found that there are no major differences between the MP systems we have studied, as most particles were spherical, with diameters from 200 to 400 nm. However, each MP population is very heterogeneous, showing diverse morphologies. We investigated by cryo-TEM the effects of standard techniques used to isolate and store MPs, and found that either high-g centrifugation of MPs for isolation purposes, or slow freezing to -80 °C for storage introduce morphological artifacts, which can influence MP nanostructure, and thus affect the efficiency of these particles as future diagnostic tools.

  1. Specific surface area evaluation method by using scanning electron microscopy

    International Nuclear Information System (INIS)

    Petrescu, Camelia; Petrescu, Cristian; Axinte, Adrian

    2000-01-01

    Ceramics are among the most interesting materials for a large category of applications, including both industry and health. Among the characteristic of the ceramic materials, the specific surface area is often difficult to evaluate.The paper presents a method of evaluation for the specific surface area of two ceramic powders by means of scanning electron microscopy measurements and an original method of computing the specific surface area.Cumulative curves are used to calculate the specific surface area under assumption that the values of particles diameters follow a normal logarithmic distribution. For two powder types, X7R and NPO the results are the following: - for the density ρ (g/cm 2 ), 5.5 and 6.0, respectively; - for the average diameter D bar (μm), 0.51 and 0.53, respectively; - for σ, 1.465 and 1.385, respectively; - for specific surface area (m 2 /g), 1.248 and 1.330, respectively. The obtained results are in good agreement with the values measured by conventional methods. (authors)

  2. Reference nano-dimensional metrology by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Dai, Gaoliang; Fluegge, Jens; Bosse, Harald; Heidelmann, Markus; Kübel, Christian; Prang, Robby

    2013-01-01

    Traceable and accurate reference dimensional metrology of nano-structures by scanning transmission electron microscopy (STEM) is introduced in the paper. Two methods, one based on the crystal lattice constant and the other based on the pitch of a feature pair, were applied to calibrate the TEM magnification. The threshold value, which was defined as the half-intensity of boundary materials, is suggested to extract the boundary position of features from the TEM image. Experimental investigations have demonstrated the high potential of the proposed methods. For instance, the standard deviation from ten repeated measurements of a line structure with a nominal 100 nm critical dimension (CD) reaches 1σ = 0.023 nm, about 0.02%. By intentionally introduced defocus and larger sample alignment errors, the investigation shows that these influences may reach 0.20 and 1.3 nm, respectively, indicating the importance of high-quality TEM measurements. Finally, a strategy for disseminating the destructive TEM results is introduced. Using this strategy, the CD of a reference material has been accurately determined. Its agreement over five independent TEM measurements is below 1.2 nm. (paper)

  3. Use of analytical electron microscopy and auger electron spectroscopy for evaluating materials

    International Nuclear Information System (INIS)

    Jones, R.H.; Bruemmer, S.M.; Thomas, M.T.; Baer, D.R.

    1982-11-01

    Analytical electron microscopy (AEM) can be used to characterize the microstructure and microchemistry of materials over dimensions less than 10 nm while Auger electron spectroscopy (AES) can be used to characterize the chemical composition of surfaces and interfaces to a depth of less than 1 nm. Frequently, the information gained from both instruments can be coupled to give new insight into the behavior of materials. Examples of the use of AEM and AES to characterize segregation, sensitization and radiation damage are presented. A short description of the AEM and AES techniques are given

  4. Interference electron microscopy of one-dimensional electron-optical phase objects

    International Nuclear Information System (INIS)

    Fazzini, P.F.; Ortolani, L.; Pozzi, G.; Ubaldi, F.

    2006-01-01

    The application of interference electron microscopy to the investigation of electron optical one-dimensional phase objects like reverse biased p-n junctions and ferromagnetic domain walls is considered. In particular the influence of diffraction from the biprism edges on the interference images is analyzed and the range of applicability of the geometric optical equation for the interpretation of the interference fringe shifts assessed by comparing geometric optical images with full wave-optical simulations. Finally, the inclusion of partial spatial coherence effects are discussed

  5. Conditioning of mealybug (Hemiptera: Pseudococcidae) by Scanning Electron Microscopy

    International Nuclear Information System (INIS)

    Palma-Jimenez, Melissa; Blanco-Meneses, Monica

    2015-01-01

    The cleaning and correct observation of the mealybug specimens was determined by the conditioning methodology. The research was done in the Laboratorio del Centro de Investigacion en Estructuras Microscopicas (CIEMIC) of the Universidad de Costa Rica during the year 2012. A gradual improvement for the observation of the ultrastructures through the Scanning Electron Microscope was evidenced by the implementation of four types of methodologies. Each process was described in detail. The incorporation of 10% xylene (in some cases have been viable using ethanol at 95-100% ) was allowed to remove the wax from the body of the insect, to avoid this the collapse and to observe specific ultrastructures of the individual, they were the best results. The methodology used has reduced the time and costs in future taxonomic research of mealybug. (author) [es

  6. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

    Science.gov (United States)

    Zhang, Daliang; Zhu, Yihan; Liu, Lingmei; Ying, Xiangrong; Hsiung, Chia-En; Sougrat, Rachid; Li, Kun; Han, Yu

    2018-02-01

    High-resolution imaging of electron beam–sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

  7. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

    KAUST Repository

    Zhang, Daliang

    2018-01-18

    High-resolution imaging of electron beam-sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

  8. EDITORIAL: Electron Microscopy and Analysis Group Conference 2011 (EMAG 2011)

    Science.gov (United States)

    Moebus, Guenter; Walther, Thomas; Brydson, Rik; Ozkaya, Dogan; MacLaren, Ian; Donnelly, Steve; Nellist, Pete; Li, Ziyou; Baker, Richard; Chiu, YuLung

    2012-07-01

    The biennial EMAG conference has established a strong reputation as a key event for the national and international electron microscopy community. In 2011 the meeting was held at The University of Birmingham, and I must first take this opportunity of thanking Birmingham for hosting the conference and for the excellent support we received from the local organisers. As a committee, we are delighted to see that enthusiasm for the EMAG conference series continues to be strong. We received more than 160 submitted abstracts, and 157 delegates attended the meeting. The scientific programme organiser, Ian MacLaren, put together an exciting programme. Plenary lectures were presented by Professor Knut Urban, Dr Frances Ross and Dr Richard Henderson. There were a further 10 invited speakers, from the UK, Continental Europe, Australia, the USA and Japan. The quality of the contributed oral and poster presentations was also very high. EMAG is keen to encourage student participation, and a winner and two runners-up were presented with prizes for the best oral and poster presentations from a student. I am always struck by the scientific quality of the oral and poster contributions and the vibrant discussions that occur both in the formal sessions and in the exhibition space at EMAG. I am convinced that a crucial part of maintaining that scientific quality is the opportunity that is offered of having a paper fully reviewed by two internationally selected referees and published in the Journal of Physics: Conference Series. For many students, this is the first fully reviewed paper they publish. I hope that you, like me, will be struck by the scientific quality of the 87 papers that follow, and that you will find them interesting and informative. Finally I must thank the platinum sponsors for their support of the meeting. These were Gatan, Zeiss, FEI, JEOL and Hitachi. I must also thank the European Microscopy Society for their generous sponsorship and support for the travel costs of

  9. Transmission electron microscopy characterization of microstructural features in aluminum-lithium-copper alloys

    Science.gov (United States)

    Avalos-Borja, M.; Larson, L. A.; Pizzo, P. P.

    1984-01-01

    A transmission electron microscopy (TEM) examination of aluminum-lithium-copper alloys was conducted. The principal purpose is to characterize the nature, size, and distribution of stringer particles which result from the powder metallurgy (P/M) processing of these alloys. Microstructural features associated with the stringer particles are reported that help explain the stress corrosion susceptibility of the powder metallurgy-processed Al-Li-Cu alloys. In addition, matrix precipitaton events are documented for a variety of heat treatments and process variations. Hot rolling is observed to significantly alter the nature of matrix precipitation, and the observations are correlated with concomitant mechanical property variations.

  10. Transmission Electron Microscopy of Magnetite Plaquettes in Orgueil

    Science.gov (United States)

    Chan, Q. H. S.; Han, J.; Zolensky, M.

    2016-01-01

    Magnetite sometimes takes the form of a plaquette - barrel-shaped stack of magnetite disks - in carbonaceous chondrites (CC) that show evidence of aqueous alteration. The asymmetric nature of the plaquettes caused Pizzarello and Groy to propose magnetite plaquettes as a naturally asymmetric mineral that can indroduce symmetry-breaking in organic molecules. Our previous synchrotron X-ray computed microtomography (SXRCT) and electron backscatter diffraction (EBSD) analyses of the magnetite plaquettes in fifteen CCs indicate that magnetite plaquettes are composed of nearly parallel discs, and the crystallographic orientations of the discs change around a rotational axis normal to the discs surfaces. In order to further investigate the nanostructures of magnetite plaquettes, we made two focused ion beam (FIB) sections of nine magnetite plaquettes from a thin section of CI Orgueil for transmission electron microscope (TEM) analysis. The X-ray spectrum imaging shows that the magnetite discs are purely iron oxide Fe3O4 (42.9 at% Fe and 57.1 at% O), which suggest that the plaquettes are of aqueous origin as it is difficult to form pure magnetite as a nebular condensate. The selected area electron diffraction (SAED) patterns acquired across the plaquettes show that the magnetite discs are single crystals. SEM and EBSD analyses suggest that the planar surfaces of the magnetite discs belong to the {100} planes of the cubic inverse spinel structure, which are supported by our TEM observations. Kerridge et al. suggested that the epitaxial relationship between magnetite plaquette and carbonate determines the magnetite face. However, according to our TEM observation, the association of magnetite with porous networks of phyllosilicate indicates that the epitaxial relationship with carbonate is not essential to the formation of magnetite plaquettes. It was difficult to determine the preferred rotational orientation of the plaquettes due to the symmetry of the cubic structure

  11. Electron microscopy analysis of structural changes within white etching areas

    DEFF Research Database (Denmark)

    Diederichs, Annika Martina; Schwedt, A.; Mayer, J.

    2016-01-01

    In the present work, crack networks with white etching areas (WEAs) in cross-sections of bearings were investigated by a complementary use of SEM and TEM with the focus on the use of orientation contrast imaging and electron backscatter diffraction (EBSD). Orientation contrast imaging was used...... for the first time to give detailed insight into the microstructure of WEA. A significant difference between Nital-etched and polished WEA samples was observed. It was revealed that WEAs are composed of different areas with varying grain sizes. As a result of secondary transformation, needle-shaped grains were...

  12. Localization of lead in rat peripheral nerve by electron microscopy

    International Nuclear Information System (INIS)

    Windebank, A.J.; Dyck, P.J.

    1985-01-01

    Lead intoxication in rats reliably produces segmental demyelination. Following a single intravenous injection of radioactive lead, localization of tracer was observed sequentially by quantitative electron microscopical autoradiography. The animals injected had been on a lead-containing diet for 70 days; as a result, the blood-nerve barrier was broken down and demyelination was proceeding. Six hours after a single dose, the lead was localized to the endoneurial space of the peroneal nerve, and 72 hours later, to the myelin membrane. Lead may exert a direct effect on the membrane and alter its stability both by altering the lipid content of the membrane and by directly interfering with the lamellar structure

  13. [Scanning electron microscopy of heat-damaged bone tissue].

    Science.gov (United States)

    Harsanyl, L

    1977-02-01

    Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.

  14. High-resolution electron microscopy of detonation nanodiamond

    International Nuclear Information System (INIS)

    Iakoubovskii, K; Mitsuishi, K; Furuya, K

    2008-01-01

    The structure of individual nanodiamond grains produced by the detonation of carbon-based explosives has been studied with a high-vacuum aberration-corrected electron microscope. Many grains show a well-resolved cubic diamond lattice with negligible contamination, thereby demonstrating that the non-diamond shell, universally observed on nanodiamond particles, could be intrinsic to the preparation process rather than to the nanosized diamond itself. The strength of the adhesion between the nanodiamond grains, and the possibility of their patterning with sub-nanometer precision, are also demonstrated

  15. High-resolution electron microscopy of detonation nanodiamond

    Energy Technology Data Exchange (ETDEWEB)

    Iakoubovskii, K; Mitsuishi, K [Quantum Dot Research Center, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0005 (Japan); Furuya, K [High Voltage Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0005 (Japan)], E-mail: Iakoubovskii.Konstantin@nims.go.jp

    2008-04-16

    The structure of individual nanodiamond grains produced by the detonation of carbon-based explosives has been studied with a high-vacuum aberration-corrected electron microscope. Many grains show a well-resolved cubic diamond lattice with negligible contamination, thereby demonstrating that the non-diamond shell, universally observed on nanodiamond particles, could be intrinsic to the preparation process rather than to the nanosized diamond itself. The strength of the adhesion between the nanodiamond grains, and the possibility of their patterning with sub-nanometer precision, are also demonstrated.

  16. Physical methods for studying minerals and solid materials: X-ray, electron and neutron diffraction; scanning and transmission electron microscopy; X-ray, electron and ion spectrometry

    International Nuclear Information System (INIS)

    Eberhart, J.-P.

    1976-01-01

    The following topics are discussed: theoretical aspects of radiation-matter interactions; production and measurement of radiations (X rays, electrons, neutrons); applications of radiation interactions to the study of crystalline materials. The following techniques are presented: X-ray and neutron diffraction, electron microscopy, electron diffraction, X-ray fluorescence analysis, electron probe microanalysis, surface analysis by electron emission spectrometry (ESCA and Auger electrons), scanning electron microscopy, secondary ion emission analysis [fr

  17. Image enhancement in photoemission electron microscopy by means of imaging time-of-flight analysis

    International Nuclear Information System (INIS)

    Oelsner, A.; Krasyuk, A.; Fecher, G.H.; Schneider, C.M.; Schoenhense, G.

    2004-01-01

    Photoemission electron microscopy (PEEM) is widely used in combination with synchrotron sources as a powerful tool to observe chemical and magnetic properties of metal and semiconductor surfaces. Presently, the resolution limit of these instruments using soft-X-ray excitation is limited to about 50 nm, because of the chromatic aberration of the electron optics used. Various sophisticated approaches have thus been reported for enhancing the spatial resolution in photoemission electron microscopy. This work demonstrates the use of a simple imaging energy filter based on electron time-of-flight (ToF) selection. The spatial resolution could be improved dramatically, even though the instrument was optimized using a rather large contrast aperture of 50 μm. A special (x, y, t)-resolving delayline detector was used as the imaging unit of this ToF-PEEM. It is operated in phase with the time structure of the synchrotron source, cutting time intervals from the raw image-forming data set in order to reduce the electron energy width contributing to the final images

  18. Low-energy electron point projection microscopy of suspended graphene, the ultimate 'microscope slide'

    International Nuclear Information System (INIS)

    Mutus, J Y; Livadaru, L; Urban, R; Salomons, M H; Cloutier, M; Wolkow, R A; Robinson, J T

    2011-01-01

    Point projection microscopy (PPM) is used to image suspended graphene by using low-energy electrons (100-205 eV). Because of the low energies used, the graphene is neither damaged nor contaminated by the electron beam for doses of the order of 10 7 electrons per nm 2 . The transparency of graphene is measured to be 74%, equivalent to electron transmission through a sheet twice as thick as the covalent radius of sp 2 -bonded carbon. Also observed is rippling in the structure of the suspended graphene, with a wavelength of approximately 26 nm. The interference of the electron beam due to diffraction off the edge of a graphene knife edge is observed and is used to calculate a virtual source size of 4.7±0.6 A for the electron emitter. It is demonstrated that graphene can serve as both the anode and the substrate in PPM, thereby avoiding distortions due to strong field gradients around nanoscale objects. Graphene can be used to image objects suspended on the sheet using PPM and, in the future, electron holography.

  19. Electron microscopy of octacalcium phosphate in the dental calculus.

    Science.gov (United States)

    Kakei, Mitsuo; Sakae, Toshiro; Yoshikawa, Masayoshi

    2009-12-01

    The purpose of this study was to morphologically demonstrate the presence of octacalcium phosphate in the dental calculus by judging from the crystal lattice image and its rapid transformation into apatite crystal, as part of our serial studies on biomineral products. We also aimed to confirm whether the physical properties of octacalcium phosphate are identical with those of the central dark lines observed in crystals of ordinary calcifying hard tissues. Electron micrographs showed that crystals of various sizes form in the dental calculus. The formation of each crystal seemed to be closely associated with the organic substance, possibly originating from degenerated microorganisms at the calcification front. Many crystals had an 8.2-A lattice interval, similar to that of an apatite crystal. Furthermore, some crystals clearly revealed an 18.7-A lattice interval and were vulnerable to electron bombardment. After electron beam exposure, this lattice interval was quickly altered to about half (i.e. 8.2 A), indicating structural conversion. Consequently, a number of apatite crystals in the dental calculus are possibly created by a conversion mechanism involving an octacalcium phosphate intermediate. However, we also concluded that the calcification process in the dental calculus is not similar to that of ordinary calcifying hard tissues.

  20. Helium ion microscopy and ultra-high-resolution scanning electron microscopy analysis of membrane-extracted cells reveals novel characteristics of the cytoskeleton of Giardia intestinalis.

    Science.gov (United States)

    Gadelha, Ana Paula Rocha; Benchimol, Marlene; de Souza, Wanderley

    2015-06-01

    Giardia intestinalis presents a complex microtubular cytoskeleton formed by specialized structures, such as the adhesive disk, four pairs of flagella, the funis and the median body. The ultrastructural organization of the Giardia cytoskeleton has been analyzed using different microscopic techniques, including high-resolution scanning electron microscopy. Recent advances in scanning microscopy technology have opened a new venue for the characterization of cellular structures and include scanning probe microscopy techniques such as ultra-high-resolution scanning electron microscopy (UHRSEM) and helium ion microscopy (HIM). Here, we studied the organization of the cytoskeleton of G. intestinalis trophozoites using UHRSEM and HIM in membrane-extracted cells. The results revealed a number of new cytoskeletal elements associated with the lateral crest and the dorsal surface of the parasite. The fine structure of the banded collar was also observed. The marginal plates were seen linked to a network of filaments, which were continuous with filaments parallel to the main cell axis. Cytoplasmic filaments that supported the internal structures were seen by the first time. Using anti-actin antibody, we observed a labeling in these filamentous structures. Taken together, these data revealed new surface characteristics of the cytoskeleton of G. intestinalis and may contribute to an improved understanding of the structural organization of trophozoites. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The cryo-electron microscopy structure of huntingtin

    Science.gov (United States)

    Guo, Qiang; Bin Huang; Cheng, Jingdong; Seefelder, Manuel; Engler, Tatjana; Pfeifer, Günter; Oeckl, Patrick; Otto, Markus; Moser, Franziska; Maurer, Melanie; Pautsch, Alexander; Baumeister, Wolfgang; Fernández-Busnadiego, Rubén; Kochanek, Stefan

    2018-03-01

    Huntingtin (HTT) is a large (348 kDa) protein that is essential for embryonic development and is involved in diverse cellular activities such as vesicular transport, endocytosis, autophagy and the regulation of transcription. Although an integrative understanding of the biological functions of HTT is lacking, the large number of identified HTT interactors suggests that it serves as a protein-protein interaction hub. Furthermore, Huntington’s disease is caused by a mutation in the HTT gene, resulting in a pathogenic expansion of a polyglutamine repeat at the amino terminus of HTT. However, only limited structural information regarding HTT is currently available. Here we use cryo-electron microscopy to determine the structure of full-length human HTT in a complex with HTT-associated protein 40 (HAP40; encoded by three F8A genes in humans) to an overall resolution of 4 Å. HTT is largely α-helical and consists of three major domains. The amino- and carboxy-terminal domains contain multiple HEAT (huntingtin, elongation factor 3, protein phosphatase 2A and lipid kinase TOR) repeats arranged in a solenoid fashion. These domains are connected by a smaller bridge domain containing different types of tandem repeats. HAP40 is also largely α-helical and has a tetratricopeptide repeat-like organization. HAP40 binds in a cleft and contacts the three HTT domains by hydrophobic and electrostatic interactions, thereby stabilizing the conformation of HTT. These data rationalize previous biochemical results and pave the way for improved understanding of the diverse cellular functions of HTT.

  2. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses.

    Science.gov (United States)

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-09-01

    Limbal ring (also known as 'circle') contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or 'enclosed' within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of 'circle' contact lenses. Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. © 2014 The Authors. Clinical and Experimental

  3. The New Electron Microscopy: Cells and Molecules in Three Dimensions | Poster

    Science.gov (United States)

    NCI recently announced the launch of the new National Cryo-Electron Microscopy Facility (NCEF) at the Frederick National Laboratory for Cancer Research (FNLCR). The launch comes while cryo-electron microscopy (cryo-EM) is enjoying the spotlight as a newly emerging, rapidly evolving technology with the potential to revolutionize the field of structural biology. Read more...

  4. Electron beam fabrication and characterization of high-resolution magnetic force microscopy tips

    Science.gov (United States)

    Rührig, M.; Porthun, S.; Lodder, J. C.; McVitie, S.; Heyderman, L. J.; Johnston, A. B.; Chapman, J. N.

    1996-03-01

    The stray field, magnetic microstructure, and switching behavior of high-resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a thermally evaporated magnetic thin film are transparent to the electron energies used in these TEMs it is possible to observe both the external stray field emanating from the tips as well as their internal domain structure. The experiments confirm the basic features of electron beam fabricated thin film tips concluded from various MFM observations using these tips. Only a weak but highly concentrated stray field is observed emanating from the immediate apex region of the tip, consistent with their capability for high resolution. It also supports the negligible perturbation of the magnetization sample due to the tip stray field observed in MFM experiments. Investigation of the magnetization distributions within the tips, as well as preliminary magnetizing experiments, confirm a preferred single domain state of the high aspect ratio tips. To exclude artefacts of the observation techniques both nonmagnetic tips and those supporting different magnetization states are used for comparison.

  5. Ab initio transmission electron microscopy image simulations of coherent Ag-MgO interfaces

    International Nuclear Information System (INIS)

    Mogck, S.; Kooi, B.J.; Hosson, J.Th.M. de; Finnis, M.W.

    2004-01-01

    Density-functional theory calculations, within the plane-wave-ultrasoft pseudopotential framework, were performed in the projection for MgO and for the coherent (111) Ag-MgO polar interface. First-principles calculations were incorporated in high-resolution transmission electron microscopy (HRTEM) simulations by converting the charge density into electron scattering factors to examine the influence of charge transfer, charge redistribution at the interface, and ionicity on the dynamical electron scattering and on calculated HRTEM images. It is concluded that the ionicity of oxides and the charge redistribution at interfaces play a significant role in HRTEM image simulations. In particular, the calculations show that at oxygen-terminated (111) Ag-MgO interfaces the first oxygen layer at the interface is much brighter than that in calculations with neutral atoms, in agreement with experimental observations

  6. Study of the nanostructure of Gum Metal using energy-filtered transmission electron microscopy

    International Nuclear Information System (INIS)

    Yano, T.; Murakami, Y.; Shindo, D.; Kuramoto, S.

    2009-01-01

    The nanostructure of Gum Metal, which has many anomalous mechanical properties, was investigated using transmission electron microscopy with energy filtering. A precise analysis of the weak diffuse electron scattering that was observed in the electron diffraction patterns of the Gum Metal specimen revealed that Gum Metal contains a substantial amount of the nanometer-sized ω phase. The morphology of the ω phase appeared to have a correlation with the faulting in the {2 1 1} planes, which are one of the characteristic lattice imperfections of the Gum Metal specimen. It is likely that the nanometer-sized ω phase may be a type of obstacle related to the restriction of the dislocation movement, which has been a significant problem in research on Gum Metal

  7. In-situ transmission electron microscopy growth of nanoparticles under extreme conditions

    International Nuclear Information System (INIS)

    Luce, F. P.; Azevedo, G. de M.; Baptista, D. L.; Zawislak, F. C.; Oliviero, E.; Fichtner, P. F. P.

    2016-01-01

    The formation and time resolved behavior of individual Pb nanoparticles embedded in silica have been studied by in-situ transmission electron microscopy observations at high temperatures (400–1100 °C) and under 200 keV electron irradiation. It is shown that under such extreme conditions, nanoparticles can migrate at long distances presenting a Brownian-like behavior and eventually coalesce. The particle migration phenomenon is discussed considering the influence of the thermal energy and the electron irradiation effects on the atomic diffusion process which is shown to control particle migration. These results and comparison with ex-situ experiments tackle the stability and the microstructure evolution of nanoparticles systems under extreme conditions. It elucidates on the effects of energetic particle irradiation-annealing treatments either as a tool or as a detrimental issue that could hamper their long-term applications in radiation-harsh environments such as in space or nuclear sectors

  8. Elemental distribution imaging by energy-filtering transmission electron microscopy (EFTEM) and its applications

    International Nuclear Information System (INIS)

    Kurata, Hiroki

    1996-01-01

    EFTEM is new microscopy with the object of visualizing high resolution quantitative elemental distribution. The measurement principles and the present state of EFTEM studies are explained by the examples of measurement of the elemental distributions. EFTEM is a combination of the transmission electron microscope with the electron energy loss spectroscopy (EFLS). EFTEM method sets the slit in the specific energy field and put the electron passing the slit back in the microscopic image. The qualitative elemental analysis is obtained by observing the position of the absorption end of core electronic excitation spectrum and the quantitative one by determining the core electronic excitation strength of the specific atom depend on filtering with energy selector slit. The binding state and the local structure in the neighborhood of excited atom is determined by the fine structure of absorption end. By the chemical mapping method, the distribution image of chemical binding state is visualized by the imaging chemical map obtained by filtering the specific peak strength of fine structure with the narrow energy selector slit. The fine powder of lead chromate (PbCrO 4 ) covered with silica glass was shown as a typical example of the elemental distribution image of core electronic excitation spectrum. The quantitative analysis method of elemental distribution image is explained. The possibility of single atom analysis at nanometer was shown by the example of nanotube observed by EFTEM. (S.Y.)

  9. Photoemission electron microscopy of localized surface plasmons in silver nanostructures at telecommunication wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Mårsell, Erik; Larsen, Esben W.; Arnold, Cord L.; Xu, Hongxing; Mauritsson, Johan; Mikkelsen, Anders, E-mail: anders.mikkelsen@sljus.lu.se [Department of Physics, Lund University, P.O. Box 118, 22 100 Lund (Sweden)

    2015-02-28

    We image the field enhancement at Ag nanostructures using femtosecond laser pulses with a center wavelength of 1.55 μm. Imaging is based on non-linear photoemission observed in a photoemission electron microscope (PEEM). The images are directly compared to ultra violet PEEM and scanning electron microscopy (SEM) imaging of the same structures. Further, we have carried out atomic scale scanning tunneling microscopy on the same type of Ag nanostructures and on the Au substrate. Measuring the photoelectron spectrum from individual Ag particles shows a larger contribution from higher order photoemission processes above the work function threshold than would be predicted by a fully perturbative model, consistent with recent results using shorter wavelengths. Investigating a wide selection of both Ag nanoparticles and nanowires, field enhancement is observed from 30% of the Ag nanoparticles and from none of the nanowires. No laser-induced damage is observed of the nanostructures neither during the PEEM experiments nor in subsequent SEM analysis. By direct comparison of SEM and PEEM images of the same nanostructures, we can conclude that the field enhancement is independent of the average nanostructure size and shape. Instead, we propose that the variations in observed field enhancement could originate from the wedge interface between the substrate and particles electrically connected to the substrate.

  10. Accurate virus quantitation using a Scanning Transmission Electron Microscopy (STEM) detector in a scanning electron microscope.

    Science.gov (United States)

    Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G

    2017-10-01

    A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Scanning electron microscopy of cells from periapical lesions.

    Science.gov (United States)

    Farber, P A

    1975-09-01

    Examination of lymphocytes from peripheral blood with the scanning electron microscope (SEM) has shown differences between B cells and T cells on the basis of their surface architecture. This study was initiated to determine whether the cellular components of periapical lesions could be identified with the use of similar criteria. Cells were dispersed from lesions by aspiration of fragments of tissue through syringe needles of decreasing diameters. The liberated cells were filtered on silver-coated Flotronic membranes and examined under the SEM. Lymphocytes, macrophages, epithelial cells, and mast cells were observed in granulomas and cysts. Most of the lymphocytes had smooth surfaces similar to that of T cells; others had villous projections similar to that of B cells. Epithelial nests were seen in the cyst linings while the cyst fluid was rich in lymphocytes. These findings suggest that SEM examination of periapical lesions can be a useful adjunct in studying cellular composition and possible immunological reactions in these tissues.

  12. Analysis of microstructure in mouse femur and decalcification effect on microstructure by electron microscopy

    Directory of Open Access Journals (Sweden)

    Taehoon Jeon

    2010-10-01

    Full Text Available Microstructure and decalcification effect by ethylenediaminetetraacetic acid (EDTA on microstructure were studied for the compact bone of mouse femur by optical and electron microscopy. Especially the (002 reflection plane on the selected area electron diffraction (SAED of hydroxyapatite (HA was analyzed in detail. Two types of HA crystals were observed by transmission electron microscopy (TEM. One was needle-like crystals known as general HA crystals, and the other was flake-like crystals. Major constituents of two types of crystals were calcium, phosphorus, and oxygen. The Ca/P ratios of two types of crystals were close to the ideal value of HA within experimental error. Intensity data obtained from each crystals were also very similar. These results indicated that two types of crystals were actually same HA crystals. It was noticed that the (002 reflection plane on SAED displayed ring, spot, or arc patterns in accordance with orientations of HA crystals. Decalcification by EDTA process obsecured outline of osteons and havarsian canals, and changed morphology of the bone section. As the results of decalcification it was observed by TEM-EDS (Energy Dispersive Spectroscopy that all peaks of calcium and phosphorus disappeared, and intensity of oxygen peak was substantially reduced. Moreover, collagen appeared to be disaggreated.

  13. Microstructure-Sensitive Investigation of Fracture Using Acoustic Emission Coupled With Electron Microscopy

    Science.gov (United States)

    Wisner, Brian; Cabal, Mike; Vanniamparambiland, Prashanth A.; Leser, William; Hochhalter, Jacob; Kontsos, Antonios

    2015-01-01

    A novel technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is proposed to investigate microstructure-sensitive fatigue and fracture of metals. The coupling between quasi in situ microscopy with actual in situ nondestructive evaluation falls into the ICME framework and the idea of quantitative data-driven characterization of material behavior. To validate the use of AE monitoring inside the SEM chamber, Aluminum 2024-B sharp notch specimen were tested both inside and outside the microscope using a small scale mechanical testing device. Subsequently, the same type of specimen was tested inside the SEM chamber. Load data were correlated with both AE information and observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The preliminary results are in excellent agreement with similar findings at the mesoscale. Extensions of the application of this novel technique are discussed.

  14. Calculated sputtering and atomic displacement cross-sections for applications to medium voltage analytical electron microscopy

    International Nuclear Information System (INIS)

    Bradley, C.R.; Zaluzec, N.J.

    1987-08-01

    The development of medium voltage electron microscopes having high brightness electron sources and ultra-high vacuum environments has been anticipated by the microscopy community now for several years. The advantages of such a configuration have been discussed to great lengths, while the potential disadvantages have for the most part been neglected. The most detrimental of these relative to microcharacterization are the effects of electron sputtering and atomic displacement to the local specimen composition. These effects have in the past been considered mainly in the high voltage electron microscope regime and generally were ignored in lower voltage instruments. Recent experimental measurements have shown that the effects of electron sputtering as well as radiation induced segregation can be observed in conventional transmission electron microscopes. It is, therefore, important to determine at what point the effects will begin to manifest themselves in the new generation of medium voltage analytical electron microscopes. In this manuscript we present new calculations which allow the individual experimentalist to determine the potential threshold levels for a particular elemental system and thus avoid the dangers of introducing artifacts during microanalysis. 12 refs., 3 figs

  15. Analysis of enamel microbiopsies in shed primary teeth by Scanning Electron Microscopy (SEM) and Polarizing Microscopy (PM)

    International Nuclear Information System (INIS)

    Costa de Almeida, Glauce Regina; Molina, Gabriela Ferian; Meschiari, Cesar Arruda; Barbosa de Sousa, Frederico; Gerlach, Raquel Fernanda

    2009-01-01

    The aims of this study were 1) to verify how close to the theoretically presumed areas are the areas of enamel microbiopsies carried out in vivo or in exfoliated teeth; 2) to test whether the etching solution penetrates beyond the tape borders; 3) to test whether the etching solution demineralizes the enamel in depth. 24 shed upper primary central incisors were randomly divided into two groups: the Rehydrated Teeth Group and the Dry Teeth Group. An enamel microbiopsy was performed, and the enamel microbiopsies were then analyzed by Scanning Electron Microscopy (SEM) and Polarizing Microscopy (PM). Quantitative birefringence measurements were performed. The 'true' etched area was determined by measuring the etched enamel using the NIH Image analysis program. Enamel birefringence was compared using the paired t test. There was a statistically significant difference when the etched areas in the Rehydrated teeth were compared with those of the Dry teeth (p = 0.04). The etched areas varied from - 11.6% to 73.5% of the presumed area in the Rehydrated teeth, and from 6.6% to 61.3% in the Dry teeth. The mean percentage of variation in each group could be used as a correction factor for the etched area. Analysis of PM pictures shows no evidence of in-depth enamel demineralization by the etching solution. No statistically significant differences in enamel birefringence were observed between values underneath and outside the microbiopsy area in the same tooth, showing that no mineral loss occurred below the enamel superficial layer. Our data showed no evidence of in-depth enamel demineralization by the etching solution used in the enamel microbiopsy proposed for primary enamel. This study also showed a variation in the measured diameter of the enamel microbiopsy in nineteen teeth out of twenty four, indicating that in most cases the etching solution penetrated beyond the tape borders.

  16. Neural plasticity explored by correlative two-photon and electron/SPIM microscopy

    Science.gov (United States)

    Allegra Mascaro, A. L.; Silvestri, L.; Costantini, I.; Sacconi, L.; Maco, B.; Knott, G. W.; Pavone, F. S.

    2013-06-01

    Plasticity of the central nervous system is a complex process which involves the remodeling of neuronal processes and synaptic contacts. However, a single imaging technique can reveal only a small part of this complex machinery. To obtain a more complete view, complementary approaches should be combined. Two-photon fluorescence microscopy, combined with multi-photon laser nanosurgery, allow following the real-time dynamics of single neuronal processes in the cerebral cortex of living mice. The structural rearrangement elicited by this highly confined paradigm of injury can be imaged in vivo first, and then the same neuron could be retrieved ex-vivo and characterized in terms of ultrastructural features of the damaged neuronal branch by means of electron microscopy. Afterwards, we describe a method to integrate data from in vivo two-photon fluorescence imaging and ex vivo light sheet microscopy, based on the use of major blood vessels as reference chart. We show how the apical dendritic arbor of a single cortical pyramidal neuron imaged in living mice can be found in the large-scale brain reconstruction obtained with light sheet microscopy. Starting from its apical portion, the whole pyramidal neuron can then be segmented and located in the correct cortical layer. With the correlative approach presented here, researchers will be able to place in a three-dimensional anatomic context the neurons whose dynamics have been observed with high detail in vivo.

  17. An electromechanical material testing system for in situ electron microscopy and applications.

    Science.gov (United States)

    Zhu, Yong; Espinosa, Horacio D

    2005-10-11

    We report the development of a material testing system for in situ electron microscopy (EM) mechanical testing of nanostructures. The testing system consists of an actuator and a load sensor fabricated by means of surface micromachining. This previously undescribed nanoscale material testing system makes possible continuous observation of the specimen deformation and failure with subnanometer resolution, while simultaneously measuring the applied load electronically with nanonewton resolution. This achievement was made possible by the integration of electromechanical and thermomechanical components based on microelectromechanical system technology. The system capabilities are demonstrated by the in situ EM testing of free-standing polysilicon films, metallic nanowires, and carbon nanotubes. In particular, a previously undescribed real-time instrumented in situ transmission EM observation of carbon nanotubes failure under tensile load is presented here.

  18. A high resolution electron microscopy investigation of curvature in carbon nanotubes

    Science.gov (United States)

    Weldon, D. N.; Blau, W. J.; Zandbergen, H. W.

    1995-07-01

    Evidence for heptagon inclusion in multi-walled carbon nanotubes was sought in arc-produced carbon deposits. Transmission electron microscopy revealed many curved nanotubes although their relative abundance was low. Close examination of the micrographs in the regions of expected heptagon inclusion shows that the curvature is accomplished by folding or fracture of the lattice planes. This observed phenomenon contradicts the theoretical modelling studies which predict stable structures with negative curvature accomplished by heptagon/pentagon pairs. A possible explanation for curvature in single-walled tubes is presented based on a molecular mechanics geometry optimisation study of spa inclusion in a graphite sheet.

  19. Transmission electron microscopy studies on nanometer-sized ω phase produced in Gum Metal

    International Nuclear Information System (INIS)

    Yano, Takaaki; Murakami, Yasukazu; Shindo, Daisuke; Hayasaka, Yuichiro; Kuramoto, Shigeru

    2010-01-01

    The morphology, numerical density and average spacing of the ω phase formed in Gum Metal, a Ti-based alloy showing unique mechanical properties, were studied by transmission electron microscopy. Based on dark-field image observations and precise thickness measurements using a thin-foil specimen, the average spacing of the nanometer-sized ω phase was determined to be 6 nm. This spacing appeared to be sufficiently small for trapping dislocations. The results are discussed in conjunction with the dislocation-free deformation mechanism proposed for Gum Metal.

  20. Transmission Electron Microscopy of Bombyx Mori Silk Fibers

    Science.gov (United States)

    Shen, Y.; Martin, D. C.

    1997-03-01

    The microstructure of B. Mori silk fibers before and after degumming was examined by TEM, selected area electron diffraction (SAED), WAXS and low voltage SEM. SEM micrographs of the neat cocoon revealed a network of pairs of twisting filaments. After degumming, there were only individual filaments showing a surface texture consistent with an oriented fibrillar structure in the fiber interior. WAXS patterns confirmed the oriented beta-sheet crystal structure common to silkworm and spider silks. Low dose SAED results were fully consistent with the WAXS data, and revealed that the crystallographic texture did not vary significantly across the fiber diameter. TEM observations of microtomed fiber cross sections indicated a somewhat irregular shape, and also revealed a 0.5-2 micron sericin coating which was removed by the degumming process. TEM observations of the degummed silk fiber showed banded features with a characteristic spacing of nominally 600 nm along the fiber axis. These bands were oriented in a roughly parabolic or V-shape pointing along one axis within a given fiber. We hypothesize that this orientation is induced by the extrusion during the spinning process. Equatorial DF images revealed that axial and lateral sizes of the β-sheet crystallites in silk fibroin ranged from 20 to 170 nm and from 1 to 24 nm, respectively. Crazes developed in the degummed silk fiber parallel to the fiber direction. The formation of these crazes suggests that there are significant lateral interactions between fibrils in silk fibers.

  1. Low temperature electron microscopy and electron diffraction of the purple membrane of Halobacterium halobium

    International Nuclear Information System (INIS)

    Hayward, S.B.

    1978-09-01

    The structure of the purple membrane of Halobacterium halobium was studied by high resolution electron microscopy and electron diffraction, primarily at low temperature. The handedness of the purple membrane diffraction pattern with respect to the cell membrane was determined by electron diffraction of purple membranes adsorbed to polylysine. A new method of preparing frozen specimens was used to preserve the high resolution order of the membranes in the electron microscope. High resolution imaging of glucose-embedded purple membranes at room temperature was used to relate the orientation of the diffraction pattern to the absolute orientation of the structure of the bacteriorhodopsin molecule. The purple membrane's critical dose for electron beam-induced damage was measured at room temperature and at -120 0 C, and was found to be approximately five times greater at -120 0 C. Because of this decrease in radiation sensitivity, imaging of the membrane at low temperature should result in an increased signal-to-noise ratio, and thus better statistical definition of the phases of weak reflections. Higher resolution phases may thus be extracted from images than can be determined by imaging at room temperature. To achieve this end, a high resolution, liquid nitrogen-cooled stage was built for the JEOL-100B. Once the appropriate technology for taking low dose images at very high resolution has been developed, this stage will hopefully be used to determine the high resolution structure of the purple membrane

  2. Observation of spin reorientation in layered manganites La1.2Sr1.8(Mn1-yRuy)2O7 (0.0=electron microscopy

    International Nuclear Information System (INIS)

    Yu, X.Z.; Uchida, M.; Onose, Y.; He, J.P.; Kaneko, Y.; Asaka, T.; Kimoto, K.; Matsui, Y.; Arima, T.; Tokura, Y.

    2006-01-01

    The effect of Ru substitution for Mn in bilayered oxides La 1.2 Sr 1.8 (Mn 1-y Ru y ) 2 O 7 (0= for the y=0 crystal to the c-axis for y=0.2, and it rotates away from the c-axis for the y=0.05 and y=0.07 crystals with decreasing temperature. Furthermore, maze-shaped magnetic domain structures were observed in the (001) thin crystals with 0.05=< y=<0.2. Changes in domain size and structure indicate that the uniaxial magnetic anisotropy becomes stronger as Ru content y increases

  3. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Pia C. Lansåker

    2014-10-01

    Full Text Available Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness dg—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM combined with image analysis as well as by atomic force microscopy (AFM. The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for dg were obtained by SEM with image analysis and by AFM.

  4. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope.

    Science.gov (United States)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I; Nellist, Peter D; Cosgriff, Eireann C; D'Alfonso, Adrian J; Morgan, Andrew J; Allen, Leslie J; Hashimoto, Ayako; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2011-06-01

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Direct observation of atoms on surfaces by scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Baldeschwieler, J.D.

    1989-01-01

    The scanning tunnelling microscope is a non-destructive means of achieving atomic level resolution of crystal surfaces in real space to elucidate surface structures, electronic properties and chemical composition. Scanning tunnelling microscope is a powerful, real space surface structure probe complementary to other techniques such as x-ray diffraction. 21 refs., 8 figs

  6. Engineering Electrochemical Setups for Electron Microscopy of Liquid Processes

    DEFF Research Database (Denmark)

    Jensen, Eric; Burrows, Andrew

    This work focuses on creating tools for imaging liquid samples at atmospheric pressure and room temperature in two different electron microscopes; the scanning electron microscope (SEM) and the transmission electron microscope (TEM). The main focus of the project was the fabrication of the two sy...

  7. Observation of self-assembled fluorescent beads by scanning near-field optical microscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Oh, Y.J.; Jo, W.; Kim, Min-Gon; Kyu Park, Hyun; Hyun Chung, Bong

    2006-01-01

    Optical response and topography of fluorescent latex beads both on flat self-assembled monolayer and on a micron-patterned surface with poly(dimethylsiloxane) are studied. Scanning near-field optical microscopy and atomic force microscopy were utilized together for detecting fluorescence and imaging topography of the patterned latex beads, respectively. As a result, the micro-patterned latex beads where a specific chemical binding occurred show a strong signal, whereas no signals are observed in the case of nonspecific binding. With fluorescein isothiocyanate (FITC), it is convenient to measure fluorescence signal from the patterned beads allowing us to monitor the small balls of fluorescent latex

  8. Microscopy

    Science.gov (United States)

    Patricia A. Moss; Les Groom

    2001-01-01

    Microscopy is the study and interpretation of images produced by a microscope. "Interpretation" is the keyword, because the microscope enables one to see structures that are too small or too close together to be resolved by the unaided eye. (The human eye cannot separate two points or lines that are closer together than 0.1 mm.) it is important to...

  9. Transmission electron microscopy of bulk specimens over 10 µm in thickness

    Energy Technology Data Exchange (ETDEWEB)

    Sadamatsu, Sunao, E-mail: sadamatsu@mech.kagoshima-u.ac.jp [Department of Mechanical Engineering, Kagoshima University, Korimoto, Kagoshima 890-0065 (Japan); Tanaka, Masaki; Higashida, Kenji [Department of Materials Science and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Matsumura, Syo [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Ultramicroscopy Research Center, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan)

    2016-03-15

    We succeeded the observation of microstructures in bulk-sized specimens of over 10 µm in thickness by employing a technique that combines transmission electron microscopy (TEM) with energy-filtered imaging based on electron energy-loss spectroscopy (EELS). This method is unique in that it incorporates the inelastically scattered electrons into the imaging process. Using this technique, bright and sharp images of dislocations in crystalline silicon specimens as thick as 10 µm were obtained. A calibration curve to determine foil thickness of such a thick specimen was also derived. This method simply extends the observable thickness range in TEM. If combined with tilt series of observation over a significant range of angle, it will disclose three dimensional nanostructures in a µm-order block of a specimen, promoting our understanding of the controlling mechanisms behind various bulky material properties. - Highlights: • We developed a method which enables thick specimens to be observed using EF-TEM. • The effects of energy filter width and position on images were determined. • We suggested a method to determine the thickness of a thick film sample. • We achieved observation of microstructures in specimens with a thickness of 10 µm.

  10. Simulation study of secondary electron images in scanning ion microscopy

    CERN Document Server

    Ohya, K

    2003-01-01

    The target atomic number, Z sub 2 , dependence of secondary electron yield is simulated by applying a Monte Carlo code for 17 species of metals bombarded by Ga ions and electrons in order to study the contrast difference between scanning ion microscopes (SIM) and scanning electron microscopes (SEM). In addition to the remarkable reversal of the Z sub 2 dependence between the Ga ion and electron bombardment, a fine structure, which is correlated to the density of the conduction band electrons in the metal, is calculated for both. The brightness changes of the secondary electron images in SIM and SEM are simulated using Au and Al surfaces adjacent to each other. The results indicate that the image contrast in SIM is much more sensitive to the material species and is clearer than that for SEM. The origin of the difference between SIM and SEM comes from the difference in the lateral distribution of secondary electrons excited within the escape depth.

  11. Growth Termination and Multiple Nucleation of Single-Wall Carbon Nanotubes Evidenced by in Situ Transmission Electron Microscopy

    DEFF Research Database (Denmark)

    Zhang, Lili; He, Maoshuai; Hansen, Thomas Willum

    2017-01-01

    and successive growth of additional SWCNTs on Co catalyst particles supported on MgO by means of environmental transmission electron microscopy. Such in situ observations reveal the plethora of solid carbon formations at the local scale while it is happening and thereby elucidate the multitude of configurations...

  12. Determination of lead in clay enameled by X-ray fluorescence technique in Total reflection and by Scanning Electron Microscopy

    International Nuclear Information System (INIS)

    Zarazua O, G.; Carapia M, L.

    2000-01-01

    This work has the objective of determining lead free in the glazed commercial stewing pans using the X-ray fluorescence technique in Total reflection (FRX) and the observation and semiquantitative determination of lead by Analytical Scanning Electron Microscopy (ASEM). (Author)

  13. Comparison of macroscopic and microscopic (stereomicroscopy and scanning electron microscopy) features of bone lesions due to hatchet hacking trauma.

    Science.gov (United States)

    Nogueira, Luísa; Quatrehomme, Gérald; Bertrand, Marie-France; Rallon, Christophe; Ceinos, Romain; du Jardin, Philippe; Adalian, Pascal; Alunni, Véronique

    2017-03-01

    This experimental study examined the lesions produced by a hatchet on human bones (tibiae). A total of 30 lesions were produced and examined macroscopically (naked eye) and by stereomicroscopy. 13 of them were also analyzed using scanning electron microscopy. The general shape of the lesion, both edges, both walls, the kerf floor and the extremities were described. The length and maximum width of the lesions were also recorded. The microscopic analysis of the lesions led to the description of a sharp-blunt mechanism. Specific criteria were identified (lateral pushing back, fragmentation of the upraising, fossa dug laterally to the edge and vertical striae) enabling the forensic expert to conclude that a hacking instrument was used. These criteria are easily identifiable using scanning electron microscopy, but can also be observed with stereomicroscopy. Overall, lateral pushing back and vertical striae visible using stereomicroscopy and scanning electron microscopy signal the use of a hacking tool.

  14. Transmission electron and optical microscopy of the domain structure of Ni3B7O13Br ferroic boracite

    International Nuclear Information System (INIS)

    Castellanos-Guzman, A.G.; Trujillo-Torrez, M.; Czank, M.

    2005-01-01

    The study investigated the domain structure of nickel bromine boracite single crystals, by means of polarised-light in conjunction with transmission electron microscopy. Single crystals of Ni 3 B 7 O 13 Br were grown by chemical transport reactions in closed quartz ampoules, in the temperature range of 1130 K and were examined by polarising optical microscopy (PLM), and transmission electron microscopy (TEM). PLM was also used in order to study the behaviour of birefringence as a function of temperature. For TEM the single crystals were crushed and mounted on holey carbon films. Comparative electron microscope images were useful for revealing the domain structure of this fully ferroelectric/fully ferroelastic material previously observed between the crossed polars of an optical microscope. X-ray diffraction analysis of the crystal under study was performed at room temperature

  15. Contributed Review: Review of integrated correlative light and electron microscopy

    NARCIS (Netherlands)

    Timmermans, Frank Jan; Otto, Cornelis

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In

  16. Structure studies by electron microscopy and electron diffraction at Physics Department, University of Oslo, 1976-1985

    International Nuclear Information System (INIS)

    Gjoennes, J.K.; Olsen, A.

    1985-08-01

    The paper describes the reasearch activities and plans at the electron microscopy laboratorium, Physics Departmen, University of Oslo. Since the first electron microscope was installed in 1968, the research has covered inorganic structures, physical metallurgy, as well as theory of electron scattering and the development of methods in this field. The current plans involve efforts in the development of crystallographic and spectroscopic methods

  17. Study on atomic and electronic structures of ceramic materials using spectroscopy, microscopy, and first principles calculation

    International Nuclear Information System (INIS)

    Mizoguchi, Teruyasu

    2011-01-01

    In this review, following two topics are introduced: 1) experimental and theoretical electron energy loss (EEL) near edge structures (ELNES) and X-ray absorption near edge structures (XANES), and 2) atomic and electronic structure analysis of ceramic interface by combing spectroscopy, microscopy, and first principles calculation. In the ELNES/XANES calculation, it is concluded that inclusion of core-hole effect in the calculation is essential. By combining high energy resolution observation and theoretical calculation, detailed analysis of the electronic structure is achieved. In addition, overlap population (OP) diagram is used to interpret the spectrum. In the case of AlN, sharp and intense first peak of N-K edge is found to reflect narrow dispersion of the conduction band bottom. By applying ELNES and the OP diagram to Cu/Al 2 O 3 heterointerface, it is revealed that intensity of prepeak in O-K edge is inverse proportional to interface strength. The relationships between atomic structure and defect energetics at SrTiO 3 grain boundary are also investigated, and reveal that the formation behavior of Ti vacancy is sensitive to the structural distortion. In addition, by using state-of-the-art spectroscopy, microscopy, and first principles calculations, atomic scale visualization of fluorine dopant in LaFeOAs and first principles calculation of HfO 2 phase transformation are demonstrated. (author)

  18. Study of the creep of germanium bi-crystals by X ray topography and electronic microscopy

    International Nuclear Information System (INIS)

    Gay, Marie-Odile

    1981-01-01

    This research thesis addresses the study of the microscopic as well as macroscopic aspect of the role of grain boundary during deformation, by studying the creep of Germanium bi-crystals. The objective was to observe interactions of network dislocations with the boundary as well as the evolution of dislocations in each grain. During the first stages of deformation, samples have been examined by X ray topography, a technique which suits well the observation of low deformed samples, provided their initial dislocation density is very low. At higher deformation, more conventional techniques of observation of sliding systems and electronic microscopy have been used. After some general recalls, the definition of twin boundaries and of their structure in terms of dislocation, a look at germanium deformation, and an overview of works performed on bi-crystals deformation, the author presents the experimental methods and apparatuses. He reports and discusses the obtained results at the beginning of deformation as well as during next phases

  19. Electron microscopy study of Ni induced crystallization in amorphous Si thin films

    International Nuclear Information System (INIS)

    Radnóczi, G. Z.; Battistig, G.; Pécz, B.; Dodony, E.; Vouroutzis, N.; Stoemenos, J.; Frangis, N.; Kovács, A.

    2015-01-01

    The crystallization of amorphous silicon is studied by transmission electron microscopy. The effect of Ni on the crystallization is studied in a wide temperature range heating thinned samples in-situ inside the microscope. Two cases of limited Ni source and unlimited Ni source are studied and compared. NiSi 2 phase started to form at a temperature as low as 250°C in the limited Ni source case. In-situ observation gives a clear view on the crystallization of silicon through small NiSi 2 grain formation. The same phase is observed at the crystallization front in the unlimited Ni source case, where a second region is also observed with large grains of Ni 3 Si 2 . Low temperature experiments show, that long annealing of amorphous silicon at 410 °C already results in large crystallized Si regions due to the Ni induced crystallization

  20. Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report

    International Nuclear Information System (INIS)

    Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

    1994-10-01

    A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 μm in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level

  1. Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Tevis D. B., E-mail: tjacobs@pitt.edu [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, Pennsylvania 15208 (United States); Wabiszewski, Graham E.; Goodman, Alexander J.; Carpick, Robert W., E-mail: carpick@seas.upenn.edu [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220 S. 33rd St., Philadelphia, Pennsylvania 19104 (United States)

    2016-01-15

    The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tip has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture’s use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.

  2. Cross-section transmission electron microscopy of the ion implantation damage in annealed diamond

    Energy Technology Data Exchange (ETDEWEB)

    Derry, T.E. [DST/NRF Centre of Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa)], E-mail: Trevor.Derry@wits.ac.za; Nshingabigwi, E.K. [DST/NRF Centre of Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa); Department of Physics, National University of Rwanda, P.O. Box 117, Huye (Rwanda); Levitt, M. [DST/NRF Centre of Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa); Neethling, J. [DST/NRF CoE-SM and Physics Department, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Naidoo, S.R. [DST/NRF Centre of Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa)

    2009-08-15

    It has formerly been shown that low-damage levels, produced during the implantation doping of diamond as a semiconductor, anneal easily while high levels 'graphitize' (above about 5.2 x 10{sup 15} ions/cm{sup 2}). The difference in the defect types and their profiles, in the two cases, has never been directly observed. We have succeeded in using cross-section transmission electron microscopy to do so. The experiments were difficult because the specimens must be polished to {approx}40 {mu}m thickness, then implanted on edge and annealed, before final ion beam thinning to electron transparency. The low-damage micrographs reveal some deeply penetrating dislocations, whose existence had been predicted in earlier work.

  3. Application of scanning electron microscopy and ultraviolet fluorescence to a study of Chattanooga Shale

    International Nuclear Information System (INIS)

    Harris, L.A.; Kopp, O.C.; Crouse, R.S.

    1982-01-01

    Microanalytical techniques such as scanning electron microscopy, energy-dispersive x-ray analysis, and electron-beam microprobe analysis have been shown to be ideal for determining the host phases of the minor and trace elements in the Chattanooga shale. Positive correlations were found between pyrite and organic constituents. However, these observations provided no evidence that microorganisms acted as hosts for pyrite framboids. Interestingly, appreciable organic sulfur is still present, suggesting that the sulfur used for the formation of pyrite must have been derived mostly from other sources. It may be that the sulfate-reducing bacteria had an affinity for organic matter and that the organic fragments acted as substrates for pyrite growth

  4. Cross-section transmission electron microscopy of the ion implantation damage in annealed diamond

    International Nuclear Information System (INIS)

    Derry, T.E.; Nshingabigwi, E.K.; Levitt, M.; Neethling, J.; Naidoo, S.R.

    2009-01-01

    It has formerly been shown that low-damage levels, produced during the implantation doping of diamond as a semiconductor, anneal easily while high levels 'graphitize' (above about 5.2 x 10 15 ions/cm 2 ). The difference in the defect types and their profiles, in the two cases, has never been directly observed. We have succeeded in using cross-section transmission electron microscopy to do so. The experiments were difficult because the specimens must be polished to ∼40 μm thickness, then implanted on edge and annealed, before final ion beam thinning to electron transparency. The low-damage micrographs reveal some deeply penetrating dislocations, whose existence had been predicted in earlier work.

  5. Electron microscope observation of single - crystalline beryllium thin foils

    International Nuclear Information System (INIS)

    Antolin, J.; Poirier, J.P.; Dupouy, J.M.

    1965-01-01

    Thin foils prepared from single crystalline beryllium simples deformed at room temperature, have been observed by transmission electron microscopy. The various deformation modes have been investigated separately, from their early stages and their characteristic dislocation configurations have been observed. Basal slip is characterized at is outset by the presence of numerous dipoles and elongated prismatic loops. More pronounced cold work leads to the formation of dislocation tangles and bundles which eventually give a cellular structure. Prismatic slip begins by the cross-slip of dislocations from the basal plane into the prismatic plane. A cellular structure is equally observed in heavily deformed samples. Sessile dislocations have been observed in twin boundaries; they are produced by reactions between slip dislocations and twin dislocations. Finally, the study of samples quenched from 1100 deg. C and annealed at 200 deg. C has shown that the observed loops lie in prismatic planes and have a Burgers vector b 1/3 . (authors) [fr

  6. Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging

    Directory of Open Access Journals (Sweden)

    A. R. Bainbridge

    2016-03-01

    Full Text Available Femtosecond electron microscopy produces real-space images of matter in a series of ultrafast snapshots. Pulses of electrons self-disperse under space-charge broadening, so without compression, the ideal operation mode is a single electron per pulse. Here, we demonstrate femtosecond single-electron point projection microscopy (fs-ePPM in a laser-pump fs-e-probe configuration. The electrons have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 114 fs (equivalent to a full-width at half-maximum of 269 ± 40 fs combined with a spatial resolution of 100 nm, applied to a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. These observations demonstrate real-space imaging of reversible processes, such as tracking charge distributions, is feasible whilst maintaining femtosecond resolution. Our findings could find application as a characterization method, which, depending on geometry, could resolve tens of femtoseconds and tens of nanometres. Dynamically imaging electric and magnetic fields and charge distributions on sub-micron length scales opens new avenues of ultrafast dynamics. Furthermore, through the use of active compression, such pulses are an ideal seed for few-femtosecond to attosecond imaging applications which will access sub-optical cycle processes in nanoplasmonics.

  7. Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01

    Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

  8. Non-thermal plasma mills bacteria: scanning electron microscopy observations

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Churpita, Olexandr; Zablotskyy, Vitaliy A.; Deyneka, I.G.; Meshkovskii, I.K.; Jäger, Aleš; Syková, Eva; Kubinová, Šárka; Dejneka, Alexandr

    2015-01-01

    Roč. 106, č. 5 (2015), "053703-1"-"053703-5" ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LM2011029; GA MŠk(CZ) LM2011026; GA MŠk LO1309 Grant - others:AV ČR(CZ) M100101219; SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : non-thermal plasma * plasma medicine * bacteria * cells Subject RIV: BO - Biophysics Impact factor: 3.142, year: 2015

  9. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy.

    Science.gov (United States)

    Zhu, Yihan; Ciston, Jim; Zheng, Bin; Miao, Xiaohe; Czarnik, Cory; Pan, Yichang; Sougrat, Rachid; Lai, Zhiping; Hsiung, Chia-En; Yao, Kexin; Pinnau, Ingo; Pan, Ming; Han, Yu

    2017-05-01

    Metal-organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

  10. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy

    KAUST Repository

    Zhu, Yihan

    2017-02-21

    Metal–organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis1, 2, 3. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation4, 5, 6, 7. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

  11. Charge dynamics in aluminum oxide thin film studied by ultrafast scanning electron microscopy.

    Science.gov (United States)

    Zani, Maurizio; Sala, Vittorio; Irde, Gabriele; Pietralunga, Silvia Maria; Manzoni, Cristian; Cerullo, Giulio; Lanzani, Guglielmo; Tagliaferri, Alberto

    2018-04-01

    The excitation dynamics of defects in insulators plays a central role in a variety of fields from Electronics and Photonics to Quantum computing. We report here a time-resolved measurement of electron dynamics in 100 nm film of aluminum oxide on silicon by Ultrafast Scanning Electron Microscopy (USEM). In our pump-probe setup, an UV femtosecond laser excitation pulse and a delayed picosecond electron probe pulse are spatially overlapped on the sample, triggering Secondary Electrons (SE) emission to the detector. The zero of the pump-probe delay and the time resolution were determined by measuring the dynamics of laser-induced SE contrast on silicon. We observed fast dynamics with components ranging from tens of picoseconds to few nanoseconds, that fits within the timescales typical of the UV color center evolution. The surface sensitivity of SE detection gives to the USEM the potential of applying pump-probe investigations to charge dynamics at surfaces and interfaces of current nano-devices. The present work demonstrates this approach on large gap insulator surfaces. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder

    Energy Technology Data Exchange (ETDEWEB)

    Loyer-Prost, M., E-mail: marie.loyer-prost@cea.fr [DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Merot, J.-S. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Ribis, J. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Le Bouar, Y. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Chaffron, L. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Legendre, F. [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2016-10-15

    Oxide Dispersion Strengthened (ODS) steels are promising materials for generation IV fuel claddings as their dense nano-oxide dispersion provides good creep and irradiation resistance. Even if they have been studied for years, the formation mechanism of these nano-oxides is still unclear. Here we report for the first time a High Resolution Transmission Electron Microscopy and Energy Filtered Transmission Electron Microscopy characterization of an ODS milled powder. It provides clear evidence of the presence of small crystalline nanoclusters (NCs) enriched in titanium directly after milling. Small NCs (<5 nm) have a crystalline structure and seem partly coherent with the matrix. They have an interplanar spacing close to the (011) {sub bcc} iron structure. They coexist with larger crystalline spherical precipitates of 15–20 nm in size. Their crystalline structure may be metastable as they are not consistent with any Y-Ti-O or Ti-O structure. Such detailed observations in the as-milled grain powder confirm a mechanism of Y, Ti, O dissolution in the ferritic matrix followed by a NC precipitation during the mechanical alloying process of ODS materials. - Highlights: • We observed an ODS ball-milled powder by high resolution transmission microscopy. • The ODS ball-milled powder exhibits a lamellar microstructure. • Small crystalline nanoclusters were detected in the milled ODS powder. • The nanoclusters in the ODS milled powder are enriched in titanium. • Larger NCs of 15–20 nm in size are, at least, partly coherent with the matrix.

  13. Potential profile and photovoltaic effect in nanoscale lateral pn junction observed by Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Nowak, Roland; Moraru, Daniel; Mizuno, Takeshi; Jablonski, Ryszard; Tabe, Michiharu

    2014-01-01

    Nanoscale pn junctions have been investigated by Kelvin probe force microscopy and several particular features were found. Within the depletion region, a localized noise area is observed, induced by temporal fluctuations of dopant states. Electronic potential landscape is significantly affected by dopants with ground-state energies deeper than in bulk. Finally, the effects of light illumination were studied and it was found that the depletion region shifts its position as a function of light intensity. This is ascribed to charge redistribution within the pn junction as a result of photovoltaic effect and due to the impact of deepened-level dopants. - Highlights: • In pn nano-junctions, temporal potential fluctuations are found in depletion layer. • Fluctuations are due to frequent capture and emission of free carriers by dopants. • Depletion layer position shifts as a function of the intensity of irradiated light. • The depletion layer shifts are due to changes of deep-level dopants' charge states

  14. Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy

    Science.gov (United States)

    Phatak, C.; Petford-Long, A. K.; Beleggia, M.; De Graef, M.

    2014-06-01

    Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We present a theoretical model describing how the shape of a nanoparticle affects its polarization in the absence of screening charges, and quantify the electron-optical phase shift for detecting ferroelectric signals with phase-sensitive techniques in a transmission electron microscope. We provide an example phase shift computation for a uniformly polarized prolate ellipsoid with varying aspect ratio in the absence of screening charges.

  15. The potentials and challenges of electron microscopy in the study of atomic chains

    Science.gov (United States)

    Banhart, Florian; Torre, Alessandro La; Romdhane, Ferdaous Ben; Cretu, Ovidiu

    2017-04-01

    The article is a brief review on the potential of transmission electron microscopy (TEM) in the investigation of atom chains which are the paradigm of a strictly one-dimensional material. After the progress of TEM in the study of new two-dimensional materials, microscopy of free-standing one-dimensional structures is a new challenge with its inherent potentials and difficulties. In-situ experiments in the TEM allowed, for the first time, to generate isolated atomic chains consisting of metals, carbon or boron nitride. Besides having delivered a solid proof for the existence of atomic chains, in-situ TEM studies also enabled us to measure the electrical properties of these fundamental linear structures. While ballistic quantum conductivity is observed in chains of metal atoms, electrical transport in chains of sp1-hybridized carbon is limited by resonant states and reflections at the contacts. Although substantial progress has been made in recent TEM studies of atom chains, fundamental questions have to be answered, concerning the structural stability of the chains, bonding states at the contacts, and the suitability for applications in nanotechnology. Contribution to the topical issue "The 16th European Microscopy Congress (EMC 2016)", edited by Richard Brydson and Pascale Bayle-Guillemaud

  16. Fine surface structure of unfixed and hydrated macrophages observed by laser-plasma x-ray contact microscopy

    International Nuclear Information System (INIS)

    Yamamoto, Yoshimasa; Friedman, Herman; Yoshimura, Hideyuki; Kinjo, Yasuhito; Shioda, Seiji; Debari, Kazuhiro; Shinohara, Kunio; Rajyaguru, Jayshree; Richardson, Martin

    2000-01-01

    A compact, high-resolution, laser-plasma, x-ray contact microscope using a table-top Nd:glass laser system has been developed and utilized for the analysis of the surface structure of live macrophages. Fine fluffy surface structures of murine peritoneal macrophages, which were live, hydrolyzed and not sliced and stained, were observed by the x-ray microscope followed by analysis using an atomic force microscopy. In order to compare with other techniques, a scanning electron microscopy (SEM) was utilized to observe the surface structure of the macrophages. The SEM offered a fine whole cell image of the same macrophages, which were fixed and dehydrated, but the surfaces were ruffled and different from that of x-ray images. A standard light microscope was also utilized to observe the shape of live whole macrophages. Light microscopy showed some fluffy surface structures of the macrophages, but the resolution was too low to observe the fine structures. Thus, the findings of fine fluffy surface structures of macrophages by x-ray microscopy provide valuable information for studies of phagocytosis, cell spreading and adherence, which are dependent on the surface structure of macrophages. Furthermore, the present study also demonstrates the usefulness of x-ray microscopy for analysis of structures of living cells

  17. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels; Sougrat, Rachid; Northan, Brian M.; Pennycook, Stephen J.

    2010-01-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM

  18. A large area cooled-CCD detector for electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.; Andrews, H.N.; Raeburn, C.

    1994-01-01

    Large area cooled-CCDs are an excellent medium for (indirectly) recording electron images and electron diffraction patterns in real time and for use in electron tomography; real-time imaging is extremely useful in making rapid adjustments in the electron microscope. CCDs provide high sensitivity (useful for minimising dosage to radiation-sensitive biological specimen), good resolution, stable performance, excellent dynamic range and linearity and a reasonably fast readout.We have built an electron imaging device based on the EEV 1152 by 814 pixel CCD which is controlled from a unix based SUN Sparcstation operating under X-Windows. The incident 100 kV electrons are converted to visible light in a 0.5 mm thick YAG single crystal which is imaged through a lens on to the CCD.The CCD electronics is designed to be as flexible as possible and allows a wide variation in the readout speed to cater for the relatively fast application where readout noise is less critical and low readout noise applications where the extra few seconds of readout time are not significant. The CCD electronics is built in VME format which is controlled through a S-bus to VME driver. With two parallel channels of readout the whole image can be read out in similar 1 s (using the faster readout speed) with 16 bit precision and the image is displayed under X-Windows in a few seconds. The present readout works at 500 kHz and has a noise of similar 30 e rms per pixel. With a Peltier cooling device we can operate the CCD at similar -40 circle C which reduces the dark current adequately to allow exposures of up to several minutes. Several examples of patterns collected with the system on a Philips CM12 microscope will be presented. ((orig.))

  19. Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

    Science.gov (United States)

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to u...

  20. Abstracts of the 9. Colloquium of the Brazilian Society of Electron Microscopy

    International Nuclear Information System (INIS)

    1983-01-01

    A set of abstracts is presented, reporting the use of electron microscopy for the study of: crystal structures and defects; corrosion on several metal alloys; ultrastructural changes in biological materials. (C.L.B.) [pt

  1. Transmission Electron Microscopy Study of Individual Carbon Nanotube Breakdown Caused by Joule Heating in Air

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Gudnason, S.B.; Pedersen, Anders Tegtmeier

    2006-01-01

    We present repeated structural and electrical measurements on individual multiwalled carbon nanotubes, alternating between electrical measurements under ambient conditions and transmission electron microscopy (TEM). The multiwalled carbon nanotubes made by chemical vapor deposition were manipulated...

  2. INVIVO DEGRADATION OF PROCESSED DERMAL SHEEP COLLAGEN EVALUATED WITH TRANSMISSION ELECTRON-MICROSCOPY

    NARCIS (Netherlands)

    VANWACHEM, PB; VANLUYN, MJA; NIEUWENHUIS, P; KOERTEN, HK; DAMINK, LO; TENHOOPEN, H; FEIJEN, J

    The in vivo degradation of hexamethylenediisocyanate-tanned dermal sheep collagen was studied with transmission electron microscopy. Discs of hexamethylenediisocyanate-tanned dermal sheep collagen were subcutaneously implanted in rats. Both an intra- and an extracellular route of degradation could

  3. In vivo degradation of processed dermal sheep collagen evaluated with transmission electron microscopy

    NARCIS (Netherlands)

    van Wachem, P.B.; van Luyn, M.J.A.; Nieuwenhuis, P.; Koerten, H.K.; Olde damink, L.H.H.; Olde-Damink, L.; ten Hoopen, Hermina W.M.; Feijen, Jan

    1991-01-01

    The in vivo degradation of hexamethylenediisocyanate-tanned dermal sheep collagen was studied with transmission electron microscopy. Discs of hexamethylenediisocyanate-tanned dermal sheep collagen were subcutaneously implanted in rats. Both an intra- and an extracellular route of degradation could

  4. Cryo-transmission electron microscopy of Ag nanoparticles grown on an ionic liquid substrate

    KAUST Repository

    Anjum, Dalaver H.; Stiger, Rebecca M.; Finley, James J.; Conway, James F.

    2010-01-01

    We report a novel method of growing silver nanostructures by cathodic sputtering onto an ionic liquid (IL) and our visualization by transmission cryo-electron microscopy to avoid beam-induced motion of the nanoparticles. By freezing the IL

  5. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by Scanning Electron Microscopy

    NARCIS (Netherlands)

    Hartsuiker, Liesbeth; van Es, Peter; Petersen, Wilhelmina; van Leeuwen, Ton; Terstappen, Leonardus Wendelinus Mathias Marie; Otto, Cornelis

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  6. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by scanning electron microscopy

    NARCIS (Netherlands)

    Hartsuiker, L.; van Es, P.; Petersen, W.; van Leeuwen, T. G.; Terstappen, L. W. M. M.; Otto, C.

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  7. Four-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique

    KAUST Repository

    Adhikari, Aniruddha; Eliason, Jeffrey K.; Sun, Jingya; Bose, Riya; Flannigan, David J.; Mohammed, Omar F.

    2016-01-01

    Four-dimensional ultrafast electron microscopy (4D-UEM) is a novel analytical technique that aims to fulfill the long-held dream of researchers to investigate materials at extremely short spatial and temporal resolutions by integrating the excellent

  8. Proton induced X-ray emission and electron microscopy analysis of induced mutants of sorghum

    CSIR Research Space (South Africa)

    Mbambo, Z

    2014-01-01

    Full Text Available of elements in preferential accumulation tissues and entire changes in cellular localization. Transmission and scanning electron microscopy of the mutants resolved changes in size, shape, ultra-structure and packed cell volumes of protein- and starch bodies...

  9. Successful application of Low Voltage Electron Microscopy to practical materials problems

    International Nuclear Information System (INIS)

    Bell, David C.; Mankin, Max; Day, Robert W.; Erdman, Natasha

    2014-01-01

    Low-voltage High-Resolution Electron Microscopy (LVHREM) has several advantages, including increased cross-sections for inelastic and elastic scattering, increased contrast per electron, decreased delocalization effects and reduced knock-on damage. Imaging at differing voltages has shown advantages for imaging materials that are knock-on damage sensitive. We show experimentally that different materials systems benefit from low voltage high-resolution microscopy. There are advantages for imaging single layer materials such as graphene at below the knock-on threshold; we present an example of imaging a graphene sheet at 40 kV. We have also examined mesoporous silica decorated with Pd nanoparticles and carbon black functionalized with Pd/Pt nanoparticles. In these cases we show that the lower voltage imaging maintains the structure of the surrounding matrix during imaging, whereas aberration correction provides the higher resolution for imaging the nanoparticle lattice. Perhaps surprisingly we show that zeolites damage preferentially by ionization effects (radiolysis). The current literature suggests that below incident energies of 40 kV the damage is mainly radiolitic, whereas at incident energies above 200 kV the knock-on damage and material sputtering will be the dominant effect. Our experimental observations support this conclusion and the effects we have observed at 40 kV are not indicative of knock-on damage. Other nanoscale materials such as thin silicon nanowires also benefit from lower voltage imaging. LVHREM imaging provides an excellent option to avoid beam damage to nanowires; our results suggest that LVHREM is suitable for nanowire-biological composites. Our experimental observations serve as a clear demonstration that even at 40 keV accelerating voltage, LVHREM can be used without inducing beam damage to locate dislocations and other crystalline defects, which may have adverse effects on nanowire device performance. Low voltage operation will likely

  10. Instrumentation at the National Center for Electron Microscopy: the Atomic Resolution Microscope

    International Nuclear Information System (INIS)

    Gronsky, R.; Thomas, G.

    1983-01-01

    The Atomic Resolution Microscope (ARM) is one of two unique high voltage electron microscopes at the Lawrence Berkeley Laboratory's National Center for Electron Microscopy (NCEM). The latest results from this new instrument which was manufactured by JEOL, Ltd. to the performance specifications of the NCEM, delivered in January of 1983, and soon to be open to access by the entire microscopy community are given. Details of its history and development are given and its performance specifications are reviewed

  11. 2. Brazilian Congress on Cell Biology and 7. Brazilian Colloquium on Electron Microscopy - Abstracts

    International Nuclear Information System (INIS)

    1980-01-01

    Immunology, virology, bacteriology, genetics and protozoology are some of the subjects treated in the 2. Brazilian Congress on Cell Biology. Studies using radioisotopic techniques and ultrastructural cytological studies are presented. Use of optical - and electron microscopy in some of these studies is discussed. In the 7. Brazilian Colloquium on Electron Microscopy, the application of this technique to materials science is discussed (failure analysis in metallurgy, energy dispersion X-ray analysis, etc). (I.C.R.) [pt

  12. An historical account of the development and applications of the negative staining technique to the electron microscopy of viruses.

    Science.gov (United States)

    Horne, R W; Wildy, P

    1979-09-01

    A brief historical account of the development and applications of the negative staining techniques to the study of the structure of viruses and their components as observed in the electron microscope is presented. Although the basic method of surrounding or embedding specimens in opaque dyes was used in light microscopy dating from about 1884, the equivalent preparative techniques applied to electron microscopy were comparatively recent. The combination of experiments on a sophisticated bacterial virus and the installation of a high resolution electron microscope in the Cavendish Laboratory, Cambridge, during 1954, subsequently led to the analysis of several important morphological features of animal, plant and bacterial viruses. The implications of the results from these early experiments on viruses and recent developments in negative staining methods for high resolution image analysis of electron micrographs are also discussed.

  13. Imaging of surface spin textures on bulk crystals by scanning electron microscopy

    Science.gov (United States)

    Akamine, Hiroshi; Okumura, So; Farjami, Sahar; Murakami, Yasukazu; Nishida, Minoru

    2016-11-01

    Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry.

  14. Devolatilization Studies of Oil Palm Biomass for Torrefaction Process through Scanning Electron Microscopy

    Science.gov (United States)

    Daud, D.; Abd. Rahman, A.; Shamsuddin, A. H.

    2016-03-01

    In this work, palm oil biomass consisting of empty fruit bunch (EFB), mesocarp fibre and palm kernel shell (PKS) were chosen as raw material for torrefaction process. Torrefaction process was conducted at various temperatures of 240 °C, 270 °C and 300 °C with a residence time of 60 minutes. The morphology of the raw and torrefied biomass was then observed through Scanning Electron Microscopy (SEM) images. Also, through this experiment the correlation between the torrefaction temperatures with the volatile gases released were studied. From the observation, the morphology structure of the biomass exhibited inter-particle gaps due to the release of volatile gases and it is obviously seen more at higher temperatures. Moreover, the change of the biomass structure is influenced by the alteration of the lignocellulose biomass.

  15. Evaluation of the infection process by Lecanicillium fungicola in Agaricus bisporus by scanning electron microscopy.

    Science.gov (United States)

    Santana Nunes, Janaira; Rocha de Brito, Manuela; Cunha Zied, Diego; Aparecida das Graças Leite, Eloisa; Souza Dias, Eustáquio; Alves, Eduardo

    Lecanicillium fungicola causes dry bubble disease in Agaricus bisporus mushrooms leading to significant economic losses in commercial production. To monitor the infection process of L. fungicola in Brazilian strains of A. bisporus. The interaction between the mycelium of L. fungicola (LF.1) and three strains of A. bisporus (ABI 7, ABI 11/14 and ABI 11/21) was studied. Electron microscopy and X-ray microanalyses of vegetative growth and basidiocarp infection were evaluated. Micrographs show that the vegetative mycelium of the Brazilian strains of A. bisporus is not infected by the parasite. The images show that the pathogen can interlace the hyphae of A. bisporus without causing damage, which contributes to the presence of L. fungicola during the substrate colonization, allowing their presence during primordial formation of A. bisporus. In the basidiocarp, germ tubes form within 16h of infection with L. fungicola and the beginning of penetration takes place within 18h, both without the formation of specialized structures. Scanning electron microscopy enabled the process of colonization and reproduction to be observed within the formation of phialides, conidiophores and verticils of L. fungicola. The formation of calcium oxalate crystals by the pathogen was also visible using the X-ray microanalysis, both at the hyphae in the Petri plate and at basidiocarp infection site. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Transmission electron microscopy of InP-based compound semiconductor materials and devices

    International Nuclear Information System (INIS)

    Chu, S.N.G.

    1990-01-01

    InP/InGaAsP-based heteroepitaxial structures constitute the major optoelectronic devices for state-of-the-art long wavelength optical fiber communication system.s Future advanced device structures will require thin heteroepitaxial quantum wells and superlattices a few tens of angstrom or less in thickness, and lateral dimensions ranging from a few tens angstrom for quantum dots and wires to a few μm in width for buried heterostructure lasers. Due to the increasing complexity of the device structure required by band-gap engineering, the performance of these devices becomes susceptible to any lattice imperfections present in the structure. Transmission electron microscopy (TEM), therefore, becomes the most important technique in characterizing the structural integrity of these materials. Cross-section transmission electron microscopy (XTEM) not only provides the necessary geometric information on the device structure; a careful study of the materials science behind the observed lattice imperfections provides directions for optimization of both the epitaxial growth parameters and device processing conditions. Furthermore, for device reliability studies, TEM is the only technique that unambiguously identifies the cause of device degradation. In this paper, the authors discuss areas of application of various TEM techniques, describe the TEM sample preparation technique, and review case studies to demonstrate the power of the TEM technique

  17. Transmission electron microscopy, fluorescence microscopy, and confocal raman microscopic analysis of ultrastructural and compositional heterogeneity of Cornus alba L. wood cell wall.

    Science.gov (United States)

    Ma, Jianfeng; Ji, Zhe; Zhou, Xia; Zhang, Zhiheng; Xu, Feng

    2013-02-01

    Transmission electron microscopy (TEM), fluorescence microscopy, and confocal Raman microscopy can be used to characterize ultrastructural and compositional heterogeneity of plant cell walls. In this study, TEM observations revealed the ultrastructural characterization of Cornus alba L. fiber, vessel, axial parenchyma, ray parenchyma, and pit membrane between cells, notably with the ray parenchyma consisting of two well-defined layers. Fluorescence microscopy evidenced that cell corner middle lamella was more lignified than adjacent compound middle lamella and secondary wall with variation in lignification level from cell to cell. In situ Raman images showed that the inhomogeneity in cell wall components (cellulose and lignin) among different cells and within morphologically distinct cell wall layers. As the significant precursors of lignin biosynthesis, the pattern of coniferyl alcohol and aldehyde (joint abbreviation Lignin-CAA for both structures) distribution in fiber cell wall was also identified by Raman images, with higher concentration occurring in the fiber secondary wall where there was the highest cellulose concentration. Moreover, noteworthy was the observation that higher concentration of lignin and very minor amounts of cellulose were visualized in the pit membrane areas. These complementary microanalytical methods provide more accurate and complete information with regard to ultrastructural and compositional characterization of plant cell walls.

  18. A theoretical analysis of ballistic electron emission microscopy: band structure effects and attenuation lengths

    International Nuclear Information System (INIS)

    Andres, P.L. de; Reuter, K.; Garcia-Vidal, F.J.; Flores, F.; Hohenester, U.; Kocevar, P.

    1998-01-01

    Using quantum mechanical approach, we compute the ballistic electron emission microscopy current distribution in reciprocal space to compare experimental and theoretical spectroscopic I(V) curves. In the elastic limit, this formalism is a 'parameter free' representation of the problem. At low voltages, low temperatures, and for thin metallic layers, the elastic approximation is enough to explain the experiments (ballistic conditions). At low temperatures, inelastic effects can be taken into account approximately by introducing an effective electron-electron lifetime as an imaginary part in the energy. Ensemble Monte Carlo calculations were also performed to obtain ballistic electron emission microscopy currents in good agreement with the previous approach. (author)

  19. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.

    Science.gov (United States)

    Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J

    2014-01-01

    Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described. © 2014 Elsevier Inc. All rights reserved.

  20. Aberration-corrected scanning transmission electron microscopy of semiconductors

    International Nuclear Information System (INIS)

    Krivanek, O L; Dellby, N; Murfitt, M F

    2011-01-01

    The scanning transmission electron microscope (STEM) has been able to image individual heavy atoms in a light matrix for some time. It is now able to do much more: it can resolve individual atoms as light as boron in monolayer materials; image atomic columns as light as hydrogen, identify the chemical type of individual isolated atoms from the intensity of their annular dark field (ADF) image and by electron energy loss spectroscopy (EELS); and map elemental composition at atomic resolution by EELS and energy-dispersive X-ray spectroscopy (EDXS). It can even map electronic states, also by EELS, at atomic resolution. The instrumentation developments that have made this level of performance possible are reviewed, and examples of applications to semiconductors and oxides are shown.

  1. Static and Dynamic Electron Microscopy Investigations at the Atomic and Ultrafast Scales

    Science.gov (United States)

    Suri, Pranav Kumar

    Advancements in the electron microscopy capabilities - aberration-corrected imaging, monochromatic spectroscopy, direct-electron detectors - have enabled routine visualization of atomic-scale processes with millisecond temporal resolutions in this decade. This, combined with progress in the transmission electron microscopy (TEM) specimen holder technology and nanofabrication techniques, allows comprehensive experiments on a wide range of materials in various phases via in situ methods. The development of ultrafast (sub-nanosecond) time-resolved TEM with ultrafast electron microscopy (UEM) has further pushed the envelope of in situ TEM to sub-nanosecond temporal resolution while maintaining sub-nanometer spatial resolution. A plethora of materials phenomena - including electron-phonon coupling, phonon transport, first-order phase transitions, bond rotation, plasmon dynamics, melting, and dopant atoms arrangement - are not yet clearly understood and could be benefitted with the current in situ TEM capabilities having atomic-level and ultrafast precision. Better understanding of these phenomena and intrinsic material dynamics (e.g. how phonons propagate in a material, what time-scales are involved in a first-order phase transition, how fast a material melts, where dopant atoms sit in a crystal) in new-generation and technologically important materials (e.g. two-dimensional layered materials, semiconductor and magnetic devices, rare-earth-element-free permanent magnets, unconventional superconductors) could bring a paradigm shift in their electronic, structural, magnetic, thermal and optical applications. Present research efforts, employing cutting-edge static and dynamic in situ electron microscopy resources at the University of Minnesota, are directed towards understanding the atomic-scale crystallographic structural transition and phonon transport in an iron-pnictide parent compound LaFeAsO, studying the mechanical stability of fast moving hard-drive heads in heat

  2. Investigation of the structure of nanocrystalline refractory oxides by X-ray diffraction, electron microscopy, and atomic force microscopy

    International Nuclear Information System (INIS)

    Ulyanova, T. M.; Titova, L. V.; Medichenko, S. V.; Zonov, Yu. G.; Konstantinova, T. E.; Glazunova, V. A.; Doroshkevich, A. S.; Kuznetsova, T. A.

    2006-01-01

    The structures of nanocrystalline fibrous powders of refractory oxides have been investigated by different methods: determination of coherent-scattering regions, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic-force microscopy (AFM). The sizes of nanograins of different crystalline phases of refractory metal oxides have been determined during the formation of these nanograins and the dynamics of their growth during heat treatment in the temperature range 600-1600 deg. C has been studied. The data on the structure of nanocrystalline refractory oxide powders, obtained by different methods, are in good agreement. According to the data on coherent-scattering regions, the sizes of the ZrO 2 (Y 2 O 3 ) and Al 2 O 3 grains formed are in the range 4-6 nm, and the particle sizes determined according to the TEM and AFM data are in the ranges 5-7 and 2-10 nm, respectively. SEM analysis made it possible to investigate the dynamics of nanoparticle growth at temperatures above 1000 deg. C and establish the limiting temperatures of their consolidation in fibers

  3. Quantitating morphological changes in biological samples during scanning electron microscopy sample preparation with correlative super-resolution microscopy.

    Science.gov (United States)

    Zhang, Ying; Huang, Tao; Jorgens, Danielle M; Nickerson, Andrew; Lin, Li-Jung; Pelz, Joshua; Gray, Joe W; López, Claudia S; Nan, Xiaolin

    2017-01-01

    Sample preparation is critical to biological electron microscopy (EM), and there have been continuous efforts on optimizing the procedures to best preserve structures of interest in the sample. However, a quantitative characterization of the morphological changes associated with each step in EM sample preparation is currently lacking. Using correlative EM and superresolution microscopy (SRM), we have examined the effects of different drying methods as well as osmium tetroxide (OsO4) post-fixation on cell morphology during scanning electron microscopy (SEM) sample preparation. Here, SRM images of the sample acquired under hydrated conditions were used as a baseline for evaluating morphological changes as the sample went through SEM sample processing. We found that both chemical drying and critical point drying lead to a mild cellular boundary retraction of ~60 nm. Post-fixation by OsO4 causes at least 40 nm additional boundary retraction. We also found that coating coverslips with adhesion molecules such as fibronectin prior to cell plating helps reduce cell distortion from OsO4 post-fixation. These quantitative measurements offer useful information for identifying causes of cell distortions in SEM sample preparation and improving current procedures.

  4. X-ray Microscopy as an Approach to Increasing Accuracy and Efficiency of Serial Block-face Imaging for Correlated Light and Electron Microscopy of Biological Specimens

    OpenAIRE

    Bushong, Eric A.; Johnson, Donald D.; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T.; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H.

    2014-01-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal s...

  5. Integrating electron microscopy into nanoscience and materials engineering programs

    Science.gov (United States)

    Cormia, Robert D.; Oye, Michael M.; Nguyen, Anh; Skiver, David; Shi, Meng; Torres, Yessica

    2014-10-01

    Preparing an effective workforce in high technology is the goal of both academic and industry training, and has been the engine that drives innovation and product development in the United States for over a century. During the last 50 years, technician training has comprised a combination of two-year academic programs, internships and apprentice training, and extensive On-the-Job Training (OJT). Recently, and especially in Silicon Valley, technicians have four-year college degrees, as well as relevant hands-on training. Characterization in general, and microscopy in particular, is an essential tool in process development, manufacturing and QA/QC, and failure analysis. Training for a broad range of skills and practice is challenging, especially for community colleges. Workforce studies (SRI/Boeing) suggest that even four year colleges often do not provide the relevant training and experience in laboratory skills, especially design of experiments and analysis of data. Companies in high-tech further report difficulty in finding skilled labor, especially with industry specific experience. Foothill College, in partnership with UCSC, SJSU, and NASA-Ames, has developed a microscopy training program embedded in a research laboratory, itself a partnership between university and government, providing hands-on experience in advanced instrumentation, experimental design and problem solving, with real-world context from small business innovators, in an environment called `the collaboratory'. The program builds on AFM-SEM training at Foothill, and provides affordable training in FE-SEM and TEM through a cost recovery model. In addition to instrument and engineering training, the collaboratory also supports academic and personal growth through a multiplayer social network of students, faculty, researchers, and innovators.

  6. Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells

    KAUST Repository

    Ali, Haider

    2017-08-15

    In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21.6% obtained on n-type cells, featuring SiO2/TiO2/Al rear contacts and after forming gas annealing (FGA) at 350°C, is due to strong surface passivation of SiO2/TiO2 stack as well as low contact resistivity at the Si/SiO2/TiO2 heterojunction. This can be attributed to the transformation of amorphous TiO2 to a conducting TiO2-x phase. Conversely, the low efficiency (9.8%) obtained on cells featuring an a-Si:H/TiO2/Al rear contact is due to severe degradation of passivation of the a-Si:H upon FGA.

  7. Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy

    DEFF Research Database (Denmark)

    Phatak, C.; Petford-Long, A. K.; Beleggia, Marco

    2014-01-01

    Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We prese...

  8. A Comparative Scanning Electron Microscopy Evaluation of Smear ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... The aim of the present study was to compare the efficacy of chitosan and MTAD for the smear layer removal from the root canal through a scanning electron microscope (SEM). Thirty teeth were randomly divided into three groups according to the final irrigants: 0.2% chitosan, MTAD, saline (control group).

  9. A Comparative Scanning Electron Microscopy Evaluation of Smear ...

    African Journals Online (AJOL)

    The aim of the present study was to compare the efficacy of chitosan and MTAD for the smear layer removal from the root canal through a scanning electron microscope (SEM). Thirty teeth were randomly divided into three groups according to the final irrigants: 0.2% chitosan, MTAD, saline (control group). After the ...

  10. Bulk sensitive hard x-ray photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Weber, N.; Escher, M.; Merkel, M. [Focus GmbH, Neukirchner Str. 2, D-65510 Hünstetten (Germany); Gloskovskii, A.; Drube, W. [DESY Photon Science, Deutsches Elektronen-Synchrotron, D-22603 Hamburg (Germany); Schneider, C. M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Fakultät f. Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-11-15

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. The high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.

  11. In situ Electrical measurements in Transmission Electron Microscopy

    NARCIS (Netherlands)

    Rudneva, M.

    2013-01-01

    In the present thesis the combination of real-time electricalmeasurements on nano-sampleswith simultaneous examination by transmission electron microscope (TEM) is discussed. Application of an electrical current may lead to changes in the samples thus the possibility to correlate such changes with

  12. Homogeneity of Ge-rich nanostructures as characterized by chemical etching and transmission electron microscopy.

    Science.gov (United States)

    Bollani, Monica; Chrastina, Daniel; Montuori, Valeria; Terziotti, Daniela; Bonera, Emiliano; Vanacore, Giovanni M; Tagliaferri, Alberto; Sordan, Roman; Spinella, Corrado; Nicotra, Giuseppe

    2012-02-03

    The extension of SiGe technology towards new electronic and optoelectronic applications on the Si platform requires that Ge-rich nanostructures be obtained in a well-controlled manner. Ge deposition on Si substrates usually creates SiGe nanostructures with relatively low and inhomogeneous Ge content. We have realized SiGe nanostructures with a very high (up to 90%) Ge content. Using substrate patterning, a regular array of nanostructures is obtained. We report that electron microscopy reveals an abrupt change in Ge content of about 20% between the filled pit and the island, which has not been observed in other Ge island systems. Dislocations are mainly found within the filled pit and only rarely in the island. Selective chemical etching and electron energy-loss spectroscopy reveal that the island itself is homogeneous. These Ge-rich islands are possible candidates for electronic applications requiring locally induced stress, and optoelectronic applications which exploit the Ge-like band structure of Ge-rich SiGe.

  13. Homogeneity of Ge-rich nanostructures as characterized by chemical etching and transmission electron microscopy

    International Nuclear Information System (INIS)

    Bollani, Monica; Chrastina, Daniel; Montuori, Valeria; Vanacore, Giovanni M; Tagliaferri, Alberto; Sordan, Roman; Terziotti, Daniela; Bonera, Emiliano; Spinella, Corrado; Nicotra, Giuseppe

    2012-01-01

    The extension of SiGe technology towards new electronic and optoelectronic applications on the Si platform requires that Ge-rich nanostructures be obtained in a well-controlled manner. Ge deposition on Si substrates usually creates SiGe nanostructures with relatively low and inhomogeneous Ge content. We have realized SiGe nanostructures with a very high (up to 90%) Ge content. Using substrate patterning, a regular array of nanostructures is obtained. We report that electron microscopy reveals an abrupt change in Ge content of about 20% between the filled pit and the island, which has not been observed in other Ge island systems. Dislocations are mainly found within the filled pit and only rarely in the island. Selective chemical etching and electron energy-loss spectroscopy reveal that the island itself is homogeneous. These Ge-rich islands are possible candidates for electronic applications requiring locally induced stress, and optoelectronic applications which exploit the Ge-like band structure of Ge-rich SiGe. (paper)

  14. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells.

    Science.gov (United States)

    Koh, Ai Leen; Shachaf, Catherine M; Elchuri, Sailaja; Nolan, Garry P; Sinclair, Robert

    2008-12-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  15. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells

    International Nuclear Information System (INIS)

    Koh, Ai Leen; Shachaf, Catherine M.; Elchuri, Sailaja; Nolan, Garry P.; Sinclair, Robert

    2008-01-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  16. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy.

    Science.gov (United States)

    Faas, F G A; Bárcena, M; Agronskaia, A V; Gerritsen, H C; Moscicka, K B; Diebolder, C A; van Driel, L F; Limpens, R W A L; Bos, E; Ravelli, R B G; Koning, R I; Koster, A J

    2013-03-01

    Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain morphological and structural information from a selected field of view at nm-scale resolution. Previously, an integrated approach to room temperature correlative microscopy was described. Combined use of light and electron microscopy within one instrument greatly simplifies sample handling, avoids cumbersome experimental overheads, simplifies navigation between the two modalities, and improves the success rate of image correlation. Here, an integrated approach for correlative microscopy under cryogenic conditions is presented. Its advantages over the room temperature approach include safeguarding the native hydrated state of the biological specimen, preservation of the fluorescence signal without risk of quenching due to heavy atom stains, and reduced photo bleaching. The potential of cryo integrated light and electron microscopy is demonstrated for the detection of viable bacteria, the study of in vitro polymerized microtubules, the localization of mitochondria in mouse embryonic fibroblasts, and for a search into virus-induced intracellular membrane modifications within mammalian cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Atomic force microscopy and transmission electron microscopy analyses of low-temperature laser welding of the cornea.

    Science.gov (United States)

    Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto

    2009-07-01

    Low-temperature laser welding of the cornea is a technique used to facilitate the closure of corneal cuts. The procedure consists of staining the wound with a chromophore (indocyanine green), followed by continuous wave irradiation with an 810 nm diode laser operated at low power densities (12-16 W/cm(2)), which induces local heating in the 55-65 degrees C range. In this study, we aimed to investigate the ultrastructural modifications in the extracellular matrix following laser welding of corneal wounds by means of atomic force microscopy and transmission electron microscopy. The results evidenced marked disorganization of the normal fibrillar assembly, although collagen appeared not to be denatured under the operating conditions we employed. The mechanism of low-temperature laser welding may be related to some structural modifications of the nonfibrillar extracellular components of the corneal stroma.

  18. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    Science.gov (United States)

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-03-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.

  19. On the role of the gas environment, electron-dose-rate, and sample on the image resolution in transmission electron microscopy

    DEFF Research Database (Denmark)

    Ek, Martin; Jespersen, Sebastian Pirel Fredsgaard; Damsgaard, Christian Danvad

    2016-01-01

    on the electron-dose-rate. In this article, we demonstrate that both the total and areal electron-dose-rates work as descriptors for the dose-rate-dependent resolution and are related through the illumination area. Furthermore, the resolution degradation was observed to occur gradually over time after......The introduction of gaseous atmospheres in transmission electron microscopy offers the possibility of studying materials in situ under chemically relevant environments. The presence of a gas environment can degrade the resolution. Surprisingly, this phenomenon has been shown to depend...... initializing the illumination of the sample and gas by the electron beam. The resolution was also observed to be sensitive to the electrical conductivity of the sample. These observations can be explained by a charge buildup over the electron-illuminated sample area, caused by the beam–gas–sample interaction...

  20. Cryo-transmission electron microscopy of Ag nanoparticles grown on an ionic liquid substrate

    KAUST Repository

    Anjum, Dalaver H.

    2010-07-01

    We report a novel method of growing silver nanostructures by cathodic sputtering onto an ionic liquid (IL) and our visualization by transmission cryo-electron microscopy to avoid beam-induced motion of the nanoparticles. By freezing the IL suspension and controlling electron dose, we can assess properties of particle size, morphology, crystallinity, and aggregation in situ and at high detail. We observed round silver nanoparticles with a well-defined diameter of 7.0 ± 1.5 nm that are faceted with crystalline cubic structures and ∼80% of the particles have multiply twinned faults. We also applied cryo-electron tomography to investigate the structure of the nanoparticles and to directly visualize the IL wetting around them. In addition to particles, we observed nanorods that appear to have assembled from individual nanoparticles. Reexamination of the samples after 4-5 days from initial preparation showed significant changes in morphology, and potential mechanisms for this are discussed. © 2010 Materials Research Society.