WorldWideScience

Sample records for electron lasers seeded

  1. Longitudinal space charge assisted echo seeding of a free-electron laser with laser-spoiler noise suppression

    Directory of Open Access Journals (Sweden)

    Kirsten Hacker

    2014-09-01

    Full Text Available Seed lasers are employed to improve the temporal coherence of free-electron laser (FEL light. However, when these seed pulses are short relative to the particle bunch, the noisy, temporally incoherent radiation from the unseeded electrons can overwhelm the coherent, seeded radiation. In this paper, a technique to seed a particle bunch with an external laser is presented in which a new mechanism to improve the contrast between coherent and incoherent free electron laser radiation is employed together with a novel, simplified echo-seeding method. The concept relies on a combination of longitudinal space charge wakes and an echo-seeding technique to make a short, coherent pulse of FEL light together with noise background suppression. Several different simulation codes are used to illustrate the concept with conditions at the soft x-ray free-electron laser in Hamburg, FLASH.

  2. Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses

    Science.gov (United States)

    Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus

    2018-01-01

    We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.

  3. PROCEEDING OF THE SEEDED X-RAY FREE ELECTRON LASER WORKSHOP.

    Energy Technology Data Exchange (ETDEWEB)

    WANG,X.J.; MURPHY,J.B.; YU,L.H.; FAATZ,B.; HUANG,Z.; REICHE,S.; ZOLOTOREV,M.

    2002-12-13

    The underlying theory of a high gain free electron laser (FEL) has existed for two decades [1-2], but it is only in the last few years that these novel radiation sources have been realized experimentally. Several high gain FELs have successfully reached saturation in the infrared, visible and the VUV portion of the spectrum: the High Gain Harmonic Generation (HGHG) free electron lasers [3] at BNL and the Self Amplified Spontaneous Emission (SASE) FELs at LEUTL, VISA and TTF [4-6]. The outstanding challenges for future FELs are to extend high gain FELs to the X-ray regime, improve the longitudinal coherence of the radiation using seeded FEL schemes and generate ultrashort pulses (<100 fs). The National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL) sponsored a Seeded X-ray Free Electron Laser Workshop on December 13-14, 2002 to explore these challenging issues. Representatives from BNL, DESY, LBNL, SLAC and UCLA made presentations on the novel schemes under consideration at their laboratories. Workshop participants had a lively discussion on the feasibility, performance and R&D issues associated with the seeded XFEL schemes. An improvement of the electron beam quality will certainly be necessary to drive the XFEL. Self-seeding SASE, cascaded HGHG, and SASE pulse compression FELs show the most promise for producing short pulse X-rays. Of these, only the self-seeded and HGHG schemes generate longitudinally coherent radiation. While the pulse length in the self-seeded scheme is determined by the electron bunch length ({approx}100 fs), the pulse length in the HGHG scheme is determined by the short pulse seed laser, and so can be much shorter ({approx} 20 fs).

  4. Microbunching-instability-induced sidebands in a seeded free-electron laser

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2016-05-01

    Full Text Available Measurements of the multishot-averaged, soft x-ray, self-seeding spectrum at the LCLS free-electron laser often have a pedestal-like distribution around the seeded wavelength, which limits the spectral purity and can negatively affect some user applications not employing a post-undulator monochromator. In this paper, we study the origins of such pedestals, focusing on longitudinal phase space modulations produced by the microbunching instability upstream of the free-electron laser (FEL undulator. We show from theory and numerical simulation that both energy and density modulations can induce sidebands in a high-gain, seeded FEL whose fractional strength typically grows as the square of the undulator length. The results place a tight constraint on the longitudinal phase space uniformity of the electron beam for a seeded FEL, possibly requiring the amplitude of long-wavelength modulations to be much smaller than the typical incoherent energy spread if the output sideband power is to remain only a couple percent or less of the amplified seed power.

  5. Influence of an imperfect energy profile on a seeded free electron laser performance

    Directory of Open Access Journals (Sweden)

    Botao Jia

    2010-06-01

    Full Text Available A single-pass high-gain x-ray free electron laser (FEL calls for a high quality electron bunch. In particular, for a seeded FEL amplifier and for a harmonic generation FEL, the electron bunch initial energy profile uniformity is crucial for generating an FEL with a narrow bandwidth. After the acceleration, compression, and transportation, the electron bunch energy profile entering the undulator can acquire temporal nonuniformity. We study the influence of the electron bunch initial energy profile nonuniformity on the FEL performance. Intrinsically, for a harmonic generation FEL, the harmonic generation FEL in the final radiator starts with an electron bunch having energy modulation acquired in the previous stages, due to the FEL interaction at those FEL wavelengths and their harmonics. The influence of this electron bunch energy nonuniformity on the harmonic generation FEL in the final radiator is then studied.

  6. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    International Nuclear Information System (INIS)

    Höppner, H; Hage, A; Tanikawa, T; Schulz, M; Faatz, B; Riedel, R; Prandolini, M J; Teubner, U; Tavella, F

    2015-01-01

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation. (paper)

  7. Optically controlled seeding of Raman forward scattering and injection of electrons in a self-modulated laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Chen, W.-T.; Chien, T.-Y.; Lee, C.-H.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2004-01-01

    Optical seeding of plasma waves and the injection of electrons are key issues in self-modulated laser-wakefield accelerators. By implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. The dependence of the Raman intensity on prepulse timing indicates that the seeding of Raman forward scattering is dominated by the ionization-induced wakefield, and the dependence of the divergence and number of accelerated electrons further reveals that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the main pulse

  8. Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers

    Directory of Open Access Journals (Sweden)

    Guanglei Wang

    2015-06-01

    Full Text Available The beam energy spread at the entrance of an undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs. In this paper, the dependences of high harmonic bunching efficiency in high-gain harmonic generation (HGHG, echo-enabled harmonic generation (EEHG and phase-merging enhanced harmonic generation (PEHG schemes on the electron beam energy spread distribution are studied. Theoretical investigations and multidimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the bunching performance of HGHG FELs, while they almost have no influence on EEHG and PEHG schemes. A further start-to-end simulation example demonstrated that, with the saddle distribution of sliced beam energy spread controlled by a laser heater, the 30th harmonic can be directly generated by a single-stage HGHG scheme for a soft x-ray FEL facility.

  9. Seeded free-electron and inverse free-electron laser techniques for radiation amplification and electron microbunching in the terahertz range

    Directory of Open Access Journals (Sweden)

    C. Sung

    2006-12-01

    Full Text Available A comprehensive analysis is presented that describes amplification of a seed THz pulse in a single-pass free-electron laser (FEL driven by a photoinjector. The dynamics of the radiation pulse and the modulated electron beam are modeled using the time-dependent FEL code, GENESIS 1.3. A 10-ps (FWHM electron beam with a peak current of 50–100 A allows amplification of a ∼1  kW seed pulse in the frequency range 0.5–3 THz up to 10–100 MW power in a relatively compact 2-m long planar undulator. The electron beam driving the FEL is strongly modulated, with some inhomogeneity due to the slippage effect. It is shown that THz microbunching of the electron beam is homogeneous over the entire electron pulse when saturated FEL amplification is utilized at the very entrance of an undulator. This requires seeding of a 30-cm long undulator buncher with a 1–3 MW of pump power with radiation at the resonant frequency. A narrow-band seed pulse in the THz range needed for these experiments can be generated by frequency mixing of CO_{2} laser lines in a GaAs nonlinear crystal. Two schemes for producing MW power pulses in seeded FELs are considered in some detail for the beam parameters achievable at the Neptune Laboratory at UCLA: the first uses a waveguide to transport radiation in the 0.5–3 THz range through a 2-m long FEL amplifier and the second employs high-gain third harmonic generation using the FEL process at 3–9 THz.

  10. First operation of a harmonic lasing self-seeded free electron laser

    International Nuclear Information System (INIS)

    Schneidmiller, E.A.; Faatz, B.; Kuhlmann, M.; Roensch-Schulenburg, J.; Schreiber, S.; Tischer, M.; Yurkov, M.V.

    2016-12-01

    Harmonic lasing is a perspective mode of operation of X-ray FEL user facilities that allows to provide brilliant beams of higher energy photons for user experiments. Another useful application of harmonic lasing is so called Harmonic Lasing Self-Seeded Free Electron Laser (HLSS FEL) that allows to improve spectral brightness of these facilities. In the past, harmonic lasing has been demonstrated in the FEL oscillators in infrared and visible wavelength ranges, but not in high-gain FELs and not at short wavelengths. In this paper we report on the first evidence of the harmonic lasing and the first operation of the HLSS FEL at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. Spectral brightness was improved in comparison with Self-Amplified Spontaneous emission (SASE) FEL by a factor of six in the exponential gain regime. A better performance of HLSS FEL with respect to SASE FEL in the post-saturation regime with a tapered undulator was observed as well. The first demonstration of harmonic lasing in a high-gain FEL and at short wavelengths paves the way for a variety of applications of this new operation mode in X-ray FELs.

  11. Distributed seeding for narrow-line width hard x-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anisimov, Petr Mikhaylovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, IV, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Marksteiner, Quinn R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-09

    We describe a new FEL line-narrowing technique called distributed seeding (DS), using Si(111) Bragg crystal monochromators to enhance the spectral brightness of the MaRIE hard X-ray freeelectron laser. DS differs from self-seeding in three important aspects. First, DS relies on spectral filtering of the radiation at multiple locations along the undulator, with a monochromator located every few power gain lengths. Second, DS performs filtering early in the exponential gain region before SASE spikes start to appear in the radiation longitudinal profile. Third, DS provides the option to select a wavelength longer than the peak of the SASE gain curve, which leads to improved spectral contrast of the seeded FEL over the SASE background. Timedependent Genesis simulations show the power-vs-z growth curves for DS exhibit behaviors of a seeded FEL amplifier, such as exponential growth region immediately after the filters. Of the seeding approaches considered, the two-stage DS spectra produce the highest contrast of seeded FEL over the SASE background and that the three-stage DS provides the narrowest linewidth with a relative spectral FWHM of 8 X 10-5 .

  12. Generation of ultrahigh harmonics with a two-stage free electron laser and a seed laser

    NARCIS (Netherlands)

    Goloviznin, V. V.; van Amersfoort, P. W.

    1997-01-01

    We consider the possibility to premodulate an ultrarelativistic electron beam on the nanometer length scale, so that it can produce coherent spontaneous radiation in the x-ray range. The scheme that uses the same basic elements as the high gain harmonic generation (HGHG) scheme, two wigglers and a

  13. The EIS beamline at the seeded free-electron laser FERMI

    Science.gov (United States)

    Simoncig, A.; Mincigrucci, R.; Principi, E.; Bencivenga, F.; Calvi, A.; Foglia, L.; Kurdi, G.; Raimondi, L.; Manfredda, M.; Mahne, N.; Gobessi, R.; Gerusina, S.; Fava, C.; Zangrando, M.; Matruglio, A.; Dal Zilio, S.; Masciotti, V.; Masciovecchio, C.

    2017-05-01

    Among the fourth-generation light sources, the Italian free-electron laser (FEL) FERMI is the only one operating in the high-gain harmonic generation (HGHG) seeding mode. FERMI delivers pulses characterized by a quasi transform limited temporal structure, photon energies lying in the extreme ultra-violet (EUV) region, supreme transversal and longitudinal coherences, high peak brilliance, and full control of the polarization. Such state of the art performances recently opened the doors to a new class of time-resolved spectroscopies, difficult or even impossible to be performed using self-amplified spontaneous sources (SASE) light sources. FERMI is currently equipped with three operating beamlines opened to external users (DiProI, LDM and EIS), while two more are under commissioning (MagneDYN and TeraFERMI). Here, we present the recent highlights of the EIS (Elastic and Inelastic Scattering) beamline, which has been purposely designed to take full advantage from the coherence, the intensity, the harmonics content, and the temporal duration of the pulses. EIS is a flexible experimental facility for time-resolved EUV scattering experiments on condensed matter systems, consisting of two independent end-stations. The first one (EIS-TIMEX) aims to study materials in metastable and warm dense matter (WDM) conditions, while the second end-station (EIS-TIMER) is fully oriented to the extension of four-wave mixing (FWM) spectroscopies towards the EUV spectral regions, trying to reveal the behavior of matter in portions of the mesoscopic regime of exchanged momentum impossible to be probed using conventional light sources.

  14. Single-shot spectro-temporal characterization of XUV pulses from a seeded free-electron laser

    Science.gov (United States)

    de Ninno, Giovanni; Gauthier, David; Mahieu, Benoît; Ribič, Primož Rebernik; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Penco, Giuseppe; Sigalotti, Paolo; Stupar, Matija

    2015-08-01

    Intense ultrashort X-ray pulses produced by modern free-electron lasers (FELs) allow one to probe biological systems, inorganic materials and molecular reaction dynamics with nanoscale spatial and femtoscale temporal resolution. These experiments require the knowledge, and possibly the control, of the spectro-temporal content of individual pulses. FELs relying on seeding have the potential to produce spatially and temporally fully coherent pulses. Here we propose and implement an interferometric method, which allows us to carry out the first complete single-shot spectro-temporal characterization of the pulses, generated by an FEL in the extreme ultraviolet spectral range. Moreover, we provide the first direct evidence of the temporal coherence of a seeded FEL working in the extreme ultraviolet spectral range and show the way to control the light generation process to produce Fourier-limited pulses. Experiments are carried out at the FERMI FEL in Trieste.

  15. Multi-dimensional optimization of a terawatt seeded tapered Free Electron Laser with a Multi-Objective Genetic Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Juhao, E-mail: jhwu@SLAC.Stanford.EDU [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Hu, Newman [Valley Christian High School, 100 Skyway Drive, San Jose, CA 95111 (United States); Setiawan, Hananiel [The Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Huang, Xiaobiao; Raubenheimer, Tor O. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Jiao, Yi [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Yu, George [Columbia University, New York, NY 10027 (United States); Mandlekar, Ajay [California Institute of Technology, Pasadena, CA 91125 (United States); Spampinati, Simone [Sincrotrone Trieste S.C.p.A. di interesse nazionale, Strada Statale 14-km 163,5 in AREA Science Park, 34149 Basovizza, Trieste (Italy); Fang, Kun [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Chu, Chungming [The Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Qiang, Ji [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2017-02-21

    There is a great interest in generating high-power hard X-ray Free Electron Laser (FEL) in the terawatt (TW) level that can enable coherent diffraction imaging of complex molecules like proteins and probe fundamental high-field physics. A feasibility study of producing such X-ray pulses was carried out employing a configuration beginning with a Self-Amplified Spontaneous Emission FEL, followed by a “self-seeding” crystal monochromator generating a fully coherent seed, and finishing with a long tapered undulator where the coherent seed recombines with the electron bunch and is amplified to high power. The undulator tapering profile, the phase advance in the undulator break sections, the quadrupole focusing strength, etc. are parameters to be optimized. A Genetic Algorithm (GA) is adopted for this multi-dimensional optimization. Concrete examples are given for LINAC Coherent Light Source (LCLS) and LCLS-II-type systems. Analytical estimate is also developed to cross check the simulation and optimization results as a quick and complimentary tool.

  16. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Thomas; Kern, Jan; Kubin, Markus; Ratner, Daniel; Gul, Sheraz; Fuller, Franklin D.; Löchel, Heike; Krzywinski, Jacek; Lutman, Alberto; Ding, Yuantao; Dakovski, Georgi L.; Moeller, Stefan; Turner, Joshua J.; Alonso-Mori, Roberto; Nordlund, Dennis L.; Rehanek, Jens; Weniger, Christian; Firsov, Alexander; Brzhezinskaya, Maria; Chatterjee, Ruchira; Lassalle-Kaiser, Benedikt; Sierra, Raymond G.; Laksmono, Hartawan; Hill, Ethan; Borovik, Andrew; Erko, Alexei; Föhlisch, Alexander; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe; Bergmann, Uwe

    2016-01-01

    © 2016 Optical Society of America. X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.

  17. Laser treatment of radish seed

    International Nuclear Information System (INIS)

    Kartalov, P.; Nidal, T.

    1987-01-01

    Trials were conducted in unheated plastic greenhouses in 1985-1986 to test the effect of laser treatment on radish seed. Seed of cv Saxia was irradiated with helio-neon laser of 632.8 Nm wave length at: 2-, 4- and 6-fold irradiation. Results showed that plants of all variants emerged almost simultaneously. The root mass was greatest for plants obtained from 4-fold irradiated seed. Treatment enhanced root production in 1985, and in 1986 4-fold irradiation boosted yield by 15%

  18. Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser.

    Science.gov (United States)

    Zastrau, Ulf; Fletcher, Luke B; Förster, Eckhart; Galtier, Eric Ch; Gamboa, Eliseo; Glenzer, Siegfried H; Heimann, Philipp; Marschner, Heike; Nagler, Bob; Schropp, Andreas; Wehrhan, Ortrud; Lee, Hae Ja

    2014-09-01

    We present a cylindrically curved GaAs x-ray spectrometer with energy resolution ΔE/E = 1.1 × 10(-4) and wave-number resolution of Δk/k = 3 × 10(-3), allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to 5.2/Å in 100 separate bins, with only 0.34% wavenumber blurring. The dispersion of 0.418 eV/13.5 μm agrees with predictions within 1.3%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic highly annealed pyrolytic graphite spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1 eV and a significant range of wavenumbers must be covered in one exposure.

  19. Generating high-brightness and coherent soft x-ray pulses in the water window with a seeded free-electron laser

    Directory of Open Access Journals (Sweden)

    Kaishang Zhou

    2017-01-01

    Full Text Available We propose a new scheme to generate high-brightness and temporal coherent soft x-ray radiation in a seeded free-electron laser. The proposed scheme is based on the coherent harmonic generation (CHG and superradiant principles. A CHG scheme is first used to generate a coherent signal at ultrahigh harmonics of the seed. This coherent signal is then amplified by a series of chicane-undulator modules via the fresh bunch and superradiant processes in the following radiator. Using a representative of a realistic set of parameters, three-dimensional simulations have been carried out and the simulations results demonstrated that 10 GW-level ultrashort (∼20  fs coherent radiation pulses in the water window can be achieved by using a 1.6 GeV electron beam based on the proposed technique.

  20. Measurements and simulations of seeded electron microbunches with collective effects

    Directory of Open Access Journals (Sweden)

    K. Hacker

    2015-09-01

    Full Text Available Measurements of the longitudinal phase-space distributions of electron bunches seeded with an external laser were done in order to study the impact of collective effects on seeded microbunches in free-electron lasers. When the collective effects of Coulomb forces in a drift space and coherent synchrotron radiation in a chicane are considered, velocity bunching of a seeded microbunch appears to be a viable alternative to compression with a magnetic chicane under high-gain harmonic generation seeding conditions. Measurements of these effects on seeded electron microbunches were performed with a rf deflecting structure and a dipole magnet which streak out the electron bunch for single-shot images of the longitudinal phase-space distribution. Particle tracking simulations in 3D predicted the compression dynamics of the seeded microbunches with collective effects.

  1. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  2. Compact 2 Micron Seed Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of new compact, high power and extremely reliable 2 micron seed laser using newly developed Tm3+ doped germanate glass fibers,...

  3. Compact 2 Micron Seed Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of innovative compact, high power and extremely reliable 2 micron seed laser using newly developed Tm3+ doped germanate glass...

  4. Free electron laser

    International Nuclear Information System (INIS)

    Ortega, J.M.; Billardon, M.

    1986-01-01

    Operation principle of a laser and an oscillator are recalled together with the klystron one. In the free electron laser, electrons go through an undulator or an optical klystron. Principles of the last one are given. The two distinct ways of producing coherent radiation with an undulator and an optical klystron are presented. The first one is the use of the free electron laser, the second is to make use of the spontaneous emission generation (harmonics generation). The different current types of free electron lasers are presented (Stanford, Los Alamos, Aco at Orsay). Prospects and applications are given in conclusion [fr

  5. Progress toward the Wisconsin Free Electron Laser

    International Nuclear Information System (INIS)

    Bisognano, Joseph; Bosch, R.A.; Eisert, D.; Fisher, M.V.; Green, M.A.; Jacobs, K.; Kleman, K.J.; Kulpin, J.; Rogers, G.C.; Lawler, J.E.; Yavuz, D.; Legg, R.

    2011-01-01

    The University of Wisconsin-Madison/Synchrotron Radiation Center is advancing its design for a seeded VUV/soft X-ray Free Electron Laser facility called WiFEL. To support this vision of an ultimate light source, we are pursuing a program of strategic R and D addressing several crucial elements. This includes development of a high repetition rate, VHF superconducting RF electron gun, R and D on photocathode materials by ARPES studies, and evaluation of FEL facility architectures (e.g., recirculation, compressor scenarios, CSR dechirping, undulator technologies) with the specific goal of cost containment. Studies of high harmonic generation for laser seeding are also planned.

  6. Ultrahigh harmonics generation in a FEL with a seed laser

    International Nuclear Information System (INIS)

    Goloviznin, V.V.; Amersfoort, P.W. van

    1995-01-01

    One of the most challenging problems in modern FEL technology is to operate in the X-ray region, especially in the open-quotes water windowclose quotes. Because of the absence of optical resonators in this range of wavelengths, only a single-pass device may be suitable for this task. The Self-Amplified Spontaneous Emission (SASE) mechanism is now under active discussion as a realistic way to provide high-power coherent emission in the X-ray range. Both the undulator parameters and the electron beam parameters required for the lasing are achieveable at today's technological level. On the other hand, the SASE approach implies a very long and expensive periodic magnetic structure, typically several tens of meters long. This is mainly because of the rather long build-up time necessary to establish a coherent mode from incoherent noise. A mechanism of shortening this time would be therefore highly desirable. In the present paper we consider a scheme using two undulators and a seed-laser to produce coherent X-ray emission. The first undulator and the seed-laser provide a pre-modulation of the beam while the second undulator serves as a source of coherent spontaneous radiation at a very high harmonic of the seed-laser frequency; the whole scheme may then be considered to be an FEL-based frequency upconvertor. The total length of the periodic magnetic structure is shown to be of the order of several meters, nearly an order of magnitude shorter than in the SASE case. For the same beam quality as in the SASE scheme and with realistic seed-laser parameters, the efficiency of the beam pre-modulation at the 50-th (exclamation point) harmonic is shown to be as high as 15%. The output radiation is tunable between discrete harmonics of the seed-frequency

  7. Generation of a few femtoseconds pulses in seeded FELs using a seed laser with small transverse size

    Energy Technology Data Exchange (ETDEWEB)

    Li, Heting, E-mail: liheting@ustc.edu.cn; Jia, Qika

    2016-09-11

    We propose a simple method to generate a few femtosecond pulses in seeded FELs. We use a longitudinal energy-chirped electron beam passing through a dogleg where transverse dispersion will generate a horizontal energy chirp, then in the modulator, a seed laser with narrow beam radius will only modulate the center portion of the electron beam and then short pulses at high harmonics will be generated in the radiator. Using a representative realistic set of parameters, we show that 30 nm XUV pulse based on the HGHG scheme and 9 nm soft x-ray pulse based on the EEHG scheme with duration of about 8 fs (FWHM) and peak power of GW level can be generated from a 180 nm UV seed laser with beam waist of 75 μm. This new scheme can provide an optional operation mode for the existing seeded FEL facilities to meet the requirement of short-pulse FEL.

  8. Analytical studies of constraints on the performance for EEHG FEL seed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-11-15

    Laser seeding technique have been envisioned to produce nearly transform-limited pulses at soft X-ray FELs. Echo-Enabled Harmonic Generation (EEHG) is a promising, recent technique for harmonic generation with an excellent up-conversion to very high harmonics, from the standpoint of electron beam physics. This paper explores the constraints on seed laser performance for reaching wavelengths of 1 nm. We show that the main challenge in implementing the EEHG scheme at extreme harmonic factors is the requirement for accurate control of temporal and spatial quality of the seed laser pulse. For example, if the phase of the laser pulse is chirped before conversion to an UV seed pulse, the chirp in the electron beam microbunch turns out to be roughly multiplied by the harmonic factor. In the case of a Ti:Sa seed laser, such factor is about 800. For such large harmonic numbers, generation of nearly transform-limited soft X-ray pulses results in challenging constraints on the Ti:Sa laser. In fact, the relative discrepancy of the time-bandwidth product of the seed-laser pulse from the ideal transform-limited performance should be no more than one in a million. The generated electron beam microbunching is also very sensitive to distortions of the seed laser wavefront, which are also multiplied by the harmonic factor. In order to have minimal reduction of the FEL input coupling factor, it is desirable that the size-angular bandwidth product of the UV seed laser beam be very close to the ideal i.e. diffraction-limited performance in the waist plane at the middle of the modulator undulator. (orig.)

  9. Analytical studies of constraints on the performance for EEHG FEL seed lasers

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-11-01

    Laser seeding technique have been envisioned to produce nearly transform-limited pulses at soft X-ray FELs. Echo-Enabled Harmonic Generation (EEHG) is a promising, recent technique for harmonic generation with an excellent up-conversion to very high harmonics, from the standpoint of electron beam physics. This paper explores the constraints on seed laser performance for reaching wavelengths of 1 nm. We show that the main challenge in implementing the EEHG scheme at extreme harmonic factors is the requirement for accurate control of temporal and spatial quality of the seed laser pulse. For example, if the phase of the laser pulse is chirped before conversion to an UV seed pulse, the chirp in the electron beam microbunch turns out to be roughly multiplied by the harmonic factor. In the case of a Ti:Sa seed laser, such factor is about 800. For such large harmonic numbers, generation of nearly transform-limited soft X-ray pulses results in challenging constraints on the Ti:Sa laser. In fact, the relative discrepancy of the time-bandwidth product of the seed-laser pulse from the ideal transform-limited performance should be no more than one in a million. The generated electron beam microbunching is also very sensitive to distortions of the seed laser wavefront, which are also multiplied by the harmonic factor. In order to have minimal reduction of the FEL input coupling factor, it is desirable that the size-angular bandwidth product of the UV seed laser beam be very close to the ideal i.e. diffraction-limited performance in the waist plane at the middle of the modulator undulator. (orig.)

  10. Seeding High Gain Harmonic Generation with Laser Harmonics produced in Gases

    CERN Document Server

    Lambert, Guillaume; Couprie, Marie Emmanuelle; Garzella, David; Doria, Andrea; Giannessi, Luca; Hara, Toru; Kitamura, Hideo; Shintake, Tsumoru

    2004-01-01

    Free electron Lasers employing High Gain Harmonic generation (HGHG) schemes are very promising coherent ligth sources for the soft X-ray regime. They offer both transverse and longitudinal coherence, while Self Amplified Spontaneous Emission schemes have a longitudinal coherence limited. We propose here to seed HGHG with high harmonics produced by a Ti:Sa femtosecond laser focused on a gas jet, tuneable in the 100-10 nm spectral region. Specifities concerning the implementation of this particular laser source as a seed for HGHG are investigated. Semi analytical , numerical 1D and 3D calculations are given, for the cases of the SCSS, SPARC and ARC-EN-CIEL projects.

  11. Free-electron laser results

    International Nuclear Information System (INIS)

    Stein, W.E.; Brau, C.A.; Newnam, B.E.; Warren, R.W.; Winston, J.; Young, L.M.

    1981-01-01

    The Los Alamos free-electron laser (FEL) amplifier experiment was designed to demonstrate high efficiency for transfer of energy from an electron beam to a light beam in the magnetic field of a tapered wiggler. Initial results indicate an energy transfer consistent with theory. Distinct groups of decelerated electrons as well as accelerated electrons are clearly present in the energy spectrum of electrons emerging from the wiggler when the laser light is present. The observed energy decrease for the electrons captured in the decelerating bucket is approx. 6% and the average decrease of the entire energy distribution is approx. 2% for the conditions of these initial measurements

  12. Thermal Changes of Maize Seed by Laser Irradiation

    Science.gov (United States)

    Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.

    2015-09-01

    In this research, the thermal evolution in maize seeds ( Zea mays L.) was studied when low-intensity laser irradiation was applied during 60 s. The seeds were irradiated in three different conditions: suspended in air, placed on an aluminum surface, and finally placed on a cardboard; the evolution of the seed temperature was measured by an infrared camera. Photoacoustic spectroscopy and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient (β ) of the seeds. The results indicate that using 650 nm laser light and 27.4 mW, it is possible to produce temperature changes (up to 9.06°C after 1 min) on the seeds. Comparing the mean temperature of the seeds, during and after the incidence of light from a laser, it was found that there were statistically significant differences (P≤ 0.05) from time t1 to time t_{16} (t1 to t_{16}) and t3 to t_{16}, for the laser turned on and off, respectively. The seed condition that had the highest temperature variation, relative to the initial temperature (during the irradiation laser exposure), involved the seeds suspended in air. With regard to the stage of decay of the temperature, it was found that the seed condition that decays more slowly was the seed placed on the cardboard. It was also found that black-dyed maize seeds are optically opaque in the 300 nm to 700 nm range Also, the thermal diffusion length is smaller than the optical penetration length. In the present investigation, it was shown that there is a thermal component associated with the mechanisms of laser biostimulation, which is also a function of the container materials of the seed. In this way, the effects of laser treatment on maize seeds involve at least a temperature effect. It is important to know the temperature changes in the seeds that have been irradiated with a laser beam since they could have substantial practical and theoretical importance.

  13. Photonic Free-Electron Lasers

    NARCIS (Netherlands)

    van der Slot, Petrus J.M.; Denis, T.; Lee, J.H.H.; van Dijk, M.W.; Boller, Klaus J.

    2012-01-01

    A photonic free-electron laser (pFEL) produces coherent Cerenkov radiation from a set of parallel electron beams streaming through a photonic crystal. The function of the crystal is to slow down the phase velocity of a copropagating electromagnetic wave, such that also mildly relativistic electrons

  14. Laser-driven electron accelerators

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1981-01-01

    The following possibilities are discussed: inverse free electron laser (wiggler accelerator); inverse Cerenkov effect; plasma accelerator; dielectric tube; and grating linac. Of these, the grating acceleraton is considered the most attractive alternative

  15. Investigations of a Dual Seeded 1178 nm Raman Laser System

    Science.gov (United States)

    2016-01-14

    was obtained by Raman amplification of a distributed feedback diode laser in a variably strained polarization- maintaining fiber with a record-high...Calia, D.B., “50W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fiber amplifiers...AFRL-RD-PS- TP-2016-0009 AFRL-RD-PS- TP-2016-0009 INVESTIGATIONS OF A DUAL SEEDED 1178 NM RAMAN LASER SYSTEM Leanne Henry, et al. 14 January

  16. Electrons and atoms in intense laser fields

    International Nuclear Information System (INIS)

    Davidovich, L.

    1982-01-01

    Several non-linear effects that show up when electrons and atoms interact with strong laser fields are considered. Thomson scattering, electron potential scattering in the presence of a laser beam, atomic ionization by strong laser fields, the refraction of electrons by laser beams and the Kapitza-Dirac effect are discussed. (Author) [pt

  17. Electrons and atoms in intense laser fields

    International Nuclear Information System (INIS)

    Davidovich, L.

    1982-11-01

    Several non-linear effects that show up when electrons and atoms interact with strong laser fields are considered. Thomson scattering, electron potential scattering in the presence of a laser beam, atomic ionization by strong laser fields, the refraction of electrons by laser beams and the Kapitza-Dirac effect are discussed. (Author) [pt

  18. Femtosecond resolved diagnostics for electron beam and XUV seed temporal overlap at sFLASH

    International Nuclear Information System (INIS)

    Tarkeshian, Roxana

    2012-02-01

    sFLASH is a seeded experiment at the Free-Electron Laser FLASH in Hamburg. It uses a 38 nm High-Harmonic-Generation (HHG) scheme to seed the FEL-process in a 10m long variable-gap undulator. The temporal overlap between the electron and HHG pulses is critical to the seeding process. The use of a 3 rd harmonic accelerating module provides a high current electron beam with ∝ (400 fs) FWHM bunch duration. The duration of the HHG laser pulse is ≤ (30 fs) FWHM . The desired overlap is achieved in two steps. Firstly, the HHG drive laser is brought to temporal overlap with the incoherent spontaneous radiation from an upstream undulator with picosecond resolution. The temporal overlap is periodically monitored using a streak camera installed in the linear accelerator tunnel. Next, the coherent radiation from an undulator is used to determine the exact overlap of the electron beam in a modulator-radiator set-up with sub-picosecond resolution. The physical and technical principles of the setup providing the temporal overlap are described. Results of the system are analyzed. An analytical approach and simulation results for the performance of the seeding experiment are presented. First attempts at demonstration of seeding are discussed. Strategies for optimizing overlap conditions are presented. (orig.)

  19. Femtosecond resolved diagnostics for electron beam and XUV seed temporal overlap at sFLASH

    Energy Technology Data Exchange (ETDEWEB)

    Tarkeshian, Roxana

    2012-02-15

    sFLASH is a seeded experiment at the Free-Electron Laser FLASH in Hamburg. It uses a 38 nm High-Harmonic-Generation (HHG) scheme to seed the FEL-process in a 10m long variable-gap undulator. The temporal overlap between the electron and HHG pulses is critical to the seeding process. The use of a 3{sup rd} harmonic accelerating module provides a high current electron beam with {proportional_to} (400 fs){sub FWHM} bunch duration. The duration of the HHG laser pulse is {<=} (30 fs){sub FWHM}. The desired overlap is achieved in two steps. Firstly, the HHG drive laser is brought to temporal overlap with the incoherent spontaneous radiation from an upstream undulator with picosecond resolution. The temporal overlap is periodically monitored using a streak camera installed in the linear accelerator tunnel. Next, the coherent radiation from an undulator is used to determine the exact overlap of the electron beam in a modulator-radiator set-up with sub-picosecond resolution. The physical and technical principles of the setup providing the temporal overlap are described. Results of the system are analyzed. An analytical approach and simulation results for the performance of the seeding experiment are presented. First attempts at demonstration of seeding are discussed. Strategies for optimizing overlap conditions are presented. (orig.)

  20. Laser control of electron matter waves

    NARCIS (Netherlands)

    Jones, E.; Becker, M.; Luiten, O.J.; Batelaan, H.

    2016-01-01

    In recent years laser light has been used to control the motion of electron waves. Electrons can now be diffracted by standing waves of light. Laser light in the vicinity of nanostructures is used to affect free electrons, for example, femto-second and atto-second laser-induced electrons are emitted

  1. Injection Seeded Laser for Formaldehyde Differential Fluorescence Lidar

    Directory of Open Access Journals (Sweden)

    Schwemmer G.

    2016-01-01

    Full Text Available We describe the design and development of an injection seeded Nd:YVO4 laser for use in a differential fluorescence lidar for measuring atmospheric formaldehyde profiles. A high repetition rate Q-switched laser is modified to accept injection seed input to spectrally narrow and tune the output. The third harmonic output is used to excite formaldehyde (HCHO fluorescence when tuned to a HCHO absorption line. Spectral confirmation is made with the use of a photoacoustic cell and grating spectrometer.

  2. Free-electron lasers 2

    International Nuclear Information System (INIS)

    Petroff, Y.

    1989-01-01

    This book presents papers on free-electron laser technology. The authors cover technological developments on existing FELs, new FEL research, and the use of FELs in experimental investigations. Among the studies reported are lasing in the visible and UV on the Novosibirsk VEPP-3 storage ring, description of Japanese FEL research, and Mark III FEL, and the Paladin results

  3. Free Electron Lasers in 2005

    CERN Document Server

    Colson, W B; Voughs, T

    2005-01-01

    Twenty-eight years after the first operation of the short wavelength free electron laser (FEL) at Stanford University, there continue to be many important experiments, proposed experiments, and user facilities around the world. Properties of FELs in the infrared, visible, UV, and x-ray wavelength regimes are listed and discussed.

  4. Free Electron Lasers in 2004

    CERN Document Server

    Colson, William B

    2004-01-01

    Twenty-seven years after the first operation of the short wavelength free electron laser (FEL) at Stanford University, there continue to be many important experiments, proposed experiments, and user facilities around the world. Properties of FELs operating in the infrared, visible, UV, and x-ray wavelength regimes are listed and discussed.

  5. Electron beam cooling by laser

    CERN Document Server

    Urakawa, J; Terunuma, N; Taniguchi, T; Yamazaki, Y; Hirano, K; Nomura, M; Sakai, I; Takano, M; Sasao, N; Honda, Y; Noda, A; Bulyak, E; Gladkikh, P; Mystykov, A; Zelinsky, A; Zimmermann, Frank

    2004-01-01

    In 1997, Z.Huang and R.Ruth proposed a compact laser-electron storage ring (LESR) for electron beam cooling or x-ray generation. Because the laser-wire monitor in the ATF storage ring has worked well and demonstrated the achievement of the world's smallest transverse emittance for a circulating electron beam, we have started the design of a small storage ring with about 10 m circumference and the development of basic technologies for the LESR. In this paper, we describe the design and experimental results of pulse stacking in a 42-cm long optical cavity. Since our primary purpose is demonstrating the proof-of-principle of the LESR, we will then discuss the future experimental plan at the KEK-ATF for the generation of high average-brilliance gamma-rays.

  6. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY 11973 (United States); Geloni, Gianluca [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Kocharyan, Vitali [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Madsen, Anders [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Shvyd’ko, Yuri, E-mail: shvydko@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Sutter, John [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom)

    2016-02-12

    This article explores novel opportunities for ultra-high-resolution inelastic X-ray scattering (IXS) at high-repetition-rate self-seeded XFELs. These next-generation light sources are promising a more than three orders of magnitude increase in average spectral flux compared with what is possible with storage-ring-based radiation sources. In combination with the advanced IXS spectrometer described here, this may become a real game-changer for ultra-high-resolution X-ray spectroscopies, and hence for the studies of dynamics in condensed matter systems. Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup −1} spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup −1} are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10{sup 12} photons s{sup −1} in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  7. Free-electron laser theory

    International Nuclear Information System (INIS)

    Dattoli, G.; Torre, A.

    1989-01-01

    The essential features of the theory of the free electron laser (FEL) are given in some detail. Beginning with an explanation of the basic gain mechanism, the lectures continue with a discussion of the problems associated with single-passage and recirculated (storage-ring) operation. Pulse propagation effects and the so-called 'lethargic' behaviour are analysed more completely. Finally, elements of FEL quantum theory are reported, in order to clarify the laser process from the microscopic point of view. Appendices give a fuller treatment of optical cavities and undulator magnets. (orig.)

  8. Influence of He-Ne laser irradiation of soybean seeds on seed mycoflora, growth, nodulation, and resistance to Fusarium solani

    International Nuclear Information System (INIS)

    Ouf, S.A.; Abdel-Hady, N.F.

    1999-01-01

    Laser irradiation of soybean seeds for 3 min caused a clear reduction in the number of seed-borne fungi which became more pronounced as the irradiation time was extended. Pretreatment of the seeds with methylene blue, methyl red and carmine enhanced the effect of laser. Rhizoctonia solani, Alternaria tenuissima, Cercospora kikuchii and Colletotrichum truncatum were completely eliminated when the seeds were pretreated with a dye and irradiated for 10 min. Seed germination was stimulated on exposure of the seed to 1-min irradiation. Chlorophyll a, chlorophyll b and carotenoid content of developed plants differed, depending on the irradiation dose and dye treatment of the seeds. The number and dry mass of nodules were mostly greater (as compared to the corresponding control), when the seeds irradiated for 1 or 3 min were pretreated with methyl red, chlorophenol red, crystal violet and methylene blue. Irradiation of pre-sowing seeds greatly protected soybean stands against F. solani

  9. Novel opportunities for sub-meV inelastic X-ray scattering at high-repetition rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY (United States). National Synchrotron Light Source II; Geloni, Gianluca; Madsen, Anders [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Shvyd' ko, Yuri [Argonne National Laboratory, IL (United States). Advanced Photon Source; Sutter, John [Diamond Light Source Ltd., Didcot (United Kingdom)

    2015-08-15

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup -1} spectral and momentum transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup -1} are required to close the gap in energy-momentum space between high and low frequency probes. We show that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a hundred-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than possible with storage-ring based radiation sources. Wave-optics propagation shows that about 7 x 10{sup 12} ph/s in a 90-μeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  10. Novel opportunities for sub-meV inelastic X-ray scattering at high-repetition rate self-seeded X-ray free-electron lasers

    International Nuclear Information System (INIS)

    Chubar, Oleg; Kocharyan, Vitali; Saldin, Evgeni; Serkez, Svitozar; Shvyd'ko, Yuri

    2015-08-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm -1 spectral and momentum transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm -1 are required to close the gap in energy-momentum space between high and low frequency probes. We show that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a hundred-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than possible with storage-ring based radiation sources. Wave-optics propagation shows that about 7 x 10 12 ph/s in a 90-μeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  11. Free Electron Laser in Poland

    CERN Document Server

    Romaniuk, Ryszard

    2009-01-01

    The idea of building a new IVth generation of light sources of high luminosity, which use accelerators, arose in the 80ties of XXth century. Now, in a numerable synchrotron and laser laboratories in Europe, there is carried out, since a couple of years, intense applied research on free electron lasers (FEL) [17,18]. Similarly, in this country, free electron laser in Poland – POLFEL [9] is, in a design, a coherent light source of the IVth generation, characterized by very short pulses in the range of 10-100fs, of big power 0,2GW and UV wavelength of 27nm, of average power 1W, with effective high power third harmonic of 9nm. The laser consists of a linear superconducting accelerator 100m in length, undulator and experimental lines. It generates a monochromatic and coherent radiation and can be tuned from THz range via IR, visible to UV, and potentially to X-rays. The linac works in quasi-CW or real-CW mode. It is planned by IPJ [9,10] and XFEL-Poland Consortium [16] as a part of the ESFRI [1] priority EuroFEL...

  12. Inverse Free Electron Laser accelerator

    International Nuclear Information System (INIS)

    Fisher, A.; Gallardo, J.; van Steenbergen, A.; Sandweiss, J.

    1992-09-01

    The study of the INVERSE FREE ELECTRON LASER, as a potential mode of electron acceleration, is being pursued at Brookhaven National Laboratory. Recent studies have focussed on the development of a low energy, high gradient, multi stage linear accelerator. The elementary ingredients for the IFEL interaction are the 50 MeV Linac e - beam and the 10 11 Watt CO 2 laser beam of BNL's Accelerator Test Facility (ATF), Center for Accelerator Physics (CAP) and a wiggler. The latter element is designed as a fast excitation unit making use of alternating stacks of Vanadium Permendur (VaP) ferromagnetic laminations, periodically interspersed with conductive, nonmagnetic laminations, which act as eddy current induced field reflectors. Wiggler parameters and field distribution data will be presented for a prototype wiggler in a constant period and in a ∼ 1.5 %/cm tapered period configuration. The CO 2 laser beam will be transported through the IFEL interaction region by means of a low loss, dielectric coated, rectangular waveguide. Short waveguide test sections have been constructed and have been tested using a low power cw CO 2 laser. Preliminary results of guide attenuation and mode selectivity will be given, together with a discussion of the optical issues for the IFEL accelerator. The IFEL design is supported by the development and use of 1D and 3D simulation programs. The results of simulation computations, including also wiggler errors, for a single module accelerator and for a multi-module accelerator will be presented

  13. Effect of electron beam irradiation on seed germination

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seunghee; Bae, Youngmin [Changwon Univ., Changwon (Korea, Republic of)

    2013-07-01

    Effect of electron beam irradiation on seed germination was investigated in this research. Electron beam of 0.5, 1.0, 1.5 and 2.0 kGy was irradiated to the seeds of lettuce, green onion and cucumber, and the irradiated seeds were incubated at 25 .deg. Cn Nitsch medium solidified with 0.2% Phytagel. Germination percentage and the length of the sprouts were determined after 72 hours. Germination percentage of lettuce seeds was greatly reduced by the irradiation, and that of the green onion and cucumber were moderately reduced or unchanged by the irradiation. Although average length of the lettuce sprouts was reduced severely, that of the green onion and cucumber was unchanged or moderately reduced. Conclusively, electron beam irradiation might be a useful way of disinfecting some plant seeds including green onion and cucumber.

  14. Effect of electron beam irradiation on seed germination

    International Nuclear Information System (INIS)

    Han, Seunghee; Bae, Youngmin

    2013-01-01

    Effect of electron beam irradiation on seed germination was investigated in this research. Electron beam of 0.5, 1.0, 1.5 and 2.0 kGy was irradiated to the seeds of lettuce, green onion and cucumber, and the irradiated seeds were incubated at 25 .deg. Cn Nitsch medium solidified with 0.2% Phytagel. Germination percentage and the length of the sprouts were determined after 72 hours. Germination percentage of lettuce seeds was greatly reduced by the irradiation, and that of the green onion and cucumber were moderately reduced or unchanged by the irradiation. Although average length of the lettuce sprouts was reduced severely, that of the green onion and cucumber was unchanged or moderately reduced. Conclusively, electron beam irradiation might be a useful way of disinfecting some plant seeds including green onion and cucumber

  15. Effect of Electron Seeding on Experimentally Measured Multipactor Discharge Threshold

    Science.gov (United States)

    Noland, Jonathan; Graves, Timothy; Lemon, Colby; Looper, Mark; Farkas, Alex

    2012-10-01

    Multipactor is a vacuum phenomenon in which electrons, moving in resonance with an externally applied electric field, impact material surfaces. If the number of secondary electrons created per primary electron impact averages more than unity, the resonant interaction can lead to an electron avalanche. Multipactor is a generally undesirable phenomenon, as it can cause local heating, absorb power, or cause detuning of RF circuits. In order to increase the probability of multipactor initiation, test facilities often employ various seeding sources such as radioactive sources (Cesium 137, Strontium 90), electron guns, or photon sources. Even with these sources, the voltage for multipactor initiation is not certain as parameters such as material type, RF pulse length, and device wall thickness can all affect seed electron flux and energy in critical gap regions, and hence the measured voltage threshold. This study investigates the effects of seed electron source type (e.g., photons versus beta particles), material type, gap size, and RF pulse length variation on multipactor threshold. In addition to the experimental work, GEANT4 simulations will be used to estimate the production rate of low energy electrons (< 5 keV) by high energy electrons and photons. A comparison of the experimental fluxes to the typical energetic photon and particle fluxes experienced by spacecraft in various orbits will also be made. Initial results indicate that for a simple, parallel plate device made of aluminum, there is no threshold variation (with seed electrons versus with no seed electrons) under continuous-wave RF exposure.

  16. Free-electron laser driven by the LBNL laser-plasma accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K.E.; Toth, Cs.; Esarey, E.; Leemans, W.P.

    2008-01-01

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (∼10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10 13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  17. Design of a free-electron laser driven by the LBNL laser-plasma-accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Montgomery, A.L.; Robinson, K.E.; Gruner, F.; Bakeman, M.; Leemans, W.P.

    2007-01-01

    We discuss the design and current status of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, VUV pulses driven by a high-current, GeV electron beam from the existing Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few cm. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing to the high current ( and 10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 1013 photons/pulse. Devices based both on SASE and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered

  18. Effects of pre-sowing laser stimulation on sowing value of lucerne seeds

    International Nuclear Information System (INIS)

    Dziwulska, A.

    2006-01-01

    Seeds of alfalfa c.v. Legend and hybrid alfalfa c.v. Radius were irradiated with divergent He-Ne laser bundle and sown on Petri dishes with four repetitions. Germination lasted for 10 days at a constant temperature 20 +- 1 deg C. Seeds germinating normally, abnormally, hard seeds and those infected with pathogenic fungi were determined. The number of seeds germinating normally increased and hard seeds decreased upon laser stimulation [pl

  19. Electron-beam initiated HF lasers

    International Nuclear Information System (INIS)

    Gerber, R.A.; Patterson, E.L.

    1975-01-01

    Electron beams were used to ignite hydrogen/fluorine mixtures, producing laser energies up to 4.2 kJ, and giving hope that this approach may soon produce energy levels suitable for laser-fusion studies. (auth)

  20. Laser frequency modulation with electron plasma

    Science.gov (United States)

    Burgess, T. J.; Latorre, V. R.

    1972-01-01

    When laser beam passes through electron plasma its frequency shifts by amount proportional to plasma density. This density varies with modulating signal resulting in corresponding modulation of laser beam frequency. Necessary apparatus is relatively inexpensive since crystals are not required.

  1. Free-electron laser beam

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    2003-01-01

    The principle and history of free-electron laser (FEL), first evidenced in 1977, the relationship between FEL wavelength and output power, the high-power FEL driven by the superconducting linac, the X-ray FEL by the linac, and the medical use are described. FEL is the vacuum oscillator tube and essentially composed from the high-energy linac, undulator and light-resonator. It utilizes free electrons in the vacuum to generate the beam with wavelength ranging from microwave to gamma ray. The first high-power FEL developed in Japanese Atomic Energy Research Institute (JAERI) is based on the development of superconducting linac for oscillating the highest power beam. In the medical field, applications to excise brain tumors (in US) and to reconstruct experimentally blood vessels in the pig heart (in Gunma University) by lasing and laser coagulator are in progress with examinations to remove intra-vascular cholesterol mass by irradiation of 5.7μm FEL beam. Cancer cells are considered diagnosed by FEL beam of far-infrared-THz range. The FEL beam CT is expected to have a wide variety of application without the radiation exposure and its resolution is equal or superior to that of usual imaging techniques. (N.I.)

  2. Electron-beam-excited gas laser research

    International Nuclear Information System (INIS)

    Johnson, A.W.; Gerardo, J.B.; Patterson, E.L.; Gerber, R.A.; Rice, J.K.; Bingham, F.W.

    1975-01-01

    Net energy gain in laser fusion places requirements on the laser that are not realized by any existing laser. Utilization of relativistic electron beams (REB's), a relatively new source for the excitation of gas laser media, may lead to new lasers that could satisfy these requirements. Already REB's have been utilized to excite gas laser media and produce gas lasers that have not been produced as successfully any other way. Electron-beam-excitation has produced electronic-transition dimer lasers that have not yet been produced by any other excitation scheme (for example, Xe 2 / sup *(1)/, Kr:O(2 1 S)/sup 2/, KrF/sup *(3)/). In addition, REB's have initiated chemical reactions to produce HF laser radiation with unique and promising results. Relativistic-electron-beam gas-laser research is continuing to lead to new lasers with unique properties. Results of work carried out at Sandia Laboratories in this pioneering effort of electron-beam-excited-gas lasers are reviewed. (U.S.)

  3. High frequency free-electron laser results

    International Nuclear Information System (INIS)

    Boyer, K.; Brau, C.A.; Newman, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.; Young, L.M.

    1983-01-01

    By looking at the free-electron laser as a particle accelerator working backwards, Morton realized that the techniques used to accelerate particles could be used to improve the performance of free-electron lasers. In particular, he predicted the capture of electrons in ''stable-phase'' regions, or ''buckets'' in the electron phase space, and proposed that by decelerating the buckets, the trapped electrons could be decelerated to extract significant amounts of their energy as optical radiation. In fact, since electrons not trapped in the stable regions are forever excluded from them--at least in the adiabatic approximation--displacement techniques could also be used to accelerate or decelerate electrons in a free-electron laser. This paper explains the principle behind ''phase-displacement'' acceleration and details an experiment carried out with a 20-MeV electron beam to test these predictions. Results obtained with a tapered-wiggler free-electron laser demonstrate the concepts proposed by Morton for enhanced efficiency. They show deceleration of electrons by as much as 7% and extraction of more than 3% of the total electron-beam energy as laser energy when the laser is operated as an amplifier. The experiment is presently being reconfigured to examine its performance as a laser oscillator

  4. Electron beam irradiation: laboratory and field studies of cowpea seeds

    International Nuclear Information System (INIS)

    Srinivasan, K.; Chauhan, S.K.; Prasad, T.V.; Pramod, R.; Verma, V.P.; Petwal, V.; Dwivedi, J.; Bhalla, S.

    2015-01-01

    Cowpea (Vigna unguiculata) rich in protein and vitamins is emerging as one of the most important food legumes to tackle malnutrition. Pulse beetles (Callosobruchus chinensis and C. maculatus) are the pests of economic importance causing enormous losses during storage. Although various pest management strategies exist for the control of these pests, environmental concerns necessitate developing ecofriendly strategies. Electron beam (EB) irradiation has the potential to be a viable, non-chemical, residue-free strategy for management of pulse beetles during storage, but higher doses affect seed germination and viability. Hence, the present investigation was taken up to analyse the dosage effect of the irradiation on seed attributes of cowpea. Healthy cowpea seeds were irradiated with low energy electrons at different doses viz., 180, 360, 540, 720, 900, 1080, 1260, 1440 and 1620 Gy at 500 keV using the EB Accelerator facility at Raja Ramanna Centre for Advanced Technology, Indore. EB irradiated seeds were tested for physiological viz., germination, seedling vigour and vigour index and biochemical parameters viz., electrical conductivity of seed leachate, seed viability/tetrazolium test and dehydrogenase activity. Germination and vigour of the irradiated seeds were evaluated as per the ISTA Rules (ISTA, 1996). Vigour index was calculated as the product of germination percentage and seedling vigour. About 3,000 irradiated seeds from each dose were grown in the field at the Experimental farm, National Bureau of Plant Genetic Resources, New Delhi. Seeds harvested from 1500 individual plants of M 1 generation from each dose (50 seeds from each plant individually) were sown in next season and observed for chlorophyll mutations, if any. Results revealed that doses upto 1080 Gy (88%) did not affect the germination of cowpea seeds drastically as compared to untreated seeds (98%). Lower doses viz., 180 and 360 Gy had no impact on vigour components while higher doses (1080 Gy

  5. Effect of maize seed laser irradiation on plant photosynthetic activity

    International Nuclear Information System (INIS)

    Antonov, M.; Stanev, V.; Velichkov, D.; Tsonev, Ts.

    1986-01-01

    Investigations were made with the two hybrids, H-708 and P x -20. The seeds were irradiated by a helium-neon quantum generator (L'vov-1 Electronica) with output power of 24 MW and 632.8 nm wave length. Once and twice irradiated seeds were sown on the 2nd, 5th and 10th day post irradiation. Changes in leaf area, chlorophyll content in the leaves, photosynthetic rate and its dependence on temperature and light, transpiration, stomatal resistance to CO 2 and total dry matter of the overground plant part were traced. Seed irradiation with laser rays did not affect the chlorophyll content of the leaves. The photosynthetic rate did not depend on the cultivar characteristics of the crop. Single and repeated irradiation of the hybrid H-708 in most case enhanced photosynthetic rate, but a similar effect was not observed in P x -20. Transpiration and CO 2 stomatal resistance were not equally affected by radiation. Laser rays enhanced the ability of the photosynthetic apparatus of the entire plants to use more efficiently high light intensities. The leaf area and the total plant dry matter increased in case of sowing on the 2nd and 5th day and a single irradiation and in case of sowing on the 5th and 10th day and twice repeated irradiations

  6. Free-electron lasers considered for CEBAF

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Spinoff development of industrial free-electron lasers is in prospect for an industry-universitylaboratory consortium centred at the Continuous Electron Beam Accelerator Facility in Newport News, Virginia, site of the CEBAF 4 GeV superconducting radiofrequency (SRF) accelerator, now being commissioned (see page 42). Together with several US corporations and universities, the Laboratory is now also addressing the potential of smaller SRF electron accelerators for ''driving'' free-electron lasers (FELs)

  7. Self-seeded single-frequency laser peening method

    Science.gov (United States)

    DAne, C Brent; Hackey, Lloyd A; Harris, Fritz B

    2012-06-26

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  8. High-intensity-laser-electron scattering

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.

    1997-01-01

    In the field of an intense laser, photon-electron scattering becomes nonlinear when the oscillatory energy of the electron approaches its rest mass. The electron wave function is dressed by the field with a concomitant increase in the effective electron mass. When the photon energy in the electron rest frame is comparable to the electron rest mass, multiphoton Compton scattering occurs. When the photon energy is significantly lower than the electron rest mass, the electron acquires momentum from the photon field and emits harmonics. This paper reviews nonlinear photon-electron scattering processes and results from two recent experiments where they have been observed

  9. Influence of laser radiation on the growth and development of seeds of agricultural plants

    Science.gov (United States)

    Grishkanich, Alexander; Zhevlakov, Alexander; Polyakov, Vadim; Kascheev, Sergey; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey

    2016-04-01

    The experimental results presented in this study focused on the study of biological processes caused by exposure to the coating layers of the laser green light seed (λ = 532 nm) range for the larch, violet (λ = 405 nm) and red (λ = 640 nm) for spruce. Spend a series of experiments to study the dependence of crop seed quality (spruce and larch from the pine family) from exposure to laser radiation under different conditions. In all the analyzed groups studied seed germination and growth of seedlings exposed to laser exposure, compared with the control group. The results showed that the higher percentage of germination than seeds of the control group.

  10. Free electron laser and superconductivity

    CERN Document Server

    Iwata, A

    2003-01-01

    The lasing of the first free-electron laser (FEL) in the world was successfully carried out in 1977, so the history of FELs as a light source is not so long. But FELs are now utilized for research in many scientific and engineering fields owing to such characteristics as tunability of the wavelength, and short pulse and high peak power, which is difficult utilizing a common light source. Research for industrial applications has also been carried out in some fields, such as life sciences, semiconductors, nano-scale measurement, and others. The task for the industrial use of FEL is the realization of high energy efficiency and high optical power. As a means of promoting realization, the combining of an FEL and superconducting linac is now under development in order to overcome the thermal limitations of normal-conducting linacs. Further, since tuning the wavelength is carried out by changing the magnetic density of the undulator, which is now induced by moving part of the stack of permanent magnets, there is un...

  11. Results of presowing helium-neon-laser irradiation of sunflower seeds

    International Nuclear Information System (INIS)

    Tsvetanova, K.

    1989-01-01

    In the period of 1983-1985 under non-irrigation, on calcareous chernozem a trial was carried out with the Start hybrid through single-, double-and triple irradiation of the seeds being stored for 1.8 and 16 days prior to sowing. It is found that the presowing helium-neon-laser irradiation of the sunflower seeds of the Start hybrid exerts a negative effect on the seed yield. Laser use does not stimulate the following: emerged seeds and percentage of the plants being in blossom in the beginning of the phase and after 7 days, seed moisture in harvesting and oil content in them

  12. DNA comet assay for rice seeds treated with low energy electrons ('soft-electrons')

    International Nuclear Information System (INIS)

    Todoriki, Setsuko; Hayashi, Toru

    1999-01-01

    As rice seeds are sometimes contaminated with phytopathogenic organisms such as blast disease fungi and nematodes, a novel non-chemical disinfection method for rice seeds is highly required. In order to develop a disinfection method, the effect of low energy electron ('soft-electrons') on seed DNA was examined by using the neutral comet assay. Rice seeds (whole grain) were treated with electrons of different acceleration voltages (180 kV to 1 MV) at a dose of 5 kGy. Nucleus suspensions were prepared from whole brown rice and subjected to electrophoresis. DNA from un-irradiated (control) seeds relaxed and produced comets with a short tail, most of the comets distributed within the range of comet length between 30 μm to 70 μm. In the case of seeds treated with electrons at acceleration voltages up to 190 kV, cells without seed coats were not damaged and the frequency histograms of comet length showed almost the same pattern as that for control. At acceleration voltages higher than 200 kV, the cells were distributed into two categories; DNA comets with a short tail (with little DNA damages, less than 70 μm in the comet length) and DNA comets with long tails (with sever strand breaks, more than 130 μm in the comet length). The ratios of damaged cells increased with increasing acceleration voltage. The growths of rice seedlings were not affected by the treatment with electrons at up to 200 kV. On the contrary, the cells of gamma-irradiated seed showed small variations in the comet length, and which were depending on radiation dose. The individual cells of gamma-irradiated seeds at 1 kGy showed shorter comet than the damaged cells with soft electron, seed treated with gamma rays (1-5 kGy) did not shoot nor root. (author)

  13. Harmonic operation of high gain harmonic generation free electron laser

    International Nuclear Information System (INIS)

    Deng Haixiao; Chinese Academy of Sciences, Beijing; Dai Zhimin

    2008-01-01

    In high gain harmonic generation (HGHG) free electron laser (FEL), with the right choice of parameters of the modulator undulator, the dispersive section and the seed laser, one may make the spatial bunching of the electron beam density distribution correspond to one of the harmonic frequencies of the radiator radiation, instead of the fundamental frequency of the radiator radiation in conventional HGHG, thus the radiator undulator is in harmonic operation (HO) mode. In this paper, we investigate HO of HGHG FEL. Theoretical analyses with universal method are derived and numerical simulations in ultraviolet and deep ultraviolet spectral regions are given. It shows that the power of the 3rd harmonic radiation in the HO of HGHG may be as high as 18.5% of the fundamental power level. Thus HO of HGHG FEL may obtain short wavelength by using lower beam energy. (authors)

  14. Free-electron laser system with Raman amplifier outcoupling

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.

    1988-05-03

    A free-electron laser system is described comprising: a free-electron laser pump beam generator producing a high-power optical output beam in a vacuum environement; a Raman amplifier cell located in the path of the output beam from the pump beam generator; means for generating and introducing a Stokes seed beam into the Raman amplifier cell, a pair of gaseous windows through which the output beam enters and leaves the Raman amplifier cell, each window having a stream of gas moving continuously in a direction generally perpendicular to the beam; and a mirror positioned in the path of the output beam from the Raman amplifier, the mirror functioning to reflect and further direct the output beam, but not the unwanted spectral components.

  15. Generation of high harmonic free electron laser with phase-merging effect

    Energy Technology Data Exchange (ETDEWEB)

    Li, Heting, E-mail: liheting@ustc.edu.cn; Jia, Qika; Zhao, Zhouyu

    2017-03-01

    An easy-to-implement scheme is proposed to produce the longitudinal electron bunch density modulation with phase-merging phenomenon. In this scheme an electron bunch is firstly transversely dispersed in a modified dogleg to generate the exact dependence of electron energy on the transverse position, then it is modulated in a normal modulator. After travelling through a modified chicane with specially designed transfer matrix elements, the density modulation with phase-merging effect is generated which contains high harmonic components of the seed laser. We present theoretical analysis and numerical simulations for seeded soft x-ray free-electron laser. The results demonstrate that this technique can significantly enhance the frequency up-conversion efficiency and allow a seeded FEL operating at very high harmonics.

  16. Free electron laser as a fusion driver

    International Nuclear Information System (INIS)

    Prosnitz, D.; Schlitt, L.

    1981-01-01

    The Free Electron Laser (FEL) is shown to be a potentially attractive solution to the problem of finding a suitable short wavelength fusion driver. The design of a 3 MJ, 250 nm FEL fusion driver is discussed

  17. Computer simulations of laser driven implosion of seeded hollow pellets

    International Nuclear Information System (INIS)

    Larsen, J.T.

    1974-01-01

    The use of a hollow pellet of high r/Δ r permits the successful generation of thermonuclear energy for a moderate laser input. Incorporation of a medium-z material is required for minimization of plasma instabilities and thus suppression of pathologically hot electrons. Designs of this nature are capable of giving yield ratios in excess of 20 for 100 kJ input. It is also likely that a lower-z material may be advantageous to minimize the x-rays radiation into the DT, but this will be at the sacrifice of using less laser power to remain below the plasma instability threshold. (U.S.)

  18. Pre-sowing laser biostymulation of seeds of cultivated plants and its results in agrotechnics

    International Nuclear Information System (INIS)

    Koper, R.

    1994-01-01

    Studies carried out in University of Agriculture in Lublin made it possible to elaborate our own technology of making laser biostimulation of seeds of selected cultivated plants. The machine for laser biostimulation has been constructed. Pre-sowing laser biostimulation of seeds of some studied plants resulted in the following increase of crops: maize from 10 to 20%, spring wheat 20-30%, spring barley 20-25%, sugar beets 10-35%. Better plant seedlings, higher resistance to cold and earlier plant maturation are the additional effects of pre-sowing laser biostimulation of plants. In the case of corn the vegetation period is shortened by about 10 days. The quality of plants grown from the seeds which underwent the laser biostimulation is also higher. Initial studies proved that it is possible to diminish nitrogen fertilization when applying laser biostimulation of seeds without essential decrease in crops. (author). 8 refs, 2 figs

  19. Control system for JAERI Free Electron Laser

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1992-01-01

    A control system comprising of the personal computers network and the CAMAC stations for the JAERI Free Electron Laser is designed and is in the development stage. It controls the equipment and analyzes the electron and optical beam experiments. The concept and the prototype of the control system are described. (author)

  20. Laser-assisted electron-atom collisions

    International Nuclear Information System (INIS)

    Mason, N.J.

    1989-01-01

    New developments in our understanding of the electron-atom collision process have been made possible by combining the use of highly monochromatic electron beams and intense CO 2 lasers. This paper reviews such experiments and discusses possible future progress in what is a new field in atomic collision physics. (author)

  1. Physiological characteristics of cucumber seed production plants by presowing laser and gamma irradiation

    International Nuclear Information System (INIS)

    Cholakov, D.; Petkova, V.

    1994-01-01

    Seeds from G-3 maternal line of hybrid cucumber cultivar Pobeda F 1 were treated with helium-neon 632.8 nm laser-exit power 20 mW and gamma-rays ( 60 Co) in a field experiment under conditions suitable for hybrid seed production. The irradiation was carried out a week before sowing and the following variants were investigated: 1. sevenfold laser irradiation; 2. 10 Gy gamma irradiation; 3. combined laser + gamma rays irradiation. Seeds from the parent line were not irradiated. A positive effect of irradiation on the photosynthetic intensity, content of plastid pigments in leaves and activity of catalase and peroxidase has been observed. (author)

  2. Linac technology for free-electron lasers

    International Nuclear Information System (INIS)

    Cooper, R.K.; Morton, P.L.; Wilson, P.B.; Keefe, D.; Faltens, A.

    1983-01-01

    The purpose of this paper is to concentrate on the properties of high-energy electron linear accelerators for use in free-electron lasers operating principally in the Compton regime. To fix our focus somewhat, we shall consider electron energies in the 20- to 200-MeV range and consider requirements for high-power free-electron lasers operating in the 0.5- to 10-μm range. Preliminary remarks are made on high-power free-electron laser amplifiers and oscillators and some desirable characteristics of the linacs that deliver electron beams for these devices. Both the high peak-current requirements of the amplifier and the high pulse-repetition frequency requirements of the oscillator can be met by present-day linac technology, although not necessarily by the same machine. In this papers second and third section, the technology of two rather different types of linear accelerators, the rf linac and the induction linac, is reviewed. In conclusion, applications to the Free Electron Lasers are stated

  3. Long range coherence in free electron lasers

    Science.gov (United States)

    Colson, W. B.

    1984-01-01

    The simple free electron laser (FEL) design uses a static, periodic, transverse magnetic field to undulate relativistic electrons traveling along its axis. This allows coupling to a co-propagating optical wave and results in bunching to produce coherent radiation. The advantages of the FEL are continuous tunability, operation at wavelengths ranging from centimeters to angstroms, and high efficiency resulting from the fact that the interaction region only contains light, relativistic electrons, and a magnetic field. Theoretical concepts and operational principles are discussed.

  4. Basic design considerations for free-electron lasers driven by electron beams from RF accelerators

    Science.gov (United States)

    Gover, A.; Freund, H.; Granatstein, V. L.; McAdoo, J. H.; Tang, C.-M.

    A design procedure and design criteria are derived for free-electron lasers driven by electron beams from RF accelerators. The procedure and criteria permit an estimate of the oscillation-buildup time and the laser output power of various FEL schemes: with waveguide resonator or open resonator, with initial seed-radiation injection or with spontaneous-emission radiation source, with a linear wiggler or with a helical wiggler. Expressions are derived for computing the various FEL parameters, allowing for the design and optimization of the FEL operational characteristics under ideal conditions or with nonideal design parameters that may be limited by technological or practical constraints. The design procedure enables one to derive engineering curves and scaling laws for the FEL operating parameters. This can be done most conveniently with a computer program based on flowcharts given in the appendices.

  5. Theoretical and practical aspects of pre-sowing laser biostimulation of the seeds

    International Nuclear Information System (INIS)

    Gładyszewska, B.; Kornas-Czuczwar, B.; Koper, R.; Lipski, S.

    1998-01-01

    Against the background of recent literature review basic aspects of the mechanism responsible for pre-sowing laser bio-stimulation of the seeds were discussed. Developed by professor W. Sedlak theory of bioplasma was the main point of reference. Presented results of own research works proved the positive influence of pre-sowing laser treatment of seeds on their yielding and nutritive value. The yield rises caused by pre-sowing laser seed bio-stimulation for some examined plant crops were as follows: maize (from 10 to 15%), spring wheat (from 20 to 30%), spring barley (from 20 to 25%), sugar beets (from 10 to 30%), rape seeds (from 10 to 15%). The quality of crops frawn from the laser treated seeds was also better than the control ones. For example, the protein content in grain of spring wheat grown from the seeds bio-stimulated with a the He-Ne laser increased from about 12 up to 14%. Similarly, in roots of the sugar beets grown from laser treated seeds, the sugar content rose from about 15 up to about 17% [pl

  6. Electron distribution function in laser heated plasmas

    International Nuclear Information System (INIS)

    Fourkal, E.; Bychenkov, V. Yu.; Rozmus, W.; Sydora, R.; Kirkby, C.; Capjack, C. E.; Glenzer, S. H.; Baldis, H. A.

    2001-01-01

    A new electron distribution function has been found in laser heated homogeneous plasmas by an analytical solution to the kinetic equation and by particle simulations. The basic kinetic model describes inverse bremsstrahlung absorption and electron--electron collisions. The non-Maxwellian distribution function is comprised of a super-Gaussian bulk of slow electrons and a Maxwellian tail of energetic particles. The tails are heated due to electron--electron collisions and energy redistribution between superthermal particles and light absorbing slow electrons from the bulk of the distribution function. A practical fit is proposed to the new electron distribution function. Changes to the linear Landau damping of electron plasma waves are discussed. The first evidence for the existence of non-Maxwellian distribution functions has been found in the interpretation, which includes the new distribution function, of the Thomson scattering spectra in gold plasmas [Glenzer , Phys. Rev. Lett. 82, 97 (1999)

  7. Increasing Laser Stability with Improved Electronic Instruments

    Science.gov (United States)

    Troxel, Daylin; Bennett, Aaron; Erickson, Christopher J.; Jones, Tyler; Durfee, Dallin S.

    2010-03-01

    We present several electronic instruments developed to implement an ultra-stable laser lock. These instruments include a high speed, low noise homodyne photo-detector; an ultrahigh stability, low noise current driver with high modulation bandwidth and digital control; a high-speed, low noise PID controller; a low-noise piezo driver; and a laser diode temperature controller. We will present the theory of operation for these instruments, design and construction techniques, and essential characteristics for each device.

  8. Undulators and free-electron lasers

    CERN Document Server

    Luchini, P

    1990-01-01

    This book is a reference text for all those working in free-electron laser research as well as being a learning aid for physicists and graduate students who wish an introduction to this field. Only a basic understanding of relativistic mechanics and electromagnetism is presupposed. After an overview of early developments and general principles of operation, the different models that can be used to describe free-electron lasers are presented, organized according to their range of applicability. The relevent conceptual and mathematical constructs are built up from first principles with attention to obtaining the practically important results in a simple but rigorous way. Interaction of the undulator with the driving electron accelerator and the laser cavity and design of undulator magnets are treated and an overview is given of some typical experiments.

  9. Laser-pulsed relativistic electron gun

    International Nuclear Information System (INIS)

    Sherman, N.K.

    1986-01-01

    A relativistic (β ≅ 0.8) electron gun with good emittance and subnanosecond pulse duration which can be synchronized to picosecond laser pulses is being developed at NRC for use in studies of particle acceleration by lasers. Bursts of electron pulses exceeding 280 keV in energy have been extracted into air form a laser-driven vacuum photodiode. Trains of 5 ps pulses of ultraviolet UV light illuminate a magnesium cathode. Photoelectrons emitted from the cathode are accelerated in a graded electrostatic potential set up by a 360 kV Marx-generator. The UV pulses are obtained by doubling the frequency of a 606 nm dye laser modelocked at 160 MHz. Electron energies were measured by residual range in an echelon of Al foils. Total charge per burst was measured by picoammeter. Time structure of the bursts has been examined with plastic scintillator and a fast photomultiplier. Tests on a low voltage photodiode achieved a current density of 180 A/cm/sup 2/ from an Mg cathode, with quantum efficiency of 2.4 x 10/sup -6/ electron per UV photon. The brevity and intensity of the laser pulses cause the electric charge collected per pulse to increase linearly with bias voltage rather than according to the Langmuir-Child law. Gun emittance is about 150 mm-msr and beam brightness is about 1A/cm/sup 2/-sr. Estimated duration of individual electron pulses of a burst is about 400 ps with instantaneous current of about 0.1 mA. Energy spread within one pulse is expected to be about 15%. This gun has the potential to be a useful source of relativistic electrons for laser acceleration studies

  10. Cluster-assistant generation of multiply charged atomic ions in nanosecond laser ionization of seeded methyl iodide beam

    International Nuclear Information System (INIS)

    Luo Xiaolin; Niu Dongmei; Kong Xianglei; Wen Lihua; Liang Feng; Pei Kemei; Wang Bin; Li Haiyang

    2005-01-01

    The photoionization of methyl iodide beam seeded in argon and helium is studied by time-of-flight mass spectrometry using a 25 ns, 532 nm Nd-YAG laser with intensities in the range of 2 x 10 10 -2 x 10 11 W/cm 2 . Multiply charged ions of I q+ (q = 2-3) and C 2+ with tens of eV kinetic energies have been observed when laser interacts with the middle part of the pulsed molecular beam, whose peak profiles are independent on the laser polarization directions. Strong evidences show that these ions are coming from the Coulomb explosion of multiply charged CH 3 I clusters, and laser induced inverse bremsstrahlung absorption of caged electrons plays a key role in the formation of multiply charged ions

  11. Technique and effects of pre-sowing laser biostimulation of cucumber seeds

    International Nuclear Information System (INIS)

    Gładyszewska, B.; Koper, R.; Kornarzyński, K.

    1998-01-01

    Laser treatment of seeds before sowing at selected irradiation doses was described. Particular attention was paid to determining energy doses for biostimulation. Results obtained at experimental irradiation of short green-house cucumber seeds, Pasandra and Picobello cultivars, were presented. Considerable increase in yields was observed as a result of applied method

  12. An inverse free electron laser accelerator experiment

    International Nuclear Information System (INIS)

    Wernick, I.; Marshall, T.C.

    1992-01-01

    A free electron laser was configured as an autoaccelerator to test the principle of accelerating electrons by stimulated absorption of radiation (λ = 1.65mm) by an electron beam (750kV) traversing an undulator. Radiation is produced in the first section of a constant period undulator (1 w1 = 1.43cm) and then absorbed (∼ 40%) in a second undulator, having a tapered period (1 w2 = 1.8 - 2.25cm), which results in the acceleration of a subgroup (∼ 9%) of electrons to ∼ 1MeV

  13. Quantum aspects of the free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Gaiba, R.

    2007-03-15

    We study the role of Quantum Mechanics in the physics of Free Electron Lasers. While the Free Electron Laser (FEL) is usually treated as a classical device, we review the advantages of a quantum formulation of the FEL. We then show the existence of a regime of operation of the FEL that can only be described using Quantum Mechanics: if the dimensionless quantum parameter anti {rho} is smaller than 1, then in the 1-dimensional approximation the Hamiltonian that describes the FEL becomes equivalent to the Hamiltonian of a two-level system coupled to a radiation field. We give analytical and numerical solutions for the photon statistics of a Free Electron Laser operating in the quantum regime under various approximations. Since in the quantum regime the momentum of the electrons is discrete, we give a description of the electrons in phase space by introducing the Discrete Wigner Function. We then drop the assumption of a mono-energetic electron beam and describe the general case of a initial electron energy spread G({gamma}). Numerical analysis shows that the FEL quantum regime is observed only when the width of the initial momentum distribution is smaller than the momentum of the emitted photons. Both the analytical results in the linear approximation and the numerical simulations show that only the electrons close to a certain resonant energy start to emit photons. This generates the so-called Hole-burning effect in the electrons energy distribution, as it can be seen in the simulations we provide. Finally, we present a brief discussion about a fundamental uncertainty relation that ties the electron energy spread and the electron bunching. (orig.)

  14. Rippled beam free electron laser amplifier

    Science.gov (United States)

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  15. Radiation belt seed population and its association with the relativistic electron dynamics: A statistical study: Radiation Belt Seed Population

    International Nuclear Information System (INIS)

    Tang, C. L.; Wang, Y. X.; Ni, B.; Zhang, J.-C.

    2017-01-01

    Using the Van Allen Probes data, we study the radiation belt seed population and it associated with the relativistic electron dynamics during 74 geomagnetic storm events. Based on the flux changes of 1 MeV electrons before and after the storm peak, these storm events are divided into two groups of “non-preconditioned” and “preconditioned”. The statistical study shows that the storm intensity is of significant importance for the distribution of the seed population (336 keV electrons) in the outer radiation belt. However, substorm intensity can also be important to the evolution of the seed population for some geomagnetic storm events. For non-preconditioned storm events, the correlation between the peak fluxes and their L-shell locations of the seed population and relativistic electrons (592 keV, 1.0 MeV, 1.8 MeV, and 2.1 MeV) is consistent with the energy-dependent dynamic processes in the outer radiation belt. For preconditioned storm events, the correlation between the features of the seed population and relativistic electrons is not fully consistent with the energy-dependent processes. It is suggested that the good correlation between the radiation belt seed population and ≤1.0 MeV electrons contributes to the prediction of the evolution of ≤1.0 MeV electrons in the Earth’s outer radiation belt during periods of geomagnetic storms.

  16. Laser printed interconnects for flexible electronics

    Science.gov (United States)

    Pique, Alberto; Beniam, Iyoel; Mathews, Scott; Charipar, Nicholas

    Laser-induced forward transfer (LIFT) can be used to generate microscale 3D structures for interconnect applications non-lithographically. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or dispersed metallic nanoparticles. However, the resulting 3D structures do not achieve the bulk conductivity of metal interconnects of the same cross-section and length as those formed by wire bonding or tab welding. It is possible, however, to laser transfer entire structures using a LIFT technique known as lase-and-place. Lase-and-place allows whole components and parts to be transferred from a donor substrate onto a desired location with one single laser pulse. This talk will present the use of LIFT to laser print freestanding solid metal interconnects to connect individual devices into functional circuits. Furthermore, the same laser can bend or fold the thin metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief due to flexing or thermal mismatch. Examples of these laser printed 3D metallic bridges and their role in the development of next generation flexible electronics by additive manufacturing will be presented. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  17. Development of an automation system for Iodine-125 brachytherapy seed encapsulated by Nd:YAG laser welding

    International Nuclear Information System (INIS)

    Somessari, S.L.; Feher, A.; Sprenger, F.E.; Rostelato, M.E.C.M.; Costa, F.E. da; Calvo, W.A.P.

    2011-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by Nd:YAG laser welding, which has been used successfully in low dose rate (LDR) brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8 mm in diameter and 4.5 mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at Institute for Nuclear and Energy Research, Sao Paulo, Brazil (IPEN-CNEN/SP) imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources became a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a larger number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with good manufacturing practices (GMP). The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing a programmable logic controller (PLC), a stepper motor, an Nd:YAG laser welding machine and a supervisory. The statistical repeatability of correctly encapsulated sealed sources with this automation system is greater than 95%. (authors)

  18. Development of an automation system for iodine-125 brachytherapy seed production by ND:YAG laser welding

    International Nuclear Information System (INIS)

    Somessari, Samir L.; Feher, Anselmo; Sprenger, Francisco E.; Rostellato, Maria Elisa C.M.; Costa, Fabio E.; Calvo, Wilson A.P.

    2009-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by Nd:YAG laser welding, which has been used successfully in low dose rate brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8 mm in diameter and 4.5 mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources became a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a larger number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with good manufacturing practices. The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing a Programmable Logic Controller, a stepper motor, an Nd:YAG laser welding machine and a supervisory. (author)

  19. Development of an automation system for iodine-125 brachytherapy seed production by (Nd:YAG) laser welding

    International Nuclear Information System (INIS)

    Somessari, Samir Luiz

    2010-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by (Nd:YAG) laser welding, which has been used successfully in Low Dose Rate (LDR) brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8mm in diameter and 4.5mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources becomes a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a largest number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with Good Manufacturing Practices (GMP). The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing Programmable Logic Controller (PLC), stepper motors, drivers, (Nd:YAG) laser welding machine, photoelectric sensors and supervisory. (author)

  20. Electron acceleration in a plane laser beam

    Czech Academy of Sciences Publication Activity Database

    Petržílka, Václav; Krlín, Ladislav; Tataronis, J. A.

    2002-01-01

    Roč. 52, supplement D (2002), s. 279-282 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : electron acceleration, laser beam Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  1. Electronic Subsystems For Laser Communication System

    Science.gov (United States)

    Long, Catherine; Maruschak, John; Patschke, Robert; Powers, Michael

    1992-01-01

    Electronic subsystems of free-space laser communication system carry digital signals at 650 Mb/s over long distances. Applicable to general optical communications involving transfer of great quantities of data, and transmission and reception of video images of high definition.

  2. Applications for Energy Recovering Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  3. An injection seeded single frequency Nd:YAG Q-switched laser with precisely controllable laser pulse firing time

    Science.gov (United States)

    Wu, Frank F.; Khizhnyak, Anatoliy; Markov, Vladimir

    2010-02-01

    We have realized a single frequency Q-switched Nd:YAG laser with precisely controllable lasing time and thus enabled synchronization of multi-laser systems. The use of injection seeding to the slave ring oscillator results in unidirectional Q-switched laser oscillation with suppression of bidirectional Q-switched oscillation that otherwise would be initiated from spontaneous emission if the seeding laser is not present. Under normal condition, the cavity is high in loss during the pumping period; then a Pockels cell opens the cavity to form the pulse build up, with a second Pockels cell to perform cavity dumping, generating the Q-switched pulse output with optimized characteristics. The two Pockels cells can be replaced by a single unit if an adjustable gated electrical pulse is applied to the Pockels cell in which the pulse front is used to open the cavity and the falling edge to dump the laser pulse. Proper selection of the pump parameters and Pockels-cell gating enables operation of the system in a mode in which the Q-switched pulse can be formed only under the seeding condition. The advantage of the realized regime is in stable laser operation with no need in adjustment of the seeded light wavelength and the mode of the cavity. It is found that the frequency of the Q-switched laser radiation matches well to the injected seeded laser mode. By using two-stage amplifiers, an output energy better than 300 mJ has been achieved in MOPA configuration without active control of the cavity length and with pulse width adjustability from several nanoseconds to 20 ns. The Q-switched oscillator operates not only at precisely controlled firing time but also can be tuned over wide range. This will enable multi-laser systems synchronization and frequency locking down each other if necessary.

  4. Multicascade X-Ray Free-Electron Laser with Harmonic Multiplier and Two-Frequency Undulator

    Science.gov (United States)

    Zhukovsky, K. V.

    2018-06-01

    The feasibility of generation of powerful x-ray radiation by a cascade free-electron laser (FEL) with amplification of higher harmonics using a two-frequency undulator is studied. To analyze the FEL operation, a complex phenomenological single-pass FEL model is developed and used. It describes linear and nonlinear generation of harmonics in the FEL with seed laser that takes into account initial electron beam noise and describes all main losses of each harmonic in each FEL cascade. The model is also calibrated against and approved by the experimental FEL data and available results of three-dimensional numerical simulation. The electron beam in the undulator is assumed to be matched and focused, and the dynamics of power in the singlepass FEL with cascade harmonic multipliers is investigated to obtain x-ray laser radiation in the FEL having the shortest length, beam energy, and frequency of the seed laser as low as possible. In this context, the advantages of the two-frequency undulator used for generation of harmonics are demonstrated. The evolution of harmonics in a multicascade FEL with multiplication of harmonics is investigated. The operation of the cascade FEL at the wavelength λ = 1.14 nm, generating 30 MW already on 38 m with the seed laser operating at a wavelength of 11.43 nm corresponding to the maximal reflectivity of the multilayered mirror MoRu/Be coating is investigated. In addition, the operation of the multicascade FEL with accessible seed UVlaser operating at a wavelength of 157 nm (F2 excimer UV-laser) and electron beam with energy of 0.5 GeV is investigated. X-ray radiation simulated in it at the wavelength λ 3.9 nm reaches power of 50 MW already at 27 m, which is by two orders of magnitude shorter than 3.4 km of the x-ray FEL recently put into operation in Europe.

  5. Los Alamos advanced free-electron laser

    Science.gov (United States)

    Chan, K. C. D.; Kraus, R. H.; Ledford, J.; Meier, K. L.; Meyer, R. E.; Nguyen, D.; Sheffield, R. L.; Sigler, F. L.; Young, L. M.; Wang, T. S.; Wilson, W. L.; Wood, R. L.

    1992-07-01

    Los Alamos researchers are building a free-electron laser (FEL) for industrial, medical, and research applications. This FEL, which will incorporate many of the new technologies developed over the last decade, will be compact, robust, and user-friendly. Electrons produced by a photocathode will be accelerated to 20 MeV by a high-brightness accelerator and transported by permanent-magnet quadrupoles and dipoles. The resulting electron beam will have an excellent instantaneous beam quality of 10πmm mrad in transverse emittance and 0.3% in energy spread at a peak current up to 300 A. Including operation at higher harmonics, the laser wavelength extends from 3.7 μm to 0.4 μm.

  6. Biostimulation effects on wheat seeds (Triticum Aestivum L) caused by low level red laser radiation with λ = 660 nm

    International Nuclear Information System (INIS)

    Hernandez, M.; Michtchenko, A.

    2009-01-01

    The principal objective is to study the biostimulation effects caused by a semiconductor low level laser radiation with ? = 660 nm on wheat seeds (Triticum Aestivum L). Seeds were treated before sowing with this laser light source. An increase in the growth of the stem of 12% with respect to control seeds was registered for seeds radiated by an intensity of 15mW/cm 2 and an irradiation time of 60 seconds. (Author)

  7. Simulations of free electron laser

    International Nuclear Information System (INIS)

    Kwan, T.; Godfrey, B.B.

    1979-01-01

    The generation of coherent electromagnetic radiation by the interaction of a relativistic electron beam with a static helical magnetic field is investigated using one- and two-dimensional relativistic electromagnetic plasma simulation codes. In the one-dimensional simulations, we observed the coupling between the negative energy beam mode and the positive energy electromagnetic wave. Substantial growth rate (omega 1 approx. 0.1 omega/sub pe/) of the unstable electromagnetic wave has been observed and efficiency of radiation production is found to be between 25 to 30% depending on various parameters. In the two-dimensional simulations, we observed a decrease in the growth rate, but increased efficiency due to the decrease in the phase velocity of the unstable electrostatic wave. In addition, we also observed waves propagating at an angle with respect to the electron beam. Consequently, the beam is bunched in the radial as well as the axial directions. These waves are believed to be generated by another instability which saturates at relatively low level

  8. Fourier-limited seeded soft x-ray laser pulse

    Czech Academy of Sciences Publication Activity Database

    Guilbaud, O.; Tissandier, F.; Goddet, J-P.; Ribière, M.; Sebban, S.; Gautier, J.; Joyeux, D.; Ros, D.; Cassou, K.; Kazamias, S.; Klisnick, A.; Habib, J.; Zeitoun, P.; Benredjem, D.; Mocek, Tomáš; Nejdl, Jaroslav; De Rossi, S.; Maynard, G.; Cros, B.; Boudaa, A.; Calisti, A.

    2010-01-01

    Roč. 35, č. 9 (2010), s. 1326-1328 ISSN 0146-9592 Grant - others:AVČR(CZ) M100100911 Institutional research plan: CEZ:AV0Z10100523 Keywords : lasers and laser optics * UV * EUV * x-ray lasers * spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.316, year: 2010

  9. Two-stage free electron laser research

    Science.gov (United States)

    Segall, S. B.

    1984-10-01

    KMS Fusion, Inc. began studying the feasibility of two-stage free electron lasers for the Office of Naval Research in June, 1980. At that time, the two-stage FEL was only a concept that had been proposed by Luis Elias. The range of parameters over which such a laser could be successfully operated, attainable power output, and constraints on laser operation were not known. The primary reason for supporting this research at that time was that it had the potential for producing short-wavelength radiation using a relatively low voltage electron beam. One advantage of a low-voltage two-stage FEL would be that shielding requirements would be greatly reduced compared with single-stage short-wavelength FEL's. If the electron energy were kept below about 10 MeV, X-rays, generated by electrons striking the beam line wall, would not excite neutron resonance in atomic nuclei. These resonances cause the emission of neutrons with subsequent induced radioactivity. Therefore, above about 10 MeV, a meter or more of concrete shielding is required for the system, whereas below 10 MeV, a few millimeters of lead would be adequate.

  10. Smith-Purcell free-electron laser

    International Nuclear Information System (INIS)

    Woods, K.J.; Walsh, J.E.

    1995-01-01

    The term Smith-Purcell free electron laser can be employed generally to describe any coherent radiation source in which a diffraction grating is used to couple an electron beam with the electromagnetic field. To date, most practical developments of this concept have focused on devices which operate in the millimeter spectral regime. In this paper construction of a Smith-Purcell free-electron laser operating in the far-infrared (FIR) region using a novel resonator cavity design and the electron beam from a low energy (0.5-5 MeV) radio-frequency accelerator will be discussed. A tunable source in this region would have many applications and since the beam energy is low, the small size and low overall cost of such a device would make it a laboratory instrument. Current projects which are progressing towards developing a FIR source are the programs at Stanford and CREOL. Both of these projects are using permanent magnet undulators to couple the electron beam with the electromagnetic field. An alternative approach is to use an electron beam passing over a diffraction grating as the radiating mechanism. This phenomenon is known as Smith-Purcell radiation and was first demonstrated for incoherent emission at visible wavelengths. The addition of feedback enhances the stimulated component of the emission which leads to the growth of coherence. Recent calculations for spontaneous emission have shown that the wiggler parameter and the grating efficiency are analogous. This result has important implications for the development of a Smith-Purcell FEL because a grating based free-electron laser would offer a greater range of tunability at a lower cost than its wiggler based counterpart

  11. Polarization in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Papadichev, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    1995-12-31

    Polarization of electromagnetic radiation is required very often in numerous scientific and industrial applications: studying of crystals, molecules and intermolecular interaction high-temperature superconductivity, semiconductors and their transitions, polymers and liquid crystals. Using polarized radiation allows to obtain important data (otherwise inaccessible) in astrophysics, meteorology and oceanology. It is promising in chemistry and biology for selective influence on definite parts of molecules in chain synthesis reactions, precise control of various processes at cell and subcell levels, genetic engineering etc. Though polarization methods are well elaborated in optics, they can fail in far-infrared, vacuum-ultraviolet and X-ray regions because of lack of suitable non-absorbing materials and damaging of optical elements at high specific power levels. Therefore, it is of some interest to analyse polarization of untreated FEL radiation obtained with various types of undulators, with and without axial magnetic field. The polarization is studied using solutions for electron orbits in various cases: plane or helical undulator with or without axial magnetic field, two plane undulators, a combination of right- and left-handed helical undulators with equal periods, but different field amplitudes. Some examples of how a desired polarization (elliptical circular or linear) can be obtained or changed quickly, which is necessary in many experiments, are given.

  12. Inverse free-electron laser accelerator development

    International Nuclear Information System (INIS)

    Fisher, A.; Gallardo, J.; Steenbergen, A. van; Sandweiss, J.; Fang, J.M.

    1994-06-01

    The study of the Inverse Free-Electron Laser, as a potential mode of electron acceleration, has been pursued at Brookhaven National Laboratory for a number of years. More recent studies focused on the development of a low energy (few GeV), high gradient, multistage linear accelerator. The authors are presently designing a short accelerator module which will make use of the 50 MeV linac beam and high power (2 x 10 11 W) CO 2 laser beam of the Accelerator Test Facility (ATF) at the Center for Accelerator Physics (CAP), Brookhaven National Laboratory. These elements will be used in conjunction with a fast excitation (300 μsec pulse duration) variable period wiggler, to carry out an accelerator demonstration stage experiment

  13. High gain harmonic generation free electron lasers enhanced by pseudoenergy bands

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2017-08-01

    Full Text Available We propose a new scheme for high gain harmonic generation free electron lasers (HGHG FELs, which is seeded by a pair of intersecting laser beams to interact with an electron beam in a modulator undulator located in a dispersive section. The interference of the laser beams gives rise to a two-dimensional modulation in the energy-time phase space because of a strong correlation between the electron energy and the position in the direction of dispersion. This eventually forms pseudoenergy bands in the electron beam, which result in efficient harmonic generation in HGHG FELs in a similar manner to the well-known scheme using the echo effects. The advantage of the proposed scheme is that the beam quality is less deteriorated than in other existing schemes.

  14. Elsa: an infrared free electron laser

    International Nuclear Information System (INIS)

    Guimbal, P.; Chaix, P.

    1998-01-01

    Since the first experiments, twenty years ago, free-electron lasers (FEL) have known a strong development because of their promise: broadband tunability from X-rays to microwaves and high (peak or average) power, limited only by technological issues. ELSA has been designed as a research tool to investigate the physics of high-power FELs. After a brief introduction of the FEL field of research, we point out the unique characteristics of ELSA and why it is a valuable tool for the study of FEL interaction in the strong electron-photon coupling. The main experimental results are reviewed. We conclude on the concept of Two-Frequency-Wiggler. (author)

  15. Laser system for a subpicosecond electron linac

    International Nuclear Information System (INIS)

    Crowell, R. A.

    1998-01-01

    At the Argonne Chemistry Division efforts are underway to develop a sub-picosecond electron beam pulse radiolysis facility for chemical studies. The target output of the accelerator is to generate electron pulses that can be adjusted from 3nC in .6ps to 100nC in 45ps. In conjunction with development of the accelerator a state-of-the-art ultrafast laser system is under construction that will drive the linac's photocathode and provide probe pulses that are tunable from the UV to IR spectral regions

  16. The waveguide Free-Electron Laser. 14

    International Nuclear Information System (INIS)

    Walsh, J.E.

    1990-01-01

    The general characteristics of free-electron lasers (FELs) which employ a waveguiding structure to confine electromagnetic fields and to couple them to the electron beam is discussed. The mode structure of the basic parallel plate waveguide and its adaptation via quasi-optical techniques to FEL resonator design are considered in detail. A summary of the theory of FEL systems which depend intrinsically on a guide structure (micro-undulator, Cerenkov and metal-grating FELs) and a review of progress on waveguide FEL experiments are also presented. (author). 44 refs.; 16 figs

  17. High-efficiency free-electron laser results

    International Nuclear Information System (INIS)

    Boyer, K.; Baru, C.A.; Newnam, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.; Young, L.M.

    1983-01-01

    Results obtained with a tapered-wiggler free-electron laser demonstrate the concepts proposed by Morton for enhanced efficiency and show deceleration of electrons by as much as 7%, and extraction of more than 3% of the total electron-beam energy as laser energy when the laser is operated as an amplifier. The experiment is presently being reconfigured to examine its performance as a laser oscillator

  18. Modeling and multidimensional optimization of a tapered free electron laser

    Directory of Open Access Journals (Sweden)

    Y. Jiao

    2012-05-01

    Full Text Available Energy extraction efficiency of a free electron laser (FEL can be greatly increased using a tapered undulator and self-seeding. However, the extraction rate is limited by various effects that eventually lead to saturation of the peak intensity and power. To better understand these effects, we develop a model extending the Kroll-Morton-Rosenbluth, one-dimensional theory to include the physics of diffraction, optical guiding, and radially resolved particle trapping. The predictions of the model agree well with that of the GENESIS single-frequency numerical simulations. In particular, we discuss the evolution of the electron-radiation interaction along the tapered undulator and show that the decreasing of refractive guiding is the major cause of the efficiency reduction, particle detrapping, and then saturation of the radiation power. With this understanding, we develop a multidimensional optimization scheme based on GENESIS simulations to increase the energy extraction efficiency via an improved taper profile and variation in electron beam radius. We present optimization results for hard x-ray tapered FELs, and the dependence of the maximum extractable radiation power on various parameters of the initial electron beam, radiation field, and the undulator system. We also study the effect of the sideband growth in a tapered FEL. Such growth induces increased particle detrapping and thus decreased refractive guiding that together strongly limit the overall energy extraction efficiency.

  19. Photoacoustic spectroscopy applied to the study of the influence of laser irradiation on corn seeds

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Aguilar, C.; Michtchenko, A. [Instituto Politecnico Nacional (Mexico); Carballo, A. [Colegio de Postgraduados, Programa de Semillas (IREGEP) (Mexico); Cruz-Orea, A. [Centro de Investigacion y de Estudios Avanzados-IPN (Mexico); Ivanov, R. [Universidad Autonoma de Zacatecas, Unidad Academia de Fisica (Mexico); San Martin Martinez, E. [Centro de Investigacion en ciencia Aplicada y Tecnologia Avanzada-IPN (Mexico)

    2005-06-01

    In the present study we were interested in the effects of low intensity laser irradiation on hybrid corn seeds CL{sub 1} x CL{sub 4} when these seeds were exposed to different laser intensities and irradiation times. In order to observe qualitative differences in chlorophyll a and b optical absorption spectra of seedling's leaves, whose seeds were irradiated and non irradiated, were obtained by using photoacoustic spectroscopy (PAS). A randomized complete blocks experimental design with three replications was used. The experimental unit included 10 seeds, from which we randomly choose three seedlings. The variance analysis (ANOVA) for both chlorophylls revealed significant (P < 0.05) differences among treatments. (authors)

  20. Wave function of free electron in a strong laser plasma

    International Nuclear Information System (INIS)

    Zhu Shitong; Shen Wenda; Guo Qizhi

    1993-01-01

    The wave function of free electron in a strong laser plasma is obtained by solving exactly the Dirac equation in a curved space-time with optical metric for the laser plasma. When the laser field is diminished to zero, the wave function is naturally reduced to relativistic wave function of free electron. The possible application of the wave function is discussed

  1. An Inverse Free-Electron-Laser accelerator

    International Nuclear Information System (INIS)

    Fisher, A.S.; Gallardo, J.C.; van Steenbergen, A.; Ulc, S.; Woodle, M.; Sandweiss, J.; Fang, Jyan-Min

    1993-01-01

    Recent work at BNL on electron acceleration using the Inverse Free-Electron Laser (IFEL) has considered a low-energy, high-gradient, multi-stage linear accelerator. Experiments are planned at BNL's Accelerator Test Facility using its 50-MeV linac and 100-GW CO 2 laser. We have built and tested a fast-excitation wiggler magnet with constant field, tapered period, and overall length of 47 cm. Vanadium-Permendur ferromagnetic laminations are stacked in alternation with copper, eddy-current-induced, field reflectors to achieve a 1.4-T peak field with a 4-mm gap and a typical period of 3 cm. The laser beam will pass through the wiggler in a low-loss, dielectric-coated stainless-steel, rectangular waveguide. The attenuation and transverse mode has been measured in waveguide sections of various lengths, with and without the dielectric. Results of 1-D and 3-D IFEL simulations, including wiggler errors, will be presented for several cases: the initial, single-module experiment with ΔE = 39 MeV, a four-module design giving ΔE = 100 MeV in a total length of 2 m, and an eight-module IFEL with ΔE = 210 MeV

  2. High gain free electron laser at ETA

    International Nuclear Information System (INIS)

    Orzechowski, T.J.; Prosnitz, D.; Halbach, K.

    1983-01-01

    A single pass, tapered electron wiggler and associated beam transport has been constructed at the Experimental Test Accelerator (ETA) at Lawrence Livermore National Laboratory (LLNL). The system is designed to transport 1 kA of 4.5 MeV electrons with an emittance of 30 millirad-cm. The planar wiggler is provided by a pulsed electromagnet. The interaction region is an oversized rectangular waveguide. Quadrupole fields stabilize the beam in the plane parallel to the wiggler field. The 3 meter long wiggler has a 9.8 cm period. The Free Electron Laser (FEL) will serve as an amplifier for input frequencies of 35 GHz and 140 GHz. The facility is designed to produce better than 500 Megawatts peak power

  3. Buckwheat yield and its quality as affected by laser biostimulation of its seeds

    International Nuclear Information System (INIS)

    Koper, R.; Mikos-Bielak, M.

    2003-01-01

    The influence of various doses of laser radiation applied to buckwheat seed bio stimulation on the yield, and changes of chemical composition was analysed. A 12-25 percent increase of yield was observed in bio stimulated plants. The most positive effects were achieved after seed triple radiation using a laser of 30 mW power for 0.1 s. Bio stimulation caused a slight increase of protein, fat and fiber content a large increase of soluble and reducing sugars and a decrease of starch level

  4. Free-electron lasers in ultraviolet photobiology

    International Nuclear Information System (INIS)

    Coohill, T.P.; Sutherland, J.C.

    1989-01-01

    The potential uses for a free-electron laser (FEL), tunable in wavelength from 10 to 400 nm, for photobiological experiments is discussed. Inherent problems of cell and molecular absorption, especially in certain regions of the ultraviolet (UV), are addressed. Absorption values for living cells and viruses at selected wavelengths in the UV are tabulated, and a calculation of the flux needed to inactivate mammalian cells is included. A comparison is made of the UV output of a proposed rf-linac FEL with those of a monochromator, a tunable dye laser, and a synchrotron. The advantages of a UV FEL are apparent, especially in the wavelength regions where the cross section for absorption by biological molecules is low, i.e., 300 to 400 nm and 10 to 200 nm. It is apparent that a UV FEL would be an ideal source for a variety of biological studies that use both intact organisms and isolated cells and viruses

  5. Free electron laser and fundamental physics

    Science.gov (United States)

    Dattoli, Giuseppe; Nguyen, Federico

    2018-03-01

    This review paper is devoted to the understanding of free-electron lasers (FEL) as devices for fundamental physics (FP) studies. After clarifying what FP stands for, we select some aspects of the FEL physics which can be viewed as fundamental. Furthermore, we discuss the perspective uses of the FEL in FP experiments. Regarding the FP aspects of the FEL, we analyze the quantum electrodynamics (QED) nature of the underlying laser mechanism. We look for the truly quantum signature in a process whose phenomenology is dominated by classical effects. As to the use of FEL as a tool for FP experiments we discuss the realization of a device dedicated to the study of non-linear effects in QED such as photon-photon scattering and shining-through-the-wall experiments planned to search for dark matter candidates like axions.

  6. Pulsed laser deposition of YBCO coated conductor using Y2O3 as the seed and cap layer

    International Nuclear Information System (INIS)

    Barnes, P N; Nekkanti, R M; Haugan, T J; Campbell, T A; Yust, N A; Evans, J M

    2004-01-01

    Although a variety of buffer layers have been routinely reported, a standard architecture commonly used for the Y Ba 2 Cu 3 O 7-x (YBCO) coated conductor is Y BCO/CeO 2 /Y SZ/CeO 2 /substrate or Y BCO/CeO 2 /Y SZ/Y 2 O 3 /substrate where ceria is typically the cap layer. CeO 2 is generally used as only a seed (or cap layer) since cracking within the film occurs in thicker CeO 2 layers due to the stress of lattice mismatching. Y 2 O 3 has been proposed as a seed and as a cap layer but usually not for both in a given architecture, especially with all layers deposited in situ. Yttrium oxide films grown on nickel by electron beam evaporation processes were found to be dense and crack free with good epitaxy. In this report, pulsed laser deposition (PLD) of Y 2 O 3 is given where Y 2 O 3 serves as both the seed and cap layer in the YBCO architecture. A comparison to PLD CeO 2 is provided. Deposited layers of the YBCO coated conductor are also grown by laser ablation. Initial deposition resulted in specimens on textured Ni substrates with current densities of more than 1 MA cm -2 at 77 K, self-field

  7. Kinetic theory of free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hafizi, B. [Naval Research Lab., Washington, DC (United States); Roberson, C.W. [Office of Naval Research, Arlington, VA (United States)

    1995-12-31

    We have developed a relativistic kinetic theory of free electron lasers (FELs). The growth rate, efficiency, filling factor and radius of curvature of the radiation wave fronts are determined. We have used the theory to examine the effects of beam compression on growth rate. The theory has been extended to include self field effects on FEL operation. These effects are particularly important in compact, low voltage FELs. The surprising result is that the self field contribution to the beam quality is opposite to the emittance contribution. Hence self fields can improve beam quality, particularly in compact, low voltage FELs.

  8. Free electron lasers on superconducting linac

    International Nuclear Information System (INIS)

    Lapierrre, Y.

    1986-01-01

    Analysing the results of several Free Electron Laser experiments, we show that the best accelerator should be a superconducting linear accelerator: it can provide a c.w. high quality beam (energy spread and emittance). The technology of RF superconductivity provide the opportunity to build such an accelerator. In this paper, we present the foreseen results one can expect from a FEL based on such a machine: - Average power > 1 Kw, - Total efficiency > 2.5%, - Tunability between 0.6 and 5 μm [fr

  9. The free electron laser: conceptual history

    International Nuclear Information System (INIS)

    Madey, John; Scully, Marlan O; Sprangle, Phillip

    2016-01-01

    The free electron laser (FEL) has lived up to its promise as given in (Madey 1971 J. Appl. Phys. 42 1906) to wit: ‘As shall be seen, finite gain is available …from the far-infrared through the visible region …with the further possibility of partially coherent radiation sources in the x-ray region’. In the present paper we review the history of the FEL drawing liberally (and where possible literally) from the original sources. Coauthors, Madey, Scully and Sprangle were involved in the early days of the subject and give a first hand account of the subject with an eye to the future. (invited comment)

  10. X-ray Free-electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Feldhaus, J.; /DESY; Arthur, J.; Hastings, J.B.; /SLAC

    2007-02-23

    In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, and can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.

  11. Continuously tunable pulsed Ti:Sa laser self-seeded by an extended grating cavity

    CERN Document Server

    Li, Ruohong; Rothe, Sebastian; Teigelhöfer, Andrea; Mostamand, Maryam

    2016-01-01

    A continuously tunable titanium:sapphire (Ti:Sa) laser self-seeded by an extended grating cavity was demonstrated and characterized. By inserting a partially reflecting mirror inside the cavity of a classic single-cavity grating laser, two oscillators are created: a broadband power oscillator, and a narrowband oscillator with a prism beam expander and a diffraction grating in Littrow configuration. By coupling the grating cavity oscillation into the power oscillator, a power-enhanced narrow-linewidth laser oscillation is achieved. Compared to the classic grating laser, this simple modification significantly increases the laser output power without considerably broadening the linewidth. With most of the oscillating laser power confined inside the broadband power cavity and lower power incident onto the grating, the new configuration also allows higher pump power, which is typically limited by the thermal deformation of the grating coating at high oscillation power.

  12. Externally Controlled Injection of Electrons by a Laser Pulse in a Laser Wakefield Electron Accelerator

    CERN Document Server

    Chen Szu Yuan; Chen Wei Ting; Chien, Ting-Yei; Lee, Chau-Hwang; Lin, Jiunn-Yuan; Wang, Jyhpyng

    2005-01-01

    Spatially and temporally localized injection of electrons is a key element for development of plasma-wave electron accelerator. Here we report the demonstration of two different schemes for electron injection in a self-modulated laser wakefield accelerator (SM-LWFA) by using a laser pulse. In the first scheme, by implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. We found that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the pump pulse. In the second scheme, by using a transient density ramp we achieve self-injection of electrons in a SM-LWFA with spatial localization. The transient density ramp is produced by a prepulse propagating transversely to drill a density depression channel via ionization and expansion. The same mechanism of injection with comparable efficiency is also demonstrated wi...

  13. Short Rayleigh Length Free Electron Lasers

    CERN Document Server

    Crooker, P P; Armstead, R L; Blau, J

    2004-01-01

    Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. A new FEL interaction is described and analyzed with a Rayleigh length that is only one tenth the undulator length, or less. The effect of mirror vibration and positioning are more critical in the short Rayleigh length design, but we find that they are still within normal design tolerances.

  14. Free electron laser variable bridge coupler

    International Nuclear Information System (INIS)

    Spalek, G.; Billen, J.H.; Garcia, J.A.; McMurry, D.E.; Harnsborough, L.D.; Giles, P.M.; Stevens, S.B.

    1985-01-01

    The Los Alamos free-electron laser (FEL) is being modified to test a scheme for recovering most of the power in the residual 20-MeV electron beam by decelerating the microbunches in a linear standing-wave accelerator and using the recovered energy to accelerate new beam. A variable-coupler low-power model that resonantly couples the accelerator and decelerator structures has been built and tested. By mixing the TE 101 and TE 102 modes, this device permits continuous variation of the decelerator fields relative to the accelerator fields through a range of 1:1 to 1:2.5. Phase differences between the two structures are kept below 1 0 and are independent of power-flow direction. The rf power is also fed to the two structures through this coupling device. Measurements were also made on a three-post-loaded variable coupler that is a promising candidate for the same task

  15. Workshop on scientific and industrial applications of free electron lasers

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.

    1990-05-01

    A Workshop on Scientific and Industrial Applications of Free Electron Lasers was organized to address potential uses of a Free Electron Laser in the infrared wavelength region. A total of 13 speakers from national laboratories, universities, and the industry gave seminars to an average audience of 30 persons during June 12 and 13, 1989. The areas covered were: Free Electron Laser Technology, Chemistry and Surface Science, Atomic and Molecular Physics, Condensed Matter, and Biomedical Applications, Optical Damage, and Optoelectronics

  16. Effect of seed treatment with low-potency laser in peppers plants (Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Alexander Álvarez Fonseca,

    2014-01-01

    Full Text Available The influence of seed treatment with low-potency laser radiation on some physiological parameters and yield of peppers plants, California Wonder variety, was studied. The seeds were irradiated with a laser He- Ne, 25 mW powers, at different exposure periods 5, 10, 20, 30 and 60 seconds, using untreated seeds as controls. We evaluated plant height (mm, root length (mm, stem diameter (mm, polar average diameter (mm equatorial mean diameter (mm, mean fruit mass (g and yield per plant (kg.plant-1. The results showed a significant increase (p?0.001 in the indicators of plants height (50 %, root length (13 %, stem diameter (17 %, equatorial mean diameter (7 %, mean fruit mass (13 % and yield per plant (67 %, compared to control.

  17. Applications of laser printing for organic electronics

    Science.gov (United States)

    Delaporte, Ph.; Ainsebaa, A.; Alloncle, A.-P.; Benetti, M.; Boutopoulos, C.; Cannata, D.; Di Pietrantonio, F.; Dinca, V.; Dinescu, M.; Dutroncy, J.; Eason, R.; Feinaugle, M.; Fernández-Pradas, J.-M.; Grisel, A.; Kaur, K.; Lehmann, U.; Lippert, T.; Loussert, C.; Makrygianni, M.; Manfredonia, I.; Mattle, T.; Morenza, J.-L.; Nagel, M.; Nüesch, F.; Palla-Papavlu, A.; Rapp, L.; Rizvi, N.; Rodio, G.; Sanaur, S.; Serra, P.; Shaw-Stewart, J.; Sones, C. L.; Verona, E.; Zergioti, I.

    2013-03-01

    The development of organic electronic requires a non contact digital printing process. The European funded e-LIFT project investigated the possibility of using the Laser Induced Forward Transfer (LIFT) technique to address this field of applications. This process has been optimized for the deposition of functional organic and inorganic materials in liquid and solid phase, and a set of polymer dynamic release layer (DRL) has been developed to allow a safe transfer of a large range of thin films. Then, some specific applications related to the development of heterogeneous integration in organic electronics have been addressed. We demonstrated the ability of LIFT process to print thin film of organic semiconductor and to realize Organic Thin Film Transistors (OTFT) with mobilities as high as 4 10-2 cm2.V-1.s-1 and Ion/Ioff ratio of 2.8 105. Polymer Light Emitting Diodes (PLED) have been laser printed by transferring in a single step process a stack of thin films, leading to the fabrication of red, blue green PLEDs with luminance ranging from 145 cd.m-2 to 540 cd.m-2. Then, chemical sensors and biosensors have been fabricated by printing polymers and proteins on Surface Acoustic Wave (SAW) devices. The ability of LIFT to transfer several sensing elements on a same device with high resolution allows improving the selectivity of these sensors and biosensors. Gas sensors based on the deposition of semiconducting oxide (SnO2) and biosensors for the detection of herbicides relying on the printing of proteins have also been realized and their performances overcome those of commercial devices. At last, we successfully laser-printed thermoelectric materials and realized microgenerators for energy harvesting applications.

  18. Fast-electron-relaxation measurement for laser-solid interaction at relativistic laser intensities

    International Nuclear Information System (INIS)

    Chen, H.; Shepherd, R.; Chung, H. K.; Kemp, A.; Hansen, S. B.; Wilks, S. C.; Ping, Y.; Widmann, K.; Fournier, K. B.; Beiersdorfer, P.; Dyer, G.; Faenov, A.; Pikuz, T.

    2007-01-01

    We present measurements of the fast-electron-relaxation time in short-pulse (0.5 ps) laser-solid interactions for laser intensities of 10 17 , 10 18 , and 10 19 W/cm 2 , using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. We find that the laser coupling to hot electrons increases as the laser intensity becomes relativistic, and that the thermalization of fast electrons occurs over time scales on the order of 10 ps at all laser intensities. The experimental data are analyzed using a combination of models that include Kα generation, collisional coupling, and plasma expansion

  19. Synchronization of sub-picosecond electron and laser pulses

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-01-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) copyright 1999 American Institute of Physics

  20. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF

    Science.gov (United States)

    Hammond, Ernest C., Jr.; Bridgers, Kevin; Brown, Cecelia Wright

    1995-01-01

    The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.

  1. Laser applications in the electronics and optoelectronics industry in Japan

    Science.gov (United States)

    Washio, Kunihiko

    1999-07-01

    This paper explains current status and technological trends in laser materials processing applications in electronics and optoelectronics industry in Japan. Various laser equipment based on solid state lasers or gas lasers such as excimer lasers or CO2 lasers has been developed and applied in manufacturing electronic and optoelectronic devices to meet the strong demands for advanced device manufacturing technologies for high-performance, lightweight, low power-consumption portable digital electronic appliances, cellular mobile phones, personal computers, etc. Representative applications of solid-state lasers are, opaque and clear defects repairing of photomasks for LSIs and LCDs, trimming of thick-film chip resistors and low resistance metal resistors, laser cutting and drilling of thin films for high-pin count semiconductor CSP packages, laser patterning of thin-film amorphous silicon solar cells, and laser welding of electronic components such as hard-disk head suspensions, optical modules, miniature relays and lithium ion batteries. Compact and highly efficient diode- pumped and Q-switched solid-state lasers in second or third harmonic operation mode are now being increasingly incorporated in various laser equipment for fine material processing. Representative applications of excimer lasers are, sub-quarter micron design-rule LSI lithography and low- temperature annealing of poly-silicon TFT LCD.

  2. Multiobjective genetic algorithm optimization of the beam dynamics in linac drivers for free electron lasers

    Directory of Open Access Journals (Sweden)

    R. Bartolini

    2012-03-01

    Full Text Available Linac driven free electron lasers (FELs operating in the x-ray region require a high brightness electron beam in order to reach saturation within a reasonable distance in the undulator train or to enable sophisticated seeding schemes using external lasers. The beam dynamics optimization is usually a time consuming process in which many parameters of the accelerator and the compression system have to be controlled simultaneously. The requirements on the electron beam quality may also vary significantly with the particular application. For example, the beam dynamics optimization strategy for self-amplified spontaneous emission operation and seeded operation are rather different: seeded operation requires a more careful control of the beam uniformity over a relatively large portion of the longitudinal current distribution of the electron bunch and is therefore more challenging from an accelerator physics point of view. Multiobjective genetic algorithms are particularly well suited when the optimization of many parameters is targeting several objectives simultaneously, often with conflicting requirements. In this paper we propose a novel optimization strategy based on a combination of multiobjective optimization with a fast computation of the FEL performance. The application to the proposed UK’s New Light Source is reported and the benefits of this method are highlighted.

  3. Pre-sowing laser light effect on some biochemical and physiological processes in seeds and plants of maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Podleśny, J.; Stochmal, A.

    2005-01-01

    The work is a contribution towards to widen the knowledge concerning the influence of laser irradiation on maize seeds and plants. The treating of seeds by laser light increased the activity of amylolytic enzymes in studied seeds. The largest differentiation of amylolytic activity for irridiated vs. non irridiated seeds was found after 96 hours from sowing. The dynamics of activity of these enzymes was similar in the seeds of both maize hybrids. Pre-sowing laser stimulation of seeds also positively influenced the growth and development of seedlings grew from the seeds

  4. Effect of pre-sowing laser biostimulation on seeds on white lupine growth under differentiated temperature conditions

    International Nuclear Information System (INIS)

    Podleśny, J.

    1999-01-01

    The experiment went on over 6 weeks. Plants emergence depended on the temperature and pre-sowing laser irradiation of seeds. White lupine seeds germinated better under normal thermal conditions than in chilling stress. Triple irradiation of seeds showed the best advantageous effect improving the quality of plant emergence, irrespective of thermal conditions. The plants sprouted about 3-4 days earlier in comparison to plants from not irradiated seeds. Laser light positively affected also the height of plants, root length and dry matter yield of roots and aboveground parts

  5. Short Rayleigh length free electron lasers

    Directory of Open Access Journals (Sweden)

    W. B. Colson

    2006-03-01

    Full Text Available Conventional free electron laser (FEL oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third to one half of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. We model this interaction using a coordinate system that expands with the rapidly diffracting optical mode from the ends of the undulator to the mirrors. Simulations show that the interaction of the strongly focused optical mode with a narrow electron beam inside the undulator distorts the optical wave front so it is no longer in the fundamental Gaussian mode. The simulations are used to study how mode distortion affects the single-pass gain in weak fields, and the steady-state extraction in strong fields.

  6. The Two-Beam Free Electron Laser Oscillator

    CERN Document Server

    Thompson, Neil R

    2004-01-01

    A one-dimensional model of a free-electron laser operating simultaneously with two electron beams of different energies [1] is extended to an oscillator configuration. The electron beam energies are chosen so that an harmonic of the lower energy beam is at the fundamental radiation wavelength of the higher energy beam. Potential benefits over a single-beam free-electron laser oscillator are discussed.

  7. Electron spin resonance (ESR) studies on irradiated cocoa beans and niger seeds

    International Nuclear Information System (INIS)

    Mangaonkar, S.R.; Natarajan, V.; Sastry, M.D.; Desai, S.R.P.; Kulkarni, P.R.

    1997-01-01

    Electron spin resonance (ESR) spectra of irradiated (10kGy) and unirradiated cocoa beans and niger seeds have been compared. Unirradiated cocoa beans failed to give any ESR signal, whereas after irradiation (10kGy) an ESR signal at g = 2.0042 was observed. However, ESR signals are given by both irradiated and unirradiated niger seeds. The intensity of signal was found to be dose-dependent up to 10kGy for both seeds. The signals were stable up to 180 days in both cases. The results indicate the possibility of using ESR for distinguishing between irradiated and unirradiated cocoa beans but not for niger seeds

  8. Ultrafast magnetodynamics with free-electron lasers

    Science.gov (United States)

    Malvestuto, Marco; Ciprian, Roberta; Caretta, Antonio; Casarin, Barbara; Parmigiani, Fulvio

    2018-02-01

    The study of ultrafast magnetodynamics has entered a new era thanks to the groundbreaking technological advances in free-electron laser (FEL) light sources. The advent of these light sources has made possible unprecedented experimental schemes for time-resolved x-ray magneto-optic spectroscopies, which are now paving the road for exploring the ultimate limits of out-of-equilibrium magnetic phenomena. In particular, these studies will provide insights into elementary mechanisms governing spin and orbital dynamics, therefore contributing to the development of ultrafast devices for relevant magnetic technologies. This topical review focuses on recent advancement in the study of non-equilibrium magnetic phenomena from the perspective of time-resolved extreme ultra violet (EUV) and soft x-ray spectroscopies at FELs with highlights of some important experimental results.

  9. Imaging femtosecond laser-induced electronic excitation in glass

    International Nuclear Information System (INIS)

    Mao Xianglei; Mao, Samuel S.; Russo, Richard E.

    2003-01-01

    While substantial progress has been achieved in understanding laser ablation on the nanosecond and picosecond time scales, it remains a considerable challenge to elucidate the underlying mechanisms during femtosecond laser material interactions. We present experimental observations of electronic excitation inside a wide band gap glass during single femtosecond laser pulse (100 fs, 800 nm) irradiation. Using a femtosecond time-resolved imaging technique, we measured the evolution of a laser-induced electronic plasma inside the glass and calculated the electron number density to be on the order of 10 19 cm -3

  10. Nonlinear theory of the free-electron laser

    International Nuclear Information System (INIS)

    Chian, A.C.-L.; Padua Brito Serbeto, A. de.

    1984-01-01

    A theory of Raman free-electron laser using a circularly polarized electromagnetic pump is investigated. Coupled wave equations that describe both linear and nonlinear evolution of stimulated Raman scattering are derived. The dispersion relation and the growth rate for the parametric instability are obtained. Nonlinear processes that may lead to saturation of the free-electron laser are discussed. (Author) [pt

  11. Two-dimensional optimization of free-electron-laser designs

    Science.gov (United States)

    Prosnitz, D.; Haas, R.A.

    1982-05-04

    Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  12. CERN's web application updates for electron and laser beam technologies

    CERN Document Server

    Sigas, Christos

    2017-01-01

    This report describes the modifications at CERN's web application for electron and laser beam technologies. There are updates at both the front and the back end of the application. New electron and laser machines were added and also old machines were updated. There is also a new feature for printing needed information.

  13. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza, E-mail: r-massudi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411 (Iran, Islamic Republic of)

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  14. Radiofrequency initiation and radiofrequency sustainment of laser initiated seeded high pressure plasma

    International Nuclear Information System (INIS)

    Paller, Eric S.; Scharer, John E.; Akhtar, Kamran; Kelly, Kurt; Ding, Guowen

    2001-01-01

    We examine radiofrequency initiation of high pressure(1-70 Torr) inductive plasma discharges in argon, nitrogen, air and organic seed gas mixtures. Millimeter wave interferometry, optical emission and antenna wave impedance measurements for double half-turn helix and helical inductive antennas are used to interpret the rf/plasma coupling, measure the densities in the range of 10 12 cm -3 and analyze the ionization and excited states of the gas mixtures. We have also carried out 193 nm excimer laser initiation of an organic gas seed plasma which is sustained at higher pressures(150 Torr) by radiofrequency coupling at 2.8 kW power levels

  15. Studies of harmonic generation in free electron lasers

    International Nuclear Information System (INIS)

    Goldammer, K.

    2007-01-01

    Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It

  16. Studies of harmonic generation in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Goldammer, K.

    2007-11-12

    Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It

  17. Chaotic behaviour and controlling chaos in free electron lasers

    International Nuclear Information System (INIS)

    Wang Wenjie; Chen Shigang; Du Xiangwan; Wang Guangrui

    1995-01-01

    Chaos in free electron lasers (FEL) is reviewed. Special attention has been paid to the chaotic behaviour of the electrons and the laser field. The problem of controlling and utilizing chaotic motion of the electrons and the laser field has also been discussed. In order to find out the rules of instability and chaos in FEL, some typical methods of the chaotic theory are used. These methods include making the Poincare surface of section, drawing the phase space diagrams of the electron orbits, calculating the Liapunov exponents, and computing the power spectrum, etc. Finally, some problems in FEL research are discussed (103 refs., 54 figs.)

  18. Electronic properties of asymmetrical quantum dots dressed by laser field

    Energy Technology Data Exchange (ETDEWEB)

    Kibis, O.V. [Department of Applied and Theoretical Physics, Novosibirsk State Technical University, Karl Marx Avenue 20, 630092 Novosibirsk (Russian Federation); Slepyan, G.Ya.; Maksimenko, S.A. [Institute for Nuclear Problems, Belarus State University, Bobruyskaya St. 11, 220050 Minsk (Belarus); Hoffmann, A. [Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2012-05-15

    In the present paper, we demonstrate theoretically that the strong non-resonant interaction between asymmetrical quantum dots (QDs) and a laser field results in harmonic oscillations of their band gap. It is shown that such oscillations change the spectrum of elementary electron excitations in QDs: in the absence of the laser pumping there is only one resonant electron frequency, but QDs dressed by the laser field have a set of electron resonant frequencies. One expects that this modification of elementary electron excitations in QDs can be observable in optical experiments. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. High efficiency, multiterawatt x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    C. Emma

    2016-02-01

    Full Text Available In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs, a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  20. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    Science.gov (United States)

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  1. Injection seeded, diode pumped regenerative ring Nd:YAG amplifier for spaceborne laser ranging technology development

    Science.gov (United States)

    Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.

  2. Electron beam pumped KrF lasers for fusion energy

    International Nuclear Information System (INIS)

    Sethian, J.D.; Friedman, M.; Giuliani, J.L. Jr.; Lehmberg, R.H.; Obenschain, S.P.; Kepple, P.; Wolford, M.; Hegeler, F.; Swanekamp, S.B.; Weidenheimer, D.; Welch, D.; Rose, D.V.; Searles, S.

    2003-01-01

    In this paper, we describe the development of electron beam pumped KrF lasers for inertial fusion energy. KrF lasers are an attractive driver for fusion, on account of their demonstrated very high beam quality, which is essential for reducing imprint in direct drive targets; their short wavelength (248 nm), which mitigates the growth of plasma instabilities; and their modular architecture, which reduces development costs. In this paper we present a basic overview of KrF laser technology as well as current research and development in three key areas: electron beam stability and transport; KrF kinetics and laser propagation; and pulsed power. The work will be cast in context of the two KrF lasers at the Naval Research Laboratory, The Nike Laser (5 kJ, single shot), and The Electra Laser (400-700 J repetitively pulsed)

  3. In situ laser processing in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Nicholas A.; Magel, Gregory A.; Hartfield, Cheryl D.; Moore, Thomas M.; Fowlkes, Jason D.; Rack, Philip D. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2012-07-15

    Laser delivery probes using multimode fiber optic delivery and bulk focusing optics have been constructed and used for performing materials processing experiments within scanning electron microscope/focused ion beam instruments. Controlling the current driving a 915-nm semiconductor diode laser module enables continuous or pulsed operation down to sub-microsecond durations, and with spot sizes on the order of 50 {mu}m diameter, achieving irradiances at a sample surface exceeding 1 MW/cm{sup 2}. Localized laser heating has been used to demonstrate laser chemical vapor deposition of Pt, surface melting of silicon, enhanced purity, and resistivity via laser annealing of Au deposits formed by electron beam induced deposition, and in situ secondary electron imaging of laser induced dewetting of Au metal films on SiO{sub x}.

  4. High energy gain electron beam acceleration by 100TW laser

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki; Kando, Masaki; Kondo, Shuji; Hosokai, Tomonao; Kanazawa, Shuhei; Yokoyama, Takashi; Matoba, Toru; Nakajima, Kazuhisa

    2001-01-01

    A laser wakefield acceleration experiment using a 100TW laser is planed at JAERI-Kansai. High quality and short pulse electron beams are necessary to accelerate the electron beam by the laser. Electron beam - laser synchronization is also necessary. A microtron with a photocathode rf-gun was prepared as a high quality electron injector. The quantum efficiency (QE) of the photocathode of 2x10 -5 was obtained. A charge of 100pC from the microtron was measured. The emittance and pulse width of the electron beam was 6π mm-mrad and 10ps, respectively. In order to produce a short pulse electron beam, and to synchronize between the electron beam and the laser pulse, an inverse free electron laser (IFEL) is planned. One of problems of LWFA is the short acceleration length. In order to overcome the problem, a Z-pinch plasma waveguide will be prepared as a laser wakefield acceleration tube for 1 GeV acceleration. (author)

  5. Nonlinear optics with coherent free electron lasers

    Science.gov (United States)

    Bencivenga, F.; Capotondi, F.; Mincigrucci, R.; Cucini, R.; Manfredda, M.; Pedersoli, E.; Principi, E.; Simoncig, A.; Masciovecchio, C.

    2016-12-01

    We interpreted the recent construction of free electron laser (FELs) facilities worldwide as an unprecedented opportunity to bring concepts and methods from the scientific community working with optical lasers into the domain of x-ray science. This motivated our efforts towards the realization of FEL-based wave-mixing applications. In this article we present new extreme ultraviolet transient grating (X-TG) data from vitreous SiO2, collected using two crossed FEL pulses (photon frequency 38 eV) to generate the X-TG and a phase matched optical probing pulse (photon frequency 3.1 eV). This experiment extends our previous investigation, which was carried out on a nominally identical sample using a different FEL photon frequency (45 eV) to excite the X-TG. The present data are featured by a peak intensity of the X-TG signal substantially larger than that previously reported and by slower modulations of the X-TG signal at positive delays. These differences could be ascribed to the different FEL photon energy used in the two experiments or to differences in the sample properties. A systematic X-TG study on the same sample as a function of the FEL wavelength is needed to draw a consistent conclusion. We also discuss how the advances in the performance of the FELs, in terms of generation of fully coherent photon pulses and multi-color FEL emission, may push the development of original experimental strategies to study matter at the femtosecond-nanometer time-length scales, with the unique option of element and chemical state specificity. This would allow the development of advanced experimental tools based on wave-mixing processes, which may have a tremendous impact in the study of a large array of phenomena, ranging from nano-dynamics in complex materials to charge and energy transfer processes.

  6. Experimental Study Of Polyformaldehyde Propellants Seeded With Micron-Scale Aluminum Powder For Laser Propulsion

    International Nuclear Information System (INIS)

    Li Long; Peng Jie; Hu Xiaojun; Zheng Hang; Tang Zhiping

    2010-01-01

    The propulsion performance of polyoxymethylene (POM) seeded with micron-scale aluminum (μAl) powder has been studied experimentally with CO 2 lasers. The results show that the momentum coupling coefficient (C m ) and specific impulse (I sp ) of POM seeded with μAl powder is almost the same as pure POM at lower power density ( 6 W/cm 2 ). At higher power density (>1·7xl0 6 W/cm 2 ), C m of POM seeded with μAl powder decreases significantly while I sp increases significantly. When this material is put into a cylindrical nozzle, the measured maximum C m and I sp can raise to 40.1 dyne/W and 1361 s, respectively. The energy usage ratio is over 100%, which indicates that the aluminum powder may react chemically with the air under the constraint condition. This conclusion was verified experimentally both in atmosphere and vacuum conditions.

  7. Laser Assisted Free-Free Transition in Electron - Atom Collision

    Science.gov (United States)

    Sinha, C.; Bhatia, A. K.

    2011-01-01

    Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.

  8. Biomedical Studies with the Free Electron Laser

    Science.gov (United States)

    1989-05-15

    and Berns. Mi. W. User pitotora- 26. Kestel. D.. And Chou. T. C. Tumer -localizing components of the ptirph% rin diation therapy of cancer following... cancer , (2) laser tissue interactions for the study of atherosclerosis, (3) pulsed laser effects on the eye, (4) laser application in genetic...these studies. Please refer to the appropriate article/abstract for further detail. 1. Dye plus laser photosensitization of cancer . Significant

  9. Laser-Electron-Gamma-Source. Progress report, July 1986

    International Nuclear Information System (INIS)

    Dowell, D.H.; Fineman, B.; Giordano, G.; Kistner, OC.; Matone, G.; Sandorfi, A.M.; Schaerf, C.; Thorn, C.E.; Ziegler, W.

    1986-07-01

    When completed, the Laser Electron Gamma Source (LEGS) is expected to provide intense beams of monochromatic and polarized (circular or linear) gamma rays with energies up to 500 MeV. The gamma-ray beams will be produced by Compton backscattering uv laser light from the electrons circulating in a storage ring. Progress with installation of the facility is described, particularly the Ar-ion laser and tagging spectrometer. Tests of the tagging spectrometer coponents is reported, and a second laser is described for higher energy operation. Estimates are given of expected beam parameters. Experimental equipment for the planned research projects to be carried out at the LEGS facility is discussed

  10. High-power fiber lasers for photocathode electron injectors

    Directory of Open Access Journals (Sweden)

    Zhi Zhao

    2014-05-01

    Full Text Available Many new applications for electron accelerators require high-brightness, high-average power beams, and most rely on photocathode-based electron injectors as a source of electrons. To achieve such a photoinjector, one requires both a high-power laser system to produce the high average current beam, and also a system at reduced repetition rate for electron beam diagnostics to verify high beam brightness. Here we report on two fiber laser systems designed to meet these specific needs, at 50 MHz and 1.3 GHz repetition rate, together with pulse pickers, second harmonic generation, spatiotemporal beam shaping, intensity feedback, and laser beam transport. The performance and flexibility of these laser systems have allowed us to demonstrate electron beam with both low emittance and high average current for the Cornell energy recovery linac.

  11. Spin effects in strong-field laser-electron interactions

    International Nuclear Information System (INIS)

    Ahrens, S; Bauke, H; Müller, T-O; Villalba-Chávez, S; Müller, C

    2013-01-01

    The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.

  12. Laser vacuum acceleration of a relativistic electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Glazyrin, I V; Karpeev, A V; Kotova, O G; Nazarov, K S [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation); Bychenkov, V Yu [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-06-30

    With regard to the problem of laser acceleration of a relativistic electron bunch we present a scheme of its vacuum acceleration directly by a relativistic intensity laser pulse. The energy of the electron bunch injected into the laser pulse leading edge increases during its coaxial movement to a thin, pulse-reflecting target. The laser-accelerated electrons continue to move free forward, passing through the target. The study of this acceleration scheme in the three-dimensional geometry is verified in a numerical simulation by the particle-in-cell method, which showed that the energy of a part of the electrons can increase significantly compared to the initial one. Restrictions are discussed, which impose limiting values of energy and total charge of accelerated electrons. (superstrong light fields)

  13. Multipurpose modular experimental station for the DiProI beamline of Fermi-Elettra free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Pedersoli, Emanuele; Capotondi, Flavio; Cocco, Daniele; Kaulich, Burkhard; Menk, Ralf H; Locatelli, Andrea; Mentes, Tevfik O; Spezzani, Carlo; Sandrin, Gilio; Bacescu, Daniel M; Kiskinova, Maya [Fermi, Elettra Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste (Italy); Zangrando, Marco [Fermi, Elettra Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste (Italy); IOM CNR, Laboratorio TASC, SS 14 - km 163.5, 34149 Basovizza, Trieste (Italy); Bajt, Sasa; Barthelmess, Miriam [Photon Science, DESY, Notkestrasse 85, 22607 Hamburg (Germany); Barty, Anton; Schulz, Joachim; Gumprecht, Lars [Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg (Germany); Chapman, Henry N [Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg (Germany); University of Hamburg, Notkestrasse 85, 22607 Hamburg (Germany); Nelson, A J; Frank, Matthias [Physical and Life Sciences, LLNL, 7000 East Avenue, Livermore, California 94550 (United States); others, and

    2011-04-15

    We present a compact modular apparatus with a flexible design that will be operated at the DiProI beamline of the Fermi-Elettra free electron laser (FEL) for performing static and time-resolved coherent diffraction imaging experiments, taking advantage of the full coherence and variable polarization of the short seeded FEL pulses. The apparatus has been assembled and the potential of the experimental setup is demonstrated by commissioning tests with coherent synchrotron radiation. This multipurpose experimental station will be open to general users after installation at the Fermi-Elettra free electron laser in 2011.

  14. Multipurpose modular experimental station for the DiProI beamline of Fermi-Elettra free electron laser

    International Nuclear Information System (INIS)

    Pedersoli, Emanuele; Capotondi, Flavio; Cocco, Daniele; Kaulich, Burkhard; Menk, Ralf H.; Locatelli, Andrea; Mentes, Tevfik O.; Spezzani, Carlo; Sandrin, Gilio; Bacescu, Daniel M.; Kiskinova, Maya; Zangrando, Marco; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Schulz, Joachim; Gumprecht, Lars; Chapman, Henry N.; Nelson, A. J.; Frank, Matthias

    2011-01-01

    We present a compact modular apparatus with a flexible design that will be operated at the DiProI beamline of the Fermi-Elettra free electron laser (FEL) for performing static and time-resolved coherent diffraction imaging experiments, taking advantage of the full coherence and variable polarization of the short seeded FEL pulses. The apparatus has been assembled and the potential of the experimental setup is demonstrated by commissioning tests with coherent synchrotron radiation. This multipurpose experimental station will be open to general users after installation at the Fermi-Elettra free electron laser in 2011.

  15. Electron beam irradiation: a novel technology to enhance the quality of soybean seeds

    International Nuclear Information System (INIS)

    Bhalla, Shashi; Srinivasan, K.; Singh, Subadas; Thakur, Manju; Sharma, S.K.; Pramod, R.; Dwivedi, J.; Bapna, S.C.

    2010-01-01

    Soybean seeds, rich in protein and oil, maintain their germinability only for short durations under ambient conditions. Loss of viability of stored seeds often hampers soybean production in harsh environments worldwide. Physiological factors favored by high temperature and high moisture content accelerate the seed deterioration in the tropics. Several chemical and physical treatments are being used to enhance quality. Irradiation is a novel technology for food preservation and is gaining importance all over the world. Low doses of irradiation bring about improvement in quality of food/seeds, which can be beneficial in several ways. Electron Beam (EB) irradiation is a new approach in this area. The objective of present study was to investigate the effect of EB irradiation in enhancing the quality of low vigour soybean seeds

  16. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    International Nuclear Information System (INIS)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.

    2017-01-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  17. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    Science.gov (United States)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.; Gilevich, S.; Huang, Z.; Miahnahri, A.; Ratner, D.; Robinson, J.; Zhou, F.

    2017-08-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μ m . Our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  18. Commissioning of the JAERI free electron laser

    International Nuclear Information System (INIS)

    Minehara, E.J.; Nagai, R.; Sawamura, M.

    1993-01-01

    We have developed, and constructed a prototype for a quasi-cw, and high-average power free electron laser driven by a 15MeV superconducting rf linac at Tokai, JAERI. In designing a high power FEL, there are many available design options to generate the required power output. By applying the superconducting rf linac driver, some of the options relating to the FEL itself may be relaxed by transferring design difficulties to the driver. Because wall losses become minimal in the superconducting accelerator cavity, very long pulse or quasi-cw, and resultant high average power may be readily attained at the JAERI superconducting rf linac FEL. In 1992 Japanese fiscal year, we have successfully demonstrated better cryogenic (stand-by loss<3.5W at 4.5K) and accelerating fields' performances (Eacc=7-9.4MV/m and Q=1-2x10+9) of four JAERI superconducting accelerator modules, and installed them in the FEL accelerator vault. In 1993, Optical resonators and beam transport systems, which have been already assembled, are now under commissioning. A description and the latest results of the JAERI super-conducting rf linac FEL will be discussed in comparison with a normal-conducting one, and reported in the symposium. (author)

  19. Biological applications of ultraviolet free-electron lasers

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1997-10-01

    This review examines the possibilities for biological research using the three ultraviolet free-electron lasers that are nearing operational status in the US. The projected operating characteristics of major interest in biological research of the free-electron lasers at Brookhaven National Laboratory, the Thomas Jefferson National Accelerator Facility, and Duke University are presented. Experimental applications in the areas of far- and vacuum ultraviolet photophysics and photochemistry, structural biology, environmental photobiology, and medical research are discussed and the prospects for advances in these areas, based upon the characteristics of the new ultraviolet free-electron lasers, are evaluated

  20. The suppression of radiation reaction and laser field depletion in laser-electron beam interaction

    Science.gov (United States)

    Ong, J. F.; Moritaka, T.; Takabe, H.

    2018-03-01

    The effects of radiation reaction (RR) have been studied extensively by using the interaction of ultraintense lasers with a counter-propagating relativistic electron. At the laser intensity at the order of 1023 W/cm2, the effects of RR are significant in a few laser periods for a relativistic electron. However, a laser at such intensity is tightly focused and the laser energy is usually assumed to be fixed. Then, the signal of RR and energy conservation cannot be guaranteed. To assess the effects of RR in a tightly focused laser pulse and the evolution of the laser energy, we simulated this interaction with a beam of 109 electrons by means of a Particle-In-Cell method. We observe that the effects of RR are suppressed due to the ponderomotive force and accompanied by a non-negligible amount of laser field energy reduction. This is because the ponderomotive force prevents the electrons from approaching the center of the laser pulse and leads to an interaction at the weaker field region. At the same time, the laser energy is absorbed through ponderomotive acceleration. Thus, the kinetic energy of the electron beam has to be carefully selected such that the effects of RR become obvious.

  1. Dynamics of the cavity radiation of a correlated emission laser initially seeded with a thermal light

    Energy Technology Data Exchange (ETDEWEB)

    Tesfa, Sintayehu, E-mail: sint_tesfa@yahoo.com [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Street 38, 01187 Dresden (Germany); Physics Department, Dilla University, PO Box 419, Dilla (Ethiopia)

    2011-10-15

    A detailed analysis of the time evolution of the two-mode squeezing, entanglement and intensity of the cavity radiation of a two-photon correlated emission laser initially seeded with a thermal light is presented. The dependences of the degree of two-mode squeezing and entanglement on the intensity of the thermal light and time are found to have a more or less similar nature, although the actual values differ, especially in the early stages of the process and when the atoms are initially prepared with nearly 50:50 probability to be in the upper and lower energy levels. Seeding the cavity degrades the nonclassical features significantly, particularly in the vicinity of t=0. It is also shown that the mean photon number in a wider time span has a dip when mode b is seeded but a peak when mode a is seeded. Moreover, it turns out that the effect of the seed light on the nonclassical features and intensity of the cavity radiation decreases significantly with time, an outcome essentially attributed to the pertinent emission-absorption mechanism. This can be taken as an encouraging aspect in the practical utilization of this model as a source of a bright entangled light.

  2. Investigation of Gas Seeding for Planar Laser-Induced Fluorescence in Hypersonic Boundary Layers

    Science.gov (United States)

    Arisman, C. J.; Johansen, C. T.; Bathel, B. F.; Danehy, P. M.

    2015-01-01

    Numerical simulations of the gas-seeding strategies required for planar laser-induced fluorescence in a Mach 10 (approximately Mach 8.2 postshock) airflow were performed. The work was performed to understand and quantify the adverse effects associated with gas seeding and to assess various types of seed gas that could potentially be used in future experiments. In prior experiments, NO and NO2 were injected through a slot near the leading edge of a flatplate wedge model used in NASA Langley Research Center's 31 in. Mach 10 air tunnel facility. In this paper, nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulations showing the deflection of the velocity boundary layer for each of the cases are presented. Streamwise distributions of velocity and concentration boundary-layer thicknesses, as well as vertical distributions of velocity, temperature, and mass distributions, are presented for each of the cases. A comparison between simulated streamwise velocity profiles and experimentally obtained molecular tagging velocimetry profiles using a nitric oxide seeding strategy is performed to verify the influence of such a strategy on the boundary layer. The relative merits of the different seeding strategies are discussed. The results from a custom solver based on OpenFOAM version 2.2.1 are compared against results obtained from ANSYS® Fluent version 6.3.

  3. Electron acceleration via high contrast laser interacting with submicron clusters

    International Nuclear Information System (INIS)

    Zhang Lu; Chen Liming; Wang Weiming; Yan Wenchao; Yuan Dawei; Mao Jingyi; Wang Zhaohua; Liu Cheng; Shen Zhongwei; Li Yutong; Dong Quanli; Lu Xin; Ma Jinglong; Wei Zhiyi; Faenov, Anatoly; Pikuz, Tatiana; Li Dazhang; Sheng Zhengming; Zhang Jie

    2012-01-01

    We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.

  4. Laser-electron Compton interaction in plasma channels

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.; Ben-Zvi, I.; Hirose, T.

    1998-10-01

    A concept of high intensity femtosecond laser synchrotron source (LSS) is based on Compton backscattering of focused electron and laser beams. The short Rayleigh length of the focused laser beam limits the length of interaction to a few picoseconds. However, the technology of the high repetition rate high-average power picosecond lasers required for high put through LSS applications is not developed yet. Another problem associated with the picosecond laser pulses is undesirable nonlinear effects occurring when the laser photons are concentrated in a short time interval. To avoid the nonlinear Compton scattering, the laser beam has to be split, and the required hard radiation flux is accumulated over a number of consecutive interactions that complicates the LSS design. In order to relieve the technological constraints and achieve a practically feasible high-power laser synchrotron source, the authors propose to confine the laser-electron interaction region in the extended plasma channel. This approach permits to use nanosecond laser pulses instead of the picosecond pulses. That helps to avoid the nonlinear Compton scattering regime and allows to utilize already existing technology of the high-repetition rate TEA CO 2 lasers operating at the atmospheric pressure. They demonstrate the advantages of the channeled LSS approach by the example of the prospective polarized positron source for Japan Linear Collider

  5. Synchrotron radiation and free-electron lasers principles of coherent X-ray generation

    CERN Document Server

    Kim, Kwang-Je; Lindberg, Ryan

    2017-01-01

    Learn about the latest advances in high-brightness X-ray physics and technology with this authoritative text. Drawing upon the most recent theoretical developments, pre-eminent leaders in the field guide readers through the fundamental principles and techniques of high-brightness X-ray generation from both synchrotron and free-electron laser sources. A wide range of topics is covered, including high-brightness synchrotron radiation from undulators, self-amplified spontaneous emission, seeded high-gain amplifiers with harmonic generation, ultra-short pulses, tapering for higher power, free-electron laser oscillators, and X-ray oscillator and amplifier configuration. Novel mathematical approaches and numerous figures accompanied by intuitive explanations enable easy understanding of key concepts, whilst practical considerations of performance-improving techniques and discussion of recent experimental results provide the tools and knowledge needed to address current research problems in the field. This is a comp...

  6. Synchrotron light sources and free-electron lasers accelerator physics, instrumentation and science applications

    CERN Document Server

    Khan, Shaukat; Schneider, Jochen; Hastings, Jerome

    2016-01-01

    Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources dri...

  7. Two-pulse laser control of nuclear and electronic motion

    DEFF Research Database (Denmark)

    Grønager, Michael; Henriksen, Niels Engholm

    1997-01-01

    We discuss an explicitly time-dependent two-pulse laser scheme for controlling where nuclei and electrons are going in unimolecular reactions. We focus on electronic motion and show, with HD+ as an example, that one can find non-stationary states where the electron (with some probability...

  8. Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, G; Garzella, D; Labat, M; Carre, B; Bougeard, M; Salieres, P; Merdji, H; Gobert, O [CEA Saclay, DSM, DRECAM, Serv. Photons Atomes Mol., F-91191 Gif sur Yvette, (France); Lambert, G; Hara, T; Tanikawa, T; Kitamura, H; Shintake, T; Tanaka, Y; Tahara, K [RIKEN SPring Centre, Harima Inst., Hyogo 679-5148, (Japan); Lambert, G; Labat, M; Chubar, O; Couprie, M E [Groupe Magnetisme et Insertion, Synchrotron Soleil, F-91192 Gif sur Yvette, (France); Hara, T; Kitamura, H; Shintake, T; Inoue, S; Tanaka, Y [XFEL Project Head Office, RIKEN, Hyogo 679-5148, (Japan)

    2008-07-01

    Conventional synchrotron radiation sources enable the structure of matter to be studied at near-atomic spatial resolution and picosecond temporal resolution. Free-electron lasers promise to extend this down to femtosecond timescales. The process by which free-electron lasers amplify synchrotron light-known as self-amplified spontaneous emission - is only partially temporally coherent, but this can be improved by seeding it with an external laser. Here we explore the use of seed light produced by high-order harmonic generation in a gas, covering wavelengths from the ultraviolet to soft X-rays. Using the SPring-8 Compact SASE Source test accelerator, we demonstrate an increase of three orders of magnitude in the intensity of the fundamental radiation at 160 nm, halving of the free-electron laser saturation length, and the generation of nonlinear harmonics at 54 nm and 32 nm. The low seed level used in this demonstration suggests that nonlinear harmonic schemes should enable the generation of fully coherent soft X-rays at wavelengths down to the so-called 'water window', vital for the study of biological samples. (authors)

  9. FY07 LDRD Final Report Precision, Split Beam, Chirped-Pulse, Seed Laser Technology

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2009-11-12

    The goal of this LDRD ER was to develop a robust and reliable technology to seed high-energy laser systems with chirped pulses that can be amplified to kilo-Joule energies and recompressed to sub-picosecond pulse widths creating extremely high peak powers suitable for petawatt class physics experiments. This LDRD project focused on the development of optical fiber laser technologies compatible with the current long pulse National Ignition Facility (NIF) seed laser. New technologies developed under this project include, high stability mode-locked fiber lasers, fiber based techniques for reduction of compressed pulse pedestals and prepulses, new compact stretchers based on chirped fiber Bragg gratings (CFBGs), new techniques for manipulation of chirped pulses prior to amplification and new high-energy fiber amplifiers. This project was highly successful and met virtually all of its goals. The National Ignition Campaign has found the results of this work to be very helpful. The LDRD developed system is being employed in experiments to engineer the Advanced Radiographic Capability (ARC) front end and the fully engineered version of the ARC Front End will employ much of the technology and techniques developed here.

  10. Recombinational laser employing electron transitions of diatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Biriukov, A S; Prokhorov, A M; Shelepin, L A; Shirokov, N N

    1974-12-01

    Conditions are established for obtaining laser action in the visible and uv regions of the spectrum, using transitions between electronic states of diatomic molecules during recombination of a dissociated gas. The mechanism of population inversion was studied for the oxygen molecule, and gain estimates were obtained for laser action at a wavelength of 4881 A. The feasibility of laser action at other wavelengths was examined.

  11. Peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse

    International Nuclear Information System (INIS)

    Song, Q.; Wu, X. Y.; Wang, J. X.; Kawata, S.; Wang, P. X.

    2014-01-01

    In this paper, we qualitatively analyzed peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse. We unveiled the relationship between the changes in the orientation of the electron trajectory and the cusps in magnitude of the phase velocity of the optical field along the electron trajectory in a chirped laser pulse. We also explained how the chirp effect induced the singular point of the phase velocity. Finally, we discussed the phase velocity and phase witnessed by the electron in the particle's moving instantaneous frame

  12. Novel aspects of direct laser acceleration of relativistic electrons

    Science.gov (United States)

    Arefiev, Alexey

    2015-11-01

    Production of energetic electrons is a keystone aspect of ultraintense laser-plasma interactions that underpins a variety of topics and applications, including fast ignition inertial confinement fusion and compact particle and radiation sources. There is a wide range of electron acceleration regimes that depend on the duration of the laser pulse and the plasma density. This talk focuses on the regime in which the plasma is significantly underdense and the laser pulse duration is longer than the electron response time, so that, in contrast to the wakefield acceleration regime, the pulse creates a quasi-static channel in the electron density. Such a regime is of particular interest, since it can naturally arise in experiments with solid density targets where the pre-pulse of an ultraintense laser produces an extended sub-critical pre-plasma. This talk examines the impact of several key factors on electron acceleration by the laser pulse and the resulting electron energy gain. A detailed consideration is given to the role played by: (1) the static longitudinal electric field, (2) the static transverse electric field, (3) the electron injection into the laser pulse, (4) the electromagnetic dispersion, and (5) the static longitudinal magnetic field. It is shown that all of these factors lead, under conditions outlined in the talk, to a considerable electron energy gain that greatly exceeds the ponderomotive limit. The static fields do not directly transfer substantial energy to electrons. Instead, they alter the longitudinal dephasing between the electrons and the laser pulse, which then allows the electrons to gain extra energy from the pulse. The talk will also outline a time-resolution criterion that must be satisfied in order to correctly reproduce these effects in particle-in-cell simulations. Supported by AFOSR Contract No. FA9550-14-1-0045, National Nuclear Security Administration Contract No. DE-FC52-08NA28512, and US Department of Energy Contract No. DE-FG02

  13. Development of laser heated high current DC electron gun

    International Nuclear Information System (INIS)

    Banerjee, Srutarshi; Bhattacharjee, Dhruva; Kandaswamy, E.; Ghodke, S.R.; Tiwari, Rajnish; Bakhtsingh, R.I.

    2015-01-01

    The paper deals with the development of a Laser heated cathode for Electron Accelerator. The electron gun is meant for Megawatt-class DC Accelerator for Electron Beam Flue Gas Treatment applications. Conventionally, LaB 6 cathode is indirectly heated by tungsten filaments whereas in the newly proposed gun, Laser is utilized for heating. A Nd:YAG Laser is used to heat the LaB 6 cathode to emission temperatures. The characterization of cathode heating at various Laser powers has been carried out. In initial trials, it has been observed that with 125 W of Laser power, the LaB 6 pellet was heated to 1315 ° C. Based on these experimental results, an electron gun rated for 30 kV, 350 mA CW has been designed. The optimization of gun electrode geometry has been done using CST Particle Studio in order to tune the various electron gun parameters. The beam diameter obtained in simulation is 8 mm at 100 mm from the LaB 6 cathode. The perveance obtained is 7.1 x 10 -8 A/V 3/2 . The Laser heated cathode has the advantages of eliminating the magnetic field effects of filament on the electron beam, electrical isolation needed for gun filament power supplies and better electron beam emittances. (author)

  14. Scaling electron acceleration in the bubble regime for upcoming lasers

    International Nuclear Information System (INIS)

    Jansen, O.; Tueckmantel, T.; Pukhov, A.

    2014-01-01

    Electron acceleration in the laser-plasma bubble appeared to be the most successful regime of laser wake field acceleration in the last decade. The laser technology became mature enough to generate short and relativistically intense pulses required to reach the bubble regime naturally delivering quasi-monoenergetic bunches of relativistic electrons. The upcoming laser technology projects are promising short pulses with many times more energy than the existing ones. The natural question is how will the bubble regime scale with the available laser energy. We present here a parametric study of laser-plasma acceleration in the bubble regime using full three dimensional particle-in-cell simulations and compare numerical results with the analytical scalings from the relativistic laser-plasma similarity theory. Our simulations and the theory match almost perfectly for spot sizes above R = 2λ and laser amplitudes above a 0 = 4. We also studied the emission of synchrotron radiation by the accelerated electrons. Both classical and a QED model were applied. We found borders, at which theory and simulations stopped matching. With small spot radii (R < 2λ) we almost never observed the formation of a bubble structure or any form of mono-energetic acceleration. Low laser amplitudes lead to higher energies than predicted by the theory

  15. Effect of pre-sowing laser biostimulation of seeds on physico-chemical properties of glasshouse tomato fruits

    International Nuclear Information System (INIS)

    Koper, R.; Rybak, P.

    2000-01-01

    Paper presented results of study on the effect of pre-sowing laser biostimulation of glasshouse tomato seeds, Recento cultivar, on physico-chemical properties of yielded fruits. Tomato fruit resistance to elastic strains was tested in laboratory as well as the extract content and total acidity of fruits were analysed. Positive influence of laser treatment on tested tomato fruit properties was noted

  16. The quantum mechanical analysis of the free electron laser

    International Nuclear Information System (INIS)

    Dattoli, G.; Renieri, A.

    1985-01-01

    A quantum analysis of the Free Electron Laser is presented. The theory is developed both in single and longitudinal multimode regimes. Finally a self-consistent procedure to study the growth of the laser signal from the vacuum to the macroscopic level is presented

  17. Electron acceleration by a self-diverging intense laser pulse

    International Nuclear Information System (INIS)

    Singh, K.P.; Gupta, D.N.; Tripathi, V.K.; Gupta, V.L.

    2004-01-01

    Electron acceleration by a laser pulse having a Gaussian radial and temporal profile of intensity has been studied. The interaction region is vacuum followed by a gas. The starting point of the gas region has been chosen around the point at which the peak of the pulse interacts with the electron. The tunnel ionization of the gas causes a defocusing of the laser pulse and the electron experiences the action of a ponderomotive deceleration at the trailing part of the pulse with a lower intensity rather than an acceleration at the rising part of the laser pulse with a high intensity, and thus gains net energy. The initial density of the neutral gas atoms should be high enough to properly defocus the pulse; otherwise the electron experiences some deceleration during the trailing part of the pulse and the net energy gain is reduced. The rate of tunnel ionization increases with the increase in the laser intensity and the initial density of neutral gas atoms, and with the decreases in the laser spot size, which causes more defocusing of the laser pulse. The required initial density of neutral gas atoms decreases with the increase in the laser intensity and also with the decrease in the laser spot size

  18. Pulse duration of seeded free-electron lasers

    Czech Academy of Sciences Publication Activity Database

    Finetti, P.; Höppner, H.; Allaria, E.; Callegari, C.; Capotondi, F.; Cinquegrana, P.; Coreno, M.; Cucini, R.; Danailov, M.B.; Demidovich, A.; De Ninno, G.; Di Fraia, M.; Feifel, R.; Ferrari, E.; Fröhlich, L.; Gauthier, D.; Golz, T.; Grazioli, C.; Kai, Y.; Kurdi, G.; Mahne, N.; Manfredda, M.; Medvedev, Nikita; Nikolov, I.P.; Pedersoli, E.; Penco, G.; Plekan, O.; Prandolini, M.J.; Prince, K. C.; Raimondi, L.; Rebernik, P.; Riedel, R.; Roussel, E.; Sigalotti, P.; Squibb, R.; Stojanovic, N.; Stranges, S.; Svetina, C.; Tanikawa, T.; Teubner, U.; Tkachenko, V.; Toleikis, S.; Zangrando, M.; Ziaja, B.; Tavella, F.; Giannessi, L.

    2017-01-01

    Roč. 7, č. 2 (2017), s. 1-19, č. článku 021043. ISSN 2160-3308 Institutional support: RVO:68378271 Keywords : ray free -eletron * amplified spontaneous-emission * spectral-phase interferometry * order harmonic radiation * extreme-ultraviolet * cross-correlation Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 12.789, year: 2016

  19. A control system for a free electron laser experiment

    International Nuclear Information System (INIS)

    Giove, D.

    1992-01-01

    The general layout of a control and data acquisition system for a Free Electron Laser experiment will be discussed. Some general considerations about the requirements and the architecture of the whole system will be developed. (author)

  20. Electron-beam pumping of visible and ultraviolet gas lasers

    International Nuclear Information System (INIS)

    Bradley, L.P.

    1975-01-01

    Several techniques for using direct electron-pumping of gas lasers are reviewed. The primary objective is to categorize pump geometries and to give guidelines for gun selection and pulser design. Examples and application of pump technology are given

  1. Direct longitudinal laser acceleration of electrons in free space

    Directory of Open Access Journals (Sweden)

    Sergio Carbajo

    2016-02-01

    Full Text Available Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London 431, 535 (2004; T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006; S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: “Making the molecular movie,”, Phil. Trans. R. Soc. A 364, 741 (2006]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010; F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010; Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006; C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006; A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and

  2. AN OSCILLATOR CONFIGURATION FOR FULL REALIZATION OF HARD X-RAY FREE ELECTRON LASER*

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.-J.; Kolodziej, T.; Lindberg, R. R.; Shu, D.; Shvyd' ko, Y.; Stoupin, S.; Maxwell, T.J.; Ding, Y.; Fawley, W. M.; Hastings, J.; Huang, Z; Krzywinski, J.; Marcus, G.; Qin, Weilun; Medvedev, N.; Zemella, J.; Blank, V.; Terentyev, S.

    2017-06-01

    An x-ray free electron laser oscillator (XFELO) is feasible by employing an X-ray cavity with Bragg mirrors such as diamond crystals. An XFELO at the 5th harmonic frequency may be implemented at the LCLS II using its 4 GeV superconducting linac, producing stable, fully coherent, high-spectral-purity hard x-rays. In addition, its output can be a coherent seed to the LCLS amplifier for stable, high-power, femto-second x-ray pulses. We summarize the recent progress in various R&D efforts addressing critical issues for realizing an XFELO at LCLS II.

  3. CAS - CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs

    CERN Document Server

    2018-01-01

    These proceedings collate lectures given at the course on Free Electron Lasers and Energy Recovery Linacs (FELsand ERLs), organised by the CERN Accelerator School (CAS). The course was held at the Hotel Scandic HamburgEmporio, Hamburg, Germany from 31 May to 10 June 2016, in collaboration with DESY. Following introductorylectures on radiation issues, the basic requirements on linear accelerators and ERLs are discussed. Undulators andthe process of seeding and lasing are then treated in some detail, followed by lectures on various beam dynamicsand controls issues.

  4. Second harmonic generation in Te crystal using free electron laser

    CERN Document Server

    Yamauchi, T; Minehara, E J

    2002-01-01

    The second harmonic generation signal converted from the fundamental wavelength of 22 mu m of a free electron laser was observed for the first time using a birefringent Te crystal. The experimental conversion efficiency of Te crystal for second harmonic generation is 0.53%, which is equivalent to the theoretical value within a factor of 2. The Te crystal has been incorporated into an autocorrelator system to measure the micro-pulse width of infrared free electron laser successfully. (author)

  5. Laser wakefield electron acceleration. A novel approach employing supersonic microjets and few-cycle laser pulses

    International Nuclear Information System (INIS)

    Schmid, Karl

    2011-01-01

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. This process, known as laser wakefield acceleration (LWFA), relies on strongly driven plasma waves for the generation of accelerating gradients in the vicinity of several 100 GV/m, a value four orders of magnitude larger than that attainable by conventional accelerators. This thesis demonstrates that laser pulses with an ultrashort duration of 8 fs and a peak power of 6 TW allow the production of electron energies up to 50 MeV via LWFA. The special properties of laser accelerated electron pulses, namely the ultrashort pulse duration, the high brilliance, and the high charge density, open up new possibilities in many applications of these electron beams. (orig.)

  6. Frequency filter of seed x-ray by use of x-ray laser medium. Toward the generation of the temporally coherent x-ray laser

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Kawachi, Tetsuya; Kishimoto, Maki; Sukegawa, Kouta; Tanaka, Momoko; Ochi, Yoshihiro; Nishikino, Masaharu; Nagashima, Keisuke; Kato, Yoshiaki; Renzhong, Tai

    2009-01-01

    We evaluate the characteristics of a higher-order harmonics light as a seed X-ray amplified through a laser-produced X-ray amplifier. The narrow spectral bandwidth of the X-ray amplifier works as the frequency filter of the seed X-ray, resulting in that only the temporally coherent X-ray is amplified. Experimental investigation using the 29th-order harmonic light of the Ti:sapphire laser at a wavelength of 26.9 nm together with a neon-like manganese X-ray laser medium shows evident spectral narrowing of the seed X-ray and amplification without serious diffraction effects on the propagation of the amplified X-ray beam. This implies that the present combination is potential to realize temporally coherent X-ray lasers, with an expected duration of approximately 400 fs. (author)

  7. Free-electron lasers with magnetized ion-wiggler

    International Nuclear Information System (INIS)

    Mehdian, H.; Jafari, S.; Hasanbeigi, A.; Ebrahimi, F.

    2009-01-01

    Significant progress has been made using laser ionized channels to guide electron beams in the ion focus regime in a free-electron laser. Propagation of an electron beam in the ion focusing regime (IFR) allows the beam to propagate without expanding from space-charge repulsion. The ninth-degree polynomial dispersion relation for electromagnetic and space-charge waves is derived analytically by solving the electron momentum transfer and wave equations. The variation of resonant frequencies and peak growth rates with axial magnetic field strength has been demonstrated. Substantial enhancement in peak growth rate is obtained as the axial field frequency approaches the gyroresonance frequency.

  8. High energy electron acceleration with PW-class laser system

    International Nuclear Information System (INIS)

    Nakanii, N.; Kondo, K.; Yabuuchi, T.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Kodama, R.; Mima, K.; Tanaka, K. A.; Mori, Y.; Miura, E.; Suzuki, S.; Asaka, T.; Yanagida, K.; Hanaki, H.; Kobayashi, T.

    2008-01-01

    We performed electron acceleration experiment with PW-class laser and a plasma tube, which was created by imploding a hollow polystyrene cylinder. In this experiment, electron energies in excess of 600 MeV have been observed. Moreover, the spectra of a comparatively high-density plasma ∼10 19 cm -3 had a bump around 10 MeV. Additionally, we performed the absolute sensitivity calibration of imaging plate for 1 GeV electrons from the injector Linac of Spring-8 in order to evaluate absolute number of GeV-class electrons in the laser acceleration experiment

  9. QCL seeded, ns-pulse, multi-line, CO2 laser oscillator for laser-produced-plasma extreme-UV source

    Science.gov (United States)

    Nowak, Krzysztof Michał; Suganuma, Takashi; Kurosawa, Yoshiaki; Ohta, Takeshi; Kawasuji, Yasufumi; Nakarai, Hiroaki; Saitou, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru; Sumitani, Akira; Endo, Akira

    2017-01-01

    Successful merger of state-of-the-art, semiconductor quantum-cascade lasers (QCL), with the mature CO2 laser technology, resulted in a delivery of highly-desired qualities of CO2 laser output that were not available previously without much effort. These qualities, such as multi-line operation, excellent spectro-temporal stability and pulse waveform control, became available from a single device of moderate complexity. This paper describes the operation principle and the unique properties of the solid{state seeded CO2 laser, invented for an application in laser-produced-plasma (LPP), extreme-UV (EUV) light source.

  10. Development of an automation system for iodine-125 brachytherapy seed production by (Nd:YAG) laser welding; Automacao do processo de soldagem a laser (Nd:YAG) para confeccao das sementes de iodo-125 utilizadas em braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir Luiz

    2010-07-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by (Nd:YAG) laser welding, which has been used successfully in Low Dose Rate (LDR) brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8mm in diameter and 4.5mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources becomes a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a largest number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with Good Manufacturing Practices (GMP). The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing Programmable Logic Controller (PLC), stepper motors, drivers, (Nd:YAG) laser welding machine, photoelectric sensors and supervisory. (author)

  11. seeds

    African Journals Online (AJOL)

    Owner

    peptidohydrolase (8.0%) from mung bean seedlings. (Baumgartner and Chrispeels, 1977), EP-HG (4.5%) from horse gram seedlings ( Rajeswari, 1997), acidic protease (15%) from germinating winged-bean seeds. (Usha and Singh, 1996) and EP-1 (1.6%) from barley seedlings and GA3-induced cysteine protease (3.38%).

  12. Investigation of longitudinal dynamic in laser electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukhov, I.; Zelinsky, A. E-mail: zelinsky@kipt.kharkov.ua; Telegin, Yu

    2001-09-01

    Longitudinal dynamic of electron beam due to radiation damping and quantum fluctuations in the storage ring with a laser-electron interaction section (Compton scattering) is investigated. This investigation was carried out by numerical simulations using the Monte Carlo method. The dependence of the steady-state energy spread of electron beam due to the Compton back scattering of photons on the electron beam energy and photon flash density were obtained. Simulation findings are compared with the analytical estimations by Z. Huang.

  13. Investigation of longitudinal dynamic in laser electron storage ring

    CERN Document Server

    Karnaukhov, I; Telegin, Yu P

    2001-01-01

    Longitudinal dynamic of electron beam due to radiation damping and quantum fluctuations in the storage ring with a laser-electron interaction section (Compton scattering) is investigated. This investigation was carried out by numerical simulations using the Monte Carlo method. The dependence of the steady-state energy spread of electron beam due to the Compton back scattering of photons on the electron beam energy and photon flash density were obtained. Simulation findings are compared with the analytical estimations by Z. Huang.

  14. Staged electron laser accelerator (STELLA) experiment at brookhaven ATF

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelsky, I V; Steenbergen, A van; Gallardo, J C [Brookhaven National Lab., Upton, NY (United States); and others

    1998-03-01

    The STELLA experiment is being prepared at the BNL Accelerator Test Facility (STF). The goal of the experiment is to demonstrate quasi-monochromatic inverse Cherenkov acceleration (ICA) of electrons bunched to the laser wavelength period. Microbunches on the order of 2 {mu}m in length separated by 10.6 {mu}m will be produced using an inverse free electron laser (IFEL) accelerator driven by a CO{sub 2} laser. The design and simulations for two phases of this experiment including demonstration of 10 MeV and 100 MeV acceleration are presented. (author)

  15. Structural defects in laser- and electron-beam annealed silicon

    International Nuclear Information System (INIS)

    Narayan, J.

    1979-01-01

    Laser and electron beam pulses provide almost an ideal source of heat by which thin layers of semiconductors can be rapidly melted and solidified with heating and cooling rates exceeding 10 80 C/sec. Microstructural modifications obtained as a function of laser parameters are examined and it is shown that both laser and electron beam pulses can be used to remove displacement damage, dislocations, dislocation loops and precipitates. Annealing of defects underneath the oxide layers in silicon is possible within a narrow energy window. The formation of cellular structure provides a rather clear evidence of melting which leads to segregation and supercooling, and subsequent cell formation

  16. Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

    International Nuclear Information System (INIS)

    Kostyukov, I.Yu.; Shvets, G.; Fisch, N.J.; Rax, J.M.

    2001-01-01

    The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made

  17. Laser-Compton Scattering as a Potential Electron Beam Monitor

    International Nuclear Information System (INIS)

    Chouffani, K.; Wells, D.; Harmon, F.; Lancaster, G.; Jones, J.

    2002-01-01

    LCS experiments were carried out at the Idaho Accelerator Center (IAC); sharp monochromatic x-ray lines were observed. These are produced using the so-called inverse Compton effect, whereby optical laser photons are collided with a relativistic electron beam. The back-scattered photons are then kinematically boosted to keV x-ray energies. We have first demonstrated these beams using a 20 MeV electron beam collided with a 100 MW, 7 ns Nd; YAG laser. We observed narrow LCS x-ray spectral peaks resulting from the interaction of the electron beam with the Nd; YAG laser second harmonic (532 nm). The LCS x-ray energy lines and energy deviations were measured as a function of the electron beam energy and energy-spread respectively. The results showed good agreement with the predicted valves. LCS could provide an excellent probe of electron beam energy, energy spread, transverse and longitudinal distribution and direction

  18. Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves.

    Science.gov (United States)

    Gregori, G; Ravasio, A; Murphy, C D; Schaar, K; Baird, A; Bell, A R; Benuzzi-Mounaix, A; Bingham, R; Constantin, C; Drake, R P; Edwards, M; Everson, E T; Gregory, C D; Kuramitsu, Y; Lau, W; Mithen, J; Niemann, C; Park, H-S; Remington, B A; Reville, B; Robinson, A P L; Ryutov, D D; Sakawa, Y; Yang, S; Woolsey, N C; Koenig, M; Miniati, F

    2012-01-25

    The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10(-21) gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.

  19. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.; Li, M. H.; Li, Y. F.; Wang, J. G.; Tao, M. Z.; Han, Y. J.; Zhao, J. R.; Huang, K.; Yan, W. C.; Ma, J. L.; Li, Y. T. [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Chen, L. M., E-mail: lmchen@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, D. Z. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Chen, Z. Y. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621999 (China); Sheng, Z. M. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zhang, J. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-08-15

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble.

  20. Development of broadband free electron laser technology

    International Nuclear Information System (INIS)

    Lee, B. C.; Jeong, Y. W.; Joe, S. O.; Park, S. H.; Ryu, J. K.; Kazakevich, G.; Cha, H. J.; Sohn, S. C.; Han, S. J.

    2003-02-01

    Layer cladding technology was developed to mitigate the fretting wear damages occurred at fuel spacers in Hanaro reactor. The detailed experimental procedures are as follows. 1) Analyses of fretting wear damages and fabrication process of fuel spacers 2) Development and analysis of spherical Al 6061 T-6 alloy powders for the laser cladding 3) Analysis of parameter effects on laser cladding process for clad bids, and optimization of laser cladding process 4) Analysis on the changes of cladding layers due to overlapping factor change 5) Microstructural observation and phase analysis 6) Characterization of materials properties (hardness wear tests) 7) Development of a vision system and revision of its related software 8) Manufacture of prototype fuel spacers. As a result, it was confirmed that the laser cladding technology could increased considerably the wear resistance of Al 6061 alloy which is the raw material of fuel spacers.

  1. Compact electron accelerator for pumping gas lasers

    International Nuclear Information System (INIS)

    Duncan, C.V.; Bradley, L.P.

    1976-01-01

    A description is given of the design and application of a simple e-beam generator for the repetitive pulse pumping of gas lasers. The circuit uses a low inductance Marx and series tuned pulse forming elements

  2. Self-seeded single-frequency solid-state ring laser and system using same

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-02-20

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  3. Escaping Electrons from Intense Laser-Solid Interactions as a Function of Laser Spot Size

    OpenAIRE

    Rusby, Dean; Gray, Ross; Butler, Nick; Dance, Rachel; Scott, Graeme; Bagnoud, Vincent; Zielbauer, Bernhard; McKenna, Paul; Neely, David

    2018-01-01

    The interaction of a high-intensity laser with a solid target produces an energetic distribution of electrons that pass into the target. These electrons reach the rear surface of the target creating strong electric potentials that act to restrict the further escape of additional electrons. The measurement of the angle, flux and spectra of the electrons that do escape gives insights to the initial interaction. Here, the escaping electrons have been measured using a differentially filtered imag...

  4. The chirped-pulse inverse free-electron laser: A high-gradient vacuum laser accelerator

    International Nuclear Information System (INIS)

    Hartemann, F.V.; Landahl, E.C.; Troha, A.L.; Van Meter, J.R.; Baldis, H.A.; Freeman, R.R.; Luhmann, N.C. Jr.; Song, L.; Kerman, A.K.; Yu, D.U.

    1999-01-01

    The inverse free-electron laser (IFEL) interaction is studied theoretically and computationally in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. The IFEL concept has been demonstrated as a viable vacuum laser acceleration process; it is shown here that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. copyright 1999 American Institute of Physics

  5. The theoretical study of the optical klystron free electron laser

    International Nuclear Information System (INIS)

    Yang Zhenhua

    2001-01-01

    The work of the theoretical study and numerical simulation of optical klystron free electron laser is supported by National 863 Research Development Program and National Science Foundation of China. The object of studying UV band free electron laser (FEL) is to understand the physical law of optical klystron FEL and to gain experience for design. A three-dimensional code OPFEL are made and it is approved that the code is correct completely. The magnetic field of the optical klystron, the energy modulation of the electron beam, the density modulation of the electron beam, spontaneous emission of the electron beam in optical klystron, the harmonic super-radiation of the electron beam, and the effects of the undulator magnetic field error on modulation of the electron beam energy are simulated. These results are useful for the future experiments

  6. Low power continuous wave-laser seed irradiation effect on Moringa oleifera germination, seedling growth and biochemical attributes.

    Science.gov (United States)

    Urva; Shafique, Hina; Jamil, Yasir; Haq, Zia Ul; Mujahid, Tamveel; Khan, Aman Ullah; Iqbal, Munawar; Abbas, Mazhar

    2017-05-01

    Recently, laser application in agriculture has gained much attention since plant characteristics were improved significantly in response of pre-sowing seed treatment. Pre-sowing laser seed treatment effects on germination, seedling growth and mineral profile were studied in Moringa olifera. M. olifera healthy seeds were exposed to 25, 50, 75mJ low power continuous wave laser light and grown under greenhouse conditions. The seedling growth and biochemical attributes were evaluated from 10-day-old seedlings. The germination parameters (percentage, mean germination time), vigor index, seedling growth (root length, seedling length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight) enhanced considerably. The laser energy levels used for seed irradiation showed variable effects on germination, seedling growth and mineral profile. The mineral contents were recorded to be higher in seedling raised from laser treated seeds, which were higher in roots versus shoots and leaves. The effect of laser treatment on seedling fat, nitrogen and protein content was insignificant and at higher energy level both nitrogen and protein contents decreased versus control. Results revealed that M. olifera germination, seedling growth and mineral contents were enhanced and optimum laser energy level has more acceleratory effect since at three laser energy levels the responses were significantly different. Overall the laser energy levels effect on germination and seedling growth was found in following order; 75mJ>50mJ>25mJ, where as in case of fat, protein and nitrogen contents the trend was as; 25mJ>50mJ and 75mJ. However, this technique could possibly be used to improve the M. olifera germination, seedling growth, and minerals contents where germination is low due to unfavorable conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Atomic electron correlations in intense laser fields

    International Nuclear Information System (INIS)

    DiMauro, L.F.; Sheehy, B.; Walker, B.; Agostini, P.A.

    1998-01-01

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although their ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear

  8. Precision laser processing for micro electronics and fiber optic manufacturing

    Science.gov (United States)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  9. Microscopic study on lasing characteristics of the UVSOR storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Hama, H. [Institute for Molecular Science, Okazaki (Japan)]|[Graduate Univ. for Advanced Stuides, Okazaki (Japan); Yamazaki, J.; Kinoshita, T. [Institute for Molecular Science, Okazaki (Japan)] [and others

    1995-12-31

    Characteristics of storage ring free electron laser (SRFEL) at a short wavelength region (UV and visible) has been studied at the UVSOR facility, Institute for Molecular Science. We have measured the laser power evolution by using a biplanar photodiode, and the micro-macro temporal structure of both the laser and the electron bunch with a dualsweep streak camera. The saturated energy of the laser micropulse in the gain-switching (Q-switching) mode has been measured as a function of the ring current. We have not observed a limitation of the output power yet within the beam current can be stored. We have analyzed the saturated micropulse energy based on a model of gain reduction due to the bunch-heating. The bunch-heating process seems to be very complicate. We derived time dependent gain variations from the shape of macropulse and the bunch length. Those two gain variations are almost consistent with each other but slightly different in detail. The gain may be not only simply reduced by the energy spread but also affected by the phase space rotation due to synchrotron oscillation of the electron bunch. As reported in previous issue, the lasing macropulse consists of a couple of micropulses that are simultaneously evolved. From high resolution two-dimensional spectra taken by the dual-sweep streak camera, we noticed considerable internal substructures of the laser micropulse in both the time distribution and the spectral shape. There are a couple of peaks separated with almost same distance in a optical bunch. Such substructure does not seem to result from statistical fluctuations of laser seeds. Although the origin of the substructure of macropulse is not dear at the present, we are going to discuss about SRFEL properties.

  10. Tunable Seed Lasers for Laser Remote Sensing of CO2 and O2, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Vescent Photonics propose to develop a chip-sized narrow linewidth ( 10 nm's) diode laser that will be suitable for a wide variety of NASA remote sensing missions....

  11. Monolithic micro-laser with KTP ridge waveguides for injection seeding high power lasers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Small Business Innovation Research Phase I project will develop a technique to greatly improve the direct coupling of a diode laser to an optical waveguide...

  12. Theory and Simulation of an Inverse Free Electron Laser Experiment

    Science.gov (United States)

    Guo, S. K.; Bhattacharjee, A.; Fang, J. M.; Marshall, T. C.

    1996-11-01

    An experimental demonstration of the acceleration of electrons using a high power CO2 laser in an inverse free electron laser (IFEL) is underway at the Brookhaven National Laboratory. This experiment has generated data, which we are attempting to simulate. Included in our studies are such effects as: a low-loss metallic waveguide with a dielectric coating on the walls; multi-mode coupling due to self-consistent interaction between the electrons and the optical wave; space charge (which is significant at lower laser power); energy-spread of the electrons; arbitrary wiggler field profile; and slippage. Two types of wiggler profile have been considered: a linear taper of the period, and a step-taper of the period (the period is ~ 3cm, the field is ~ 1T, and the wiggler length is 47cm). The energy increment of the electrons ( ~ 1-2%) is analyzed in detail as a function of laser power, wiggler parameters, and the initial beam energy (40MeV). For laser power ~ 0.5GW, the predictions of the simulations are in good accord with experimental results. A matter currently under study is the discrepancy between theory and observations for the electron energy distribution observed at the end of the IFEL. This work is supported by the Department of Energy.

  13. Electron acceleration by CO/sub 2/ laser

    International Nuclear Information System (INIS)

    Fujita, H.; Kitagawa, Y.; Daido, H.

    1986-01-01

    Experiments on electron acceleration have been performed by LEKKO VIII CO/sub 2/ laser system. The laser light was focused by an off-axis parabolic mirror with the F-number of 1.5 and irradiated to thin foil and pipe targets in order to obtain uniform underdense plasmas. Energy spectrum of electrons was measured by an electron spectrometer in the range of 0.3-1.1 MeV. In the single frequency case, electrons up to 1 MeV were observed in the direction of the laser axis for the laser intensity above 1.6 x 10/sup 14/ W/cm/sup 2/ which was equal to the estimated threshold for forward Raman scattering. Amount of high energy electrons depended on the interaction length and the background hot electron temperature. More electrons could resonate with the plasma wave for the higher hot electron temperature. This was confirmed by particle simulation. In most experiments, the plasma density was estimated of about 0.1 n/sub c/. When the plasma density was reduced to 0.01 n/sub c/ using pre-pulse, high energy electrons were not observed because of the low background hot electron temperature and the higher instability threshold. In the two frequency case, energetic electron beam injection is planned for efficient coupling with fast plasma wave. Pipe target seems to be hopeful because 1) the laser light is confined by the plasma fiber and 2) the phase velocity of the plasma wave is controlled by the transverse mode

  14. High-efficiency free-electron-laser experiments

    International Nuclear Information System (INIS)

    Boyer, K.; Brau, C.A.; Goldstein, J.C.; Hohla, K.L.; Newnam, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.

    1983-01-01

    Experiments with a tapered-wiggler free-electron laser have demonstrated extraction of about 3% of the energy from the electron beam and measured the corresponding optical emission. These results are in excellent agreement with theory and represent an order-of-magnitude improvement over all previous results

  15. Coherent Startup of an Infrared Free-Electron Laser

    NARCIS (Netherlands)

    Jaroszynski, D. A.; Bakker, R. J.; van der Meer, A. F. G.; Oepts, D.; van Amersfoort, P. W.

    1993-01-01

    Coherent enhancement of the spontaneous undulator radiation by several orders of magnitude has been observed in a free-electron laser at wavelengths from 40 to 100 mum. The coherent emission can be explained by details of the electron-beam micropulse structure. Furthermore, it has been found that

  16. Linac-driven XUV free-electron laser

    International Nuclear Information System (INIS)

    Newnam, B.E.; Goldstein, J.C.; Fraser, J.S.; Cooper, R.K.

    1983-01-01

    Use of an rf linear accelerator as the electron source for a free-electron laser operating in the extreme ultraviolet wavelength range from 100 nm to at least as low as 50 nm appears feasible. Peak and average power outputs of greater than 100 kW and 50W, respectively, are predicted

  17. Free electron laser amplifier driven by an induction linac

    International Nuclear Information System (INIS)

    Neil, V.K.

    1986-01-01

    This paper discusses the use of a free-electron laser amplifier as a means of converting the kinetic energy of an electron beam into coherent radiation. In particular, the use of an induction linear accelerator is discussed. The motion of the elections in the tapered and untapered wiggler magnets is discussed as well as the beam emittance, and the radiation fields involved

  18. XUV/VUV free-electron laser oscillator

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Newnam, B.E.; Cooper, R.K.; Comly, J.C. Jr.

    1984-04-01

    It is shown, from computations based on a detailed theoretical model, that modest improvements in electron beam and optical mirror technologies will enable a free-electron laser, driven by an rf linear accelerator, to operate in the 50 to 200-nm range of optical wavelengths. 10 references

  19. Dependence of electron peak current on hollow cathode dimensions and seed electron energy in a pseudospark discharge

    International Nuclear Information System (INIS)

    Cetiner, S. O.; Stoltz, P.; Messmer, P.; Cambier, J.-L.

    2008-01-01

    The prebreakdown and breakdown phases of a pseudospark discharge are investigated using the two-dimensional kinetic plasma simulation code OOPIC PRO. Trends in the peak electron current at the anode are presented as function of the hollow cathode dimensions and mean seed injection velocities at the cavity back wall. The plasma generation process by ionizing collisions is examined, showing the effect on supplying the electrons that determine the density of the beam. The mean seed velocities used here are varied between the velocity corresponding to the energy of peak ionization cross section, 15 times this value and no mean velocity (i.e., electrons injected with a temperature of 2.5 eV). The reliance of the discharge characteristics on the penetrating electric field is shown to decrease as the mean seed injection velocity increases because of its ability to generate a surplus plasma independent of the virtual anode. As a result, the peak current increases with the hollow cathode dimensions for the largest average injection velocity, while for the smallest value it increases with the area of penetration of the electric field in the hollow cathode interior. Additionally, for a given geometry an increase in the peak current with the surplus plasma generated is observed. For the largest seed injection velocity used a dependence of the magnitude of the peak current on the ratio of the hole thickness and hollow cathode depth to the hole height is demonstrated. This means similar trends of the peak current are generated when the geometry is resized. Although the present study uses argon only, the variation in the discharge dependencies with the seed injection energy relative to the ionization threshold is expected to apply independently of the gas type. Secondary electrons due to electron and ion impact are shown to be important only for the largest impact areas and discharge development times of the study

  20. Photonuclear fission with quasimonoenergetic electron beams from laser wakefields

    International Nuclear Information System (INIS)

    Reed, S. A.; Chvykov, V.; Kalintchenko, G.; Matsuoka, T.; Rousseau, P.; Yanovsky, V.; Vane, C. R.; Beene, J. R.; Stracener, D.; Schultz, D. R.; Maksimchuk, A.

    2006-01-01

    Recent advancements in laser wakefield accelerators have resulted in the generation of low divergence, hundred MeV, quasimonoenergetic electron beams. The bremsstrahlung produced by these highly energetic electrons in heavy converters includes a large number of MeV γ rays that have been utilized to induce photofission in natural uranium. Analysis of the measured delayed γ emission demonstrates production of greater than 3x10 5 fission events per joule of laser energy, which is more than an order of magnitude greater than that previously achieved. Monte Carlo simulations model the generated bremsstrahlung spectrum and compare photofission yields as a function of target depth and incident electron energy

  1. Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX

    Energy Technology Data Exchange (ETDEWEB)

    Cros, B., E-mail: brigitte.cros@u-psud.fr [LPGP, CNRS and Université Paris Sud, Orsay (France); Paradkar, B.S. [LPGP, CNRS and Université Paris Sud, Orsay (France); Davoine, X. [CEA DAM DIF, Arpajon F-91297 (France); Chancé, A. [CEA IRFU-SACM, Gif-Sur-Yvette (France); Desforges, F.G. [LPGP, CNRS and Université Paris Sud, Orsay (France); Dobosz-Dufrénoy, S. [CEA DSM-IRAMIS-SPAM, Gif-sur-Yvette (France); Delerue, N. [LAL, CNRS and Universit Paris Sud, Orsay (France); Ju, J.; Audet, T.L.; Maynard, G. [LPGP, CNRS and Université Paris Sud, Orsay (France); Lobet, M.; Gremillet, L. [CEA DAM DIF, Arpajon F-91297 (France); Mora, P. [CPhT, CNRS and Ecole Polytechnique, Palaiseau (France); Schwindling, J.; Delferrière, O. [CEA IRFU-SACM, Gif-Sur-Yvette (France); Bruni, C.; Rimbault, C.; Vinatier, T. [LAL, CNRS and Universit Paris Sud, Orsay (France); Di Piazza, A. [Max-Planck-Institut für Kernphysik, Heidelberg (Germany); Grech, M. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Palaiseau (France); and others

    2014-03-11

    Laser plasma acceleration of electrons has progressed along with advances in laser technology. It is thus expected that the development in the near-future of multi-PW-class laser and facilities will enable a vast range of scientific opportunities for laser plasma acceleration research. On one hand, high peak powers can be used to explore the extremely high intensity regime of laser wakefield acceleration, producing for example large amounts of electrons in the GeV range or generating high energy photons. On the other hand, the available laser energy can be used in the quasi-linear regime to create accelerating fields in large volumes of plasma and study controlled acceleration in a plasma stage of externally injected relativistic particles, either electrons or positrons. In the frame of the Centre Interdisciplinaire de la Lumière EXtrême (CILEX), the Apollon-10P laser will deliver two beams at the 1 PW and 10 PW levels, in ultra-short (>15fs) pulses, to a target area dedicated to electron acceleration studies, such as the exploration of the non-linear regimes predicted theoretically, or multi-stage laser plasma acceleration.

  2. Free-electron laser multiplex driven by a superconducting linear accelerator.

    Science.gov (United States)

    Plath, Tim; Amstutz, Philipp; Bödewadt, Jörn; Brenner, Günter; Ekanayake, Nagitha; Faatz, Bart; Hacker, Kirsten; Honkavaara, Katja; Lazzarino, Leslie Lamberto; Lechner, Christoph; Maltezopoulos, Theophilos; Scholz, Matthias; Schreiber, Siegfried; Vogt, Mathias; Zemella, Johann; Laarmann, Tim

    2016-09-01

    Free-electron lasers (FELs) generate femtosecond XUV and X-ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented.

  3. Feasibility analysis for attosecond X-ray pulses at FERMI@ELETTRA free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, Alexander

    2004-09-01

    We present preliminary analysis for the feasibility of the attosecond x-ray pulses at a proposed FERMI@ELETTRA free electron laser (FEL) [1]. In part 1 we restrict ourselves to minimal modifications to the proposed FEL and consider a scheme for attosecond x-ray production which can be qualified as a small add-on to a primary facility. We demonstrate that at 5-nm wavelength our scheme is capable for production of pulses with an approximate duration of 100 attoseconds at approximately 2 MW peak power and with an absolute temporal synchronization to a pump laser pulse. In part 2 we propose to use an FEL amplifier seeded by a VUV signal and to follow it by the scheme for attosecond x-ray production described in part 1.

  4. An inverse free electron laser accelerator: Experiment and theoretical interpretation

    International Nuclear Information System (INIS)

    Fang, Jyan-Min.

    1997-01-01

    Experimental and numerical studies of the Inverse Free Electron Laser using a GW-level 10.6 μm CO 2 laser have been carried out at Brookhaven's Accelerator Test Facility. An energy gain of 2.5 % (ΔE/E) on a 40 MeV electron beam has been observed E which compares well with theory. The effects on IFEL acceleration with respect to the variation of the laser electric field, the input electron beam energy, and the wiggler magnetic field strength were studied, and show the importance of matching the resonance condition in the IFEL. The numerical simulations were performed under various conditions and the importance of the electron bunching in the IFEL is shown. The numerical interpretation of our IFEL experimental results was examined. Although good numerical agreement with the experimental results was obtained, there is a discrepancy between the level of the laser power measured in the experiment and used in the simulation, possibly due to the non-Gaussian profile of the input high power laser beam. The electron energy distribution was studied numerically and a smoothing of the energy spectrum by the space charge effect at the location of the spectrometer was found, compared with the spectrum at the exit of the wiggler. The electron bunching by the IFEL and the possibility of using the IFEL as an electron prebuncher for another laser-driven accelerator were studied numerically. We found that bunching of the electrons at 1 meter downstream from the wiggler can be achieved using the existing facility. The simulation shows that there is a fundamental difference between the operating conditions for using the IFEL as a high gradient accelerator, and as a prebuncher for another accelerator

  5. Investigation of pump-to-seed beam matching on output features of Rb and Cs vapor laser amplifiers

    Science.gov (United States)

    Shen, Binglin; Huang, Jinghua; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2018-05-01

    Taking into account the beam radii of pump light and seed laser along the entire length of the cell and their intensities in the cross section, a physical model with ordinary differential equation methods for alkali vapor amplifiers is established. Applied to the reported optically pumped Rb and diode-pumped Cs vapor amplifiers, the model shows good agreement between the calculated and measured dependence of amplified power on the seed power. A larger width of the spontaneous emission region as compared to the widths of pump absorption and laser emission regions, which will result in very high energy losses, is observed in the cell. Influence of pump and seed beam waists on output performance is calculated, showing that the pump and seed beam should match each other not only in shape but also in size, thus an optimal combination of beam radii is very important for efficient operation of alkali vapor amplifiers.

  6. Development of the Seeding System Used for Laser Velocimeter Surveys of the NASA Low-Speed Centrifugal Compressor Flow Field

    Science.gov (United States)

    Wasserbauer, C. A.; Hathaway, M. D.

    1994-01-01

    Consideration is given to an atomizer-based system for distributing high-volume rates of polystyrene latex (PSL) seed material developed to support laser velocimeter investigations of the NASA Low-Speed Compressor flow field. Complete evaporation of the liquid carrier before the flow entering the compressor was of primary concern for the seeder system design. It is argued that the seed nozzle should incorporate a needle valve that can mechanically dislodge accumulated PSL seed material when the nozzle is turned off. Water is less expensive as the liquid carrier and should be used whenever adequate residence times are available to ensure complete evaporation. PSL agglomerates over time and needs to be mixed or blended before use. Arrangement of the spray nozzles needs to be adjustable to provide maximum seeding at the laser probe volume.

  7. Beam conditioner for free electron lasers and synchrotrons

    International Nuclear Information System (INIS)

    Liu, H.; Neil, G.R.

    1998-01-01

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM 10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs

  8. Guiding-center equations for electrons in ultraintense laser fields

    International Nuclear Information System (INIS)

    Moore, J.E.; Fisch, N.J.

    1994-01-01

    The guiding-center equations are derived for electrons in arbitrarily intense laser fields also subject to external fields and ponderomotive forces. Exhibiting the relativistic mass increase of the oscillating electrons, a simple frame-invariant equation is shown to govern the behavior of the electrons for sufficiently weak background fields and ponderomotive forces. The parameter regime for which such a formulation is valid is made precise, and some predictions of the equation are checked by numerical simulation

  9. APPLICATION OF LASER TREATMENT WITH RADIATION STIMULATION IN ANNUAL SPECIES OF SEED GERMINATION DIANTHUS CARYOPHYLLUS - VAR CHABAUD AND PETUNIA HYBRIDA

    Directory of Open Access Journals (Sweden)

    Petru Niculita

    2012-04-01

    Full Text Available Additional illumination with red light produced by laser diodes in continuous and different exposure times, was applied to seeds from two species of annual flowers: Garofita Dianthus caryophyllus - var. CHABAUD; FEUER KONING and romanian Petunia hybrid variety "WHITE CASCADE. The experimental results presented in the present study are a continuation of research initiated in 2009 ((P. Niculita , S. Danaila-Guidea, O. Livadariu , M. Ristici, J. Ristici si F. Burnichi, 2009 and were aimed at testing the germination of seeds and development morphology induced by treatment effect based on laser radiation fields in the early stages of development of seeds under the effect of intensity light in the spectral range 640 nm - 660nm. Sets of seeds were irradiated once mounted on the first day of the experiment at different energy doses by changing exposure time. Thus the experiences of dry seeds were irradiated with different doses four lots in 2009 and 2010 corresponding variants V1-V4 (5-20 minutes. The experimental results were analyzed in parallel with a control group of seeds that did not apply to treatment of red laser diodes. In all the seeds analyzed from the two flower species studied germination capacity and that the growth of seedlings, determining germination percentages every two days for 3 weeks. Results have shown a percentage of germination higher than control group of seeds (75% for all repetitions of variant V4 (95%, with exposure time of 20 minutes (1.53 joules / cm ² to treatment with red light produced by laser modulated at audio frequency.

  10. High power electron beam accelerators for gas laser excitation

    International Nuclear Information System (INIS)

    Kelly, J.G.; Martin, T.H.; Halbleib, J.A.

    1976-06-01

    A preliminary parameter investigation has been used to determine a possible design of a high-power, relativistic electron beam, transversely excited laser. Based on considerations of present and developing pulsed power technology, broad area diode physics and projected laser requirements, an exciter is proposed consisting of a Marx generator, pulse shaping transmission lines, radially converging ring diodes and a laser chamber. The accelerator should be able to deliver approximately 20 kJ of electron energy at 1 MeV to the 10 4 cm 2 cylindrical surface of a laser chamber 1 m long and 0.3 m in diameter in 24 ns with very small azimuthal asymmetry and uniform radial deposition

  11. Electron in the ultrashort laser pulse

    Czech Academy of Sciences Publication Activity Database

    Pardy, Miroslav

    2003-01-01

    Roč. 42, č. 1 (2003), s. 99-110 ISSN 0020-7748 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z2043910 Keywords : laser pulse, Volkov solution, compton effect Subject RIV: BE - The oretical Physics Impact factor: 0.476, year: 2003

  12. Compact two-beam push-pull free electron laser

    Science.gov (United States)

    Hutton, Andrew [Yorktown, VA

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  13. Intense pulsed sources of ions and electrons produced by lasers

    International Nuclear Information System (INIS)

    Bourrabier, G.; Consoli, T.; Slama, L.

    1966-11-01

    We describe a device for the acceleration of the plasma burst produced by focusing a laser beam into a metal target. We extract the electrons and the ions from the plasma. The maximum current is around 2000 amperes during few microseconds. The study of the effect of the kind of the target on the characteristics of the current shows the great importance of the initial conditions that is the ionisation potential of the target and the energy laser. (authors) [fr

  14. Pulse propagation in tapered wiggler free electron lasers

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Colson, W.B.

    1981-01-01

    The one-dimensional theory of short pulse propagation in free electron lasers is extended to tapered wiggler devices and is used to study the behavior of an oscillator with parameter values close to those expected in forthcoming experiments. It is found that stable laser output is possible only over a small range of optical cavity lengths. Optical pulse characteristcs are presented and are found to change considerably over this range

  15. Three-dimensional simulation of thermal harmonic lasing free electron laser with detuning of the fundamental

    Science.gov (United States)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2016-03-01

    Detuning of the fundamental is a way to enhance harmonic generation. By this method, the wiggler is composed of two segments in such a way that the fundamental resonance of the second segment to coincide with the third harmonic of the first segment of the wiggler to generate extreme ultraviolet radiation and x-ray emission. A set of coupled, nonlinear, and first-order differential equations in three dimensions describing the evolution of the electron trajectories and the radiation field with warm beam is solved numerically by CYRUS 3D code in the steady-state for two models (1) seeded free electron laser (FEL) and (2) shot noise on the electron beam (self-amplified spontaneous emission FEL). Thermal effects in the form of longitudinal velocity spread are considered. Three-dimensional simulation describes self-consistently the longitudinal spatial dependence of radiation waists, curvatures, and amplitudes together with the evaluation of the electron beam. The evolutions of the transverse modes are investigated for the fundamental resonance and the third harmonic. Also, the effective modes of the third harmonic are studied. In this paper, we found that detuning of the fundamental with shot noise gives more optimistic result than the seeded FEL.

  16. Three-dimensional simulation of thermal harmonic lasing free electron laser with detuning of the fundamental

    International Nuclear Information System (INIS)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2016-01-01

    Detuning of the fundamental is a way to enhance harmonic generation. By this method, the wiggler is composed of two segments in such a way that the fundamental resonance of the second segment to coincide with the third harmonic of the first segment of the wiggler to generate extreme ultraviolet radiation and x-ray emission. A set of coupled, nonlinear, and first-order differential equations in three dimensions describing the evolution of the electron trajectories and the radiation field with warm beam is solved numerically by CYRUS 3D code in the steady-state for two models (1) seeded free electron laser (FEL) and (2) shot noise on the electron beam (self-amplified spontaneous emission FEL). Thermal effects in the form of longitudinal velocity spread are considered. Three-dimensional simulation describes self-consistently the longitudinal spatial dependence of radiation waists, curvatures, and amplitudes together with the evaluation of the electron beam. The evolutions of the transverse modes are investigated for the fundamental resonance and the third harmonic. Also, the effective modes of the third harmonic are studied. In this paper, we found that detuning of the fundamental with shot noise gives more optimistic result than the seeded FEL.

  17. Three-dimensional simulation of thermal harmonic lasing free electron laser with detuning of the fundamental

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, E. [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of); Maraghechi, B., E-mail: behrouz@aut.ac.ir [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of); School of Particle and Accelerator Physics, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran (Iran, Islamic Republic of); Mirian, N. S. [School of Particle and Accelerator Physics, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran (Iran, Islamic Republic of); UVSOR Facility (UVSOR), Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan)

    2016-03-15

    Detuning of the fundamental is a way to enhance harmonic generation. By this method, the wiggler is composed of two segments in such a way that the fundamental resonance of the second segment to coincide with the third harmonic of the first segment of the wiggler to generate extreme ultraviolet radiation and x-ray emission. A set of coupled, nonlinear, and first-order differential equations in three dimensions describing the evolution of the electron trajectories and the radiation field with warm beam is solved numerically by CYRUS 3D code in the steady-state for two models (1) seeded free electron laser (FEL) and (2) shot noise on the electron beam (self-amplified spontaneous emission FEL). Thermal effects in the form of longitudinal velocity spread are considered. Three-dimensional simulation describes self-consistently the longitudinal spatial dependence of radiation waists, curvatures, and amplitudes together with the evaluation of the electron beam. The evolutions of the transverse modes are investigated for the fundamental resonance and the third harmonic. Also, the effective modes of the third harmonic are studied. In this paper, we found that detuning of the fundamental with shot noise gives more optimistic result than the seeded FEL.

  18. Time-dependent Bloch-Maxwell modelling of 1 mJ, 200 fs seeded soft x-ray laser

    International Nuclear Information System (INIS)

    Zeitoun, Ph.; Oliva, E.; Fajardo, M.; Velarde, P.; Ros, D.; Sebban, S.

    2010-01-01

    Complete text of publication follows. Seeding of high harmonic generation in a soft x-ray plasma amplifier has been first proposed and tested by T. Ditmire and collaborators. The experiment demonstrated low amplification (*2), with a very strong background coming from the soft x-ray laser ASE. Later seeding experiments reached very high amplification factors (up to 600) in both gas (Ph. Zeitoun et al.) and solid amplifiers (Wang et at.). Surprisingly, solid amplifiers extracted less energy (90 nJ) than gas amplifier (∼ 1 μJ) with equivalent pump energy. We recently demonstrated that 50-100 μJ is achievable with adequate plasma tailoring. However, this energy is still low as compared to the 10 mJ per pulse demonstrated on the ASE soft x-ray laser running at PALS facility (Czech Republic). In order to model the seeding process of PALS soft x-ray laser, we developed a time-dependent Bloch-Maxwell model that solves coherently the pumping, amplification and saturation processes. We demonstrated that direct seeding, with femtosecond pulse, a soft x-ray plasma amplifier having gain duration of several 100s of picosecond cannot extract the stored energy keeping the output beam energy in the 100 μJ range. We proposed and fully modelled a new seeding scheme that allows to achieve 10 mJ, 200 fs soft x-ray laser.

  19. Solid state lasers: a major direction in quantum electronics

    International Nuclear Information System (INIS)

    Shcherbakov, I.A.

    2004-01-01

    The aim of the report is to analyze development of solid-state lasers (SSL) as one of the most important avenues of the quantum electronics. The obtained intensity of a laser radiation at the focus equal to 5x10 1 0 W/cm 2 (the field intensity equal to about 5x10 1 0 V/cm 2 ) is noted to enable to observe nonlinear quantum- electrodynamic effects. Besides, one managed to increase the SSL efficiency conventionally equal to maximum 3% up to 48-50%. Paper describes new types of SSLs, namely, the crystalline fiber lasers with the lateral gradient of the index of refraction [ru

  20. Ultrafast molecular imaging by laser-induced electron diffraction

    International Nuclear Information System (INIS)

    Peters, M.; Nguyen-Dang, T. T.; Cornaggia, C.; Saugout, S.; Charron, E.; Keller, A.; Atabek, O.

    2011-01-01

    We address the feasibility of imaging geometric and orbital structures of a polyatomic molecule on an attosecond time scale using the laser-induced electron diffraction (LIED) technique. We present numerical results for the highest molecular orbitals of the CO 2 molecule excited by a near-infrared few-cycle laser pulse. The molecular geometry (bond lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms.

  1. Diode laser spectroscopy of oxygen electronic band at 760 nm

    International Nuclear Information System (INIS)

    Lucchesini, A.; De Rosa, M.; Gozzini, S.

    1998-01-01

    Collisional broadening and shift coefficients have been obtained by analyzing the line shapes of oxygen absorptions in the 760 nm electronic band. By using a diode laser spectrometer with commercially available etherostructure Al x Ga 1-x As diode lasers operating in 'free-running mode', line shape parameters have been collected at room temperature by varying the gas pressure. A systematic study has been carried on seven absorption lines by scanning the diode laser emission wavelength around the gas resonances. The weak absorption lines have been detected by using the wavelength modulation (WM) spectroscopy technique with second-harmonic detection

  2. A spectral unaveraged algorithm for free electron laser simulations

    International Nuclear Information System (INIS)

    Andriyash, I.A.; Lehe, R.; Malka, V.

    2015-01-01

    We propose and discuss a numerical method to model electromagnetic emission from the oscillating relativistic charged particles and its coherent amplification. The developed technique is well suited for free electron laser simulations, but it may also be useful for a wider range of physical problems involving resonant field–particles interactions. The algorithm integrates the unaveraged coupled equations for the particles and the electromagnetic fields in a discrete spectral domain. Using this algorithm, it is possible to perform full three-dimensional or axisymmetric simulations of short-wavelength amplification. In this paper we describe the method, its implementation, and we present examples of free electron laser simulations comparing the results with the ones provided by commonly known free electron laser codes

  3. Cytogenetic effects of electron-beam radiation on dry seed storage

    International Nuclear Information System (INIS)

    Baojiang, G.; Qishen, P.; Kohlman, A.

    1989-01-01

    Dry seeds of Viciafaba were exposed to 5 MeV electron beam (10–30 Krad) and stored afterwards during 20,40 and 60 days- Induction of chromosomal aberrations in root-tip cells of irradiated seeds has been found dose-dependent. The frequency of chromosomal aberrations (particularly, the bridges and the rings) and the frequency of micronucleated cells is proportional to the length of storage time, but is not significantly influenced by low temperatures (0–6°C) during storage. (author)

  4. Multi-GeV electron-positron beam generation from laser-electron scattering.

    Science.gov (United States)

    Vranic, Marija; Klimo, Ondrej; Korn, Georg; Weber, Stefan

    2018-03-16

    The new generation of laser facilities is expected to deliver short (10 fs-100 fs) laser pulses with 10-100 PW of peak power. This opens an opportunity to study matter at extreme intensities in the laboratory and provides access to new physics. Here we propose to scatter GeV-class electron beams from laser-plasma accelerators with a multi-PW laser at normal incidence. In this configuration, one can both create and accelerate electron-positron pairs. The new particles are generated in the laser focus and gain relativistic momentum in the direction of laser propagation. Short focal length is an advantage, as it allows the particles to be ejected from the focal region with a net energy gain in vacuum. Electron-positron beams obtained in this setup have a low divergence, are quasi-neutral and spatially separated from the initial electron beam. The pairs attain multi-GeV energies which are not limited by the maximum energy of the initial electron beam. We present an analytical model for the expected energy cutoff, supported by 2D and 3D particle-in-cell simulations. The experimental implications, such as the sensitivity to temporal synchronisation and laser duration is assessed to provide guidance for the future experiments.

  5. Optimization and application of electron acceleration in relativistic laser plasmas

    International Nuclear Information System (INIS)

    Koenigstein, Thomas

    2013-01-01

    This thesis describes experiments and simulations of the acceleration of electrons to relativistic energies (toward γ e ∼ 10 3 ) by structures in plasmas which are generated by ultrashort (pulse length < 10 -14 s) laser pulses. The first part of this work discusses experiments in a parameter space where quasimonoenergetic electron bunches are generated in subcritical (gaseous) plasmas and compares them to analytical scalings. A primary concern in this work is to optimize the stability of the energy and the pointing of the electrons. The second part deals with acceleration of electrons along the surface of solid substrates by laser-plasma interaction. The measurements show good agreement with existing analytical scalings and dedicated numerical simulations. In the third part, two new concepts for multi-stage acceleration will be presented and parameterised by analytical considerations and numerical simulations. The first method uses electron pairs, as produced in the first part, to transfer energy from the first bunch to the second by means of a plasma wave. The second method utilizes a low intensity laser pulse in order to inject electrons from a neutral gas into the accelerating phase of a plasma wave. The final chapter proposes and demonstrates a first application that has been developed in collaboration with ESA. The use of electron beams with exponential energy distribution, as in the second part of this work, offers the potential to investigate the resistance of electronic components against space radiation exposure.

  6. Free electron lasers for transmission of energy in space

    Science.gov (United States)

    Segall, S. B.; Hiddleston, H. R.; Catella, G. C.

    1981-01-01

    A one-dimensional resonant-particle model of a free electron laser (FEL) is used to calculate laser gain and conversion efficiency of electron energy to photon energy. The optical beam profile for a resonant optical cavity is included in the model as an axial variation of laser intensity. The electron beam profile is matched to the optical beam profile and modeled as an axial variation of current density. Effective energy spread due to beam emittance is included. Accelerators appropriate for a space-based FEL oscillator are reviewed. Constraints on the concentric optical resonator and on systems required for space operation are described. An example is given of a space-based FEL that would produce 1.7 MW of average output power at 0.5 micrometer wavelength with over 50% conversion efficiency of electrical energy to laser energy. It would utilize a 10 m-long amplifier centered in a 200 m-long optical cavity. A 3-amp, 65 meV electrostatic accelerator would provide the electron beam and recover the beam after it passes through the amplifier. Three to five shuttle flights would be needed to place the laser in orbit.

  7. Electron acceleration using laser produced plasmas

    CERN Multimedia

    CERN. Geneva; Landua, Rolf

    2005-01-01

    Low density plasmas have long been of interest as a potential medium for particle acceleration since relativistic plasma waves are capable of supporting electric fields greater than 100 GeV/m. The physics of particle acceleration using plasmas will be reviewed, and new results will be discussed which have demonstrated that relatively narrow energy spread (<3%) beams having energies greater than 100 MeV can be produced from femtosecond laser plasma interactions. Future experiments and potential applications will also be discussed.

  8. Observation of second harmonics in laser-electron scattering using low energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Iinuma, Masataka [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)]. E-mail: iinuma@hiroshima-u.ac.jp; Matsukado, Koji [Venture Business Laboratory, Hiroshima University, 1-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Endo, Ichita [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Hashida, Masaki [Institute for chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hayashi, Kenji [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Kohara, Akitsugu [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Matsumoto, Fumihiko [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Nakanishi, Yoshitaka [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Sakabe, Shuji [Institute for chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Shimizu, Seiji [Institute for chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tauchi, Toshiaki [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yamamoto, Ken [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Takahashi, Tohru [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)

    2005-10-17

    We observed photon generation in the second harmonic region in collisions of 10 keV free electrons and the intense laser beam with the peak intensity of 4.0x10{sup 15} W/cm{sup 2}. Observed photon yield was 3 orders of magnitude higher than expectation from the nonlinear Compton scattering. The observation indicates necessity of further investigation for the interaction between the intense laser field and the low energy electron beam.

  9. Short wavelength optics for future free electron lasers

    International Nuclear Information System (INIS)

    Attwood, D.T.

    1984-04-01

    Although much free-electron laser work is directed toward achieving sufficient single-pass gain to be useful for research purposes, the availability of mirrors of high reflectance for the vacuum ultraviolet and soft x-ray regime would make resonant cavities a possibility. In addition, as in ordinary synchrotron radiation work, mirrors are required for the construction of realistic experiments and for beam manipulation purposes such as folding and extraction. The Working Group discussed a number of approaches to reflecting optics for free electron lasers, which are summarized here, and described in some detail. 16 references, 2 figures

  10. A laser printing based approach for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.; Hu, M.; Guo, Q.; Zhang, W.; Yang, J., E-mail: jyang@eng.uwo.ca [Department of Mechanical and Materials Engineering, Western University, London N6A 3K7 (Canada); Liu, Y.; Lau, W. [Chengdu Green Energy and Green Manufacturing Technology R& D Center, 355 Tengfei Road, 620107 Chengdu (China); Wang, X. [Department of Mechanical and Materials Engineering, Western University, London N6A 3K7 (Canada); Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-03-07

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexible electronics manufacturing.

  11. Free electron laser on the ACO storage ring

    International Nuclear Information System (INIS)

    Elleaume, P.

    1984-06-01

    This dissertation presents the design and characteristics of a Free Electron Laser built on the electron storage ring ACO at Orsay. The weak optical gain available (approximately 0.1% per pass) necessitated the use of an optical klystron instead of an undulator and the use of mirror with extremely high reflectivity. The laser characteristics: spectra, micro and macro-temporal structures, transverse structure and power are presented. They are in very good agreement with a classical theory based on the Lorentz force and Maxwell equations [fr

  12. A laser printing based approach for printed electronics

    International Nuclear Information System (INIS)

    Zhang, T.; Hu, M.; Guo, Q.; Zhang, W.; Yang, J.; Liu, Y.; Lau, W.; Wang, X.

    2016-01-01

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexible electronics manufacturing.

  13. Beamline for X-ray Free Electron Laser of SACLA

    International Nuclear Information System (INIS)

    Tono, K; Togashi, T; Ohashi, H; Kimura, H; Takahashi, S; Takeshita, K; Tomizawa, H; Goto, S; Inubushi, Y; Sato, T; Yabashi, M

    2013-01-01

    A beamline for X-ray free electron laser (XFEL) has been developed at SACLA, SPring-8 Angstrom Compact free electron LAser. The beamline delivers and diagnoses an XFEL beam without degrading the beam quality. The transport optics are applicable in the range of 4–30 keV with a double-crystal monochromator or 4–15 keV with either of two double-mirror systems. A photon diagnostic system of the beamline monitors intensity, photon energy, center-of-mass position, and spatial profile in shot-by-shot and non-destructive manners.

  14. New results of the high-gain harmonic generation free-electron laser experiment

    International Nuclear Information System (INIS)

    Doyuran, A.; Babzien, M.; Shaftan, T.; Biedron, S.G.; Yu, L.H.; Ben-Zvi, I.; DiMauro, L.F.; Graves, W.; Johnson, E.; Krinsky, S.; Malone, R.; Pogorelsky, I.; Skaritka, J.; Rakowsky, G.; Wang, X.J.; Woodle, M.; Yakimenko, V.; Jagger, J.; Sajaev, V.; Vasserman, I.

    2001-01-01

    We report on the experimental investigation of high-gain harmonic generation carried out at the Accelerator Test Facility at Brookhaven National Laboratory. A seed CO 2 laser at a wavelength of 10.6 μm was used to generate FEL output at a 5.3-μm wavelength. The duration of the output pulse was measured using a second-harmonic intensity autocorrelator, and the coherence length was measured using an interferometer. We also measured the energy distribution of the electron beam after it exited the second undulator, observing behavior consistent with that is expected at saturation. The intensity of the harmonic components of the output at 2.65 and 1.77 μm was determined relative to that of the 5.3-μm fundamental. Finally, using a corrector magnet upstream of the radiator, steering effects on the trajectories of the electron and light beams were studied

  15. Spectroscopic analysis of high protein nigella seeds (Kalonji) using laser-induced breakdown spectroscopy and inductively coupled plasma/optical emission spectroscopy

    Science.gov (United States)

    Rehan, Imran; Khan, M. Zubair; Ali, Irfan; Rehan, Kamran; Sultana, Sabiha; Shah, Sher

    2018-03-01

    The spectroscopic analysis of high protein nigella seeds (also called Kalonji) was performed using pulsed nanosecond laser-induced breakdown spectroscopy (LIBS) at 532 nm. The emission spectrum of Kalonji recorded with an LIBS spectrometer exposed the presence of various elements like Al, B, Ba, Ca, Cr, K, P, Mg, Mn, Na, Ni, S, Si, Cu, Fe, Ti, Sn, Sr, and Zn. The plasma parameters (electron temperature and electron density) were estimated using Ca-I spectral lines and their behavior were studied against laser irradiance. The electron temperature and electron density was observed to show an increasing trend in the range of 5802-7849 K, and (1.2-3.9) × 1017 cm- 3, respectively, in the studied irradiance range of (1.2-12.6) × 109 W/cm2. Furthermore, the effect of varying laser energy on the integrated signal intensities was also studied. The quantitative analysis of the detected elements was performed via the calibration curves drawn for all the observed elements through typical samples made in the known concentration in the Kalonji matrix, and by setting the concentration of P as the calibration. The validity of our LIBS findings was verified via comparison of the results with the concentration of every element find in Kalonji using the standard analytical tool like ICP/OES. The results acquired using LIBS and ICP/OES were found in fine harmony. Moreover, limit of detection was measured for toxic metals only.

  16. R and D for a Soft X-Ray Free Electron Laser Facility

    International Nuclear Information System (INIS)

    Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; Stoehr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

    2009-01-01

    Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R and D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R and D needs, and highlight the most important pre-construction R and D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R and D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R and D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance (le) 1 mm · mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the

  17. R&D for a Soft X-Ray Free Electron Laser Facility

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; Stohr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

    2009-06-08

    Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R&D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R&D needs, and highlight the most important pre-construction R&D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R&D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R&D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance {le} 1 mm {center_dot} mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the accelerating

  18. Automatic tuning of free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, Ilya; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL, Schenefeld (Germany); Tomin, Sergey [European XFEL, Schenefeld (Germany); NRC Kurchatov Institute, Moscow (Russian Federation)

    2017-04-07

    Existing FEL facilities often suffer from stability issues: so electron orbit, transverse electron optics, electron bunch compression and other parameters have to be readjusted often to account for drifts in performance of various components. The tuning procedures typically employed in operation are often manual and lengthy. We have been developing a combination of model-free and model-based automatic tuning methods to meet the needs of present and upcoming XFEL facilities. Our approach has been implemented at FLASH to achieve automatic SASE tuning using empirical control of orbit, electron optics and bunch compression. In this paper we describe our approach to empirical tuning, the software which implements it, and the results of using it at FLASH.We also discuss the potential of using machine learning and model-based techniques in tuning methods.

  19. Automatic tuning of free electron lasers

    International Nuclear Information System (INIS)

    Agapov, Ilya; Zagorodnov, Igor; Geloni, Gianluca; Tomin, Sergey

    2017-01-01

    Existing FEL facilities often suffer from stability issues: so electron orbit, transverse electron optics, electron bunch compression and other parameters have to be readjusted often to account for drifts in performance of various components. The tuning procedures typically employed in operation are often manual and lengthy. We have been developing a combination of model-free and model-based automatic tuning methods to meet the needs of present and upcoming XFEL facilities. Our approach has been implemented at FLASH to achieve automatic SASE tuning using empirical control of orbit, electron optics and bunch compression. In this paper we describe our approach to empirical tuning, the software which implements it, and the results of using it at FLASH.We also discuss the potential of using machine learning and model-based techniques in tuning methods.

  20. Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse

    International Nuclear Information System (INIS)

    Wang Xiaofang; Saleh, Ned; Krishnan, Mohan; Wang Haiwen; Backus, Sterling; Murnane, Margaret; Kapteyn, Henry; Umstadter, Donald; Wang Quandong; Shen Baifei

    2003-01-01

    Mega-electron-volt (MeV) electron emission from the interaction of an ultrafast (τ∼29 fs), intense (>10 18 W/cm 2 ) laser pulse with underdense plasmas has been studied. A beam of MeV electrons with a divergence angle as small as 1 deg. is observed in the forward direction, which is correlated with relativistic filamentation of the laser pulse in plasmas. A novel net-energy-gain mechanism is proposed for electron acceleration resulting from the relativistic filamentation and beam breakup. These results suggest an approach for generating a beam of femtosecond, MeV electrons at a kilohertz repetition rate with a compact ultrafast intense laser system

  1. Electron acceleration by laser produced wake field: Pulse shape effect

    Science.gov (United States)

    Malik, Hitendra K.; Kumar, Sandeep; Nishida, Yasushi

    2007-12-01

    Analytical expressions are obtained for the longitudinal field (wake field: Ex), density perturbations ( ne') and the potential ( ϕ) behind a laser pulse propagating in a plasma with the pulse duration of the electron plasma period. A feasibility study on the wake field is carried out with Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and rectangular-Gaussian (RG) pulse considering one-dimensional weakly nonlinear theory ( ne'/n0≪1), and the maximum energy gain acquired by an electron is calculated for all these three types of the laser pulse shapes. A comparative study infers that the RT pulse yields the best results: In its case maximum electron energy gain is 33.5 MeV for a 30 fs pulse duration whereas in case of GL (RG) pulse of the same duration the gain is 28.6 (28.8)MeV at the laser frequency of 1.6 PHz and the intensity of 3.0 × 10 18 W/m 2. The field of the wake and hence the energy gain get enhanced for the higher laser frequency, larger pulse duration and higher laser intensity for all types of the pulses.

  2. Emittance Measurements from a Laser Driven Electron Injector

    Energy Technology Data Exchange (ETDEWEB)

    Reis, David A

    2003-07-28

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 {angstrom}, the LCLS requires an electron injector that can produce an electron beam with approximately 1 {pi} mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the laser and electron beam at the GTF. A convolved measurement of the relative timing between the laser and the rf phase in the gun shows that the jitter is less than 2.5 ps rms. Emittance measurements of the electron beam at 35 MeV are reported as a function of the (Gaussian) pulse length and transverse profile of the laser as well as the charge of the electron beam at constant phase and gradient in both the gun and linac. At 1 nC the emittance was found to be {approx} 13 {pi} mm-mrad for 5 ps and 8 ps long laser pulses. At 0.5 nC the measured emittance decreased approximately 20% in the 5 ps case and 40% in the 8 ps case. These measurements are between 40-80% higher than simulations for similar experimental conditions. In addition, the thermal emittance of the electron beam was measured to be 0.5 {pi} mm-mrad.

  3. Bunch decompression for laser-plasma driven free-electron laser demonstration schemes

    Directory of Open Access Journals (Sweden)

    T. Seggebrock

    2013-07-01

    Full Text Available X-ray free-electron lasers (FELs require a very high electron beam quality in terms of emittance and energy spread. Since 2004 high quality electrons produced by laser-wakefield accelerators have been demonstrated, but the electron quality up to now did not allow the operation of a compact x-ray FEL using these electrons. Maier et al. [Phys. Rev. X 2, 031019 (2012PRXHAE2160-330810.1103/PhysRevX.2.031019] suggested a concept for a proof-of-principle experiment allowing FEL operation in the vacuum ultraviolet range based on an optimized undulator and bunch decompression using electron bunches from a laser-plasma accelerator as currently available. In this paper we discuss in more detail how a chicane can be used as a bunch stretcher instead of a bunch compressor to allow the operation of a laser-wakefield accelerator driven FEL using currently available electrons. A scaling characterizing the impact of bunch decompression on the gain length is derived and the feasibility of the concept is tested numerically in a demanding scenario.

  4. Inhomogeneous effects in the quantum free electron laser

    International Nuclear Information System (INIS)

    Piovella, N.; Bonifacio, R.

    2006-01-01

    We include inhomogeneous effects in the quantum model of a free electron laser taking into account the initial energy spread of the electron beam. From a linear analysis, we obtain a generalized dispersion relation, from which the exponential gain can be explicitly calculated. We determine the maximum allowed initial energy spread in the quantum exponential regime and we discuss the limit of large energy spread

  5. Vibrational analysis of a shipboard free electron laser beam path

    OpenAIRE

    Gallant, Bryan M.

    2011-01-01

    This thesis explores the deployment of a free electron laser (FEL) weapon system in a shipboard vibration environment. A concept solid model of a shipboard FEL is developed and used as a basis for a finite element model which is subjected to vibration simulation in MATLAB. Vibration input is obtained from ship shock trials data and wave excited motion data from ship motion simulation software. Emphasis is placed on the motion of electron beam path components of the FEL and the feasibility of ...

  6. Desorption by Femtosecond Laser Pulses : An Electron-Hole Effect?

    OpenAIRE

    D. M., NEWNS; T. F., HEINZ; J. A., MISEWICH; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center

    1992-01-01

    Desorption of molecules from metal surfaces induced by femtosecond visible laser pulses has been reported. Since the lattice temperature rise is insufficient to explain desorption, an electronic mechanism is clearly responsible. It is shown that a theory based on direct coupling between the center-of-mass degree of freedom of the adsorbate and the electron-hole excitations of the substrate provides a satisfactory explanation of the various experimental findings.

  7. Channeling of electrons in a crossed laser field

    Directory of Open Access Journals (Sweden)

    S. B. Dabagov

    2015-06-01

    Full Text Available In this article a new analytical description of the effective interaction potential for a charged particle with the field of two interfering laser beams is presented. The potential dependence on the lasers intensities, orientation and parameters of the particle entering the considered system is analyzed. For the first time the phenomenon of effective potential inversion (or “relativistic reversal” is described for arbitrary lasers crossing angle. Threshold electron velocity values for the phenomenon are introduced and its extended illustration based on numerical simulations for two laser beams polarizations is presented. In addition the projectile radiation spectral distribution is given and general estimations on the expected beam radiation yield are outlined.

  8. Microlens Array Laser Transverse Shaping Technique for Photoemission Electron Source

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois Univ., DeKalb, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ha, G. [Argonne National Lab. (ANL), Argonne, IL (United States); Pohang Univ. of Science and Technology (POSTECH) (Korea, Republic of); Qiang, G. [Argonne National Lab. (ANL), Argonne, IL (United States); Tsinghua Univ., Beijing (China); Gai, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Power, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Piot, P. [Northern Illinois Univ., DeKalb, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wisniewski, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Edstrom, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ruan, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Santucci, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-09-06

    A common issue encountered in photoemission electron sources used in electron accelerators is distortion of the laser spot due to non ideal conditions at all stages of the amplification. Such a laser spot at the cathode may produce asymmetric charged beams that will result in degradation of the beam quality due to space charge at early stages of acceleration and fail to optimally utilize the cathode surface. In this note we study the possibility of using microlens arrays to dramatically improve the transverse uniformity of the drive laser pulse on UV photocathodes at both Fermilab Accelerator Science \\& Technology (FAST) facility and Argonne Wakefield Accelerator (AWA). In particular, we discuss the experimental characterization of the homogeneity and periodic patterned formation at the photocathode. Finally, we compare the experimental results with the paraxial analysis, ray tracing and wavefront propagation software.

  9. Inverse free electron laser accelerator for advanced light sources

    Directory of Open Access Journals (Sweden)

    J. P. Duris

    2012-06-01

    Full Text Available We discuss the inverse free electron laser (IFEL scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

  10. Electronic dynamics induced by laser in (D)KDP crystals

    International Nuclear Information System (INIS)

    Duchateau, G.; Geoffroy, G.; Dyan, A.; Piombini, H.; Geoffroy, G.; Guizard, S.

    2011-01-01

    DKDP (KD 2 PO 4 ) and KDP (KH 2 PO 4 ) crystals that are used in frequency conversion systems have a damage threshold that limits the development of power lasers. It is assumed that laser-induced damage (LID) stems for a precursor defect present in the crystal or quickly generated by the laser-radiation. The Socrate bench has been useful for studying the evolution of LID but the understanding of the very beginning of the LID requires a new method. We have performed femtosecond interferometric measures to study the behaviour of charge carriers. We show that the valence electrons are excited through multi-photon absorption and their relaxation time depends on the isotope (hydrogen or deuterium). The various electron populations are computed through an adequate simulation and the comparison with experimental data has allowed us to get values for multi-photon absorption cross-sections and relaxation times

  11. Observation of laser multiple filamentation process and multiple electron beams acceleration in a laser wakefield accelerator

    International Nuclear Information System (INIS)

    Li, Wentao; Liu, Jiansheng; Wang, Wentao; Chen, Qiang; Zhang, Hui; Tian, Ye; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-01-01

    The multiple filaments formation process in the laser wakefield accelerator (LWFA) was observed by imaging the transmitted laser beam after propagating in the plasma of different density. During propagation, the laser first self-focused into a single filament. After that, it began to defocus with energy spreading in the transverse direction. Two filaments then formed from it and began to propagate independently, moving away from each other. We have also demonstrated that the laser multiple filamentation would lead to the multiple electron beams acceleration in the LWFA via ionization-induced injection scheme. Besides, its influences on the accelerated electron beams were also analyzed both in the single-stage LWFA and cascaded LWFA

  12. Synchrotron radiation and free electron laser activities in Novosibirsk

    International Nuclear Information System (INIS)

    Korchuganov, V.N.; Kulipanov, G.N.; Mezentsev, N.A.; Oreshkov, A.D.; Panchenko, V.E.; Pindyurin, V.F.; Skrinskij, A.N.; Sheromov, M.A.; Vinokurov, N.A.; Zolotarev, K.V.

    1994-01-01

    The results of studies realized in the Siberian synchrotron radiation centre within the frameworks of wide program of synchrotron radiation and free electron laser research are summarized. The technical information on the VEPP-2M, VEPP-3 and VEPP-4M storage rings used as synchrotron radiation sources is given. 10 refs.; 8 figs.; 12 tabs

  13. Emittance growth in laser-driven RF electron guns

    International Nuclear Information System (INIS)

    Kim, K.J.

    1989-01-01

    A simple analysis for the evolution of the electron-beam phase space distribution in laser-driven rf guns is presented. In particular, formulas are derived for the transverse and longitudinal emittances at the exit of the gun. The results are compared and found to agree well with those from simulation. (Author). 9 refs.; 4 figs

  14. Three-dimensional simulations of free-electron laser physics

    International Nuclear Information System (INIS)

    McVey, B.D.

    1985-09-01

    A computer code has been developed to simulate three-dimensional free-electron laser physics. A mathematical formulation of the FEL equations is presented, and the numerical solution of the problem is described. Sample results from the computer code are discussed. 23 refs., 6 figs., 2 tabs

  15. Modeling paraxial wave propagation in free-electron laser oscillators

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for

  16. Mechanisms for the production of harmonics in free electron lasers

    NARCIS (Netherlands)

    Elgin, J.N.; Penman, C.

    1991-01-01

    Harmonics in the radiation of a free electron laser are useful for extending the range of tuning, may originate in spontaneous or parametric processes, and can take part in stimulated emission or amplification. These mechanisms exhibit interesting analogies with those of nonlinear optics. Apart from

  17. Electron laser acceleration in vacuum by a quadratically chirped laser pulse

    International Nuclear Information System (INIS)

    Salamin, Yousef I; Jisrawi, Najeh M

    2014-01-01

    Single MeV electrons in vacuum subjected to single high-intensity quadratically chirped laser pulses are shown to gain multi-GeV energies. The laser pulses are modelled by finite-duration trapezoidal and cos  2 pulse-shapes and the equations of motion are solved numerically. It is found that, typically, the maximum energy gain from interaction with a quadratic chirp is about half of what would be gained from a linear chirp. (paper)

  18. Electron beam requirements for soft x-ray/XUV free-electron lasers

    International Nuclear Information System (INIS)

    Goldstein, J.C.

    1987-01-01

    A discussion of the electron beam quality (peak current, energy spread, and transverse emittance) required to drive short wavelength free-electron lasers in the XUV (10-100 nm) and soft x-ray (<10 nm) optical wavelength ranges is presented

  19. Intensity dependence of electron gas kinetics in a laser corona

    Directory of Open Access Journals (Sweden)

    Mašek Martin

    2013-11-01

    Full Text Available In various experimental situations relevant to the laser fusion, such as plasma near the light entrance holes of hohlraum in the indirect drive experiments or more recently in the shock ignition direct drive a relatively long underdense plasma of corona type is encountered, which is subject to an intense nanosecond laser beam. The plasma is only weakly collisional and thus in the electron phase space a complicated kinetic evolution is going on, which is taking the electron gas fairly far from the thermal equilibrium and contributes to its unstable behaviour. These phenomena impede the absorption and thermalization of the incoming laser energy, create groups of fast electrons and also may lead to a non-linear reflection of the heating laser beam. One of the key processes leading to the electron acceleration is the stimulated Raman scattering (SRS in its non-linear phase. The SRS in the presence of electron-ion collisions requires a certain threshold intensity above which the mentioned non-dissipative phenomena can occur and develop to the stage, where they may become unpleasant for the fusion experiments. To assess this intensity limit a computational model has been developed based on the Vlasov-Maxwell kinetics describing such a plasma in 1D geometry. At a relatively high intensity of 1016 W/cm2 a number of non-linear phenomena are predicted by the code such as a saturation of Landau damping, which is then translated in an unfavourable time dependence of the reflected light intensity and formation of accelerated electron groups due to the electron trapping. The purpose of the present contribution is to map the intensity dependence of this non-linear development with the aim of assessing its weight in fusion relevant situations.

  20. The free electron laser: a system capable of determining the gold standard in laser vision correction

    International Nuclear Information System (INIS)

    Fowler, W. Craig; Rose, John G.; Chang, Daniel H.; Proia, Alan D.

    1999-01-01

    Introduction. In laser vision correction surgery, lasers are generally utilized based on their beam-tissue interactions and corneal absorption characteristics. Therefore, the free electron laser, with its ability to provide broad wavelength tunability, is a unique research tool for investigating wavelengths of possible corneal ablation. Methods. Mark III free electron laser wavelengths between 2.94 and 6.7 μm were delivered in serial 0.1 μm intervals to corneas of freshly enucleated porcine globes. Collateral damage, ablation depth, and ablation diameter were measured in histologic sections. Results. The least collateral damage (12-13 μm) was demonstrated at three wavelengths: 6.0, 6.1 (amide I), and 6.3 μm. Minimal collateral damage (15 μm) was noted at 2.94 μm (OH-stretch) and at 6.2 μm. Slightly greater collateral damage was noted at 6.45 μm (amide II), as well as at the 5.5-5.7 μm range, but this was still substantially less than the collateral damage noted at the other wavelengths tested. Conclusions. Our results suggest that select mid-infrared wavelengths have potential for keratorefractive surgery and warrant additional study. Further, the free electron laser's ability to allow parameter adjustment in the far-ultraviolet spectrum may provide unprecedented insights toward establishing the gold-standard parameters for laser vision correction surgery

  1. Electron energy and electron trajectories in an inverse free-electron laser accelerator based on a novel electrostatic wiggler

    Science.gov (United States)

    Nikrah, M.; Jafari, S.

    2016-06-01

    We expand here a theory of a high-gradient laser-excited electron accelerator based on an inverse free-electron laser (inverse-FEL), but with innovations in the structure and design. The electrostatic wiggler used in our scheme, namely termed the Paul wiggler, is generated by segmented cylindrical electrodes with applied oscillatory voltages {{V}\\text{osc}}(t) over {{90}\\circ} segments. The inverse-FEL interaction can be described by the equations that govern the electron motion in the combined fields of both the laser pulse and Paul wiggler field. A numerical study of electron energy and electron trajectories has been made using the fourth-order Runge-Kutta method. The results indicate that the electron attains a considerable energy at short distances in this device. It is found that if the electron has got sufficient suitable wiggler amplitude intensities, it can not only gain higher energy in longer distances, but also can retain it even after the passing of the laser pulse. In addition, the results reveal that the electron energy gains different peaks for different initial axial velocities, so that a suitable small initial axial velocity of e-beam produces substantially high energy gain. With regard to the transverse confinement of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this device.

  2. Improvement of the quality of laser-wakefield accelerators: towards a compact free-electron laser

    International Nuclear Information System (INIS)

    Lehe, R.

    2014-01-01

    When an intense and short laser pulse propagates through an underdense gas, it can accelerate a fraction of the electrons of the gas, and thereby generate an electron bunch with an energy of a few hundreds of MeV. This phenomenon, which is referred to as laser-wakefield acceleration, has many potential applications, including the design of ultra-bright X-ray sources known as free electron lasers (FEL). However, these applications require the electron bunch to have an excellent quality (low divergence, emittance and energy spread). In this thesis, different solutions to improve the quality of the electron bunch are developed, both analytically and through the use of Particle-In-Cell (PIC) simulations. It is first shown however that PIC simulations tend to erroneously overestimate the emittance of the bunch, due to the numerical Cherenkov effect. Thus, in order to correctly estimate the emittance, a modified PIC algorithm is proposed, which is not subject to this unphysical Cherenkov effect. Using this algorithm, we have observed and studied a new mechanism to generate the electron bunch: optical transverse injection. This mechanism can produce bunches with a high charge, a low emittance and a low energy spread. In addition, we also proposed an experimental setup - the laser-plasma lens - which can strongly reduce the final divergence of the bunch. Finally, these results are put into context by discussing the properties required for the design of a compact FEL. It is shown in particular that laser-wakefield accelerator could be advantageously combined with innovative laser-plasma undulators, in order to produce bright X-rays sources. (author)

  3. UV-laser treatment of nanodiamond seeds - a valuable tool for modification of nanocrystalline diamond films properties

    International Nuclear Information System (INIS)

    Vlček, J; Fitl, P; Vrňata, M; Fekete, L; Taylor, A; Fendrych, F

    2013-01-01

    This work aimed to study the UV-laser treatment of precursor (i.e. nanodiamond (ND) seeds on silicon substrates) and its influence on the properties of grown nanocrystalline diamond (NCD) films. Pulsed Nd:YAG laser operating at the fourth harmonic frequency (laser fluence E L = 250 mJ cm -2 , pulse duration 5 ns) was used as a source, equipped with an optical system for focusing laser beam onto the sample, allowing exposure of a local spot and horizontal patterning. The variable parameters were: number of pulses (from 5 to 400) and the working atmosphere (He, Ar and O 2 ). Ablation and/or graphitization of seeded nanodiamond particles were observed. Further the microwave plasma-enhanced chemical vapour deposition was employed to grow NCD films on exposed and non-exposed areas of silicon substrates. The size, shape and density distribution of laser-treated nanodiamond seeds were observed by atomic force microscopy (AFM) and their chemical composition by x-ray photoelectron spectroscopy (XPS) analysis. The resulting NCD films (uniform thickness of 400 nm) were characterized by: Raman spectroscopy to analyse occurrence of graphitic phase, and AFM to observe morphology and surface roughness. The highest RMS roughness (∼85 nm) was achieved when treating the precursor in He atmosphere. Horizontal microstructures of diamond films were fabricated.

  4. Property Investigation of Laser Cladded, Laser Melted and Electron Beam Melted Ti-Al6-V4

    Science.gov (United States)

    2006-05-01

    UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Figure 3: Examples of electron beam melted net shape parts; powder bed [3]. 1.4 Laser Cladding ...description, www.arcam.com. [4] K.-H. Hermann, S. Orban, S. Nowotny, Laser Cladding of Titanium Alloy Ti6242 to Restore Damaged Blades, Proceedings...Property Investigation of Laser Cladded , Laser Melted and Electron Beam Melted Ti-Al6-V4 Johannes Vlcek EADS Deutschland GmbH Corporate Research

  5. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.

    2005-01-01

    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (∼20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes

  6. A new far infrared free-electron laser

    CERN Document Server

    Walsh, J E; Swartz, J C; Urata, J; Kimmitt, M F

    1999-01-01

    The operation of a new ultra compact diffraction grating coupled free-electron laser (FEL) has been demonstrated. The basic elements of the device which is termed a grating coupled oscillator (GCO) are the beam in a scanning electron microscope (SEM) and a diffraction grating which is mounted in the e-beam focal region of the SEM. The e-beam is controlled by the SEM's electron optical system and distributed feed back is provided by the grating itself. Recent experimental results are presented and techniques for extending the wavelength and power coverage are discussed.

  7. A new far infrared free-electron laser

    International Nuclear Information System (INIS)

    Walsh, J.E.; Brownell, J.H.; Swartz, J.C.; Urata, J.; Kimmitt, M.F.

    1999-01-01

    The operation of a new ultra compact diffraction grating coupled free-electron laser (FEL) has been demonstrated. The basic elements of the device which is termed a grating coupled oscillator (GCO) are the beam in a scanning electron microscope (SEM) and a diffraction grating which is mounted in the e-beam focal region of the SEM. The e-beam is controlled by the SEM's electron optical system and distributed feed back is provided by the grating itself. Recent experimental results are presented and techniques for extending the wavelength and power coverage are discussed

  8. A new far infrared free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, J.E.; Brownell, J.H.; Swartz, J.C.; Urata, J.; Kimmitt, M.F

    1999-06-01

    The operation of a new ultra compact diffraction grating coupled free-electron laser (FEL) has been demonstrated. The basic elements of the device which is termed a grating coupled oscillator (GCO) are the beam in a scanning electron microscope (SEM) and a diffraction grating which is mounted in the e-beam focal region of the SEM. The e-beam is controlled by the SEM's electron optical system and distributed feed back is provided by the grating itself. Recent experimental results are presented and techniques for extending the wavelength and power coverage are discussed.

  9. Transient analysis of a bunched beam free electron laser

    International Nuclear Information System (INIS)

    Wang, J.M.; Yu, L.H.

    1985-01-01

    The problem of the bunched beam operation of a free electron laser was studied. Assuming the electron beam to be initially monoenergetic, the Maxwell-Vlasov equations describing the system reduce to a third order partial differential equation for the envelope of the emitted light. The Green's function corresponding to an arbitrary shape of the electron bunch, which describes the transient behavior of the system, is obtained. The Green's function was used to discuss the start up problem as well as the power output and the power specrum of a self-amplified spontaneous emission

  10. High-energy inverse free-electron laser accelerator

    International Nuclear Information System (INIS)

    Courant, E.D.; Pellegrini, C.; Zakowicz, W.

    1985-01-01

    We study the inverse free electron laser (IFEL) accelerator and show that it can accelerate electrons to the few hundred GeV region with average acceleration rates of the order of 200 meV/m. Several possible accelerating structures are analyzed, and the effect of synchrotron radiation losses is studied. The longitudinal phase stability of accelerated particles is also analyzed. A Hamiltonian description, which takes into account the dissipative features of the IFEL accelerator, is introduced to study perturbations from the resonant acceleration. Adiabatic invariants are obtained and used to estimate the change of the electron phase space density during the acceleration process

  11. Criterion of transverse coherence of self-amplified spontaneous emission in high gain free electron laser amplifiers

    International Nuclear Information System (INIS)

    Xie, M.; Kim, K.J.

    1995-01-01

    In a high gain free electron laser amplifier based on Self-Amplified Spontaneous Emission (SASE) the spontaneous radiation generated by an electron beam near the undulator entrance is amplified many orders of magnitude along the undulator. The transverse coherence properties of the amplified radiation depends on both the amplification process and the coherence of the seed radiation (the undulator radiation generated in the first gain length or so). The evolution of the transverse coherence in the amplification process is studied based on the solution of the coupled Maxwell-Vlasov equations including higher order transverse modes. The coherence of the seed radiation is determined by the number of coherent modes in the phase space area of the undulator radiation. We discuss the criterion of transverse coherence and identify governing parameters over a broad range of parameters. In particular we re-examine the well known emittance criterion for the undulator radiation, which states that full transverse coherence is guaranteed if the rms emittance is smaller than the wavelength divided by 4π. It is found that this criterion is modified for SASE because of the different optimization conditions required for the electron beam. Our analysis is a generalization of the previous study by Yu and Krinsky for the case of vanishing emittance with parallel electron beam. Understanding the transverse coherence of SASE is important for the X-ray free electron laser projects now under consideration at SLAC and DESY

  12. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Bradley Bolt [Univ. of California, San Diego, CA (United States)

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  13. Large area electron beam pumped krypton fluoride laser amplifier

    International Nuclear Information System (INIS)

    Sethian, J.D.; Obenschain, S.P.; Gerber, K.A.; Pawley, C.J.; Serlin, V.; Sullivan, C.A.; Webster, W.; Deniz, A.V.; Lehecka, T.; McGeoch, M.W.; Altes, R.A.; Corcoran, P.A.; Smith, I.D.; Barr, O.C.

    1997-01-01

    Nike is a recently completed multi-kilojoule krypton fluoride (KrF) laser that has been built to study the physics of direct drive inertial confinement fusion. This paper describes in detail both the pulsed power and optical performance of the largest amplifier in the Nike laser, the 60 cm amplifier. This is a double pass, double sided, electron beam-pumped system that amplifies the laser beam from an input of 50 J to an output of up to 5 kJ. It has an optical aperture of 60 cm x 60 cm and a gain length of 200 cm. The two electron beams are 60 cm high x 200 cm wide, have a voltage of 640 kV, a current of 540 kA, and a flat top power pulse duration of 250 ns. A 2 kG magnetic field is used to guide the beams and prevent self-pinching. Each electron beam is produced by its own Marx/pulse forming line system. The amplifier has been fully integrated into the Nike system and is used on a daily basis for laser-target experiments. copyright 1997 American Institute of Physics

  14. Laser-assisted electron emission from gated field-emitters

    CERN Document Server

    Ishizuka, H; Yokoo, K; Mimura, H; Shimawaki, H; Hosono, A

    2002-01-01

    Enhancement of electron emission by illumination of gated field-emitters was studied using a 100 mW cw YAG laser at a wavelength of 532 nm, intensities up to 10 sup 7 W/m sup 2 and mechanically chopped with a rise time of 4 mu s. When shining an array of 640 silicon emitters, the emission current responded quickly to on-off of the laser. The increase of the emission current was proportional to the basic emission current at low gate voltages, but it was saturated at approx 3 mu A as the basic current approached 100 mu A with the increase of gate voltage. The emission increase was proportional to the square root of laser power at low gate voltages and to the laser power at elevated gate voltages. For 1- and 3-tip silicon emitters, the rise and fall of the current due to on-off of the laser showed a significant time lag. The magnitude of emission increase was independent of the position of laser spot on the emitter base and reached 2 mu A at a basic current of 5 mu A without showing signs of saturation. The mech...

  15. Electronic structure of trypsin inhibitor from squash seeds in aqueous solution

    Science.gov (United States)

    Zheng, Haoping

    2000-10-01

    The electronic structure of the trypsin inhibitor from seeds of the squash Cucurbita maxima (CMTI-I) in aqueous solution is obtained by ab initio, all-electron, full-potential calculations using the self-consistent cluster-embedding (SCCE) method. The reactive site of the inhibitor is explained theoretically, which is in agreement with the experimental results. It is shown that the coordinates of oxygen atoms in the inhibitor, determined by nuclear magnetic resonance and combination of distance geometry and dynamical simulated annealing, are systematically less accurate than that of other kinds of heavy atoms.

  16. Electron transfer and photophosphorylation in mitochondria of buckwheat after irradiation of seeds with. gamma. -rays

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, V A; Kurganova, L N; Gorlanova, T M [Gor' kovskij Gosudarstvennyj Univ. (USSR)

    1974-11-01

    Pre-sowing irradiation of seeds at 500 R activates the transfer of electrons by photosynthetic electron transfer path of isolated buchwheat chloroplasts in the ontogenesis and stimulates the conjugated photosynthetic phosphorilation. An increased content of NADPxH/sub 2/ is observed along with an elevated level of ATP production. Intensification of oxidative phosphorilation and growth of the P/O ratio of mitochondria has been shown in the ''irradiated'' plants, together with a concomitant increase of ATPhase activity in chloroplasts and mitochondria.

  17. Nonlinear electron transport in magnetized laser plasmas

    International Nuclear Information System (INIS)

    Kho, T.H.; Haines, M.G.

    1986-01-01

    Electron transport in a magnetized plasma heated by inverse bremsstrahlung is studied numerically using a nonlinear Fokker--Planck model with self-consistent E and B fields. The numerical scheme is described. Nonlocal transport is found to alter many of the transport coefficients derived from linear transport theory, in particular, the Nernst and Righi--Leduc effects, in addition to the perpendicular heat flux q/sub perpendicular/, are substantially reduced near critical surface. The magnetic field, however, remains strongly coupled to the nonlinear q/sub perpendicular/ and, as has been found in hydrosimulations, convective amplification of the magnetic field occurs in the overdense plasma

  18. High-current electron accelerator for gas-laser pumping

    Energy Technology Data Exchange (ETDEWEB)

    Badaliants, G R; Mamikonian, V A; Nersisian, G Ts; Papanian, V O

    1978-11-26

    A high-current source of pulsed electron beams has been developed for the pumping of UV gas lasers. The parameters of the device are: energy of 0.3-0.7 MeV pulse duration of 30 ns and current density (in a high-pressure laser chamber) of 40-100 A/sq cm. The principal feature of the device is the use of a rectangular cold cathode with incomplete discharge along the surface of the high-permittivity dielectric. Cathodes made of stainless steel, copper, and graphite were investigated.

  19. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    Science.gov (United States)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  20. Investigation of electron heating in laser-plasma interaction

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2013-03-01

    Full Text Available  In this paper, stimulated Raman scattering (SRS and electron heating in laser plasma propagating along the plasma fusion is investigated by particle-in cell simulation. Applying an external magnetic field to plasma, production of whistler waves and electron heating associated with whistler waves in the direction perpendicular to external magnetic field was observed in this simulation. The plasma waves with low phase velocities, generated in backward-SRS and dominateing initially in time and space, accelerated the backward electrons by trapping them. Then these electrons promoted to higher energies by the forward-SRS plasma waves with high phase velocities. This tow-stage electron acceleration is more efficient due to the coexistence of these two instabilities.

  1. Investigation of electron heating in laser-plasma interaction

    International Nuclear Information System (INIS)

    Parvazian, A.; Haji Sharifi, K.

    2013-01-01

    In this paper, stimulated Raman scattering and electron heating in laser plasma propagating along the plasma fusion is investigated by particle-in cell simulation. Applying an external magnetic field to plasma, production of whistler waves and electron heating associated with whistler waves in the direction perpendicular to external magnetic field was observed in this simulation. The plasma waves with low phase velocities, generated in backward-stimulated Raman scattering and dominating initially in time and space, accelerated the backward electrons by trapping them. Then these electrons promoted to higher energies by the forward-stimulated Raman scattering plasma waves with high phase velocities. This two-stage electron acceleration is more efficient due to the coexistence of these two instabilities.

  2. Laser pulse control of bridge mediated heterogeneous electron transfer

    International Nuclear Information System (INIS)

    Wang Luxia; May, Volkhard

    2009-01-01

    Ultrafast heterogeneous electron transfer from surface attached dye molecules into semiconductor band states is analyzed. The focus is on systems where the dye is separated from the surface by different bridge anchor groups. To simulate the full quantum dynamics of the transfer process a model of reduced dimensionality is used. It comprises the electronic levels of the dye, the bridge anchor group electronic levels and the continuum of semiconductor band states, all defined versus a single intramolecular vibrational coordinate. The effect of the bridge states is demonstrated, firstly, in studying the injection dynamics following an impulsive excitation of the dye. Then, by discussing different control tasks it is demonstrate in which way the charge injection process can be influenced by tailored laser pulses. To highlight the importance of electron wave function interference emphasis is put on asymmetric two-bridge molecule systems which are also characterized by different and complex valued electronic transfer matrix elements.

  3. Beam manipulation for compact laser wakefield accelerator based free-electron lasers

    International Nuclear Information System (INIS)

    Loulergue, A; Labat, M; Benabderrahmane, C; Couprie, M E; Evain, C; Malka, V

    2015-01-01

    Free-electron lasers (FELs) are a unique source of light, particularly in the x-ray domain. After the success of FELs based on conventional acceleration using radio-frequency cavities, an important challenge is the development of FELs based on electron bunching accelerated by a laser wakefield accelerator (LWFA). However, the present LWFA electron bunch properties do not permit use directly for a significant FEL amplification. It is known that longitudinal decompression of electron beams delivered by state-of-the-art LWFA eases the FEL process. We propose here a second order transverse beam manipulation turning the large inherent transverse chromatic emittances of LWFA beams into direct FEL gain advantage. Numerical simulations are presented showing that this beam manipulation can further enhance by orders of magnitude the peak power of the radiation. (paper)

  4. Emittance Measurements from a Laser Driven Electron Injector

    CERN Document Server

    Reis, D

    2003-01-01

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 (angstrom), the LCLS requires an electron injector that can produce an electron beam with approximately 1 pi mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the ...

  5. High quality electron beams from a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, S M; Issac, R C; Welsh, G H; Brunetti, E; Shanks, R P; Anania, M P; Cipiccia, S; Manahan, G G; Aniculaesei, C; Ersfeld, B; Islam, M R; Burgess, R T L; Vieux, G; Jaroszynski, D A [SUPA, Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Gillespie, W A [SUPA, Division of Electronic Engineering and Physics, University of Dundee, Dundee (United Kingdom); MacLeod, A M [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee (United Kingdom); Van der Geer, S B; De Loos, M J, E-mail: m.wiggins@phys.strath.ac.u [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2010-12-15

    High quality electron beams have been produced in a laser-plasma accelerator driven by femtosecond laser pulses with a peak power of 26 TW. Electrons are produced with an energy up to 150 MeV from the 2 mm gas jet accelerator and the measured rms relative energy spread is less than 1%. Shot-to-shot stability in the central energy is 3%. Pepper-pot measurements have shown that the normalized transverse emittance is {approx}1{pi} mm mrad while the beam charge is in the range 2-10 pC. The generation of high quality electron beams is understood from simulations accounting for beam loading of the wakefield accelerating structure. Experiments and self-consistent simulations indicate that the beam peak current is several kiloamperes. Efficient transportation of the beam through an undulator is simulated and progress is being made towards the realization of a compact, high peak brilliance free-electron laser operating in the vacuum ultraviolet and soft x-ray wavelength ranges.

  6. Multiple purpose research complex on the basis of electron accelerators and terahertz free electron laser

    International Nuclear Information System (INIS)

    Kulipanov, G.N.

    2009-01-01

    In this report the basic positioning parameters of multiple purpose research complex are presented, the list of potential experiments and technological uses on the example of results received in the multiuser center of G.I. Budker Institut of nuclear physics Siberian department of the Russian Academy of Sciences is discussed. This research complex is directed on work in the big universities and nano technology centers. Electron accelerators is intended for development of electron-beam technologies different material modification, for production of nano powder, nano materials and solution of ecological tasks. In this work the project of multiple purpose research complex on the basis of new generation electron accelerator Il-14 and workable terahertz free electron laser is suggested. Terahertz free electron laser will be used for researches in the sphere of physics and chemistry, biology and medicine, nanotechnology engineering and different methods of nanodiagnostics.

  7. Accelerator for medical applications and electron acceleration by laser plasma

    International Nuclear Information System (INIS)

    Hosokai, Tomonao; Uesaka, Mitsuru

    2006-01-01

    In this article, the current status of radiation therapies in Japan and updated medical accelerators are reviewed. For medical use, there is a strong demand of a compact and flexible accelerator. At present, however, we have only two choices of the S-band linac with one or two rotation axis combined with the multi leaf collimator, or the X-band linac with a rather flexible robotic arm. In addition, the laser plasma cathode that is the second generation of the laser wake-field accelerator (LWFA) is studied as a high-quality electron source for medical use though it is still at the stage of the basic research. The potential of LWFA as medical accelerator near future is discussed based on updated results of laser plasma cathode experiment in Univ. of Tokyo. (author)

  8. Relativistic electron mirrors from high intensity laser nanofoil interactions

    International Nuclear Information System (INIS)

    Kiefer, Daniel

    2012-01-01

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ 2 , where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  9. Relativistic electron mirrors from high intensity laser nanofoil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Daniel

    2012-12-21

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ{sup 2}, where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  10. Technical feasibility for electron beam application on maize seeds disinfection for maize cultivation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Zago, Claudia [Proenco Brasil Ltda. (Brazil)]. E-mail: clauzago@uol.com.br; Rela, Paulo Roberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (brazil). Centro de Tecnologia das Radiacoes]. E-mail: prela@ipen.br

    2007-07-01

    Among the man made activities agriculture plays a fundamental rule on the interference with environment; new alternatives for clean technologies are being searched in order to reduce the impact and degradation of the environment. This work presents a feasibility study to implement in Brazil a technology using electron beam treatment to disinfect maize seeds avoiding the spoilage from pathogens microorganisms. This technology was developed in Germany by Fraunhofer Institut FEP (Dresden) and the private company Schmidt-Seeger AG. It was patented as 'e-ventus'. Concerning to the technical feasibility it shows to be quite useful due to the results of the experiments performed in other countries with maize seeds and properly for the large amount to be treated in the country. Under the environmental management it is quite advantageous when compared with the traditional technology that uses chemical seed dressing agents. Nevertheless for a large scale commercial application it is necessary a cost analyse comparison study between the traditional technology and the alternative using electron beam. (author)

  11. Technical feasibility for electron beam application on maize seeds disinfection for maize cultivation in Brazil

    International Nuclear Information System (INIS)

    Zago, Claudia; Rela, Paulo Roberto

    2007-01-01

    Among the man made activities agriculture plays a fundamental rule on the interference with environment; new alternatives for clean technologies are being searched in order to reduce the impact and degradation of the environment. This work presents a feasibility study to implement in Brazil a technology using electron beam treatment to disinfect maize seeds avoiding the spoilage from pathogens microorganisms. This technology was developed in Germany by Fraunhofer Institut FEP (Dresden) and the private company Schmidt-Seeger AG. It was patented as 'e-ventus'. Concerning to the technical feasibility it shows to be quite useful due to the results of the experiments performed in other countries with maize seeds and properly for the large amount to be treated in the country. Under the environmental management it is quite advantageous when compared with the traditional technology that uses chemical seed dressing agents. Nevertheless for a large scale commercial application it is necessary a cost analyse comparison study between the traditional technology and the alternative using electron beam. (author)

  12. CAS on Free-Electron Lasers and Energy Recovery Linacs in Hamburg

    CERN Multimedia

    CERN Accelerator School

    2016-01-01

    The CERN Accelerator School (CAS) and DESY held a jointly-organised specialised course on Free-Electron Lasers and Energy Recovery Linacs (FELs and ERLs) in Hamburg, Germany, from 31 May to 10 June 2016.      The course was held in the Hotel Scandic Emporio in Hamburg and was attended by 68 participants of 13 nationalities, coming from countries as far away as China, Iran and Japan. The intensive programme comprised 44 lectures and one seminar. Following introductory lectures on electromagnetism, relativity and synchrotron radiation issues, the basic requirements of linacs and ERLs were discussed. Detailed lectures on the theory of FEL science followed. Undulators and the process of lasing and seeding were covered in some detail along with lectures on various beam dynamics and beam control issues. Case studies, for which seven hours were allocated, completed the academic programme. For these, the students were divided into small groups and tasked with completing the basic desig...

  13. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues

    Science.gov (United States)

    Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.

    2015-06-01

    Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.

  14. Laser-driven injector of electrons for IOTA

    Science.gov (United States)

    Romanov, Aleksandr

    2017-03-01

    Fermilab is developing the Integrable Optics Test Accelerator (IOTA) ring for experiments on nonlinear integrable optics. The machine will operate with either electron beams of 150 MeV or proton beams of 2.5 MeV energies, respectively. The stability of integrable optics depends critically on the precision of the magnetic lattice, which demands the use of beam-based lattice measurements for optics correction. In the proton mode, the low-energy proton beam does not represent a good probe for this application; hence we consider the use of a low-intensity reverse-injected electron beam of matched momentum (70 MeV). Such an injector could be implemented with the use of laser-driven acceleration techniques. This report presents the consideration for a laser-plasma injector for IOTA and discusses the requirements determined by the ring design.

  15. Applications of Free Electron Lasers in Biology and Medicine

    International Nuclear Information System (INIS)

    Pelka, J.B.; Tybor, K.R.; Nietubyc, R.; Wrochna, G.

    2010-01-01

    The advent of free electron lasers opens up new opportunities to probe the dynamics of ultrafast processes and the structure of matter with unprecedented spatial and temporal resolution. New methods inaccessible with other known types of radiation sources can be developed, resulting in a breakthrough in deep understanding the fundamentals of life as well as in numerous medical and biological applications. In the present work the properties of free electron laser radiation that make the sources excellent for probing biological matter at an arbitrary wavelength, in a wide range of intensities and pulse durations are briefly discussed. A number of biophysical and biomedical applications of the new sources, currently considered among the most promising in the field, are presented. (author)

  16. Charged beam dynamics, particle accelerators and free electron lasers

    CERN Document Server

    Dattoli, Giuseppe; Sabia, Elio; Artioli, Marcello

    2017-01-01

    Charged Beam Dynamics, Particle Accelerators and Free Electron Lasers summarises different topics in the field of accelerators and of Free Electron Laser (FEL) devices. It is intended as a reference manual for the different aspects of FEL devices, explaining how to design both a FEL device and the accelerator providing the driving beam. It covers both theoretical and experimental aspects, allowing researchers to attempt a first design of a FEL device in different operating conditions. It provides an analysis of what is already available, what is needed, and what the challenges are to determine new progress in this field. All chapters contain complements and exercises that are designed in such a way that the reader will gradually acquire self-confidence with the matter treated in the book.

  17. Electron injection by evolution of self-modulated laser wakefields

    International Nuclear Information System (INIS)

    Kim, Changbum; Kim, Guang-Hoon; Kim, Jong-Uk; Lee, Hae June; Suk, Hyyong; Ko, In Soo

    2003-01-01

    Self-injection mechanisms in the self-modulated laser wakefield acceleration (SM-LWFA) are investigated. Two-dimensional (2D) particle-in-cell (PIC) simulations show that a significant amount of plasma electrons can be self-injected into the acceleration phase of a laser wakefield by a dynamic increase in the wake wavelength in the longitudinal direction. In this process, it is found that the wake wavelength increases due to the relativistic effect and this leads to a large amount of electron injection into the wakefields. In this paper, the injection phenomena are studied with 2D simulations and a brief explanation of the new self-injection mechanism is presented. (author)

  18. High-brightness electron source driven by laser

    International Nuclear Information System (INIS)

    Zhao Kui; Geng Rongli; Wang Lifang

    1996-01-01

    A DC high-brightness laser driven by photo emissive electron gun is being developed at Beijing University, in order to produce 50∼100 ps electron bunches of high quality. The gun consists of a photocathode preparation chamber and a DC acceleration cavity. Different ways of fabricating photocathode, such as chemical vapor deposition, ion beam implantation and ion beam enhanced deposition, can be adopted. The acceleration gap is designed with the aid of simulation codes EGUN and POISSON. 100 kV DC high voltage is fed to the anode through a careful designed ceramic insulator. The laser system is a mode locked Nd-YAG oscillator proceeded by an amplifier at 10 Hz repetition rate, which can deliver three different wavelength (1064/532/266 nm). The combination of a superconducting cavity with the photocathode preparation chamber is discussed

  19. The stability of free-electron lasers against filamentation

    International Nuclear Information System (INIS)

    Barnard, J.J.; Scharlemann, E.T.; Yu, S.S.

    1987-01-01

    In inertial confinement fusion (ICF) experiments, the high electromagnetic fields propagating through a relatively dense plasma can result in a transverse instability, causing the matter and light to form filaments oriented parallel to the light beam. We examine whether a similar instability exists in the electron beam of a free-electron laser, where such an instability could interfere with the transfer of beam kinetic energy into optical wave energy. We heuristically examine the instability in a relativistic beam through which an intense laser beam is propagating. We ignore the FEL effects. We estimate how the altered index of refraction in an FEL affects the dispersion relation. Finally, we estimate the effect that the instability could have on the phase coherence of a particle as it transits an FEL. 10 refs., 2 tabs

  20. Crystallographic data processing for free-electron laser sources

    International Nuclear Information System (INIS)

    White, Thomas A.; Barty, Anton; Stellato, Francesco; Holton, James M.; Kirian, Richard A.; Zatsepin, Nadia A.; Chapman, Henry N.

    2013-01-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam

  1. Crystallographic data processing for free-electron laser sources

    Energy Technology Data Exchange (ETDEWEB)

    White, Thomas A., E-mail: taw@physics.org; Barty, Anton; Stellato, Francesco [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Holton, James M. [University of California, San Francisco, CA 94158 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kirian, Richard A. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Arizona State University, Tempe, AZ 85287 (United States); Zatsepin, Nadia A. [Arizona State University, Tempe, AZ 85287 (United States); Chapman, Henry N. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2013-07-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.

  2. Electron dynamics in RF sources with a laser controlled emission

    CERN Document Server

    Khodak, I V; Metrochenko, V V

    2001-01-01

    Photoemission radiofrequency (RF) electron sources are sources of electron beams with extremely high brightness. Beam bunching processes in such devices are well studied in case when laser pulse duration is much lower of rf oscillation period.At the same time photoemission RF guns have some merits when operating in 'long-pulse' mode. In this case the laser pulse duration is much higher of rf oscillation period but much lower of rise time of oscillations in a gun cavity. Beam parameters at the gun output are compared for photoemission and thermoemission cathode applications. The paper presents results of a beam dynamics simulation in such guns with different resonance structures. Questions connected with defining of the current pulse peak value that can be obtained in such guns are discussed.

  3. Advanced laser technologies for high-brightness photocathode electron gun

    International Nuclear Information System (INIS)

    Tomizawa, Hiromitsu

    2012-01-01

    A laser-excited photocathode RF gun is one of the most reliable high-brightness electron beam sources for XFELs. Several 3D laser shaping methods have been developed as ideal photocathode illumination sources at SPring-8 since 2001. To suppress the emittance growth caused by nonlinear space-charge forces, the 3D cylindrical UV-pulse was optimized spatially as a flattop and temporally as squarely stacked chirped pulses. This shaping system is a serial combination of a deformable mirror that adaptively shapes the spatial profile with a genetic algorithm and a UV-pulse stacker that consists of four birefringent α-BBO crystal rods for temporal shaping. Using this 3D-shaped pulse, a normalized emittance of 1.4 πmm mrad was obtained in 2006. Utilizing laser's Z-polarization, Schottky-effect-gated photocathode gun was proposed in 2006. The cathode work functions are reduced by a laser-induced Schottky effect. As a result of focusing a radially polarized laser pulse with a hollow lens in vacuum, the Z-field (Z-polarization) is generated at the cathode. (author)

  4. Electron heating enhancement by frequency-chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, E.; Afarideh, H., E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Riazi, Z. [Physics and Accelerator School, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  5. Advanced Laser Technologies for High-brightness Photocathode Electron Gun

    Science.gov (United States)

    Tomizawa, Hiromitsu

    A laser-excited photocathode RF gun is one of the most reliable high-brightness electron beam sources for XFELs. Several 3D laser shaping methods have been developed as ideal photocathode illumination sources at SPring-8 since 2001. To suppress the emittance growth caused by nonlinear space-charge forces, the 3D cylindrical UV-pulse was optimized spatially as a flattop and temporally as squarely stacked chirped pulses. This shaping system is a serial combination of a deformable mirror that adaptively shapes the spatial profile with a genetic algorithm and a UV-pulse stacker that consists of four birefringent α-BBO crystal rods for temporal shaping. Using this 3D-shaped pulse, a normalized emittance of 1.4 π mm mrad was obtained in 2006. Utilizing laser's Z-polarization, Schottky-effect-gated photocathode gun was proposed in 2006. The cathode work functions are reduced by a laser-induced Schottky effect. As a result of focusing a radially polarized laser pulse with a hollow lens in vacuum, the Z-field (Z-polarization) is generated at the cathode.

  6. Heat transfer between adsorbate and laser-heated hot electrons

    International Nuclear Information System (INIS)

    Ueba, H; Persson, B N J

    2008-01-01

    Strong short laser pulses can give rise to a strong increase in the electronic temperature at metal surfaces. Energy transfer from the hot electrons to adsorbed molecules may result in adsorbate reactions, e.g. desorption or diffusion. We point out the limitations of an often used equation to describe the heat transfer process in terms of a friction coupling. We propose a simple theory for the energy transfer between the adsorbate and hot electrons using a newly introduced heat transfer coefficient, which depends on the adsorbate temperature. We calculate the transient adsorbate temperature and the reaction yield for a Morse potential as a function of the laser fluency. The results are compared to those obtained using a conventional heat transfer equation with temperature-independent friction. It is found that our equation of energy (heat) transfer gives a significantly lower adsorbate peak temperature, which results in a large modification of the reaction yield. We also consider the heat transfer between different vibrational modes excited by hot electrons. This mode coupling provides indirect heating of the vibrational temperature in addition to the direct heating by hot electrons. The formula of heat transfer through linear mode-mode coupling of two harmonic oscillators is applied to the recent time-resolved study of carbon monoxide and atomic oxygen hopping on an ultrafast laser-heated Pt(111) surface. It is found that the maximum temperature of the frustrated translation mode can reach high temperatures for hopping, even when direct friction coupling to the hot electrons is not strong enough

  7. Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser

    Directory of Open Access Journals (Sweden)

    P. Cinquegrana

    2014-04-01

    Full Text Available In this paper we propose a scheme that allows a strong reduction of the timing jitter between the pulses of a free electron laser (FEL and external laser pulses delivered simultaneously at the FEL experimental stations for pump-probe–type experiments. The technique, applicable to all seeding-based FEL schemes, relies on the free-space optical transport of a portion of the seed laser pulse from its optical table to the experimental stations. The results presented here demonstrate that a carefully designed laser beam transport, incorporating also a transverse beam position stabilization, allows one to keep the timing fluctuations, added by as much as 150 m of free space propagation and a number of beam folding mirrors, to less than 4 femtoseconds rms. By its nature our scheme removes the major common timing jitter sources, so the overall jitter in pump-probe measurements done in this way will be below 10 fs (with a margin to be lowered to below 5 fs, much better than the best results reported previously in the literature amounting to 33 fs rms.

  8. Help system for control of JAERI FEL (Free Electron laser)

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1993-01-01

    The control system of JAERI FEL (Free Electron Laser) has a help system to provide the information necessary to operate the machine and to develop the new user interface. As the control software is constructed on the MS-Windows 3.x, the hyper-text feature of the Windows help system can be accessed. It consists of three major parts: (1) on-line help, (2) full document, and (3) tutorial system. (author)

  9. Storage ring free electron lasers and saw-tooth instability

    CERN Document Server

    Dattoli, Giuseppe; Migliorati, M; Palumbo, L; Renieri, A

    1999-01-01

    We show that Free Electron Lasers (FEL) operating with storage rings may counteract beam instabilities of the Saw Tooth (STI) type. We use a model based on a set of equations that couple those describing the FEL evolution to those accounting for the STI dynamics. The analysis provides a clear picture of the FEL-STI mutual feedback and clarifies the mechanisms of the instability inhibition. The reliability of the results is supported by a comparison with fully numerical codes.

  10. Unlimited electron acceleration in laser-driven plasma waves

    International Nuclear Information System (INIS)

    Katsouleas, T.; Dawson, J.M.

    1983-01-01

    It is shown that the limitation to the energy gain of 2(ω/ω/sub p/) 2 mc 2 of an electron in the laser-plasma beat-wave accelerator can be overcome by imposing a magnetic field of appropriate strength perpendicular to the plasma wave. This accelerates particles parallel to the phase fronts of the accelerating wave which keeps them in phase with it. Arbitrarily large energy is theoretically possible

  11. Acceleration of laser-injected electron beams in an electron-beam driven plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Knetsch, Alexander

    2018-03-01

    Plasma wakefields deliver accelerating fields that are approximately a 100 times higher than those in conventional radiofrequency or even superconducting radiofrequency cavities. This opens a transformative path towards novel, compact and potentially ubiquitous accelerators. These prospects, and the increasing demand for electron accelerator beamtime for various applications in natural, material and life sciences, motivate the research and development on novel plasma-based accelerator concepts. However, these electron beam sources need to be understood and controlled. The focus of this thesis is on electron beam-driven plasma wakefield acceleration (PWFA) and the controlled injection and acceleration of secondary electron bunches in the accelerating wake fields by means of a short-pulse near-infrared laser. Two laser-triggered injection methods are explored. The first one is the Trojan Horse Injection, which relies on very good alignment and timing control between electron beam and laser pulse and then promises electron bunches with hitherto unprecedented quality as regards emittance and brightness. The physics of electron injection in the Trojan Horse case is explored with a focus on the final longitudinal bunch length. Then a theoretical and numerical study is presented that examines the physics of Trojan Horse injection when performed in an expanding wake generated by a smooth density down-ramp. The benefits are radically decreased drive-electron bunch requirements and a unique bunch-length control that enables longitudinal electron-bunch shaping. The second laser-triggered injection method is the Plasma Torch Injection, which is a versatile, all-optical laser-plasma-based method capable to realize tunable density downramp injection. At the SLAC National Laboratory, the first proof-of-principle was achieved both for Trojan Horse and Plasma Torch injection. Setup details and results are reported in the experimental part of the thesis along with the commissioning

  12. Studies on a VUV free electron laser at the TESLA Test Facility at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Rossbach, J. [Deutsches Elektronen-Synchrotron, Hamburg (Germany)

    1995-12-31

    The TESLA Test Facility (TTF) currently under construction at DESY is a test-bed for acceleration sections of a high-gradient, high efficiency superconducting linear collider. Due to ist unrivaled ability to sustain high beam quality during acceleration, a superconducting rf linac is considered the optimum choice to drive a Free Electron Laser (FEL). We aim at a photon wavelength of {lambda} = 6 manometer utilizing the TTF after is has been extended to 1 GeV beam energy. Due to lack of mirrors and seed-lasers in this wavelength regime, a single pass FEL and Self-Amplified-Spontaneous-Emission (SASE) is considered. A first test is foreseen at a larger photon wavelength. The overall design as well as both electron and photon beam properties will be discussed. To reach the desired photon wavelength, the main components that have to be added to the TTF are: (a) a low emittance rf gun including space charge compensation (b) a two stage bunch compressor increasing the peak bunch current from 100 A up to 2500 A (c) four more accelerating modules to achieve 1 GeV beam energy (d) a 25 m long undulator (period length 27 mm, peak field 0.5 T) The average brillance will be larger than 1-10{sup 22}photons/s/mm{sup 2}/mrad{sup 2}/0.1%. Each 800 {mu}s long pulse will contain up to 7200 equidistant bunches. The repetition frequency of the linac is 10 Hz.

  13. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Serpico, C., E-mail: claudio.serpico@elettra.eu [Elettra - Sincrotrone Trieste, Trieste (Italy); Grudiev, A. [CERN, Geneva (Switzerland); Vescovo, R. [University of Trieste, Trieste (Italy)

    2016-10-11

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  14. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    Science.gov (United States)

    Serpico, C.; Grudiev, A.; Vescovo, R.

    2016-10-01

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  15. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Matlis, N.H.; Bakeman, M.; Geddes, C.G.R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G.R.; Schroeder, C.B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W.P.

    2010-01-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  16. Investigation of metal coatings for the free electron laser

    International Nuclear Information System (INIS)

    Scott, M.L.; Arendt, P.N.; Springer, R.W.; Cordi, R.C.; McCreary, W.J.

    1985-01-01

    We are investigating the deposition and characteristics of metal coatings for use in environments such as the Free Electron Laser where the radiation resistance of metal coatings could prove to be of great benefit. We have concentrated our initial efforts on silver laminate coatings due to the high reflectance of silver at 1 micron wavelength. Our initial laminate coatings have utilized thin layers of titanium oxide to break up the columnar structure of the silver during electron-beam deposition on fused silica substrates. Our initial results on equal coating thickness samples indicate an improvement in damage threshold that ranges from 1.07 to 1.71 at 351 nm

  17. Runaway electron beam control for longitudinally pumped metal vapor lasers

    Science.gov (United States)

    Kolbychev, G. V.; Kolbycheva, P. D.

    1995-08-01

    Physics and techniques for producing of the pulsed runaway electron beams are considered. The main obstacle for increasing electron energies in the beams is revealed to be a self- breakdown of the e-gun's gas-filled diode. Two methods to suppress the self-breakdown and enhance the volumetric discharge producing the e-beam are offered and examined. Each of them provides 1.5 fold increase of the ceiling potential on the gun. The methods also give the ways to control several guns simultaneously. Resulting in the possibility of realizing the powerful longitudinal pumping of metal-vapor lasers on self-terminated transitions of atoms or ions.

  18. The LLNL/UCLA high gradient inverse free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J. T.; Musumeci, P.; Anderson, G.; Anderson, S.; Betts, S.; Fisher, S.; Gibson, D.; Tremaine, A.; Wu, S. [Department of Physics and Astronomy, UCLA, Los Angeles California, 90095 (United States); Lawrence Livermore National Laboratory (United States)

    2012-12-21

    We describe the Inverse Free Electron Accelerator currently under construction at Lawrence Livermore National Lab. Upon completion of this accelerator, high brightness electrons generated in the photoinjector blowout regime and accelerated to 50 MeV by S-band accelerating sections will interact with > 4 TW peak power Ti:Sapphire laser in a highly tapered 50 cm undulator and experience an acceleration gradient of > 200 MeV/m. We present the final design of the accelerator as well as the results of start-to-end simulations investigating preservation of beam quality and tolerances involved with this accelerator.

  19. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W. P.

    2010-06-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  20. ETL linac facility and free-electron lasers

    International Nuclear Information System (INIS)

    Yamazaki, T.; Noguchi, T.; Mikado, T.; Sugiyama, S.; Yamada, K.; Chiwaki, M.; Ohgaki, H.; Suzuki, R.; Sei, N.

    1993-01-01

    An outline is presented of the recent development on the ETL (Electro-technical Laboratory) electron-linac facility and storage-ring FELs (free-electron lasers). Some modifications including the injection system have been made to the linac. Four storage rings are working very well. The TERAS FEL system has been shut down after the successful oscillation around 590 nm. The new NIJI-IV FEL system has been proven to work well, and the current tunable wavelength range is over 100 nm (488-595 nm). Preparatory experiments on the FEL at shorter wavelength are underway. (author)

  1. Research on high performance mirrors for free electron lasers

    International Nuclear Information System (INIS)

    Kitatani, Fumito

    1996-01-01

    For the stable functioning of free electron laser, high performance optical elements are required because of its characteristics. In particular in short wavelength free electron laser, since its gain is low, the optical elements having very high reflectivity are required. Also in free electron laser, since high energy noise light exists, the optical elements must have high optical breaking strength. At present in Power Reactor and Nuclear Fuel Development Corporation, the research for heightening the performance of dielectric multi-layer film elements for short wavelength is carried out. For manufacturing such high performance elements, it is necessary to develop the new materials for vapor deposition, new vapor deposition process, and the techniques of accurate substrate polishing and inspection. As the material that satisfies the requirements, there is diamond-like carbon (DLC) film, of which the properties are explained. As for the manufacture of the DLC films for short wavelength optics, the test equipment for forming the DLC films, the test of forming the DLC films, the change of the film quality due to gas conditions, discharge conditions and substrate materials, and the measurement of the optical breaking strength are reported. (K.I.)

  2. Photobiostimulation effects on germination and early growth of wheat seeds (Triticum aestivum L) produced by a semiconductor laser with λ=980nm

    International Nuclear Information System (INIS)

    Michtchenko, A.; Hernandez, M.

    2009-01-01

    The effect of the exposure of wheat (Triticum aestivum L) seeds to a IR laser radiation with λ=980nm produced by a semiconductor laser on germination and early growth had been studied under laboratory conditions. Seeds were irradiated to one of two laser intensities 15 mWcm - ''2 or 30 mWcm -2 for different periods of time 30, 60 or 120 s. Seeds exposed to a light intensity of 15mWcm -2 and an exposition time of 30 s. showed an increase on the percentage of seeds germinated normally while the percentage of seeds germinated abnormally decreased. At the same time there is a stimulation effect on the growth of the stem and on the growth of the root of 10% on wheat seedlings over control seedlings. Significant differences (ρ < 0.001) were observed between the control and the above treatment. (Author)

  3. Development of superconducting acceleration cavity technology for free electron lasers

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10 9 at 2.5K, and 8x10 9 at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers

  4. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  5. The Livermore Free-Electron Laser Program Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Burns, M.J.; Kulke, B.; Deis, G.A.; Frye, R.W.; Kallman, J.S.; Ollis, C.W.; Tyler, G.C.; Van Maren, R.D.; Weiss, W.C.

    1987-01-01

    The Lawrence Livermore National Laboratory (LLNL) Free-Electron Laser Program Magnet Test Laboratory supports the ongoing development of the Induction Linac Free Electron Laser (IFEL) and uses magnetic field measurement systems that are useful in the testing of long periodic magnetic structures, electron-beam transport magnets, and spectrometer magnets. The major systems described include two computer-controlled, three-axis Hall probe-and-search coil transports with computer-controlled data acquisition; a unique, automated-search coil system used to detect very small inaccuracies in wiggler fields; a nuclear magnetic resonance (NMR)-based Hall probe-calibration facility; and a high-current DC ion source using heavy ions of variable momentum to model the transport of high-energy electrons. Additionally, a high-precision electron-beam-position monitor for use within long wigglers that has a positional resolution of less than 100 μm is under development in the laboratory and will be discussed briefly. Data transfer to LLNL's central computing facility and on-line graphics enable us to analyze large data sets quickly. 3 refs

  6. Search for nuclear excitation by laser-driven electron motion

    International Nuclear Information System (INIS)

    Bounds, J.A.; Dyer, P.

    1992-01-01

    It has been proposed that a nucleus may be excited by first exciting the atom's electrons with UV photons. The incident photons couple to the electrons, which would then couple via a virtual photon to the nucleus. As a test case, experiments with 235 U have been performed. A pulsed infrared laser produces an atomic vapor of 235 U which is then bombarded by a high-brightness UV laser beam. The resulting ions are collected. The first excited nuclear state of 235 U has a 26-min half-life and decays by internal conversion, resulting in emission of an atomic electron. These conversion electrons are detected by a channel electron multiplier. An upper limit of 4.0x10 -5 has been obtained for the probability of exciting the nucleus of a 235 U atom that is in the 248-nm UV beam for 700 fs at an irradiance in the range of 1.0x10 15 to 2.5x10 15 W/cm 2

  7. UV laser ionization and electron beam diagnostics for plasma lenses

    International Nuclear Information System (INIS)

    Govil, R.; Volfbeyn, P.; Leemans, W.

    1995-04-01

    A comprehensive study of focusing of relativistic electron beams with overdense and underdense plasma lenses requires careful control of plasma density and scale lengths. Plasma lens experiments are planned at the Beam Test Facility of the LBL Center for Beam Physics, using the 50 MeV electron beam delivered by the linac injector from the Advanced Light Source. Here we present results from an interferometric study of plasmas produced in tri-propylamine vapor with a frequency quadrupled Nd:YAG laser at 266 nm. To study temporal dynamics of plasma lenses we have developed an electron beam diagnostic using optical transition radiation to time resolve beam size and divergence. Electron beam ionization of the plasma has also been investigated

  8. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-01-01

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm 2 and 0.4 pC/(ps mm 2 ), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within ±8%, showing that they all can provide accurate charge measurements for LPAs.

  9. Structural characterization of annatto seeds (Bixa orellana) by transmission and scanning electron microscopy submitted to gamma radiation for dormancy break

    Energy Technology Data Exchange (ETDEWEB)

    Harder, Marcia N.C.; Nogueira, Neusa L.; Arthur, Valter; Rossi, Monica L.; Rodriguez, Adriana P.M. [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)]. E-mails: mnharder@cena.usp.br; nogueira@cena.usp.br; arthur@cena.usp.br; mnicalr@cena.usp.br; riana@cena.usp.br

    2007-07-01

    The annatto (Bixa orellana) is the only species of the Bixaceae family. From the seeds an important food colorant is obtained, bixin, for the industry and domestic use. More recently studies have focused more extensively in medicinal purpose of the species. Due to structural and physiologic characteristics, the seeds have low germination rate, around 30 %. The irradiation of seeds with gamma radiation can promote the increase and/or acceleration of germination, better plant development and productivity, among other aspects. The radiation doses used for this purpose should not cause genetic modifications in the organism, hence experimentation is needed to define the appropriate doses. Absence of research done annatto related to the use of the irradiation aiming at the increase of germination rates lead to the structural characterization of the annatto seeds submitted to gamma radiation through transmission (TEM) and scanning electron microscopy (SEM). The objective of this study was to verify the effect of radiation on the seeds structures during the process of dormancy break. Dry seeds and seeds immersed in distilled water for 24 hours were submitted to gamma radiation from source of Co{sup 60} type Gammacell-220 at CENA/USP, at doses 100 Gy. After irradiation the seeds were processed for TEM and SEM. Preliminary results, showed structural modifications in the seeds. (author)

  10. Commissioning of Japanese x-ray free electron laser, SACLA and achieved laser performance

    International Nuclear Information System (INIS)

    Tanaka, Hitoshi; Amselem, Arnaud; Aoyagi, Hideki

    2012-01-01

    After 8 months of beam commissioning of SPring-8 Angstrom Compact free electron LAser, SACLA reached the primary target performance, i.e., a shortest laser wavelength of ∼0.6 Angstrom and a laser pulse energy value of sub-mJ at a wavelength of 1.2 Angstrom. This success was due to the following four factors; (1) performance estimation of each component of SACLA required for the target laser performance and its achievement, (2) elaboration of beam diagnostics and control systems enabling precise accelerator and undulator tuning, (3) a rational and strategic commissioning plan, (4) most adequate response to various accidental events during the beam commissioning period. This article, in order to light up the above four factors leading us to the success, starts with the features of SACLA and critical tolerance for the sub-system components, and then, explains our approach to achieve the target laser performance and how the beam commissioning of SACLA proceeded. At last, the article summarizes the present laser and operational status. (author)

  11. Self-amplified spontaneous emission free electron laser devices and nonideal electron beam transport

    Directory of Open Access Journals (Sweden)

    L. L. Lazzarino

    2014-11-01

    Full Text Available We have developed, at the SPARC test facility, a procedure for a real time self-amplified spontaneous emission free electron laser (FEL device performance control. We describe an actual FEL, including electron and optical beam transport, through a set of analytical formulas, allowing a fast and reliable on-line “simulation” of the experiment. The system is designed in such a way that the characteristics of the transport elements and the laser intensity are measured and adjusted, via a real time computation, during the experimental run, to obtain an on-line feedback of the laser performances. The detail of the procedure and the relevant experimental results are discussed.

  12. Electron slicing for the generation of tunable femtosecond soft x-ray pulses from a free electron laser and slice diagnostics

    Directory of Open Access Journals (Sweden)

    S. Di Mitri

    2013-04-01

    Full Text Available We present the experimental results of femtosecond slicing an ultrarelativistic, high brightness electron beam with a collimator. In contrast to some qualitative considerations reported in Phys. Rev. Lett. 92, 074801 (2004PRLTAO0031-900710.1103/PhysRevLett.92.074801, we first demonstrate that the collimation process preserves the slice beam quality, in agreement with our theoretical expectations, and that the collimation is compatible with the operation of a linear accelerator in terms of beam transport, radiation dose, and collimator heating. Accordingly, the collimated beam can be used for the generation of stable femtosecond soft x-ray pulses of tunable duration, from either a self-amplified spontaneous emission or an externally seeded free electron laser. The proposed method also turns out to be a more compact and cheaper solution for electron slice diagnostics than the commonly used radio frequency deflecting cavities and has minimal impact on the machine design.

  13. Electron scattering from atoms in the presence of a laser field. III

    International Nuclear Information System (INIS)

    Mittleman, M.H.

    1977-01-01

    The development of the theory of the effect of a laser on electron-atom scattering is continued by the derivation of explicit relations between the observed electron-atom scattering cross sections in the presence of a laser and exact electron-atom scattering cross sections with no laser present. No approximation concerning the scattering interaction is made. The only approximations concerning the laser are that (1) the laser-atom interaction energy is small compared to atomic energies, (2) the Rabi frequency times the collision time is small, and (3) the laser intensity in appropriate units is small

  14. Microwave free-electron laser applications for electron cyclotron heating of plasmas

    International Nuclear Information System (INIS)

    Thomassen, K.

    1990-01-01

    Millimeter wave power may be the ideal source of heat for the plasma, but advances in technology are needed to meet requirements of next generation fusion devices. Free electron lasers (FEL) are one candidate for such sources, and this paper reviews the progress, issues of physics and technology, and potential benefits for fusion from these devices

  15. Microwave free-electron laser applications for electron cyclotron heating of plasmas

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1990-01-01

    Millimeter wave power may be the ideal source of heat for a plasma, but advances in technology are needed to meet requirements of next generation fusion devices. Free electron lasers (FEL) are one candidate for such sources, and this paper reviews the progress, issues of physics and technology, and potential benefits for fusion from these devices. 15 refs., 13 figs

  16. Effect of pre-sowing treatment of seeds by laser light on development and yielding of faba bean (Vicia faba minor)

    International Nuclear Information System (INIS)

    Podlesny, J.

    1998-01-01

    The study was conducted at Experimental Station Pulawy - Kepa during 1995-97. The first row factor were three faba bean varieties, and the second one - doses of laser irradiation: without irradiation, three fold, five fold. It was found that irradiation of faba bean seeds by helneon laser light significantly increased the seeds yield and some elements of its structure, especially number of pods per plant. Three fold irradiation was more effective than five fold

  17. Laser-optical methods for earlier diagnostics of plant and seed diseases in various habitant media taking into consideration anthropogenic and biological pollution

    Science.gov (United States)

    Lisker, Joseph S.; Dmitriev, Andrey P.

    1999-12-01

    By the method of the computer laser-optical photometry the investigation of the cereal stability for the various diseases taken into consideration the stability of tomato seeds to their interaction with the phytopathogenes and the phytotoxicity of microscopic fungi on the wheat seedlings was carried out. Original result for the investigation of optical-physiological characteristics of plants and seeds are shown.

  18. Self-Seeded RSOA-Fiber Cavity Lasers vs. ASE Spectrum-Sliced or Externally Seeded Transmitters—A Comparative Study

    Directory of Open Access Journals (Sweden)

    Simon A. Gebrewold

    2015-12-01

    Full Text Available Reflective semiconductor optical amplifier fiber cavity lasers (RSOA-FCLs are appealing, colorless, self-seeded, self-tuning and cost-efficient upstream transmitters. They are of interest for wavelength division multiplexed passive optical networks (WDM-PONs based links. In this paper, we compare RSOA-FCLs with alternative colorless sources, namely the amplified spontaneous emission (ASE spectrum-sliced and the externally seeded RSOAs. We compare the differences in output power, signal-to-noise ratio (SNR, relative intensity noise (RIN, frequency response and transmission characteristics of these three sources. It is shown that an RSOA-FCL offers a higher output power over an ASE spectrum-sliced source with SNR, RIN and frequency response characteristics halfway between an ASE spectrum-sliced and a more expensive externally seeded RSOA. The results show that the RSOA-FCL is a cost-efficient WDM-PON upstream source, borrowing simplicity and cost-efficiency from ASE spectrum slicing with characteristics that are, in many instances, good enough to perform short-haul transmission. To substantiate our statement and to quantitatively compare the potential of the three schemes, we perform data transmission experiments at 5 and 10 Gbit/s.

  19. A high power gain switched diode laser oscillator and amplifier for the CEBAF polarized electron injector

    International Nuclear Information System (INIS)

    Poelker, M.; Hansknecht, J.

    1996-01-01

    The photocathode in the polarized electron source at Jefferson Lab is illuminated with pulsed laser light from a gain switched diode laser and diode optical amplifier. Laser pulse repetition rates up to 2,000 MHz, optical pulsewidths between 31 and 123 ps, and average power > 100 mW are demonstrated. The laser system is highly reliable and completely remotely controlled

  20. Biological behaviour of cucumbers depending on rhythm of seed irradiation with laser beam

    International Nuclear Information System (INIS)

    Cholakov, D.

    1997-01-01

    The aim of the study was to determine the optimal parameters of laser stimulation and obtained as a result resonance activation of phytohormones responsible for growth and formation of generative organs. The influence of the rhythm of irradiation on its effect was investigated. Cucumber seeds from the Bulgarian salad cultivar Gergana were irradiated with helium-neon laser of 632.8 nm wave length and exit power 20 mw. Besides control samples, the following irradiation groups were examined: 7-times on the 28th day before sowing (variant 7); 7-times in rhythm - 4-times on the 28th and 3-times on the 14th day before sowing (4+3); 7-times in rhythm - 3-times on the 28th and 3-times on the 14th and once on the day before sowing (3+3+1); 7-times in rhythm - 2-times on the 28th, the 21st and the 14th day and once on the day before sowing (2+2+2+1); 7-times in rhythm - once on the 28th, 24th, 20th, 16th, 12th, 8th and 4th day before sowing (1+1+1+1+1+1+1). There was the highest radiobiological effect at the rhythm of irradiation (2+2+2+1) and (1+1+1+1+1+1+1). The rhythmical application of radiation dose ensures better accumulation of the polarized light by the plant cells. The change of their electric vectors accelerates their growth and forces the physiological and biochemical processes. As a result the early yield has been increased respectively by 15.6% and 12% and the total standard yield - by 15.4% and 11.7%

  1. Development of a high power free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Chul; Kim, Sun Kook; Jung, Yung Wook; Cho, Sung Oh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    A millimeter-wave free electron laser (FEL) driven by a recirculating electrostatic accelerator has been developed. The wavelength of the FEL is tunable in the range of 3 - 12 mm by tuning the energy of the electron beam. The output power is estimated to be 1 kW. The electrostatic accelerator is composed of high-current electron gun, acceleration tube, high-voltage generator, high-voltage terminal, deceleration tube, electron collator, and vacuum pumps. Two types of LaB{sub 6}-based thermionic electron guns (triode gun and diode gun) and their power supplies have been developed. The voltage of the guns is 30 kV and the output current is - 2 A. A beam-focusing planar undulator and a permanent-magnet helical undulator have been developed and 3D trajectories of electron beam in the undulators have been calculated to find optimal input condition of electron beam. 135 figs, 15 pix, 17 tabs, 98 refs. (Author).

  2. Development of a high power free-electron laser

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Byung Chul; Kim, Sun Kook; Jung, Yung Wook; Cho, Sung Oh

    1995-01-01

    A millimeter-wave free electron laser (FEL) driven by a recirculating electrostatic accelerator has been developed. The wavelength of the FEL is tunable in the range of 3 - 12 mm by tuning the energy of the electron beam. The output power is estimated to be 1 kW. The electrostatic accelerator is composed of high-current electron gun, acceleration tube, high-voltage generator, high-voltage terminal, deceleration tube, electron collator, and vacuum pumps. Two types of LaB 6 -based thermionic electron guns (triode gun and diode gun) and their power supplies have been developed. The voltage of the guns is 30 kV and the output current is - 2 A. A beam-focusing planar undulator and a permanent-magnet helical undulator have been developed and 3D trajectories of electron beam in the undulators have been calculated to find optimal input condition of electron beam. 135 figs, 15 pix, 17 tabs, 98 refs. (Author)

  3. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    Science.gov (United States)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  4. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.; Reitsma, A.J.W.; Jaroszynski, D.A.

    2004-01-01

    Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [JETP Lett. 74, 371 (2001); Phys. Rev. E 65, 046504 (2002)]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser

  5. Electron momentum spectroscopy of H2+ in the presence of laser radiation

    International Nuclear Information System (INIS)

    Bulychev, A.A.; Kouzakov, K.A.

    2017-01-01

    Theoretical analysis of laser-assisted electron impact ionization of a hydrogen molecular ion H 2 + at high impact energy and large momentum transfer is carried out. The laser-field effects on the incoming and outgoing electrons are taken into account using the Volkov functions. The field-dressing of the target electron is treated with a quasistatic state approach. Calculations for laser radiation with frequency ω = 1.55 eV and intensity I = 5 * 10 11 W/cm 2 exhibit strong laser influence on the molecular bond oscillation in laser-assisted electron momentum distributions. (authors)

  6. Electronic packaging: new results in singulation by Laser Microjet

    Science.gov (United States)

    Wagner, Frank; Sibailly, Ochelio; Richerzhagen, Bernold

    2004-07-01

    Cutting electronic packages that are produced in a matrix array fashion is an important process and deals with the ready-to-use devices. Thus an increase in the singulation yield is directly correlated to an increase in benefit. Due to the usage of different substrate materials, the saws encounter big problems in terms of lifetime and constancy of cut quality in these applications. Today"s equipment manufacturers are not yet in the position to propose an adequate solution for all types of packages. Compared to classical laser cutting, the water-jet guided laser technology minimizes the heat damages in any kind of sample. This new material processing method consists in guiding a laser beam inside a hair thin, lowpressure water-jet by total internal reflection, and is applied to package singulation since two years approximately. Using a frequency doubled Nd:YAG laser guided by a water jet, an LTCC-ceramics based package is singulated according to a scribe and break process. Speeds of 2-10 mm/s are reached in the LTTC and 40 mm/s in the mold compound. The process is wear-free and provides very good edge quality of the LTCC and the mold compound as well as reliable separation of the packages.

  7. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, M., E-mail: martin.hansson@fysik.lth.se; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma. - Highlights: • Compact colliding pulse injection set-up used to produce low energy spread e-beams. • Beam charge controlled by rotating the polarization of injection pulse. • Peak energy controlled by point of collision to vary the acceleration length.

  8. Spatial beam shaping using a micro-structured optical fiber and all-fiber laser amplification system for large-scale laser facilities seeding

    International Nuclear Information System (INIS)

    Calvet, Pierre

    2014-01-01

    Spatial beam shaping is an important topic for the lasers applications. For various industrial areas (marking, drilling, laser-matter interaction, high-power laser seeding...) the optical beam has to be flattened. Currently, the state of the art of the beam shaping: 'free-space' solutions or highly multimode fibers, are not fully suitable. The first ones are very sensitive to any perturbations and the maintenance is challenging, the second ones cannot deliver a coherent beam. For this reason, we present in this manuscript a micro-structured optical single-mode fiber delivering a spatially flattened beam. This 'Top-Hat' fiber can shape any beam in a spatially coherent beam what is a progress with respect to the highly multimode fibers used in the state of the art. The optical fibers are easy to use and very robust, what is a strong benefit with respect to the 'free-space' solutions. Thanks to this fiber, we could realize an all-fiber multi-stage laser chain to amplify a 10 ns pulse to 100 μJ. Moreover the temporal, spectral and spatial properties were preserved. We adapted this 'Top-Hat' fiber to this multi-stage laser chain, we proved the capability and the interest of this fiber for the spatial beam shaping of the laser beams in highly performing and robust laser systems. (author) [fr

  9. Electron density interferometry measurement in laser-matter interaction

    International Nuclear Information System (INIS)

    Popovics-Chenais, C.

    1981-05-01

    This work is concerned with the laser-interferometry measurement of the electronic density in the corona and the conduction zone external part. Particularly, it is aimed at showing up density gradients and at their space-time localization. The first chapter recalls the density profile influence on the absorption principal mechanisms and the laser energy transport. In chapter two, the numerical and analytical hydrodynamic models describing the density profile are analysed. The influence on the density profile of the ponderomotive force associated to high oscillating electric fields is studied, together with the limited thermal conduction and suprathermal electron population. The mechanism action, in our measurement conditions, is numerically simulated. Calculations are made with experimental parameters. The measurement interaction conditions, together with the diagnostic method by high resolution laser interferometry are detailed. The results are analysed with the help of numerical simulation which is the experiment modeling. An overview of the mechanisms shown up by interferometric measurements and their correlation with other diagnostics is the conclusion of this work [fr

  10. Femtosecond electron-bunch dynamics in laser wakefields and vacuum

    Directory of Open Access Journals (Sweden)

    A. G. Khachatryan

    2007-12-01

    Full Text Available Recent advances in laser wakefield acceleration demonstrated the generation of extremely short (with a duration of a few femtoseconds relativistic electron bunches with relatively low (of the order of couple of percent energy spread. In this article we study the dynamics of such bunches in drift space (vacuum and in channel-guided laser wakefields. Analytical solutions were found for the transverse coordinate of an electron and for the bunch envelope in the wakefield in the case of arbitrary change in the energy. Our results show strong bunch dynamics already on a millimeter scale propagation distance both in plasma and in vacuum. When the bunch propagates in vacuum, its transverse sizes grow considerably; the same is observed for the normalized bunch emittance that worsens the focusability of the bunch. A scheme of two-stage laser wakefield accelerator with small drift space between the stages is proposed. It is found that fast longitudinal betatron phase mixing occurs in a femtosecond bunch when it propagates along the wakefield axis. When bunch propagates off axis, strong bunch decoherence and fast emittance degradation due to the finite bunch length was observed.

  11. Electron-atom collisions in a laser field

    International Nuclear Information System (INIS)

    Ehlotzky, F.

    1998-01-01

    The present work is a report on recent progress made in our understanding of electron-atom collisions in a laser field. To some extent it is a continuation of a previous review covering a somewhat larger subject (Can. J. Phys. 63 (1985)). We shall discuss the present status of investigations in this field from the theoretical as well as experimental point of view but most of the report will be devoted to an analysis of the various approximation schemes used at present in this field to describe the different aspects of laser-assisted electron-atom interactions. As the table of contents shows, most of the work done so far is treating the atom as a spectator, described by a potential and only very little has been achieved over the years to include the atomic structure into consideration since the inclusion of these structure effects poses considerable computational problems. Since, for example, multiphoton ionization and its inverse process laser-assisted recombination may be considered as one half of a scattering process, it is quite natural that some of the theoretical techniques described here are also of interest for the treatment of other multiphoton processes not considered here since there are several other recent reviews available on these topics. (orig.)

  12. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    International Nuclear Information System (INIS)

    Gladkikh, P.I.; Telegin, Yu.N.; Karnaukhov, I.M.

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented

  13. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    CERN Document Server

    Gladkikh, P I; Karnaukhov, I M

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented.

  14. Conceptual design of industrial free electron laser using superconducting accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  15. A compact x-ray free electron laser

    International Nuclear Information System (INIS)

    Barletta, W.; Attac, M.; Cline, D.B.

    1988-01-01

    We present a design concept and simulation of the performance of a compact x-ray, free electron laser driven by ultra-high gradient rf-linacs. The accelerator design is based on recent advances in high gradient technology by a LLNL/SLAC/LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be concerted to soft x-rays in the range from 2--10 nm by passage through short period, high fields strength wigglers as are being designed at Rocketdyne. Linear light sources of this type can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 12 refs., 8 figs., 4 tabs

  16. Hemostatic properties of the free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Cram, G.P. Jr.; Copeland, M.L. [Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN 37235 (United States)

    1998-09-02

    We have investigated the hemostatic properties of the free-electron laser (FEL) and compared these properties to the most commonly used commercial lasers in neurosurgery, CO{sub 2} and Nd:YAG, using an acute canine model. Arterial and venous vessels, of varying diameters from 0.1 to 1.0 mm, were divided with all three lasers. Analysis of five wavelengths of the FEL (3.0, 4.5, 6.1, 6.45, and 7.7 microns) resulted in bleeding without evidence of significant coagulation, regardless of whether the vessel was an artery or vein. Hemorrhage from vessels less than 0.4 mm diameter was subsequently easily controlled with Gelfoam registered (topical hemostatic agent) alone, whereas larger vessels required bipolar electrocautery. No significant charring, or contraction of the surrounding parenchyma was noted with any of the wavelengths chosen from FEL source. The CO{sub 2} laser, in continuous mode, easily coagulated vessels with diameters of 4 mm and less, while larger vessels displayed significant bleeding requiring bipolar electrocautery for control. Tissue charring was noted with application of the CO{sub 2} laser. In super pulse mode, the CO{sub 2} laser exhibited similar properties, including significant charring of the surrounding parenchyma. The Nd:YAG coagulated all vessels tested up to 1.4 mm, which was the largest diameter cortical artery found, however this laser displayed significant and extensive contraction and retraction of the surrounding parenchyma. In conclusion, the FEL appears to be a poor hemostatic agent. Our results did not show any benefit of the FEL over current conventional means of achieving hemostasis. However, control of hemorrhage was easily achieved with currently used methods of hemostasis, namely Gelfoam registered or bipolar electrocuatery. Although only cortical vessels in dogs were tested, we feel this data can be applied to all animals, including humans, and the peripheral, as well as central, vasculature, as our data on the CO{sub 2} and

  17. Hemostatic properties of the free-electron laser

    International Nuclear Information System (INIS)

    Cram, G.P. Jr.; Copeland, M.L.

    1998-01-01

    We have investigated the hemostatic properties of the free-electron laser (FEL) and compared these properties to the most commonly used commercial lasers in neurosurgery, CO 2 and Nd:YAG, using an acute canine model. Arterial and venous vessels, of varying diameters from 0.1 to 1.0 mm, were divided with all three lasers. Analysis of five wavelengths of the FEL (3.0, 4.5, 6.1, 6.45, and 7.7 microns) resulted in bleeding without evidence of significant coagulation, regardless of whether the vessel was an artery or vein. Hemorrhage from vessels less than 0.4 mm diameter was subsequently easily controlled with Gelfoam registered (topical hemostatic agent) alone, whereas larger vessels required bipolar electrocautery. No significant charring, or contraction of the surrounding parenchyma was noted with any of the wavelengths chosen from FEL source. The CO 2 laser, in continuous mode, easily coagulated vessels with diameters of 4 mm and less, while larger vessels displayed significant bleeding requiring bipolar electrocautery for control. Tissue charring was noted with application of the CO 2 laser. In super pulse mode, the CO 2 laser exhibited similar properties, including significant charring of the surrounding parenchyma. The Nd:YAG coagulated all vessels tested up to 1.4 mm, which was the largest diameter cortical artery found, however this laser displayed significant and extensive contraction and retraction of the surrounding parenchyma. In conclusion, the FEL appears to be a poor hemostatic agent. Our results did not show any benefit of the FEL over current conventional means of achieving hemostasis. However, control of hemorrhage was easily achieved with currently used methods of hemostasis, namely Gelfoam registered or bipolar electrocuatery. Although only cortical vessels in dogs were tested, we feel this data can be applied to all animals, including humans, and the peripheral, as well as central, vasculature, as our data on the CO 2 and Nd:YAG appear to closely

  18. Effects of laser-polarization and wiggler magnetic fields on electron acceleration in laser-cluster interaction

    Science.gov (United States)

    Singh Ghotra, Harjit; Kant, Niti

    2018-06-01

    We examine the electron dynamics during laser-cluster interaction. In addition to the electrostatic field of an individual cluster and laser field, we consider an external transverse wiggler magnetic field, which plays a pivotal role in enhancing the electron acceleration. Single-particle simulation has been presented with a short pulse linearly polarized as well as circularly polarized laser pulses for electron acceleration in a cluster. The persisting Coulomb field allows the electron to absorb energy from the laser field. The stochastically heated electron finds a weak electric field at the edge of the cluster from where it is ejected. The wiggler magnetic field connects the regions of the stochastically heated, ejected electron from the cluster and high energy gain by the electron from the laser field outside the cluster. This increases the field strength and hence supports the electron to meet the phase of the laser field for enhanced acceleration. A long duration resonance appears with an optimized magnetic wiggler field of about 3.4 kG. Hence, the relativistic energy gain by the electron is enhanced up to a few 100 MeV with an intense short pulse laser with an intensity of about 1019 W cm‑2 in the presence of a wiggler magnetic field.

  19. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    Science.gov (United States)

    Löhl, F.; Arsov, V.; Felber, M.; Hacker, K.; Jalmuzna, W.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Schmüser, P.; Schulz, S.; Szewinski, J.; Winter, A.; Zemella, J.

    2010-04-01

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  20. Relativistic electronic dressing in laser-assisted ionization of atomic hydrogen by electron impact

    International Nuclear Information System (INIS)

    Attaourti, Y.; Taj, S.

    2004-01-01

    Within the framework of the coplanar binary geometry where it is justified to use plane wave solutions for the study of the (e,2e) reaction and in the presence of a circularly polarized laser field, we introduce as a first step the Dirac-Volkov plane wave Born approximation 1 where we take into account only the relativistic dressing of the incident and scattered electrons. Then, we introduce the Dirac-Volkov plane wave Born approximation 2 where we take totally into account the relativistic dressing of the incident, scattered, and ejected electrons. We then compare the corresponding triple differential cross sections for laser-assisted ionization of atomic hydrogen by electron impact both for the nonrelativistic and the relativistic regime

  1. Two electron response to an intense x-ray free electron laser pulse

    International Nuclear Information System (INIS)

    Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T

    2009-01-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne 8+ and Ar 16+ exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10 17 to 10 22 W/cm 2 .

  2. Two electron response to an intense x-ray free electron laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T, E-mail: l.moore@qub.ac.u [DAMTP, David Bates Building, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom)

    2009-11-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne{sup 8+} and Ar{sup 16+} exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10{sup 17} to 10{sup 22} W/cm{sup 2}.

  3. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    International Nuclear Information System (INIS)

    Loehl, F.; Arsov, V.; Felber, M.; Hacker, K.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Winter, A.; Jalmuzna, W.; Schmueser, P.; Schulz, S.; Zemella, J.; Szewinski, J.

    2010-01-01

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  4. Electron beam properties and impedance characterization for storage rings used for free electron lasers

    International Nuclear Information System (INIS)

    Dattoli, G.; Mezi, L.; Renieri, A.; Migliorati, M.; Walker, R.

    2000-01-01

    Good electron beam qualities and stability are the crucial features of Storage Rings dedicated to synchrotron radiation sources or to Free Electron Laser. Most of these characteristics depends on the coupling of the e-beam with the machine environment, which can be in turn modelled in terms of a characteristic impedance, whose absolute value and structure can be used to specify both the stability (longitudinal and transverse) of the beam and its qualities (energy spread, bunch length, peak current ...). In this paper are considered two specific examples of Storage Rings used for FEL operation and analyze their performances by means of semi analytical and numerical methods. The analysis is aimed at clarifying the dependence of beam energy spread and bunch length on beam current and at providing a set of parameters useful for the optimization of Free Electron Laser or synchrotron radiation sources [it

  5. Achromatic and isochronous electron beam transport for tunable free electron lasers

    International Nuclear Information System (INIS)

    Bengtsson, J.; Kim, K.J.

    1991-09-01

    We have continued the study of a suitable electron beam transport line, which is both isochronous and achromatic, for the free electron laser being designed at Lawrence Berkeley Laboratory. A refined version of the beam transport optics is discussed that accommodates two different modes of FEL wavelength tuning. For the fine tuning involving a small change of the electron beam energy, sextupoles are added to cancel the leading nonlinear dispersion. For the main tuning involving the change of the undulator gap, a practical solution of maintaining the beam matching condition is presented. Calculation of the higher order aberrations is facilitated by a newly developed code. 11 refs., 4 figs., 3 tabs

  6. Shack-Hartmann Electron Densitometer (SHED): An Optical System for Diagnosing Free Electron Density in Laser-Produced Plasmas

    Science.gov (United States)

    2016-11-01

    Free Electron Density in Laser-Produced Plasmas by Anthony R Valenzuela Approved for public release; distribution is...AND SUBTITLE Shack-Hartmann Electron Densitometer (SHED): An Optical System for Diagnosing Free Electron Density in Laser-Produced Plasmas 5a...SUPPLEMENTARY NOTES 14. ABSTRACT The Shack-Hartmann Electron Densitometer is a novel method to diagnose ultrashort pulse laser–produced plasmas

  7. User issues at the Stanford picosecond free electron laser center

    International Nuclear Information System (INIS)

    Smith, T.I.

    1995-01-01

    Assembling a productive user facility around a Free Electron Laser (FEL) is a complex task. Reliable operation of the FEL is a necessary, but by no means sufficient, condition to ensure that the center will be able to attract and keep the interest of first rate researchers. Some other issues which are important include: center wavelength stability and ease of tuning, bandwidth control, amplitude and position stability, ability to select arbitrary sequences of micropulses, and real time availability of information of the FEL's important parameters (spectral width, center wavelength, micropulse length and energy, etc.). In addition, at the Stanford Center we have found that providing additional systems (conventional picosecond lasers synchronized to the FEL, an FTIR spectrometer, a confocal microscopy, ...) has been important. (author)

  8. Electron acceleration by a radially polarized laser pulse during ionization of low density gases

    Directory of Open Access Journals (Sweden)

    Kunwar Pal Singh

    2011-03-01

    Full Text Available The acceleration of electrons by a radially polarized intense laser pulse has been studied. The axial electric field of the laser is responsible for electron acceleration. The axial electric field increases with decreasing laser spot size; however, the laser pulse gets defocused sooner for smaller values and the electrons do not experience high electric field for long, reducing the energy they can reach. The electron remains confined in the electric field of the laser for longer and the electron energy peaks for the normalized laser spot size nearly equal to the normalized laser intensity parameter. Electron energy peaks for initial laser phase ϕ_{0}=π due to accelerating laser phase and decreases with transverse initial position of the electrons. The energy and angle of the emittance spectrum of the electrons generated during ionization of krypton and argon at low densities have been obtained and a right choice of laser parameters has been suggested to obtain high energy quasimonoenergetic collimated electron beams. It has been found that argon is more suitable than krypton to obtain high energy electron beams due to higher ionization potential of inner shells for the former.

  9. Impact of Membrane-Induced Particle Immobilization on Seeded Growth Monitored by In Situ Liquid Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Weiner, Rebecca G; Chen, Dennis P; Unocic, Raymond R; Skrabalak, Sara E

    2016-05-01

    In situ liquid cell scanning transmission electron microscopy probes seeded growth in real time. The growth of Pd on Au nanocubes is monitored as a model system to compare growth within a liquid cell and traditional colloidal synthesis. Different growth patterns are observed due to seed immobilization and the highly reducing environment within the liquid cell. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Gain of a Smith-Purcell free-electron laser

    Directory of Open Access Journals (Sweden)

    H. L. Andrews

    2004-07-01

    Full Text Available A formula is derived for the small-signal gain of a Smith-Purcell free-electron laser. The theory describes the electron beam as a moving plasma dielectric, and assumes that the electron beam interacts with an evanescent mode traveling along the surface of a periodic waveguide with a rectangular profile. The phase velocity of the evanescent wave is synchronous with the electron velocity, but the group velocity is actually negative. The electron beam amplifies the evanescent wave, which does not itself radiate. According to this picture, the radiation observed emanating from the grating is Smith-Purcell radiation enhanced by the bunching of the electrons due to the interaction with the evanescent mode. There will also be radiation from the part of the evanescent mode that is outcoupled from the ends of the grating. This radiation appears at a lower frequency than the Smith-Purcell radiation. The new results explain both the gain and the radiation observed in the experiments of Urata and Walsh, and the cube-root current dependence of the gain inferred by Bakhtyari, Walsh, and Brownell.

  11. A high-repetition rate LWFA for studies of laser propagation and electron generation

    Science.gov (United States)

    He, Zhaohan; Easter, James; Hou, Bixue; Krushelnick, Karl; Nees, John; Thomas, Alec

    2010-11-01

    Advances in ultrafast optics today have enabled laser systems to deliver ever shorter and more intense pulses. When focused, such laser pulses can easily exceed relativistic intensities where the wakefield created by the strong laser electric field can be used to accelerate electrons. Laser wakefield acceleration of electrons holds promise for future compact electron accelerators or drivers of other radiation sources in many scientific, medical and engineering applications. We present experimental studies of laser wakefield acceleration using the λ-cubed laser at the University of Michigan -- a table-top high-power laser system operating at 500 Hz repetition rate. The high repetition rate allows statistical studies of laser propagation and electron acceleration which are not accessible with typical sub-0.1 Hz repetition rate systems. In addition, we compare the experiments with particle-in-cell simulations using the code OSIRIS.

  12. Acceleration of electrons using an inverse free electron laser auto- accelerator

    International Nuclear Information System (INIS)

    Wernick, I.K.; Marshall, T.C.

    1992-07-01

    We present data from our study of a device known as the inverse free electron laser. First, numerical simulations were performed to optimize the design parameters for an experiment that accelerates electrons in the presence of an undulator by stimulated absorption of radiation. The Columbia free electron laser (FEL) was configured as an auto-accelerator (IFELA) system; high power (MW's) FEL radiation at ∼1.65 mm is developed along the first section of an undulator inside a quasi-optical resonator. The electron beam then traverses a second section of undulator where a fraction of the electrons is accelerated by stimulated absorption of the 1.65 mm wavelength power developed in the first undulator section. The second undulator section has very low gain and does not generate power on its own. We have found that as much as 60% of the power generated in the first section can be absorbed in the second section, providing that the initial electron energy is chosen correctly with respect to the parameters chosen for the first and second undulators. An electron momentum spectrometer is used to monitor the distribution of electron energies as the electrons exit the IFELA. We have found; using our experimental parameters, that roughly 10% of the electrons are accelerated to energies as high as 1100 keV, in accordance with predictions from the numerical model. The appearance of high energy electrons is correlated with the abrupt absorption of millimeter power. The autoaccelerator configuration is used because there is no intense source of coherent power at the 1.65 mm design wavelength other than the FEL

  13. An XUV/VUV free-electron laser oscillator

    Science.gov (United States)

    Goldstein, J. C.; Newnam, B. E.; Cooper, R. K.; Comly, J. C., Jr.

    Problems regarding the extension of free-electron laser technology from the visible and near infrared region, where such devices are currently operating, to the ultraviolet have recently been extensively discussed. It was found that significant technical problems must be overcome before free-electron lasers (FELs) can be operated in the VUV (100-200 nm) and the XUV (50-100). However, the present lack of other intense and tunable sources of coherent radiation at these wavelengths together with the intrinsic properties of FELs make the development of such devices potentially very rewarding. The properties of FELs include continuous tunability in wavelength and output in the form of a train of picosecond pulses. An investigation is conducted regarding the feasibility of an operation of a FEL in the XUV/VUV regions, taking into account a theoretical model. It is found that modest improvements in electron beam and optical mirror technologies will make the design of a FEL for operation in the 50-200-nm range of optical wavelength possible.

  14. Bone Ablation at 2.94 mm Using the Free-Electron Laser and Er:YAG Laser

    Science.gov (United States)

    Ivanov, Borislav; Hakimian, Arman; Peavy, G. M.; Haglund, Richard

    2002-03-01

    Bone Ablation at 2.94 microns Using the Free-Electron Laser and Er:YAG Laser in Perfluorocarbon Compounds B. Ivanov^1, A. M. Hakimian^1, G. M. Peavy^2, R. F. Haglund, Jr.1 1Department of Physics and Astronomy, W. M. Keck Foundation Free-Electron Laser Center, Vanderbilt University, Nashville, TN 37235 2Beckman Laser Institute and Medical Clinic, College of Medicine, University of California, Irvine, CA 92612 We report studies on the efficiency of mid-IR laser ablation of cow cortical bone using the Vanderbilt free-electron laser (FEL), when irrigating the ablation zone with an inert and biocompatible perfluorocarbon compounds (PFC). At 2.94 microns, the bone matrix (mainly by water) absorbs the radiation while the PFCs transmit this wavelength, dissipate heat and acoustical stress, and prevent carbonization of the bone sample. The ablation rate, as a function of laser fluence, scanning speed and the type of PFC, was investigated. The laser fluence was estimated to be 5 J/cm^2 - 100 J/cm^2 with a laser focal spot diameter of 160 microns 500 microns and a scanning speed of 40 microns/s 2960 microns/s. The ablation rate was estimated from scanning electron microscopy to be 0.5 mm/s 2.4 mm/s. Comparisons of ablation rates with the FEL and a Er:YAG laser at 2.94 microns are being evaluated.

  15. A numerical study of the integral equations for the laser fields in free-electron lasers

    International Nuclear Information System (INIS)

    Yoo, J. G.; Park, S. H.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.

    2004-01-01

    The dynamics of the radiation fields in free-electron lasers is investigated on the basis of the integro-differential equations in the one-dimensional formulation. For simple cases we solved the integro-differential equations analytically and numerically to test our numerical procedures developed on the basis of the Filon method. The numerical results showed good agreement with the analytical solutions. To confirm the legitimacy of the numerical package, we carried out numerical studies on the inhomogeneous broadening effects, where no analytic solutions are available, due to the energy spread and the emittance of the electron beam.

  16. Program to Research Laser-Driven Thermionic Electron Sources for Free Electron Lasers.

    Science.gov (United States)

    1988-01-01

    by sinal I lengths of coaxial cable. With the ’. corresponding charge to the diode also reduced, a series of temporall y sho rter -Ioctron pulse-s was...e combination of approximately 1.6 eV. With the Nd:glass laser beam pulse heating the cathode " and the charge supplied by 0.5/ F capacitor, a series ...available charge stored in the h-arg ing ’apar i tor. A series of experiments was performed wilh lowetr capacitances of sevoral tens of picofarads furnished

  17. Upgrade of laser and electron beam welding database

    CERN Document Server

    Furman, Magdalena

    2014-01-01

    The main purpose of this project was to fix existing issues and update the existing database holding parameters of laser-beam and electron-beam welding machines. Moreover, the database had to be extended to hold the data for the new machines that arrived recently at the workshop. As a solution - the database had to be migrated to Oracle framework, the new user interface (using APEX) had to be designed and implemented with the integration with the CERN web services (EDMS, Phonebook, JMT, CDD and EDH).

  18. Scaling of electron beam sources for laser fusion applications

    International Nuclear Information System (INIS)

    Schlitt, L.G.; Bradley, L.P.

    1975-01-01

    The purpose of this study is to develop a scheme for constructing electron beam machines capable of pumping large volumes of gas, to analyze their performance within the framework of existing knowledge of the physical mechanisms involved, to use this analysis to assess the viability of the overall concept, pinpoint weaknesses in the understanding of the physics, identify the most important limiting physical processes, and hence to propose a program to prepare for the eventual construction of a large scale gas laser system. (auth)

  19. Deep saturated Free Electron Laser oscillators and frozen spikes

    Energy Technology Data Exchange (ETDEWEB)

    Ottaviani, P.L. [ENEA - Centro Ricerche Bologna, via Martiri di Monte Sole, 4, IT 40129, Bologna (Italy); Pagnutti, S., E-mail: simonetta.pagnutti@enea.it [ENEA - Centro Ricerche Bologna, via Martiri di Monte Sole, 4, IT 40129, Bologna (Italy); Dattoli, G., E-mail: giuseppe.dattoli@enea.it [ENEA - Centro Ricerche Frascati, via E. Fermi, 45, IT 00044, Frascati, Roma (Italy); Sabia, E., E-mail: elio.sabia@enea.it [ENEA - Centro Ricerche Frascati, via E. Fermi, 45, IT 00044, Frascati, Roma (Italy); Petrillo, V., E-mail: vittoria.petrillo@mi.infn.it [Universita' degli Studi di Milano, via Celoria 16, IT 20133, Milano (Italy); INFN - Mi, via Celoria 16, IT 20133, Milano (Italy); Slot, P.J.M. van der, E-mail: p.j.m.vanderslot@utwente.nl [Mesa+ Institute for Nanotechnology, University of Twente, P.O.Box 217, 7500 AE, Enschede (Netherlands); Biedron, S., E-mail: sandra.biedron@colostate.edu [Department of Electrical and Computer Engineering Colorado State University (United States); Milton, S., E-mail: milton@engr.colostate.edu [Department of Electrical and Computer Engineering Colorado State University (United States)

    2016-10-21

    We analyze the behavior of Free Electron Laser (FEL) oscillators operating in the deep saturated regime and point out the formation of sub-peaks of the optical pulse. These are very stable configurations and the sub-peaks are found to have a duration corresponding to the coherence length. We speculate on the physical mechanisms underlying their growth and attempt an identification with natural mode-locked structures in FEL oscillators. Their impact on the intra-cavity nonlinear harmonic generation is also discussed along with the possibility of exploiting them as cavity out-coupler.

  20. Inverse free electron laser beat-wave accelerator research

    International Nuclear Information System (INIS)

    Marshall, T.C.; Bhattacharjee, A.

    1993-09-01

    A calculation on the stabilization of the sideband instability in the free electron laser (FEL) and inverse FEL (IFEL) was completed. The issue arises in connection with the use of a tapered (''variable-parameter'') undulator of extended length, such as might be used in an ''enhanced efficiency'' traveling-wave FEL or an IFEL accelerator. In addition, the FEL facility at Columbia was configured as a traveling wave amplifier for a 10-kW signal from a 24-GHz magnetron. The space charge field in the bunches of the FEL was measured. Completed work has been published

  1. Free-Electron Lasers Push Into New Frontiers

    International Nuclear Information System (INIS)

    Benson, Stephen V.

    2003-01-01

    From the early days of the development of free-electron lasers (FELs) the promise of high power and short wavelengths has tantalized physicists and other scientists. Recent developments in accelerator technologies and some new discoveries about the physics of FELs have allowed researchers to push the performance of FELs into new frontiers of high power, short wavelength, and ultra-short pulses. Spin-offs from the FELs have also opened up new radiation sources in the THz, X-ray and gamma ray wavelength ranges

  2. Electron emission from laser irradiating target normal sheath acceleration (TNSA)

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cutroneo, Mariapompea

    2016-01-01

    Roč. 171, 9-10 (2016), s. 754-765 ISSN 1042-0150. [12th Workshop on European Collaboration for Higher Education and Research in Nuclear Engineering and Radiological Protection. Bologna, Catania, Milan, 30.05.2016-01.06.2016] R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : electron emission from plasma * TNSA * TOF * SiC * plastic scintillator * Thomson parabola spectrometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.443, year: 2016

  3. Free-electron laser experiments in the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Allen, S.L.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Cummings, J.C.; Fenstermacher, M.E.; Foote, J.H.; Hooper, E.B.; Jong, R.A.; Langdon, A.B.; Lasinski, B.F.; Lasnier, C.J.; Matsuda, Y.; Meyer, W.H.; Moller, J.M.; Nexsen, W.E.; Rice, B.W.; Rognlien, T.D.; Smith, G.R.; Stallard, B.W.; Thomassen, K.I.; Throop, A.L.; Turner, W.C.; Wood, R.D.; Cook, D.R.; Makowski, M.A.; Oasa, K.; Ogawa, T.

    1990-08-01

    Microwave pulses have been injected from a free electron-laser (FEL) into the Microwave Tokamak Experiment (MTX) at up to 0.2 GW at 140 GHz in short pulses (10-ns duration) with O-mode polarization. The power transmitted through the plasma was measured in a first experimental study of high power pulse propagation in the plasma; no nonlinear effects were found at this power level. Calculations indicate that nonlinear effects may be found at the higher power densities expected in future experiments. 9 refs., 2 figs

  4. X-ray Production by Cascading Stages of a High-Gain Harmonic Generation Free-Electron Laser II: Special Topics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J

    2004-09-01

    In this paper, we study the tolerance of a new approach to produce coherent x-ray by cascading several stages of a High-Gain Harmonic Generation (HGHG) Free-Electron Laser (FEL). Being a harmonic generation process, a small noise in the initial fundamental signal will lead to a significant noise-to-signal (NTS) ratio in the final harmonic, so the noise issue is studied in this paper. We study two sources of noise: the incoherent undulator radiation, which is a noise with respect to the seed laser; and the noise of the seed laser itself. In reality, the electron beam longitudinal current profile is not uniform. Since the electron beam is the amplification medium for the FEL, this non- uniformity will induce phase error in the FEL. Therefore, this effect is studied. Phase error due to the wakefield and electron beam self-field is also studied. Synchrotronization of the electron beam and the seed laser is an important issue determining the success of the HGHG. We study the timing jitter induced frequency jitter in this paper. We also show that an HGHG FEL poses a less stringent requirement on the emittance than a SASE FEL does, due to a Natural Emittance Effect Reduction (NEER) mechanism. This NEER mechanism suggests a new operation mode, i.e., the HGHG FEL could adopt a high current, though unavoidable, a high emittance electron beam. Study in this paper shows that, production of hard x-rays with good longitudinal coherence by cascading stages of a HGHG FEL is promising. However, technical improvement is demanded.

  5. A Low-Energy-Spread Rf Accelerator for a Far-Infrared Free-Electron Laser

    NARCIS (Netherlands)

    van der Geer, C. A. J.; Bakker, R. J.; van der Meer, A. F. G.; van Amersfoort, P. W.; Gillespie, W. A.; Saxon, G.; Poole, M. W.

    1993-01-01

    A high electron current and a small energy spread are essential for the operation of a free electron laser (FEL). In this paper we discuss the design and performance of the accelerator for FELIX, the free electron laser for infrared experiments. The system consists of a thermionic gun, a prebuncher,

  6. Free electron laser and coherent radiation. Working group summary

    International Nuclear Information System (INIS)

    Gover, A.; Csonka, P.; Deacon, D.

    1984-01-01

    The planned development of a new storage ring at SSRL gives hope for the exciting possibility that an x-ray laser may become available in a users facility. Such a device would certainly be a unique and revolutionary tool for scientific research and industrial applications, which may take advantage of the spatial and temporal coherence, high power and high brightness of this device in a wavelength regime where no alternative coherent radiation sources exist. The feasibility of implementing such a device in the new ring should be examined carefully by the ring designers. If conclusions are positive, the ring design should take into account the special requirements which are set by the x-ray laser design parameters. Our working group made the first step in this examination process. Most of the emphasis was put on the consideration of an X-Ray Free Electron Laser (XR FEL). FEL technology has developed in the last few years and was recently demonstrated to operate successfully in the visible wavelength regime in the ACO storage ring in Orsay

  7. XUV free-electron laser-based projection lithography systems

    Energy Technology Data Exchange (ETDEWEB)

    Newnam, B.E.

    1990-01-01

    Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 {mu}m to 0.05{mu}m and with an adequate total depth of focus (1 to 2 {mu}m). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs.

  8. Introduction to the theory of free electron lasers

    International Nuclear Information System (INIS)

    Krinsky, S.

    1985-01-01

    We present an introduction to some fundamental aspects of the theory of free electron lasers. Spontaneous radiation emitted by electrons traversing a wiggler magnet is briefly reviewed, and stimulated emission in the low-gain regime is discussed using Colson's pendulum equations and Madey's theorems. The high-gain regime is treated by an extention of the work of Bonifacio, Pellegrini, and Narducci. We introduce dynamical variables to describe the radiation field, and a Hamiltonian formulation of Maxwell's equations is employed. A canonical transformation to the interaction representation factors out the fast time variation of the radiation field, and the slow time dependence is determined by linearized equations for the appropriate collective variables. As an application of this technique we consider self-amplified spontaneous radiation, and we comment upon the relationship between our approach and the use of coupled Vlasov-Maxwell equations

  9. Introduction to free electron lasers (1/3)

    CERN Multimedia

    CERN. Geneva

    2002-01-01

    The Free-electron laser (FEL) is a source of coherent electromagnetic radiation based on a relativistic electron beam. First operated 25 years ago, the FEL has now reached a stage of maturity for operation in the infra-red region of the spectrum and several facilities provide intense FEL radiation beams for research covering a wide range of disciplines. Several projects both underway and proposed aim at pushing the minimum wavelength from its present limit around 100 nm progressively down to the 1 Angstrom region where the X-ray FEL would open up many new and exciting research possibilities. Other developments aim at increasing power levels to the 10's of kW level. In this series of lectures we give an introduction to the basic principles of FELs and their different modes of operation, and summarise their applications and current state of development.

  10. Introduction to free electron lasers (3/3)

    CERN Multimedia

    CERN. Geneva

    2002-01-01

    The Free-electron laser (FEL) is a source of coherent electromagnetic radiation based on a relativistic electron beam. First operated 25 years ago, the FEL has now reached a stage of maturity for operation in the infra-red region of the spectrum and several facilities provide intense FEL radiation beams for research covering a wide range of disciplines. Several projects both underway and proposed aim at pushing the minimum wavelength from its present limit around 100 nm progressively down to the 1 Angstrom region where the X-ray FEL would open up many new and exciting research possibilities. Other developments aim at increasing power levels to the 10's of kW level. In this series of lectures we give an introduction to the basic principles of FELs and their different modes of operation, and summarise their applications and current state of development.

  11. Introduction to free electron lasers (2/3)

    CERN Multimedia

    CERN. Geneva

    2002-01-01

    The Free-electron laser (FEL) is a source of coherent electromagnetic radiation based on a relativistic electron beam. First operated 25 years ago, the FEL has now reached a stage of maturity for operation in the infra-red region of the spectrum and several facilities provide intense FEL radiation beams for research covering a wide range of disciplines. Several projects both underway and proposed aim at pushing the minimum wavelength from its present limit around 100 nm progressively down to the 1 Angstrom region where the X-ray FEL would open up many new and exciting research possibilities. Other developments aim at increasing power levels to the 10's of kW level. In this series of lectures we give an introduction to the basic principles of FELs and their different modes of operation, and summarise their applications and current state of development.

  12. Escaping Electrons from Intense Laser-Solid Interactions as a Function of Laser Spot Size

    Directory of Open Access Journals (Sweden)

    Rusby Dean

    2018-01-01

    Full Text Available The interaction of a high-intensity laser with a solid target produces an energetic distribution of electrons that pass into the target. These electrons reach the rear surface of the target creating strong electric potentials that act to restrict the further escape of additional electrons. The measurement of the angle, flux and spectra of the electrons that do escape gives insights to the initial interaction. Here, the escaping electrons have been measured using a differentially filtered image plate stack, from interactions with intensities from mid 1020-1017 W/cm2, where the intensity has been reduced by defocussing to increase the size of the focal spot. An increase in electron flux is initially observed as the intensity is reduced from 4x1020 to 6x1018 W/cm2. The temperature of the electron distribution is also measured and found to be relatively constant. 2D particle-in-cell modelling is used to demonstrate the importance of pre-plasma conditions in understanding these observations.

  13. Simulations of Electron Transport in Laser Hot Spots

    International Nuclear Information System (INIS)

    Brunner, S.; Valeo, E.

    2001-01-01

    Simulations of electron transport are carried out by solving the Fokker-Planck equation in the diffusive approximation. The system of a single laser hot spot, with open boundary conditions, is systematically studied by performing a scan over a wide range of the two relevant parameters: (1) Ratio of the stopping length over the width of the hot spot. (2) Relative importance of the heating through inverse Bremsstrahlung compared to the thermalization through self-collisions. As for uniform illumination [J.P. Matte et al., Plasma Phys. Controlled Fusion 30 (1988) 1665], the bulk of the velocity distribution functions (VDFs) present a super-Gaussian dependence. However, as a result of spatial transport, the tails are observed to be well represented by a Maxwellian. A similar dependence of the distributions is also found for multiple hot spot systems. For its relevance with respect to stimulated Raman scattering, the linear Landau damping of the electron plasma wave is estimated for such VD Fs. Finally, the nonlinear Fokker-Planck simulations of the single laser hot spot system are also compared to the results obtained with the linear non-local hydrodynamic approach [A.V. Brantov et al., Phys. Plasmas 5 (1998) 2742], thus providing a quantitative limit to the latter method: The hydrodynamic approach presents more than 10% inaccuracy in the presence of temperature variations of the order delta T/T greater than or equal to 1%, and similar levels of deformation of the Gaussian shape of the Maxwellian background

  14. A polarized look at nucleons: Laser electron gamma source

    International Nuclear Information System (INIS)

    1991-01-01

    As the title suggests we are going to look at reactions induced on nucleons by polarized photons. The results I am going to show today are from the Laser Electron Gamma Source, or ''LEGS'' facility, at Brookhaven National Laboratory. At LEGS, gamma ray beams are produced by backscattering laser light from relativistic electrons. I will only summarize the main characteristics of this facility, and leave an in depth description to Dr. Schaerf who will discuss LEGS and other similar backscattering facilities on Wednesday. Reactions with polarized photons inevitably reflect interference terms that for the most part remain hidden in spin-averaged unpolarized measurements. This provides a tool for probing interactions that depend upon spin. In particular, we are going to look today at two cases where the polarization is used to probe the tensor interaction. First, we will examine the tensor force between a proton-neutron pair in deuterium. Secondly, we will examine the tensor force between quarks in a proton that produces a small E2 component that is mixed with the predominantly M1 excitation of the delta resonance.The magnitude of this E2 components provides a sensitive probe of the structure of the Nucleon

  15. Numerical Simulations of X-Ray Free Electron Lasers (XFEL)

    KAUST Repository

    Antonelli, Paolo

    2014-11-04

    We study a nonlinear Schrödinger equation which arises as an effective single particle model in X-ray free electron lasers (XFEL). This equation appears as a first principles model for the beam-matter interactions that would take place in an XFEL molecular imaging experiment in [A. Fratalocchi and G. Ruocco, Phys. Rev. Lett., 106 (2011), 105504]. Since XFEL are more powerful by several orders of magnitude than more conventional lasers, the systematic investigation of many of the standard assumptions and approximations has attracted increased attention. In this model the electrons move under a rapidly oscillating electromagnetic field, and the convergence of the problem to an effective time-averaged one is examined. We use an operator splitting pseudospectral method to investigate numerically the behavior of the model versus that of its time-averaged version in complex situations, namely the energy subcritical/mass supercritical case and in the presence of a periodic lattice. We find the time-averaged model to be an effective approximation, even close to blowup, for fast enough oscillations of the external field. This work extends previous analytical results for simpler cases [P. Antonelli, A. Athanassoulis, H. Hajaiej, and P. Markowich, Arch. Ration. Mech. Anal., 211 (2014), pp. 711--732].

  16. Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide

    CERN Document Server

    Yi, Longqing; Shen, Baifei

    2016-01-01

    Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO 2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications.

  17. Laser-induced electron--ion recombination used to study enhanced spontaneous recombination during electron cooling

    International Nuclear Information System (INIS)

    Schramm, U.; Wolf, A.; Schuess ler, T.; Habs, D.; Schwalm, D.; Uwira, O.; Linkemann, J.; Mueller, A.

    1997-01-01

    Spontaneous recombination of highly charged ions with free electrons in merged velocity matched electron and ion beams has been observed in earlier experiments to occur at rates significantly higher than predicted by theoretical estimates. To study this enhanced spontaneous recombination, laser induced recombination spectra were measured both in velocity matched beams and in beams with well defined relative velocities, corresponding to relative electron-ion detuning energies ranging from 1 meV up to 6.5 meV where the spontaneous recombination enhancement was found to be strongly reduced. Based on a comparison with simplified calculations, the development of the recombination spectra for decreasing detuning energies indicates additional contributions at matched velocities which could be related to the energy distribution of electrons causing the spontaneous recombination rate enhancement

  18. A multi-frequency approach to free electron lasers driven by short electron bunches

    International Nuclear Information System (INIS)

    Piovella, Nicola

    1997-01-01

    A multi-frequency model for free electron lasers (FELs), based on the Fourier decomposition of the radiation field coupled with the beam electrons, is discussed. We show that the multi-frequency approach allows for an accurate description of the evolution of the radiation spectrum, also when the FEL is driven by short electron bunches, of arbitrary longitudinal profile. We derive from the multi-frequency model, by averaging over one radiation period, the usual FEL equations modelling the slippage between radiation and particles and describing the super-radiant regime in high-gain FELs. As an example of application of the multi-frequency model, we discuss the coherent spontaneous emission (CSE) from short electron bunches

  19. Field Emitter Arrays for a Free Electron Laser Application

    CERN Document Server

    Shing-Bruce-Li, Kevin; Ganter, Romain; Gobrecht, Jens; Raguin, Jean Yves; Rivkin, Leonid; Wrulich, Albin F

    2004-01-01

    The development of a new electron gun with the lowest possible emittance would help reducing the total length and cost of a free electron laser. Field emitter arrays (FEAs) are an attractive technology for electron sources of ultra high brightness. Indeed, several thousands of microscopic tips can be deposited on a 1 mm diameter area. Electrons are then extracted by applying voltage to a first grid layer close to the tip apexes, the so called gate layer, and focused by a second grid layer one micrometer above the tips. The typical aperture diameter of the gate and the focusing layer is in the range of one micrometer. One challenge for such cathodes is to produce peak currents in the ampere range since the usual applications of FEAs require less than milliampere. Encouraging peak current performances have been obtained by applying voltage pulses at low frequency between gate and tips. In this paper we report on different tip materials available on the market: diamond FEAs from Extreme Devices Inc., ZrC single ...

  20. Optical guiding and beam bending in free-electron lasers

    International Nuclear Information System (INIS)

    Scharlemann, E.T.

    1987-01-01

    The electron beam in a free-electron laser (FEL) can act as an optical fiber, guiding or bending the optical beam. The refractive and gain effects of the bunched electron beam can compensate for diffraction, making possible wigglers that are many Rayleigh ranges (i.e., characteristic diffraction lengths) long. The origin of optical guiding can be understood by examining gain and refractive guiding in a fiber with a complex index of refraction, providing a mathematical description applicable also to the FEL, with some extensions. In the exponential gain regime of the FEL, the electron equations of motion must be included, but a self-consistent description of exponential gain with diffraction fully included becomes possible. The origin of the effective index of refraction of an FEL is illustrated with a simple example of bunched, radiating dipoles. Some of the properties of the index of refraction are described. The limited experimental evidence for optical beam bending is summarized. The evidence does not yet provide conclusive proof of the existence of optical guiding, but supports the idea. Finally, the importance of refractive guiding for the performance of a high-gain tapered-wiggler FEL amplifier is illustrated with numerical simulations

  1. Electron beam charge diagnostics for laser plasma accelerators

    Directory of Open Access Journals (Sweden)

    K. Nakamura

    2011-06-01

    Full Text Available A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs. First, a scintillating screen (Lanex was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160  pC/mm^{2} and 0.4  pC/(ps  mm^{2}, respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within ±8%, showing that they all can provide accurate charge measurements for LPAs.

  2. Radial electron beam laser excitation: the REBLE report

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Prestwich, K.R.

    1978-10-01

    The results of an investigation of techniques to generate high-power radially converging electron beams and the application of these beams to gas lasers is discussed. The design and performance of the REBLE accelerator that was developed for this program is presented. Reliable operation of the radial diode has been obtained at levels up to 1 MV, 200 kA, and 20 ns. It has been demonstrated that the anode current density can be made uniform to better than 15% over 1000 cm 2 areas with 100 to 250 A/cm 2 intensities. The measured total and spatially resolved energy deposition of this radial electron beam in various gases is compared with Monte Carlo calculations. In most cases, these codes give an accurate description of the beam transport and energy deposition. With the electron beam pumping xenon gas, the amplitude of xenon excimer radiation (1720 A 0 ) was radially uniform to within the experimental uncertainty. The efficiency of converting deposited electron beam energy to xenon excimer radiation was 20%

  3. Effect of presowing irradiation of seed from winter rapeseed by helium-neon laser on the growth, yield and quality of the green mass

    International Nuclear Information System (INIS)

    Ivanova, R.; Stoyanova, S.

    2000-01-01

    The experiment was carried out with the cultivar Ossiek 4. The seed have been irradiated using helium - neon laser of 623.8 nm wave length and power 20 mwt. The average duration of seed treatment in the irradiation zone was 1-10E-3 s and the mean single irradiation doze -3.10E-7 s. The seed was irradiated 1,2,3,4,5 and 6 times. Untreated seed was used as control (C). The results of biometric analysis showed tendency for development of powerful vegetation organs from irradiated variants. It was established that the plant from irradiation seeds had most leaves and flowers. The highest stimulating effect of the three year experiment was obtained by 2 times treated seed- 103000 kg/ha which exceeded 1.7 times the control. There were no depressing effect by the higher values of irradiation. Yield and crude protein content were the highest in irradiation variants

  4. Electron ionization and spin polarization control of Fe atom adsorbed graphene irradiated by a femtosecond laser

    International Nuclear Information System (INIS)

    Yu, Dong; Jiang, Lan; Wang, Feng; Li, Xin; Qu, Liangti; Lu, Yongfeng

    2015-01-01

    We investigate the structural properties and ionized spin electrons of an Fe–graphene system, in which the time-dependent density functional theory (TDDFT) within the generalized gradient approximation is used. The electron dynamics, including electron ionization and ionized electron spin polarization, is described for Fe atom adsorbed graphene under femtosecond laser irradiation. The theoretical results show that the electron ionization and ionized electron spin polarization are sensitive to the laser parameters, such as the incident angle and the peak intensity. The spin polarization presents the maximum value under certain laser parameters, which may be used as a source of spin-polarized electrons. - Highlights: • The structural properties of Fe–graphene system are investigated. • The electron dynamics of Fe–graphene system under laser irradiation are described. • The Fe–graphene system may be used as a source of spin-polarized electrons

  5. Structural and electronic characterization of 355 nm laser-crystallized silicon: Interplay of film thickness and laser fluence

    International Nuclear Information System (INIS)

    Semler, Matthew R.; Swenson, Orven F.; Hoey, Justin M.; Guruvenket, Srinivasan; Gette, Cody R.; Hobbie, Erik K.

    2014-01-01

    We present a detailed study of the laser crystallization of amorphous silicon thin films as a function of laser fluence and film thickness. Silicon films grown through plasma-enhanced chemical vapor deposition were subjected to a Q-switched, diode-pumped solid-state laser operating at 355 nm. The crystallinity, morphology, and optical and electronic properties of the films are characterized through transmission and reflectance spectroscopy, resistivity measurements, Raman spectroscopy, X-ray diffraction, atomic force microscopy, and optical and scanning-electron microscopy. Our results reveal a unique surface morphology that strongly couples to the electronic characteristics of the films, with a minimum laser fluence at which the film properties are optimized. A simple scaling model is used to relate film morphology to conductivity in the laser-processed films

  6. Characterization of electron-deficient chemical bonding of diborane with attosecond electron wavepacket dynamics and laser response

    International Nuclear Information System (INIS)

    Yonehara, Takehiro; Takatsuka, Kazuo

    2009-01-01

    We report a theoretical study of non-adiabatic electrons-nuclei coupled dynamics of diborane H 2 BH 2 BH 2 under several types of short pulse lasers. This molecule is known to have particularly interesting geometrical and electronic structures, which originate from the electron-deficient chemical bondings. We revisit the chemical bonding of diborane from the view point of electron wavepacket dynamics coupled with nuclear motions, and attempt to probe the characteristics of it by examining its response to intense laser fields. We study in the following three aspects, (i) bond formation of diborane by collision between two monoboranes, (ii) attosecond electron wavepacket dynamics in the ground state and first excited state by circularly polarized laser pulse, and (iii) induced fragmentation back to monoborane molecules by linearly polarized laser. The wave lengths of two types of laser field employed are 200 nm (in UV range) and 800 nm (in IR range), and we track the dynamics from hundreds of attoseconds up to few tens of femtoseconds. To this end, we apply the ab initio semiclassical Ehrenfest theory, into which the classical vector potential of a laser field is introduced. Basic features of the non-adiabatic response of electrons to the laser fields is elucidated in this scheme. To analyze the electronic wavepackets thus obtained, we figure out bond order density that is a spatial distribution of the bond order and bond order flux density arising only from the bonding regions, and so on. Main findings in this work are: (i) dimerization of monoboranes to diborane is so efficient that even intense laser is hard to prevent it; (ii) collective motions of electron flux emerge in the central BHHB bonding area in response to the circularly polarized laser fields; (iii) laser polarization with the direction of central two BH bonding vector is efficient for the cleavage of BH 3 -BH 3 ; and (iv) nuclear derivative coupling plays a critical role in the field induced

  7. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light

    Science.gov (United States)

    Flores, Angel; Ehrehreich, Thomas; Holten, Roger; Anderson, Brian; Dajani, Iyad

    2016-03-01

    We report efficient coherent beam combining of five kilowatt-class fiber amplifiers with a diffractive optical element (DOE). Based on a master oscillator power amplifier (MOPA) configuration, the amplifiers were seeded with pseudo random phase modulated light. Each non-polarization maintaining fiber amplifier was optically path length matched and provides approximately 1.2 kW of near diffraction-limited output power (measured M2polarization control. A low power sample of the combined beam after the DOE provided an error signal for active phase locking which was performed via Locking of Optical Coherence by Single-Detector Electronic-Frequency Tagging (LOCSET). After phase stabilization, the beams were coherently combined via the 1x5 DOE. A total combined output power of 4.9 kW was achieved with 82% combining efficiency and excellent beam quality (M2splitter loss was 5%. Similarly, losses due in part to non-ideal polarization, ASE content, uncorrelated wavefront errors, and misalignment errors contributed to the efficiency reduction.

  8. Transverse beam diagnostics for the XUV seeding experiment at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Boedewadt, Joern

    2011-12-15

    High-gain free-electron lasers (FEL) offer intense, transversely coherent, and ultra short radiation pulses in the extreme ultraviolet, the soft- and the hard-X-ray spectral range. Undulator radiation from spontaneous emission is amplified. Due to the stochastic emission process, the radiation exhibits a low temporal coherence, and the structure of the amplified radiation in the temporal and in the spectral domain shows large shot-to-shot fluctuations. In order to improve the temporal coherence, an external radiation pulse is used to induce (or seed) the FEL process. With this, only a defined wavelength range within the FEL bandwidth is amplified provided that the irradiance of the external radiation exceeds the noise level of the FEL amplifier. In addition to the improved longitudinal coherence, a seeded FEL provides the possibility to perform pump-probe experiments with an expected temporal resolution of the order of the pulse durations. In order to experimentally proof this statement, a test experiment for direct HHG-seeding at wavelength below 40 nm was installed at the free-electron laser facility FLASH at DESY. Crucial for the seeded operation of an FEL is the six-dimensional laser-electron overlap of the seed laser pulses with the electron bunches. Hence, dedicated diagnostics to measure and mechanisms to control the overlap are essential. Within this thesis, a transport beamline for the seed laser beam and the transverse diagnostics for seed laser- and the electron-beam were developed and commissioned. Results of the performance of the seed injection beamline are presented, and first measurements of the seeded operation of the FEL are analyzed and evaluated. (orig.)

  9. Material Processing Opportunites Utilizing a Free Electron Laser

    Science.gov (United States)

    Todd, Alan

    1996-11-01

    Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise

  10. First observations of acceleration of injected electrons in a laser plasma beatwave experiment

    International Nuclear Information System (INIS)

    Ebrahim, N.A.; Martin, F.; Bordeur, P.; Heighway, E.A.; Matte, J.P.; Pepin, H.; Lavigne, P.

    1986-01-01

    The first experimental observations of acceleration of injected electrons in a laser driven plasma beatwave are presented. The plasma waves were excited in an ionized gas jet, using a short pulse high intensity CO 2 laser with two collinearly propagating beams (at λ = 9.6 μm and 10.6 μm) to excite a fast wave (v/sub p/ = c). The source of electrons was a laser plasma produced on an aluminum slab target by a third, synchronized CO 2 laser beam. A double-focusing dipole magnet was used to energy select and inject electrons into the beatwave, and a second magnetic spectrograph was used to analyze the accelerated electrons. Electron acceleration was only observed when the appropriate resonant plasma density was produced (∼ 10 17 cm -3 ), the two laser lines were incident on the plasma, and electrons were injected into this plasma from an external source

  11. Electrons trajectories around a bubble regime in intense laser plasma interaction

    International Nuclear Information System (INIS)

    Lu, Ding; Xie, Bai-Song; Ali Bake, Muhammad; Sang, Hai-Bo; Zhao, Xue-Yan; Wu, Hai-Cheng

    2013-01-01

    Some typical electrons trajectories around a bubble regime in intense laser plasma interaction are investigated theoretically. By considering a modification of the fields and ellipsoid bubble shape due to the presence of residual electrons in the bubble regime, we study in detail the electrons nonlinear dynamics with or without laser pulse. To examine the electron dynamical behaviors, a set of typical electrons, which locate initially at the front of the bubble, on the transverse edge and at the bottom of the bubble respectively, are chosen for study. It is found that the range of trapped electrons in the case with laser pulse is a little narrower than that without laser pulse. The partial phase portraits for electrons around the bubble are presented numerically and their characteristic behaviors are discussed theoretically. Implication of our results on the high quality electron beam generation is also discussed briefly

  12. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    International Nuclear Information System (INIS)

    Behrens, Christopher

    2012-11-01

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  13. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2012-11-15

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  14. Conceptual design of a laser-plasma accelerator driven free-electron laser demonstration experiment

    International Nuclear Information System (INIS)

    Seggebrock, Thorben

    2015-01-01

    Up to now, short-wavelength free-electron lasers (FEL) have been systems on the scale of hundreds of meters up to multiple kilometers. Due to the advancements in laser-plasma acceleration in the recent years, these accelerators have become a promising candidate for driving a fifth-generation synchrotron light source - a lab-scale free-electron laser. So far, demonstration experiments have been hindered by the broad energy spread typical for this type of accelerator. This thesis addresses the most important challenges of the conceptual design for a first lab-scale FEL demonstration experiment using analytical considerations as well as simulations. The broad energy spread reduces the FEL performance directly by weakening the microbunching and indirectly via chromatic emittance growth, caused by the focusing system. Both issues can be mitigated by decompressing the electron bunch in a magnetic chicane, resulting in a sorting by energies. This reduces the local energy spread as well as the local chromatic emittance growth and also lowers performance degradations caused by the short bunch length. Moreover, the energy dependent focus position leads to a focus motion within the bunch, which can be synchronized with the radiation pulse, maximizing the current density in the interaction region. This concept is termed chromatic focus matching. A comparison shows the advantages of the longitudinal decompression concept compared to the alternative approach of transverse dispersion. When using typical laser-plasma based electron bunches, coherent synchrotron radiation and space-charge contribute in equal measure to the emittance growth during decompression. It is shown that a chicane for this purpose must not be as weak and long as affordable to reduce coherent synchrotron radiation, but that an intermediate length is required. Furthermore, the interplay of the individual concepts and components is assessed in a start-to-end simulation, confirming the feasibility of the

  15. Conceptual design of a laser-plasma accelerator driven free-electron laser demonstration experiment

    Energy Technology Data Exchange (ETDEWEB)

    Seggebrock, Thorben

    2015-07-08

    Up to now, short-wavelength free-electron lasers (FEL) have been systems on the scale of hundreds of meters up to multiple kilometers. Due to the advancements in laser-plasma acceleration in the recent years, these accelerators have become a promising candidate for driving a fifth-generation synchrotron light source - a lab-scale free-electron laser. So far, demonstration experiments have been hindered by the broad energy spread typical for this type of accelerator. This thesis addresses the most important challenges of the conceptual design for a first lab-scale FEL demonstration experiment using analytical considerations as well as simulations. The broad energy spread reduces the FEL performance directly by weakening the microbunching and indirectly via chromatic emittance growth, caused by the focusing system. Both issues can be mitigated by decompressing the electron bunch in a magnetic chicane, resulting in a sorting by energies. This reduces the local energy spread as well as the local chromatic emittance growth and also lowers performance degradations caused by the short bunch length. Moreover, the energy dependent focus position leads to a focus motion within the bunch, which can be synchronized with the radiation pulse, maximizing the current density in the interaction region. This concept is termed chromatic focus matching. A comparison shows the advantages of the longitudinal decompression concept compared to the alternative approach of transverse dispersion. When using typical laser-plasma based electron bunches, coherent synchrotron radiation and space-charge contribute in equal measure to the emittance growth during decompression. It is shown that a chicane for this purpose must not be as weak and long as affordable to reduce coherent synchrotron radiation, but that an intermediate length is required. Furthermore, the interplay of the individual concepts and components is assessed in a start-to-end simulation, confirming the feasibility of the

  16. Laser - assisted multiphoton ionization of ground state Li{sup +} by electron and positron impact

    Energy Technology Data Exchange (ETDEWEB)

    Deb, S Ghosh; Sinha, C, E-mail: srabanti.ghosh@gmail.co, E-mail: chand_sin@hotmail.co [Theoretical Physics Department, Indian Association for the Cultivation of Science, Kolkata - 700032 (India)

    2009-11-01

    The influence of the laser field on the dynamics of (e, 2e) process of Li{sup +} ion by electron / positron impact is studied for coplanar geometry with laser polarization parallel to the incident momentum. The laser dressed projectile wavefunctions are chosen as Coulomb Volkov (CV) while for ejected electron, modified CV is considered. The target dressing is constructed using the time dependent perturbation theory. Laser field suppresses the FF cross-sections significantly for single photon exchange while for multiple photon exchanges the cross-sections are enhanced. TDCS is quite sensitive with respect to the initial phase of the laser field.

  17. Efficiency enhancement of a harmonic lasing free-electron laser

    International Nuclear Information System (INIS)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2015-01-01

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered

  18. Efficiency enhancement of a harmonic lasing free-electron laser

    Science.gov (United States)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2015-03-01

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered.

  19. Efficiency enhancement of a harmonic lasing free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, E.; Maraghechi, B., E-mail: behrouz@aut.ac.ir [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of); Mirian, N. S. [School of Particle and Accelerator Physics, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran (Iran, Islamic Republic of)

    2015-03-15

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered.

  20. Millimeter wave free electron laser amplifiers: Experiments and designs

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Zhang, Z.X.; Antonsen, T.M. Jr.; Bensen, D.M.; Destler, W.W.; Granatstein, V.L.; Lantham, P.E.; Levush, B.; Rodgers, J.

    1991-01-01

    Free electron laser amplifies are investigated as sources of high- average-power (1 MW) millimeter to submillimeter wave radiation (200 GHz - 600 GHz) for application to electron cyclotron resonance heating of magnetically confined fusion plasmas. As a stepping-stone to higher frequencies and cw operation a pulsed amplifier (τ pulse ≅ 80 ns) at 98 GHz is being developed. Status is reported on this experiment which investigates linear gain amplification with use of sheet electron beam (transverse cross section = 0.1 cm x 2.0 cm, V beam = 440 keV, I beam ≅ 10 A) and short-period wiggler (ell w = 0.96 cm) and with expected output of 140 W. Predictions of gain and efficiency from a 1-D universal formulation are presented. Beam propagation results, with wiggler focusing as a means of sheet beam confinement in both transverse dimensions, through the 54 cm (56 period) pulsed electromagnet wiggler are discussed. Peak wiggler fields of 5.1 kG on-axis have been achieved

  1. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    Science.gov (United States)

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  2. Electron structure of atoms in laser plasma: The Debye shielding model

    International Nuclear Information System (INIS)

    Sako, Tokuei; Okutsu, Hiroshi; Yamanouchi, Kaoru

    2005-01-01

    The electronic structure and the energy spectra of multielectron atoms in laser plasmas are examined by the Debye shielding model. The effect of the plasma environment on the electrons bound in an atom is taken into account by introducing the screened Coulomb-type potentials into the electronic Hamiltonian of an atom in place of the standard nuclear attraction and electron repulsion potentials. The capabilities of this new Hamiltonian are demonstrated for He and Li in laser plasmas. (author)

  3. The electron accelerator for FELIX [Free Electron Laser for Infrared eXperiments

    International Nuclear Information System (INIS)

    Amersfoort, P.W. van; Geer, C.A.J. van der; Meer, A.F.G. van der; Bruinsma, P.J.T.; Hoekstra, R.; Kroes, F.B.; Luyckx, G.; Noomen, J.G.; Poole, M.W.; Saxon, G.

    1989-01-01

    The authors discuss the design of the electron accelerator for the Free Electron Laser for Infrared eXperiments (FELIX), which is meant to provide the Dutch science community with a rapidly tunable source of infrared radiation. The first stage of the project will (at least) cover the wavelength range between 8 and 80 μm. The accelerator consists of a triode with a grid modulated at 1 GHz, a 3.8-MeV buncher, and two travelling-wave S-band linac structures, with which 70-A, 3-ps bunches are accelerated to an energy between 15 and 4-5 MeV. The system has been designed to minimize the energy spread in the electron beam. 8 refs., 2 figs., 1 tab

  4. Electron beam halo monitor for a compact x-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    Hideki Aoyagi

    2013-03-01

    Full Text Available An electron beam halo monitor using diamond-based detectors, which are operated in the ionization mode, has been developed for the SPring-8 Angstrom compact free-electron laser (SACLA to protect its undulator magnets from radiation damage. Diamond-based detectors are inserted in a beam duct to measure the intensity of the beam halo directly. To suppress the degradation of the electron beam due to the installation of the beam halo monitor, rf fingers with aluminum windows are newly employed. We evaluated the effect of radiation from the Al windows on the output signal both experimentally and by simulation. The operational results of the beam halo monitor employed in SACLA are presented.

  5. Laser light and magnetic field stimulation effect on biochemical, enzymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages.

    Science.gov (United States)

    Asghar, Tehseen; Jamil, Yasir; Iqbal, Munawar; Zia-Ul-Haq; Abbas, Mazhar

    2016-12-01

    Laser and magnetic field bio-stimulation attracted the keen interest of scientific community in view of their potential to enhance seed germination, seedling growth, physiological, biochemical and yield attributes of plants, cereal crops and vegetables. Present study was conducted to appraise the laser and magnetic field pre-sowing seed treatment effects on soybean sugar, protein, nitrogen, hydrogen peroxide (H 2 O 2 ) ascorbic acid (AsA), proline, phenolic and malondialdehyde (MDA) along with chlorophyll contents (Chl "a" "b" and total chlorophyll contents). Specific activities of enzymes such as protease (PRT), amylase (AMY), catalyst (CAT), superoxide dismutase (SOD) and peroxides (POD) were also assayed. The specific activity of enzymes (during germination and early growth), biochemical and chlorophyll contents were enhanced significantly under the effect of both laser and magnetic pre-sowing treatments. Magnetic field treatment effect was slightly higher than laser treatment except PRT, AMY and ascorbic acid contents. However, both treatments (laser and magnetic field) effects were significantly higher versus control (un-treated seeds). Results revealed that laser and magnetic field pre-sowing seed treatments have potential to enhance soybean biological moieties, chlorophyll contents and metabolically important enzymes (degrade stored food and scavenge reactive oxygen species). Future study should be focused on growth characteristics at later stages and yield attributes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Marangoni Convection during Free Electron Laser Nitriding of Titanium

    Science.gov (United States)

    Höche, Daniel; Müller, Sven; Rapin, Gerd; Shinn, Michelle; Remdt, Elvira; Gubisch, Maik; Schaaf, Peter

    2009-08-01

    Pure titanium was treated by free electron laser (FEL) radiation in a nitrogen atmosphere. As a result, nitrogen diffusion occurs and a TiN coating was synthesized. Local gradients of interfacial tension due to the local heating lead to a Marangoni convection, which determines the track properties. Because of the experimental inaccessibility of time-dependent occurrences, finite element calculations were performed, to determine the physical processes such as heat transfer, melt flow, and mass transport. In order to calculate the surface deformation of the gas-liquid interface, the level set approach was used. The equations were modified and coupled with heat-transfer and diffusion equations. The process was characterized by dimensionless numbers such as the Reynolds, Peclet, and capillary numbers, to obtain more information about the acting forces and the coating development. Moreover, the nitrogen distribution was calculated using the corresponding transport equation. The simulations were compared with cross-sectional micrographs of the treated titanium sheets and checked for their validity. Finally, the process presented is discussed and compared with similar laser treatments.

  7. Ultraviolet Free Electron Laser Facility preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (ed.)

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  8. Cartilage ablation studies using mid-IR free electron laser

    Science.gov (United States)

    Youn, Jong-In; Peavy, George M.; Venugopalan, Vasan

    2005-04-01

    The ablation rate of articular cartilage and fibrocartilage (meniscus), were quantified to examine wavelength and tissue-composition dependence of ablation efficiency for selected mid-infrared wavelengths. The wavelengths tested were 2.9 um (water dominant absorption), 6.1 (protein and water absorption) and 6.45 um (protein dominant absorption) generated by the Free Electron Laser (FEL) at Vanderbilt University. The measurement of tissue mass removal using a microbalance during laser ablation was conducted to determine the ablation rates of cartilage. The technique can be accurate over methods such as profilometer and histology sectioning where tissue surface and the crater morphology may be affected by tissue processing. The ablation efficiency was found to be dependent upon the wavelength. Both articular cartilage and meniscus (fibrocartilage) ablations at 6.1 um were more efficient than those at the other wavelengths evaluated. We observed the lowest ablation efficiency of both types of cartilage with the 6.45 um wavelength, possibly due to the reduction in water absorption at this wavelength in comparison to the other wavelengths that were evaluated.

  9. Nuclear fission fragment excitation of electronic transition laser media

    International Nuclear Information System (INIS)

    Lorents, D.C.; McCusker, M.V.; Rhodes, C.K.

    1976-01-01

    The properties of high energy electronic transition lasers excited by fission fragments are expanded. Specific characteristics of the media including density, excitation rates, wavelength, kinetics, fissile material, scale size, and medium uniformity are assessed. The use of epithermal neutrons, homogeneously mixed fissile material, and special high cross section nuclear isotopes to optimize coupling of the energy to the medium are shown to be important considerations maximizing the scale size, energy deposition, and medium uniformity. A performance limit point of approximately 1000 J/l in approximately 100 μs pulses is established for a large class of systems operating in the near ultraviolet and visible spectral regions. It is demonstrated that e-beam excitation can be used to simulate nuclear pumping conditions to facilitate the search for candidate media. Experimental data for the kinetics of a XeF* laser operating in Ar/Xe/F 2 /UF 6 mixtures are given. These reactor-pumped systems are suitable for scaling to volumes on the order of (meters) 3

  10. Ultraviolet Free Electron Laser Facility preliminary design report

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA)

  11. Optical klystron and harmonic generation free electron laser

    Directory of Open Access Journals (Sweden)

    Qika Jia

    2005-06-01

    Full Text Available The optical field evolution of an optical klystron free electron laser is analytically described for both low gain and high gain cases. The harmonic optical klystron (HOK in which the second undulator is resonant on the higher harmonic of the first undulator is analyzed as a harmonic amplifier. The optical field evolution equation of the HOK is derived analytically for both the CHG mode (coherent harmonic generation, the quadratic gain regime and the HGHG mode (high gain harmonic generation, the exponential gain regime, the effects of energy spread, energy modulation, and dispersion in the whole process are taken into account. The linear theory is given and discussed for the HGHG mode. The analytical formula is given for the CHG mode.

  12. Test of models for electron transport in laser produced plasmas

    International Nuclear Information System (INIS)

    Colombant, D.G.; Manheimer, W.M.; Busquet, M.

    2005-01-01

    This paper examines five different models of electron thermal transport in laser produced spherical implosions. These are classical, classical with a flux limit f, delocalization, beam deposition model, and Fokker-Planck solutions. In small targets, the results are strongly dependent on f for flux limit models, with small f's generating very steep temperature gradients. Delocalization models are characterized by large preheat in the center of the target. The beam deposition model agrees reasonably well with the Fokker-Planck simulation results. For large, high gain fusion targets, the delocalization model shows the gain substantially reduced by the preheat. However, flux limitation models show gain largely independent of f, with the beam deposition model also showing the same high gain

  13. Free Electron Laser as Energy Driver for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Saldin, E.L.; Shnejdmiller, E.A.; Ul'yanov, Yu.N.; Sarantsev, V.P.; Yurkov, M.V.

    1994-01-01

    A FEL based energy driver for Inertial Confinement Fusion (ICF) is proposed. The key element of the scheme is free electron laser system. Novel technical solutions reveal a possibility to construct the FEL system operating at radiation wavelength λ = 0.5 μm and providing flash energy E = 1 MJ and brightness 4 x 10 22 W cm -2 sr -1 within steering pulse duration 0.1-2 ns. Total energy efficiency of the proposed ICF energy driver is about of 11% and repetition rate is 40 Hz. Dimensions of such an ICF driver are comparable with those of heavy-ion ICF driver, while the problem of technical realization seems to be more realistic. It is shown that the FEL based ICF energy driver may be constructed at the present level of accelerator technique R and D. 27 refs., 10 figs., 3 tabs

  14. Los Alamos free-electron laser (FEL) rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Lynch, M.T.

    1985-01-01

    The FEL rf system was designed for 3.6-MW rf pulses from two klystrons to drive two linacs and one deflection cavity at 1300 MHz. Two 108.33-MHz subharmonic buncher cavities and one fundamental buncher were also built, each powered by a 5-kW amplifier. A single phase-coherent source drives the various amplifiers as well as the grid of the electron gun, which is pulsed at 21.67 MHz. The initial buncher system did not work as well as expected, and the first linac tank required more rf power than anticipated. The light output was extremely sensitive to amplitude and phase errors. More powerful klystrons were developed and installed, and a method was discovered for operating a single subharmonic buncher and allowing the first linac to complete the bunching process. This paper shows the actual configuration used to operate the laser and discusses future improvements

  15. Red Shift and Broadening of Backward Harmonic Radiation from Electron Oscillations Driven by Femtosecond Laser Pulse

    International Nuclear Information System (INIS)

    Tian Youwei; Yu Wei; Lu Peixiang; Senecha, Vinod K; Han, Xu; Deng Degang; Li Ruxin; Xu Zhizhan

    2006-01-01

    The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled

  16. Analytic model of bunched beams for harmonic generation in the low-gain free electron laser regime

    Directory of Open Access Journals (Sweden)

    G. Penn

    2006-06-01

    Full Text Available One scheme for harmonic generation employs free electron lasers (FELs with two undulators: the first uses a seed laser to modulate the energy of the electron beam; following a dispersive element which acts to bunch the beam, the second undulator radiates at a higher harmonic. These processes are currently evaluated using extensive calculations or simulation codes which can be slow to evaluate and difficult to set up. We describe a simple algorithm to predict the output of a harmonic generation beam line in the low-gain FEL regime, based on trial functions for the output radiation. Full three-dimensional effects are included. This method has been implemented as a Mathematica® package, named CAMPANILE, which runs rapidly and can be generalized to include effects such as asymmetric beams and misalignments. This method is compared with simulation results using the FEL code GENESIS, both for single stages of harmonic generation and for the LUX project, a design concept for an ultrafast x-ray facility, where multiple stages upshift the input laser frequency by factors of up to 200.

  17. Electron accelerator with a laser ignition for investigation of beam plasma by optical methods

    International Nuclear Information System (INIS)

    Kabanov, S.N.; Korolev, A.A.; Kul'beda, V.E.; Razumovskij, A.I.; Trukhin, V.A.

    1990-01-01

    Facility to conduct investigations into dense gas beam plasma is described. Facility comprises: electron accelerator (200-300 keV, 5kA, 20ns), OGM-40 ignition ruby laser LZhI-501 diagnostic laser (with 0.55-0.66 μm tunable wave length), Michelson interferometer and diagnostic equipment for optical measurements. Laser ignition of spark gap is introduced to strong synchronization (±10ns) of radiation pulse of diagnostic laser with beam current pulse

  18. Harmonic lasing in x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    E. A. Schneidmiller

    2012-08-01

    Full Text Available Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed might be a cheap and efficient way of extension of wavelength ranges of existing and planned x-ray free electron laser (FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of x-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned x-ray FEL (XFEL facilities. In particular, Linac Coherent Light Source (LCLS after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25–30 keV providing multigigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow one to extend operating range (ultimately up to 100 keV, to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other x-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact x-ray FELs (driven by electron beams with a relatively low energy, allowing the use of the standard undulator technology instead of

  19. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation

    International Nuclear Information System (INIS)

    Wang Cong; Jiang Lan; Wang Feng; Li Xin; Yuan Yanping; Xiao Hai; Tsai, Hai-Lung; Lu Yongfeng

    2012-01-01

    A real-time and real-space time-dependent density functional is applied to simulate the nonlinear electron-photon interactions during shaped femtosecond laser pulse train ablation of diamond. Effects of the key pulse train parameters such as the pulse separation, spatial/temporal pulse energy distribution and pulse number per train on the electron excitation and energy absorption are discussed. The calculations show that photon-electron interactions and transient localized electron dynamics can be controlled including photon absorption, electron excitation, electron density, and free electron distribution by the ultrafast laser pulse train. (paper)

  20. Electron transport phenomena and dense plasmas produced by ultra-short pulse laser interaction

    International Nuclear Information System (INIS)

    More, R.M.

    1994-01-01

    Recent experiments with femtosecond lasers provide a test bed for theoretical ideas about electron processes in hot dense plasmas. We briefly review aspects of electron conduction theory likely to prove relevant to femtosecond laser absorption. We show that the Mott-Ioffe-Regel limit implies a maximum inverse bremsstrahlung absorption of about 50% at temperatures near the Fermi temperature. We also propose that sheath inverse bremsstrahlung leads to a minimum absorption of 7-10% at high laser intensity

  1. Nuclear excitation via the motion of electrons in a strong laser field

    International Nuclear Information System (INIS)

    Berger, J.F.; Gogny, D.; Weiss, M.S.

    1987-12-01

    A method of switching from a nuclear isomeric state to a lasing state is examined. A semi-classical model of laser-electron-nuclear coupling is developed. In it the electrons are treated as free in the external field of the laser, but with initial conditions corresponding to their atomic orbits. Application is made to testing this model in 235 U and to the design criteria of a gamma-ray laser. 14 refs., 2 tabs

  2. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    Science.gov (United States)

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  3. Relativistic electron kinetic effects on laser diagnostics in burning plasmas

    Science.gov (United States)

    Mirnov, V. V.; Den Hartog, D. J.

    2018-02-01

    Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thomson scattering systems (TS) are major optical diagnostics being designed and developed for ITER. Each of them relies upon a sophisticated quantitative understanding of the electron response to laser light propagating through a burning plasma. Review of the theoretical results for two different applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P applications, rigorous analytical results are obtained perturbatively by expansion in powers of the small parameter τ = Te/me c2, where Te is electron temperature and me is electron rest mass. Experimental validation of the analytical models has been made by analyzing data of more than 1200 pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical expressions are included in the error analysis and design projects of the ITER TIP and PoPola systems. The polarization properties of incoherent Thomson scattered light are being examined as a method of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector transformation and Mueller matrices formalism. The general approach is subdivided into frequency-integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions are presented in the form of Mueller matrix elements averaged over the relativistic Maxwellian distribution function. New results related to the detailed verification of the frequency-resolved solutions are reported. The precise analytic expressions provide output much more rapidly than relativistic kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.

  4. Measurement of the electron quenching rate in an electron beam pumped KrF* laser

    International Nuclear Information System (INIS)

    Nishioka, Hajime; Kurashima, Toshio; Kuranishi, Hideaki; Ueda, Kenichi; Takuma, Hiroshi; Sasaki, Akira; Kasuya, Koichi.

    1988-01-01

    The electron quenching rate of KrF * in an electron beam pumped laser has been studied by accurately measuring the saturation intensity in a mixture of Ar/Kr/F 2 = 94/6/0.284. The input intensity of the measurements was widely varied from 100 W cm -2 (small signal region) to 100 MW cm -2 (absorption dominant region) in order to separate laser parameters which are small signal gain coefficient, absorption coefficient, and saturation intensity from the measured net gain coefficients. The gas pressure and the pump rate were varied in the range of 0.5 to 2.5 atm and 0.3 to 1.4 MW cm -3 , respectively. The electron quenching rate constant of 4.5 x 10 -7 cm 3 s -1 was obtained from the pressure and the pump rate dependence of the KrF * saturation intensity with the temperature dependence of the rate gas 3-body quenching rate as a function of gas temperature to the -3rd power. The small signal gain coefficients calculated with the determined quenching rate constants shows excellent agreement with the measurements. (author)

  5. Measurement of the electron quenching rate in an electron beam pumped KrF/sup */ laser

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, Hajime; Kurashima, Toshio; Kuranishi, Hideaki; Ueda, Kenichi; Takuma, Hiroshi; Sasaki, Akira; Kasuya, Koichi.

    1988-09-01

    The electron quenching rate of KrF/sup */ in an electron beam pumped laser has been studied by accurately measuring the saturation intensity in a mixture of Ar/Kr/F/sub 2/ = 94/6/0.284. The input intensity of the measurements was widely varied from 100 W cm/sup -2/ (small signal region) to 100 MW cm/sup -2/ (absorption dominant region) in order to separate laser parameters which are small signal gain coefficient, absorption coefficient, and saturation intensity from the measured net gain coefficients. The gas pressure and the pump rate were varied in the range of 0.5 to 2.5 atm and 0.3 to 1.4 MW cm/sup -3/, respectively. The electron quenching rate constant of 4.5 x 10/sup -7/ cm/sup 3/s/sup -1/ was obtained from the pressure and the pump rate dependence of the KrF/sup */ saturation intensity with the temperature dependence of the rate gas 3-body quenching rate as a function of gas temperature to the -3rd power. The small signal gain coefficients calculated with the determined quenching rate constants shows excellent agreement with the measurements.

  6. Relativistic electron drift in overdense plasma produced by a superintense femtosecond laser pulse

    International Nuclear Information System (INIS)

    Rastunkov, V.S.; Krainov, V.P.

    2004-01-01

    The general peculiarities of electron motion in the skin layer at the irradiation of overdense plasma by a superintense linearly polarized laser pulse of femtosecond duration are considered. The quiver electron energy is assumed to be a relativistic quantity. Relativistic electron drift along the propagation of laser radiation produced by a magnetic part of a laser field remains after the end of the laser pulse, unlike the relativistic drift of a free electron in underdense plasma. As a result, the penetration depth is much larger than the classical skin depth. The conclusion has been made that the drift velocity is a nonrelativistic quantity even at the peak laser intensity of 10 21 W/cm 2 . The time at which an electron penetrates into field-free matter from the skin layer is much less than the pulse duration

  7. Another shock for the Bullet cluster, and the source of seed electrons for radio relics

    Science.gov (United States)

    Shimwell, Timothy W.; Markevitch, Maxim; Brown, Shea; Feretti, Luigina; Gaensler, B. M.; Johnston-Hollitt, M.; Lage, Craig; Srinivasan, Raghav

    2015-05-01

    With Australia Telescope Compact Array observations, we detect a highly elongated Mpc-scale diffuse radio source on the eastern periphery of the Bullet cluster 1E 0657-55.8, which we argue has the positional, spectral and polarimetric characteristics of a radio relic. This powerful relic (2.3 ± 0.1 × 1025 W Hz-1) consists of a bright northern bulb and a faint linear tail. The bulb emits 94 per cent of the observed radio flux and has the highest surface brightness of any known relic. Exactly coincident with the linear tail, we find a sharp X-ray surface brightness edge in the deep Chandra image of the cluster - a signature of a shock front in the hot intracluster medium (ICM), located on the opposite side of the cluster to the famous bow shock. This new example of an X-ray shock coincident with a relic further supports the hypothesis that shocks in the outer regions of clusters can form relics via diffusive shock (re-)acceleration. Intriguingly, our new relic suggests that seed electrons for reacceleration are coming from a local remnant of a radio galaxy, which we are lucky to catch before its complete disruption. If this scenario, in which a relic forms when a shock crosses a well-defined region of the ICM polluted with aged relativistic plasma - as opposed to the usual assumption that seeds are uniformly mixed in the ICM - is also the case for other relics, this may explain a number of peculiar properties of peripheral relics.

  8. Effect of the temporal laser pulse asymmetry on pair production processes during intense laser-electron scattering

    Science.gov (United States)

    Hojbota, C. I.; Kim, Hyung Taek; Kim, Chul Min; Pathak, V. B.; Nam, Chang Hee

    2018-06-01

    We investigate the effects of laser pulse shape on strong-field quantum electrodynamics (QED) processes during the collision between a relativistic electron beam and an intense laser pulse. The interplay between high-energy photon emission and two pair production processes, i.e. nonlinear Breit–Wheeler (BW) and Trident, was investigated using particle-in-cell simulations. We found that the temporal evolution of these two processes could be controlled by using laser pulses with different degrees of asymmetry. The temporal envelope of the laser pulse can significantly affect the number of pairs coming from the Trident process, while the nonlinear BW process is less sensitive to it. This study shows that the two QED processes can be examined with state-of-the-art petawatt lasers and the discrimination of the two pair creation processes is feasible by adjusting the temporal asymmetry of the colliding laser pulse.

  9. Wavefront measurement of single-mode quantum cascade laser beam for seed application in laser-produced plasma extreme ultraviolet system.

    Science.gov (United States)

    Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Yokotsuka, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru

    2012-12-01

    Quantum cascade laser (QCL) is a very attractive seed source for a multikilowatt pulsed CO2 lasers applied for driving extreme ultraviolet emitting plasmas. In this Letter, we investigate output beam properties of a QCL designed to address P18 and P20 lines of 10.6 micron band of CO2 molecule. In particular, output beam quality and stability are investigated for the first time. A well-defined linear polarization and a single-mode operation enabled a use of phase retrieval method for full description of QCL output beam. A direct, multi-image numerical phase retrieval technique was developed and successfully applied to the measured intensity patterns of a QCL beam. Very good agreement between the measured and reconstructed beam profiles was observed at distances ranging from QCL aperture to infinity, proving a good understanding of the beam propagation. The results also confirm a high spatial coherence and high stability of the beam parameters, the features expected from an excellent seed source.

  10. The effect of laser pulse parameters and initial phase on the acceleration of electrons in a vacuum

    International Nuclear Information System (INIS)

    Singh, Kunwar Pal; Gupta, Devki Nandan; Malik, Hitendra K

    2008-01-01

    Laser driven acceleration of electrons lying along the axis of the laser has been studied. We have considered a linearly polarized laser pulse. The quiver amplitude causes electrons to escape from the pulse. The energy gained by the electrons peaks for a suitable value of laser spot size. The value of a suitable laser spot size increases with laser intensity and initial electron energy. The energy gained by the electron depends upon its initial position with respect to the laser pulse. The electrons close to the pulse peak with initial phase π/2 are scattered least and gain higher energy. The electrons close to the leading edge of the pulse gain sufficient energy for a short laser pulse and the effect of initial phase is not important. A suitable value of laser spot size can be estimated from this study

  11. Design of an electron injector for multi-stages laser wakefield acceleration

    International Nuclear Information System (INIS)

    Audet, T.

    2016-01-01

    Laser wakefield acceleration (LWFA) is a particle acceleration process relying on the interaction between high intensity laser pulses, of the order of 10 18 W/cm 2 and a plasma. The plasma wave generated in the laser wake sustain high amplitude electric fields (1- 100 GV/m). Those electric fields are 3 orders of magnitude higher than maximum electric fields in radio frequency cavities and represent the main benefit of LWFA, allowing more compact acceleration. However improvements of the LWFA-produced electron bunches properties, stability and repetition rate are mandatory for LWFA to be usable for applications. A scheme to improve electron bunches properties and to potentially increase the repetition rate is multi-stage LWFA. The laser plasma electron source, called the injector, has to produce relatively low energy (50 - 100 MeV), but high charge, small size and low divergence electron bunches. Produced electron bunches then have to be transported and injected into a second stage to increase electron kinetic energy. The subject of this thesis is to study and design a laser wakefield electron injector for multistage LWFA. In the frame of CILEX and the two-stages LWFA program, a prototype of the injector was built : ELISA consisting in a variable length gas cell. The plasma electronic density, which is a critical parameter for the control of the electron bunches properties, was characterized both experimentally and numerically. ELISA was used at 2 different laser facilities and physical mechanisms linked to electron bunches properties were studied in function of experimental parameters. A range of experimental parameters suitable for a laser wakefield injector was determined. A magnetic transport and diagnostic line was also built, implemented and tested at the UHI100 laser facility of the CEA Saclay. It allowed a more precise characterization of electron bunches generated with ELISA as well as an estimation of the quality of transported electron bunches for their

  12. Compact sub-nanosecond pulse seed source with diode laser driven by a high-speed circuit

    Science.gov (United States)

    Wang, Xiaoqian; Wang, Bo; Wang, Junhua; Cheng, Wenyong

    2018-06-01

    A compact sub-nanosecond pulse seed source with 1550 nm diode laser (DL) was obtained by employing a high-speed circuit. The circuit mainly consisted of a short pulse generator and a short pulse driver. The short pulse generator, making up of a complex programmable logic device (CPLD), a level translator, two programmable delay chips and an AND gate chip, output a triggering signal to control metal-oxide-semiconductor field-effect transistor (MOSFET) switch of the short pulse driver. The MOSFET switch with fast rising time and falling time both shorter than 1 ns drove the DL to emit short optical pulses. Performances of the pulse seed source were tested. The results showed that continuously adjustable repetition frequency ranging from 500 kHz to 100 MHz and pulse duration in the range of 538 ps to 10 ns were obtained, respectively. 537 μW output was obtained at the highest repetition frequency of 100 MHz with the shortest pulse duration of 538 ps. These seed pulses were injected into an fiber amplifier, and no optical pulse distortions were found.

  13. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    Science.gov (United States)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  14. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    He, Z.-H.; Thomas, A. G. R.; Nees, J. A.; Hou, B.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48106-2099 (United States); Beaurepaire, B.; Malka, V.; Faure, J. [Laboratoire d' Optique Appliquee, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)

    2013-02-11

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  15. Electron Hole Plasma in Solids Induced by Ultrashort XUV Laser Pulses

    International Nuclear Information System (INIS)

    Rethfeld, B.; Medvedev, N.

    2013-01-01

    Irradiation of solids with ultrashort XUV laser pulses leads to an excitation of electrons from the valence band and deeper shells to the conduction band leading to a nonequilibrium highly energetic electron hole plasma. We investigate the transient electron dynamics in a solid semiconductor and metal (silicon and aluminum, respectively) under irradiation with a femtosecond VUV to XUV laser pulse as used in experiments with the Free Electron Laser FLASH at DESY in Hamburg, Germany. Applying the Asymptotical Trajectory Monte-Carlo technique, we obtain the transient energy distribution of the excited and ionized electrons within the solid. Photon absorption by electrons in different bands and secondary excitation and ionization processes are simulated event by event. The method was extended in order to take into account the electronic band structure and Pauli's principle for electrons in the conduction band. In this talk we review our results on the dynamics of the transient electron-hole plasma, in particular its transient density and energy distribution in dependence on laser and material parameters. For semiconductors we introduce the concept of an ''effective energy gap'' for collective electronic excitation, which can be applied to estimate the free electron density after high-intensity ultrashort XUV laser pulse irradiation. For aluminum we demonstrate that the electronic spectra depend on the relaxation kinetics of the excited electronic subsystem. Experimentally observed spectra of emitted photons from irradiated aluminum can be explained well with our results. (author)

  16. Cold cathode electron guns in the LASL high power short-pulse CO2 laser program

    International Nuclear Information System (INIS)

    Singer, S.; Ladish, J.S.; Nutter, M.J.

    1975-01-01

    The Electron Beam Controlled Discharge CO 2 Laser is now firmly established as the only high power short pulse laser amplifier that has been demonstrated to have scaling capabilities to large apertures and energies much greater than 100 J. These devices require a beam of energetic electrons to control the gas discharge that produces the required population inversion. Until recently, the electron source was usually a thermionic emitter, even for rather large lasers, whose heater requirements dwarfed the pulsed energies associated with the transient operation of the laser. With the advent of reliable cold-cathode electron guns, the operation of these lasers has been greatly simplified. At LASL, there are four electron beam controlled laser systems which are in operation, under construction, or in design: the 1 kJ system, now operational; the 2.5 kJ system; the 10 kJ system; and the 100 kJ system. Only the first uses thermionic-emitter electron guns; the remainder use or will use cold cathode sources. The operation of the 200 x 35 cm 2 two sided cold cathode electron gun used in the 2.5 kJ laser system and to be used in the 10 kJ laser is described

  17. Development of terahertz laser diagnostics for electron density measurements.

    Science.gov (United States)

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2008-10-01

    A two color laser interferometer using terahertz laser sources is under development for high performance operation on the large helical device and for future burning plasma experiments such as ITER. Through investigation of terahertz laser sources, we have achieved high power simultaneous oscillations at 57.2 and 47.6 microm of a CH(3)OD laser pumped by a cw 9R(8) CO(2) laser line. The laser wavelength around 50 microm is the optimum value for future fusion devices from the consideration of the beam refraction effect and signal-to-noise ratio for an expected phase shift due to plasma. In this article, recent progress of the terahertz laser diagnostics, especially in mechanical vibration compensation by using a two color laser operation and terahertz laser beam transmission through a dielectric waveguide, will be presented.

  18. Proposed ultraviolet free-electron laser at Brookhaven National Laboratory: A source for time-resolved biochemical spectroscopy

    International Nuclear Information System (INIS)

    Johnson, E.D.; Sutherland, J.C.; Laws, W.R.

    1992-01-01

    Brookhaven National Laboratory is designing an ultraviolet free- electron laser (UV-FEL) user facility that will provide pico-second and sub-picosecond pulses of coherent ultraviolet radiation for wavelengths from 300 to 75 nm. Pulse width will be variable from abut 7 ps to ∼ 200 fs, with repetition rates as high as 10 4 Hz, single pulse energies > 1 mJ and hence peak pulse power >200 MW and average beam power > 10 W. The facility will be capable of ''pump-probe'' experiments utilizing the FEL radiation with: (1) synchronized auxiliary lasers, (2) a second, independently tunable FEL beam, or (3) broad-spectrum, high-intensity x-rays from the adjacent National Synchrotron Light Source. The UV-FEL consists of a high repetition rate recirculating superconducting linear accelerator which feeds pulses of electrons to two magnetic wigglers. Within these two devices, photons from tunable ''conventional'' laser would be frequency multiplied and amplified. By synchronously tuning the seed laser and modulating the energy of the electron beam, tuning of as much as 60% in wavelength is possible between alternating pulses supplied to different experimental stations, with Fourier transform limited resolution. Thus, up to four independent experiments may operate at one time, each with independent control of the wavelength and pulse duration. The UV-FEL will make possible new avenues of inquiry in time studies of diverse field including chemical, surface, and solid state physics, biology and materials science. The experimental area is scheduled to include a station dedicated to biological research. The complement of experimental and support facilities required by the biology station will be determined by the interests of the user community. 7 refs., 5 figs

  19. Free-electron laser and related quantum beams

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2003-01-01

    Past, present and future development programs of the JAERI super-conducting rf linac-based FELs and light sources with and without energy recovery have been discussed and introduced briefly. The JAERI FEL group has successfully discovered, and realized the brand-new FEL lasing mode of 255 fs ultra fast pulse, 6-9% high-efficiency, one GW high peak power, a few kW average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing, we could realize a powerful and efficient free-electron laser (FEL) for industrial uses near future. In order to realize such a tunable, ultra-short-pulse, high averaged-power FEL, we have needed the efficient and powerful CW FEL driver of the JAERI compact, stand-alone and zero-boil-off super-conducting rf linac with an energy-recovery geometry. The JAERI energy-recovery and/or super-conducting rf linac driver has been developed to use as an industrial electron irradiator, and millimeter-wave, far-infrared, mid-infrared, near-infrared and shorter wavelength quantum beam sources. (author)

  20. Determination of molecular parameters by electron collisions and laser techniques

    International Nuclear Information System (INIS)

    Colon, C.

    1989-01-01

    In this work a general procedure to study diatomic molecules in intermediate coupling scheme has been developed. This study allows to obtain expressions to calculate molecular line strengths and rotational transition intensities. These results are used in a numerical program to synthetize vibrational and rotational band spectra of any diatomic molecule. With this technique the experimental spectra of the first negative system of N 2 + and the fist positive system of N 2 are reproduced theoretically and it is possible to deduce its electronic transition moments values by comparison. Also the method has been applied to compare the synthetized bands with the experimental spectra of the B O u + -- x 1 Σ g + system of Au 2 and the A 2 Σ--- x 2 π system of OH. From these comparison band intensities and electronic moments can be deduced. The branching ratio method to measure the relative spectral response in the 1100-1560 A o =wavelength range of a vacuum uv monochromator has been used. Relative intensity of rotational lines with origine in a common upper vibrational-rotational level of Warner and Lyman systems of H 2 , have been measured. Also in this work, the deexcitation of the B 3 π + (0 + u ), v'=14 level of I 2 after pulsed laser excitation has been studied. The quenching cross sections by collisions with I 2 , H 2 , CO 2 and CH 4 have been determin-ed. (Author)