WorldWideScience

Sample records for electron energy levels

  1. Electron Energy Level Statistics in Graphene Quantum Dots

    NARCIS (Netherlands)

    De Raedt, H.; Katsnellson, M. I.; Katsnelson, M.I.

    2008-01-01

    Motivated by recent experimental observations of size quantization of electron energy levels in graphene quantum dots [7] we investigate the level statistics in the simplest tight-binding model for different dot shapes by computer simulation. The results are in a reasonable agreement with the

  2. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    Science.gov (United States)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.

  3. Energy level alignment and electron transport through metal/organic contacts. From interfaces to molecular electronics

    Energy Technology Data Exchange (ETDEWEB)

    Abad, Enrique

    2013-07-01

    A new calculational approach to describing metal/organic interfaces. A valuable step towards a better understanding of molecular electronics. Nominated as an outstanding contribution by the Autonomous University of Madrid. In recent years, ever more electronic devices have started to exploit the advantages of organic semiconductors. The work reported in this thesis focuses on analyzing theoretically the energy level alignment of different metal/organic interfaces, necessary to tailor devices with good performance. Traditional methods based on density functional theory (DFT), are not appropriate for analyzing them because they underestimate the organic energy gap and fail to correctly describe the van der Waals forces. Since the size of these systems prohibits the use of more accurate methods, corrections to those DFT drawbacks are desirable. In this work a combination of a standard DFT calculation with the inclusion of the charging energy (U) of the molecule, calculated from first principles, is presented. Regarding the dispersion forces, incorrect long range interaction is substituted by a van der Waals potential. With these corrections, the C60, benzene, pentacene, TTF and TCNQ/Au(111) interfaces are analyzed, both for single molecules and for a monolayer. The results validate the induced density of interface states model.

  4. Molecular design of new P3HT derivatives: Adjusting electronic energy levels for blends with PCBM

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eliezer Fernando [UNESP – Univ Estadual Paulista, POSMAT – Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Bauru, SP (Brazil); Lavarda, Francisco Carlos, E-mail: lavarda@fc.unesp.br [UNESP – Univ Estadual Paulista, POSMAT – Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Bauru, SP (Brazil); Faculdade de Ciências, UNESP – Univ Estadual Paulista, Departamento de Física, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, 17033-360 Bauru, SP (Brazil)

    2014-12-15

    An intensive search is underway for new materials to make more efficient organic solar cells through improvements in thin film morphology, transport properties, and adjustments to the energy of frontier electronic levels. The use of chemical modifications capable of modifying the electronic properties of materials already known is an interesting approach, as it can, in principle, provide a more adequate adjustment of the frontier electronic levels while preserving properties such as solubility. Based on this idea, we performed a theoretical study of poly(3-hexylthiophene) (P3HT) and 13 new derivatives obtained by substitution with electron acceptor and donor groups, in order to understand how the energy levels of the frontier orbitals are modified. The results show that it is possible to deduce the modification of the electronic levels in accordance with the substituent's acceptor/donor character. We also evaluated how the substituents influence the open circuit voltage and the exciton binding energy. - Highlights: • Prediction of P3HT derivatives properties for bulk-heterojunction solar cells. • Correlating substituent properties with electronic levels of P3HT derivatives. • Fluorinated P3HT improves open circuit voltage and stability.

  5. Plasma-screening effects upon energy levels and electron scattering from neutral and ionized caesium

    International Nuclear Information System (INIS)

    Chin, Y.J.; Radtke, R.; Zimmermann, R.

    1988-01-01

    Using interaction potentials screened with the Debye-Hueckel length, the effects of plasma shielding on energy levels and electrons scattering from neutral and ionized caesium are estimated. Both energy levels and atomic scattering cross-sections are found to be sensitive to the inclusion of screening. Relating to the scattering by the Cs + ion, a low-energy resonance near E = 0.3 Ryd is found which arises from the f-wave phase shift and reflects the individual behaviour of the scattering ion. (author)

  6. Plasma-screening effects upon energy levels and electron scattering from neutral and ionized caesium

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Y J; Radtke, R; Zimmermann, R

    1988-01-01

    Using interaction potentials screened with the Debye-Hueckel length, the effects of plasma shielding on energy levels and electrons scattering from neutral and ionized caesium are estimated. Both energy levels and atomic scattering cross-sections are found to be sensitive to the inclusion of screening. Relating to the scattering by the Cs/sup +/ ion, a low-energy resonance near E = 0.3 Ryd is found which arises from the f-wave phase shift and reflects the individual behaviour of the scattering ion.

  7. Electronic Energy Levels and Band Alignment for Aqueous Phenol and Phenolate from First Principles.

    Science.gov (United States)

    Opalka, Daniel; Pham, Tuan Anh; Sprik, Michiel; Galli, Giulia

    2015-07-30

    Electronic energy levels in phenol and phenolate solutions have been computed using density functional theory and many-body perturbation theory. The valence and conduction bands of the solvent and the ionization energies of the solutes have been aligned with respect to the vacuum level based on the concept of a computational standard hydrogen electrode. We have found significant quantitative differences between the generalized-gradient approximation, calculations with the HSE hybrid functional, and many-body perturbation theory in the G0W0 approximation. For phenol, two ionization energies below the photoionization threshold of bulk water have been assigned in the spectrum of Kohn-Sham eigenvalues of the solution. Deprotonation to phenolate was found to lift a third occupied energy level above the valence band maximum of the solvent which is characterized by an electronic lone pair at the hydroxyl group. The second and third ionization energies of phenolate were found to be very similar and explain the intensity pattern observed in recent experiments using liquid-microjet photoemission spectroscopy.

  8. Isotope shifts and electronic configurations of some of the energy levels of the neutral gadolinium atom

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Venugopalan, A.; Saksena, G.D.

    1982-01-01

    Isotope shift ΔT (156-160) have been evaluated for 52 odd and 90 even energy levels of the neutral gadolinium atom from the measurements carried out on 166 lines of the first spectrum in the region 4535 to 4975 A on a photoelectric recording Fabry-Perot Spectrometer and enriched samples of 156 Gd and 160 Gd. Earlier studies provide data for just two lines in this region. Assignment of electronic configurations to some of the energy levels have been either confirmed or revised; some unassigned levels have been assigned probable configurations. The present study provides, for the first time, isotope shift of the two levels of 4f 7 6s 2 7s configuration of Gd I. (author)

  9. New way for determining electron energy levels in quantum dots arrays using finite difference method

    Science.gov (United States)

    Dujardin, F.; Assaid, E.; Feddi, E.

    2018-06-01

    Electronic states are investigated in quantum dots arrays, depending on the type of cubic Bravais lattice (primitive, body centered or face centered) according to which the dots are arranged, the size of the dots and the interdot distance. It is shown that the ground state energy level can undergo significant variations when these parameters are modified. The results were obtained by means of finite difference method which has proved to be easily adaptable, efficient and precise. The symmetry properties of the lattice have been used to reduce the size of the Hamiltonian matrix.

  10. Determination of the electronic energy levels of colloidal nanocrystals using field-effect transistors and Ab-initio calculations.

    Science.gov (United States)

    Bisri, Satria Zulkarnaen; Degoli, Elena; Spallanzani, Nicola; Krishnan, Gopi; Kooi, Bart Jan; Ghica, Corneliu; Yarema, Maksym; Heiss, Wolfgang; Pulci, Olivia; Ossicini, Stefano; Loi, Maria Antonietta

    2014-08-27

    Colloidal nanocrystals electronic energy levels are determined by strong size-dependent quantum confinement. Understanding the configuration of the energy levels of nanocrystal superlattices is vital in order to use them in heterostructures with other materials. A powerful method is reported to determine the energy levels of PbS nanocrystal assemblies by combining the utilization of electric-double-layer-gated transistors and advanced ab-initio theory. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Excess-electron energy levels, localization and transport in disordered media

    International Nuclear Information System (INIS)

    Hamill, W.H.

    1980-01-01

    In disordered dielectrics, the fundamental parameters which control the physics and chemistry of excess electrons are time, temperature and energy or mean scattering distance. Viscosity and hardness do not directly affect the electron affinity of media, the optical spectra, or the chemical reactivity of dry or delocalized electrons or of relaxed localized or trapped electrons. Since the mean scattering distance and the transport mechanism, including barrier height, are fundamental, both liquids and glasses (including polymers) are considered in order to cover the range of relevant information. Based on the above described background, transport, localization, dry electron scavenging, trapped electron scavenging and recombination are explained. There are no available data for the energy of excess dry electrons in the media relative to vacuum in glasses, unfortunately, because of the very small yield of separated charge pairs at cryogenic temperature. Thermoplastic glassy solids provide attractive possibility above 250 K, and deserve consideration as the substitutes for cryogenic glasses. The same consideration applies to the measurements of electron drift mobility, which are essential for the adequate description of electron scavenging. (Wakatsuki, Y.)

  12. Electronic structure of free and doped actinides: N and Z dependences of energy levels and electronic structure parameters

    International Nuclear Information System (INIS)

    Kulagin, N.

    2005-01-01

    Theoretical study of electronic structure of antinide ions and its dependence on N and Z are presented in this paper. The main 5f N and excited 5f N n'l' N' configurations of actinides have been studied using Hartree-Fock-Pauli approximation. Results of calculations of radial integrals and the energy of X-ray lines for all 5f ions with electronic state AC +1 -AC +4 show approximate dependence on N and Z. A square of N and cubic of Z are ewalized for the primary electronic parameters of the actinides. Theoretical values of radial integrals for free actinides and for ions in a cluster AC +n :[L] k are compared, too

  13. Charge deep-level transient spectroscopy study of high-energy-electron-beam-irradiated hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Klaver, A.; Nádaždy, V.; Zeman, M.; Swaaiij, R.A.C.M.M.

    2006-01-01

    We present a study of changes in the defect density of states in hydrogenated amorphous silicon (a-Si:H) due to high-energy electron irradiation using charged deep-level transient spectroscopy. It was found that defect states near the conduction band were removed, while in other band gap regions the

  14. Investigation of energy levels of Er-impurity centers in Si by the method of ballistic electron emission spectroscopy

    International Nuclear Information System (INIS)

    Filatov, D. O.; Zimovets, I. A.; Isakov, M. A.; Kuznetsov, V. P.; Kornaukhov, A. V.

    2011-01-01

    The method of ballistic electron emission spectroscopy is used for the first time to study the energy spectrum of Er-impurity complexes in Si. The features are observed in the ballistic electron spectra of mesa diodes based on p + -n + Si structures with a thin (∼30 nm) p + -Si:Er surface layer in the region of ballistic-electron energies eV t lower than the conduction-band-edge energy E c in this layer. They are associated with the tunnel injection of ballistic electrons from the probe of the scanning tunnel microscope to the deep donor levels of the Er-impurity complexes in the p + -Si:Er layer with subsequent thermal excitation into the conduction band and the diffusion to the p + -n + junction and the direct tunneling in it. To verify this assumption, the ballistic-electron transport was simulated in the system of the Pt probe, native-oxide layer SiO 2 -p + -Si:Er-n + , and Si substrate. By approximating the experimental ballistic-electron spectra with the modeling spectra, the ground-state energy of the Er complex in Si was determined: E d ≈ E c − 0.27 eV. The indicated value is consistent with the data published previously and obtained from the measurements of the temperature dependence of the free-carrier concentration in Si:Er layers.

  15. Energy levels and electron g-factor of spherical quantum dots with Rashba spin-orbit interaction

    International Nuclear Information System (INIS)

    Vaseghi, B.; Rezaei, G.; Malian, M.

    2011-01-01

    We have studied simultaneous effects of Rashba spin-orbit interaction and external electric and magnetic fields on the subbands energy levels and electron g-factor of spherical quantum dots. It is shown that energy eigenvalues strongly depend on the combined effects of external electric and magnetic fields and spin-orbit interaction strength. The more the spin-orbit interaction strength increase, the more the energy eigenvalues increase. Also, we found that the electron g-factor sensitively differers from the bulk value due to the confinement effects. Furthermore, external fields and spin-orbit interaction have a great influence on this important quantity. -- Highlights: → Energy of spherical quantum dots depends on the spin-orbit interaction strength in external electric and magnetic fields. → Spin-orbit interaction shifts the energy levels. → Electron g-factor differs from the bulk value in spherical quantum dots due to the confinement effects. → Electron g-factor strongly depends on the spin-orbit interaction strength in external electric and magnetic fields.

  16. Approximate calculation of electronic energy levels of axially symmetric quantum dot and quantum ring by using energy dependent effective mass

    International Nuclear Information System (INIS)

    Yu-Min, Liu; Zhong-Yuan, Yu; Xiao-Min, Ren

    2009-01-01

    Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schrödinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail. (general)

  17. A method for atomic-level noncontact thermometry with electron energy distribution

    Science.gov (United States)

    Kinoshita, Ikuo; Tsukada, Chiharu; Ouchi, Kohei; Kobayashi, Eiichi; Ishii, Juntaro

    2017-04-01

    We devised a new method of determining the temperatures of materials with their electron-energy distributions. The Fermi-Dirac distribution convoluted with a linear combination of Gaussian and Lorentzian distributions was fitted to the photoelectron spectrum measured for the Au(110) single-crystal surface at liquid N2-cooled temperature. The fitting successfully determined the surface-local thermodynamic temperature and the energy resolution simultaneously from the photoelectron spectrum, without any preliminary results of other measurements. The determined thermodynamic temperature was 99 ± 2.1 K, which was in good agreement with the reference temperature of 98.5 ± 0.5 K measured using a silicon diode sensor attached to the sample holder.

  18. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis.

    Science.gov (United States)

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-26

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.

  19. Experimental and theoretical studies of the energy level structure of multiply charged many-electron ions

    International Nuclear Information System (INIS)

    Redfors, A.

    1991-01-01

    Magnesiumlike and aluminumlike spectra of the elements calcium - germanium have been obtained through the use of laser-produced plasmas (LPP) and a 3 m normal incidence vacuum spectrograph. The spectral analyses were mainly based on isoelectronic regularities. Intermediate ionization stages of cerium (Ce V) and silicon (SI VI) have also been studied. The light sources in these cases were a sliding spark and a modified version of the LPP. The Eagle spectrograph at the National Institute of Standards and Technology, Gaitherburg, Maryland was used to record the cerium spectrum. Ab initio calculations and least-squares fits of the Slater energy parameters to the experimental energy levels are reported for all investigated spectra. Theoretical predictions of oscillator strengths for Y III and Zr III in the region 1150-3200 AA are presented. The oscillator strengths are needed for abundance determinations of Y 2+ and Zr 2+ in chemically peculiar stars, Cp stars. (65 refs.)

  20. First-principles calculation of electronic energy level alignment at electrochemical interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Azar, Yavar T.; Payami, Mahmoud, E-mail: mpayami@aeoi.org.ir

    2017-08-01

    Highlights: • Using DFT calculation, level shifts of TiO{sub 2} and ZnO at the interfaces with MeCN and DMF are determined. • Level shifts are obtained using potential difference between the surfaces of asymmetric slabs. • Solvent molecules give an up-shift to the levels that varies with coverage. • MD simulations show that at room temperatures the surface is not fully covered by the solvent molecules. - Abstract: Energy level alignment at solid–solvent interfaces is an important step in determining the properties of electrochemical systems. The positions of conduction and valence band edges of a semiconductor are affected by its environment. In this study, using first-principles DFT calculation, we have determined the level shifts of the semiconductors TiO{sub 2} and ZnO at the interfaces with MeCN and DMF solvent molecules. The level shifts of semiconductor are obtained using the potential difference between the clean and exposed surfaces of asymmetric slabs. In this work, neglecting the effects of present ions in the electrolyte solution, we have shown that the solvent molecules give rise to an up-shift for the levels, and the amount of this shift varies with coverage. It is also shown that the shapes of density of states do not change sensibly near the gap. Molecular dynamics simulations of the interface have shown that at room temperatures the semiconductor surface is not fully covered by the solvent molecules, and one must use intermediate values in an static calculations.

  1. Dynamic simulation of charging processes in polar dielectrics irradiated by the electron bunches of middle level energy

    International Nuclear Information System (INIS)

    Maslovskaya, A.G.

    2011-01-01

    Nowadays the scanning electron microscopy techniques are widely used practically in condenser matter physics to study properties and structure of solids. The electron probe of scanning electron microscope is not merely a passive indicator of the geometrical or potential profile of the sample surface, but also the source producing ionizing, electric and thermal action on the sample. The application of raster electron methods to polar materials, responding to electric and heat exposures of the electron bunches allows us to get a response and create new modes of image formation. Let assume, that a sample surface of dielectric is irradiated by thin focused electron bunches of middle level energy (with order 1÷50 keV). When electrons bombard the dielectric sample the accumulation of absorbed electrons occurs. As a result generated charged areas can irregular drift the initial bunches. Charging effect occurs at any magnifications and any actual probe current. This work considers the results of dynamic simulation of charging process in polar dielectrics under the investigation with the scanning electron microscope. The purpose of present study is design and model implementation of three-dimensional dynamic model of charge relaxation in polar materials irradiated by electron bunches of middle level energy. The mathematical problem definition is given by the system of the continuity equation and Poisson equation. Final system of equations was modified in terms of intrinsic radiation-induced conductivity in sample as well as cylindrical symmetry of the problem. The simulation is based on numerical method solving of boundary problem for partial derivative equation system. In addition the initial electron distribution is determined by Monte-Carlo method using the programming implementation. To solve this problem we used the computational methods of solution of nonstationary mathematical physics problem such as finite difference method and finite element method realized with

  2. Low energy electron irradiation induced deep level defects in 6H-SiC: The implication for the microstructure of the deep levels E1/E2

    International Nuclear Information System (INIS)

    Chen, X.D.; Fung, S.; Beling, C.D.; Lui, M.K.; Ling, C.C.; Yang, C.L.; Ge, W.K.; Wang, J.N.; Gong, M.

    2004-01-01

    N-type 6H-SiC samples irradiated with electrons having energies of E e =0.2, 0.3, 0.5, and 1.7 were studied by deep level transient technique. No deep level was detected at below 0.2 MeV irradiation energy while for E e ≥0.3 MeV, deep levels ED1, E 1 /E 2 , and E i appeared. By considering the minimum energy required to displace the C atom or the Si atom in the SiC lattice, it is concluded that generation of the deep levels E 1 /E 2 , as well as ED1 and E i , involves the displacement of the C atom in the SiC lattice

  3. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.

    Science.gov (United States)

    Li, Yongfang

    2012-05-15

    Bulk heterojunction (BHJ) polymer solar cells (PSCs) sandwich a blend layer of conjugated polymer donor and fullerene derivative acceptor between a transparent ITO positive electrode and a low work function metal negative electrode. In comparison with traditional inorganic semiconductor solar cells, PSCs offer a simpler device structure, easier fabrication, lower cost, and lighter weight, and these structures can be fabricated into flexible devices. But currently the power conversion efficiency (PCE) of the PSCs is not sufficient for future commercialization. The polymer donors and fullerene derivative acceptors are the key photovoltaic materials that will need to be optimized for high-performance PSCs. In this Account, I discuss the basic requirements and scientific issues in the molecular design of high efficiency photovoltaic molecules. I also summarize recent progress in electronic energy level engineering and absorption spectral broadening of the donor and acceptor photovoltaic materials by my research group and others. For high-efficiency conjugated polymer donors, key requirements are a narrower energy bandgap (E(g)) and broad absorption, relatively lower-lying HOMO (the highest occupied molecular orbital) level, and higher hole mobility. There are three strategies to meet these requirements: D-A copolymerization for narrower E(g) and lower-lying HOMO, substitution with electron-withdrawing groups for lower-lying HOMO, and two-dimensional conjugation for broad absorption and higher hole mobility. Moreover, better main chain planarity and less side chain steric hindrance could strengthen π-π stacking and increase hole mobility. Furthermore, the molecular weight of the polymers also influences their photovoltaic performance. To produce high efficiency photovoltaic polymers, researchers should attempt to increase molecular weight while maintaining solubility. High-efficiency D-A copolymers have been obtained by using benzodithiophene (BDT), dithienosilole

  4. Auroral electron energies

    International Nuclear Information System (INIS)

    McEwan, D.J.; Duncan, C.N.; Montalbetti, R.

    1981-01-01

    Auroral electron characteristic energies determined from ground-based photometer measurements of the ratio of 5577 A OI and 4278 A N 2 + emissions are compared with electron energies measured during two rocket flights into pulsating aurora. Electron spectra with Maxwellian energy distributions were observed in both flights with an increase in characteristic energy during each pulsation. During the first flight on February 15, 1980 values of E 0 ranging from 1.4 keV at pulsation minima to 1.8 keV at pulsation maxima were inferred from the 5577/4278 ratios, in good agreement with rocket measurements. During the second flight on February 23, direct electron energy measurements yielded E 0 values of 1.8 keV rising to 2.1 keV at pulsation maxima. The photometric ratio measurements in this case gave inferred E 0 values about 0.5 keV lower. This apparent discrepancy is considered due to cloud cover which impaired the absolute emission intensity measurements. It is concluded that the 5577/4278 ratio does yield a meaningful measure of the characteristic energy of incoming electrons. This ratio technique, when added to the more sensitive 6300/4278 ratio technique usable in stable auroras can now provide more complete monitoring of electron influx characteristics. (auth)

  5. The uniformity study of non-oxide thin film at device level using electron energy loss spectroscopy

    Science.gov (United States)

    Li, Zhi-Peng; Zheng, Yuankai; Li, Shaoping; Wang, Haifeng

    2018-05-01

    Electron energy loss spectroscopy (EELS) has been widely used as a chemical analysis technique to characterize materials chemical properties, such as element valence states, atoms/ions bonding environment. This study provides a new method to characterize physical properties (i.e., film uniformity, grain orientations) of non-oxide thin films in the magnetic device by using EELS microanalysis on scanning transmission electron microscope. This method is based on analyzing white line ratio of spectra and related extended energy loss fine structures so as to correlate it with thin film uniformity. This new approach can provide an effective and sensitive method to monitor/characterize thin film quality (i.e., uniformity) at atomic level for thin film development, which is especially useful for examining ultra-thin films (i.e., several nanometers) or embedded films in devices for industry applications. More importantly, this technique enables development of quantitative characterization of thin film uniformity and it would be a remarkably useful technique for examining various types of devices for industrial applications.

  6. Holography and coherent diffraction with low-energy electrons: A route towards structural biology at the single molecule level.

    Science.gov (United States)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2015-12-01

    The current state of the art in structural biology is led by NMR, X-ray crystallography and TEM investigations. These powerful tools however all rely on averaging over a large ensemble of molecules. Here, we present an alternative concept aiming at structural analysis at the single molecule level. We show that by combining electron holography and coherent diffraction imaging estimations concerning the phase of the scattered wave become needless as the phase information is extracted from the data directly and unambiguously. Performed with low-energy electrons the resolution of this lens-less microscope is just limited by the De Broglie wavelength of the electron wave and the numerical aperture, given by detector geometry. In imaging freestanding graphene, a resolution of 2Å has been achieved revealing the 660.000 unit cells of the graphene sheet from a single data set. Once applied to individual biomolecules the method shall ultimately allow for non-destructive imaging and imports the potential to distinguish between different conformations of proteins with atomic resolution. Copyright © 2015. Published by Elsevier B.V.

  7. Revealing energy level structure of individual quantum dots by tunneling rate measured by single-electron sensitive electrostatic force spectroscopy.

    Science.gov (United States)

    Roy-Gobeil, Antoine; Miyahara, Yoichi; Grutter, Peter

    2015-04-08

    We present theoretical and experimental studies of the effect of the density of states of a quantum dot (QD) on the rate of single-electron tunneling that can be directly measured by electrostatic force microscopy (e-EFM) experiments. In e-EFM, the motion of a biased atomic force microscope cantilever tip modulates the charge state of a QD in the Coulomb blockade regime. The charge dynamics of the dot, which is detected through its back-action on the capacitavely coupled cantilever, depends on the tunneling rate of the QD to a back-electrode. The density of states of the QD can therefore be measured through its effect on the energy dependence of tunneling rate. We present experimental data on individual 5 nm colloidal gold nanoparticles that exhibit a near continuous density of state at 77 K. In contrast, our analysis of already published data on self-assembled InAs QDs at 4 K clearly reveals discrete degenerate energy levels.

  8. Electron energies in metals

    International Nuclear Information System (INIS)

    Mahan, G.D.; Tennessee Univ., Knoxville, TN

    1991-01-01

    The modern era of electron-electron interactions began a decade ago. Plummer's group initiated a program of using angular resolved photoemission to examine the band structure of the simple metals. Beginning with aluminum, and carrying on to sodium and potassium, they always found that the occupied energy bands were much narrower than expected. For example, the compressed energy bands for metallic potassium suggest a band effective mass of m* = 1.33m e . This should be compared to the band mass found from optical conductivity m*/m e = 1.01 ± 0.01. The discrepancy between these results is startling. It was this great difference which started my group doing calculations. Our program was two-fold. On one hand, we reanalyzed the experimental data, in order to see if Plummer's result was an experimental artifact. On the other hand, we completely redid the electron-electron self-energy calculations for simple metals, using the most modern choices of local-field corrections and vertex corrections. Our results will be reported in these lectures. They can be summarized as following: Our calculations give the same effective masses as the older calculations, so the theory is relatively unchanged; Our analysis of the experiments suggests that the recent measurements of band narrowing are an experimental artifact. 38 refs., 9 figs

  9. Excitation-energy-dependent resonances in x-ray emissions under near-threshold electron excitation of the Ce 3d and 4d levels

    International Nuclear Information System (INIS)

    Chamberlain, M.B.; Baun, W.L.

    1975-01-01

    Soft x-ray appearance potential spectra of the 3d and 4d levels of polycrystalline cerium metal are reported in this paper. Resonant x-ray emissions are observed when the electron-excitation energy sweeps through the ionization energies of the 3d and 4d levels. The resonant x rays excited at the 3d-level onsets are considerably more intense, and are excited at a lower electron-excitation energy than the 3d-series characteristic x rays. In the neighborhood of the 4d-electron thresholds, four line-like structures extend to approx.8 eV below the 4d-electron binding energies, while two broad and more intense structures occur above the 4d onsets, with the largest one reaching a peak intensity at 12 eV above the 4d thresholds. The resonant emissions apparently arise from the decay of threshold-excited states which are bound to the inner vacancy and have core configurations nd 9 4f 3 , (n=3,4). The exchange interaction between the three 4f electrons and the respective d-orbital vacancy spreads the 4d-threshold structures over a 20 eV range of excitation energies and the 3d-threshold structures over a much smaller range

  10. Energy level schemes of f{sup N} electronic configurations for the di-, tri-, and tetravalent lanthanides and actinides in a free state

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.-G. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Brik, M.G., E-mail: mikhail.brik@ut.ee [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu 50411 (Estonia); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Liu, D.-X.; Feng, B.; Tian, Ya [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Suchocki, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland)

    2016-02-15

    The energy level diagrams are theoretically constructed for the di-, tri-, tetravalent lanthanide and actinide ions, using the Hartree–Fock calculated parameters of the Coulomb and spin–orbit interactions within f{sup N} (N=1…13) electron configurations. These diagrams are analogous to Dieke's diagram, which was obtained experimentally. They can be used for an analysis of the optical spectra of all considered groups of ions in various environments. Systematic variation of some prominent energy levels (especially those ones with a potential for emission transitions) along the isoelectronic 4f/5f ions is considered. - Highlights: • Energy level schemes for di-, tri, tetravalent lanthanides/actinides are calculated. • Systematic variation of the characteristic energy levels across the series is considered. • Potentially interesting emission transitions are identified.

  11. Power Electronics for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Choi, U. M.; Lee, K. B.; Blaabjerg, Frede

    2012-01-01

    The use of renewable energy sources are increased because of the depletion of natural resources and the increasing pollution level from energy production. The wind energy and the solar energy are most widely used among the renewable energy sources. Power electronics is needed in almost all kinds...... of renewable energy system. It controls the renewable source and interfaces with the load effectively, which can be grid-connected or van work in stand-alone mode. In this presentation, overview of wind and photovoltaic energy systems are introduced. Next, the power electronic circuits behind the most common...

  12. High-performance n-type organic semiconductors: incorporating specific electron-withdrawing motifs to achieve tight molecular stacking and optimized energy levels.

    Science.gov (United States)

    Yun, Sun Woo; Kim, Jong H; Shin, Seunghoon; Yang, Hoichang; An, Byeong-Kwan; Yang, Lin; Park, Soo Young

    2012-02-14

    Novel π–conjugated cyanostilbene-based semiconductors (Hex-3,5-TFPTA and Hex-4-TFPTA) with tight molecular stacking and optimized energy levels are synthesized. Hex-4-TFPTA exhibits high-performance n-type organic field-effect transistor (OFET) properties with electron mobilities as high as 2.14 cm2 V−1s−1 and on-off current ratios Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Atomic energy levels and Grotrian diagrams

    CERN Document Server

    Bashkin, Stanley

    1975-01-01

    Atomic Energy Levels and Grotrian Diagrams, Volume I: Hydrogen I - Phosphorus XV presents diagrams of various elements that show their energy level and electronic transitions. The book covers the first 15 elements according to their atomic number. The text will be of great use to researchers and practitioners of fields such as astrophysics that requires pictorial representation of the energy levels and electronic transitions of elements.

  14. The drift-diffusion interpretation of the electron current within the organic semiconductor characterized by the bulk single energy trap level

    Science.gov (United States)

    Cvikl, B.

    2010-01-01

    The closed solution for the internal electric field and the total charge density derived in the drift-diffusion approximation for the model of a single layer organic semiconductor structure characterized by the bulk shallow single trap-charge energy level is presented. The solutions for two examples of electric field boundary conditions are tested on room temperature current density-voltage data of the electron conducting aluminum/tris(8-hydroxyquinoline aluminum/calcium structure [W. Brütting et al., Synth. Met. 122, 99 (2001)] for which jexp∝Va3.4, within the interval of bias 0.4 V≤Va≤7. In each case investigated the apparent electron mobility determined at given bias is distributed within a given, finite interval of values. The bias dependence of the logarithm of their lower limit, i.e., their minimum values, is found to be in each case, to a good approximation, proportional to the square root of the applied electric field. On account of the bias dependence as incorporated in the minimum value of the apparent electron mobility the spatial distribution of the organic bulk electric field as well as the total charge density turn out to be bias independent. The first case investigated is based on the boundary condition of zero electric field at the electron injection interface. It is shown that for minimum valued apparent mobilities, the strong but finite accumulation of electrons close to the anode is obtained, which characterize the inverted space charge limited current (SCLC) effect. The second example refers to the internal electric field allowing for self-adjustment of its boundary values. The total electron charge density is than found typically to be of U shape, which may, depending on the parameters, peak at both or at either Alq3 boundary. It is this example in which the proper SCLC effect is consequently predicted. In each of the above two cases, the calculations predict the minimum values of the electron apparent mobility, which substantially

  15. electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Egerton, R.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron energy-loss spectroscopy. The physical and chemical properties of materials can be studied by considering the energy that electrons use as they travel through a solid, often in conjunction with other analytical techniques. The technique is often combined with electron diffraction and high-resolution imaging and can be used to provide elemental identification down to the atomic scale. 6 figs

  16. Electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Egerton, R.

    1997-01-01

    As part of the commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article discusses electron energy-loss spectroscopy. The physical and chemical properties of materials can be studied by considering the energy that electrons use as they travel through a solid, often in conjunction with other analytical techniques. The technique is often combined with electron diffraction and high-resolution imaging and can be used to provide elemental identification down to the atomic scale. (UK)

  17. Energy levels, radiative rates and electron impact excitation rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV

    International Nuclear Information System (INIS)

    Aggarwal, Kanti M; Keenan, Francis P

    2013-01-01

    We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 10 8 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions. (paper)

  18. Energy levels, radiative rates and electron impact excitation rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV

    Science.gov (United States)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2013-04-01

    We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 108 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions.

  19. Electronic structure evolution and energy level alignment at C60/4,4'-cyclohexylidenebis[N,N-bis(4-methylphenyl) benzenamine]/MoOx/indium tin oxide interfaces

    Science.gov (United States)

    Liu, Xiaoliang; Yi, Shijuan; Wang, Chenggong; Wang, Congcong; Gao, Yongli

    2014-04-01

    The electronic structure evolution and energy level alignment have been investigated at interfaces comprising fullerene (C60)/4,4'-cyclohexylidenebis[N,N-bis(4-methylphenyl) benzenamine] (TAPC)/ molybdenum oxide (MoOx)/ indium tin oxide with ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy. With deposition of TAPC upon MoOx, a dipole of 1.58 eV was formed at the TAPC/MoOx interface due to electron transfer from TAPC to MoOx. The highest occupied molecular orbital (HOMO) onset of TAPC was pinned closed to the Fermi level, leading to a p-doped region and thus increasing the carrier concentration at the very interface. The downward band bending and the resulting built-in field in TAPC were favorable for the hole transfer toward the TAPC/MoOx interface. The rigid downward shift of energy levels of TAPC indicated no significant interface chemistry at the interface. With subsequent deposition of C60 on TAPC, a dipole of 0.27 eV was observed at the C60/TAPC heterojunction due to the electron transfer from TAPC to C60. This led to a drop of the HOMO of TAPC near the C60/TAPC interface, and hence further enhanced the band bending in TAPC. The band bending behavior was also observed in C60, similarly creating a built-in field in C60 film and improving the electron transfer away from the C60/TAPC interface. It can be deduced from the interface analysis that a promising maximum open circuit voltage of 1.5 eV is achievable in C60/TAPC-based organic photovoltaic cells.

  20. Arrival time distributions of electrons in air showers with primary energies above 10 (18)eV observed at 900m above sea level

    Science.gov (United States)

    Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.

    1985-01-01

    Detection of air showers with primary energies above 10 to the 19th power eV with sufficient statistics is extremely important in an astrophysical aspect related to the Greisen cut off and the origin of such high energy cosmic rays. Recently, a method is proposed to observe such giant air showers by measuring the arrival time distributions of air-shower particles at large core distances with a mini array. Experiments to measure the arrival time distributions of muons were started in 1981 and those of electrons in early 1983 in the Akeno air-shower array (930 gcm cm squared atmospheric depth, 900m above sea level). During the time of observation, the detection area of the Akeno array was expanded from 1 sq km to sq km in 1982 and to 20 sq km in 1984. Now the arrival time distribution of electrons and muons can be measured for showers with primary energies above 1019eV at large core distances.

  1. Extension of a Kinetic Approach to Chemical Reactions to Electronic Energy Levels and Reactions Involving Charged Species with Application to DSMC Simulations

    Science.gov (United States)

    Liechty, Derek S.

    2014-01-01

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties are extended in the current work to include electronic energy level transitions and reactions involving charged particles. These extensions are shown to agree favorably with reported transition and reaction rates from the literature for near-equilibrium conditions. Also, the extensions are applied to the second flight of the Project FIRE flight experiment at 1634 seconds with a Knudsen number of 0.001 at an altitude of 76.4 km. In order to accomplish this, NASA's direct simulation Monte Carlo code DAC was rewritten to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced chemistry model, and to include the extensions presented in this work. The 1634 second data point was chosen for comparisons to be made in order to include a CFD solution. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid because, although near-transitional, the flow is still considered to be continuum. It is shown that the inclusion of electronic energy levels in the DSMC simulation is necessary for flows of this nature and is required for comparison to the CFD solution. The flow field solutions are also post-processed by the nonequilibrium radiation code HARA to compute the radiative portion.

  2. Extension of a Kinetic Approach to Chemical Reactions to Electronic Energy Levels and Reactions Involving Charged Species With Application to DSMC Simulations

    Science.gov (United States)

    Liechty, Derek S.

    2013-01-01

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties are extended in the current work to include electronic energy level transitions and reactions involving charged particles. These extensions are shown to agree favorably with reported transition and reaction rates from the literature for nearequilibrium conditions. Also, the extensions are applied to the second flight of the Project FIRE flight experiment at 1634 seconds with a Knudsen number of 0.001 at an altitude of 76.4 km. In order to accomplish this, NASA's direct simulation Monte Carlo code DAC was rewritten to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced chemistry model, and to include the extensions presented in this work. The 1634 second data point was chosen for comparisons to be made in order to include a CFD solution. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid because, although near-transitional, the flow is still considered to be continuum. It is shown that the inclusion of electronic energy levels in the DSMC simulation is necessary for flows of this nature and is required for comparison to the CFD solution. The flow field solutions are also post-processed by the nonequilibrium radiation code HARA to compute the radiative portion of the heating and is then compared to the total heating measured in flight.

  3. Direct determination of energy level alignment and charge transport at metal-Alq3 interfaces via ballistic-electron-emission spectroscopy.

    Science.gov (United States)

    Jiang, J S; Pearson, J E; Bader, S D

    2011-04-15

    Using ballistic-electron-emission spectroscopy (BEES), we directly determined the energy barrier for electron injection at clean interfaces of Alq(3) with Al and Fe to be 2.1 and 2.2 eV, respectively. We quantitatively modeled the sub-barrier BEES spectra with an accumulated space charge layer, and found that the transport of nonballistic electrons is consistent with random hopping over the injection barrier.

  4. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  5. Diffraction of high energy electrons

    International Nuclear Information System (INIS)

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  6. Magnetic energy analyser for slow electrons

    International Nuclear Information System (INIS)

    Limberg, W.

    1974-08-01

    A differential spectrometer with high time and energy resolution has been developed using the principle of energy analysis with a longitudinal homogeneous magnetic field. This way it is possible to measure the energy distribution of low energy electrons (eV-range) in the presence of high energy electrons without distortions by secondary electrons. The functioning and application of the analyzer is demonstrated by measuring the energy distributions of slow electrons emitted by a filament. (orig.) [de

  7. Low energy electron scattering from fuels

    International Nuclear Information System (INIS)

    Lopes, M. Cristina A.; Silva, Daniel G.M.; Coelho, Rafael F.; Duque, Humberto V.; Santos, Rodrigo R. dos; Ribeiro, Thiago M.

    2011-01-01

    no reported experimental electron scattering TCSs for C2H5OH in the energy range of this work. The study of resonant structure in ethanol using metastable excitation by electron impact was done with another apparatus, also assembled recently at UFJF, in which the incident electron beam has an energy which is adjustable over the range 5-200 eV. A crossed-beam geometry was used and with a suitable placed detector so that a high fraction of the target excited to metastable levels was detected. That experiment allow us observe directly the shapes and widths of resonances and for detecting broad resonances

  8. Low energy electron scattering from fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Cristina A.; Silva, Daniel G.M.; Coelho, Rafael F.; Duque, Humberto V.; Santos, Rodrigo R. dos; Ribeiro, Thiago M. [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil). Dept. de Fisica; Yates, Brent; Hong, Ling; Khakoo, Murtadha A. [California State University at Fullerton, CA (US). Physics Department; Bettega, Marcio H.F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Fisica; Costa, Romarly F. da [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Lima, Marco A.P. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE/CNPEM), Campinas, SP (Brazil)

    2011-07-01

    no reported experimental electron scattering TCSs for C2H5OH in the energy range of this work. The study of resonant structure in ethanol using metastable excitation by electron impact was done with another apparatus, also assembled recently at UFJF, in which the incident electron beam has an energy which is adjustable over the range 5-200 eV. A crossed-beam geometry was used and with a suitable placed detector so that a high fraction of the target excited to metastable levels was detected. That experiment allow us observe directly the shapes and widths of resonances and for detecting broad resonances

  9. Energy levels of 56Mn

    DEFF Research Database (Denmark)

    Van Assche, P. H. M.; Baader, H. A.; Koch, H. R.

    1971-01-01

    The low-energy spectrum of the 55Mn(n,γ)56 Mn reaction has been studied with a γ-diffraction spectrometer. These data allowed the construction of a level scheme for 56Mn with two previously unobserved doublets. High-energy γ-transitions to the low-energy states have been measured for different...

  10. Frontiers of controlling energy levels at interfaces

    Science.gov (United States)

    Koch, Norbert

    The alignment of electron energy levels at interfaces between semiconductors, dielectrics, and electrodes determines the function and efficiency of all electronic and optoelectronic devices. Reliable guidelines for predicting the level alignment for a given material combination and methods to adjust the intrinsic energy landscape are needed to enable efficient engineering approaches. These are sufficiently understood for established electronic materials, e.g., Si, but for the increasing number of emerging materials, e.g., organic and 2D semiconductors, perovskites, this is work in progress. The intrinsic level alignment and the underlying mechanisms at interfaces between organic and inorganic semiconductors are discussed first. Next, methods to alter the level alignment are introduced, which all base on proper charge density rearrangement at a heterojunction. As interface modification agents we use molecular electron acceptors and donors, as well as molecular photochromic switches that add a dynamic aspect and allow device multifunctionality. For 2D semiconductors surface transfer doping with molecular acceptors/donors transpires as viable method to locally tune the Fermi-level position in the energy gap. The fundamental electronic properties of a prototypical 1D interface between intrinsic and p-doped 2D semiconductor regions are derived from local (scanning probe) and area-averaged (photoemission) spectroscopy experiments. Future research opportunities for attaining unsurpassed interface control through charge density management are discussed.

  11. New analytical calculations of the resonance modes in lens-shaped cavities: applications to the calculations of the energy levels and electronic wavefunctions in quantum dots

    International Nuclear Information System (INIS)

    Even, J; Loualiche, S

    2003-01-01

    The problem of the energy levels and electronic wavefunctions in quantum dots is studied in the parabolic coordinates system. A conventional effective mass Hamiltonian is written. For an infinite potential barrier, it is related to the more general problem of finding the resonance modes in a cavity. The problem is found to be separable for a biconvex-shaped cavity or quantum dot with an infinite potential barrier. This first shape of quantum dot corresponds to the intersection of two orthogonal confocal parabolas. Then plano-convex lens-shaped cavities or quantum dots are studied. This problem is no more separable in the parabolic coordinates but using symmetry properties, we show that the exact solutions of the problem are simple combinations of the previous solutions. The same approach is used for spherical coordinates and hemispherical quantum dots. It is finally shown that convex lens-shaped quantum dots give a good description of self-organized InAs quantum dots grown on InP

  12. Electron Linacs for High Energy Physics

    International Nuclear Information System (INIS)

    Wilson, Perry B.

    2011-01-01

    The purpose of this article is to introduce some of the basic physical principles underlying the operation of electron linear accelerators (electron linacs). Electron linacs have applications ranging from linacs with an energy of a few MeV, such that the electrons are approximately relativistic, to future electron-positron linear colliders having a collision energy in the several-TeV energy range. For the most part, only the main accelerating linac is treated in this article.

  13. High-resolution studies of tropolone in the S0 and S1 electronic states: isotope driven dynamics in the zero-point energy levels.

    Science.gov (United States)

    Keske, John C; Lin, Wei; Pringle, Wallace C; Novick, Stewart E; Blake, Thomas A; Plusquellic, David F

    2006-02-21

    Rotationally resolved microwave (MW) and ultraviolet (UV) spectra of jet-cooled tropolone have been obtained in S(0) and S(1) electronic states using Fourier-transform microwave and UV-laser/molecular-beam spectrometers. In the ground electronic state, the MW spectra of all heavy-atom isotopomers including one (18)O and four (13)C isotopomers were observed in natural abundance. The OD isotopomer was obtained from isotopically enriched samples. The two lowest tunneling states of each isotopomer except (18)O have been assigned. The observed inversion splitting for the OD isotopomer is 1523.227(5) MHz. For the asymmetric (13)C structures, the magnitudes of tunneling-rotation interactions are found to diminish with decreasing distance between the heavy atom and the tunneling proton. In the limit of closest approach, the 0(+) state of (18)O was well fitted to an asymmetric rotor Hamiltonian, reflecting significant changes in the tautomerization dynamics. Comparisons of the substituted atom coordinates with theoretical predictions at the MP2/aug-cc-pVTZ level of theory suggest the localized 0(+) and 0(-) wave functions of the heavier isotopes favor the C-OH and C=O forms of tropolone, respectively. The only exception occurs for the (13)C-OH and (13)C[Double Bond]O structures which correlate to the 0(-) and 0(+) states, respectively. These preferences reflect kinetic isotope effects as quantitatively verified by the calculated zero-point energy differences between members of the asymmetric atom pairs. From rotationally resolved data of the 0(+) <--0(+) and 0(-) <--0(-) bands in S(1), line-shape fits have yielded Lorentzian linewidths that differ by 12.2(16) MHz over the 19.88(4) cm(-1) interval in S(1). The fluorescence decay rates together with previously reported quantum yield data give nonradiative decay rates of 7.7(5) x 10(8) and 8.5(5) x 10(8) s(-1) for the 0(+) and 0(-) levels of the S(1) state of tropolone.

  14. The effects of illumination on deep levels observed in as-grown and low-energy electron irradiated high-purity semi-insulating 4H-SiC

    Science.gov (United States)

    Alfieri, G.; Knoll, L.; Kranz, L.; Sundaramoorthy, V.

    2018-05-01

    High-purity semi-insulating 4H-SiC can find a variety of applications, ranging from power electronics to quantum computing applications. However, data on the electronic properties of deep levels in this material are scarce. For this reason, we present a deep level transient spectroscopy study on HPSI 4H-SiC substrates, both as-grown and irradiated with low-energy electrons (to displace only C-atoms). Our investigation reveals the presence of four deep levels with activation energies in the 0.4-0.9 eV range. The concentrations of three of these levels increase by at least one order of magnitude after irradiation. Furthermore, we analyzed the behavior of these traps under sub- and above-band gap illumination. The nature of the traps is discussed in the light of the present data and results reported in the literature.

  15. Power Electronics, Energy Harvesting and Renewable Energies Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The research in the Power Electronics, Energy Harvesting and Renewable Energies Laboratory (PEHREL) is mainly focused on investigation, modeling, simulation, design,...

  16. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  17. Power electronics for renewable energy systems

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    2009-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......, wind energy and photovoltaics, which by means of power electronics are changing from being minor energy sources to be acting as important power sources in the energy system....

  18. Occupation number dependence of molecular energy levels

    International Nuclear Information System (INIS)

    Giambiagi, M.S. de; Giambiagi, M.; Ferreira, R.

    1977-08-01

    The Roothaan expression for the energy of a closed-shell molecular system is generalized in order to apply to open shells. A continuous variation from 0 to 2 is supposed for each level's occupation number, extending to this range tbe correction due to the spurious repulsion appearing in the half-electron method. The characteristic equations of the Xα method are applied to the energy expressions. The one level case is discussed in detail. Ionic and excited states of the 1,3 transbutadiene π system are analyzed

  19. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  20. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    International Nuclear Information System (INIS)

    Guo, Yongling; Bo, Maolin; Wang, Yan; Liu, Yonghui; Sun, Chang Q.; Huang, Yongli

    2017-01-01

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O"2"− lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta"+ electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta"+; the sp"3-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent insight into the

  1. LAT Perspectives in Detection of High Energy Cosmic Ray Electrons

    International Nuclear Information System (INIS)

    Moiseev, Alexander; Ormes, J.F.; Funk, Stefan

    2007-01-01

    The LAT science objectives and capabilities in the detection of high energy electrons in the energy range from 20 GeV to ∼1.5 TeV are presented. LAT simulations are used to establish the event selections. It is found that maintaining the efficiency of electron detection at the level of 30%, the residual hadron contamination does not exceed 2-3% of the electron flux. It is expected to collect ∼ ten million of electrons with the energy above 20 GeV for one year of observation. Precise spectrum reconstruction with collected electron statistics opens the unique opportunity to investigate several important problems such as models of IC radiation, revealing the signatures of nearby sources such as high energy cutoff in the electron spectrum, testing the propagation model, and search for KKDM particles decay through their contribution to the electron spectrum

  2. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    International Nuclear Information System (INIS)

    Seletskiy, Sergey M.; Rochester U.

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the first cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cooling. The Recycler Electron Cooler (REC) is the key component of the Tevatron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV carrying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 (micro)rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible. Chapter 1 is an introduction where I describe briefly the theory and the history of electron cooling, and derive the requirements to the quality of electron beam and requirements to the basic parameters of the Recycler Electron Cooler. Chapter 2 is devoted to the theoretical consideration of the motion of electrons in the cooling section, description of the cooling section and of the measurement of the magnetic fields. In Chapter 3 I consider different factors that increase the effective electron angle in the cooling section and suggest certain algorithms for the suppression of parasitic angles. Chapter 4 is devoted to the measurements of the energy of the electron beam. In the concluding Chapter 5 I review

  3. Depth sectioning using electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    D'Alfonso, A J; Findlay, S D; Allen, L J; Cosgriff, E C; Kirkland, A I; Nellist, P D; Oxley, M P

    2008-01-01

    The continued development of electron probe aberration correctors for scanning transmission electron microscopy has enabled finer electron probes, allowing atomic resolution column-by-column electron energy loss spectroscopy. Finer electron probes have also led to a decrease in the probe depth of focus, facilitating optical slicing or depth sectioning of samples. The inclusion of post specimen aberration corrected image forming lenses allows for scanning confocal electron microscopy with further improved depth resolution and selectivity. We show that in both scanning transmission electron microscopy and scanning confocal electron microscopy geometries, by performing a three dimensional raster scan through a specimen and detecting electrons scattered with a characteristic energy loss, it will be possible to determine the location of isolated impurities embedded within the bulk.

  4. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, Sergei M. [Univ. of Rochester, NY (United States)

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  5. The influence of core-valence electron correlations on the convergence of energy levels and oscillator strengths of ions with an open 3d shell using Fe VIII as an example

    International Nuclear Information System (INIS)

    Zeng Jiaolong; Jin Fengtao; Zhao Gang; Yuan Jianmin

    2003-01-01

    Accurate atomic data, such as fine structure energy levels and oscillator strengths of different ionization stages of iron ions, are important for astrophysical and laboratory plasmas. However, some important existing oscillator strengths for ions with an open 3d shell found in the literature might not be accurate enough for practical applications. As an example, the present paper checks the convergence behaviour of the energy levels and oscillator strengths of Fe VIII by systematically increasing the 3p n -3d n (n = 1, 2, 3 and 6) core-valence electron correlations using the multiconfiguration Hartree-Fock method. The results show that one should at least include up to 3p 3 -3d 3 core-valence electron correlations to obtain converged results. Large differences are found between the present oscillator strengths and other theoretical results in the literature for some strong transitions

  6. Electron correlation energy in confined two-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.L. [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Montgomery, H.E., E-mail: ed.montgomery@centre.ed [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Sen, K.D. [School of Chemistry, University of Hyderabad, Hyderabad 500 046 (India); Thompson, D.C. [Chemistry Systems and High Performance Computing, Boehringer Ingelheim Pharamaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877 (United States)

    2010-09-27

    Radial, angular and total correlation energies are calculated for four two-electron systems with atomic numbers Z=0-3 confined within an impenetrable sphere of radius R. We report accurate results for the non-relativistic, restricted Hartree-Fock and radial limit energies over a range of confinement radii from 0.05-10a{sub 0}. At small R, the correlation energies approach limiting values that are independent of Z while at intermediate R, systems with Z{>=}1 exhibit a characteristic maximum in the correlation energy resulting from an increase in the angular correlation energy which is offset by a decrease in the radial correlation energy.

  7. Electron capture and energy-gain spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taulbjerg, K.

    1989-01-01

    The applicability of translation energy spectroscopy as a tool to determine individual reaction cross sections in atomic collisions is analyzed with special emphasis on the electron capture process in highly charged ion collisions. A condition is derived to separate between higher collision energies where translation energy spectroscopy is problem free and lower energies where strong overlap of individual spectra features prohibits an analysis of the total translation energy spectrum by means of a simple deconvolution procedure. 8 refs., 6 figs.

  8. Energy loss and thermalization of low-energy electrons

    International Nuclear Information System (INIS)

    LaVerne, J.A.; Mozumder, A.; Notre Dame Univ., IN

    1984-01-01

    Various processes involved in the moderation of low-energy electrons (< 10 keV in energy) have been delineated in gaseous and liquid media. The discussion proceeds in two stages. The first stage ends and the second stage begins when the electron energy equals the first excitation potential of the medium. The second stage ends with thermalization. Cross sections for electronic excitation and for the excitation (and de-excitation) of sub-electronic processes have been evaluated and incorporated in suitable stopping power and transport theories. Comparison between experiment and theory and intercomparisons between theories and experiments have been provided where possible. (author)

  9. Treatment of foods with 'soft-electrons' (low-energy electrons)

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Toru [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan); Todoriki, Setsuko [National Food Research Institute (NFRI), Tsukuba, Ibaraki (Japan)

    2003-02-01

    Electrons with energies of 300 keV or lower were defined as soft-electrons'. Soft-electrons can eradicate microorganisms residing on the surface of grains, pulses, spices, dehydrated vegetables, tea leaves and seeds, and reduce their microbial loads to levels lower than 10 CFU/g with little quality deterioration. Soft-electrons can inactivate insect pests infesting grains and pulses and inhibit sprouting of potatoes. (author)

  10. Treatment of foods with 'soft-electrons' (low-energy electrons)

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko

    2003-01-01

    Electrons with energies of 300 keV or lower were defined as soft-electrons'. Soft-electrons can eradicate microorganisms residing on the surface of grains, pulses, spices, dehydrated vegetables, tea leaves and seeds, and reduce their microbial loads to levels lower than 10 CFU/g with little quality deterioration. Soft-electrons can inactivate insect pests infesting grains and pulses and inhibit sprouting of potatoes. (author)

  11. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  12. Electron beam accelerator energy control system

    International Nuclear Information System (INIS)

    Sharma, Vijay; Rajan, Rehim; Acharya, S.; Mittal, K.C.

    2011-01-01

    A control system has been developed for the energy control of the electron beam accelerator using PLC. The accelerating voltage of 3 MV has been obtained by using parallel coupled voltage multiplier circuit. A autotransformer controlled variable 0-10 KV DC is fed to a tube based push pull oscillator to generate 120 Khz, 10 KV AC. Oscillator output voltage is stepped up to 0-300 KV/AC using a transformer. 0-300 KVAC is fed to the voltage multiplier column to generate the accelerating voltage at the dome 0-3 MV/DC. The control system has been designed to maintain the accelerator voltage same throughout the operation by adjusting the input voltage in close loop. Whenever there is any change in the output voltage either because of beam loading or arcing in the accelerator. The instantaneous accelerator voltage or energy is a direct proportional to 0-10 KVDC obtained from autotransformer. A PLC based control system with user settable energy level has been installed for 3 MeV, EB accelerator. The PLC takes the user defined energy value through a touch screen and compares it to the actual accelerating voltage (obtained using resistive divider). Depending upon the error the PLC generates the pulses to adjust the autotransformer to bring the actual voltage to the set value within the window of error (presently set to +/- 0.1%). (author)

  13. NaI(Tl) electron energy resolution

    CERN Document Server

    Mengesha, W

    2002-01-01

    NaI(Tl) electron energy resolution eta sub e was measured using the Modified Compton Coincidence Technique (MCCT). The MCCT allowed detection of nearly monoenergetic internal electrons resulting from the scattering of incident 662 keV gamma rays within a primary NaI(Tl) detector. Scattered gamma rays were detected using a secondary HPGe detector in a coincidence mode. Measurements were carried out for electron energies ranging from 16 to 438 keV, by varying the scattering angle. Measured HPGe coincidence spectra were deconvolved to determine the scattered energy spectra from the NaI(Tl) detector. Subsequently, the NaI(Tl) electron energy spectra were determined by subtracting the energy of scattered spectra from the incident source energy (662 keV). Using chi-squared minimization, iterative deconvolution of the internal electron energy spectra from the measured NaI(Tl) spectra was then used to determine eta sub e at the electron energy of interest. eta sub e values determined using this technique represent va...

  14. Electron-cyclotron maser utilizing free-electron two-quantum magnetic-wiggler radiation, and explanation of effective laser injection in an electron cyclotron maser as lift-up of saturated power level arisen from uncertainty in electron energy due to electron's transverse wiggling

    Science.gov (United States)

    Kim, S. H.

    2017-12-01

    We reason that in the free-electron radiation if the transition rate τ is less than the radiation frequency ν, the radiation is of broad-band spectrum whereas if τ ≫ ν, the radiation is of monochromatic. We find that when a weaker magnetic wiggler (MW) is superpositioned on a predominantly strong uniform magnetic field, free-electron two-quantum magnetic-wiggler (FETQMW) radiation takes place. In FETQMW radiation, the MW and the electron's intrinsic motivity to change its internal configuration through radiation play as two first-order perturbers while the uniform magnetic field acts as the sole zeroth-order perturber. When Δ E≪ hν, where Δ E is the uncertainty in the electron energy produced by transverse wiggling due to the MW in conjuction with a Heisenberg's uncertainty principle Δ EΔ x h and E = ( m 2 c 4 + c 2 p 2)1/2, the power of FETQMW radiation cannot exceed hν 2. However, we find that this power cap is lifted by the amount of νΔ E when Δ E ≫ hν holds [1,2]. This lift-up of the saturated radiation power is the responsible mechanism for the effective external injection of a 20 kW maser in an electron-cyclotron maser (ECM). We find that an MW-added ECM with radius 5 cm and length 1 m and operating parameters of the present beam technology can yield laser power of 50 MW at the radiation wavelength of 0.001 cm.

  15. Can Low Energy Electrons Affect High Energy Physics Accelerators?

    International Nuclear Information System (INIS)

    Cimino, Roberto

    2004-01-01

    The properties of the electrons participating in the build up of an electron cloud (EC) inside the beam-pipe have become an increasingly important issue for present and future accelerators whose performance may be limited by this effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber. Thus, the accurate modeling of these surface properties is an indispensible input to simulation codes aimed at the correct prediction of build-up thresholds, electron-induced instability or EC heat load. In this letter, we present the results of surface measurements performed on a prototype of the beam screen adopted for the Large Hadron Collider (LHC), which presently is under construction at CERN. We have measured the total secondary electron yield (SEY) as well as the related energy distribution curves (EDC) of the secondary electrons as a function of incident electron energy. Attention has been paid, for the first time in this context, to the probability at which low-energy electrons (<∼ 20 eV) impacting on the wall create secondaries or are elastically reflected. It is shown that the ratio of reflected to true-secondary electrons increases for decreasing energy and that the SEY approaches unity in the limit of zero primary electron energy

  16. Self-synchronization of the modulation of energy-levels population with electrons in GaAs induced by picosecond pulses of probe radiation and intrinsic stimulated emission

    Energy Technology Data Exchange (ETDEWEB)

    Ageeva, N. N.; Bronevoi, I. L., E-mail: bil@cplire.ru; Zabegaev, D. N.; Krivonosov, A. N. [Russian Academy of Sciences, Kotel’nikov Institute of Radioengineering and Electronics (Russian Federation)

    2016-10-15

    Picosecond optical pumping leads to the initiation of intrinsic picosecond stimulated emission in GaAs. As was established previously, due to the interaction of pulses of probe radiation with those of intrinsic emission, the dependence of the absorption α of the probe pulse on its delay τ with respect to the pump pulse is modulated with oscillations. It is found that the oscillatory dependences α(τ) have a similar shape only in the case of certain combinations of energies of the interacting pulses. As a result, it is assumed that the above interaction is, in fact, a synchronization of modulations (formed by pulses) of charge-carrier populations at energy levels; this synchronization occurs in the direction of the reconstruction of detailed equilibrium. The real-time picosecond self-modulation of the absorption α is measured for the first time. The characteristics of this self-modulation as well as absorption α and intrinsic emission self-modulation characteristics measured previously by correlation methods are now accounted for by the concept of synchronization.

  17. Energy-filtered cold electron transport at room temperature.

    Science.gov (United States)

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-09-10

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.

  18. Food irradiation by low energy electrons

    International Nuclear Information System (INIS)

    Bird, J.R.

    1985-01-01

    For some special cases, the use of low energy electrons has advantages over the use of gamma-rays or higher energy electrons for the direct irradiation of food. These advantages arise from details of the interaction processes which are responsible for the production of physical, chemical and biological effects. Factors involved include depth of penetration, dose distribution, irradiation geometry, the possible production of radioactivity and costs

  19. Surface sterilization by low energy electron beams

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Tabei, Masae

    1989-01-01

    The germicidal effectiveness of low energy electron beams (175 KV) against bacterial cells was investigated. The dry spores of Bacillus pumilus ATCC 27142 and Bacillus globigii ATCC 9372 inoculated on carrier materials and irradiated by gamma rays showed the exponential type of survival curves whereas they showed sigmoidal ones when exposed to low energy electron beams. When similarly irradiated, the wet spores inoculated on membrane filter showed the same survival curves as the dry spores inoculated on carrier materials. The wet vegetative cells of Escherichia coli ATCC 25922 showed exponential curves when exposed to gamma and electron beam irradiation. Low energy electron beams in air showed little differences from nitrogen stream in their germicidal effectiveness against dry spores of B. pumilus. The D values of B. pumilus spores inoculated on metal plates decreased as the amounts of backscattering electrons from the plates increased. There was adequate correlation between the D value (linear region of survival curve), average D value (6D/6) and 1% survival dose and backscattering factor. Depth dose profile and backscatterig dose of low energy electron beams were measured by radiochromic dye film dosimeter (RCD). These figures were not always in accord with the observed germicidal effectiveness against B. pumilus spores because of varying thickness of RCD and spores inoculated on carrier material. The dry spores were very thin and this thinness was useful in evaluating the behavior of low energy electrons. (author)

  20. High energy electron multibeam diffraction and imaging

    International Nuclear Information System (INIS)

    Bourret, Alain.

    1980-04-01

    The different theories of dynamical scattering of electrons are firstly reviewed with special reference to their basis and the validity of the different approximations. Then after a short description of the different experimental set ups, structural analysis and the investigation of the optical potential by means of high energy electrons will be surveyed

  1. Electron energy-distribution functions in gases

    International Nuclear Information System (INIS)

    Pitchford, L.C.

    1981-01-01

    Numerical calculation of the electron energy distribution functions in the regime of drift tube experiments is discussed. The discussion is limited to constant applied fields and values of E/N (ratio of electric field strength to neutral density) low enough that electron growth due to ionization can be neglected

  2. Compact multi-energy electron linear accelerators

    International Nuclear Information System (INIS)

    Tanabe, E.; Hamm, R.W.

    1985-01-01

    Two distinctly different concepts that have been developed for compact multi-energy, single-section, standing-wave electron linear accelerator structures are presented. These new concepts, which utilize (a) variable nearest neighbor couplings and (b) accelerating field phase switching, provide the capability of continuously varying the electron output energy from the accelerator without degrading the energy spectrum. These techniques also provide the means for continuously varying the energy spectrum while maintaining a given average electron energy, and have been tested successfully with several accelerators of length from 0.1 m to 1.9 m. Theoretical amd experimental results from these accelerators, and demonstrated applications of these techniques to medical and industrial linear accelerator technology will be described. In addition, possible new applications available to research and industry from these techniques are presented. (orig.)

  3. High energy electron positron physics

    International Nuclear Information System (INIS)

    Ali, A.; Soding, P.

    1987-01-01

    With the termination of the physics program at PETRA in a year from now, and with the start of TRISTAN and the SLC and later LEP, an era of e/sup +/e/sup -/ physics will come to an end and a new one begins. The field is changing from a field of a few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way more useful to any high energy physicist in particular to newcomers in the e/sup +/e/sup -/ field. This is the purpose of the book. This book should be used as a reference for future workers in the field of e/sup +/e/sup -/ interactions. It includes the most relevant data, parametrizations, theoretical background, and a chapter on detectors. Contents: Foreword; Detectors for High Energy e/sup +/e/sup -/ Physics; Lepton Pair Production and Electroweak Parameters; Hadron Production, Strong and Electroweak Properties; tau Physics; Recent Results on the Charm Sector; Bottom Physics; Lifetime Measurements of tau, Charmed and Beauty Hadrons; Υ Spectroscopy; Hadronic Decays of the Υ; Quark and Gluon Fragmentation in the e/sup +/e/sup -/ Continuum; Jet Production and QCD; Two Photon Physics; Search for New Particles

  4. Investigation of Electronic Corrosion at Device Level

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Minzari, Daniel; Rathinavelu, Umadevi

    2010-01-01

    This work presents device level testing of a lead free soldered electronic device tested with bias on under cyclic humidity conditions in a climatic chamber. Besides severe temperature and humidity during testing some devices were deliberately contaminated before testing. Contaminants investigated...

  5. Golden mean energy equals highest atomic electron orbital energy

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, Leonard J. [Interdisciplinary Research Club, P.O. Box 371, Monroeville, PA 15146 (United States)], E-mail: LJMalinowski@gmail.com

    2009-12-15

    The golden mean numerical value {phi} = 0.5({radical}5 - 1) has been given a physical manifestation through E infinity theory. This short paper relates the golden mean energy 0.618034 MeV to atomic electron orbitals.

  6. Golden mean energy equals highest atomic electron orbital energy

    International Nuclear Information System (INIS)

    Malinowski, Leonard J.

    2009-01-01

    The golden mean numerical value φ = 0.5(√5 - 1) has been given a physical manifestation through E infinity theory. This short paper relates the golden mean energy 0.618034 MeV to atomic electron orbitals.

  7. Electron energy measurements in pulsating auroras

    International Nuclear Information System (INIS)

    McEwan, D.J.; Yee, E.; Whalen, B.A.; Yau, A.W.

    1981-01-01

    Electron spectra were obtained during two rocket flights into pulsating aurora from Southend, Saskatchewan. The first rocket launched at 1143:24 UT on February 15, 1980 flew into an aurora of background intensity 275 R of N 2 + 4278 A and showing regular pulsations with about a 17 s period. Electron spectra of Maxwellian energy distributions were observed with an average E 0 = 1.5 keV, rising to 1.8 keV during the pulsations. There was one-to-one correspondence between the electron energy modulation and the observed optical pulsations. The second rocket, launched at 1009:10 UT on February 23, flew into a diffuse auroral surface of intensity 800 R of N 2 + 4278 A and with somewhat irregular pulsations. The electron spectra were again of Maxwellian energy distribution with an average E 0 = 1.8 keV increasing to 2.1 keV during the pulsations. The results from these flights suggest that pulsating auroras occurring in the morning sector may be quite commonly excited by low energy electrons. The optical pulsations are due to periodic increases in the energy of the electrons with the source of modulation in the vicintiy of the geomagnetic equatorial plane. (auth)

  8. Electron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Kingston, A.E.; Walters, H.R.J.

    1982-01-01

    The problems of intermediate energy scattering are approached from the low and high energy ends. At low intermediate energies difficulties associated with the use of pseudostates and correlation terms are discussed, special consideration being given to nonphysical pseudoresonances. Perturbation methods appropriate to high intermediate energies are described and attempts to extend these high energy approximations down to low intermediate energies are studied. It is shown how the importance of electron exchange effects develops with decreasing energy. The problem of assessing the 'effective completeness' of pseudostate sets at intermediate energies is mentioned and an instructive analysis of a 2p pseudostate approximation to elastic e - -H scattering is given. It is suggested that at low energies the Pauli Exclusion Principle can act to hide short range defects in pseudostate approximations. (author)

  9. Thermalisation of high energy electrons and positrons in water vapour

    Science.gov (United States)

    Munoz, A.; Blanco, F.; Limao-Vieira, P.; Thorn, P. A.; Brunger, M. J.; Buckman, S. J.; Garcia, G.

    2008-07-01

    In this study we describe a method to simulate single electron tracks of electrons in molecular gases, particularly in water vapour, from relatively high energies, where Born (Inokuti 1971) approximation is supposed to be valid, down to thermal energies paying special attention to the low energy secondary electrons which are abundantly generated along the energy degradation procedure. Experimental electron scattering cross sections (Munoz et al. 2007) and energy loss spectra (Thorn et al. 2007) have been determined, where possible, to be used as input parameters of the simulating program. These experimental data have been complemented with optical potential calculation (Blanco and Garcia 2003) providing a complete set of interaction probability functions for each type of collision which could take place in the considered energy range: elastic, ionization, electronic excitation, vibrational and rotational excitation. From the simulated track structure (Munoz et al. 2005) information about energy deposition and radiation damage at the molecular level can be derived. A similar procedure is proposed to the study of single positron tracks in gases. Due to the lack of experimental data for positron interaction with molecules, especially for those related to energy loss and excitation cross sections, some distribution probability data have been derived from those of electron scattering by introducing positron characteristics as positroniun formation. Preliminary results for argon are presented discussing also the utility of the model to biomedical applications based on positron emitters.

  10. Low Energy Electron Cooler for NICA Booster

    CERN Document Server

    Denisov, A P

    2017-01-01

    BINP has developed an electron cooler to increase the ion accumulation efficiency in the NICA (Nuclotron-based Ion Collider fAcility) heavy ion booster (JINR, Dubna). Adjustment of the cooler magnetic system provides highly homogeneous magnetic field in the cooling section B trans/B long ≤ 4∙10-5 which is vital for efficient electron cooling. First experiments with an electron beam performed at BINP demonstrated the target DC current of 500 mA and electron energy 6 keV.

  11. Electron energy recuperation in gyrodevices

    International Nuclear Information System (INIS)

    Savilov, A. V.; Nusinovich, G. S.; Sinitsyn, O. V.

    2008-01-01

    For many applications of gyrodevices, it is extremely important to increase their overall efficiency and reduce the power consumption. Therefore, at present, there are many gyrotrons operating with depressed collectors. These gyrotrons and their depressed collectors are typically designed with the use of available numerical codes. This paper is devoted to the analysis of the energy recuperation in gyrotrons, which is performed with the use of the Hamiltonian formalism. Such consideration gives some insight into the physics of gyrodevices and can be useful for estimating the benefits from utilizing depressed collectors. Both single-cavity gyromonotrons and multicavity gyrodevices in which the last cavity is excited by a prebunched beam are analyzed. Special attention is paid to a three-cavity, frequency-quadrupling gyrodevice.

  12. Energy transformation in molecular electronic systems

    International Nuclear Information System (INIS)

    Kasha, M.

    1985-01-01

    Our new optical pumping spectroscopy (steady state, and double-laser pulse) allows the production and study of the unstable rare tautomer in its ground and excited states, including picosecond dynamic studies. Molecules under study here included 7-azaindole (model for biological purines), 3-hydroxyflavone (model for plant flavones), lumichrome, and other heterocyclics. New detailed molecular mechanisms for proton transfer are derived, especially with catalytic assisting molecules. A new proton-transfer laser of extraordinary efficiency has become a side dividend, possibly worth of industrial development. The excited and highly reactive singlet molecular oxygen species 1 Δ/sub g/) has proven to be ubiquitous in chemical peroxide systems and in physically excited sensitizer-oxygen systems. Hyperbaric oxygen mechanisms in biology probably involve singlet oxygen. We have undertaken a spectroscopic study of tris - dibenzoylmethane chelates of Al, Gd, Eu, and Yb trivalent ions. These chelates offer a variety of electronic behaviors, from Z-effects on π-electron spin-orbital coupling (Al, Gd) to Weissman intramolecular energy transfer to 4f mestable levels (Eu, Gd). Elegant new spectroscopic resolution at 77K permits separation of tautomeric, parasitic self-absorption, dissociation, and cage effects to be resolved. 18 refs., 4 figs

  13. Different Effect of the Additional Electron-Withdrawing Cyano Group in Different Conjugation Bridge: The Adjusted Molecular Energy Levels and Largely Improved Photovoltaic Performance.

    Science.gov (United States)

    Li, Huiyang; Fang, Manman; Hou, Yingqin; Tang, Runli; Yang, Yizhou; Zhong, Cheng; Li, Qianqian; Li, Zhen

    2016-05-18

    Four organic sensitizers (LI-68-LI-71) bearing various conjugated bridges were designed and synthesized, in which the only difference between LI-68 and LI-69 (or LI-70 and LI-71) was the absence/presence of the CN group as the auxiliary electron acceptor. Interestingly, compared to the reference dye of LI-68, LI-69 bearing the additional CN group exhibited the bad performance with the decreased Jsc and Voc values. However, once one thiophene moiety near the anchor group was replaced by pyrrole with the electron-rich property, the resultant LI-71 exhibited a photoelectric conversion efficiency increase by about 3 folds from 2.75% (LI-69) to 7.95% (LI-71), displaying the synergistic effect of the two moieties (CN and pyrrole). Computational analysis disclosed that pyrrole as the auxiliary electron donor (D') in the conjugated bridge can compensate for the lower negative charge in the electron acceptor, which was caused by the CN group as the electron trap, leading to the more efficient electron injection and better photovoltaic performance.

  14. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Mel, E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W., E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario (Canada)

    2014-05-14

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  15. Molecularly Stretchable Electronics for Energy and Healthcare

    Science.gov (United States)

    Lipomi, Darren

    The term ``plastic electronics'' masks the wide range of mechanical behavior possessed by films of π-conjugated (semiconducting) small molecules and polymers. Such materials are promising for biosensors, large-area displays, low-energy lighting, and low-cost photovoltaic modules. There is also an apparent trade-off between electronic performance and mechanical compliance in films of some of the best-performing semiconducting polymers, which fracture at tensile strains not significantly greater than those at which conventional inorganic semiconductors fail. The design of intrinsically deformable electronic materials-i.e., imagine a semiconducting rubber band-would facilitate roll-to-roll production, mechanical robustness for potable applications, and conformal bonding to curved surfaces. This seminar describes my group's efforts to understand and control the structural parameters that influence the mechanical properties of π-conjugated polymers. The techniques we employ include synthetic chemistry, spectroscopy and microstructural characterization, computation from the molecular to continuum level, and electrical measurements of devices. A complex picture emerges for the interplay between molecular structure, the way the process of solidification influences the morphology, and how molecular structure and morphology combine to produce a film with a given modulus, elastic range, ductility, and toughness. We are also exploring ways to introduce other properties into organic semiconductors that are inspired by biological tissue. That is, not just elasticity and toughness, but also biodegradability and the capacity for self-repair. The seminar will also touch on our use of self-assembled metallic nanoislands on graphene for ultra-sensitive mechanical sensing using piezoresistive and ``piezoplasmonic'' mechanisms. The applications for these materials are in detecting human motion and measuring the mechanics of cardiac and musculoskeletal cells. My group is broadly

  16. Electron scattering from sodium at intermediate energies

    International Nuclear Information System (INIS)

    Mitroy, J.; McCarthy, I.E.

    1986-10-01

    A comprehensive comparison is made between theoretical calculations and experimental data for intermediate energy (≥ 10 eV) electron scattering from sodium vapour. The theoretical predictions of coupled-channels calculations (including one, two or four channels) do not agree with experimental values of the differential cross sections for elastic scattering or the resonant 3s to 3p excitation. Increasingly-more-sophisticated calculations, incorporating electron correlations in the target states, and also including core-excited states in the close-coupling expansion, are done at a few selected energies in an attempt to isolate the cause of the discrepancies between theory and experiment. It is found that these more-sophisticated calculations give essentially the same results as the two- and four-channel calculations using Hartree-Fock wavefunctions. Comparison of the sodium high-energy elastic differential cross sections with those of neon suggests that the sodium differential cross section experiments may suffer from systematic errors. There is also disagreement, at the higher energies, between theoretical values for the scattering parameters and those that are derived from laser-excited superelastic scattering and electron photon coincidence experiments. When allowance is made for the finite acceptance angle of the electron spectrometers used in the experiments by convoluting the theory with a function representing the distribution of electrons entering the electron spectrometer it is found that the magnitudes of the differences between theory and experiment are reduced

  17. Electronic market places in the energy

    International Nuclear Information System (INIS)

    Mons, L.

    2001-12-01

    Electronic market places in the energy domain occurred at the end of the 90's in the US and have started to develop in Europe in the year 2000. About 60 platforms are registered today and this development can be explained by the advantages raised by such an infrastructure: simplification of purchase procedures, reduction of delays in the purchase decision, reduction of administrative costs etc.. However, today none of these electronic market places is profitable and several have closed down. On the other hand, this tool will certainly become necessary in the future and all energy actors are developing projects in this way. This study analyzes the electronic market places phenomenon in the energy domain using 10 market places examples with their key-factors of success. It draws out a complete status of the initiatives developed today and presents some scenarios of evolution. (J.S.)

  18. Coherence in electron energy loss spectrometry

    International Nuclear Information System (INIS)

    Schattschneider, P.; Werner, W.S.M.

    2005-01-01

    Coherence effects in electron energy loss spectrometry (EELS) and in energy filtering are largely neglected although they occur frequently due to Bragg scattering in crystals. We discuss how coherence in the inelastically scattered wave field can be described by the mixed dynamic form factor (MDFF), and how it relates to the density matrix of the scattered electrons. Among the many aspects of 'inelastic coherence' are filtered high-resolution images, dipole-forbidden transitions, coherence in plasma excitations, errors in chemical microanalysis, coherent double plasmons, and circular dichroism

  19. Split energy level radiation detection

    International Nuclear Information System (INIS)

    Barnes, G.T.

    1986-01-01

    This patent describes an energy discriminating radiation detector comprising: (a) a first element comprising a first material of a kind which is preferentially responsive to penetrative radiation of a first energy range; (b) a second element comprising a second material different in kind from the first material and of a kind which is preferentially responsive to penetrative radiation of second energy range extending higher than the first energy range. The element is positioned to receive radiation which has penetrated through a portion of the first element; and (c) a filter of penetrative radiation interposed between the first and second elements

  20. How to Draw Energy Level Diagrams in Excitonic Solar Cells.

    Science.gov (United States)

    Zhu, X-Y

    2014-07-03

    Emerging photovoltaic devices based on molecular and nanomaterials are mostly excitonic in nature. The initial absorption of a photon in these materials creates an exciton that can subsequently dissociate in each material or at their interfaces to give charge carriers. Any attempt at mechanistic understanding of excitonic solar cells must start with drawing energy level diagrams. This seemingly elementary exercise, which is described in textbooks for inorganic solar cells, has turned out to be a difficult subject in the literature. The problem stems from conceptual confusion of single-particle energy with quasi-particle energy and the misleading practice of mixing the two on the same energy level diagram. Here, I discuss how to draw physically accurate energy diagrams in excitonic solar cells using only single-particle energies (ionization potentials and electron affinities) of both ground and optically excited states. I will briefly discuss current understanding on the electronic energy landscape responsible for efficient charge separation in excitonic solar cells.

  1. High energy electron irradiation of flowable materials

    International Nuclear Information System (INIS)

    Offermann, B.P.

    1975-01-01

    In order to efficiently irradiate a flowable material with high energy electrons, a hollow body is disposed in a container for the material and the material is caused to flow in the form of a thin layer across a surface of the body from or to the interior of the container while the material flowing across the body surface is irradiated. (U.S.)

  2. Applications for Energy Recovering Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  3. Electron clouds in high energy hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor

    2013-08-29

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use of slow extraction will be made. After the acceleration the beam will be debunched and continuously extracted to the experimental area. During this process, residual gas electrons can accumulate in the electric field of the beam. If this accumulation is not prevented, then at some point the beam can become unstable. Under the SPS and LHC conditions the beam is always bunched. The accumulation of electron cloud happens due to secondary electron emission. At the time when this thesis was being written the electron cloud was known to limit the maximum intensity of the two machines. During the operation with 25 ns bunch spacing, the electron cloud was causing significant beam quality deterioration. At moderate intensities below the instability threshold the electron cloud was responsible for the bunch energy loss. In the framework of this thesis it was found that the instability thresholds of the coasting beams with similar space charge tune shifts, emittances and energies are identical. First of their kind simulations of the effect of Coulomb collisions on electron cloud density in coasting beams were performed. It was found that for any hadron coasting beam one can choose vacuum conditions that will limit the accumulation of the electron cloud below the instability threshold. We call such conditions the ''good'' vacuum regime. In application to SIS-100 the design pressure 10{sup -12} mbar corresponds to the good vacuum regime. The transition to the bad vacuum

  4. Study of Si-N amorphous compounds combining XPS (X photoemission) and EELS (electron energy loss spectra) optical measurements. Internal levels photoemission. Pt. 2

    International Nuclear Information System (INIS)

    Guraya, M.M.; Acolani, H.; Zampieri, G.E.; Silva, J.H. Dias da; Cisneros, J.I.; Cantao, M.; Marques, F.C.

    1990-01-01

    A Si-N non-stoichiometric hydrogenated amorphous compounds study with different N- contents is presented. The shape and shifts of the photoemission peaks corresponding to the N - 1s and Si - 2p internal levels are analyzed. Based on the latter, the homogeneity of the samples and the Si - N bonds charge transfer is discussed. (Author) [es

  5. An energy recovery electron linac-on-ring collider

    International Nuclear Information System (INIS)

    Merminga, L.; Krafft, G.A.; Lebedev, V.A.; Ben-Zvi, I.

    2000-01-01

    We present the design of high-luminosity electron-proton/ion colliders in which the electrons are produced by an Energy Recovering Linac (ERL). Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10 33 (per nucleon) level have been proposed recently as a means for studying hadronic structure. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations (2) reduction of the synchrotron radiation load in the detectors (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at currents of a few hundred mA and multi-GeV energies. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed and a list of required R and D for the realization of such a design is presented

  6. Electron-ion recombination at low energy

    International Nuclear Information System (INIS)

    Andersen, L.H.

    1993-01-01

    The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)

  7. Organic sensitizers from D-π-A to D-A-π-A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances.

    Science.gov (United States)

    Wu, Yongzhen; Zhu, Weihong

    2013-03-07

    The high performance and low cost of dye-sensitized solar cells (DSSCs) have drawn great interest from both academic and industrial circles. The research on exploring novel efficient sensitizers, especially on inexpensive metal-free pure organic dyes, has never been suspended. The donor-π bridge-acceptor (D-π-A) configuration is mainstream in the design of organic sensitizers due to its convenient modulation of the intramolecular charge-transfer nature. Recently, it has been found that incorporation of additional electron-withdrawing units (such as benzothiadiazole, benzotriazole, quinoxaline, phthalimide, diketopyrrolopyrrole, thienopyrazine, thiazole, triazine, cyanovinyl, cyano- and fluoro-substituted phenyl) into the π bridge as internal acceptors, termed the D-A-π-A configuration, displays several advantages such as tuning of the molecular energy levels, red-shift of the charge-transfer absorption band, and distinct improvement of photovoltaic performance and stability. We apply the D-A-π-A concept broadly to the organic sensitizers containing additional electron-withdrawing units between electron donors and acceptors. This review is projected to summarize the category of pure organic sensitizers on the basis of the D-A-π-A feature. By comparing the structure-property relationship of typical photovoltaic D-A-π-A dyes, the important guidelines in the design of such materials are highlighted.

  8. Can low energy electrons affect high energy physics accelerators?

    CERN Document Server

    Cimino, R; Furman, M A; Pivi, M; Ruggiero, F; Rumolo, Giovanni; Zimmermann, Frank

    2004-01-01

    The properties of the electrons participating in the build up of an electron cloud (EC) inside the beam-pipe have become an increasingly important issue for present and future accelerators whose performance may be limited by this effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber. Thus, the accurate modeling of these surface properties is an indispensible input to simulation codes aimed at the correct prediction of build-up thresholds, electron-induced instability or EC heat load. In this letter, we present the results of surface measurements performed on a prototype of the beam screen adopted for the Large Hadron Collider (LHC), which presently is under construction at CERN. We have measured the total secondary electron yield (SEY) as well as the related energy distribution curves (EDC) of the secondary electrons as a function of incident electron energy. Attention has been paid, for the first time in this context, to the probability at whic...

  9. Dissipation and energy balance in electronic dynamics of Na clusters

    Science.gov (United States)

    Vincendon, Marc; Suraud, Eric; Reinhard, Paul-Gerhard

    2017-06-01

    We investigate the impact of dissipation on the energy balance in the electron dynamics of metal clusters excited by strong electro-magnetic pulses. The dynamics is described theoretically by Time-Dependent Density-Functional Theory (TDDFT) at the level of Local Density Approximation (LDA) augmented by a self interaction correction term and a quantum collision term in Relaxation-Time Approximation (RTA). We evaluate the separate contributions to the total excitation energy, namely energy exported by electron emission, potential energy due to changing charge state, intrinsic kinetic and potential energy, and collective flow energy. The balance of these energies is studied as function of the laser parameters (frequency, intensity, pulse length) and as function of system size and charge. We also look at collisions with a highly charged ion and here at the dependence on the impact parameter (close versus distant collisions). Dissipation turns out to be small where direct electron emission prevails namely for laser frequencies above any ionization threshold and for slow electron extraction in distant collisions. Dissipation is large for fast collisions and at low laser frequencies, particularly at resonances. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  10. An energy monitor for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Geske, G. (Friedrich-Schiller-Universitaet, Jena (German Democratic Republic). Klinik und Poliklinik des Bereiches Medizin)

    1990-09-01

    A monitor useful for checks of the energy selector scale of medical electron accelerators was developed and tested. It consists of a linear array of flat ionization chambers sandwiched between absorber plates of low-Z material. The first chamber at the electron beam entrance may be used to produce a reference signal S{sub r}, if not another suitable reference signal is taken. The following chambers are electrically connected and deliver the measuring signal S{sub m}. A clinical dosimeter can be used for recording current or charge. The energy-dependent electron range parameters R{sub p}, R{sub 50} and R{sub 80} in water vary as linear functions of the ratio reference singal/measuring signal. The best linear fit was obtained for the half value layer R{sub 50}. Three types of the energy monitor are described, and experimental results obtained with a linear accelerator and a betatron between 5 and 25 MeV are reported. Uncertainties for checks of R{sub 50} with a calibrated energy monitor were not larger than 1 to 2 mm. Theoretical considerations by a computer model support these results. (orig./HP).

  11. An energy monitor for electron accelerators

    International Nuclear Information System (INIS)

    Geske, G.

    1990-01-01

    A monitor useful for checks of the energy selector scale of medical electron accelerators was developed and tested. It consists of a linear array of flat ionization chambers sandwiched between absorber plates of low-Z material. The first chamber at the electron beam entrance may be used to produce a reference signal S r , if not another suitable reference signal is taken. The following chambers are electrically connected and deliver the measuring signal S m . A clinical dosimeter can be used for recording current or charge. The energy-dependent electron range parameters R p , R 50 and R 80 in water vary as linear functions of the ratio reference singal/measuring signal. The best linear fit was obtained for the half value layer R 50 . Three types of the energy monitor are described, and experimental results obtained with a linear accelerator and a betatron between 5 and 25 MeV are reported. Uncertainties for checks of R 50 with a calibrated energy monitor were not larger than 1 to 2 mm. Theoretical considerations by a computer model support these results. (orig./HP) [de

  12. Low energy electron transport in furfural

    Science.gov (United States)

    Lozano, Ana I.; Krupa, Kateryna; Ferreira da Silva, Filipe; Limão-Vieira, Paulo; Blanco, Francisco; Muñoz, Antonio; Jones, Darryl B.; Brunger, Michael J.; García, Gustavo

    2017-09-01

    We report on an initial investigation into the transport of electrons through a gas cell containing 1 mTorr of gaseous furfural. Results from our Monte Carlo simulation are implicitly checked against those from a corresponding electron transmission measurement. To enable this simulation a self-consistent cross section data base was constructed. This data base is benchmarked through new total cross section measurements which are also described here. In addition, again to facilitate the simulation, our preferred energy loss distribution function is presented and discussed.

  13. High Energy Electron Detectors on Sphinx

    Science.gov (United States)

    Thompson, J. R.; Porte, A.; Zucchini, F.; Calamy, H.; Auriel, G.; Coleman, P. L.; Bayol, F.; Lalle, B.; Krishnan, M.; Wilson, K.

    2008-11-01

    Z-pinch plasma radiation sources are used to dose test objects with K-shell (˜1-4keV) x-rays. The implosion physics can produce high energy electrons (> 50keV), which could distort interpretation of the soft x-ray effects. We describe the design and implementation of a diagnostic suite to characterize the electron environment of Al wire and Ar gas puff z-pinches on Sphinx. The design used ITS calculations to model detector response to both soft x-rays and electrons and help set upper bounds to the spurious electron flux. Strategies to discriminate between the known soft x-ray emission and the suspected electron flux will be discussed. H.Calamy et al, ``Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion,'' Phys Plasmas 15, 012701 (2008) J.A.Halbleib et al, ``ITS: the integrated TIGER series of electron/photon transport codes-Version 3.0,'' IEEE Trans on Nuclear Sci, 39, 1025 (1992)

  14. Local energy equation for two-electron atoms and relation between kinetic energy and electron densities

    International Nuclear Information System (INIS)

    March, N.H.

    2002-08-01

    In early work, Dawson and March [J. Chem. Phys. 81, 5850 (1984)] proposed a local energy method for treating both Hartree-Fock and correlated electron theory. Here, an exactly solvable model two-electron atom with pure harmonic interactions is treated in its ground state in the above context. A functional relation between the kinetic energy density t(r) at the origin r=0 and the electron density p(r) at the same point then emerges. The same approach is applied to the Hookean atom; in which the two electrons repel with Coulombic energy e 2 /r 12 , with r 12 the interelectronic separation, but are still harmonically confined. Again the kinetic energy density t(r) is the focal point, but now generalization away from r=0 is also effected. Finally, brief comments are added about He-like atomic ions in the limit of large atomic number. (author)

  15. Energy Transformation in Molecular Electronic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kasha, Michael

    1999-05-17

    This laboratory has developed many new ideas and methods in the electronic spectroscopy of molecules. This report covers the contract period 1993-1995. A number of the projects were completed in 1996, and those papers are included in the report. The DOE contract was terminated at the end of 1995 owing to a reorganizational change eliminating nationally the projects under the Office of Health and Environmental Research, U. S. Department of Energy.

  16. Pulsar kicks with modified Urca and electrons in Landau levels

    International Nuclear Information System (INIS)

    Henley, Ernest M.; Johnson, Mikkel B.; Kisslinger, Leonard S.

    2007-01-01

    We derive the energy asymmetry given the protoneutron star during the time when the neutrino sphere is near the surface of the protoneutron star, using the modified Urca process. The electrons produced with the antineutrinos are in Landau levels due to the strong magnetic field, and this leads to asymmetry in the neutrino momentum, and a pulsar kick. The magnetic field must be strong enough for a large fraction of the electrons to be in the lowest Landau level; however, there is no direct dependence of our pulsar velocity on the strength of the magnetic field. Our main prediction is that the large pulsar kicks start at about 10 s and last for about 10 s, with the corresponding neutrinos correlated with the direction of the magnetic field. We predict a pulsar velocity of 1.03x10 -4 (T/10 10 K) 7 km/s, which reaches 1000 km/s if T≅10 11 K

  17. Bremsstrahlung of La and its dependence on electron energy

    International Nuclear Information System (INIS)

    Riehle, F.

    1977-01-01

    Measurements of La-bremsstrahlung isocromates with high resolution for quantum energies between 135 eV and 1867 eV are presented and discussed. In the whole energy range investigated, the isocromate structure, identified with the 4f band of La, is placed 5,45 +- 10,1 eV above the Fermi level. This is in contradiction with a calculation of Gloetzel, which predicts the 4f band maximum about 3eV above the Fermi level. This discrepancy is explained in the present work by the fact that the La electronic density of states depends on the occupation number of the states. The bremsstrahlung isocromate has to be considered as a direct copy of the La ion density of states, consisting of the La-atom and the additional primary electron. Resonance like intensity modulations of the x-ray radiation, resulting from transitions of the primary electron in f-like final states, are observed in an analysis of the La-bremsstrahlung isochromate energy dependence. For transitions of the primary electron in d-like final states, no resonances have been found. The energy dependence of the scattering probability in f-like final states can be explained by a model which assumes the final state as composed by a continuum state and a discrete state. (orig.) [de

  18. High Energy Electron Dosimetry by Alanine/ESR Spectroscopy

    International Nuclear Information System (INIS)

    Chu, Sung Sil

    1989-01-01

    Dosimetry based on electron spin resonance(ESR) analysis of radiation induced free radicals in amino acids is relevant to biological dosimetry applications. Alanine detectors are without walls and are tissue equivalent. Therefore, alanine ESR dosimetry looks promising for use in the therapy level. The dose range of the alanine/ESR dosimetry system can be extended down to l Gy. In a water phantom the absorbed dose of electrons generated by a medical linear accelerator of different initial energies (6-21 MeV) and therapeutic dose levels(1-60 Gy) was measured. Furthermore, depth dose measurements carried out with alanine dosimeters were compared with ionization chamber measurements. As the results, the measured absorbed doses for shallow depth of initial electron energies above 15 MeV were higher by 2-5% than those calculated by nominal energy CE factors. This seems to be caused by low energy scattered beams generated from the scattering foil and electron cones of beam projecting device in medical linear accelerator

  19. Electron microscopy at reduced levels of irradiation

    International Nuclear Information System (INIS)

    Kuo, I.A.M.

    1975-05-01

    Specimen damage by electron radiation is one of the factors that limits high resolution electron microscopy of biological specimens. A method was developed to record images of periodic objects at a reduced electron exposure in order to preserve high resolution structural detail. The resulting image would tend to be a statistically noisy one, as the electron exposure is reduced to lower and lower values. Reconstruction of a statistically defined image from such data is possible by spatial averaging of the electron signals from a large number of identical unit cells. (U.S.)

  20. Regional level approach for increasing energy efficiency

    International Nuclear Information System (INIS)

    Viholainen, Juha; Luoranen, Mika; Väisänen, Sanni; Niskanen, Antti; Horttanainen, Mika; Soukka, Risto

    2016-01-01

    Highlights: • Comprehensive snapshot of regional energy system for decision makers. • Connecting regional sustainability targets and energy planning. • Involving local players in energy planning. - Abstract: Actions for increasing the renewable share in the energy supply and improving both production and end-use energy efficiency are often built into the regional level sustainability targets. Because of this, many local stakeholders such as local governments, energy producers and distributors, industry, and public and private sector operators require information on the current state and development aspects of the regional energy efficiency. The drawback is that an overall view on the focal energy system operators, their energy interests, and future energy service needs in the region is often not available for the stakeholders. To support the local energy planning and management of the regional energy services, an approach for increasing the regional energy efficiency is being introduced. The presented approach can be seen as a solid framework for gathering the required data for energy efficiency analysis and also evaluating the energy system development, planned improvement actions, and the required energy services at the region. This study defines the theoretical structure of the energy efficiency approach and the required steps for revealing such energy system improvement actions that support the regional energy plan. To demonstrate the use of the approach, a case study of a Finnish small-town of Lohja is presented. In the case example, possible actions linked to the regional energy targets were evaluated with energy efficiency analysis. The results of the case example are system specific, but the conducted study can be seen as a justified example of generating easily attainable and transparent information on the impacts of different improvement actions on the regional energy system.

  1. Low energy electron transport in furfural

    International Nuclear Information System (INIS)

    Lozano, A.I.; Garcia, G.; Krupa, K.; Ferreira da Silva, F.; Limao-Vieira, P.; Blanco, F.; Munoz, A.; Jones, D.B.; Brunger, M.J.

    2017-01-01

    The cyclic configuration of the furfural molecule is similar to the 5-membered ring structure constituting the sugar units of the DNA helix, hence its importance in biology. In this paper, we report on an initial investigation into the transport of electrons through a gas cell containing 1 mtorr of gaseous furfural. Results from our Monte Carlo simulation are implicitly checked against those from a corresponding electron transmission measurement. To enable this simulation a self-consistent cross section data base was constructed. This data base is benchmarked through new total cross section measurements which are also described here. In addition, again to facilitate the simulation, our preferred energy loss distribution function is presented and discussed

  2. Dispersion self-energy of the electron

    International Nuclear Information System (INIS)

    Hawton, M.

    1991-01-01

    Electron mass renormalization and the Lamb shift have been investigated using the dispersion self-energy formalism. If shifts of both the electromagnetic field and quantum-mechanical transitions frequencies are considered, absorption from the electromagnetic field is canceled by emission due to atomic fluctuations. The frequencies of all modes are obtained from the self-consistency condition that the field seen by the electron is the same as the field produced by the expectation value of current. The radiation present can thus be viewed as arising from emission and subsequent reabsorption by matter. As developed here, the numerical predictions of dispersion theory are identical to those of quantum electrodynamics. The physical picture implied by dispersion theory is discussed in the context of semiclassical theories and quantum electrodynamics

  3. State-Level Benefits of Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [ORNL

    2007-02-01

    This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.

  4. State-level benefits of energy efficiency

    International Nuclear Information System (INIS)

    Tonn, Bruce; Peretz, Jean H.

    2007-01-01

    This paper describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20% and 30% energy savings in homes and plants, respectively. Over a 20-year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies. Energy efficiency programs are cost-effective; typical benefit-cost ratios exceed 3:1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. (author)

  5. Energy level alignment at Co/AlOx/pentacene interfaces

    NARCIS (Netherlands)

    Popinciuc, M.; Jonkman, H. T.; van Wees, B. J.

    2007-01-01

    X-ray and ultraviolet photoemission spectroscopy (XPS and UPS) experiments were performed in order to study the energy level alignment and electronic structure at Co/AlOx/pentacene interfaces as a function of the aluminum oxide (AlOx) tunnel barrier thickness and the oxidation state of Co. XPS was

  6. Energy level alignment symmetry at Co/pentacene/Co interfaces

    NARCIS (Netherlands)

    Popinciuc, M.; Jonkman, H. T.; van Wees, B. J.

    2006-01-01

    We have employed x-ray and ultraviolet photoemission spectroscopies (XPS and UPS) to study the energy level alignment and electronic structure at the Co/pentacene/Co interfaces. In the case of pentacene deposition on Co we found an interfacial dipole of about 1.05 eV and a hole injection barrier of

  7. Low-energy collisions between electrons and BeD+

    Science.gov (United States)

    Niyonzima, S.; Pop, N.; Iacob, F.; Larson, Å; Orel, A. E.; Mezei, J. Zs; Chakrabarti, K.; Laporta, V.; Hassouni, K.; Benredjem, D.; Bultel, A.; Tennyson, J.; Reiter, D.; Schneider, I. F.

    2018-02-01

    Multichannel quantum defect theory is applied in the treatment of the dissociative recombination and vibrational excitation processes for the BeD+ ion in the 24 vibrational levels of its ground electronic state ({{X}}{}1{{{Σ }}}+,{v}{{i}}+=0\\ldots 23). Three electronic symmetries of BeD** states ({}2{{\\Pi }}, {}2{{{Σ }}}+, and {}2{{Δ }}) are considered in the calculation of cross sections and the corresponding rate coefficients. The incident electron energy range is 10-5-2.7 eV and the electron temperature range is 100-5000 K. The vibrational dependence of these collisional processes is highlighted. The resulting data are useful in magnetic confinement fusion edge plasma modeling and spectroscopy, in devices with beryllium based main chamber materials, such as ITER and JET, and operating with the deuterium-tritium fuel mix. An extensive rate coefficients database is presented in graphical form and also by analytic fit functions whose parameters are tabulated in the supplementary material.

  8. Free Electron Laser as Energy Driver for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Saldin, E.L.; Shnejdmiller, E.A.; Ul'yanov, Yu.N.; Sarantsev, V.P.; Yurkov, M.V.

    1994-01-01

    A FEL based energy driver for Inertial Confinement Fusion (ICF) is proposed. The key element of the scheme is free electron laser system. Novel technical solutions reveal a possibility to construct the FEL system operating at radiation wavelength λ = 0.5 μm and providing flash energy E = 1 MJ and brightness 4 x 10 22 W cm -2 sr -1 within steering pulse duration 0.1-2 ns. Total energy efficiency of the proposed ICF energy driver is about of 11% and repetition rate is 40 Hz. Dimensions of such an ICF driver are comparable with those of heavy-ion ICF driver, while the problem of technical realization seems to be more realistic. It is shown that the FEL based ICF energy driver may be constructed at the present level of accelerator technique R and D. 27 refs., 10 figs., 3 tabs

  9. Electron energy deposition in the middle atmosphere

    International Nuclear Information System (INIS)

    Vampola, A.L.; Gorney, D.J.

    1983-01-01

    Spectra of locally precipating 36- to 317-keV electrons obtained by instrumentation on the S3-2 satellite are used to calculate energy deposition profiles as a function of latitude, longitude, and altitude. In the 70- to 90-km altitude, mid-latitude ionization due to these precipitating energetic electrons can be comparable to that due to direct solar H Lyman α. At night, the electrons produce ionization more than an order of magnitude greater than that expected from scattered H Lyman α. Maximum precipitation rates in the region of the South Atlantic Anomaly are of the order of 10 -2 erg/cm 2 s with a spectrum of form j(E) = 1.34 x 10 5 E/sup -2.27/ (keV). Southern hemisphere precipitation dominates that in the north for 1.1< L<6 except for regions of low local surface field in the northern hemisphere. Above L = 6, local time effects dominate: i.e., longitudinal effects due to the asymmetric magnetic field which are strong features below L = 6 disappear and are replaced by high-latitude precipitation events which are local time features

  10. Energy level alignment at interfaces in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Opitz, Andreas; Frisch, Johannes; Schlesinger, Raphael; Wilke, Andreas; Koch, Norbert

    2013-01-01

    Highlights: ► Energy level alignment is crucial for organic solar cell efficiency. ► Photoelectron spectroscopy can reliably determine energy levels of organic material interfaces. ► Care must be taken to avoid even subtle sample damage. -- Abstract: The alignment of energy levels at interfaces in organic photovoltaic devices is crucial for their energy conversion efficiency. Photoelectron spectroscopy (PES) is a well-established and widely used technique for determining the electronic structure of materials; at the same time PES measurements of conjugated organic materials often pose significant challenges, such as obtaining sufficiently defined sample structures and radiation-induced damage of the organic layers. Here we report how these challenges can be tackled to unravel the energy levels at interfaces in organic photovoltaic devices, i.e., electrode/organic and organic/organic interfaces. The electronic structure across entire photovoltaic multilayer devices can thus be reconciled. Finally, general considerations for correlating the electronic structure and the photovoltaic performance of devices will be discussed

  11. Experimental electron binding energies for thulium in different matrices

    Czech Academy of Sciences Publication Activity Database

    Inoyatov, A. K.; Kovalík, Alojz; Filosofov, D. V.; Ryšavý, Miloš; Perevoshchikov, L. L.; Yushkevich, Yu. V.; Zbořil, M.

    2015-01-01

    Roč. 202, JUL (2015), s. 46-55 ISSN 0368-2048 R&D Projects: GA MŠk LG14004; GA ČR(CZ) GAP203/12/1896 Institutional support: RVO:61389005 Keywords : Tm-169 * (169)yb * atomic environment * electron binding energy * chemical shift * natural atomic level width Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.561, year: 2015

  12. Energy Levels of Hydrogen and Deuterium

    Science.gov (United States)

    SRD 142 NIST Energy Levels of Hydrogen and Deuterium (Web, free access)   This database provides theoretical values of energy levels of hydrogen and deuterium for principle quantum numbers n = 1 to 200 and all allowed orbital angular momenta l and total angular momenta j. The values are based on current knowledge of the revelant theoretical contributions including relativistic, quantum electrodynamic, recoil, and nuclear size effects.

  13. Electronic properties of Mn-phthalocyanine–C60 bulk heterojunctions: Combining photoemission and electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Roth, Friedrich; Herzig, Melanie; Knupfer, Martin; Lupulescu, Cosmin; Darlatt, Erik; Gottwald, Alexander; Eberhardt, Wolfgang

    2015-01-01

    The electronic properties of co-evaporated mixtures (blends) of manganese phthalocyanine and the fullerene C 60 (MnPc:C 60 ) have been studied as a function of the concentration of the two constituents using two supplementary electron spectroscopic methods, photoemission spectroscopy (PES) and electron energy-loss spectroscopy (EELS) in transmission. Our PES measurements provide a detailed picture of the electronic structure measured with different excitation energies as well as different mixing ratios between MnPc and C 60 . Besides a relative energy shift, the occupied electronic states of the two materials remain essentially unchanged. The observed energy level alignment is different compared to that of the related CuPc:C 60 bulk heterojunction. Moreover, the results from our EELS investigations show that, despite the rather small interface interaction, the MnPc related electronic excitation spectrum changes significantly by admixing C 60 to MnPc thin films

  14. Electronic circuit provides automatic level control for liquid nitrogen traps

    Science.gov (United States)

    Turvy, R. R.

    1968-01-01

    Electronic circuit, based on the principle of increased thermistor resistance corresponding to decreases in temperature provides an automatic level control for liquid nitrogen cold traps. The electronically controlled apparatus is practically service-free, requiring only occasional reliability checks.

  15. Sanitation methods using high energy electron beams

    International Nuclear Information System (INIS)

    Levaillant, C.; Gallien, C.L.

    1979-01-01

    Short recycling of waste water and the use of liquid or dehydrated sludge as natural manure for agriculture or animal supplement feed is of great economical and ecological interest. It implies strong biological and chemical disinfection. Ionizing radiations produced by radioactive elements or linear accelerators can be used as a complement of conventional methods in the treatment of liquid and solid waste. An experiment conducted with high-energy electron-beam linear accelerators is presented. Degradation of undesirable metabolites in water occurs for a dose of 50 kRad. Undesirable seeds present in sludge are destroyed with a 200 kRad dose. A 300 kRad dose is sufficient for parasitic and bacterial disinfection (DL 90). Destruction of polio virus (DL 90) is obtained for 400 kRad. Higher doses (1000 to 2000 kRad) produce mineralization of toxic organic mercury, reduce some chemical toxic pollutants present in sludge and improve flocculation. (author)

  16. Benchmarking NaI(Tl) Electron Energy Resolution Measurements

    International Nuclear Information System (INIS)

    Mengesha, Wondwosen; Valentine, J D.

    2002-01-01

    A technique for validating electron energy resolution results measured using the modified Compton coincidence technique (MCCT) has been developed. This technique relies on comparing measured gamma-ray energy resolution with calculated values that were determined using the measured electron energy resolution results. These gamma-ray energy resolution calculations were based on Monte Carlo photon transport simulations, the measured NaI(Tl) electron response, a simplified cascade sequence, and the measured electron energy resolution results. To demonstrate this technique, MCCT-measured NaI(Tl) electron energy resolution results were used along with measured gamma-ray energy resolution results from the same NaI(Tl) crystal. Agreement to within 5% was observed for all energies considered between the calculated and measured gamma-ray energy resolution results for the NaI(Tl) crystal characterized. The calculated gamma-ray energy resolution results were also compared with previously published gamma-ray energy resolution measurements with good agreement (<10%). In addition to describing the validation technique that was developed in this study and the results, a brief review of the electron energy resolution measurements made using the MCCT is provided. Based on the results of this study, it is believed that the MCCT-measured electron energy resolution results are reliable. Thus, the MCCT and this validation technique can be used in the future to characterize the electron energy resolution of other scintillators and to determine NaI(Tl) intrinsic energy resolution

  17. The levels of the first excited configuration of one-electron ions in intensive alternating field

    International Nuclear Information System (INIS)

    Klimchitskaya, G.L.

    1984-01-01

    The relativistic generalization of the quasi-energy method is applied for the calculation of the influence of spatjally-homogeneous electric field with the periodic time dependence on the energy levels of the first excited configuration of one-electron multiply charged ions. The dependence is found of the corresponding quasi-energy levels on the amplitude and frequency of intensive external field which wholly mixes the levels of fine structure

  18. Idempotent Dirac density matrix for ten-electron central field inhomogeneous electron liquids in terms of electron- and kinetic energy-densities

    International Nuclear Information System (INIS)

    March, N.H.

    2006-08-01

    A differential equation for the Dirac density matrix γ(r, r'), given ground-state electron- and kinetic energy-densities, has been derived by March and Suhai for one- and two-level occupancy. For ten-electron spin-compensated spherical systems, it is shown here that γ ≡ γ[ρ, t g ] where ρ and t g are electron- and kinetic energy-densities. The philosophy of March and Suhai is confirmed beyond two-level filling. An important byproduct of the present approach is an explicit expression for the one-body potential of DFT in terms of the p-shell electron density. (author)

  19. Surface characterization by energy distribution measurements of secondary electrons and of ion-induced electrons

    International Nuclear Information System (INIS)

    Bauer, H.E.; Seiler, H.

    1988-01-01

    Instruments for surface microanalysis (e.g. scanning electron or ion microprobes, emission electron or ion microscopes) use the current of emitted secondary electrons or of emitted ion-induced electrons for imaging of the analysed surface. These currents, integrating over all energies of the emitted low energy electrons, are however, not well suited to surface analytical purposes. On the contrary, the energy distribution of these electrons is extremely surface-sensitive with respect to shape, size, width, most probable energy, and cut-off energy. The energy distribution measurements were performed with a cylindrical mirror analyser and converted into N(E), if necessary. Presented are energy spectra of electrons released by electrons and argon ions of some contaminated and sputter cleaned metals, the change of the secondary electron energy distribution from oxidized aluminium to clean aluminium, and the change of the cut-off energy due to work function change of oxidized aluminium, and of a silver layer on a platinum sample. The energy distribution of the secondary electrons often shows detailed structures, probably due to low-energy Auger electrons, and is broader than the energy distribution of ion-induced electrons of the same object point. (author)

  20. Revised energy levels of singly ionized lanthanum

    Science.gov (United States)

    Güzelçimen, Feyza; Tonka, Mehdi; Uddin, Zaheer; Bhatti, Naveed Anjum; Windholz, Laurentius; Kröger, Sophie; Başar, Gönül

    2018-05-01

    Based on the experimental wavenumbers of 344 spectral lines from calibrated Fourier transform (FT) spectra as well as wavenumbers of 81 lines from the wavelength tables from literature, the energy of 115 fine structure levels of singly ionized lanthanum has been revised by weighted global fits. The classifications of the lines are provided by numerous previous investigations of lanthanum by different spectroscopic methods and authors. For the high accurate determination of the center of gravity wavenumbers from the experimental spectrum, the hyperfine constants of the involved levels have been taken into account, if possible. For the 94 levels with known hyperfine constants the accuracy of energy values is better than 0.01 cm-1. For 34 levels the magnetic dipole hyperfine constants A have been determined from FT spectra as part of this work. For four of these 34 levels even electric quadrupole hyperfine constants B could be estimated. For levels, which have experimentally unknown hyperfine constants and which are connected only by lines not found in the FT spectra but taken from literature, the uncertainties of energy values are about a factor of 10 higher. A list of all revised level energies together with a compilation of hyperfine structure data is given as well as a list of all lines used.

  1. The interaction of low-energy electrons with fructose molecules

    Science.gov (United States)

    Chernyshova, I. V.; Kontrosh, E. E.; Markush, P. P.; Shpenik, O. B.

    2017-11-01

    Using a hypocycloidal electronic spectrometer, the interactions of low energy electrons (0-8.50 eV) with fructose molecules, namely, electron scattering and dissociative attachment, are studied. The results of these studies showed that the fragmentation of fructose molecules occurs effectively even at an electron energy close to zero. In the total electron-scattering cross section by molecules, resonance features (at energies 3.10 and 5.00 eV) were first observed near the formation thresholds of light ion fragments OH- and H-. The correlation of the features observed in the cross sections of electron scattering and dissociative attachment is analyzed.

  2. Equation satisfied by electron-electron mutual Coulomb repulsion energy density functional

    OpenAIRE

    Joubert, Daniel P.

    2011-01-01

    The electron-electron mutual Coulomb repulsion energy density functional satisfies an equation that links functionals and functional derivatives at N-electron and (N-1)-electron densities for densities determined from the same adiabatic scaled external potential for the N-electron system.

  3. Development of a secondary electron energy analyzer for a transmission electron microscope.

    Science.gov (United States)

    Magara, Hideyuki; Tomita, Takeshi; Kondo, Yukihito; Sato, Takafumi; Akase, Zentaro; Shindo, Daisuke

    2018-04-01

    A secondary electron (SE) energy analyzer was developed for a transmission electron microscope. The analyzer comprises a microchannel plate (MCP) for detecting electrons, a coil for collecting SEs emitted from the specimen, a tube for reducing the number of backscattered electrons incident on the MCP, and a retarding mesh for selecting the energy of SEs incident on the MCP. The detection of the SEs associated with charging phenomena around a charged specimen was attempted by performing electron holography and SE spectroscopy using the energy analyzer. The results suggest that it is possible to obtain the energy spectra of SEs using the analyzer and the charging states of a specimen by electron holography simultaneously.

  4. Study and realization of an electron gun at low energy

    International Nuclear Information System (INIS)

    Camus, P.

    1977-01-01

    This work presents the theoretical concepts and experimental design of an electron gun. This gun is working in the weak energy range and the focus position is independant of electron energy measurements and analysis methods of the electron beam are described [fr

  5. Modified electron acoustic field and energy applied to observation data

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahed, H. G., E-mail: hgomaa-eg@yahoo.com, E-mail: hgomaa-eg@mans.edu.eg [College of Science and Humanitarian Studies, Physics Department, Prince Sattam Bin Abdul Aziz University, Alkharj 11942 (Saudi Arabia); Theoretical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); El-Shewy, E. K. [Theoretical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)

    2016-08-15

    Improved electrostatic acoustic field and energy have been debated in vortex trapped hot electrons and fluid of cold electrons with pressure term plasmas. The perturbed higher-order modified-Korteweg-de Vries equation (PhomKdV) has been worked out. The effect of trapping and electron temperatures on the electro-field and energy properties in auroral plasmas has been inspected.

  6. Photon and electron collimator effects on electron output and abutting segments in energy modulated electron therapy

    International Nuclear Information System (INIS)

    Olofsson, Lennart; Karlsson, Magnus G.; Karlsson, Mikael

    2005-01-01

    In energy modulated electron therapy a large fraction of the segments will be arranged as abutting segments where inhomogeneities in segment matching regions must be kept as small as possible. Furthermore, the output variation between different segments should be minimized and must in all cases be well predicted. For electron therapy with add-on collimators, both the electron MLC (eMLC) and the photon MLC (xMLC) contribute to these effects when an xMLC tracking technique is utilized to reduce the x-ray induced leakage. Two add-on electron collimator geometries have been analyzed using Monte Carlo simulations: One isocentric eMLC geometry with an isocentric clearance of 35 cm and air or helium in the treatment head, and one conventional proximity geometry with a clearance of 5 cm and air in the treatment head. The electron fluence output for 22.5 MeV electrons is not significantly affected by the xMLC if the shielding margins are larger than 2-3 cm. For small field sizes and 9.6 MeV electrons, the isocentric design with helium in the treatment head or shielding margins larger than 3 cm is needed to avoid a reduced electron output. Dose inhomogeneity in the matching region of electron segments is, in general, small when collimator positions are adjusted to account for divergence in the field. The effect of xMLC tracking on the electron output can be made negligible while still obtaining a substantially reduced x-ray leakage contribution. Collimator scattering effects do not interfere significantly when abutting beam techniques are properly applied

  7. New energy levels of praseodymium with large angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shamim; Siddiqui, Imran; Gamper, Bettina; Syed, Tanweer Iqbal; Guthoehrlein, Guenter H.; Windholz, Laurentius [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria)

    2011-07-01

    The electronic ground state configuration of praseodymium {sup 59}Pr{sub 141} is [Xe] 4f{sup 3}6s{sup 2}, with ground state level {sup 4}I{sub 9/2}. Our research is mainly devoted to find previously unknown energy levels by the investigation of spectral lines and their hyperfine structures. In a hollow cathode discharge lamp praseodymium atoms and ions in ground and excited states are excited to high lying states by laser light. The excitation source is a tunable ring-dye laser system, operated with R6G, Kiton Red, DCM and LD700. A high resolution Fourier transform spectrum is used for selecting promising excitation wavelengths. Then the laser wavelength is tuned to a strong hyperfine component of the spectral line to be investigated, and a search for fluorescence from excited levels is performed. From the observed hyperfine structure we determine J-values and hyperfine constants A of the combining levels. This information, together with excitation and fluorescence wavelengths, allows us to find the energies of involved new levels. Up to now we have discovered large number of previously unknown energy levels with various angular momentum values. We present here the data (energies, parities, angular momenta J, magnetic hyperfine constants A) of ca. 40 new, until now unknown energy levels with high angular momentum values: 15/2, 17/2, 19/2, 21/2.

  8. Piezoelectric energy harvesting for powering low power electronics

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, M.; Palosaari, J.; Hannu, J.; Juuti, J.; Jantunen, H. (Univ. of Oulu, Dept. of Electrical and Information Engineering (Finland)). email: jajuu@ee.oulu.fi

    2009-07-01

    Although wireless data transmission techniques are commonly used in electronic devices, they still suffer from wires for the power supply or from batteries which require charging, replacement and other maintenance. The vision for the portable electronics and industrial measurement systems of the future is that they are intelligent and independent on their energy supply. The major obstacle in this path is the energy source which enables all other functions and 'smartness' of the systems as the computing power is also restricted by the available energy. The development of long-life energy harvesters would reduce the need for batteries and wires thus enabling cost-effective and environment friendlier solutions for various applications such as autonomous wireless sensor networks, powering of portable electronics and other maintenance-free systems. One of the most promising techniques is mechanical energy harvesting e.g. by piezoelectric components where deformations produced by different means is directly converted to electrical charge via direct piezoelectric effect. Subsequently the electrical energy can be regulated or stored for further use. The total mechanical energy in vibration of machines can be very large and usually only a fraction of it can be transformed to electrical energy. Recently, piezoelectric vibration based energy harvesters have been developed widely for different energy consumption and application areas. As an example for low energy device an piezoelectric energy harvester based on impulse type excitations has been developed for active RFID identification. Moreover, piezoharvester with externally leveraged mechanism for force amplification was reported to be able to generate mean power of 0.4 mW from backpack movement. Significantly higher power levels are expected from larger scale testing in Israel, where piezoelectric material is embedded under active walking street, road, airport or railroad. The energy is harvested from human or

  9. Energy levels, lifetimes and radiative data of W LV

    Science.gov (United States)

    Ding, Xiao-bin; Sun, Rui; Koike, Fumihiro; Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A.; Nakamura, Nobuyuki; Dong, Chen-zhong

    2018-01-01

    Calculations of energy levels, radiative data and lifetimes are reported for tungsten Ca-like ion (W LV) by using multi-configuration Dirac-Fock (MCDF) method. The GRASP2K package is adopted to carry out a large-scale systematic computation with a restricted active space treatment; the Breit interaction and QED effects are included in subsequent relativistic configuration interaction calculations. The energies and lifetimes of the lowest 119 levels are listed; the main leading configuration of the levels is of the ground state configuration [Ne]3s23p63d2 and the first excited configuration [Ne]3s23p53d3. The wavelengths, radiative rates and oscillator strengths for relatively strong E1, E2, M1, and M2 transitions are listed. Comparisons with earlier experimental and theoretical values are made. The average relative deviations of energy levels from the NIST results and E1 transition wavelengths from the EBIT experimental results have turned to be only 0.20% and 0.13%, respectively. The other present results are in reasonable agreement with available data. These agreements confirm the reliability and accuracy of the current results. The present datasets may help us with the investigation of the electron-electron correlation effects in complex multi-electron highly charged heavy ions and of the diagnosis of tungsten impurity plasmas in fusion science.

  10. Electronic energy distribution function at high electron swarm energies in neon

    International Nuclear Information System (INIS)

    Brown, K.L.; Fletcher, J.

    1995-01-01

    Electron swarms moving through a gas under the influence of an applied electric field have been extensively investigated. Swarms at high energies, as measured by the ratio of the applied field to the gas number density, E/N, which are predominant in many applications have, in general, been neglected. Discharges at E/N in the range 300 0 < 133 Pa using a differentially pumped vacuum system in which the swarm electrons are extracted from the discharge and energy analysed in both a parallel plate retarded potential analyser and a cylindrical electrostatic analyser. Both pre-breakdown and post-breakdown discharges have been studied. Initial results indicate that as the discharge traverses breakdown no sudden change in the nature of the discharge occurs and that the discharge can be described by both a Monte Carlo simulation and by a Boltzmann treatment given by Phelps et al. (1987). 18 refs., 8 figs

  11. Electronic configurations and energies in some thermodynamically correlated laves compounds

    International Nuclear Information System (INIS)

    Campbell, G.M.

    1979-04-01

    The known electronic configurations of simple elements in Laves compounds are correlated with those of the more complex systems to determine their electronic configurations and gaseous state promotion energies

  12. Impurity energy level in the Haldane gap

    International Nuclear Information System (INIS)

    Wang Wei; Lu Yu

    1995-11-01

    An impurity bond J' in a periodic 1D antiferromagnetic spin 1 chain with exchange J is considered. Using the numerical density matrix renormalization group method, we find an impurity energy level in the Haldane gap, corresponding to a bound state near the impurity bond. When J' J. The impurity level appears only when the deviation dev = (J'- J)/J' is greater than B c , which is close to 0.3 in our calculation. (author). 15 refs, 4 figs

  13. On expectation values for nuclear energy levels

    International Nuclear Information System (INIS)

    De Wet, J.A.

    1978-01-01

    The nuclear model is built up by constructing measured states, including the ground state, from the vacuum state. All states are, however, not accessible from the ground state so that selection rules may be found which at the same time impose even more stringent conditions on the labelling of energy levels. These are the subject of this paper

  14. Formation of a superhigh energy electron spectrum in the Galaxy

    International Nuclear Information System (INIS)

    Agaronyan, F.A.; Ambartsumyan, A.S.

    1985-01-01

    The formation of superhigh energy electron spectrum in the disk of the galaxy and halo is considered. A different behaviour of the electron spectrum within the framework of capture models in disk or halo, in the energy region E> or approximately 10 5 GeV is revealed due to the account of relativistic corrections ir the energy losses of electrons during the inverse Compton scattering. A comparison with the existing experimental data is carried out

  15. Spectrum and energy levels of Y VI

    International Nuclear Information System (INIS)

    Persson, W.; Reader, J.

    1986-01-01

    The spectrum of the five-times-ionized yttrium atom (Y VI), excited in a sliding-spark discharge, was studied in the 160--2500 A-circle range. About 900 Y VI lines were classified as transitions between 101 odd and 69 even energy levels.The energy-level system established includes almost all levels of the 4s 2 4p 4 , 4s4p 5 , 4s 2 4p 3 4d, 5d, 5s, 6s, and 5p configurations and a number of levels of the 7s, 4f, and 4s4p 4 4d configurations. The observed level system has been theoretically interpreted by means of Hartree--Fock calculations and least-squares parametric fits. Strong configuration mixings are found between the 4s4p 5 and 4s 2 4p 3 4d configurations, between the 4s 2 4p 3 5p and 4s4p 4 4d configurations, and between the 4s 2 4p 3 4f and 4s4p 4 4d configurations. From the optimized energy-level values, a system of Ritz-type wavelength standards with accuracies varying from 0.0003 to 0.003 A-circle in the range 179--500 A-circle has been determined. The ionization energy as determined from 4s 2 4p 3 ns levels (n = 5-7) is 737 110 +- 200 cm/sup -1/ (91.390 +- 0.025 eV)

  16. Spectroscopic analysis of electron trapping levels in pentacene field-effect transistors

    International Nuclear Information System (INIS)

    Bum Park, Chang

    2014-01-01

    Electron trapping phenomena have been investigated with respect to the energy levels of localized trap states and bias-induced device instability effects in pentacene field-effect transistors. The mechanism of the photoinduced threshold voltage shift (ΔV T ) is presented by providing a ΔV T model governed by the electron trapping. The trap-and-release behaviour functionalized by photo-irradiation also shows that the trap state for electrons is associated with the energy levels in different positions in the forbidden gap of pentacene. Spectroscopic analysis identifies two kinds of electron trap states distributed above and below the energy of 2.5 eV in the band gap of the pentacene crystal. The study of photocurrent spectra shows the specific trap levels of electrons in energy space that play a substantial role in causing device instability. The shallow and deep trapping states are distributed at two centroidal energy levels of ∼1.8 and ∼2.67 eV in the pentacene band gap. Moreover, we present a systematic energy profile of electron trap states in the pentacene crystal for the first time. (paper)

  17. Electron polarimetry at low energies in Hall C at JLab

    International Nuclear Information System (INIS)

    Gaskell, D.

    2013-01-01

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered

  18. Resolving runaway electron distributions in space, time, and energy

    Science.gov (United States)

    Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.

    2018-05-01

    Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.

  19. Effect of temperature-dependent energy-level shifts on a semiconductor's Peltier heat

    International Nuclear Information System (INIS)

    Emin, D.

    1984-01-01

    The Peltier heat of a charge carrier in a semiconductor is calculated for the situation in which the electronic energy levels are temperature dependent. The temperature dependences of the electronic energy levels, generally observed optically, arise from their dependences on the vibrational energy of the lattice (e.g., as caused by thermal expansion). It has been suggested that these temperature dependences will typically have a major effect on the Peltier heat. The Peltier heat associated with a given energy level is a thermodynamic quantity; it is the product of the temperature and the change of the entropy of the system when a carrier is added in that level. As such, the energy levels cannot be treated as explicitly temperature dependent. The electron-lattice interaction causing the temperature dependence must be expressly considered. It is found that the carrier's interaction with the atomic vibrations lowers its electronic energy. However, the interaction of the carrier with the atomic vibrations also causes an infinitesimal lowering (approx.1/N) of each of the N vibrational frequencies. As a result, there is a finite carrier-induced increase in the average vibrational energy. Above the Debye temperature, this cancels the lowering of the carrier's electronic energy. Thus, the standard Peltier-heat formula, whose derivation generally ignores the temperature dependence of the electronic energy levels, is regained. This explains the apparent success of the standard formula in numerous analyses of electronic transport experiments

  20. Power electronic converter systems for direct drive renewable energy applications

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic conversion systems for wind and marine energy generation applications, in particular, direct drive generator energy conversion systems. Various topologies are presented and system design optimization and reliability are briefly discussed....

  1. Enhanced energy deposition symmetry by hot electron transport

    International Nuclear Information System (INIS)

    Wilson, D.; Mack, J.; Stover, E.; VanHulsteyn, D.; McCall, G.; Hauer, A.

    1981-01-01

    High energy electrons produced by resonance absorption carry the CO 2 laser energy absorbed in a laser fusion pellet. The symmetrization that can be achieved by lateral transport of the hot electrons as they deposit their energy is discussed. A K/sub α/ experiment shows a surprising symmetrization of energy deposition achieved by adding a thin layer of plastic to a copper sphere. Efforts to numerically model this effect are described

  2. Influence of host matrices on krypton electron binding energies and KLL Auger transition energies

    Czech Academy of Sciences Publication Activity Database

    Inoyatov, A. K.; Perevoshchikov, L. L.; Kovalík, Alojz; Filosofov, D. V.; Yushkevich, Yu. V.; Ryšavý, Miloš; Lee, B. Q.; Kibédi, T.; Stuchbery, A. E.; Zhdanov, V. S.

    2014-01-01

    Roč. 197, DEC (2014), s. 64-71 ISSN 0368-2048 R&D Projects: GA ČR(CZ) GAP203/12/1896; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : Kr-83 * Rb-83 * Sr-83 * electron binding energy * KLL transitions * natural atomic level width * multiconfiguration Dirac-Fock calculations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.436, year: 2014

  3. Two-electron excitation to Rydberg levels in fast I6+ on hydrogen collisions

    International Nuclear Information System (INIS)

    Liao, C.; Hagmann, S.; Zouros, T.J.M.; Montenegro, E.C.; Toth, G.; Richard, P.; Grabbe, S.; Bhalla, C.P.

    1995-01-01

    The emission of electrons in the forward direction in collisions of 0.3 MeV/u I 6+ with H 2 has been studied, and strong autoionization peaks are observed on the shoulder of the cusp peak. The energies of these autoionization lines in the projectile rest frame are determined by high-resolution electron spectroscopy. Using the electron projectile final charge state coincidence technique, we probe different collision mechanisms, which create continuum electrons that are slow in the projectile rest frame. We conclude that the observed autoionization lines are due to two electron excitation to projectile Rydberg levels. (orig.)

  4. Electron emission from materials at low excitation energies

    International Nuclear Information System (INIS)

    Urma, N.; Kijek, M.; Millar, J.J.

    1996-01-01

    Full text: An experimental system has been designed and developed with the purpose of measuring the total electron emission yield from materials at low energy excitation. In the first instance the reliability of the system was checked by measuring the total electron emission yield for a well defined surface (aluminium 99.45%). The obtained data was in the expected range given by the literature, and consequently the system will be used further for measuring the total electron yield for a range of materials with interest in the instrumentation industry. We intend to measure the total electron emission yield under electron bombardment as a function of incident electron energy up to 1200 eV, angle of incidence, state of the surface and environment to which the surface has been exposed. Dependence of emission on total electron irradiated dose is also of interest. For many practical application of the 'Secondary Electron Emission', the total electron yield is desired to be as large as possible. The above phenomenon has practical applicability in electron multiplier tube and Scanning electron microscopy - when by means of the variation of the yield of the emitted electrons one may produce visible images of small sample areas. The electron multiplier tube, is a device which utilises the above effect to detect and amplify both single particles and low currents streams of charged particles. The majority of electron tubes use electrons with low energy, hundreds of eV. Not a lot has been published in the literature about this regime and also about the emission when the impinging electrons have small energy, up to 1 KeV. The information obtained from the experimental measurements concerning the total electron emission yield is used to asses the investigated materials as a potential electron emitting surfaces or dynodes in an electron multiplier tube

  5. Influence of high energy electrons on ECRH in LHD

    Directory of Open Access Journals (Sweden)

    Ogasawara S.

    2012-09-01

    Full Text Available The central bulk electron temperature of more than 20 keV is achieved in LHD as a result of increasing the injection power and the lowering the electron density near 2 × 1018 m−3. Such collision-less regime is important from the aspect of the neoclassical transport and also the potential structure formation. The presences of appreciable amount of high energy electrons are indicated from hard X-ray PHA, and the discrepancy between the stored energy and kinetic energy estimated from Thomson scattering. ECE spectrum are also sensitive to the presence of high energy electrons and discussed by solving the radiation transfer equation. The ECRH power absorption to the bulk and the high energy electrons are dramatically affected by the acceleration and the confinement of high energy electrons. The heating mechanisms and the acceleration process of high energy electrons are discussed by comparing the experimental results and the ray tracing calculation under assumed various density and mean energy of high energy electrons.

  6. ELEC-2005: Electronics in High Energy Physics

    CERN Multimedia

    Monique Duval

    2004-01-01

    ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers in the format of the successful ELEC-2002 course series, and within the framework of the 2005 Technical Training Programme. This comprehensive course series is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2005 will composed of four Terms throughout the year: Winter Term: Introduction to electronics in HEP (January-February, 6 lectures) Spring Term: Integrated circuits and VLSI technology for physics (March, 6 lectures) Summer Term: System electronics for physics: Issues (May, 7 lectures) Winter Term: Electronics applications in HEP experiments (November-December, 10 lectures) Lectures within each Term will take place on Tuesdays and Thursdays, from 10:00 to 12:30. The...

  7. On Low Energy Levels in 185W

    International Nuclear Information System (INIS)

    Malmskog, S.G.; Hoejeberg, M.; Berg, V.

    1969-02-01

    Gamma ray spectra in the decay of 185 Ta and 185m W have been studied with Ge (Li) detectors. The 185m W isomeric transition at 131.6 keV is shown to be of E3 multipolarity. A level scheme of 185 W is proposed with the following energy levels (energies in keV, spin and K quantum numbers in brackets): 0 (3/2 - 3/2), 23.5 (1/2 - 1/2), 65.9 (5/2 - 3/2), 93.5 (3/2 - 1/2) (uncertain), 173.9 (7/2 - 3/2), 188.1 (5/2 - 1/2), 197.5 (11/2 + 11/2) , 243.5 (7/2 - 7/2), and 390.8 (9/2 - 7/2)

  8. Comparison of energy performance requirements levels

    DEFF Research Database (Denmark)

    Spiekman, Marleen; Thomsen, Kirsten Engelund; Rose, Jørgen

    This summary report provides a synthesis of the work within the EU SAVE project ASIEPI on developing a method to compare the energy performance (EP) requirement levels among the countries of Europe. Comparing EP requirement levels constitutes a major challenge. From the comparison of for instance...... the present Dutch requirement level (EPC) of 0,8 with the present Flemish level of E80, it can easily be seen that direct comparison is not possible. The conclusions and recommendations of the study are presented in part A. These constitute the most important result of the project. Part B gives an overview...... of all other project material related to that topic, which allows to easily identify the most pertinent information. Part C lists the project partners and sponsors....

  9. Shape resonances in low-energy-electron collisions with halopyrimidines

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Alessandra Souza; Bettega, Márcio H. F., E-mail: bettega@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-990 Curitiba, Paraná (Brazil)

    2013-12-07

    We report calculated cross sections for elastic collisions of low-energy electrons with halopyrimidines, namely, 2-chloro, 2-bromo, and 5-bromopyrimidine. We employed the Schwinger multichannel method with pseudopotentials to compute the cross sections in the static-exchange and static-exchange plus polarization levels of approximation for energies up to 10 eV. We found four shape resonances for each molecule: three of π* nature localized on the ring and one of σ* nature localized along the carbon–halogen bond. We compared the calculated positions of the resonances with the electron transmission spectroscopy data measured by Modelli et al. [J. Phys. Chem. A 115, 10775 (2011)]. In general the agreement between theory and experiment is good. In particular, our results show the existence of a π* temporary anion state of A{sub 2} symmetry for all three halopyrimidines, in agreement with the dissociative electron attachment spectra also reported by Modelli et al. [J. Phys. Chem. A 115, 10775 (2011)].

  10. Evaluations of the electron energy distribution in multidipole plasmas

    International Nuclear Information System (INIS)

    Taylor, G.R.; Kessel, M.A.; Sealock, J.W.

    1980-01-01

    In a previous paper a preliminary evaluation of the electron energy distribution in multidipole plasmas was presented. A polynominal regression technique for evaluating the distribution function from Langmuir probe current-voltage characteristics was described. This paper presents an extension of that analysis and the evaluations of the electron energy distributions in multidipole argon and hydrogen plasmas

  11. The source of multi spectral energy of solar energetic electron

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani [Astronomy Division and Bosscha Observatory, Faculty Mathematics and Natural Sciences, Intitute Technology of Bandung, Ganesha 10, Bandung, Indonesia 40132 dhani@as.itb.ac.id (Indonesia)

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  12. Scattering of polarized low-energy electrons by ferromagnetic metals

    International Nuclear Information System (INIS)

    Helman, J.S.

    1981-01-01

    A source of spin polarized electrons with remarkable characteristics based on negative electron affinity (NEA) GaAs has recently been developed. It constitutes a unique tool to investigate spin dependent interactions in electron scattering processes. The characteristics and working principles of the source are briefly described. Some theoretical aspects of the scattering of polarized low-energy electrons by ferromagnetic metals are discussed. Finally, the results of the first polarized low-energy electron diffraction experiment using the NEA GaAs source are reviewed; they give information about the surface magnetization of ferromagnetic Ni (110). (Author) [pt

  13. Deconvolution of overlapping features in electron energy-loss spectra: the determination of absolute differential cross sections for electron-impact excitation of electronic states of molecules

    International Nuclear Information System (INIS)

    Campbell, L.; Brunger, M.J.; Teubner, O.J.P.; Mojarrabi, B.

    1996-06-01

    A set of three computer programs is reported which allow for the deconvolution of overlapping molecular electronic state structure in electron energy-loss spectra, even in highly perturbed systems. This procedure enables extraction of absolute differential cross sections for electron-impact excitation of electronic states of diatomic molecules from electron energy-loss spectra. The first code in the sequence uses the Rydberg-Klein-Rees procedure to generate potential energy curves from spectroscopic constants, while the second calculates Franck-Condon factors by numerical solution of the Schroedinger equation, given the potential energy curves. The third, given these Franck-Condon factors, the previously calculated relevant energies for the vibrational levels of the respective electronic states and the experimental energy-loss spectra, extracts the differential cross sections for each state. Each program can be run independently, or the three can run in sequence to determine these cross sections from the spectroscopic constants and the experimental energy-loss spectra. The application of these programs to the specific case of electron scattering from nitric oxide (NO) is demonstrated. 25 refs., 2 tabs., 2 figs

  14. Electron energy distribution from intense electron beams in the upper mesosphere and lower thermosphere

    International Nuclear Information System (INIS)

    Martinez-Sanchez, M.; Cheng, Wai; Dvore, D.; Zahniser, M.S.

    1992-01-01

    A model was developed to calculate the electron energy spectrum created by an electron beam in the upper atmosphere. A significant feature of the model is the inclusion of the effects of electron-electron collisions which are important at high beam intensity when the ratio of the electron to ambient gas density is high. Comparing the calculated results for a 2.6-kV, 20-A beam at 110-km altitude from models with and without the electron-electron collision term, the electron-electron collisions have the effect of smoothing out the electron spectrum in the low-energy region ( 2 and O 2 are filled in, resulting in an increase in the calculated production rate of these species compared with model calculations that neglect this effect

  15. Atomic column resolved electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Duscher, G.; Pennycook, S.J.; Browning, N.D.

    1998-01-01

    Spatially resolved electron energy-loss spectroscopy (EELS) is rapidly developing into a unique and powerful tool to characterize internal interfaces. Because atomic column resolved Z-contrast imaging can be performed simultaneously with EELS in the scanning transmission electron microscope, this combination allows the atomic structure to be correlated with the electronic structure, and thus the local properties of interfaces or defects can be determined directly. However, the ability to characterize interfaces and defects at that level requires not only high spatial resolution but also the exact knowledge of the beam location, from where the spectrum is obtained. Here we discuss several examples progressing from cases where the limitation in spatial resolution is given by the microscopes or the nature of the sample, to one example of impurity atoms at a grain boundary, which show intensity and fine structure changes from atomic column to atomic column. Such data can be interpreted as changes in valence of the impurity, depending on its exact site in the boundary plane. Analysis ofthis nature is a valuable first step in understanding the microscopic structural, optical and electronic properties of materials. (orig.)

  16. Low-energy positron and electron scattering from nitrogen dioxide

    International Nuclear Information System (INIS)

    Chiari, Luca; Brunger, M J; Zecca, Antonio; García, Gustavo; Blanco, Francisco

    2013-01-01

    Total cross section (TCS) measurements for positron scattering from nitrogen dioxide (NO 2 ) are presented in the energy range 0.2–40 eV. The TCS, the elastic integral and differential cross sections, and the integral cross section accounting of all the inelastic processes (including positronium formation) have also been computed using the independent atom model with screening corrected additivity rule (IAM-SCAR) for incident energies from 1 to 1000 eV. A qualitative level of agreement is found between the present TCS experiment and theory at the common energies. As no previous measurements or calculations for positron–NO 2  scattering exist in the literature, we also computed the TCS for electron collisions with NO 2  employing the IAM-SCAR method. A comparison of those results to the present positron cross sections and the earlier electron-impact data and calculations is provided. To investigate the role that chemical substitution plays in positron scattering phenomena, we also compare the present positron–NO 2  data with the TCSs measured at the University of Trento for positron scattering from N 2 O and CO 2 . (paper)

  17. Low-energy electron microdosimetry of CS-137

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.

    1980-09-01

    The mass of tissue irradiated by an internal emitter depends upon the distribution of the radionuclide within the organism and the type of radiation emitted. The range (95% absorption) of low-energy electron effectively defines the sensitive volume in which the energy of the emitted electron is deposited. Accordingly, in the case of Auger electron microdosimetry of internal emitters the correct definition of the sensitive volume is of paramount importance. The amount of energy delivered by the monoenergetic electrons emitted by the decay system 137 Cs → sup(137m)Ba to spherical volumes of water-like tissue media of radii equivalent to the estimated ranges of those electrons in water is calculated and discussed as far as the variations of the estimated ranges of electrons as a function of the initial energy of emission are concerned. Although there are still many uncertainties on the actual ranges of low-energy electrons, one can state confidently that the ranges of the Auger electrons of the decay system 137 Cs → 137 sup(m) Ba → 137 Ba can be considered to be in the same order of magnitude of the diameter of a cell. The energy deposition in spherical volumes of water-like tissue media, considered equivalent to the sensitive volumes for the Auger electrons of the decay system 137 Cs → 137 sub(m) Ba → 137 Ba, range for several orders of magnitude from 10 2 to about 10 10 times higher than the energy deposition in similar media by the internal conversion electrons of this decay system. If equivalent variations of energy deposition per unit mass occur when the masses considered are cellular, and subcellular structures, then the effects into the sensitive volume should be taken into biological consideration as far as the microdosimetry of low-energy electrons (approximately equal to 10 keV) is considered, whenever there is internal localization of Auger emitters. (Author) [pt

  18. Electron energy-loss spectra in molecular fluorine

    Science.gov (United States)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  19. Trends in Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2010-01-01

    term) based energy sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which...... by means of power electronics are changing the future electrical infrastructure but also contributes steadily more to non-carbon based electricity production. Most focus is on the power electronics technologies used. In the case of photovoltaics transformer-less systems are discussed as they have...

  20. Power Electronics Control of Wind Energy in Distributed Power System

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede

    2008-01-01

    is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most...... emerging renewable energy sources, wind energy, which by means of power electronics are changing from being a minor energy source to be acting as an important power source in the energy system. Power electronics is the enabling technology and the presentation will cover the development in wind turbine...... technology from kW to MW, discuss which power electronic solutions are most feasible and used today....

  1. Low energy electron transport in furfural

    OpenAIRE

    Lozano, Ana I.; Krupa, K.; Ferreira da Silva, F.; Limao-Vieira, Paulo; Blanco, Francisco; Muñoz, Antonio; Jones, D. B.; Brunger, M. J.; García, Gustavo

    2017-01-01

    We report on an initial investigation into the transport of electrons through a gas cell containing 1 mTorr of gaseous furfural. Results from our Monte Carlo simulation are implicitly checked against those from a corresponding electron transmission measurement. To enable this simulation a self-consistent cross section data base was constructed. This data base is benchmarked through new total cross section measurements which are also described here. In addition, again to facilitate the simulat...

  2. Performance of the electron energy-loss spectrometer

    International Nuclear Information System (INIS)

    Tanaka, H.; Huebner, R.H.

    1977-01-01

    Performance characteristics of the electron energy-loss spectrometer incorporating a new high-resolution hemispherical monochromator are reported. The apparatus achieved an energy-resolution of 25 meV in the elastic scattering mode, and angular distributions of elastically scattered electrons were in excellent agreement with previous workers. Preliminary energy-loss spectra for several atmospheric gases demonstrate the excellent versatility and stable operation of the improved system. 12 references

  3. Energy level diagrams for black hole orbits

    Science.gov (United States)

    Levin, Janna

    2009-12-01

    A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.

  4. Energy level diagrams for black hole orbits

    International Nuclear Information System (INIS)

    Levin, Janna

    2009-01-01

    A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.

  5. Electron detector

    International Nuclear Information System (INIS)

    Hashimoto, H.; Mogami, A.

    1975-01-01

    A device for measuring electron densities at a given energy level in an electron beam or the like having strong background noise, for example, in the detection of Auger electric energy spectrums is described. An electron analyzer passes electrons at the given energy level and at the same time electrons of at least one adjacent energy level. Detecting means associated therewith produce signals indicative of the densities of the electrons at each energy level and combine these signals to produce a signal indicative of the density of the electrons of the given energy level absent background noise

  6. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films. During the impact, the droplet kinetic energy is transferred into the form of mechanical stress forcing the piezoelectric structure to vibrate. Experimental results show energy of 0.3 μJ per droplet. The scenario of moderate falling drop intensity, i.e. 230 drops per second, yields a total energy of 400 μJ. © 2012 The Institution of Engineering and Technology.

  7. Electron excitation cross sections for some Ar I 5d (J = 2) levels

    International Nuclear Information System (INIS)

    Blanco, F.; Sanchez, J.A.; Campos, J.

    1992-01-01

    Absolute excitation cross sections by electron impact for some 5d levels with J = 2 of Ar I have been measured by the optical method. Excitation functions for electron energies in the range from the excitation threshold to 1000 eV are also reported. A delayed coincidence analysis of the de-excitation at 100 eV electron energy allowed for the subtraction of radiative cascades. The resulting excitation cross sections are between 7.3 and 12x10 -20 cm 2 . (author)

  8. Applications of Electronstatic Lenses to Electron Gun and Energy Analyzers

    International Nuclear Information System (INIS)

    Sise, O.

    2004-01-01

    Focal properties and geometries are given for several types of electrostatic lens systems commonly needed in electron impact studies. One type is an electron gun which focuses electrons over a wide range of energy onto a fixed point, such as target, and the other type is an analyzer system which focuses scattered electrons of variable energy onto a fixed position, such as the entrance plane of an analyzer. There are many different types and geometries of these lenses for controlling and focusing of the electron beams. In this presentation we discussed the criteria used for the design of the electrostatic lenses associated with the electron gun and energy analyzers and determined the fundamental relationships between the operation and behaviour of multi-element electrostatic lenses, containing five, six and seven elements. The focusing of the electron beam was achieved by applying suitable voltages to the series of these lens elements, Design of the lens system for electron gun was based on our requirements that the beam at the target had a small spot size and zero beam angle, that is, afocal mode. For energy analyzer systems we considered the entrance of the hemispherical analyzer which determines the energy of the electron beam and discussed the focusing condition of this lens systems

  9. Degradation of vitamin C by low-energy electrons

    Science.gov (United States)

    Abdoul-Carime, Hassan; Illenberger, Eugen

    2004-06-01

    We report on the degradation of gas phase vitamin C (ascorbic acid, AA) induced by low-energy electrons. In the energy range of (0-12) eV, different negatively charged fragments, attributed to the dehydro-ascorbic acid anion ((AA-H) -), OH -, O - and H -, are observed. The yield functions indicate that these ions are formed via dissociative electron attachment, DEA. While the formation of (AA-H) - is exclusively observed at sub-excitation energies (<1.5 eV), the other fragments arise from resonance features at higher energies. Possible implications of these observations for radiation damage and food treatment by high energy radiation are considered.

  10. CAMAC high energy physics electronics hardware

    International Nuclear Information System (INIS)

    Kolpakov, I.F.

    1977-01-01

    CAMAC hardware for high energy physics large spectrometers and control systems is reviewed as is the development of CAMAC modules at the High Energy Laboratory, JINR (Dubna). The total number of crates used at the Laboratory is 179. The number of CAMAC modules of 120 different types exceeds 1700. The principles of organization and the structure of developed CAMAC systems are described. (author)

  11. Nonequilibrium electron energy-loss kinetics in metal clusters

    CERN Document Server

    Guillon, C; Fatti, N D; Vallee, F

    2003-01-01

    Ultrafast energy exchanges of a non-Fermi electron gas with the lattice are investigated in silver clusters with sizes ranging from 4 to 26 nm using a femtosecond pump-probe technique. The results yield evidence for a cluster-size-dependent slowing down of the short-time energy losses of the electron gas when it is strongly athermal. A constant rate is eventually reached after a few hundred femtoseconds, consistent with the electron gas internal thermalization kinetics, this behaviour reflecting evolution from an individual to a collective electron-lattice type of coupling. The timescale of this transient regime is reduced in small nanoparticles, in agreement with speeding up of the electron-electron interactions with size reduction. The experimental results are in quantitative agreement with numerical simulations of the electron kinetics.

  12. Lamb shift of energy levels in quantum rings

    International Nuclear Information System (INIS)

    Kryuchkyan, G Yu; Kyriienko, O; Shelykh, I A

    2015-01-01

    We study the vacuum radiative corrections to energy levels of a confined electron in quantum rings. The calculations are provided for the Lamb shift of energy levels in a low-momentum region of virtual photons and for both one-dimensional and two-dimensional quantum rings. We show that contrary to the well known case of a hydrogen atom the value of the Lamb shift increases with the magnetic momentum quantum number m. We also investigate the dependence of the Lamb shift on magnetic flux piercing the ring and demonstrate a presence of magnetic-flux-dependent oscillations. For a one-dimensional ring the value of the shift strongly depends on the radius of the ring. It is small for semiconductor rings but can attain measurable quantities in natural organic ring-shape molecules, such as benzene, cycloalcanes and porphyrins. (paper)

  13. Electron energy recovery system for negative ion sources

    International Nuclear Information System (INIS)

    Dagenhart, W.K.; Stirling, W.L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90* to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy

  14. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Bradley Bolt [Univ. of California, San Diego, CA (United States)

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  15. Secondary electron emission yield in the limit of low electron energy

    CERN Document Server

    Andronov, A.N.; Kaganovich, I.D.; Startsev, E.A.; Raitses, Y.; Demidov, V.I.

    2013-04-22

    Secondary electron emission (SEE) from solids plays an important role in many areas of science and technology.1 In recent years, there has been renewed interest in the experimental and theoretical studies of SEE. A recent study proposed that the reflectivity of very low energy electrons from solid surface approaches unity in the limit of zero electron energy2,3,4, If this was indeed the case, this effect would have profound implications on the formation of electron clouds in particle accelerators,2-4 plasma measurements with electrostatic Langmuir probes, and operation of Hall plasma thrusters for spacecraft propulsion5,6. It appears that, the proposed high electron reflectivity at low electron energies contradicts to numerous previous experimental studies of the secondary electron emission7. The goal of this note is to discuss possible causes of these contradictions.

  16. Tests of an electron monitor for routine quality control measurements of electron energies

    International Nuclear Information System (INIS)

    Ramsay, E.B.; Reinstein, L.E.; Meek, A.G.

    1991-01-01

    The depth dose for electrons is sensitive to energy and the AAPM Task Group 24 has recommended that tests be performed at monthly intervals to assure electron beam energy constancy by verifying the depth for the 80% dose to within ±3 mm. Typically, this is accomplished by using a two-depth dose ratio technique. Recently, a new device, the Geske monitor, has been introduced that is designed for verifying energy constancy in a single reading. The monitor consists of nine parallel plate detectors that alternate with 5-mm-thick absorbers made of an aluminum alloy. An evaluation of the clinical usefulness of this monitor for the electron beams available on a Varian Clinac 20 has been undertaken with respect to energy discrimination. Beam energy changes of 3 mm of the 80% dose give rise to measurable output changes ranging from 1.7% for 20-MeV electron beams to 15% for 6-MeV electron beams

  17. Scattering of high energy electrons on deuteron

    International Nuclear Information System (INIS)

    Grossetete, B.

    1964-12-01

    The aim of this work is to obtain information on the neutron form factor from the study of the scattering of electrons on deuterium. The first part is dedicated to the theoretical study of the elastic and inelastic scattering. We introduce different form factors: Sachs form factor, the Pauli and Dirac form factors, they appear in the analytic expression of the scattering cross-section. We show how the deuteron form factors can be deduced from neutron's and proton's form factors. In the case of the inelastic scattering we show how the cross section can be broken into components associated to partial waves and we obtain different formulas for the inelastic cross-section based on the Breit formula or the Durand formalism. The second part is dedicated to the experiment setting of electron scattering on deuterium. The elastic scattering experiment has been made on solid or liquid CD 2 targets while inelastic scattering has been studied on a liquid target. We have used an electron beam produced by the Orsay linear accelerator and the scattered electrons have been analysed by a magnetic spectrometer and a Cerenkov detector. The results give a very low value (slightly positive)for the charge form factor of the neutron and a magnetic form factor for the neutron slightly below that of the proton [fr

  18. Scanning transmission low-energy electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Hovorka, Miloš; Konvalina, Ivo; Unčovský, M.; Frank, Luděk

    2011-01-01

    Roč. 55, č. 4 (2011), 2:1-6 ISSN 0018-8646 R&D Projects: GA AV ČR IAA100650902; GA MŠk ED0017/01/01 Institutional research plan: CEZ:AV0Z20650511 Keywords : TEM * STEM * SEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.723, year: 2011

  19. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al; Jabbour, Ghassan E.

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films

  20. Low energy electron point source microscopy: beyond imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Andre; Goelzhaeuser, Armin [Physics of Supramolecular Systems and Surfaces, University of Bielefeld, Postfach 100131, 33501 Bielefeld (Germany)

    2010-09-01

    Low energy electron point source (LEEPS) microscopy has the capability to record in-line holograms at very high magnifications with a fairly simple set-up. After the holograms are numerically reconstructed, structural features with the size of about 2 nm can be resolved. The achievement of an even higher resolution has been predicted. However, a number of obstacles are known to impede the realization of this goal, for example the presence of electric fields around the imaged object, electrostatic charging or radiation induced processes. This topical review gives an overview of the achievements as well as the difficulties in the efforts to shift the resolution limit of LEEPS microscopy towards the atomic level. A special emphasis is laid on the high sensitivity of low energy electrons to electrical fields, which limits the structural determination of the imaged objects. On the other hand, the investigation of the electrical field around objects of known structure is very useful for other tasks and LEEPS microscopy can be extended beyond the task of imaging. The determination of the electrical resistance of individual nanowires can be achieved by a proper analysis of the corresponding LEEPS micrographs. This conductivity imaging may be a very useful application for LEEPS microscopes. (topical review)

  1. Angular distribution of scattered electron and medium energy electron spectroscopy for metals

    International Nuclear Information System (INIS)

    Oguri, Takeo; Ishioka, Hisamichi; Fukuda, Hisashi; Irako, Mitsuhiro

    1986-01-01

    The angular distribution (AD) of scattered electrons produced by medium energy incident electrons (E P = 50 ∼ 300 eV) from polycrystalline Ti, Fe, Ni, Cu and Au were obtained by the angle-resolved medium energy electron spectrometer. The AD of the energy loss peaks are similar figures to AD of the elastically reflected electron peaks. Therefore, the exchanged electrons produced by the knock-on collision between the incident electrons and those of metals without momentum transfer are observed as the energy loss spectra (ELS). This interpretation differs from the inconsequent interpretation by the dielectric theory or the interband transition. The information depth and penetration length are obtained from AD of the Auger electron peaks. The contribution of the surface to spectra is 3 % at the maximum for E P = 50 eV. The true secondary peaks representing the secondary electron emission spectroscopy (SES) are caused by the emissions of the energetic electrons (kT e ≥ 4 eV), and SES is the inversion of ELS. The established fundamental view is that the medium energy electron spectra represent the total bulk density of states. (author)

  2. Derivation of electron and photon energy spectra from electron beam central axis depth dose curves

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jun [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 (United States)]. E-mail: jun@reyes.stanford.edu; Jiang, Steve B.; Pawlicki, Todd; Li Jinsheng; Ma, C.M. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 (United States)

    2001-05-01

    A method for deriving the electron and photon energy spectra from electron beam central axis percentage depth dose (PDD) curves has been investigated. The PDD curves of 6, 12 and 20 MeV electron beams obtained from the Monte Carlo full phase space simulations of the Varian linear accelerator treatment head have been used to test the method. We have employed a 'random creep' algorithm to determine the energy spectra of electrons and photons in a clinical electron beam. The fitted electron and photon energy spectra have been compared with the corresponding spectra obtained from the Monte Carlo full phase space simulations. Our fitted energy spectra are in good agreement with the Monte Carlo simulated spectra in terms of peak location, peak width, amplitude and smoothness of the spectrum. In addition, the derived depth dose curves of head-generated photons agree well in both shape and amplitude with those calculated using the full phase space data. The central axis depth dose curves and dose profiles at various depths have been compared using an automated electron beam commissioning procedure. The comparison has demonstrated that our method is capable of deriving the energy spectra for the Varian accelerator electron beams investigated. We have implemented this method in the electron beam commissioning procedure for Monte Carlo electron beam dose calculations. (author)

  3. Stability of electron-beam energy monitor for quality assurance of the electron-beam energy from radiotherapy accelerators

    International Nuclear Information System (INIS)

    Chida, Koichi; Zuguchi, Masayuki; Saito, Haruo; Takai, Yoshihiro; Mitsuya, Masatoshi; Sakakida, Hideharu; Yamada, Shogo; Kohzuki, Masahiro

    2002-01-01

    Information on electron energy is important in planning radiation therapy using electrons. The Geske 3405 electron beam energy monitor (Geske monitor, PTW Nuclear Associates, Carle Place, NY, USA) is a device containing nine ionization chambers for checking the energy of the electron beams produced by radiotherapy accelerators. We wondered whether this might increase the likelihood of ionization chamber trouble. In spite of the importance of the stability of such a quality assurance (QA) device, there are no reports on the stability of values measured with a Geske monitor. The purpose of this paper was therefore to describe the stability of a Geske monitor. It was found that the largest coefficient of variation (CV) of the Geske monitor measurements was approximately 0.96% over a 21-week period. In conclusion, the stability of Geske monitor measurements of the energy of electron beams from a linear accelerator was excellent. (author)

  4. Secondary electrons monitor for continuous electron energy measurements in UHF linac

    International Nuclear Information System (INIS)

    Zimek, Zbigniew; Bulka, Sylwester; Mirkowski, Jacek; Roman, Karol

    2001-01-01

    Continuous energy measurements have now became obligatory in accelerator facilities devoted to radiation sterilization process. This is one of several accelerator parameters like dose rate, beam current, bean scan parameters, conveyer speed which must be recorded as it is a required condition of accelerator validation procedure. Electron energy measurements are rather simple in direct DC accelerator, where the applied DC voltage is directly related to electron energy. High frequency linacs are not offering such opportunity in electron energy measurements. The analyzing electromagnet is applied in some accelerators but that method can be used only in off line mode before or after irradiation process. The typical solution is to apply the non direct method related to control and measurements certain accelerator parameters like beam current and microwave energy pulse power. The continuous evaluation of electron energy can be performed on the base of calculation and result comparison with calibration curve

  5. Design, development and characterization of tetrode type electron gun system for generation of low energy electrons

    International Nuclear Information System (INIS)

    Deore, A.V.; Bhoraskar, V.N.; Dhole, S.D.

    2011-01-01

    A tetrode type electron gun system for the generation of low energy electrons was designed, developed and characterized. An electron gun having four electrodes namely cathode, focusing electrode, control electrode and anode has been designed for the irradiation experiments. This electron gun is capable to provide electrons of energy over the range of 1 keV to 20 keV, with current maximum upto 100 μA. The electron gun and a faraday cup are mounted in the evacuated cylindrical chamber. The samples are fixed on the faraday cup and irradiated with low energy electrons at a pressure around 10 -6 mbar. In this electron gun system, at any electron energy over the entire range, the electron beam diameter can be varied from 5 to 120 mm on the Faraday cup mounted at a distance of 200 mm from the anode in the chamber. Also, the circular shape of the beam spot was maintained, even though the beam current and beam diameter are varied. The uniformity of the electron beam over the entire beam area was measured with a multi electrode assembly and found to be well within 15%. This system is being used for the synthesis and diffusion of metal and semiconductor nanoparticles in polymeric materials. (author)

  6. Dosimetry of Al2O3 optically stimulated luminescent dosimeter at high energy photons and electrons

    Science.gov (United States)

    Yusof, M. F. Mohd; Joohari, N. A.; Abdullah, R.; Shukor, N. S. Abd; Kadir, A. B. Abd; Isa, N. Mohd

    2018-01-01

    The linearity of Al2O3 OSL dosimeters (OSLD) were evaluated for dosimetry works in clinical photons and electrons. The measurements were made at a reference depth of Zref according to IAEA TRS 398:2000 codes of practice at 6 and 10 MV photons and 6 and 9 MeV electrons. The measured dose was compared to the thermoluminescence dosimeters (TLD) and ionization chamber commonly used for dosimetry works for higher energy photons and electrons. The results showed that the measured dose in OSL dosimeters were in good agreement with the reported by the ionization chamber in both high energy photons and electrons. A reproducibility test also reported excellent consistency of readings with the OSL at similar energy levels. The overall results confirmed the suitability of OSL dosimeters for dosimetry works involving high energy photons and electrons in radiotherapy.

  7. Electronic Energy Transfer in Polarizable Heterogeneous Environments

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Kongsted, Jacob

    2015-01-01

    such couplings provide important insight into the strength of interaction between photo-active pigments in protein-pigment complexes. Recently, attention has been payed to how the environment modifies or even controls the electronic couplings. To enable such theoretical predictions, a fully polarizable embedding......-order multipole moments. We use this extended model to systematically examine three different ways of obtaining EET couplings in a heterogeneous medium ranging from use of the exact transition density to a point-dipole approximation. Several interesting observations are made including that explicit use...... of transition densities in the calculation of the electronic couplings - also when including the explicit environment contribution - can be replaced by a much simpler transition point charge description without comprising the quality of the model predictions....

  8. Energy Saving and Efficient Energy Use By Power Electronic Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Wang, Huai; Davari, Pooya

    2017-01-01

    In the development of the modern society, one of the key factors is to save energy in order to become more independent of other energy resources. Two important approaches can be taken—one is to change behavior and thereby save energy—the second one is to develop new technology which is able to sa...

  9. Secondary electron emission studied by secondary electron energy loss coincidence spectroscopy (SE2ELCS)

    International Nuclear Information System (INIS)

    Khalid, R.

    2013-01-01

    Emission of secondary electrons is of importance in many branches of fundamental and applied science. It is widely applied in the electron microscope for the investigation of the structure and electronic state of solid surfaces and particle detection in electron multiplier devices, and generally it is related to the energy dissipation of energetic particles moving inside a solid. The process of secondary electron emission is a complex physical phenomenon, difficult to measure experimentally and treat theoretically with satisfactory accuracy. The secondary electron spectrum measured with single electron spectroscopy does not provide detailed information of the energy loss processes responsible for the emission of secondary electrons. This information can be accessed when two correlated electron pairs are measured in coincidence and the pair consists of a backscattered electron after a given energy loss and a resulting emitted secondary electron. To investigate the mechanisms responsible for the emission of secondary electrons, a reflection (e,2e) coincidence spectrometer named Secondary Electron Electron Energy Loss Coincidence Spectrometer (SE2ELCS) has been developed in the framework of this thesis which allows one to uncover the relation between the features in the spectra which are due to energy losses and true secondary electron emission structures. The correlated electron pairs are measured with a hemispherical mirror analyzer (HMA) and a time of flight analyzer (TOF) by employing a continuous electron beam. An effort has been made to increase the coincidence count rate by increasing the effective solid angle of the TOF analyzer and optimizing the experimental parameters to get optimum energy resolution. Double differential coincidence spectra for a number of materials namely, nearly free electron metals (Al, Si), noble metals (Ag, Au, Cu, W) and highly oriented pyrolytic graphite (HOPG) have been measured using this coincidence spectrometer. The

  10. Monte Carlo simulation of energy deposition by low-energy electrons in molecular hydrogen

    Science.gov (United States)

    Heaps, M. G.; Furman, D. R.; Green, A. E. S.

    1975-01-01

    A set of detailed atomic cross sections has been used to obtain the spatial deposition of energy by 1-20-eV electrons in molecular hydrogen by a Monte Carlo simulation of the actual trajectories. The energy deposition curve (energy per distance traversed) is quite peaked in the forward direction about the entry point for electrons with energies above the threshold of the electronic states, but the peak decreases and broadens noticeably as the electron energy decreases below 10 eV (threshold for the lowest excitable electronic state of H2). The curve also assumes a very symmetrical shape for energies below 10 eV, indicating the increasing importance of elastic collisions in determining the shape of the curve, although not the mode of energy deposition.

  11. Electron, photons, and molecules: Storing energy from light

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.R. [Argonne National Laboratory, IL (United States)

    1996-09-01

    Molecular charge separation has important potential for photochemical energy storage. Its efficiency can be enhanced by principals which maximize the rates of the electron transfer steps which separate charge and minimize those which recombine high-energy charge pairs to lose stored energy. Dramatic scientific progress in understanding these principals has occurred since the founding of DOE and its predecessor agency ERDA. While additional knowledge in needed in broad areas of molecular electron transfer, some key areas of knowledge hold particular promise for the possibility of moving this area from science toward technology capable of contributing to the nation`s energy economy.

  12. Electron energy spectrum in core-shell elliptic quantum wire

    Directory of Open Access Journals (Sweden)

    V.Holovatsky

    2007-01-01

    Full Text Available The electron energy spectrum in core-shell elliptic quantum wire and elliptic semiconductor nanotubes are investigated within the effective mass approximation. The solution of Schrodinger equation based on the Mathieu functions is obtained in elliptic coordinates. The dependencies of the electron size quantization spectrum on the size and shape of the core-shell nanowire and nanotube are calculated. It is shown that the ellipticity of a quantum wire leads to break of degeneration of quasiparticle energy spectrum. The dependences of the energy of odd and even electron states on the ratio between semiaxes are of a nonmonotonous character. The anticrosing effects are observed at the dependencies of electron energy spectrum on the transversal size of the core-shell nanowire.

  13. Ultra high energy electrons powered by pulsar rotation.

    Science.gov (United States)

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  14. Electronic structures of elements according to ionization energies.

    Science.gov (United States)

    Zadeh, Dariush H

    2017-11-28

    The electronic structures of elements in the periodic table were analyzed using available experimental ionization energies. Two new parameters were defined to carry out the study. The first parameter-apparent nuclear charge (ANC)-quantified the overall charge of the nucleus and inner electrons observed by an outer electron during the ionization process. This parameter was utilized to define a second parameter, which presented the shielding ability of an electron against the nuclear charge. This second parameter-electron shielding effect (ESE)-provided an insight into the electronic structure of atoms. This article avoids any sort of approximation, interpolation or extrapolation. First experimental ionization energies were used to obtain the two aforementioned parameters. The second parameter (ESE) was then graphed against the electron number of each element, and was used to read the corresponding electronic structure. The ESE showed spikes/peaks at the end of each electronic shell, providing insight into when an electronic shell closes and a new one starts. The electronic structures of elements in the periodic table were mapped using this methodology. These graphs did not show complete agreement with the previously known "Aufbau" filling rule. A new filling rule was suggested based on the present observations. Finally, a new way to organize elements in the periodic table is suggested. Two earlier topics of effective nuclear charge, and shielding factor were also briefly discussed and compared numerically to demonstrate the capability of the new approach.

  15. Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns

    Science.gov (United States)

    Ozur, G. E.; Proskurovsky, D. I.

    2018-01-01

    This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.

  16. Renewable energy education at the University level

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, S.C. [Asian Institute of Technology, Pathumthani (Thailand). Energy Program

    2001-03-01

    The rapid growth in global enrolment of students for higher education observed in recent decades is expected to continue in the early next century. However, the role of the universities and their approach to education may undergo substantial transformation in the future. The Internet is expected to play a significant role in university-level education in general and renewable energy education (REE) in particular. Currently, REE at different universities is characterized by a lack of uniformity in terms of duration, coursework, emphasis on research, etc. There is a need to establish guidelines and standards regarding academic programs and to establish a system of accreditation, preferably global, of REE in different academic disciplines and departments. (author)

  17. Low Energy Electron Gun on Board a Scientific Satellite GEOTAIL

    OpenAIRE

    TSUTSUI, Minoru; ONISHI, Yoshiaki; MATSUMOTO, Hiroshi; KIMURA, Iwane; 筒井, 稔; 大西, 嘉昭; 松本, 紘; 木村, 磐根

    1988-01-01

    A low energy electron gun to be used for beam-plasma interaction experiments by a scientific satellite GEOTAIL has been designed and manufactured. Electrodes of the gun have been modified from the Pierce type gun because of the use of a directly heated cathode. Spatial density distributions of beam electrons emitted from the new gun have been measured in a large vacuum chamber, and characteristic curves of emission currents for some beam energies and cathode powers have been checked repeatedl...

  18. Treatment of basal cell epithelioma with high energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Y. (Hyogo-ken Cancer Center, Kobe (Japan)); Kumano, M.; Kumano, K.

    1981-11-01

    Thirty patients with basal cell epithelioma received high energy electron beam therapy. They were irradiated with a dose ranging from 4,800 rad (24 fractions, 35 days) to 12,000 rad (40 fractions, 57 days). Tumors disappeared in all cases. These were no disease-related deaths; in one patient there was recurrence after 2 years. We conclude that radiotherapy with high energy electron beam is very effective in the treatment of basal cell epithelioma.

  19. International Conference on Power Electronics and Renewable Energy Systems

    CERN Document Server

    Suresh, L; Dash, Subhransu; Panigrahi, Bijaya

    2015-01-01

    The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Power Electronics and Renewable Energy Systems (ICPERES 2014) held at Rajalakshmi Engineering College, Chennai, India. These research papers provide the latest developments in the broad area of Power Electronics and Renewable Energy. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.

  20. Reactions induced by low energy electrons in cryogenic films

    International Nuclear Information System (INIS)

    Bass, A.D.; Sanche, L.

    2003-01-01

    We review recent research on reactions (including dissociation) initiated by low-energy electron bombardment of monolayer and multilayer molecular solids at cryogenic temperatures. With incident electrons of energies below 20 eV, dissociation is observed by the electron stimulated desorption (ESD) of anions from target films and is attributed to the processes of dissociative electron attachment (DEA) and to dipolar dissociation. It is shown that DEA to condensed molecules is sensitive to environmental factors such as the identity of co-adsorbed species and film morphology. The effects of image-charge induced polarization on cross-sections for DEA to CH3Cl are also discussed. Taking as examples, the electron-induced production of CO within multilayer films of methanol and acetone, it is shown that the detection of electronic excited states by high resolution electron energy loss spectroscopy can be used to monitor electron beam damage. In particular, the incident energy dependence of the CO indicates that below 19 eV, dissociation proceeds via the decay of transient negative ions (TNI) into electronically excited dissociative states. The electron induced dissociation of biomolecular targets is also considered, taking as examples the ribose analog tetrahydrofuran and DNA bases adenine and thymine, cytosine and guanine. The ESD of anions from such films also show dissociation via the formation of TNI. In multilayer molecular solids, fragment species resulting from dissociation, may react with neighboring molecules, as is demonstrated in anion ESD measurements from films containing O 2 and various hydrocarbon molecules. X-ray photoelectron spectroscopy measurements reported for electron irradiated monolayers of H 2 O and CF 4 on a Si - H passivated surface further show that DEA is an important initial step in the electron-induced chemisorption of fragment species

  1. Ion induced high energy electron emission from copper

    International Nuclear Information System (INIS)

    Ruano, G.; Ferron, J.

    2008-01-01

    We present measurements of secondary electron emission from Cu induced by low energy bombardment (1-5 keV) of noble gas (He + , Ne + and Ar + ) and Li + ions. We identify different potential and kinetic mechanisms and find the presence of high energetic secondary electrons for a couple of ion-target combinations. In order to understand the presence of these fast electrons we need to consider the Fermi shuttle mechanism and the different ion neutralization efficiencies.

  2. Electron energy and electron trajectories in an inverse free-electron laser accelerator based on a novel electrostatic wiggler

    Science.gov (United States)

    Nikrah, M.; Jafari, S.

    2016-06-01

    We expand here a theory of a high-gradient laser-excited electron accelerator based on an inverse free-electron laser (inverse-FEL), but with innovations in the structure and design. The electrostatic wiggler used in our scheme, namely termed the Paul wiggler, is generated by segmented cylindrical electrodes with applied oscillatory voltages {{V}\\text{osc}}(t) over {{90}\\circ} segments. The inverse-FEL interaction can be described by the equations that govern the electron motion in the combined fields of both the laser pulse and Paul wiggler field. A numerical study of electron energy and electron trajectories has been made using the fourth-order Runge-Kutta method. The results indicate that the electron attains a considerable energy at short distances in this device. It is found that if the electron has got sufficient suitable wiggler amplitude intensities, it can not only gain higher energy in longer distances, but also can retain it even after the passing of the laser pulse. In addition, the results reveal that the electron energy gains different peaks for different initial axial velocities, so that a suitable small initial axial velocity of e-beam produces substantially high energy gain. With regard to the transverse confinement of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this device.

  3. Charge-coupled device area detector for low energy electrons

    International Nuclear Information System (INIS)

    Horacek, Miroslav

    2003-01-01

    A fast position-sensitive detector was designed for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope (SLEEM), based on a thinned back-side directly electron-bombarded charged-coupled device (CCD) sensor (EBCCD). The principle of the SLEEM operation and the motivation for the development of the detector are explained. The electronics of the detector is described as well as the methods used for the measurement of the electron-bombarded gain and of the dark signal. The EBCCD gain of 565 for electron energy 5 keV and dynamic range 59 dB for short integration time up to 10 ms at room temperature were obtained. The energy dependence of EBCCD gain and the detection efficiency are presented for electron energy between 2 and 5 keV, and the integration time dependence of the output signals under dark conditions is given for integration time from 1 to 500 ms

  4. Charge-coupled device area detector for low energy electrons

    Czech Academy of Sciences Publication Activity Database

    Horáček, Miroslav

    2003-01-01

    Roč. 74, č. 7 (2003), s. 3379 - 3384 ISSN 0034-6748 R&D Projects: GA ČR GA102/00/P001 Institutional research plan: CEZ:AV0Z2065902 Keywords : low energy electrons * charged-coupled device * detector Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.343, year: 2003

  5. Utilization of low-energy electron accelerators in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-02-01

    There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)

  6. Utilization of low-energy electron accelerators in Korea

    International Nuclear Information System (INIS)

    Lee, Byung Cheol

    2003-01-01

    There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)

  7. Computation of the average energy for LXY electrons

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau, A.

    1996-01-01

    The application of an atomic rearrangement model in which we only consider the three shells K, L and M, to compute the counting efficiency for electron capture nuclides, requires a fine averaged energy value for LMN electrons. In this report, we illustrate the procedure with two example, ''125 I and ''109 Cd. (Author) 4 refs

  8. Properties of the electron cloud in a high-energy positron and electron storage ring

    International Nuclear Information System (INIS)

    Harkay, K.C.; Rosenberg, R.A.

    2003-01-01

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in a positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.

  9. A Flexible Power Electronics Configuration for Coupling Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Mattia Filippini

    2015-05-01

    Full Text Available A combination of series, parallel and multilevel power electronics has been investigated as a potential interface for two different types of renewable energy sources and in order to reach higher power levels. Renewable energy sources are typically dispersed in a territory, and sources, like wind and solar, allow small to medium-scale generation of electricity. The configuration investigated in this article aims at adapting the coupling solution to the specific generation characteristics of the renewable energy source to make it fit the electrical network. The configuration consists of a combination of three-phase multilevel converters and single-phase inverters, which are designed to provide flexibility, high power quality and high efficiency. A detailed analysis and simulation is performed to identify the properties in conjunction with the electrical grid requirements and the potential challenges encountered during operation. An optimized operation example of wind generation combined with solar PV generation is presented to exemplify the flexibility and benefits of the proposed configuration.

  10. Power electronics - key technology for renewable energy systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2011-01-01

    sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which by means of power electronics...... as efficient as possible. Further, the emerging climate changes is arguing to find sustainable future solutions. Of many options, two major technologies will play important roles to solve parts of those future problems. One is to change the electrical power production from conventional, fossil based energy......The electrical energy consumption continues to grow and more applications are based on electricity. We can expect that more 60% of all energy consumption will be converted and used as electricity. Therefore, it is a demand that production, distribution and use of electrical energy are done...

  11. Estimation of the characteristic energy of electron precipitation

    Directory of Open Access Journals (Sweden)

    C. F. del Pozo

    2002-09-01

    Full Text Available Data from simultaneous observations (on 13 February 1996, 9 November 1998, and 12 February 1999 with the IRIS, DASI and EISCAT systems are employed in the study of the energy distribution of the electron precipitation during substorm activity. The estimation of the characteristic energy of the electron precipitation over the common field of view of IRIS and DASI is discussed. In particular, we look closely at the physical basis of the correspondence between the characteristic energy, the flux-averaged energy, as defined below, and the logarithm of the ratio of the green-light intensity to the square of absorption. This study expands and corrects results presented in the paper by Kosch et al. (2001. It is noticed, moreover, that acceleration associated with diffusion processes in the magnetosphere long before precipitation may be controlling the shape of the energy spectrum. We propose and test a "mixed" distribution for the energy-flux spectrum, exponential at the lower energies and Maxwellian or modified power-law at the higher energies, with a threshold energy separating these two regimes. The energy-flux spectrum at Tromsø, in the 1–320 keV range, is derived from EISCAT electron density profiles in the 70–140 km altitude range and is applied in the "calibration" of the optical intensity and absorption distributions, in order to extrapolate the flux and characteristic energy maps.Key words. Ionosphere (auroral ionosphere; particle precipitation; particle acceleration

  12. Estimation of the characteristic energy of electron precipitation

    Directory of Open Access Journals (Sweden)

    C. F. del Pozo

    Full Text Available Data from simultaneous observations (on 13 February 1996, 9 November 1998, and 12 February 1999 with the IRIS, DASI and EISCAT systems are employed in the study of the energy distribution of the electron precipitation during substorm activity. The estimation of the characteristic energy of the electron precipitation over the common field of view of IRIS and DASI is discussed. In particular, we look closely at the physical basis of the correspondence between the characteristic energy, the flux-averaged energy, as defined below, and the logarithm of the ratio of the green-light intensity to the square of absorption. This study expands and corrects results presented in the paper by Kosch et al. (2001. It is noticed, moreover, that acceleration associated with diffusion processes in the magnetosphere long before precipitation may be controlling the shape of the energy spectrum. We propose and test a "mixed" distribution for the energy-flux spectrum, exponential at the lower energies and Maxwellian or modified power-law at the higher energies, with a threshold energy separating these two regimes. The energy-flux spectrum at Tromsø, in the 1–320 keV range, is derived from EISCAT electron density profiles in the 70–140 km altitude range and is applied in the "calibration" of the optical intensity and absorption distributions, in order to extrapolate the flux and characteristic energy maps.

    Key words. Ionosphere (auroral ionosphere; particle precipitation; particle acceleration

  13. Variation of kinetic energy release with temperature and electron energy for unimolecular ionic transitions

    International Nuclear Information System (INIS)

    Rabia, M.A.; Fahmy, M.A.

    1992-01-01

    The kinetic energy released during seven unimolecular ionic transitions, generated from benzyl alcohol and benzyl amine have been studied as a function of ion source temperature and ionizing electron energy. Only, the kinetic energy released during H CN elimination from fragment [C 7 H 8 N]+ ion of benzyl amine displays a temperature dependence. For only two transitions, generated from benzyl alcohol, the kinetic energy released show a significant ionizing electron energy dependence. These results may reveal the role of the internal energy of reacting ions in producing the kinetic energy released some transitions produced from benzyl alcohol

  14. Strict calculation of electron energy distribution functions in inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Winkler, R.

    1996-01-01

    It is objective of the paper to report on strict calculations of the velocity or energy distribution function function and related macroscopic properties of the electrons from appropriate electron kinetic equations under various plasma conditions and to contribute to a better understanding of the electron behaviour in inhomogeneous plasma regions. In particular, the spatial relaxation of plasma electrons acted upon by uniform electric fields, the response of plasma electrons on spatial disturbances of the electric field, the electron kinetics under the impact of space charge field confinement in the dc column plasma and the electron velocity distribution is stronger field as occurring in the electrode regions of a dc glow discharge is considered. (author)

  15. ATLAS Level-1 Calorimeter Trigger: Initial Timing and Energy Calibration

    CERN Document Server

    Childers, J T; The ATLAS collaboration

    2010-01-01

    The ATLAS Level-1 Calorimeter Trigger identifies high-pT objects in the Liquid Argon and Tile Calorimeters with a fixed latency of ~2.0 µs using a hardware-based, pipelined system built with custom electronics. The Preprocessor Module conditions and digitizes about 7200 pre-summed analogue signals from the calorimeters at the LHC bunch-crossing frequency of 40 MHz, and performs bunch-crossing identification (BCID) and deposited energy measurement for each input signal. This information is passed to further processors for object classification and total energy calculation, and the results used to make the Level-1 trigger decision for the ATLAS detector. The BCID and energy measurement in the trigger depend on precise timing adjustment to achieve correct sampling of the input signal peak. Test pulses from the calorimeters were analysed to derive the initial timing and energy calibration, and first data from the LHC restart in autumn 2009 and early 2010 were used for validation and further optimization. The res...

  16. Electron transfer in organic glass. Distance and energy dependence

    International Nuclear Information System (INIS)

    Krongauz, V.V.

    1992-01-01

    The authors have investigated the distance and energy dependence of electron transfer in rigid organic glasses containing randomly dispersed electron donor and electron acceptor molecules. Pulsed radiolysis by an electron beam from a linear accelerator was used for ionization resulting in charge deposition on donor molecules. The disappearance kinetics of donor radical anions due to electron transfer to acceptor was monitored spectroscopically by the change in optical density at the wavelength corresponding to that of donor radical anion absorbance. It was found that the rate of the electron transfer observed experimentally was higher than that computed using the Marcus-Levich theory assuming that the electron-transfer activation barrier is equal to the binding energy of electron on the donor molecule. This discrepancy between the experimental and computed results suggests that the open-quotes inertclose quotes media in which electron-transfer reaction takes place may be participating in the process, resulting in experimentally observed higher electron-transfer rates. 32 refs., 3 figs., 2 tabs

  17. Very low energy scanning electron microscopy in nanotechnology

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Hovorka, Miloš; Mika, Filip; Mikmeková, Eliška; Mikmeková, Šárka; Pokorná, Zuzana; Frank, Luděk

    2012-01-01

    Roč. 9, 8/9 (2012), s. 695-716 ISSN 1475-7435 R&D Projects: GA MŠk OE08012; GA MŠk ED0017/01/01; GA AV ČR IAA100650902 Institutional research plan: CEZ:AV0Z20650511 Keywords : scanning electron microscopy * very low energy electrons * cathode lens * grain contrast * strain contrast * imaging of participates * dopant contrast * very low energy STEM * graphene Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.087, year: 2012

  18. Electronic structure and formation energy of a vacancy in aluminum

    International Nuclear Information System (INIS)

    Chakraborty, B.; Siegel, R.W.

    1981-11-01

    The electronic structure of a vacancy in Al was calculated self-consistently using norm-conserving ionic pseudopotentials obtained from ab initio atomic calculations. A 27-atom-site supercell containing 1 vacancy and 26 atoms was used to simulate the environment of the vacancy. A vacancy formation energy of 1.5 eV was also calculated (cf. the experimental value of 0.66 eV). The effects of the supercell and the nature of the ionic potential on the resulting electronic structure and formation energy are discussed. Results for the electronic structure of a divacancy are also presented. 3 figures

  19. Ultra-low-energy wide electron exposure unit

    International Nuclear Information System (INIS)

    Yonago, Akinobu; Oono, Yukihiko; Tokunaga, Kazutoshi; Kishimoto, Junichi; Wakamoto, Ikuo

    2001-01-01

    Heat and ultraviolet ray processes are used in surface dryness of paint, surface treatment of construction materials and surface sterilization of food containers. A process using a low-energy wide-area electron beam (EB) has been developed that features high speed and low drive cost. EB processing is not widespread in general industry, however, due to high equipment cost and difficult maintenance. We developed an ultra-low-energy wide-area electron beam exposure unit, the Mitsubishi Wide Electron Exposure Unit (MIWEL) to solve these problems. (author)

  20. Observation of molecular level behavior in molecular electronic junction device

    Science.gov (United States)

    Maitani, Masato

    In this dissertation, I utilize AFM based scanning probe measurement and surface enhanced Raman scattering based vibrational spectroscopic analysis to directly characterize topographic, electronic, and chemical properties of molecules confined in the local area of M3 junction to elucidate the molecular level behavior of molecular junction electronic devices. In the introduction, the characterization of molecular electronic devices with different types of metal-molecule-metal (M3) structures based upon self-assembled monolayers (SAMs) is reviewed. A background of the characterization methods I use in this dissertation, conducting probe atomic force microscopy (cp-AFM) and surface enhanced Raman spectroscopy (SERS), is provided in chapter 1. Several attempts are performed to create the ideal top metal contacts on SAMs by metal vapor phase deposition in order to prevent the metal penetration inducing critical defects of the molecular electronic devices. The scanning probe microscopy (SPM), such as cp-AFM, contact mode (c-) AFM and non-contact mode (nc-) AFM, in ultra high vacuum conditions are utilized to study the process of the metal-SAM interface construction in terms of the correlation between the morphological and electrical properties including the metal nucleation and filament generation as a function of the functionalization of long-chain alkane thiolate SAMs on Au. In chapter 2, the nascent condensation process of vapor phase Al deposition on inert and reactive SAMs are studied by SPM. The results of top deposition, penetration, and filament generation of deposited Al are discussed and compared to the results previously observed by spectroscopic measurements. Cp-AFM was shown to provide new insights into Al filament formation which has not been observed by conventional spectroscopic analysis. Additionally, the electronic characteristics of individual Al filaments are measured. Chapter 3 reveals SPM characterization of Au deposition onto --COOH terminated SAMs

  1. Is there an optimum level for renewable energy?

    International Nuclear Information System (INIS)

    Moriarty, Patrick; Honnery, Damon

    2011-01-01

    Because continued heavy use of fossil fuel will lead to both global climate change and resource depletion of easily accessible fuels, many researchers advocate a rapid transition to renewable energy (RE) sources. In this paper we examine whether RE can provide anywhere near the levels of primary energy forecast by various official organisations in a business-as-usual world. We find that the energy costs of energy will rise in a non-linear manner as total annual primary RE output increases. In addition, increasing levels of RE will lead to increasing levels of ecosystem maintenance energy costs per unit of primary energy output. The result is that there is an optimum level of primary energy output, in the sense that the sustainable level of energy available to the economy is maximised at that level. We further argue that this optimum occurs at levels well below the energy consumption forecasts for a few decades hence. - Highlights: → We need to shift to renewable energy for climate change and fuel depletion reasons. → We examine whether renewable energy can provide the primary energy levels forecast. → The energy costs of energy rise non-linearly with renewable energy output. → There is thus an optimum level of primary energy output. → This optimum occurs at levels well below future official energy use forecasts.

  2. Low-energy electron collisions with metal clusters: Electron capture and cluster fragmentation

    International Nuclear Information System (INIS)

    Kresin, V.V.; Scheidemann, A.; Knight, W.D.

    1993-01-01

    The authors have carried out the first measurement of absolute cross sections for the interaction between electrons and size-resolved free metal clusters. Integral inelastic scattering cross sections have been determined for electron-Na n cluster collisions in the energy range from 0.1 eV to 30 eV. At energies ≤1 eV, cross sections increase with decreasing impact energies, while at higher energies they remain essentially constant. The dominant processes are electron attachment in the low-energy range, and collision-induced fragmentation at higher energies. The magnitude of electron capture cross sections can be quantitatively explained by the effect of the strong polarization field induced in the cluster by the incident electron. The cross sections are very large, reaching values of hundreds of angstrom 2 ; this is due to the highly polarizable nature of metal clusters. The inelastic interaction range for fragmentation collisions is also found to considerably exceed the cluster radius, again reflecting the long-range character of electron-cluster interactions. The important role played by the polarization interaction represents a bridge between the study of collision processes and the extensive research on cluster response properties. Furthermore, insight into the mechanisms of electron scattering is important for understanding production and detection of cluster ions in mass spectrometry and related processes

  3. Gadgets and Gigawatts - Policies for Energy Efficient Electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-05-13

    By 2010 there will be over 3.5 billion mobile phones subscribers, 2 billion TVs in use around the world and 1 billion personal computers. Electronic devices are a growing part of our lives and many of us can count between 20 and 30 separate items in our homes, from major items like televisions to a host of small gadgets. The communication and entertainment benefits these bring are not only going to people in wealthier nations - in Africa, for example, one in nine people now has a mobile phone. But as these electronic devices gain popularity, they account for a growing portion of household energy consumption. How 'smart' is this equipment from an energy efficiency perspective and should we be concerned about how much energy these gadgets use? What is the potential for energy savings? This new book, Gadgets and Gigawatts: Policies for Energy Efficient Electronics, includes a global assessment of the changing pattern in residential electricity consumption over the past decade and an in-depth analysis of the role played by electronic equipment. It reviews the influence that government policies have had on creating markets for more energy efficient appliances and identifies new opportunities for creating smarter, more energy efficient homes. This book is essential reading for policy makers and others interested in improving the energy efficiency of our homes.

  4. Middle-energy electron anisotropies in the auroral region

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2004-01-01

    Full Text Available Field-aligned anisotropic electron distribution functions of T > T type are observed on auroral field lines at both low and high altitudes. We show that typically the anisotropy is limited to a certain range of energies, often below 1keV, although sometimes extending to slightly higher energies as well. Almost always there is simultaneously an isotropic electron distribution at higher energies. Often the anisotropies are up/down symmetrical, although cases with net upward or downward electron flow also occur. For a statistical analysis of the anisotropies we divide the energy range into low (below 100eV, middle (100eV–1keV and high (above 1keV energies and develop a measure of anisotropy expressed in density units. The statistical magnetic local time and invariant latitude distribution of the middle-energy anisotropies obeys that of the average auroral oval, whereas the distributions of the low and high energy anisotropies are more irregular. This suggests that it is specifically the middle-energy anisotropies that have something to do with auroral processes. The anisotropy magnitude decreases monotonically with altitude, as one would expect, because electrons have high mobility along the magnetic field and thus, the anisotropy properties spread rapidly to different altitudes.

    Key words. Magnetospheric physics (auroral phenomena. Space plasma physics (wave-particle interactions; changed particle motion and acceleration

  5. Quantitative energy-dispersive electron probe X-ray microanalysis ...

    Indian Academy of Sciences (India)

    Abstract. An energy-dispersive electron probe X-ray microanalysis (ED-EPMA) technique us- ing an energy-dispersive X-ray detector with an ultra-thin window, designated as low-Z particle. EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements such ...

  6. Electrons and photons at High Level Trigger in CMS for Run II

    CERN Document Server

    Bin Anuar, Afiq Aizuddin

    2015-01-01

    The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increase in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. New approaches have been studied to keep the HLT output rate manageable while maintaining thresholds low enough to cover physics analyses. The strategy mainly relies on porting online the ingredients that have been successfully applied in the offline reconstruction, thus allowing to move HLT selection closer to offline cuts. Improvements in HLT electron and photon definitions will be presented, focusing in particular on updated clustering algorithm and the energy calibration procedure, new Particle-Flow-based isolation approach and pileup mitigation techniques, a...

  7. Renewable Energy Systems in the Power Electronics Curriculum

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2005-01-01

    of the most important area is renewable energy systems. This paper will discuss the basic courses for the power electronics curriculum. It will also discuss how to teach power electronic systems efficiently through a projectoriented and problem-based learning approach with Aalborg University in Denmark...... as a full-scale example. Different project examples will be given as well as important laboratories for adjustable speed drives and renewable energy systems which are used at the university are described.......Power Electronics is still an emerging technology and its applications are increasing. The primary function is to convert electrical energy from one stage to another and it is used in many different applications. The power electronics curriculum is multidisciplinary covering fields like devices...

  8. Elastic scattering of low-energy electrons with Sr atoms

    International Nuclear Information System (INIS)

    Yuan, J.; Zhang, Z.; Wan, H.

    1990-01-01

    Static-exchange, plus correlation-polarization-potential calculations are performed for elastic low-energy electron scattering from Sr atoms while paying attention to the low-lying shape resonances. The correlation potential is calculated both with and without a scaling factor. A 2 D-shape resonance is produced at 1.0 eV with a parameter-free, and at 1.25 eV with a scaled, correlation potential. No 2 P-shape resonances are predicted, but evidence to support the existence of a stable negative ion Sr - in the 5s 2 5p electron configuration is given from the viewpoint of electron scattering. The bound energy of the extra electron in the negative ion is estimated by transforming the phase shift of the corresponding partial wave into the polarization quantum-defect number and extrapolating the number from positive to negative energies

  9. Electron energy distribution in a weakly ionized plasma

    International Nuclear Information System (INIS)

    Cesari, C.

    1967-03-01

    The aim of this work is to determine from both the theoretical and experimental points of view the type of distribution function for the electronic energies existing in a positive-column type cold laboratory plasma having an ionization rate of between 10 -6 and 10 -7 . The theoretical analysis, based on the imperfect Lorentz model and taking into account inelastic collisions is developed from the Boltzmann equation. The experimental method which we have employed for making an electrostatic analysis of the electronic energies makes use of a Langmuir probe used in conjunction with a transistorized electronic device. A comparison between the experimental and theoretical results yields information concerning the mechanisms governing electronic energy transfer on a microscopic scale. (author) [fr

  10. Microanalysis by spectroscopy of transmitted electron energy losses

    International Nuclear Information System (INIS)

    Colliex, C.; Trebbia, P.

    1978-01-01

    Among the various signals which, in a transmission electron microscope, result from the interactions between the primary beam of well defined energy E 0 and the sample, the spectrum of the energy distribution of the electrons transmitted contains useful informations on the chemical and physical properties of the sample. Consequently the adaptation of an energy dispersive system on an electron microscope enables new fields of research to be investigated, particularly a localised chemical analysis technique with a space resolution scale equal to that of the electron microscope. It is this second aspect that we suggest describing in particular here. Already, this technique appears to be indispensable in the problems arising from the analysis of very small quantities of matter: detection limits in the order of 10 -19 to 10 -20 g (around 100 to 1000 atoms) would seem to be resonably possible [fr

  11. Electron energy loss spectroscopy of gold nanoparticles on graphene

    International Nuclear Information System (INIS)

    DeJarnette, Drew; Roper, D. Keith

    2014-01-01

    Plasmon excitation decay by absorption, scattering, and hot electron transfer has been distinguished from effects induced by incident photons for gold nanoparticles on graphene monolayer using electron energy loss spectroscopy (EELS). Gold nano-ellipses were evaporated onto lithographed graphene, which was transferred onto a silicon nitride transmission electron microscopy grid. Plasmon decay from lithographed nanoparticles measured with EELS was compared in the absence and presence of the graphene monolayer. Measured decay values compared favorably with estimated radiative and non-radiative contributions to decay in the absence of graphene. Graphene significantly enhanced low-energy plasmon decay, increasing mode width 38%, but did not affect higher energy plasmon or dark mode decay. This decay beyond expected radiative and non-radiative mechanisms was attributed to hot electron transfer, and had quantum efficiency of 20%, consistent with previous reports

  12. Low Energy Electrons in the Mars Plasma Environment

    Science.gov (United States)

    Link, Richard

    2001-01-01

    The ionosphere of Mars is rather poorly understood. The only direct measurements were performed by the Viking 1 and 2 landers in 1976, both of which carried a Retarding Potential Analyzer. The RPA was designed to measure ion properties during the descent, although electron fluxes were estimated from changes in the ion currents. Using these derived low-energy electron fluxes, Mantas and Hanson studied the photoelectron and the solar wind electron interactions with the atmosphere and ionosphere of Mars. Unanswered questions remain regarding the origin of the low-energy electron fluxes in the vicinity of the Mars plasma boundary. Crider, in an analysis of Mars Global Surveyor Magnetometer/Electron Reflectometer measurements, has attributed the formation of the magnetic pile-up boundary to electron impact ionization of exospheric neutral species by solar wind electrons. However, the role of photoelectrons escaping from the lower ionosphere was not determined. In the proposed work, we will examine the role of solar wind and ionospheric photoelectrons in producing ionization in the upper ionosphere of Mars. Low-energy (internal (photoelectron) sources of ionization, and accounts for Auger electron production. The code will be used to analyze Mars Global Surveyor measurements of solar wind and photoelectrons down to altitudes below 200 km in the Mars ionosphere, in order to determine the relative roles of solar wind and escaping photoelectrons in maintaining plasma densities in the region of the Mars plasma boundary.

  13. Low energy electron attachment to the uracil molecule

    International Nuclear Information System (INIS)

    Hanel, G.; Gstir, B.; Denifl, S.; Scheier, P.; Maerk, T.D.; Farizon, B.; Farizon, M.

    2002-01-01

    Using a recently constructed high resolution crossed beam apparatus involving a hemispherical electron monochromator, electron attachment to the uracil molecule C 4 H 4 N 2 O 2 was studied. The electron energy range investigated was in the region between 0 and 12 eV. What will happen when slow electrons are colliding with the cellular RNA compound uracil was the objective of this investigation. The following anion fragments were detected: (C 4 H 3 N 2 O 2 ) - , OCN - , (H 2 C 3 NO) - , CN - , O - . The most important result was that within the detection efficiency any traces of the parent anion were observed. The most intense fragment anion appeared on a mass to charge ratio 111 amu., it corresponds to a uracil molecule missing one hydrogen. Another observation was whereas the parent minus H anion is observed at zero electron energy, all other fragments appear in other range. (nevyjel)

  14. Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors

    Directory of Open Access Journals (Sweden)

    Annette R. Rowe

    2018-02-01

    Full Text Available While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2 pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited.

  15. Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors

    Science.gov (United States)

    Rajeev, Pournami; Jain, Abhiney; Pirbadian, Sahand; Okamoto, Akihiro; Gralnick, Jeffrey A.; El-Naggar, Mohamed Y.; Nealson, Kenneth H.

    2018-01-01

    ABSTRACT While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2) pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited. PMID:29487241

  16. High energy electron acceleration with PW-class laser system

    International Nuclear Information System (INIS)

    Nakanii, N.; Kondo, K.; Yabuuchi, T.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Kodama, R.; Mima, K.; Tanaka, K. A.; Mori, Y.; Miura, E.; Suzuki, S.; Asaka, T.; Yanagida, K.; Hanaki, H.; Kobayashi, T.

    2008-01-01

    We performed electron acceleration experiment with PW-class laser and a plasma tube, which was created by imploding a hollow polystyrene cylinder. In this experiment, electron energies in excess of 600 MeV have been observed. Moreover, the spectra of a comparatively high-density plasma ∼10 19 cm -3 had a bump around 10 MeV. Additionally, we performed the absolute sensitivity calibration of imaging plate for 1 GeV electrons from the injector Linac of Spring-8 in order to evaluate absolute number of GeV-class electrons in the laser acceleration experiment

  17. Electrons with continuous energy distribution from energetic heavy ion collisions

    International Nuclear Information System (INIS)

    Berenyi, D.

    1984-01-01

    The properties and origin of continuous electron spectrum emitted in high energy heavy ion collisions are reviewed. The basic processes causing the characteristic regions of the continuous spectrum are described. The contribution of electrons ejected from the target and from the projectile are investigated in detail in the cases of light and heavy projectiles. The recently recognized mechanisms, electron-capture-to-continuum (ECC) and electron-loss-to-continuum (ELC), leading to a cusp in forward direction, and their theoretical interpretations are discussed. The importance of data from ion-atom collisions in the field of atomic physics and in applications are briefly summarized. (D.Gy)

  18. Household energy consumption and consumer electronics: The case of television

    International Nuclear Information System (INIS)

    Crosbie, Tracey

    2008-01-01

    In recent years, there has been a dramatic rise in the number of consumer electronics in households. These new technologies and the services that support them enable new highly energy intensive behaviours. Using in-depth interview data collected from 20 households in 2006, this paper explores these energy intensive behaviours, using the example of the use of televisions. In doing so, it illustrates how the design and marketing of consumer electronics, and the services which support them, actively encourage energy intensive behaviours and how householders are reconfiguring their homes and lifestyles to fit these behaviours. This latter point is significant because, as householders change their homes and daily lives to fit energy intensive consuming behaviours, it will become increasingly difficult to encourage people to reduce their household energy consumption. This paper concludes with the implications of the research findings for policies designed to reduce household energy consumption

  19. Ab initio calculation of electron excitation energies in solids

    International Nuclear Information System (INIS)

    Louie, S.G.

    1996-02-01

    Progress in the first-principles calculation of electron excitation energies in solids is discussed. Quasiparticle energies are computed by expanding the electron self energy to first order in the screened Coulomb interaction in the so-called GW approximation. The method was applied to explain and predict spectroscopic properties of a variety of systems. Several illustrative applications to semiconductors, materials under pressure, chemisorption, and point defects in solids are presented. A recent reformulation of the method employing mixed- space functions and imaginary time techniques is also discussed

  20. Energy of auroral electrons and Z mode generation

    Science.gov (United States)

    Krauss-Varban, D.; Wong, H. K.

    1990-01-01

    The present consideration of Z-mode radiation generation, in light of observational results indicating that the O mode and second-harmonic X-mode emissions can prevail over the X-mode fundamental radiation when suprathermal electron energy is low, gives attention to whether the thermal effect on the Z-mode dispersion can be equally important, and whether the Z-mode can compete for the available free-energy source. It is found that, under suitable circumstances, the growth rate of the Z-mode can be substantial even for low suprathermal auroral electron energies. Growth is generally maximized for propagation perpendicular to the magnetic field.

  1. Study of absorbed dose distribution to high energy electron beams

    International Nuclear Information System (INIS)

    Cecatti, E.R.

    1983-01-01

    The depth absorbed dose distribution by electron beams was studied. The influence of the beam energy, the energy spread, field size and design characteristics of the accelerator was relieved. Three accelerators with different scattering and collimation systems were studied leading todifferent depth dose distributions. A theoretical model was constructed in order to explain the increase in the depth dose in the build-up region with the increase of the energy. The model utilizes a three-dimensional formalism based on the Fermi-Eyges multiple scattering theory, with the introduction of modifications that takes into account the criation of secondary electrons. (Author) [pt

  2. Analytic approach to auroral electron transport and energy degradation

    International Nuclear Information System (INIS)

    Stamnes, K.

    1980-01-01

    The interaction of a beam of auroral electrons with the atmosphere is described by the linear transport equation, encompassing discrete energy loss, multiple scattering, and secondary electrons. A solution to the transport equation provides the electron intensity as a function of altitude, pitch angle (with respect to the geomagnetic field) and energy. A multi-stream (discrete ordinate) approximation to the transport equation is developed. An analytic solution is obtained in this approximation. The computational scheme obtained by combining the present transport code with the energy degradation method of Swartz (1979) conserves energy identically. The theory provides a framework within which angular distributions can be easily calculated and interpreted. Thus, a detailed study of the angular distributions of 'non-absorbed' electrons (i.e., electrons that have lost just a small fraction of their incident energy) reveals a systematic variation with incident angle and energy, and with penetration depth. The present approach also gives simple yet accurate solutions in low order multi-stream approximations. The accuracy of the four-stream approximation is generally within a few per cent, whereas two-stream results for backscattered mean intensities and fluxes are accurate to within 10-15%. (author)

  3. Temporal and spatial distribution of high energy electrons at Jupiter

    Science.gov (United States)

    Jun, I.; Garrett, H. B.; Ratliff, J. M.

    2003-04-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) were used to study the high energy electron environment in the Jovian magnetosphere, especially in the region between 8 to 18 Rj (1 Rj = 1 Jovian radius = 71,400 km). 10-minute averages of the EPD data collected between Jupiter orbit insertion (JOI) in 1995 and the orbit number 33 (I33) in 2002 form an extensive dataset, which has been extremely useful to observe temporal and spatial variability of the Jovian high energy electron environment. The count rates of the EPD electron channels (0.174, 0.304, 0.527, 1.5, 2.0, and 11 MeV) were grouped into 0.5 Rj or 0.5 L bins and analyzed statistically. The results indicate that: (1) a log-normal Gaussian distribution well describes the statistics of the high energy electron environment (for example, electron differential fluxes) in the Jovian magnetosphere, in the region studied here; (2) the high energy electron environments inferred by the Galileo EPD measurements are in a close agreement with the data obtained using the Divine model, which was developed more than 30 years ago from Pioneer 10, 11 and Voyager 1, 2 data; (3) the data are better organized when plotted against magnetic radial parameter L than Rj; (4) the standard deviations of the 0.174, 0.304, 0.527 MeV channel count rates are larger than those of the 1.5, 2.0, 11 MeV count rates in 12 Rj. These observations are very helpful to understand short- and long-term, and local variability of the Jovian high energy electron environment, and are discussed in detail.

  4. Low-energy electron energy losses and inelastic mean free paths in zinc, selenium, and zinc selenide

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, J.D.; Chantler, C.T., E-mail: chantler@unimelb.edu.au

    2014-10-15

    We compute low-energy optical energy loss spectra for the elemental solids zinc and selenium, and for the binary compound zinc selenide. The optical data are transformed via a constrained partial-pole algorithm to produce momentum-dependent electron energy loss spectra and electron inelastic mean free paths. This enables a comparison between the electron scattering behaviour in a compound solid and its constituent elements. Results cannot be explained by aggregation methods or commonly used universal curves, and prove that new approaches are required. Our work demonstrates new capabilities for the determination of fundamental material properties for a range of structures previously inaccessible to established theoretical models, and at energy levels inaccessible to most experimental techniques.

  5. Low-energy electron energy losses and inelastic mean free paths in zinc, selenium, and zinc selenide

    International Nuclear Information System (INIS)

    Bourke, J.D.; Chantler, C.T.

    2014-01-01

    We compute low-energy optical energy loss spectra for the elemental solids zinc and selenium, and for the binary compound zinc selenide. The optical data are transformed via a constrained partial-pole algorithm to produce momentum-dependent electron energy loss spectra and electron inelastic mean free paths. This enables a comparison between the electron scattering behaviour in a compound solid and its constituent elements. Results cannot be explained by aggregation methods or commonly used universal curves, and prove that new approaches are required. Our work demonstrates new capabilities for the determination of fundamental material properties for a range of structures previously inaccessible to established theoretical models, and at energy levels inaccessible to most experimental techniques

  6. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Malinowski, Mariusz; Al-Haddad, Kamal

    2014-01-01

    Power Electronics for Renewable Energy, Transportation, and Industrial Applications combines state-of-the-art global expertise to present the latest research on power electronics and its application in transportation, renewable energy, and different industrial applications. This timely book aims to facilitate the implementation of cutting-edge techniques to design problems offering innovative solutions to the growing power demands in small- and large-size industries. Application areas in the book range from smart homes and electric and plug-in hybrid electrical vehicles (PHEVs), to smart distribution and intelligence operation centers where significant energy efficiency improvements can be achieved through the appropriate use and design of power electronics and energy storage devices.

  7. Modeling power electronics and interfacing energy conversion systems

    CERN Document Server

    Simões, Marcelo Godoy

    2017-01-01

    Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.

  8. The upper level of control system of electron accelerators

    International Nuclear Information System (INIS)

    Gribov, I.V.; Nedeoglo, F.N.; Shvedunov, I.V.

    2005-01-01

    The upper level software of a three-level control system that supports several electron accelerators is described. This software operates in the Linux and RTLinux (Real Time Linux) environment. The object information model functions on the basis of a parametric description supported by the SQLite Data Base Management System. The Javascript sublanguage is used for script forming, and the Qt Designer application is used to construct the user interface [ru

  9. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng, E-mail: dssu@imr.ac.cn [Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016 (China)

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  10. Interaction between electrons and tunneling levels in metallic glasses

    International Nuclear Information System (INIS)

    Black, J.L.; Gyorffy, B.L.

    1978-01-01

    A simple model in which the conduction electrons of a metallic glass experience a local time-dependent potential due to two-level tunneling states is considered. The model exhibits interesting divergent behavior which is quite different from that predicted by an earlier ''s-d Kondo'' model

  11. A simultaneous electron energy and dosimeter calibration method for an electron beam irradiator

    International Nuclear Information System (INIS)

    Tanaka, R.; Sunaga, H.; Kojima, T.

    1991-01-01

    In radiation processing using electron accelerators, the reproducibility of absorbed dose in the product depends not only on the variation of beam current and conveyor speed, but also on variations of other accelerator parameters. This requires routine monitoring of the beam current and the scan width, and also requires periodical calibration of routine dosimeters usually in the shape of film, electron energy, and other radiation field parameters. The electron energy calibration is important especially for food processing. The dose calibration method using partial absorption calorimeters provides only information about absorbed dose. Measurement of average electron current density provides basic information about the radiation field formed by the beam scanning and scattering at the beam window, though it does not allow direct dose calibration. The total absorption calorimeter with a thick absorber allows dose and dosimeter calibration, if the depth profile of relative dose in a reference absorber is given experimentally. It also allows accurate calibration of the average electron energy at the surface of the calorimeter core, if electron fluence received by the calorimeter is measured at the same time. This means that both electron energy and dosimeters can be simultaneously calibrated by irradiation of a combined system including the calorimeter, the detector of the electron current density meter, and a thick reference absorber for depth profile measurement of relative dose. We have developed a simple and multifunctional system using the combined calibration method for 5 MeV electron beams. The paper describes a simultaneous calibration method for electron energy and film dosimeters, and describes the electron current density meter, the total absorption calorimeter, and the characteristics of this method. (author). 13 refs, 7 figs, 3 tabs

  12. On the possibility of obtaining high-energy polarized electrons on Yerevan synchrotron

    International Nuclear Information System (INIS)

    Melikyan, R.A.

    1975-01-01

    A possibility of producing high-energy polarized electrons on the Yerevan synchrotron is discussed. A review of a number of low-energy polarized electron sources and of some of experiments with high-energy polarized electrons is given

  13. Design for Reliability of Power Electronics in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Wang, Huai

    2014-01-01

    Power electronics is the enabling technology for maximizing the power captured from renewable electrical generation, e.g., the wind and solar technology, and also for an efficient integration into the grid. Therefore, it is important that the power electronics are reliable and do not have too many...... failures during operation which otherwise will increase cost for operation, maintenance and reputation. Typically, power electronics in renewable electrical generation has to be designed for 20–30 years of operation, and in order to do that, it is crucial to know about the mission profile of the power...... electronics technology as well as to know how the power electronics technology is loaded in terms of temperature and other stressors relevant, to reliability. Hence, this chapter will show the basics of power electronics technology for renewable energy systems, describe the mission profile of the technology...

  14. Technical Training: ELEC-2005: Electronics in High Energy Physics

    CERN Multimedia

    Monique Duval

    2005-01-01

    CERN Technical Training 2005: Learning for the LHC! ELEC-2005: Electronics in High Energy Physics - Spring Term ELEC-2005 is a new course series on modern electronics, given by CERN physicists and engineers within the framework of the 2005 Technical Training Programme, in an extended format of the successful ELEC-2002 course series. This comprehensive course series is designed for people who are not electronics specialists, for example physicists, engineers and technicians working at or visiting the laboratory, who use or will use electronics in their present or future activities, in particular in the context of the LHC accelerator and experiments. ELEC-2005 is composed of four Terms: the Winter Term, Introduction to electronics in HEP, already took place; the next three Terms will run throughout the year: Spring Term: Integrated circuits and VLSI technology for physics (March, 6 lectures) - now open for registration Summer Term: System electronics for physics: Issues (May, 7 lectures) Autumn Term: Ele...

  15. Electron beam directed energy device and methods of using same

    Science.gov (United States)

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  16. Levelized Cost of Energy of the Weptos wave energy converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents the cost of energy calculations of a wave energy array of 90 MW, consisting of 25 x 3.6 MW Weptos wave energy converters. The calculation has been made in analogy with a publically available document presented by the UK government, covering the case of a similar size wind...

  17. Construction of energy loss function for low-energy electrons in helium

    Energy Technology Data Exchange (ETDEWEB)

    Dayashankar, [Bhabha Atomic Research Centre, Bombay (India). Div. of Radiation Protection

    1976-02-01

    The energy loss function for electrons in the energy range from 50 eV to 1 keV in helium gas has been constructed by considering separately the energy loss in overcoming the ionization threshold, the loss manifested as kinetic energy of secondary electrons and the loss in the discrete state excitations. This has been done by utilizing recent measurements of Opal et al. on the energy spectrum of secondary electrons and incorporating the experimental data on cross sections for twenty-four excited states. The present results of the energy loss function are in good agreement with the Bethe formula for energies above 500 eV. For lower energies, where the Bethe formula is not applicable, the present results should be particularly useful.

  18. Radiation levels at CERN's injectors and their impact on electronic equipment

    CERN Document Server

    AUTHOR|(SzGeCERN)649218; Brugger, Markus

    2013-01-01

    Electronic devices operating in hostile radiation environments, such as those found close to high-energy particle accelerators, can suffer from different types of radiation induced failures. At CERN, the mixed particle and energy radiation fields present at the Large Hadron Collider (LHC) and its injector chain can give rise to both stochastic and cumulative effects causing radiation induced failures of exposed electronics and materials, thus directly impacting components and system lifetimes, as well as maintenance requirements. With its original focus on the LHC, the Radiation to Electronics (R2E) project has been successfully implementing mitigation actions in order to avoid accelerator downtime due to radiation induced failures on active electronics. In a next step, the emphasis is put on CERN's injector chain, collecting the respective available information about radiation levels, the definition of additional monitoring requirements and a critical analysis of present and future equipment installations. T...

  19. Vibrational and electronic excitation of hexatriacontane thin films by low energy electron impact

    International Nuclear Information System (INIS)

    Vilar, M.R.; Schott, M.; Pfluger, P.

    1990-01-01

    Thin polycrystalline films of hexatriacontane (HTC) were irradiated with low energy (E=0.5--15 eV) electrons, and off-specular backscattered electron spectra were measured. Below E∼7 eV, single and multiple vibrational excitations only are observed, which relax the electrons down to the bottom of the HTC conduction band. Due to the negative electron affinity of HTC, thermal electrons are emitted into vacuum. Structure in the backscattered electron current at kinetic energies about 1.5 and 4 eV are associated to conduction band density of states. Above E∼7 eV, the dominant losses correspond to electronic excitations, excitons, or above a threshold (energy of the electron inside the HTC film) at 9.2±0.1 eV, electron--hole pair generation. The latter process is very efficient and reaches a yield of the order of one ∼11 eV. Evidence for chemical reaction above E∼4 eV is observed

  20. Deep-level transient spectroscopy of low-energy ion-irradiated silicon

    DEFF Research Database (Denmark)

    Kolkovsky, Vladimir; Privitera, V.; Nylandsted Larsen, Arne

    2009-01-01

     During electron-gun deposition of metal layers on semiconductors, the semiconductor is bombarded with low-energy metal ions creating defects in the outermost surface layer. For many years, it has been a puzzle why deep-level transient spectroscopy spectra of the as-deposited, electron-gun evapor...

  1. Shell-Tunneling Spectroscopy of the Single-Particle Energy Levels of Insulating Quantum Dots

    NARCIS (Netherlands)

    Bakkers, E.P.A.M.; Hens, Z.; Zunger, A.; Franceschetti, A; Kouwenhoven, L.P.; Gurevich, L.; Vanmaekelbergh, D.

    2001-01-01

    The energy levels of CdSe quantum dots are studied by scanning tunneling spectroscopy. By varying the tip-dot distance, we switch from "shell-filling" spectroscopy (where electrons accumulate in the dot and experience mutual repulsion) to "shell-tunneling" spectroscopy (where electrons tunnel, one

  2. Dependence of electron inelastic mean free paths on electron energy and materials at low energy region, 1

    International Nuclear Information System (INIS)

    Tanuma, Shigeo; Powell, C.J.; Penn, D.R.

    1990-01-01

    We have proposed a general formula of electron inelastic mean free path (IMFP) to describe the calculated IMFPs over the 50-2000 eV energy range based on the Inokuti's modified Bethe formula for the inelastic scattering cross section. The IMFPs for 50-2000 eV electrons in 27 elements were calculated using Penn's algorithm. The IMFP dependence on electron energy in the range 50-200 eV varies considerably from material to material. These variations are associated with substantial differences in the electron energy-loss functions amongst the material. We also found that the modified Bethe formula by Inokuti could be fitted to the calculated IMFPs in the range 50-2000 eV within 3% relative error. (author)

  3. Energy and temperature fluctuations in the single electron box

    International Nuclear Information System (INIS)

    Berg, Tineke L van den; Brange, Fredrik; Samuelsson, Peter

    2015-01-01

    In mesoscopic and nanoscale systems at low temperatures, charge carriers are typically not in thermal equilibrium with the surrounding lattice. The resulting, non-equilibrium dynamics of electrons has only begun to be explored. Experimentally the time-dependence of the electron temperature (deviating from the lattice temperature) has been investigated in small metallic islands. Motivated by these experiments, we investigate theoretically the electronic energy and temperature fluctuations in a metallic island in the Coulomb blockade regime, tunnel coupled to an electronic reservoir, i.e. a single electron box. We show that electronic quantum tunnelling between the island and the reservoir, in the absence of any net charge or energy transport, induces fluctuations of the island electron temperature. The full distribution of the energy transfer as well as the island temperature is derived within the framework of full counting statistics. In particular, the low-frequency temperature fluctuations are analysed, fully accounting for charging effects and non-zero reservoir temperature. The experimental requirements for measuring the predicted temperature fluctuations are discussed. (paper)

  4. Detectors for low energy electron cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, F. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-15

    Low-energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS, the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted, turned by 180-degrees, and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  5. High-energy electron irradiation of NdFeB permanent magnets: Dependence of radiation damage on the electron energy

    International Nuclear Information System (INIS)

    Bizen, Teruhiko; Asano, Yoshihiro; Marechal, Xavier-Marie; Seike, Takamitsu; Aoki, Tsuyoshi; Fukami, Kenji; Hosoda, Naoyasu; Yonehara, Hiroto; Takagi, Tetsuya; Hara, Toru; Tanaka, Takashi; Kitamura, Hideo

    2007-01-01

    High-energy electron-beam bombardment of Nd 2 Fe 14 B-type permanent magnets induces radiation damage characterized by a drop in the magnetic field. Experiments carried out at the SPring-8 booster synchrotron, with 4, 6, and 8 GeV electrons, show that the drop in magnetic field is energy dependent. Electromagnetic shower simulations suggest that most of the radiation damage happens in a small region around the irradiation axis, and that the contribution of neutrons with large scattering angles or with low energies to the magnetic field change is small

  6. High-energy electron irradiation of NdFeB permanent magnets: Dependence of radiation damage on the electron energy

    Energy Technology Data Exchange (ETDEWEB)

    Bizen, Teruhiko [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)]. E-mail: bizen@spring8.or.jp; Asano, Yoshihiro [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Marechal, Xavier-Marie [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Seike, Takamitsu [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Aoki, Tsuyoshi [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Fukami, Kenji [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hosoda, Naoyasu [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Yonehara, Hiroto [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takagi, Tetsuya [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hara, Toru [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Tanaka, Takashi [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kitamura, Hideo [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2007-05-11

    High-energy electron-beam bombardment of Nd{sub 2}Fe{sub 14}B-type permanent magnets induces radiation damage characterized by a drop in the magnetic field. Experiments carried out at the SPring-8 booster synchrotron, with 4, 6, and 8 GeV electrons, show that the drop in magnetic field is energy dependent. Electromagnetic shower simulations suggest that most of the radiation damage happens in a small region around the irradiation axis, and that the contribution of neutrons with large scattering angles or with low energies to the magnetic field change is small.

  7. Power electronics - The key technology for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    The energy paradigms in many countries (e.g. Germany and Denmark) have experienced a significant change from fossil-based resources to clean renewables (e.g. wind turbines and photovoltaics) in the past few decades. The scenario of highly penetrated renewables is going to be further enhanced...... - Denmark expects to be 100 % fossil-free by 2050. Consequently, it is required that the production, distribution and use of the energy should be as technologically efficient as possible and incentives to save energy at the end-user should also be strengthened. In order to realize the transition smoothly...... and effectively, energy conversion systems, currently based on power electronics technology, will again play an essential role in this energy paradigm shift. Using highly efficient power electronics in power generation, power transmission/distribution and end-user application, together with advanced control...

  8. From Molecular Electronics to Solar Thermal Energy Storage

    DEFF Research Database (Denmark)

    Olsen, Stine Tetzschner

    The Sun's signicant resource potential provides a solution for the world's increasing energy demand in a sustainable and responsible manner. However, the intrinsic property of the on-o cycles of the solar irradiation, i.e. daynight, sunny-cloudy, and summer-winter, constitutes a signicant challenge...... for the utilization of solar energy. An eective technology for storing the solar energy is required. This thesis focuses on solar thermal energy storage in molecules, since it oers a very compact and eective storage method. The rst chapter after the introduction of the thesis, chapter two, introduces the fundamental...... properties of the molecule, i.e. the electronic behaviour of the molecule in dierent environments, which is a key property for investigations of solar energy storage. The main focus of the research is on the electron transport in the Coulomb blockade regime. The third chapter goes into the challenge...

  9. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  10. Proposal to detect an emission of unusual super-high energy electrons in electron storage rings

    Directory of Open Access Journals (Sweden)

    Da-peng Qian

    2014-01-01

    Full Text Available According to an extended Lorentz–Einstein mass formula taken into the uncertainty principle, it is predicted that the electron beams passing accelerating electric field should with a small probability generate abnormal super-high energy electrons which are much higher than the beam energy. Author’s preliminary experiment result at electron storage ring has hinted these signs, so suggests to more strictly detect this unusual phenomenon, and thus to test the extended mass formula as well as a more perfect special relativity.

  11. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel J.; Sanche, Léon [Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4 (Canada)

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should

  12. Power Electronics and Reliability in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Zhou, Dao

    2012-01-01

    Power Electronics are needed in almost all kind of renewable energy systems. It is used both for controlling the renewable source and also for interfacing to the load, which can be grid-connected or working in stand-alone mode. More and more efforts are put into making renewable energy systems...... better in terms of reliability in order to ensure a high availability of the power sources, in this case the knowledge of mission profile of a certain application is crucial for the reliability evaluation/design of power electronics. In this paper an overview on the power electronic circuits behind...... the most common converter configurations for wind turbine and photovoltaic is done. Next different aspects of improving the system reliability are mapped. Further on examples of how to control the chip temperature in different power electronic configurations as well as operation modes for wind power...

  13. Low-energy electron inelastic mean free path in materials

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Truong, Hieu T., E-mail: nguyentruongthanhhieu@tdt.edu.vn [Theoretical Physics Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 756636 (Viet Nam)

    2016-04-25

    We show that the dielectric approach can determine electron inelastic mean free paths in materials with an accuracy equivalent to those from first-principle calculations in the GW approximation of many-body theory. The present approach is an alternative for calculating the hot-electron lifetime, which is an important quantity in ultrafast electron dynamics. This approach, applied here to solid copper for electron energies below 100 eV, yields results in agreement with experimental data from time-resolved two-photon photoemission, angle-resolved photoelectron spectroscopy, and X-ray absorption fine structure measurements in the energy ranges 2–3.5, 10–15, and 60–100 eV, respectively.

  14. Dependence of Energetic Electron Precipitation on the Geomagnetic Index Kp and Electron Energy

    Directory of Open Access Journals (Sweden)

    Mi-Young Park

    2013-12-01

    Full Text Available It has long been known that the magnetospheric particles can precipitate into the atmosphere of the Earth. In this paper we examine such precipitation of energetic electrons using the data obtained from low-altitude polar orbiting satellite observations. We analyze the precipitating electron flux data for many periods selected from a total of 84 storm events identified for 2001-2012. The analysis includes the dependence of precipitation on the Kp index and the electron energy, for which we use three energies E1 > 30 keV, E2 > 100 keV, E3 > 300 keV. We find that the precipitation is best correlated with Kp after a time delay of < 3 hours. Most importantly, the correlation with Kp is notably tighter for lower energy than for higher energy in the sense that the lower energy precipitation flux increases more rapidly with Kp than does the higher energy precipitation flux. Based on this we suggest that the Kp index reflects excitation of a wave that is responsible for scattering of preferably lower energy electrons. The role of waves of other types should become increasingly important for higher energy, for which we suggest to rely on other indicators than Kp if one can identify such an indicator.

  15. High-Energy Electron Beam Application to Air Pollutants Removal

    International Nuclear Information System (INIS)

    Ighigeanu, D.; Martin, D.; Manaila, E.; Craciun, G.; Calinescu, I.

    2009-01-01

    The advantage of electron beam (EB) process in pollutants removal is connected to its high efficiency to transfer high amount of energy directly into the matter under treatment. Disadvantage which is mostly related to high investment cost of accelerator may be effectively overcome in future as the result of use accelerator new developments. The potential use of medium to high-energy high power EB accelerators for air pollutants removal is demonstrated in [1]. The lower electrical efficiencies of accelerators with higher energies are partially compensated by the lower electron energy losses in the beam windows. In addition, accelerators with higher electron energies can provide higher beam powers with lower beam currents [1]. The total EB energy losses (backscattering, windows and in the intervening air space) are substantially lower with higher EB incident energy. The useful EB energy is under 50% for 0.5 MeV and about 95% above 3 MeV. In view of these arguments we decided to study the application of high energy EB for air pollutants removal. Two electron beam accelerators are available for our studies: electron linear accelerators ALIN-10 and ALID-7, built in the Electron Accelerator Laboratory, INFLPR, Bucharest, Romania. Both accelerators are of traveling-wave type, operating at a wavelength of 10 cm. They utilize tunable S-band magnetrons, EEV M 5125 type, delivering 2 MW of power in 4 μ pulses. The accelerating structure is a disk-loaded tube operating in the 2 mode. The optimum values of the EB peak current IEB and EB energy EEB to produce maximum output power PEB for a fixed pulse duration EB and repetition frequency fEB are as follows: for ALIN-10: EEB = 6.23 MeV; IEB =75 mA; PEB 164 W (fEB = 100 Hz, EB = 3.5 s) and for ALID-7: EEB 5.5 MeV; IEB = 130 mA; PEB = 670 W (fEB = 250 Hz, EB = 3.75 s). This paper presents a special designed installation, named SDI-1, and several representative results obtained by high energy EB application to SO 2 , NOx and VOCs

  16. Data Acquisition System for Electron Energy Loss Coincident Spectrometers

    International Nuclear Information System (INIS)

    Zhang Chi; Yu Xiaoqi; Yang Tao

    2005-01-01

    A Data Acquisition System (DAQ) for electron energy loss coincident spectrometers (EELCS) has been developed. The system is composed of a Multiplex Time-Digital Converter (TDC) that measures the flying time of positive and negative ions and a one-dimension position-sensitive detector that records the energy loss of scattering electrons. The experimental data are buffered in a first-in-first-out (FIFO) memory module, then transferred from the FIFO memory to PC by the USB interface. The DAQ system can record the flying time of several ions in one collision, and allows of different data collection modes. The system has been demonstrated at the Electron Energy Loss Coincident Spectrometers at the Laboratory of Atomic and Molecular Physics, USTC. A detail description of the whole system is given and experimental results shown

  17. Elastic scattering of low-energy electrons from ammonia

    International Nuclear Information System (INIS)

    Alle, D.T.; Gulley, R.J.; Buckman, S.J.; Brunger, M.J.

    1992-01-01

    We report absolute differential cross section measurements for vibrationally elastic electron scattering from NH 3 at incident energies from 2-30 eV. The present results, from a crossed electron-molecular beam apparatus, represent the first comprehensive experimental attempt to quantify the elastic electron-NH 3 scattering process. At each energy studied we have integrated our differential cross section data to generate total elastic and elastic momentum transfer cross sections and a critical comparison of both our differential and integral cross sections against previous experiment and theory is provided. We also report our observation of a strong Feshbach resonance in the elastic channel at an energy of 5.59 ± 0.05 eV. (Author)

  18. Stochasticity of the energy absorption in the electron cyclotron resonance

    International Nuclear Information System (INIS)

    Gutierrez T, C.; Hernandez A, O.

    1998-01-01

    The energy absorption mechanism in cyclotron resonance of the electrons is a present problem, since it could be considered from the stochastic point of view or this related with a non-homogeneous but periodical of plasma spatial structure. In this work using the Bogoliubov average method for a multi periodical system in presence of resonances, the drift equations were obtained in presence of a RF field for the case of electron cyclotron resonance until first order terms with respect to inverse of its cyclotron frequency. The absorbed energy equation is obtained on part of electrons in a simple model and by drift method. It is showed the stochastic character of the energy absorption. (Author)

  19. Atomistic spectrometrics of local bond-electron-energy pertaining to Na and K clusters

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Hunan 411105 (China); Wang, Yan, E-mail: YWang8@hnust.edu.cn [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Huang, Yongli; Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Hunan 411105 (China); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ecqsun@ntu.edu.sg [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-01-15

    Graphical abstract: - Highlights: • Coordination environment resolves electron binding-energy shift of Na and K clusters. • Cohesive energy of the representative bond determines the core-level shift. • XPS derives the energy level of an isolated atom and its bulk shift. • XPS derives the local bond length, bond energy, binding energy density. - Abstract: Consistency between density functional theory calculations and photoelectron spectroscopy measurements confirmed our predications on the undercoordination-induced local bond relaxation and core level shift of Na and K clusters. It is clarified that the shorter and stronger bonds between under-coordinated atoms cause local densification and local potential well depression and shift the electron binding-energy accordingly. Numerical consistency turns out the energy levels for an isolated Na (E{sub 2p} = 31.167 eV) and K (E{sub 3p} = 18.034 eV) atoms and their respective bulk shifts of 2.401 eV and 2.754 eV, which is beyond the scope of conventional approaches. This strategy has also resulted in quantification of the local bond length, bond energy, binding energy density, and atomic cohesive energy associated with the undercoordinated atoms.

  20. Vibrational excitation of D2 by low energy electrons

    International Nuclear Information System (INIS)

    Buckman, S.J.; Phelps, A.V.

    1985-01-01

    Excitation coefficients for the production of vibrationally exicted D 2 by low energy electrons have been determined from measurements of the intensity of infrared emission from mixtures of D 2 and small concentrations of CO 2 or CO. The measurements were made using the electron drift tube technique and covered electric field to gas density ratios (E/n) from (5 to 80) x 10 -21 V m 2 , corresponding to mean electron energies between 0.45 and 4.5 eV. The CO 2 and CO concentrations were chosen to allow efficient excitation transfer from the D 2 to the carbon containing molecule, but to minimize direct excitation of the CO 2 or CO. The measured infrared intensities were normalized to predicted values for N 2 --CO 2 and N 2 --CO mixtures at E/n where the efficiency of vibrational excitation is known to be very close to 100%. The experimental excitation coefficients are in satisfactory agreement with predictions based on electron--D 2 cross sections at mean electron energies below 1 eV, but are about 50% too high at mean energies above about 2 eV. Application of the technique to H 2 did not yield useful vibrational excitation coefficients. The effective coefficients in H 2 --CO 2 mixtures were a factor of about 3 times the predicted values. For our H 2 --CO mixtures the excitation of CO via excitation transfer from H 2 is small compared to direct electron excitation of CO molecules. Published experiments and theories on electron--H 2 and electron--D 2 collisions are reviewed to obtain the cross sections used in the predictions

  1. Power Electronics for Renewable Energy Systems - Status and Trends

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    electronics in generation, transmission/distribution and end-user application, together with advanced controls, can pave the way for renewable energy resources. In view of this, some of the most promising renewable candidates like wind power and photovoltaic, which are becoming a significant part...... in the electricity production, are explored in this paper. Issues like technology demands, power converter topologies, and control structures are addressed. Some special focuses are also paid on the emerging trends in power electronics development for those systems....

  2. Elastic scattering of low energy electrons by hydrogen molecule

    International Nuclear Information System (INIS)

    Freitas, L.C.G.; Mu-Tao, L.; Botelho, L.F.

    1987-01-01

    The coherent version of the Renormalized Multiple-Centre Potential Model (RMPM) has been extended to treat the elastic scattering of low energy electrons by H2 molecule. The intramolecular Multiple Scattering (MS) effect has also been included. The comparison against the experimental data shows that the inclusion of the MS improves significantly with experiment. The extension of the present method to study electron-polyatomic molecule interaction is also discussed. (author) [pt

  3. Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Sera, Dezso

    2007-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......The global electrical energy consumption is still rising and there is a demand to double the power capacity within 20 years. The production, distribution and use of energy should be as technological efficient as possible and incentives to save energy at the end-user should also be set up....... Deregulation of energy has in the past lowered the investment in larger power plants, which means the need for new electrical power sources may be very high in the near future. Two major technologies will play important roles to solve the future problems. One is to change the electrical power production...

  4. Higher energy dissociative electron attachment cross sections in sulfur dioxide

    International Nuclear Information System (INIS)

    Kurepa, M.; Pejcev, V.; Cadez, I.

    2000-01-01

    Experimental results of total electron attachment cross sections are presented with, for comparison, two additional sets of data, those of Orient and Srivastava and of Spyrou et al.. Both were normalized to present values of the first attachment peak at 4,6 eV, in order to show more clearly differences in cross section curve shapes. In fact, data of Orient and Srivastava are larger that the present ones for a factor of 2,82; while those of Spyrou et al. are higher only for 3,70 %. Both these sets of data, as well as those by Cadez et al., cover an incident electron energy range 3,40 - 9,40 eV. Electron attachment processes at energies higher that 9,40 eV have been in fact detected and measured in the same set of experiments that led to former publication of lower energy attachment processes by Cadez et al.. At that time in none of experiments, that could distinguished ionic species formed in dissociation attachment processes, was a sign of ions at incident electron energies exceeding 9,40 eV. That caused our ignorance toward processes detected and measured at higher incident electron energies, mainly since they were at least one order of magnitude lower that the two peaks at 4,6 eV and 7,3 eV, respectively. Without additional experiments, that include mass analysis of ionic species formed in dissociative electron attachment processes, it is not possible to give any sound explanation to causes of peaks at energies higher that 8,0 eV

  5. Dose controlled low energy electron irradiator for biomolecular films.

    Science.gov (United States)

    Kumar, S V K; Tare, Satej T; Upalekar, Yogesh V; Tsering, Thupten

    2016-03-01

    We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at -20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface were developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.

  6. Dose controlled low energy electron irradiator for biomolecular films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. V. K., E-mail: svkk@tifr.res.in; Tare, Satej T.; Upalekar, Yogesh V.; Tsering, Thupten [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India)

    2016-03-15

    We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at −20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface were developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.

  7. Electron-energy deposition in skin and thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Mei, G.T.Y.

    1986-01-01

    The primary object of this study was to investigate the relations between dosimeter response and skin dose resulting from beta-particle irradiation. This object was achieved by combining evaluation of beta-source energy spectra, calculation of flux energy spectra, and employment of a Monte-Carlo electron-transport computer program for determination of depth-dose distribution in multislab geometries. Intermediate results from three steps of evaluation were compared individually with experimental data or with other theoretical results and showed excellent agreement. The combined method is applicable for the electron agreement. The combined method is applicable for the electron energy range of 1 keV to 5 MeV for both monoenergetic electrons and energy-distributed electrons. Determination of dosimeter response - skin dose relationships for homogeneous atmospheric beta-particle sources and for two specific configurations of LiF TLD's have been carried out in this study. Information based on these calculations is of value in designing beta-particle dosimeters as well as in assessing potential occupational and public health risks associated with the nuclear power industry

  8. Electronic transport of molecular nanowires by considering of electron hopping energy between the second neighbors

    Directory of Open Access Journals (Sweden)

    H Rabani

    2015-07-01

    Full Text Available In this paper, we study the electronic conductance of molecular nanowires by considering the electron hopping between the first and second neighbors with the help Green’s function method at the tight-binding approach. We investigate three types of structures including linear uniform and periodic chains as well as poly(p-phenylene molecule which are embedded between two semi-infinite metallic leads. The results show that in the second neighbor approximation, the resonance, anti-resonance and Fano phenomena occur in the conductance spectra of these structures. Moreover, a new gap is observed at edge of the lead energy band wich its width depends on the value of the electron hopping energy between the second neighbors. In the systems including intrinsic gap, this hopping energy shifts the gap in the energy spectra.

  9. Evolutionary developments in x ray and electron energy loss microanalysis instrumentation for the analytical electron microscope

    Science.gov (United States)

    Zaluzec, Nester J.

    Developments in instrumentation for both X ray Dispersive and Electron Energy Loss Spectroscopy (XEDS/EELS) over the last ten years have given the experimentalist a greatly enhanced set of analytical tools for characterization. Microanalysts have waited for nearly two decades now in the hope of getting a true analytical microscope and the development of 300 to 400 kV instruments should have allowed us to attain this goal. Unfortunately, this has not generally been the case. While there have been some major improvements in the techniques, there has also been some devolution in the modern AEM (Analytical Electron Microscope). In XEDS, the majority of today's instruments are still plagued by the hole count effect, which was first described in detail over fifteen years ago. The magnitude of this problem can still reach the 20 percent level for medium atomic number species in a conventional off-the-shelf intermediate voltage AEM. This is an absurd situation and the manufacturers should be severely criticized. Part of the blame, however, also rests on the AEM community for not having come up with a universally agreed upon standard test procedure. Fortunately, such a test procedure is in the early stages of refinement. The proposed test specimen consists of an evaporated Cr film approx. 500 to 1000A thick supported upon a 3mm diameter Molybdenum 200 micron aperture.

  10. Development of real-time low energy electron calorimeter

    International Nuclear Information System (INIS)

    Noriah Mod Ali; Smith, F.A.

    1999-01-01

    A low energy electron beam calorimeter with a thin film window has been fabricated to facilitate a reliable method of dose assessment for electron beam energies down to 200 keV. The system was designed to incorporate a data-logger in order that it could be used on the self-shielded 200 keV facility at MINT. In use, the calorimeter started logging temperature a short time before it passed under the beam and it continued taking data until well after the end of the irradiation. Data could be retrieved at any time after the calorimeter had emerged from the irradiator

  11. Studies on functional polymer films utilizing low energy electron beam

    International Nuclear Information System (INIS)

    Ando, Masayuki

    1992-01-01

    Also in adhesives and tackifiers, with the expansion of the fields of application, the required characteristics have become high grade and complex. As one of them, the instantaneous hardening of adhesives can be taken up. In the field of lamination works, the low energy type electron beam accelerators having the linear filament of accelerating voltage below 300 kV were developed in 1970s, and the interest in the development of electron beam-handened adhesives has heightend. The authors have carried out research aiming at heightening the functions of the polymer films obtained by electron beam hardening reaction, and developed the adhesives. In this report, the features of electron beam hardening reaction, the structure and properties of electron beam-hardened polymer films and the molecular design of electron beam-hardened monomer oligomers are described. The feature of electron beam hardening reaction is the cross-linking of high degree as the structure of oligomers is maintained. By controlling the structure at the time of electron beam hardening, the heightening of the functions of electron beam-hardened polymer films is feasible. (K.I.)

  12. Simple Levelized Cost of Energy (LCOE) Calculator Documentation | Energy

    Science.gov (United States)

    ;M, performance and fuel costs. Note that this doesn't include financing issues, discount issues ). This means that the LCOE is the minimum price at which energy must be sold for an energy project to the balance between debt-financing and equity-financing, and an assessment of the financial risk

  13. Electron energy distribution function control in gas discharge plasmas

    International Nuclear Information System (INIS)

    Godyak, V. A.

    2013-01-01

    The formation of the electron energy distribution function (EEDF) and electron temperature in low temperature gas discharge plasmas is analyzed in frames of local and non-local electron kinetics. It is shown, that contrary to the local case, typical for plasma in uniform electric field, there is the possibility for EEDF modification, at the condition of non-local electron kinetics in strongly non-uniform electric fields. Such conditions “naturally” occur in some self-organized steady state dc and rf discharge plasmas, and they suggest the variety of artificial methods for EEDF modification. EEDF modification and electron temperature control in non-equilibrium conditions occurring naturally and those stimulated by different kinds of plasma disturbances are illustrated with numerous experiments. The necessary conditions for EEDF modification in gas discharge plasmas are formulated

  14. Treatment of surfaces with low-energy electrons

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Mikmeková, Eliška; Lejeune, M.

    2017-01-01

    Roč. 407, JUN 15 (2017), s. 105-108 ISSN 0169-4332 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Low- energy electrons * Electron beam induced release * Graphene * Ultimate cleaning of surfaces Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Nano-processes (applications on nano-scale) Impact factor: 3.387, year: 2016

  15. Ion induced high energy electron emission from copper

    Energy Technology Data Exchange (ETDEWEB)

    Ruano, G. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina)], E-mail: gdruano@ceride.gov.ar; Ferron, J. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina); Departamento de Ingenieria de Materiales, Facultad de Ingenieria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina)

    2008-11-15

    We present measurements of secondary electron emission from Cu induced by low energy bombardment (1-5 keV) of noble gas (He{sup +}, Ne{sup +} and Ar{sup +}) and Li{sup +} ions. We identify different potential and kinetic mechanisms and find the presence of high energetic secondary electrons for a couple of ion-target combinations. In order to understand the presence of these fast electrons we need to consider the Fermi shuttle mechanism and the different ion neutralization efficiencies.

  16. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy.

    Science.gov (United States)

    Zhang, Zhengyang; Lambrev, Petar H; Wells, Kym L; Garab, Győző; Tan, Howe-Siang

    2015-07-31

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  17. Energy spectra variations of high energy electrons in magnetic storms observed by ARASE and HIMAWARI

    Science.gov (United States)

    Takashima, T.; Higashio, N.; Mitani, T.; Nagatsuma, T.; Yoshizumi, M.

    2017-12-01

    The ARASE spacecraft was launched in December 20, 2016 to investigate mechanisms for acceleration and loss of relativistic electrons in the radiation belts during space storms. The six particle instruments with wide energy range (a few eV to 10MeV) are onboard the ARASE spacecraft. Especially, two particle instruments, HEP and XEP observe high energy electron with energy range from 70keV to over 10Mev. Those instruments observed several geomagnetic storms caused by coronal hole high speed streams or coronal mass ejections from March in 2017. The relativistic electrons in the outer radiation belt were disappeared/increased and their energy spectra were changed dynamically in some storms observed by XEP/HEP onboard the ARASE spacecraft. In the same time, SEDA-e with energy range 200keV-4.5MeV for electron on board the HIMAWARI-8, Japanese weather satellite on GEO, observed increase of relativistic electron in different local time. We will report on energy spectra variations of high energy electrons including calibrations of differential flux between XEP and HEP and discuss comparisons with energy spectra between ARAE and HIMAWARI that observed each storm in different local time.

  18. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  19. Treatment of surfaces with low-energy electrons

    Science.gov (United States)

    Frank, L.; Mikmeková, E.; Lejeune, M.

    2017-06-01

    Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  20. Dose characteristics of high-energy electrons, muons and photons

    International Nuclear Information System (INIS)

    Britvich, G.I.; Krupnyj, G.I.; Peleshko, V.N.; Rastsvetalov, Ya.N.

    1980-01-01

    Differential distribution of energy release at different depth of tissue-equivalent phantoms (plexiglas, polystyrene, polyethylene) at the energy of incident electrons, muons of 0.2-40 GeV and photons with the mean energy of 3.6 GeV are measured. The error of experimental results does not exceed 7%. On the basis of the data obtained dose characteristics of electrons, muons and photons for standard geometry are estimated. For all types of irradiation the maximum value of specific equivalent dose, nremxcm 2 /part. is presented. It is shown that published values of specific equivalent dose of electron radiation are higher in all the investigated energy range from 0.2 to 40 GeV, and for muon radiation a good agreement with the present experiment is observed. The highly precise results obtained which cover the wide dynamic range according to the energy of incident particles can serve as the basis for reconsidering the existing recommendations for dose characteristics of electron radiation [ru

  1. Free electron lasers for transmission of energy in space

    Science.gov (United States)

    Segall, S. B.; Hiddleston, H. R.; Catella, G. C.

    1981-01-01

    A one-dimensional resonant-particle model of a free electron laser (FEL) is used to calculate laser gain and conversion efficiency of electron energy to photon energy. The optical beam profile for a resonant optical cavity is included in the model as an axial variation of laser intensity. The electron beam profile is matched to the optical beam profile and modeled as an axial variation of current density. Effective energy spread due to beam emittance is included. Accelerators appropriate for a space-based FEL oscillator are reviewed. Constraints on the concentric optical resonator and on systems required for space operation are described. An example is given of a space-based FEL that would produce 1.7 MW of average output power at 0.5 micrometer wavelength with over 50% conversion efficiency of electrical energy to laser energy. It would utilize a 10 m-long amplifier centered in a 200 m-long optical cavity. A 3-amp, 65 meV electrostatic accelerator would provide the electron beam and recover the beam after it passes through the amplifier. Three to five shuttle flights would be needed to place the laser in orbit.

  2. Wettability Modification of Nanomaterials by Low-Energy Electron Flux

    Directory of Open Access Journals (Sweden)

    Torchinsky I

    2009-01-01

    Full Text Available Abstract Controllable modification of surface free energy and related properties (wettability, hygroscopicity, agglomeration, etc. of powders allows both understanding of fine physical mechanism acting on nanoparticle surfaces and improvement of their key characteristics in a number of nanotechnology applications. In this work, we report on the method we developed for electron-induced surface energy and modification of basic, related properties of powders of quite different physical origins such as diamond and ZnO. The applied technique has afforded gradual tuning of the surface free energy, resulting in a wide range of wettability modulation. In ZnO nanomaterial, the wettability has been strongly modified, while for the diamond particles identical electron treatment leads to a weak variation of the same property. Detailed investigation into electron-modified wettability properties has been performed by the use of capillary rise method using a few probing liquids. Basic thermodynamic approaches have been applied to calculations of components of solid–liquid interaction energy. We show that defect-free, low-energy electron treatment technique strongly varies elementary interface interactions and may be used for the development of new technology in the field of nanomaterials.

  3. The energy broadening resulting from electron stripping process of a low energy Au- beam

    International Nuclear Information System (INIS)

    Taniike, Akira; Sasao, Mamiko; Hamada, Yasuji; Fujita, Junji; Wada, Motoi.

    1994-12-01

    Energy loss spectra of Au + ions produced from Au - ions by electron stripping in He, Ar, Kr and Xe have been measured in the impact energy range of 24-44 keV. The energy broadening of the Au + beam increases as the beam energy increases, and the spectrum shows a narrower energy width for heavy target atoms. The dependence of the spectrum width upon the beam energy and that upon the target mass are well described by the calculation based on the unified potential and semi-classical internal energy transfer model of Firsov's. (author)

  4. Photoelectron and electron momentum spectroscopy of 1-butene at benchmark theoretical levels

    International Nuclear Information System (INIS)

    Shojaei, S H Reza; Morini, Filippo; Hajgató, Bálazs; Deleuze, Michael S

    2011-01-01

    The results of experimental studies of the valence electronic structure of 1-butene employing photoelectron spectroscopy as well as electron momentum spectroscopy are interpreted on the ground of quantitative calculations of one-electron and shake-up ionization energies and of the related Dyson orbitals, using one-particle Green's function theory in conjunction with the third-order algebraic diagrammatic construction scheme (ADC(3)). Comparison is made with simulations of (e, 2e) electron momentum distributions obtained from standard (B3LYP) Kohn-Sham orbitals. Our analysis is based on highly quantitative determinations of the energy difference between the cis and gauche (C 1 ) conformers, within ∼0.02 kcal mol -1 accuracy, and a thermostatistical evaluation thereby of conformer weights beyond the level of the rigid rotor harmonic oscillator approximation. Relative entropies are found to be particularly sensitive to hindered rotations. The shake-up onset is located at 15.9 eV, and the orbital picture of ionization breaks down completely at electron binding energies above 19 eV. If the available experimental momentum profiles demonstrate the dominance of the C 1 conformer, they are in this case clearly not sensitive enough to the molecular conformation for evaluating conformer abundances with accuracies better than 10% due to the limited energy and momentum resolutions and likely physical complications.

  5. Electronic energy spectra in antiferromagnetic media with broken reciprocity

    International Nuclear Information System (INIS)

    Vitebsky, I.; Edelkind, J.; Bogachek, E.N.; Scherbakov, A.G.; Landman, U.

    1997-01-01

    Electronic energy spectra var-epsilon(q) of antiferromagnetically ordered media may display nonreciprocity; that is, the energies corresponding to Bloch states with wave numbers q and -q may be different. In this paper a simple Kronig-Penney model, which includes a staggered microscopic magnetic and electric fields of the proper symmetry, is employed to estimate the magnitude of nonreciprocity effects in systems such as antiferromagnetically ordered crystals as well as periodical layered structures. copyright 1997 The American Physical Society

  6. Possibility of some radionuclides production using high energy electron Bremsstrahlung

    International Nuclear Information System (INIS)

    Balzhinnyam, N.; Belov, A.G.; Gehrbish, Sh; Maslov, O.D.; Shvetsov, V.N.; Ganbold, G.

    2008-01-01

    The method of some radionuclides production using high energy Bremsstrahlung of electron accelerators and determination of photonuclear reaction yield and specific activities for some radionuclides is described. Photonuclear reaction yield and specific activities for some radionuclides are determined for 117m Sn, 111 In and 195m Pt. Based on the experimental data obtained at low energy (E e- e- = 75 MeV) of the IREN facility (FLNR, JINR) at irradiation of high purity platinum and tin metals

  7. Intermediate energy electron impact excitation of composite vibrational modes in phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Lopes, M. C. A.; Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física ‘Gleb Wataghin,’ Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, C.P. 19044, 81531-990 Curitiba, Paraná (Brazil); Silva, G. B. da [Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-21

    We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.

  8. Low energy electron beam processing of YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chromik, Š., E-mail: stefan.chromik@savba.sk [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Camerlingo, C. [CNR-SPIN, Istituto Superconduttori, Materiali Innovativi e Dispositivi, via Campi Flegrei 34, 80078 Pozzuoli (Italy); Sojková, M.; Štrbík, V.; Talacko, M. [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Malka, I.; Bar, I.; Bareli, G. [Department of Physics, Ben Gurion University of the Negev, P.O.B. 653, 84105 Beer Sheva (Israel); Jung, G. [Department of Physics, Ben Gurion University of the Negev, P.O.B. 653, 84105 Beer Sheva (Israel); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland)

    2017-02-15

    Highlights: • Improvement of superconducting properties of irradiated bridges under certain conditions. • 30 keV irradiation influence CuO{sub 2} planes as well as oxygen chains. • Direct confirmation of changes in oxygen chains using micro-Raman spectroscopy. • Possibility of electron writing. - Abstract: Effects of low energy 30 keV electron irradiation of superconducting YBa{sub 2}Cu{sub 3}O{sub 7−δ} thin films have been investigated by means of transport and micro-Raman spectroscopy measurements. The critical temperature and the critical current of 200 nm thick films initially increase with increasing fluency of the electron irradiation, reach the maximum at fluency 3 − 4 × 10{sup 20} electrons/cm{sup 2}, and then decrease with further fluency increase. In much thinner films (75 nm), the critical temperature increases while the critical current decreases after low energy electron irradiation with fluencies below 10{sup 20} electrons/cm{sup 2}. The Raman investigations suggest that critical temperature increase in irradiated films is due to healing of broken Cu−O chains that results in increased carrier’s concentration in superconducting CuO{sub 2} planes. Changes in the critical current are controlled by changes in the density of oxygen vacancies acting as effective pinning centers for flux vortices. The effects of low energy electron irradiation of YBCO turned out to result from a subtle balance of many processes involving oxygen removal, both by thermal activation and kick-off processes, and ordering of chains environment by incident electrons.

  9. Simultaneous integral measurement of electron energy and charge albedoes

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Miller, G.H.; Halbleib, J.A. Sr.

    Results of a series of experiments in which backscattered energy has been determined from precise energy deposition measurements using an improved technique are presented. The fraction of the energy backscattered for electrons incident on Be, Ti, Mo, and Ta is determined as a function of energy and angle of incidence. The improved technique for the absolute measurement of energy deposition using calorimeters involves square-wave (on-off) modulation of the beam. Uncertainties in the measured backscattered energy are 1 to 6 percent, except for Be at normal incidence where they must agree by definition. Experiment and theory agree quite well for Mo and Be at 60 0 . The measured data for Ta and Ti are clearly higher than the calculated results, which is not completely understood. (U.S.)

  10. Matching renewable energy systems to village-level energy needs

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, J.H.; Neuendorffer, J.W.

    1980-06-01

    This report provides a five step process for matching alternative renewable energy technologies with energy needs in rural villages of developing countries. Analytic tools are given for each of the five steps as well as information that can be expected. Twelve characterization criteria are developed to assist in the matching process. Three of these criteria, called discrimination criteria, are used for preliminary screening of technology possibilities for each need. The other criteria address site-specific temporal, climatic, social, cultural, and environmental characteristics of the energy need, technology, and cost considerations. To illustrate the matching process, seven basic human needs for energy are matched with seven potential renewable energy technologies. The final portion of the paper discusses the advantages of such a matching process and the resources required to initiate such an effort within a development project. Specific recommendations are given for field-testing this process and actions that could be taken immediately in basic research and development, applied research and technology modification, demonstrations, and commercialization to assist in the future diffusion of renewable energy technologies to rural areas of developing countries.

  11. Evaluation of high-energy brachytherapy source electronic disequilibrium and dose from emitted electrons.

    Science.gov (United States)

    Ballester, Facundo; Granero, Domingo; Pérez-Calatayud, José; Melhus, Christopher S; Rivard, Mark J

    2009-09-01

    The region of electronic disequilibrium near photon-emitting brachytherapy sources of high-energy radionuclides (60Co, 137CS, 192Ir, and 169Yb) and contributions to total dose from emitted electrons were studied using the GEANT4 and PENELOPE Monte Carlo codes. Hypothetical sources with active and capsule materials mimicking those of actual sources but with spherical shape were examined. Dose contributions due to source photons, x rays, and bremsstrahlung; source beta-, Auger electrons, and internal conversion electrons; and water collisional kerma were scored. To determine if conclusions obtained for electronic equilibrium conditions and electron dose contribution to total dose for the representative spherical sources could be applied to actual sources, the 192Ir mHDR-v2 source model (Nucletron B.V., Veenendaal, The Netherlands) was simulated for comparison to spherical source results and to published data. Electronic equilibrium within 1% is reached for 60Co, 137CS, 192Ir, and 169Yb at distances greater than 7, 3.5, 2, and 1 mm from the source center, respectively, in agreement with other published studies. At 1 mm from the source center, the electron contributions to total dose are 1.9% and 9.4% for 60Co and 192Ir, respectively. Electron emissions become important (i.e., > 0.5%) within 3.3 mm of 60Co and 1.7 mm of 192Ir sources, yet are negligible over all distances for 137Cs and 169Yb. Electronic equilibrium conditions along the transversal source axis for the mHDR-v2 source are comparable to those of the spherical sources while electron dose to total dose contribution are quite different. Electronic equilibrium conditions obtained for spherical sources could be generalized to actual sources while electron contribution to total dose depends strongly on source dimensions, material composition, and electron spectra.

  12. Impact of potassium doping on the electronic structure of tetracene and pentacene: An electron energy-loss study

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Friedrich, E-mail: Friedrich.Roth@cfel.de [Center for Free-Electron Laser Science / DESY, Notkestraße 85, D-22607 Hamburg (Germany); Knupfer, Martin, E-mail: M.Knupfer@ifw-dresden.de [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany)

    2015-10-21

    We report the doping induced changes of the electronic structure of tetracene and pentacene probed by electron energy-loss spectroscopy in transmission. A comparison between the dynamic response of undoped and potassium-intercalated tetracene and pentacene emphasizes the appearance of a new excitation feature in the former gap upon potassium addition. Interestingly, the momentum dependency of this new excitation shows a negative dispersion. Moreover, the analysis of the C 1s and K 2p core-level excitation results in a significantly lower doping level compared to potassium doped picene, a recently discovered superconductor. Therefore, the present electronic structure investigations open a new pathway to better understand the exceptional differences between acenes and phenacene and their divergent behavior upon alkali doping.

  13. Treatment of surfaces with low-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frank, L., E-mail: ludek@isibrno.cz [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); Mikmeková, E. [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); FEI Company, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands); Lejeune, M. [LPMC – Faculte des Sciences d’Amiens, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 2 (France)

    2017-06-15

    Highlights: • Using proper irradiation parameters, adsorbed hydrocarbons are released from surfaces. • Slow electrons remove hydrocarbons instead of depositing carbon. • Prolonged irradiation with very slow electrons does not create defects in graphene. - Abstract: Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  14. Atomic excitation and molecular dissociation by low energy electron collisions

    International Nuclear Information System (INIS)

    Weyland, Marvin

    2016-01-01

    In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy.

  15. Atomic excitation and molecular dissociation by low energy electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Weyland, Marvin

    2016-11-16

    In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy.

  16. A real-time low energy electron calorimeter

    International Nuclear Information System (INIS)

    Mod Ali, N.; Smith, F.A.

    1999-01-01

    A real-time low energy electron calorimeter with a thin film window has been designed and fabricated to facilitate a reliable method of dose assessment for electron beam energies down to 200 keV. The work was initiated by the Radiation Physics Group of Queen Mary and Westfield College in collaboration with the National Physical Laboratory (NPL), Teddington. Irradiations were performed on the low and medium electron energy electron accelerators at the Malaysian Institute for Nuclear Technology Research (MINT). Calorimeter response was initially tested using the on-line temperature measurements for a 500-keV electron beam. The system was later redesigned by incorporating a data-logger to use on the self-shielded 200-keV beam. In use, the final version of the calorimeter could start logging temperature a short time before the calorimeter passed under the beam and continue measurements throughout the irradiation. Data could be easily retrieved at the end of the exposure. (author)

  17. Estimating Solar Energy Potential in Buildings on a Global Level

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia

    2015-01-01

    This chapter contributes to the debate around net-zero energy concept from a global perspective. By means of comprehensive modelling, it analyses how much global building energy consumption could be reduced through utilisation of building-integrated solar energy technologies and energy......-efficiency improvements. Valuable insights on the locations and building types, in which it is feasible to achieve a net-zero level of energy performance through solar energy utilisation, are presented in world maps....

  18. Nuclear energy levels and elementary particles

    International Nuclear Information System (INIS)

    de Wet, J.A.

    1982-01-01

    Considering only exchange forces, the binding energies and excited states of nuclei up to 24 Mg are predicted to within charge independence, and there is no reason why the model should not be extended to cover all of the elements. A comparison of theory with experiment shows that the energy of one exchange is 2.56 MeV. Moreover, there is an attractive well of depth 30 MeV, corresponding to the helium nucleus. before exchange forces become operative. A possible explanation of the origin of mesons is also presented

  19. Ab initio study of dissociative attachment of low-energy electrons to F2

    International Nuclear Information System (INIS)

    Hazi, A.U.; Orel, A.E.; Rescigno, T.N.

    1981-01-01

    Adiabatic-nuclei resonance theory has been applied to the study of dissociative attachment of low-energy electrons to F 2 . Stieltjes moment theory was used to derive fixed-nuclei electronic resonance parameters from large scale configuration-interaction calculations on F 2 and F 2 - . Dissociative attachment cross sections are reported for the four lowest vibrational levels of F 2 and compared to available experimental data

  20. Electron emission in collisions of intermediate energy ions with atoms

    International Nuclear Information System (INIS)

    Garibotti, C.R.

    1988-01-01

    The aim of this work, is the analysis of the processes of electronic emission produced in the collisions of small ions (H + , He ++ ) of intermediate energy (50 a 200 KeV/amu) with light gaseous targets. (A.C.A.G.) [pt

  1. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    The distribution of arsenic (As) and cadmium (Cd) in himematsutake was analyzed using scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX). The atomic percentage of the metals was confirmed by inductively coupled plasma-mass spectrometer (ICP-MS). Results show that the accumulation of ...

  2. Mechanisms of molecular electronic rectification through electronic levels with strong vibrational coupling

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2002-01-01

    We present a new view and an analytical formalism of electron flow through a donor-acceptor molecule inserted between a pair of metal electrodes. The donor and acceptor levels are strongly coupled to an environmental nuclear continuum. The formalism applies to molecular donor-acceptor systems bot...

  3. Preliminary investigations on high energy electron beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baertling, Yves; Hoppe, Dietrich; Hampel, Uwe

    2010-12-15

    In computed tomography (CT) cross-sectional images of the attenuation distribution within a slice are created by scanning radiographic projections of an object with a rotating X-ray source detector compound and subsequent reconstruction of the images from these projection data on a computer. CT can be made very fast by employing a scanned electron beam instead of a mechanically moving X-ray source. Now this principle was extended towards high-energy electron beam tomography with an electrostatic accelerator. Therefore a dedicated experimental campaign was planned and carried out at the Budker Institute of Nuclear Physics (BINP), Novosibirsk. There we investigated the capabilities of BINP's accelerators as an electron beam generating and scanning unit of a potential high-energy electron beam tomography device. The setup based on a 1 MeV ELV-6 (BINP) electron accelerator and a single detector. Besides tomographic measurements with different phantoms, further experiments were carried out concerning the focal spot size and repeat accuracy of the electron beam as well as the detector's response time and signal to noise ratio. (orig.)

  4. Energy exchange in strongly coupled plasmas with electron drift

    International Nuclear Information System (INIS)

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-01-01

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam

  5. Toroidal electron beam energy storage for controlled fusion

    International Nuclear Information System (INIS)

    Clark, W.; Korn, P.; Mondelli, A.; Rostoker, N.

    1976-01-01

    In the presence of an external magnetic field stable equilibria exist for an unneutralized electron beam with ν/γ >1. As a result, it is in principle, possible to store very large quantities of energy in relatively small volumes by confining an unneutralized electron beam in a Tokamak-like device. The energy is stored principally in the electrostatic and self-magnetic fields associated with the beam and is available for rapid heating of pellets for controlled fusion. The large electrostatic potential well in such a device would be sufficient to contain energetic alpha particles, thereby reducing reactor wall bombardment. This approach also avoids plasma loss and wall bombardment by charge exchange neutrals. The conceptual design of an electrostatic Tokamak fusion reactor (ETFR) is discussed. A small toroidal device (the STP machine) has been constructed to test the principles involved. Preliminary experiments on this device have produced electron densities approximately 10% of those required in a reactor

  6. Medipix 2 detector applied to low energy electron microscopy

    International Nuclear Information System (INIS)

    Gastel, R. van; Sikharulidze, I.; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, S.J. van der

    2009-01-01

    Low energy electron microscopy (LEEM) and photo-emission electron microscopy (PEEM) traditionally use microchannel plates (MCPs), a phosphor screen and a CCD-camera to record images and diffraction patterns. In recent years, however, MCPs have become a limiting factor for these types of microscopy. Here, we report on a successful test series using a solid state hybrid pixel detector, Medipix 2, in LEEM and PEEM. Medipix 2 is a background-free detector with an infinite dynamic range, making it very promising for both real-space imaging and spectroscopy. We demonstrate a significant enhancement of both image contrast and resolution, as compared to MCPs. Since aging of the Medipix 2 detector is negligible for the electron energies used in LEEM/PEEM, we expect Medipix to become the detector of choice for a new generation of systems.

  7. Medipix 2 detector applied to low energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gastel, R. van, E-mail: R.vanGastel@utwente.nl [University of Twente, MESA Institute for Nanotechnology, P.O. Box 217, NL-7500 AE Enschede (Netherlands); Sikharulidze, I. [Leiden University, Leiden Institute of Chemistry, P.O. Box 9502, NL-2300 RA Leiden (Netherlands); Schramm, S. [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands); Abrahams, J.P. [Leiden University, Leiden Institute of Chemistry, P.O. Box 9502, NL-2300 RA Leiden (Netherlands); Poelsema, B. [University of Twente, MESA Institute for Nanotechnology, P.O. Box 217, NL-7500 AE Enschede (Netherlands); Tromp, R.M. [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands); IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Molen, S.J. van der [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands)

    2009-12-15

    Low energy electron microscopy (LEEM) and photo-emission electron microscopy (PEEM) traditionally use microchannel plates (MCPs), a phosphor screen and a CCD-camera to record images and diffraction patterns. In recent years, however, MCPs have become a limiting factor for these types of microscopy. Here, we report on a successful test series using a solid state hybrid pixel detector, Medipix 2, in LEEM and PEEM. Medipix 2 is a background-free detector with an infinite dynamic range, making it very promising for both real-space imaging and spectroscopy. We demonstrate a significant enhancement of both image contrast and resolution, as compared to MCPs. Since aging of the Medipix 2 detector is negligible for the electron energies used in LEEM/PEEM, we expect Medipix to become the detector of choice for a new generation of systems.

  8. Diagnosis and dynamics of low energy electron beams using DIADYN

    International Nuclear Information System (INIS)

    Marghitu, S.; Oproiu, C.; Toader, D.; Ruset, C.; Grigore, E.; Marghitu, O.; Vasiliu, M.

    2008-01-01

    The paper presents original results concerning electron beam diagnosis and dynamics using DIADYN, a low energy (10 - 50 kV), medium intensity (0.1 - 1 A) laboratory equipment. A key stage in the operation of DIADYN is the beam diagnosis, performed by the non-destructive, modified three-gradient method (MTGM). We concentrate on the better use of experimental and computational techniques, in order to improve the consistency of the results. At present, DIADYN is equipped with a hot filament vacuum electron source (VES), consisting of a convergent Pierce diode, working in a pulse mode. Since the plasma electron sources (PES) have a longer lifetime and produce higher beam currents, we discuss the possibility to replace the VES with a PES. Special attention is given to VES results in a functioning regime typical for a low energy glow discharge PES. (authors)

  9. Diagnosis and dynamics of low energy electron beams using DIADYN

    Energy Technology Data Exchange (ETDEWEB)

    Marghitu, S [Electrostatica, ICPE-CA S.A., Spaiul Unirii 313, Sector 3, RO-74204 Bucharest (Romania); Oproiu, C; Toader, D; Ruset, C; Grigore, E [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-36, 409 Atomistilor Street, RO-76900 Bucharest-Magurele (Romania); Marghitu, O [Institute for Space Sciences, INCDLPFR, PO Box MG-23, RO-76911 Bucharest-Magurele (Romania); Vasiliu, M [Politehnica University, 313 Splaiul Independentei, RO-060032, Bucharest (Romania)

    2008-07-01

    The paper presents original results concerning electron beam diagnosis and dynamics using DIADYN, a low energy (10 - 50 kV), medium intensity (0.1 - 1 A) laboratory equipment. A key stage in the operation of DIADYN is the beam diagnosis, performed by the non-destructive, modified three-gradient method (MTGM). We concentrate on the better use of experimental and computational techniques, in order to improve the consistency of the results. At present, DIADYN is equipped with a hot filament vacuum electron source (VES), consisting of a convergent Pierce diode, working in a pulse mode. Since the plasma electron sources (PES) have a longer lifetime and produce higher beam currents, we discuss the possibility to replace the VES with a PES. Special attention is given to VES results in a functioning regime typical for a low energy glow discharge PES. (authors)

  10. Energy Conversion Mechanism for Electron Perpendicular Energy in High Guide-Field Reconnection

    Science.gov (United States)

    Guo, Xuehan; Horiuchi, Ritoku; Kaminou, Yasuhiro; Cheng, Frank; Ono, Yasushi

    2016-10-01

    The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energy, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the electron Larmor radius. Meanwhile, electron perpendicular acceleration takes place manly due to the polarization drift term as well as the curvature drift term of E . u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream. Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  11. Energy Level Alignment at Aqueous GaN and ZnO Interfaces

    Science.gov (United States)

    Hybertsen, Mark S.; Kharche, Neerav; Muckerman, James T.

    2014-03-01

    Electronic energy level alignment at semiconductor-electrolyte interfaces is fundamental to electrochemical activity. Motivated in particular by the search for new materials that can be more efficient for photocatalysis, we develop a first principles method to calculate this alignment at aqueous interfaces and demonstrate it for the specific case of non-polar GaN and ZnO interfaces with water. In the first step, density functional theory (DFT) based molecular dynamics is used to sample the physical interface structure and to evaluate the electrostatic potential step at the interface. In the second step, the GW approach is used to evaluate the reference electronic energy level separately in the bulk semiconductor (valence band edge energy) and in bulk water (the 1b1 energy level), relative to the internal electrostatic energy reference. Use of the GW approach naturally corrects for errors inherent in the use of Kohn-Sham energy eigenvalues to approximate the electronic excitation energies in each material. With this predicted interface alignment, specific redox levels in water, with potentials known relative to the 1b1 level, can then be compared to the semiconductor band edge positions. Our results will be discussed in the context of experiments in which photoexcited GaN and ZnO drive the hydrogen evolution reaction. Research carried out at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.

  12. Cost optimal levels for energy performance requirements

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Aggerholm, Søren; Kluttig-Erhorn, Heike

    This report summarises the work done within the Concerted Action EPBD from December 2010 to April 2011 in order to feed into the European Commission's proposal for a common European procedure for a Cost-Optimal methodology under the Directive on the Energy Performance of Buildings (recast) 2010/3...

  13. Study of optical and electronic properties of nickel from reflection electron energy loss spectra

    Science.gov (United States)

    Xu, H.; Yang, L. H.; Da, B.; Tóth, J.; Tőkési, K.; Ding, Z. J.

    2017-09-01

    We use the classical Monte Carlo transport model of electrons moving near the surface and inside solids to reproduce the measured reflection electron energy-loss spectroscopy (REELS) spectra. With the combination of the classical transport model and the Markov chain Monte Carlo (MCMC) sampling of oscillator parameters the so-called reverse Monte Carlo (RMC) method was developed, and used to obtain optical constants of Ni in this work. A systematic study of the electronic and optical properties of Ni has been performed in an energy loss range of 0-200 eV from the measured REELS spectra at primary energies of 1000 eV, 2000 eV and 3000 eV. The reliability of our method was tested by comparing our results with the previous data. Moreover, the accuracy of our optical data has been confirmed by applying oscillator strength-sum rule and perfect-screening-sum rule.

  14. Secondary Electrons as an Energy Source for Life.

    Science.gov (United States)

    Stelmach, Kamil B; Neveu, Marc; Vick-Majors, Trista J; Mickol, Rebecca L; Chou, Luoth; Webster, Kevin D; Tilley, Matt; Zacchei, Federica; Escudero, Cristina; Flores Martinez, Claudio L; Labrado, Amanda; Fernández, Enrique J G

    2018-01-01

    Life on Earth is found in a wide range of environments as long as the basic requirements of a liquid solvent, a nutrient source, and free energy are met. Previous hypotheses have speculated how extraterrestrial microbial life may function, among them that particle radiation might power living cells indirectly through radiolytic products. On Earth, so-called electrophilic organisms can harness electron flow from an extracellular cathode to build biomolecules. Here, we describe two hypothetical mechanisms, termed "direct electrophy" and "indirect electrophy" or "fluorosynthesis," by which organisms could harness extracellular free electrons to synthesize organic matter, thus expanding the ensemble of potential habitats in which extraterrestrial organisms might be found in the Solar System and beyond. The first mechanism involves the direct flow of secondary electrons from particle radiation to a microbial cell to power the organism. The second involves the indirect utilization of impinging secondary electrons and a fluorescing molecule, either biotic or abiotic in origin, to drive photosynthesis. Both mechanisms involve the attenuation of an incoming particle's energy to create low-energy secondary electrons. The validity of the hypotheses is assessed through simple calculations showing the biomass density attainable from the energy supplied. Also discussed are potential survival strategies that could be used by organisms living in possible habitats with a plentiful supply of secondary electrons, such as near the surface of an icy moon. While we acknowledge that the only definitive test for the hypothesis is to collect specimens, we also describe experiments or terrestrial observations that could support or nullify the hypotheses. Key Words: Radiation-Electrophiles-Subsurface life. Astrobiology 18, 73-85.

  15. Secondary Electrons as an Energy Source for Life

    Science.gov (United States)

    Stelmach, Kamil B.; Neveu, Marc; Vick-Majors, Trista J.; Mickol, Rebecca L.; Chou, Luoth; Webster, Kevin D.; Tilley, Matt; Zacchei, Federica; Escudero, Cristina; Flores Martinez, Claudio L.; Labrado, Amanda; Fernández, Enrique J. G.

    2018-01-01

    Life on Earth is found in a wide range of environments as long as the basic requirements of a liquid solvent, a nutrient source, and free energy are met. Previous hypotheses have speculated how extraterrestrial microbial life may function, among them that particle radiation might power living cells indirectly through radiolytic products. On Earth, so-called electrophilic organisms can harness electron flow from an extracellular cathode to build biomolecules. Here, we describe two hypothetical mechanisms, termed "direct electrophy" and "indirect electrophy" or "fluorosynthesis," by which organisms could harness extracellular free electrons to synthesize organic matter, thus expanding the ensemble of potential habitats in which extraterrestrial organisms might be found in the Solar System and beyond. The first mechanism involves the direct flow of secondary electrons from particle radiation to a microbial cell to power the organism. The second involves the indirect utilization of impinging secondary electrons and a fluorescing molecule, either biotic or abiotic in origin, to drive photosynthesis. Both mechanisms involve the attenuation of an incoming particle's energy to create low-energy secondary electrons. The validity of the hypotheses is assessed through simple calculations showing the biomass density attainable from the energy supplied. Also discussed are potential survival strategies that could be used by organisms living in possible habitats with a plentiful supply of secondary electrons, such as near the surface of an icy moon. While we acknowledge that the only definitive test for the hypothesis is to collect specimens, we also describe experiments or terrestrial observations that could support or nullify the hypotheses.

  16. Observation of second harmonics in laser-electron scattering using low energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Iinuma, Masataka [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)]. E-mail: iinuma@hiroshima-u.ac.jp; Matsukado, Koji [Venture Business Laboratory, Hiroshima University, 1-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Endo, Ichita [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Hashida, Masaki [Institute for chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hayashi, Kenji [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Kohara, Akitsugu [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Matsumoto, Fumihiko [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Nakanishi, Yoshitaka [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Sakabe, Shuji [Institute for chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Shimizu, Seiji [Institute for chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tauchi, Toshiaki [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yamamoto, Ken [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Takahashi, Tohru [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)

    2005-10-17

    We observed photon generation in the second harmonic region in collisions of 10 keV free electrons and the intense laser beam with the peak intensity of 4.0x10{sup 15} W/cm{sup 2}. Observed photon yield was 3 orders of magnitude higher than expectation from the nonlinear Compton scattering. The observation indicates necessity of further investigation for the interaction between the intense laser field and the low energy electron beam.

  17. Energy efficient hotspot-targeted embedded liquid cooling of electronics

    International Nuclear Information System (INIS)

    Sharma, Chander Shekhar; Tiwari, Manish K.; Zimmermann, Severin; Brunschwiler, Thomas; Schlottig, Gerd; Michel, Bruno; Poulikakos, Dimos

    2015-01-01

    Highlights: • We present a novel concept for hotspot-targeted, energy efficient ELC for electronic chips. • Microchannel throttling zones distribute flow optimally without any external control. • Design is optimized for highly non-uniform multicore chip heat flux maps. • Optimized design minimizes chip temperature non-uniformity. • This is achieved with pumping power consumption less than 1% of total chip power. - Abstract: Large data centers today already account for nearly 1.31% of total electricity consumption with cooling responsible for roughly 33% of that energy consumption. This energy intensive cooling problem is exacerbated by the presence of hotspots in multicore microprocessors due to excess coolant flow requirement for thermal management. Here we present a novel liquid-cooling concept, for targeted, energy efficient cooling of hotspots through passively optimized microchannel structures etched into the backside of a chip (embedded liquid cooling or ELC architecture). We adopt an experimentally validated and computationally efficient modeling approach to predict the performance of our hotspot-targeted ELC design. The design is optimized for exemplar non-uniform chip power maps using Response Surface Methodology (RSM). For industrially acceptable limits of approximately 0.4 bar (40 kPa) on pressure drop and one percent of total chip power on pumping power, the optimized designs are computationally evaluated against a base, standard ELC design with uniform channel widths and uniform flow distribution. For an average steady-state heat flux of 150 W/cm 2 in core areas (hotspots) and 20 W/cm 2 over remaining chip area (background), the optimized design reduces the maximum chip temperature non-uniformity by 61% to 3.7 °C. For a higher average, steady-state hotspot heat flux of 300 W/cm 2 , the maximum temperature non-uniformity is reduced by 54% to 8.7 °C. It is shown that the base design requires a prohibitively high level of pumping power (about

  18. Energy-Filtered Tunnel Transistor: A New Device Concept Toward Extremely-Low Energy Consumption Electronics

    Science.gov (United States)

    2015-12-17

    other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a...excellent agreement with experimental findings. The energy filtering has been applied to single-electron transport and clear Coulomb staircases and... Coulomb oscillations have been demonstrated at room temperature. A new architecture of energy-filtered cold electron transistors has been designed and

  19. Nicotine and Cotinine Levels With Electronic Cigarette: A Review.

    Science.gov (United States)

    Marsot, A; Simon, N

    2016-01-01

    Since their introduction in 2004, electronic cigarettes (e-cigarettes) have gained popularity worldwide. E-cigarettes are marketed as nicotine delivery devices. Commonly reported reasons for use include to quit smoking, to reduce urge to smoke, or the perceived lower risk alternative to smoking. But what are the actual amounts of nicotine delivered? This review summarizes all the published studies concerning nicotine or cotinine levels following e-cigarette use. A literature search was conducted from the PubMed database, from 1985 to January 2014, using the following terms: electronic cigarette(s), e-cigarette(s), electronic nicotine delivery system, cotinine, and nicotine. Articles were excluded if they were not pertinent according to our criteria. References of all relevant articles were also evaluated. Eight studies were included in this review. The following information was extracted from the articles: population size, age of participants, recruitment, inclusion and exclusion criteria, concentration of nicotine in refills liquids, study sample design, and observed concentrations. Following design of studies, plasma nicotine Cmax was observed between 0 and 5 ng/mL (no significant changes) or between 13.9 and 16.3 ng/mL (similar to a tobacco cigarette) with a Tmax between 70 and 75 minutes. Cotinine levels after "vaping" an e-cigarette are similar to a tobacco cigarette. This review summarizes e-cigarette studies that contain information on nicotine or cotinine levels. The peak concentration of nicotine appears to be dependent on the use and dose level of e-cigarette cartridge. The value of this peak concentration is similar to the value found with a tobacco cigarette. However, the time corresponding to the peak concentration is delayed compared to a tobacco cigarette. © The Author(s) 2015.

  20. Energy of ground state of laminar electron-hole liquid

    International Nuclear Information System (INIS)

    Andryushin, E.A.

    1976-01-01

    The problem of a possible existence of metal electron-hole liquid in semiconductors is considered. The calculation has been carried out for the following model: two parallel planes are separated with the distance on one of the planes electrons moving, on the other holes doing. Transitions between the planes are forbidden. The density of particles for both planes is the same. The energy of the ground state and correlation functions for such electron-and hole system are calculated. It is shown that the state of a metal liquid is more advantageous against the exciton gas. For the mass ratio of electrons and holes, msub(e)/msub(h) → 0 a smooth rearrangement of the system into a state with ordered heavy particles is observed

  1. Disinfection of wastewaters: high-energy electron vs gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, S [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Civil Engineering; Kurucz, C N; Waite, T D [Miami Univ., Coral Gables, FL (United States); Cooper, W J [Florida International Univ., Miami, FL (United States). Drinking Water Research Center

    1993-07-01

    A study was undertaken to examine the sensitivity of a wastewater population of coliphage, total coliforms and total flora present in raw sewage and secondary effluent after irradiating with similar doses delivered by a high-energy electron beam and [gamma]-radiation. The electron beam study was conducted on a large scale at the Virginia Key Wastewater Treatment Plant, Miami, Florida. The facility is equipped with a 1.5 MeV, 50 mA electron accelerator, with a wastewater flow rate of 8ls[sup -1]. Concurrent [gamma]-radiation studies were conducted at laboratory scale using a 5000 Ci, [sup 60]Co [gamma]-source. Three logs reduction of all three test organisms were observed at an electron beam dose of 500 krads, while at least four logs reduction were observed at the same dose utilizing the [gamma]'source. (Author).

  2. Controlled cooling of an electronic system for reduced energy consumption

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  3. Plasma Jet Braking: Energy Dissipation and Nonadiabatic Electrons

    International Nuclear Information System (INIS)

    Khotyaintsev, Yu. V.; Cully, C. M.; Vaivads, A.; Andre, M.; Owen, C. J.

    2011-01-01

    We report in situ observations by the Cluster spacecraft of wave-particle interactions in a magnetic flux pileup region created by a magnetic reconnection outflow jet in Earth's magnetotail. Two distinct regions of wave activity are identified: lower-hybrid drift waves at the front edge and whistler-mode waves inside the pileup region. The whistler-mode waves are locally generated by the electron temperature anisotropy, and provide evidence for ongoing betatron energization caused by magnetic flux pileup. The whistler-mode waves cause fast pitch-angle scattering of electrons and isotropization of the electron distribution, thus making the flow braking process nonadiabatic. The waves strongly affect the electron dynamics and thus play an important role in the energy conversion chain during plasma jet braking.

  4. Controlled cooling of an electronic system for reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2018-01-30

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  5. Energy-weighted dynamical scattering simulations of electron diffraction modalities in the scanning electron microscope.

    Science.gov (United States)

    Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De

    2018-04-01

    Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Radiation from silver films bombarded by low-energy electrons

    International Nuclear Information System (INIS)

    Chung, M.S.; Callcott, T.A.; Kretschmann, E.; Arakawa, E.T.

    1980-01-01

    Emission spectra from Ag films irradiated by low energy electrons (20-1500 eV) have been measured, and the results compared with theory. For relatively smooth films, two peaks in the spectra are resolved. One at 3.73 eV, the volume plasmon energy, is attributed to transition radiation and/or bremsstrahlung. The second, at about 3.60 eV, is very sensitive to surface roughness in both position and magnitude and is produced by roughness-coupled radiation from surface plasmons. For rough films, the roughness-coupled radiation dominates the emission. In addition to spectral shapes, the polarization of the radiation and its intensity as a function of electron energy were measured. The experimental results are compared with new calculations of roughness-coupled emission which account for most of our observations. They indicate that high wavevector roughness components play the dominant role in the emission process. (orig.)

  7. Electron energy confinement in ELMO Bumpy Torus (EBT)

    International Nuclear Information System (INIS)

    Hiroe, S.; Haste, G.R.; Dandl, R.A.

    1979-06-01

    Using a calibrated, solid-state, soft x-ray detector, the electron temperature and density have been measured over a wide range of operating conditions of ELMO Bumpy Torus (EBT). The empirical relations of the temperature or the density to the microwave power and the ambient pressure have been determined. The toroidally stored energy has been observed to increase as the stored energy of the hot electron annulus increases. The energy confinement time has been obtained for various plasma parameters and has been found to agree with the neoclassical theory. The advantages of EBT collisionless scaling for fusion plasma confinement have been noted, i.e., n/sub e/tau/sub E/ increases as T/sub e/ 1 5 in the collisionless regime

  8. Precision measurements of high-energy conversion electron lines and determination of neutron binding energies

    International Nuclear Information System (INIS)

    Braumandl, F.

    1979-01-01

    The paper first discusses the energy accuracy of the BILL conversion electron spectrometer at the Grenoble high flux reactor. With an improved temperature stabilisation of the magnets, an energy accuracy of ΔE/E -5 can be reached. After this, highly exact measurements of high-energy conversion electron lines of the 200 Hg, 114 Cd, 165 Dy, 168 Er, 239 U nuclei and the 13 C, 28 Al 3 H and 92 Zr photoelectron lines were carried out. Energy calibration of the spectrometer was carried out in the 1.5 MeV to 6.5 MeV range with intensive high-energy transitions of the 200 Hg nucleus. Systematic calibration errors could be investigated by means of combinations between the calibration lines. A calibration for absolute energies was obtained by comparing low-energy gamma transitions of 200 Hg with the 411.8 keV gold standard. (orig.) [de

  9. Power Electronics as Efficient Interface of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Kjær, Søren Bækhøj

    2004-01-01

    The global electrical energy consumption is steadily rising and consequently there is a demand to increase the power generation capacity. A significant percentage of the required capacity increase can be based on renewable energy sources. Wind turbine technology, as the most cost effective...... renewable energy conversion system, will play an important part in our future energy supply. But other sources like microturbines, photovoltaics and fuel cell systems may also be serious contributor to the power supply. Characteristically, power electronics will be an efficient and important interface...... to the grid and this paper will first briefly discuss three different alternative/ renewable energy sources. Next, various configurations of the wind turbine technology are presented, as this technology seems to be most developed and cost-effective. Finally, the developments and requirements from the grid...

  10. Measuring the electron beam energy in a magnetic bunch compressor

    International Nuclear Information System (INIS)

    Hacker, Kirsten

    2010-09-01

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 μm precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  11. Electronic energy loss of fast molecules in matter

    International Nuclear Information System (INIS)

    Steinbeck, J.

    1975-06-01

    In high velocity collisions of molecular ions the correlated motion influence of the ion cores on the electronic energy loss is investigated. The stopping power in first Born approximation for a random arrangement of target atoms can be formulated in terms of the inelastic electronic structure factor. In treating the target atoms in Hartree-Fock approximation each electron can be regarded as stopping the ion independent of all other electrons without restriction by the Pauli principle. A second equivalent formulation of the stopping power leads to the dielectric function of the target. The results are applied to the stopping of H 2 + -ions. For vanishing distance between the two protons the stopping power per particle is twice that for single proton collisions. For distances in the order of the Bohr radius the correlated stopping power may even be smaller than for uncorrelated protons. With increasing distances the correlation influence vanishes. The stopping of H 2 + -ions in C, Si and Ge is discussed using Clementi wave functions for the core electrons and a free electron approximation with Lindhard's dielectric function for the valence electrons. The comparison with the only experimental result available for H 2 + in C at 300 keV yields qualitative agreement. (orig.) [de

  12. Energy security issues at household level in India

    International Nuclear Information System (INIS)

    Jain, Garima

    2010-01-01

    Energy security at the household level implies ensuring assured and regular supply of clean energy fuels at an affordable price for various household activities. Threat to physical availability of clean energy fuels for cooking and lighting is determined through various indicators such as dependence on traditional fuels and limited access to clean fuels. Energy insecurity translates into various adverse social impacts. Financial threat to energy security is indicated by expenses incurred on energy fuels and affordability of clean fuels. Households spend a major portion of their income on acquiring energy fuels; however, due to high price of clean fuels, they continue to depend on traditional and inefficient fuels. There is an urgent need to address factors that pose a threat to energy security at the household level. In this regard, measures taken by the government agencies and other institutions are also reviewed. The paper also suggests the regulatory and policy interventions required to address the energy security issues at the household level.

  13. Fine-structure energy levels, oscillator strengths and lifetimes

    Indian Academy of Sciences (India)

    We have done relativistic calculations for the evaluation of energy levels, oscillator strengths, transition probabilities and lifetimes for Cr VIII ion. Use has been made of configuration interaction technique by including Briet–Pauli approximation. The energies of various levels from the ground state to excited levels of 3s3p6, ...

  14. Higher order corrections to energy levels of muonic atoms

    International Nuclear Information System (INIS)

    Rinker, G.A. Jr.; Steffen, R.M.

    1975-08-01

    In order to facilitate the analysis of muonic x-ray spectra, the results of numerical computations of all higher order quantum electrodynamical corrections to the energy levels of muonic atoms are presented in tabular and graphical form. These corrections include the vacuum polarization corrections caused by emission and reabsorption of virtual electron pairs to all orders, including ''double-bubble'' and ''cracked-egg'' diagrams. An estimate of the Delbruecke scattering-type correction is presented. The Lamb-shift (second- and fourth-order vertex) corrections have been calculated including the correction for the anomalous magnetic moment of the muon. The relativistic nuclear motion (or recoil) correction as well as the correction caused by the screening of the atomic electrons is presented in graphs. For the sake of completeness a graph of the nuclear polarization as computed on the basis of Chen's approach has been included. All calculations were made with a two-parameter Fermi distribution of the nuclear charge density. 7 figures, 23 references

  15. Dependence of Xmax and multiplicity of electron and muon on different high energy interaction models

    Directory of Open Access Journals (Sweden)

    G Rastegarzadeh

    2010-06-01

    Full Text Available Different high energy interaction models are the applied in CORSIKA code to simulate Extensive Air Showers (EAS generated by Cosmic Rays (CR. In this work the effects of QGSJET01, QGSJETII, DPMJET, SIBYLL models on Xmax and multiplicity of secondary electrons and muons at observation level are studied.

  16. Low-Energy Electron Scattering by Sugarcane Lignocellulosic Biomass Molecules

    Science.gov (United States)

    Oliveira, Eliane; Sanchez, Sergio; Bettega, Marcio; Lima, Marco; Varella, Marcio

    2012-06-01

    The use of second generation (SG) bioethanol instead of fossil fuels could be a good strategy to reduce greenhouse gas emissions. However, the efficient production of SG bioethanol has being a challenge to researchers around the world. The main barrier one must overcome is the pretreatment, a very important step in SG bioethanol aimed at breaking down the biomass and facilitates the extraction of sugars from the biomass. Plasma-based treatment, which can generate reactive species, could be an interesting possibility since involves low-cost atmospheric-pressure plasma. In order to offer theoretical support to this technique, the interaction of low-energy electrons from the plasma with biomass is investigated. This study was motived by several works developed by Sanche et al., in which they understood that DNA damage arises from dissociative electron attachment, a mechanism in which electrons are resonantly trapped by DNA subunits. We will present elastic cross sections for low-energy electron scattering by sugarcane biomass molecules, obtained with the Schwinger multichannel method. Our calculations indicate the formation of π* shape resonances in the lignin subunits, while a series of broad and overlapping σ* resonances are found in cellulose and hemicellulose subunits. The presence of π* and σ* resonances could give rise to direct and indirect dissociation pathways in biomass. Then, theoretical resonance energies can be useful to guide the plasma-based pretreatment to break down specific linkages of interest in biomass.

  17. New energy level identifications in Kr VI

    International Nuclear Information System (INIS)

    Tauheed, A.; Pinnington, E.H.; Ansbacher, W.; Kernahan, J.A.

    1990-01-01

    Beam-foil delayed spectra from 89.0 to 101.0 nm are used to identify the intercombination lines connecting the 4s4p 2 4 P and 4s 2 4p 2 P levels in Kr VI. The existing analysis is extended to include the 4s 2 5s 2 S 1/2 , 4f 2 F 5/2 , 2 F 7/2 , 4p 3 2 D 3/2 , 2 D 5/2 , 2 P 3/2 , 4 S 3/2 and 4s4p 2 4 P 1/2 , 4 P 3/2 , 4 P 5/2 levels. Lifetime measurements for the 4s4p 2 4 P 1/2 , 4 P 5/2 , 4p 3 2 D 3/2 and 2 D 5/2 levels are also discussed in support of these assignments. (orig.)

  18. Application of low energy electron beam to precoated steel plates

    International Nuclear Information System (INIS)

    Koshiishi, Kenji

    1989-01-01

    Recently in the fields of home electric appliances, machinery and equipment and interior building materials, the needs for the precoated steel plates having the design and function of high class increase rapidly. In order to cope with such needs, the authors have advanced the examination on the application of electron beam hardening technology to precoated steel plates, and developed the precoated steel plates of high grade and high design 'Super Tecstar EB Series' by utilizing low energy electron beam. The features of this process are (1) hardening can be done at room temperature in a short time-thermally weak films can be adhered, (2) high energy irradiation-the hardening of thick enamel coating and the adhesion of colored films are feasible, (3) the use of monomers of low molecular weight-by high crosslinking, the performance of high sharpness, high hardness, anti-contamination property and so on can be given. The application to precoated steel plate production process is the coating and curing of electron beam hardening type paints, the coating of films with electron beam hardening type adhesives, and the reforming of surface polymer layers by impregnating monomers and causing graft polymerization with electron beam irradiation. The outline of the Super Tecstar EB Series is described. (K.I.)

  19. Potential ceramics processing applications with high-energy electron beams

    International Nuclear Information System (INIS)

    Struve, K.W.; Turman, B.N.

    1993-01-01

    High-energy, high-current electron beams may offer unique features for processing of ceramics that are not available with any other heat source. These include the capability to instantaneously heat to several centimeters in depth, to preferentially deposit energy in dense, high-z materials, to process at atmospheric pressures in air or other gases, to have large control over heating volume and heating rate, and to have efficient energy conversion. At a recent workshop organized by the authors to explore opportunities for electron beam processing of ceramics, several applications were identified for further development. These were ceramic joining, fabrication of ceramic powders, and surface processing of ceramics. It may be possible to join ceramics by either electron-beam brazing or welding. Brazing with refractory metals might also be feasible. The primary concern for brazing is whether the braze material can wet to the ceramic when rapidly heated by an electron beam. Raw ceramic powders, such as silicon nitride and aluminum nitride, which are difficult to produce by conventional techniques, could possibly be produced by vaporizing metals in a nitrogen atmosphere. Experiments need to be done to verify that the vaporized metal can fully react with the nitrogen. By adjusting beam parameters, high-energy beams can be used to remove surface flaws which are often sites of fracture initiation. They can also be used for surface cleaning. The advantage of electron beams rather than ion beams for this application is that the heat deposition can be graded into the material. The authors will discuss the capabilities of beams from existing machines for these applications and discuss planned experiments

  20. Silicon passivation study under low energy electron irradiation conditions

    International Nuclear Information System (INIS)

    Cluzel, R.

    2010-01-01

    Backside illuminated thinned CMOS (Complementary Metal Oxide Semiconductor) imaging system is a technology developed to increase the signal to noise ratio and the sensibility of such sensors. This configuration is adapted to the electrons detection from the energy range of [1 - 12 keV]. The impinging electron creates by multiplication several hundreds of secondary electrons close to the surface. A P ++ highly-doped passivation layer of the rear face is required to reduce the secondary electron surface recombination rate. Thanks to the potential barrier induced by the P ++ layer, the passivation layer increases the collected charges number and so the sensor collection gain. The goal of this study is to develop some experimental methods in order to determine the effect of six different passivation processes on the collection gain. Beforehand, the energy profile deposited by an incident electron is studied with the combination of Monte-Carlo simulations and some analytical calculations. The final collection gain model shows that the mirror effect from the passivation layer is a key factor at high energies whereas the passivation layer has to be as thin as possible at low energies. A first experimental setup which consists in irradiating P ++ /N large diodes allows to study the passivation process impacts on the surface recombinations. Thanks to a second setup based on a single event upset directly on thinned CMOS sensor, passivation techniques are discriminated in term of mirror effect and the implied spreading charges. The doping atoms activation laser annealing is turn out to be a multiplication gain inhomogeneity source impacting directly the matrix uniformity. (author)

  1. The role of secondary electrons in some experiments determining fluorescence emission from nitrogen C3Πu levels

    International Nuclear Information System (INIS)

    Blanco, F.; Arqueros, F.

    2005-01-01

    The processes involved in fluorescence emission from C 3 Π u levels of N 2 molecule by electron impact are studied. Secondary electrons are shown to play an important role in typical experiments for the measurement of emission cross sections and fluorescence yields, dominating at high impact energies. A simple model is proposed which accounts for fluorescence measurements in a wide range of experimental conditions, and in particular for some recent results up to 1 GeV energies

  2. Inverse planning of energy-modulated electron beams in radiotherapy

    International Nuclear Information System (INIS)

    Gentry, John R.; Steeves, Richard; Paliwal, Bhudatt A.

    2006-01-01

    The use of megavoltage electron beams often poses a clinical challenge in that the planning target volume (PTV) is anterior to other radiosensitive structures and has variable depth. To ensure that skin as well as the deepest extent of the PTV receives the prescribed dose entails prescribing to a point beyond the depth of peak dose for a single electron energy. This causes dose inhomogeneities and heightened potential for tissue fibrosis, scarring, and possible soft tissue necrosis. Use of bolus on the skin improves the entrant dose at the cost of decreasing the therapeutic depth that can be treated. Selection of a higher energy to improve dose homogeneity results in increased dose to structures beyond the PTV, as well as enlargement of the volume receiving heightened dose. Measured electron data from a linear accelerator was used as input to create an inverse planning tool employing energy and intensity modulation using bolus (e-IMRT TM ). Using tools readily available in a radiotherapy department, the applications of energy and intensity modulation on the central axis makes it possible to remove hot spots of 115% or more over the depths clinically encountered. The e-IMRT TM algorithm enables the development of patient-specific dose distributions with user-defined positions of peak dose, range, and reduced dose to points beyond the prescription point

  3. Shielding for high energy, high intensity electron accelerator installation

    International Nuclear Information System (INIS)

    Warawas, C.; Chongkum, S.

    1997-03-01

    The utilization of electron accelerators (eBA) is gradually increased in Thailand. For instance, a 30-40 MeV eBA are used for tumor and cancer therapy in the hospitals, and a high current eBA in for gemstone colonization. In the near future, an application of eBA in industries will be grown up in a few directions, e.g., flue gases treatment from the coal fire-power plants, plastic processing, rubber vulcanization and food preservation. It is the major roles of Office of Atomic Energy for Peace (OAEP) to promote the peaceful uses of nuclear energy and to regulate the public safety and protection of the environment. By taking into account of radiation safety aspect, high energy electrons are not only harmful to human bodies, but the radioactive nuclides can be occurred. This report presents a literature review by following the National Committee on Radiation Protection and Measurements (NCRP) report No.31. This reviews for parametric calculation and shielding design of the high energy (up to 100 MeV), high intensity electron accelerator installation

  4. Energy principle for excitations in plasmas with counterstreaming electron flows

    Science.gov (United States)

    Kumar, Atul; Shukla, Chandrasekhar; Das, Amita; Kaw, Predhiman

    2018-05-01

    A relativistic electron beam propagating through plasma induces a return electron current in the system. Such a system of interpenetrating forward and return electron current is susceptible to a host of instabilities. The physics of such instabilities underlies the conversion of the flow kinetic energy to the electromagnetic field energy. Keeping this in view, an energy principle analysis has been enunciated in this paper. Such analyses have been widely utilized earlier in the context of conducting fluids described by MHD model [I. B. Bernstein et al., Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 244(1236), 17-40 (1958)]. Lately, such an approach has been employed for the electrostatic two stream instability for the electron beam plasma system [C. N. Lashmore-Davies, Physics of Plasmas 14(9), 092101 (2007)]. In contrast, it has been shown here that even purely growing mode like Weibel/current filamentation instability for the electron beam plasma system is amenable to such a treatment. The treatment provides an understanding of the energetics associated with the growing mode. The growth rate expression has also been obtained from it. Furthermore, it has been conclusively demonstrated in this paper that for identical values of S4=∑αn0 αv0α 2/n0γ0 α, the growth rate is higher when the counterstreaming beams are symmetric (i.e. S3 = ∑αn0αv 0α/n0γ0α = 0) compared to the case when the two beams are asymmetric (i.e. when S3 is finite). Here, v 0α, n0α and γ0α are the equilibrium velocity, electron density and the relativistic factor for the electron species `α' respectively and n0 = ∑αn0α is the total electron density. Particle - In - Cell simulations have been employed to show that the saturated amplitude of the field energy is also higher in the symmetric case.

  5. Radiation degradation of marine polysaccharides by low energy electron beam

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Nagasawa, Naotsugu; Kume, Tamikazu

    2003-01-01

    The radiation degradations of marine polysaccharides by both gamma Co-60 and electron beam irradiations are investigated. Polysaccharides and oligosaccharides can be produced by degradation of corresponding polysaccharides including marine polysaccharides such as alginates, chitin chitosan and carrageenan. The viscosity of alginate, chitosan and carrageenan solution decreases markedly with increase of the low energy electron beam irradiation time and the beam current. Furthermore, the viscosity is reduced sharply in short time for polysaccharide solution with low concentration, for instance carrageenan solution of 1%. (author)

  6. Energy spectra from coupled electron-photon slowing down

    International Nuclear Information System (INIS)

    Beck, H.L.

    1976-08-01

    A coupled electron-photon slowing down calculation for determining electron and photon track length in uniform homogeneous media is described. The method also provides fluxes for uniformly distributed isotropic sources. Source energies ranging from 10 keV to over 10 GeV are allowed and all major interactions are treated. The calculational technique and related cross sections are described in detail and sample calculations are discussed. A listing of the Fortran IV computer code used for the calculations is also included. 4 tables, 7 figures, 16 references

  7. Introduction to the theory of low-energy electron diffraction

    International Nuclear Information System (INIS)

    Fingerland, A.; Tomasek, M.

    1975-01-01

    An elementary introduction to the basic principles of the theory of low-energy electron diffraction is presented. General scattering theory is used to classify the hitherto known approaches to the problem (optical potential and one-electron approximation; formal scattering theory: Born expansion and multiple scattering; translational symmetry: Ewald construction; classification of LEED theories by means of the T matrix; pseudokinematical theory for crystal with clean surface and with an adsorbed monomolecular layer; dynamical theory; inclusion of inelastic collisions; discussion of a simple example by means of the band-structure approach)

  8. Low-energy electron scattering from molecules, biomolecules and surfaces

    CERN Document Server

    Carsky, Petr

    2011-01-01

    Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. Furthermore, the development of the scanning tunneling microscope highlights the role of such collisions in the condensed phase, in surface processing, and in the development of nanotechnology.Low-Energy Electron Scattering from Molecules, Biomolecule

  9. Low energy electron beams for industrial and environmental applications

    CERN Document Server

    Skarda, Vlad

    2017-01-01

    EuCARD-2 Workshop, 8-9 December 2016, Warsaw, Poland. Organizers: Science and Technology Facilities Council, UK CERN - The European Organization for Nuclear Research, Switzerland, Institute of Nuclear Chemistry and Technology, Poland, Fraunhofer Institute for Electron Beam and Plasma Technology, Germany, Warsaw University of Technology, Poland. An article presents short information about EuCARD-2 Workshop “Low energy electron beams for industrial and environmental applications”, which was held in December 2016 in Warsaw. Objectives, main topics and expected output of meeting are described. List of organizers is included.

  10. Full counting statistics of level renormalization in electron transport through double quantum dots

    International Nuclear Information System (INIS)

    Luo Junyan; Shen Yu; Cen Gang; He Xiaoling; Wang Changrong; Jiao Hujun

    2011-01-01

    We examine the full counting statistics of electron transport through double quantum dots coupled in series, with particular attention being paid to the unique features originating from level renormalization. It is clearly illustrated that the energy renormalization gives rise to a dynamic charge blockade mechanism, which eventually results in super-Poissonian noise. Coupling of the double dots to an external heat bath leads to dephasing and relaxation mechanisms, which are demonstrated to suppress the noise in a unique way.

  11. Component-Level Electronic-Assembly Repair (CLEAR) System Architecture

    Science.gov (United States)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.

    2011-01-01

    This document captures the system architecture for a Component-Level Electronic-Assembly Repair (CLEAR) capability needed for electronics maintenance and repair of the Constellation Program (CxP). CLEAR is intended to improve flight system supportability and reduce the mass of spares required to maintain the electronics of human rated spacecraft on long duration missions. By necessity it allows the crew to make repairs that would otherwise be performed by Earth based repair depots. Because of practical knowledge and skill limitations of small spaceflight crews they must be augmented by Earth based support crews and automated repair equipment. This system architecture covers the complete system from ground-user to flight hardware and flight crew and defines an Earth segment and a Space segment. The Earth Segment involves database management, operational planning, and remote equipment programming and validation processes. The Space Segment involves the automated diagnostic, test and repair equipment required for a complete repair process. This document defines three major subsystems including, tele-operations that links the flight hardware to ground support, highly reconfigurable diagnostics and test instruments, and a CLEAR Repair Apparatus that automates the physical repair process.

  12. Low-dose electron energy-loss spectroscopy using electron counting direct detectors.

    Science.gov (United States)

    Maigné, Alan; Wolf, Matthias

    2018-03-01

    Since the development of parallel electron energy loss spectroscopy (EELS), charge-coupled devices (CCDs) have been the default detectors for EELS. With the recent development of electron-counting direct-detection cameras, micrographs can be acquired under very low electron doses at significantly improved signal-to-noise ratio. In spectroscopy, in particular in combination with a monochromator, the signal can be extremely weak and the detection limit is principally defined by noise introduced by the detector. Here we report the use of an electron-counting direct-detection camera for EEL spectroscopy. We studied the oxygen K edge of amorphous ice and obtained a signal noise ratio up to 10 times higher than with a conventional CCD.We report the application of electron counting to record time-resolved EEL spectra of a biological protein embedded in amorphous ice, revealing chemical changes observed in situ while exposed by the electron beam. A change in the fine structure of nitrogen K and the carbon K edges were recorded during irradiation. A concentration of 3 at% nitrogen was detected with a total electron dose of only 1.7 e-/Å2, extending the boundaries of EELS signal detection at low electron doses.

  13. Electron energy distribution function, effective electron temperature, and dust charge in the temporal afterglow of a plasma

    International Nuclear Information System (INIS)

    Denysenko, I. B.; Azarenkov, N. A.; Kersten, H.

    2016-01-01

    Analytical expressions describing the variation of electron energy distribution function (EEDF) in an afterglow of a plasma are obtained. Especially, the case when the electron energy loss is mainly due to momentum-transfer electron-neutral collisions is considered. The study is carried out for different EEDFs in the steady state, including Maxwellian and Druyvesteyn distributions. The analytical results are not only obtained for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy but also for the case when the collisions are a power function of electron energy. Using analytical expressions for the EEDF, the effective electron temperature and charge of the dust particles, which are assumed to be present in plasma, are calculated for different afterglow durations. An analytical expression for the rate describing collection of electrons by dust particles for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy is also derived. The EEDF profile and, as a result, the effective electron temperature and dust charge are sufficiently different in the cases when the rate for momentum-transfer electron-neutral collisions is independent on electron energy and when the rate is a power function of electron energy.

  14. Low energy intense electron beams with extra-low energy spread

    International Nuclear Information System (INIS)

    Aleksandrov, A.V.; Calabrese, R.; Ciullo, G.; Dikansky, N.S.; Guidi, V.; Kot, N.C.; Kudelainen, V.I.; Lamanna, G.; Lebedev, V.A.; Logachov, P.V.; Tecchio, L.; Yang, B.

    1994-01-01

    Maximum achievable intensity for low energy electron beams is a feature that is not very often compatible with low energy spread. We show that a proper choice of the source and the acceleration optics allows one to match them together. In this scheme, a GaAs photocathode excited by a single-mode infrared laser and adiabatic acceleration in fully magnetised optics enables the production of a low-energy-spread electron beam with relatively high intensity. The technological problems associated with the method are discussed together with its limitations. (orig.)

  15. Energy consumption of SO2 removal from humid air under electron beam and electric field influence

    International Nuclear Information System (INIS)

    Nichipor, H.; Radjuk, E.; Chmielewski, A.G.; Zimek, Z.

    1998-01-01

    The kinetic of SO 2 oxidation in humid air under influence of electron beam and electrical field was investigated by computer simulation method in steady state and pulse mode. SO 2 oxidation process was stimulated by radical and ion reactions. The calculation model has included 46 different particles and 160 chemical reactions. Gas mixture containing 1000 ppm of SO 2 concentration was investigated at temperature T=67 deg. C and pressure p=1 at. Water content was within the range 2-12%. Electron beam parameters were as follows: average beam current density 0.0032-3,2 mA/cm 2 , pulse duration 400 μs, repetition rate 50 Hz. Electrical field density was E/n =10 -15 Vcm 2 . Electrical pulse duration was changed within the range 5 x10 -7 -10 -5 s. The influence of the parameters of synchronized electron beam and electrical field pulses on energy deposition was under consideration. Energy cost of SO 2 removal on 90% level was estimated in steady state and pulse modes. It was found that total electron beam and electrical field energy losses in pulse mode are 6 times lower to compare with steady state conditions. The optimum of electrical field pulse duration from point of view minimum energy cost of SO 2 removal was found for different electron beam pulse current levels

  16. Energy analyzer for Auger electron spectroscopy and low-energy backscattering ion spectroscopy

    International Nuclear Information System (INIS)

    Volkov, S.S.; Gorelik, V.A.; Gutenko, V.T.; Protopopov, O.D.; Trubitsin, A.A.; Shuvalova, Z.A.; Yakushev, G.A.

    1988-01-01

    Energy analyzer for electron Auger spectroscopy and low-energy backscattering ion spectroscopy is described. Analyzer presents one-cascade variant of cylindrical mirror with second-order focusing. Energy relative resolution is continuously adjusted within 0.2-1.2% limits. Signal/noise relation by Cu Auger-line at 1 muA current of exciting beam changes upper limit of range 150-450

  17. Electron capture by multicharged ions at eV energies

    International Nuclear Information System (INIS)

    Havener, C.C.; Huq, M.S.; Meyer, F.W.; Phaneuf, R.A.

    1988-01-01

    A multicharged ion-atom merged-beams apparatus has been used in conjunction with the ORNL-ECR ion source to measure accurate absolute electron-capture cross sections in the energy range from below 1 eV/amu to 1500 eV/amu. Measurements for N/sup 3+,4+,5+/ /plus/ H(D) collisions indicate good agreement with available theoretical calculations. However, measurements with O 5+ /plus/ H(D) show an unexpected low-energy behavior which may be attributable to the ion-induced-dipole attraction between the reactants. Scaled Landau-Zener calculations presented here identify a transfer plus excitation channel which has the correct energy dependence at low energies. This finding suggest the need for a comprehensive coupled channel calculation which would include such product states. 25 refs., 8 figs

  18. Evidence for acceleration of outer zone electrons to relativistic energies by whistler mode chorus

    Directory of Open Access Journals (Sweden)

    N. P. Meredith

    2002-07-01

    Full Text Available We use plasma wave and electron data from the Combined Release and Radiation Effects Satellite (CRRES to investigate the viability of a local stochastic electron acceleration mechanism to relativistic energies driven by gyroresonant interactions with whistler mode chorus. In particular, we examine the temporal evolution of the spectral response of the electrons and the waves during the 9 October 1990 geomagnetic storm. The observed hardening of the electron energy spectra over about 3 days in the recovery phase is coincident with prolonged substorm activity, as monitored by the AE index and enhanced levels of whistler mode chorus waves. The observed spectral hardening is observed to take place over a range of energies appropriate to the resonant energies associated with Doppler-shifted cyclotron resonance, as supported by the construction of realistic resonance curves and resonant diffusion surfaces. Furthermore, we show that the observed spectral hardening is not consistent with energy-independent radial diffusion models. These results provide strong circumstantial evidence for a local stochastic acceleration mechanism, involving the energisation of a seed population of electrons with energies of the order of a few hundred keV to relativistic energies, driven by wave-particle interactions involving whistler mode chorus. The results suggest that this mechanism contributes to the reformation of the relativistic outer zone population during geomagnetic storms, and is most effective when the recovery phase is characterised by prolonged substorm activity. An additional significant result of this paper is that we demonstrate that the lower energy part of the storm-time electron distribution is in steady-state balance, in accordance with the Kennel and Petschek (1966 theory of limited stably-trapped particle fluxes.Key words. Magnetospheric physics (storms and substorms, energetic particles, trapped – Space plasma physics (wave-particle interactions

  19. Component-Level Electronic-Assembly Repair (CLEAR) Operational Concept

    Science.gov (United States)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.

    2011-01-01

    This Component-Level Electronic-Assembly Repair (CLEAR) Operational Concept document was developed as a first step in developing the Component-Level Electronic-Assembly Repair (CLEAR) System Architecture (NASA/TM-2011-216956). The CLEAR operational concept defines how the system will be used by the Constellation Program and what needs it meets. The document creates scenarios for major elements of the CLEAR architecture. These scenarios are generic enough to apply to near-Earth, Moon, and Mars missions. The CLEAR operational concept involves basic assumptions about the overall program architecture and interactions with the CLEAR system architecture. The assumptions include spacecraft and operational constraints for near-Earth orbit, Moon, and Mars missions. This document addresses an incremental development strategy where capabilities evolve over time, but it is structured to prevent obsolescence. The approach minimizes flight hardware by exploiting Internet-like telecommunications that enables CLEAR capabilities to remain on Earth and to be uplinked as needed. To minimize crew time and operational cost, CLEAR exploits offline development and validation to support online teleoperations. Operational concept scenarios are developed for diagnostics, repair, and functional test operations. Many of the supporting functions defined in these operational scenarios are further defined as technologies in NASA/TM-2011-216956.

  20. Some thoughts on source monochromation and the implications for electron energy loss spectroscopy

    CERN Document Server

    Brydson, R; Brown, A

    2003-01-01

    We briefly outline the factors determining the intrinsic widths of features in electron energy loss near edge structure (ELNES) measured by electron energy loss spectroscopy (EELS) in the transmission electron microscope (TEM). We have made estimates of the differing contributions of both the initial and final state lifetime effects in the ELNES ionisation processes and also show how these may be combined with the instrumental energy resolution. We discuss the potential benefits of source monochromation for ELNES measurements via a comparison of these theoretical estimates with experimental spectra from the literature. We show that for certain core level excitations, solid state broadening mechanisms may be the fundamental limiting factor for resolving fine detail in ELNES. (orig.)

  1. Statistical interpretation of low energy nuclear level schemes

    Energy Technology Data Exchange (ETDEWEB)

    Egidy, T von; Schmidt, H H; Behkami, A N

    1988-01-01

    Nuclear level schemes and neutron resonance spacings yield information on level densities and level spacing distributions. A total of 75 nuclear level schemes with 1761 levels and known spins and parities was investigated. The A-dependence of level density parameters is discussed. The spacing distributions of levels near the groundstate indicate transitional character between regular and chaotic properties while chaos dominates near the neutron binding energy.

  2. Dynamic correlation of photo-excited electrons: Anomalous levels induced by light–matter coupling

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiankai [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); Song, Bo, E-mail: bosong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China)

    2014-04-01

    Nonlinear light–matter coupling plays an important role in many aspects of modern physics, such as spectroscopy, photo-induced phase transition, light-based devices, light-harvesting systems, light-directed reactions and bio-detection. However, excited states of electrons are still unclear for nano-structures and molecules in a light field. Our studies unexpectedly present that light can induce anomalous levels in the electronic structure of a donor–acceptor nanostructure with the help of the photo-excited electrons transferring dynamically between the donor and the acceptor. Furthermore, the physics underlying is revealed to be the photo-induced dynamical spin–flip correlation among electrons. These anomalous levels can significantly enhance the electron current through the nanostructure. These findings are expected to contribute greatly to the understanding of the photo-excited electrons with dynamic correlations, which provides a push to the development and application of techniques based on photosensitive molecules and nanostructures, such as light-triggered molecular devices, spectroscopic analysis, bio-molecule detection, and systems for solar energy conversion.

  3. EELOSS: the program for calculation of electron energy loss data

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1980-10-01

    A computer code EELOSS has been developed to obtain the electron energy loss data required for shielding and dosimetry of beta- and gamma-rays in nuclear plants. With this code, the following data are obtainable for any energy from 0.01 to 15 MeV in any medium (metal, insulator, gas, compound, or mixture) composed of any choice of 69 elements with atomic number 1 -- 94: a) Collision stopping power, b) Restricted collision stopping power, c) Radiative stopping power, and d) Bremsstrahlung production cross section. The availability of bremsstrahlung production cross section data obtained by the EELOSS code is demonstrated by the comparison of calculated gamma-ray spectrum with measured one in Pb layer, where electron-photon cascade is included implicitly. As a result, it is concluded that the uncertainty in the bremsstrahlung production cross sections is negligible in the practical shielding calculations of gamma rays of energy less than 15 MeV, since the bremsstrahlung production cross sections increase with the gamma-ray energy and the uncertainty for them decreases with increasing the gamma-ray energy. Furthermore, the accuracy of output data of the EELOSS code is evaluated in comparison with experimental data, and satisfactory agreements are observed concerning the stopping power. (J.P.N.)

  4. Pulse energy control through dual loop electronic feedback

    CSIR Research Space (South Africa)

    Jacobs, Cobus

    2006-07-01

    Full Text Available University of Stellenbosch WWW.LASER-RESEARCH.CO.ZA University of Stellenbosch Pulse Energy Control Through Dual Loop Electronic Feedback Cobus Jacobs, Steven Kriel Christoph Bollig, Thomas Jones Cobus Jacobs et al. Overview head2righthead2right...What is Laser Pulse Energy Control? head2righthead2rightWhy do we need it? head2righthead2rightHow do we get it? head2righthead2rightSimulation head2righthead2rightExperimental Setup head2righthead2rightResults Cobus Jacobs et al. head2righthead2right...

  5. Exchange energy of inhomogenous electron gas near a metal surface

    International Nuclear Information System (INIS)

    Miglio, L.; Tosi, M.P.; March, N.H.

    1980-12-01

    Using the first-order density matrix of an infinite-barrier model of a metal surface, the exchange energy density can be evaluated exactly as a function of distance z from the barrier. This result is compared with the local approximation -3/4e 2 (3/π)sup(1/3) rhosup(4/3)(z) where rho is the electron density in the model. The local approximation is demonstrated to be quantitatively accurate at all z. The integrated surface exchange energy is given to within 3% by the local theory. (author)

  6. Narrow beam dosimetry for high-energy hadrons and electrons

    CERN Document Server

    Pelliccioni, M; Ulrici, Luisa

    2001-01-01

    Organ doses and effective dose were calculated with the latest version of the Monte Carlo transport code FLUKA in the case of an anthropomorphic mathematical model exposed to monoenergetic narrow beams of protons, pions and electrons in the energy range 10°— 400 GeV. The target organs considered were right eye, thyroid, thymus, lung and breast. Simple scaling laws to the calculated values are given. The present data and formula should prove useful for dosimetric estimations in case of accidental exposures to high-energy beams.

  7. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    CERN Document Server

    Yang, X; Reboredo Gil, David; Welsh, Gregor H; Li, Y.F; Cipiccia, Silvia; Ersfeld, Bernhard; Grant, D. W; Grant, P. A; Islam, Muhammad; Tooley, M.B; Vieux, Gregory; Wiggins, Sally; Sheng, Zheng-Ming; Jaroszynski, Dino

    2017-01-01

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lowerenergy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wake...

  8. Electronic and optical properties of Fe, Pd, and Ti studied by reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Tahir, Dahlang; Kraaer, Jens; Tougaard, Sven

    2014-01-01

    We have studied the electronic and optical properties of Fe, Pd, and Ti by reflection electron energy-loss spectroscopy (REELS). REELS spectra recorded for primary energies in the range from 300 eV to 10 keV were corrected for multiple inelastically scattered electrons to determine the effective inelastic-scattering cross section. The dielectric functions and optical properties were determined by comparing the experimental inelastic-electron scattering cross section with a simulated cross section calculated within the semi-classical dielectric response model in which the only input is Im(−1/ε) by using the QUEELS-ε(k,ω)-REELS software package. The complex dielectric functions ε(k,ω), in the 0–100 eV energy range, for Fe, Pd, and Ti were determined from the derived Im(−1/ε) by Kramers-Kronig transformation and then the refractive index n and extinction coefficient k. The validity of the applied model was previously tested and found to give consistent results when applied to REELS spectra at energies between 300 and 1000 eV taken at widely different experimental geometries. In the present paper, we provide, for the first time, a further test on its validity and find that the model also gives consistent results when applied to REELS spectra in the full range of primary electron energies from 300 eV to 10000 eV. This gives confidence in the validity of the applied method.

  9. National energy use of consumer electronics in 1999

    International Nuclear Information System (INIS)

    Rosen, Karen; Meier, Alan; Zandelin, Stefan

    2000-01-01

    The major consumer electronics in U.S. homes accounted for nearly 7 percent of U.S. residential electricity consumption in 1999. We attribute more than half of this figure (3.6 percent) to televisions, videocassette recorders, and DVD players, and nearly one-third (1.8 percent) to audio products. Set-top boxes currently account for a relatively small fraction of residential electricity use (0.7 percent), but we expect this end-use to grow quickly with the proliferation of digital set-top boxes, which currently use 40 percent more energy per unit than the average TV set. In all, these consumer electronics plus telephone products consumed 75 TWh in the U.S. in 1999, half of which was consumed while the products were not in use. This energy use is expected to grow as products with new or advanced functionality hit the market

  10. Laboratory Astrophysics Using High Energy Density Photon and Electron Beams

    CERN Document Server

    Bingham, Robert

    2005-01-01

    The development of intense laser and particle beams has opened up new opportunities to study high energy density astrophysical processes in the Laboratory. With even higher laser intensities possible in the near future vacuum polarization processes such as photon - photon scattering with or without large magnetic fields may also be experimentally observed. In this talk I will review the status of laboratory experiments using intense beans to investigate extreme astrophysical phenomena such as supernovae explosions, gamma x-ray bursts, ultra-high energy cosmic accelerators etc. Just as intense photon or electron beams can excite relativistic electron plasma waves or wakefields used in plasma acceleration, intense neutrino beams from type II supernovae can also excite wakefields or plasma waves. Other instabilities driven by intense beams relevant to perhaps x-ray bursts is the Weibel instability. Simulation results of extreme processes will also be presented.

  11. General theory for environmental effects on (vertical) electronic excitation energies.

    Science.gov (United States)

    Schwabe, Tobias

    2016-10-21

    Almost 70 years ago, the first theoretical model for environmental effects on electronic excitation energies has been derived. Since then, several different interpretations and refined models have been proposed for the perichromic shift of a chromophore due to its surrounding medium. Some of these models are contradictory. Here, the contributing terms are derived within the framework of long-range perturbation theory with the least approximations so far. The derivation is based on a state-specific interpretation of the interaction energies and all terms can be identified with individual properties of either the chromophore or the surroundings, respectively. Further, the much debated contribution due to transition moments coupled to the environment can be verified in the form of a non-resonant excitonic coupling to the dynamic polarizabilities in the environment. These general insights should clarify discussions and interpretations of environmental effects on electronic excitations and should foster the development of new models for the computation of these effects.

  12. Challenges in validating radiation sterilization with low energy electron irradiation

    International Nuclear Information System (INIS)

    Miller, A.; Helt-Hansen, J.

    2011-01-01

    Complete text of publication follows. Low energy electron irradiation (80-300 keV) is used increasingly for sterilization or decontamination in connection with isolators for aseptic filling lines in the pharmaceutical industry. It is not defined how validation for this process shall be carried out. A method can be derived from the medical device standard for radiation sterilization, ISO 11137, because the principles described in this standard can be applied to almost any industrial irradiation process. The validations elements are: Process definition, concerning specification of the dose required for the process and the maximum acceptable dose for the product. Installation qualification, concerning acceptance the irradiation facility. Operational qualification, concerning characterization of the facility. Performance qualification, concerning setting up the process. Process control, concerning routine monitoring. The limited penetration of the low energy electrons leads to problems with respect to executing these validation steps. This paper discusses these problems, and shows with examples how they can be solved.

  13. Recommended Auger-electron kinetic energies for 42 elemental solids

    International Nuclear Information System (INIS)

    Powell, C.J.

    2010-01-01

    An analysis is presented of Auger-electron kinetic energies (KEs) from four data sources for 65 Auger transitions in 45 elemental solids. For each data source, a single instrument had been used to measure KEs for many elements. In order to compare KEs from two sources, it was necessary to recalibrate the energy scales of each instrument using recommended reference data. Mean KEs are given for most of the Auger transitions for which there were at least two independent measurements and for which differences from the mean KEs were considered acceptably small. In several cases, comparisons were made to published KE data to resolve discrepancies. We are able to recommend mean KEs for 59 Auger transitions from 42 elemental solids and to provide estimates of the uncertainties of these KEs. This compilation should be useful for the determination of chemical shifts of Auger peaks in Auger electron spectroscopy and X-ray photoelectron spectroscopy.

  14. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    CERN Document Server

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  15. Intermediate energy electron scattering from sodium and potassium

    International Nuclear Information System (INIS)

    Buckman, S.J.

    1979-06-01

    This thesis describes an experimental investigation of the interaction of fast electrons with alkali metal atoms. Several of the theoretical models which have been applied to atomic collision processes including the first Born approximation, the Glauber approximation, the optical model and the distorted wave polarized orbital approximation are discussed. The theory of electron-photon coincidence experiments is outlined and the effects of fine and hyperfine structure on the polarization state of photons emitted from an excited atom are calculated for Sodium. The results of elastic scattering measurements on Sodium and Potassium are presented and used to test several theoretical models in their description of the differential cross section at incident energies between 50 and 200eV. Absolute differential and integrated total cross sections for the Potassium resonance lines and Sodium D-lines are presented. Results of the first electron-polarized photon coincidence experiment on the Sodium D-lines are presented and compared with available theoretical calculations

  16. Theoretical characterization of electron energy distribution function in RF plasmas

    International Nuclear Information System (INIS)

    Capitelli, M.; Capriati, G.; Dilonardo, M.; Gorse, C.; Longo, S.

    1993-01-01

    Different methods for the modeling of low-temperature plasmas of both technological and fundamental interest are discussed. The main concept of all these models is the electron energy distribution function (eedf) which is necessary to calculate the rate coefficients for any chemical reaction involving electrons. Results of eedf calculations in homogeneous SF 6 and SiH 4 plasmas are discussed based on solution of the time-dependent Boltzmann equation. The space-dependent eedf in an RF discharge in He is calculated taking into account the sheath oscillations by a Monte Carlo model assuming the plasma heating mechanism and the electric field determined by using a fluid model. The need to take into account the ambipolar diffusion of electrons in RF discharge modeling is stressed. A self-consistent model based on coupling the equations of the fluid model and the chemical kinetics ones is presented. (orig.)

  17. Energy levels and far-infrared optical absorption of impurity doped semiconductor nanorings: Intense laser and electric fields effects

    Energy Technology Data Exchange (ETDEWEB)

    Barseghyan, M.G., E-mail: mbarsegh@ysu.am

    2016-11-10

    Highlights: • The electron-impurity interaction on energy levels in nanoring have been investigated. • The electron-impurity interaction on far-infrared absorption have been investigated. • The energy levels are more stable for higher values of electric field. - Abstract: The effects of electron-impurity interaction on energy levels and far-infrared absorption in semiconductor nanoring under the action of intense laser and lateral electric fields have been investigated. Numerical calculations are performed using exact diagonalization technique. It is found that the electron-impurity interaction and external fields change the energy spectrum dramatically, and also have significant influence on the absorption spectrum. Strong dependence on laser field intensity and electric field of lowest energy levels, also supported by the Coulomb interaction with impurity, is clearly revealed.

  18. Practical Use of Scanning Low Energy Electron Microscope (SLEEM)

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Mikmeková, Eliška; Mikmeková, Šárka; Konvalina, Ivo; Frank, Luděk

    2016-01-01

    Roč. 22, S3 (2016), s. 1650-1651 ISSN 1431-9276 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : scanning low energy * SLEEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.891, year: 2016

  19. Parity nonconservation in polarized electron scattering at high energies

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1979-10-01

    Recent observations of parity violation in inelastic scattering of electrons at high energy is discussed with reference to the process e(polarized) + D(unpolarized) → e + X. The kinetics of this process, the idealized case of scattering from free quark targets, experimental techniques and results, and relations to atomic physics of parity violation in bismuth and thallium atoms with a model independent analysis. 17 references

  20. Stopping power of K electrons at extreme relativistic energies

    International Nuclear Information System (INIS)

    Leung, P.T.; Rustgi, M.L.

    1983-01-01

    The recent work of Anholt on K-vacancy production by relativistic projectiles has been applied to calculate the stopping power of the K electrons. The results show that for protons of energy approx.10 3 GeV and heavy target elements, the relativistic contributions to the stopping power amount to several times the resuls due to the longitudinal terms obtained from Walske's work

  1. The electron energy distribution function of noble gases with flow

    International Nuclear Information System (INIS)

    Karditsas, P.J.

    1989-01-01

    The treatment of the Boltzmann equation by several investigators, for the determination of the electron energy distribution function (EEDF) in noble gases was restricted to static discharges. It is of great interest to magnetoplasmadynamic power generation to develop the Boltzmann equation to account for the effect of the bulk fluid flow on the EEDF. The two term expansion of the Boltzmann equation, as given, results in additional terms introduced to the equations due to the bulk fluid flow, with velocity u

  2. Inclusive quasielastic and deep inelastic electron scattering at high energies

    International Nuclear Information System (INIS)

    Day, D.B.

    1990-01-01

    With high electron energies a kinematic regime can be reached where it will be possible to separate quasielastic and deep inelastic scattering. We present a short description of these processes which dominate the inclusive spectrum. Using the highest momentum transfer data available to guide our estimates, we give the kinematic requirements and the cross sections expected. These results indicate that inclusive scattering at high q has a yet unfilled potential. 18 refs., 13 figs

  3. An electrostatic storage ring for low kinetic energy electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Reddish, T J; Tessier, D R; Sullivan, M R; Thorn, P A [Department of Physics, University of Windsor, Windsor, N9B 3P4 (Canada); Hammond, P; Alderman, A J [School of Physics, CAMSP, University of Western Australia, Perth WA 6009 (Australia); Read, F H [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

    2009-11-01

    The criteria are presented for stable multiple orbits of charged particles in a race-track shaped storage ring and applied to an electrostatic system consisting of two hemispherical deflector analyzers (HDA) connected by two separate sets of cylindrical lenses. The results of charged particle simulations and the formal matrix theory, including aberrations in the energy-dispersive electrostatic 'prisms', are in good agreement with the observed experimental operating conditions for this Electron Recycling Spectrometer (ERS).

  4. Nanocellulose as Material Building Block for Energy and Flexible Electronics

    Science.gov (United States)

    Hu, Liangbing

    2014-03-01

    In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.

  5. Electron-energy relaxation in polar semiconductor double quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Khás, Zdeněk; Zdeněk, Petr; Čerňanský, Marian; Lin, C. Y.

    2001-01-01

    Roč. 15, č. 27 (2001), s. 3503-3512 ISSN 0217-9792 R&D Projects: GA AV ČR IAA1010113; GA MŠk OC P5.20 Institutional research plan: CEZ:AV0Z1010914 Keywords : electron ic energy relaxation * zero-dimensional nanostructures Subject RIV: BE - The oretical Physics Impact factor: 0.523, year: 2001

  6. Low energy electron-driven damage in biomolecules

    International Nuclear Information System (INIS)

    Sanche, L.

    2005-01-01

    The damage induced by the impact of low energy electrons (LEE) on biomolecules is reviewed from a radiobiological perspective with emphasis on transient anion formation. The major type of experiments, which measure the yields of fragments produced as a function of incident electron energy (0.1 - 30 eV), are briefly described. Theoretical advances are also summarized. Several examples are presented from the results of recent experiments performed in the gas-phase and on bio-molecular films bombarded with LEE under ultra-high vacuum conditions. These include the results obtained from DNA films and those obtained from the fragmentation of elementary components of the DNA molecule (i.e., the bases, sugar and phosphate group analogs and oligonucleotides) and of proteins (e.g. amino acids). By comparing the results from different experiments and theory, it is possible to determine fundamental mechanisms that are involved in the dissociation of the biomolecules and the production of single- and double-strand breaks in DNA. Below 15 eV, electron resonances (i.e., the formation of transient anions) play a dominant role in the fragmentation of all biomolecules investigated. These transient anions fragment molecules by decaying into dissociative electronically excited states or by dissociating into a stable anion and a neutral radical. These fragments can initiate further reactions within large biomolecules or with nearby molecules and thus cause more complex chemical damage. Dissociation of a transient anion within DNA may occur by direct electron attachment at the location of dissociation or by electron transfer from another subunit. Damage to DNA is dependent on the molecular environment, topology, type of counter ion, sequence context and chemical modifications. (author)

  7. A generalized electron energy probability function for inductively coupled plasmas under conditions of nonlocal electron kinetics

    Science.gov (United States)

    Mouchtouris, S.; Kokkoris, G.

    2018-01-01

    A generalized equation for the electron energy probability function (EEPF) of inductively coupled Ar plasmas is proposed under conditions of nonlocal electron kinetics and diffusive cooling. The proposed equation describes the local EEPF in a discharge and the independent variable is the kinetic energy of electrons. The EEPF consists of a bulk and a depleted tail part and incorporates the effect of the plasma potential, Vp, and pressure. Due to diffusive cooling, the break point of the EEPF is eVp. The pressure alters the shape of the bulk and the slope of the tail part. The parameters of the proposed EEPF are extracted by fitting to measure EEPFs (at one point in the reactor) at different pressures. By coupling the proposed EEPF with a hybrid plasma model, measurements in the gaseous electronics conference reference reactor concerning (a) the electron density and temperature and the plasma potential, either spatially resolved or at different pressure (10-50 mTorr) and power, and (b) the ion current density of the electrode, are well reproduced. The effect of the choice of the EEPF on the results is investigated by a comparison to an EEPF coming from the Boltzmann equation (local electron kinetics approach) and to a Maxwellian EEPF. The accuracy of the results and the fact that the proposed EEPF is predefined renders its use a reliable alternative with a low computational cost compared to stochastic electron kinetic models at low pressure conditions, which can be extended to other gases and/or different electron heating mechanisms.

  8. Urinary cotinine levels of electronic cigarette (e-cigarette) users.

    Science.gov (United States)

    Göney, Gülşen; Çok, İsmet; Tamer, Uğur; Burgaz, Sema; Şengezer, Tijen

    2016-07-01

    The popularity of electronic cigarettes (e-cigarettes) is rapidly increasing in many countries. These devices are designed to imitate regular cigarettes, delivering nicotine via inhalation without combusting tobacco but currently, there is a lack of scientific evidence on the presence or absence of nicotine exposure. Such research relies on evidence from e-cigarette users urine samples. In this study, we aimed to determine the levels and compare the amount of nicotine to which e-cigarette users, cigarette smokers and passive smokers are exposed. Therefore, urine samples were collected from e-cigarette users, cigarette smokers, passive smokers, and healthy nonsmokers. The urinary cotinine levels of the subjects were determined using gas chromatography-mass spectrometry. The mean (±SD) urinary cotinine levels were determined as 1755 ± 1848 ng/g creatinine for 32 e-cigarette users, 1720 ± 1335 ng/g creatinine for 33 cigarette smokers and 81.42 ± 97.90 ng/g creatinine for 33 passive smokers. A significant difference has been found between cotinine levels of e-cigarette users and passive smokers (p e-cigarette users and cigarette smokers (p > 0.05). This is a seminal study to demonstrate the e-cigarette users are exposed to nicotine as much as cigarette smokers.

  9. Imaging properties and energy aberrations of a double-pass cylindrical-mirror electron energy analyzer

    International Nuclear Information System (INIS)

    Erickson, N.E.; Powell, C.J.

    1986-01-01

    The imaging properties and energy aberrations of a commercial double-pass cylindrical-mirror analyzer have been characterized using an extension of the method recently reported by Seah and Mathieu. The electron beam from the coaxial electron gun was rastered across a test surface and the intensity of either elastically scattered electrons or of electrons at other selected energies was stored in a computer as a function of beam position on the specimen and other experimental parameters. The intensity data were later plotted to provide an ''image'' of the detected intensity. Images of this type are presented for electron energies of 100, 500, and 1000 eV and for the application of small offset voltages (typically between -1 and +5 V) between the analyzer and the gun cathode with the instrument operated in conditions appropriate for XPS or AES. Small offset voltages ( or approx. =5 V) lead to image shapes similar to those for the elastic peak but with 20%--40% increased widths. Deflection of the incident beam by up to 2 mm from the axis caused variations of up to +-0.15 eV in the measured positions of the elastic peak. Our observations can be interpreted qualitatively in terms of the known relationship between detected signal and combinations of position of electron emission from the specimen, angle of emission, and electron energy. The images obtained with elastically and inelastically scattered electrons provide a convenient and quantitative means of assessing instrument performance and of defining the specimen area being analyzed for the particular combination of instrument operating conditions and the energy width of AES or XPS features from the specimen

  10. Polyelectrolytes processing at pilot scale level by electron beam irradiation

    International Nuclear Information System (INIS)

    Martin, D.; Cirstea, E.; Craciun, G.; Ighigeanu, D.; Marin, Gheorghe G.

    2002-01-01

    Three years of research, combined with engineering activities, have culminated in the development of a new method of electron beam processing applicable up to the pilot scale level, namely, the polyelectrolytes (acrylamide - acrylic acid copolymers) electron beam processing. This new radiation processing method has been achieved by bilateral co-operation between the National Institute for Laser, Plasma and Radiation Physics (NILPRP) and the Electrical Design and Research Institute, EDRI - Bucharest. The polyelectrolytes electron beam (EB) processing was put in operation at EDRI, where, recently, an industrial electron accelerator of 2 MeV and 20 kW, manufactured by Institute of Nuclear Physics, Novosibirsk, Russia was installed in a specially designed irradiation facility. Automatic start-up via computer control makes it compatible with industrial processing. According to the first conclusions, which resulted from our experimental research with regard to acrylamide - acrylic acid copolymers production by EB irradiation, the proper physical and chemical characteristics can be well controlled by chemical composition to be treated and by suitable adjustment of absorbed dose and absorbed dose rate. So, it was possible to obtain a very large area of characteristics and therefore a large area of applications. The conversion coefficient is very high (> 98%) and concentration of the residual monomer is under 0.05%. The tests applied to some wastewaters from the vegetable oil plants demonstrated that the fatty substances, matters in suspension, chemical oxygen demand and biological oxygen demand over 5 days were much reduced, in comparison with classical treatment. Also, sedimentation time was around four times smaller and sediment volume was 60% smaller than the values obtained in case of classical treatment. The necessary EB absorbed dose for the acrylamide - acrylic acid aqueous solution polymerization, established by optimization of chemical composition and irradiation

  11. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher; Tummala, Naga Rajesh; Kemper, Travis; Aziz, Saadullah G.; Sears, John; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2017-01-01

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  12. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher

    2017-06-13

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  13. Electron transport in furfural: dependence of the electron ranges on the cross sections and the energy loss distribution functions

    Science.gov (United States)

    Ellis-Gibbings, L.; Krupa, K.; Colmenares, R.; Blanco, F.; Muńoz, A.; Mendes, M.; Ferreira da Silva, F.; Limá Vieira, P.; Jones, D. B.; Brunger, M. J.; García, G.

    2016-09-01

    Recent theoretical and experimental studies have provided a complete set of differential and integral electron scattering cross section data from furfural over a broad energy range. The energy loss distribution functions have been determined in this study by averaging electron energy loss spectra for different incident energies and scattering angles. All these data have been used as input parameters for an event by event Monte Carlo simulation procedure to obtain the electron energy deposition patterns and electron ranges in liquid furfural. The dependence of these results on the input cross sections is then analysed to determine the uncertainty of the simulated values.

  14. Comparing energy levels in isotropic and anisotropic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Pikovski, Alexander, E-mail: alexander.pikovski@colorado.edu

    2015-11-06

    Qualitative information about the quantized energy levels of a system can be of great value. We study the relationship between the bound-state energies of an anisotropic potential and those of its spherical average. It is shown that the two ground-state energies satisfy an inequality, and there is a similar inequality for the first excited states. - Highlights: • Quantized energy levels in an arbitrary non-central potential are studied. • We derive inequalities between energies in a potential and its spherical average. • The results hold in three and two dimensions for any ground state and, with additional symmetry requirements for the first excited state.

  15. Comparing energy levels in isotropic and anisotropic potentials

    International Nuclear Information System (INIS)

    Pikovski, Alexander

    2015-01-01

    Qualitative information about the quantized energy levels of a system can be of great value. We study the relationship between the bound-state energies of an anisotropic potential and those of its spherical average. It is shown that the two ground-state energies satisfy an inequality, and there is a similar inequality for the first excited states. - Highlights: • Quantized energy levels in an arbitrary non-central potential are studied. • We derive inequalities between energies in a potential and its spherical average. • The results hold in three and two dimensions for any ground state and, with additional symmetry requirements for the first excited state.

  16. Electron impact excitation out of the 23S metastable level of He

    International Nuclear Information System (INIS)

    Boffard, J.B.; Piech, G.A.; Lagus, M.E.; Anderson, L.W.; Chun C.L.

    1996-01-01

    Using a hollow cathode discharge as a source of He, the authors have measured absolute cross sections for electron excitation out of the 2S level of He into the n=2, 3, 4, and 5 triplet levels for energies up to 20 eV. Their results show a pattern of sharply peaked excitation functions into the n = 3, 4, and 5 3 S and 3 P levels, and comparatively broad excitation functions into the 3 D levels. The 2 3 P level has a remarkably broad excitation function, and its peak direct cross section is over 10 times the size of the next largest peak cross section observed. For energies above 20 eV, the authors use charge exchange of a fast He + beam with cesium to produce a primarily He target. This allows them to extend their measurements for selected triplet levels out to 1 keV. Their data indicate that even at this energy the excitations into the 3 3 S, 3 3 D, 4 3 D have not yet entered the Born regime. Comparisons with other theoretical calculations at low energies will be made

  17. Information Geometry, Inference Methods and Chaotic Energy Levels Statistics

    OpenAIRE

    Cafaro, Carlo

    2008-01-01

    In this Letter, we propose a novel information-geometric characterization of chaotic (integrable) energy level statistics of a quantum antiferromagnetic Ising spin chain in a tilted (transverse) external magnetic field. Finally, we conjecture our results might find some potential physical applications in quantum energy level statistics.

  18. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    Science.gov (United States)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  19. Impact of stand-by energy losses in electronic devices on smart network performance

    Directory of Open Access Journals (Sweden)

    Mandić-Lukić Jasmina S.

    2012-01-01

    Full Text Available Limited energy resources and environmental concerns due to ever increasing energy consumption, more and more emphasis is being put on energy savings. Smart networks are promoted worldwide as a powerful tool used to improve the energy efficiency through consumption management, as well as to enable the distributed power generation, primarily based on renewable energy sources, to be optimally explored. To make it possible for the smart networks to function, a large number of electronic devices is needed to operate or to be in their stand-by mode. The consumption of these devices is added to the consumption of many other electronic devices already in use in households and offices, thus giving rise to the overall power consumption and threatening to counteract the primary function of smart networks. This paper addresses the consumption of particular electronic devices, with an emphasis placed on their thermal losses when in stand-by mode and their total share in the overall power consumption in certain countries. The thermal losses of electronic devices in their stand-by mode are usually neglected, but it seems theoretically possible that a massive increase in their number can impact net performance of the future smart networks considerably so that above an optimum level of energy savings achieved by their penetration, total consumption begins to increase. Based on the current stand-by energy losses from the existing electronic devices, we propose that the future penetration of smart networks be optimized taking also into account losses from their own electronic devices, required to operate in stand-by mode.

  20. High energy electron disinfection of sewage wastewater in flow systems

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, T; Arai, H; Hosono, M; Tokunaga, O; Machi, S [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Kondoh, M; Minemura, T; Nakao, A; Seike, Y [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    1990-01-01

    The disinfection of effluent municipal wastewaters by high-energy electrons in flow systems was studied using an experimental apparatus which has the maximum treatment capacity of 10.8 m{sup 3}/h. An electron accelerator with an accelerating voltage of 2 MV was used. The electron beam current was controlled to deliver the desired doses ranging from 0.05 to 1 kGy. Treatment times were in the range from 0.0022 to 0.051 s. Preliminary experiments with batch system using Petri dish of 100 ml showed that the effectiveness of electron irradiation on inactivation of coliforms was not influenced significantly by factors such as pH, SS, COD, DO and irradiation temperature. The dose required to produce 99.9% kill in the total population presented in wastewater were markedly affected by the thickness of water exposure to electron irradiation; that is, 0.39, 0.4 and 0.44 kGy for the depth of 5, 6 and 7 mm, respectively. The data obtained after a suitable correction for the doses due to the depth dose distribution showed no deviation from an experimental survival curve. Experiments with flow system indicated no measureable effect of the flow rate of wastewaters on the efficiency of disinfection in the range from 0.5 to 3.5 m/s. (author).

  1. Electron energy-loss spectroscopy on fullerenes and fullerene compounds

    International Nuclear Information System (INIS)

    Armbruster, J.

    1996-03-01

    A few years ago, a new form of pure carbon, the fullerenes, has been discovered, which shows many fascinating properties. Within this work the spatial and electronic structure of some selected fullerene compounds have been investigated by electron-energy-loss spectroscopy in transmission. Phase pure samples of alkali intercalated fullerides A x C 60 (A=Na, K, Cs) have been prepared using vacuum distillation. Measruements of K 3 C 60 show a dispersion of the charge carrier plasmon close to zero. This can be explained by calculations, which take into account both band structure and local-field (inhomogeneity) effects. The importance of the molecular structure can also be seen from the A 4 C 60 compounds, where the non-metallic properties are explained by a splitting of the t 1u and t 1g derived bands that is caused by electron-correlation and Jahn-Teller effects. First measurements of the electronic structure of Na x C 60 (x>6) are presented and reveal a complete transfer from the sodium atoms but an incomplete transfer onto the C 60 molecules. This behaviour can be explained by taking into account additional electronic states that are situated between the sodium atoms in the octahedral sites and are predicted by calculations using local density approximation. The crystal structure of the higher fullerenes C 76 and C 84 is found to be face-centered cubic

  2. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  3. Experimental evaluation of inner-vacancy level energies for comparison with theory

    International Nuclear Information System (INIS)

    Deslattes, R.D.; Kessler, E.G.

    1985-01-01

    This chapter deals with progress on the theoretical side in calculations of atomic inner-shell energy levels. In reaching what the authors consider to be the best available body of experimental data about inner-shell energy-level differences, three types of input are used: those lines which have been directly measured with high-resolution double-diffraction instruments; those obtained with high-resolution curved-crystal optics relative to gamma-ray standards, and those (low-energy) lines whose wavelength ratios with respect to directly measured X-ray lines have been taken from a very restricted set of earlier measurements. Application of X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), appearance-potential spectroscopy (APS), and X-ray emission spectroscopy (XES) to the problem of energy-level difference determination and single-vacancy energy level determination are described

  4. Measuring the electron beam energy in a magnetic bunch compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Kirsten

    2010-09-15

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 {mu}m precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  5. Modelling low energy electron and positron tracks in biologically relevant media

    International Nuclear Information System (INIS)

    Blanco, F.; Munoz, A.; Almeida, D.; Ferreira da Silva, F.; Limao-Vieira, P.; Fuss, M.C.; Sanz, A.G.; Garcia, G.

    2013-01-01

    This colloquium describes an approach to incorporate into radiation damage models the effect of low and intermediate energy (0-100 eV) electrons and positrons, slowing down in biologically relevant materials (water and representative biomolecules). The core of the modelling procedure is a C++ computing programme named 'Low Energy Particle Track Simulation (LEPTS)', which is compatible with available general purpose Monte Carlo packages. Input parameters are carefully selected from theoretical and experimental cross section data and energy loss distribution functions. Data sources used for this purpose are reviewed showing examples of electron and positron cross section and energy loss data for interactions with different media of increasing complexity: atoms, molecules, clusters and condense matter. Finally, we show how such a model can be used to develop an effective dosimetric tool at the molecular level (i.e. nanodosimetry). Recent experimental developments to study the fragmentation induced in biologically material by charge transfer from neutrals and negative ions are also included. (authors)

  6. Magnetic-sublevel cross sections for excitation of the n 1P levels of helium by electron impact

    International Nuclear Information System (INIS)

    Csanak, G.; Cartwright, D.C.; Trajmar, S.

    1992-01-01

    First-order many-body theory has been used to calculate collision-frame magnetic-sublevel differential cross sections for electron-impact excitation of the n 1 P (n=2,3,4,5,6) levels of helium for electrons with incident energy in the 25--500-eV range. By combining results from electron-impact differential-cross-section measurements and electron-photon coincidence measurements, experimental magnetic-sublevel cross sections have also been derived for the excitation of the 2 1 P and 3 1 P levels. The theory predicts a pronounced minimum for the M=0 magnetic-sublevel differential cross section for incident electron energies around 30 eV. Our theoretical results are compared to the experimental data and some other theoretical results

  7. Cultural energy analyses of dairy cattle receiving different concentrate levels

    International Nuclear Information System (INIS)

    Koknaroglu, Hayati

    2010-01-01

    Purpose of this study was to conduct cultural energy analyses of dairy cows receiving different levels of concentrate. Data were acquired by conducting a survey on 132 dairy farms selected by the stratified random sampling method. Dairy cattle farms were divided into three groups according to concentrate level and were analyzed. Accordingly concentrate levels were assigned as low (LLC) ( 50%, 44 farms). Cultural energy used for feed for cows was calculated by multiplying each ingredient with corresponding values of ingredients from literature. Transportation energy was also included in the analysis. Total cultural energy expended was highest for LLC (P < 0.05). Cultural energy expended for feed constituted more than half of the total cultural energy and was highest for LLC (P < 0.05). Cultural energy expended per kg milk and per Mcal protein energy was higher for LLC (P < 0.05). Efficiency defined as Mcal input/Mcal output was better for ILC and was worse for LLC (P < 0.05) and HLC was intermediate thus not differing from other groups. Results show that cultural energy use efficiency does not linearly increases as concentrate level increases and increasing concentrate level does not necessarily mean better efficiency. Thus optimum concentrate level not interfering cows performance should be sought for sustainable dairy production.

  8. First principles study of electronic properties, interband transitions and electron energy loss of α-graphyne

    Science.gov (United States)

    Behzad, Somayeh

    2016-04-01

    The electronic and optical properties of α-graphyne sheet are investigated by using density functional theory. The results confirm that α-graphyne sheet is a zero-gap semimetal. The optical properties of the α-graphyne sheet such as dielectric function, refraction index, electron energy loss function, reflectivity, absorption coefficient and extinction index are calculated for both parallel and perpendicular electric field polarizations. The optical spectra are strongly anisotropic along these two polarizations. For (E ∥ x), absorption edge is at 0 eV, while there is no absorption below 8 eV for (E ∥ z).

  9. Characteristic losses of electrons energy under reflection from leadsilicate glasses

    International Nuclear Information System (INIS)

    Gusarov, A.I.; Mashkov, V.A.; Pronin, V.P.; Tyutikov, A.M.

    1986-01-01

    The spectra of characteristic losses of energy (CLE) for the case of electron reflection from the surface of leadsilicate glasses of the composition xPbOx(1-x)SiO 2 , depending on molar concentration of lead oxide x, has been calculated for the first time. It is shown that the given model of glass energy structure permits to describe correctly general behaviour of CLE spectrum. However, the energy of plasma maximum measured experimentally remains approximately constant. The behaviour can be conditioned by ω 0 dependence on x[4], which has not been taken into account, and (or) by a slower change in ΔE, than it has been assumed. Further refining of theory and experiment is required to solve the problem

  10. Low Energy Electrons as Probing Tool for Astrochemical Reaction Mechanisms

    Science.gov (United States)

    Hendrik Bredehöft, Jan; Swiderek, Petra; Hamann, Thorben

    The complexity of molecules found in space varies widely. On one end of the scale of molecular complexity is the hydrogen molecule H2 . Its formation from H atoms is if not understood than at least thoroughly investigated[1]. On the other side of said spectrum the precursors to biopolymers can be found, such as amino acids[2,3], sugars[4], lipids, cofactors[5], etc, and the kerogen-like organic polymer material in carbonaceous meteorites called "black stuff" [6]. These have also received broad attention in the last decades. Sitting in the middle between these two extremes are simple molecules that are observed by radio astronomy throughout the Universe. These are molecules like methane (CH4 ), methanol (CH3 OH), formaldehyde (CH2 O), hydrogen cyanide (HCN), and many many others. So far more than 40 such species have been identified.[7] They are often used in laboratory experiments to create larger complex molecules on the surface of simulated interstellar dust grains.[2,8] The mechanisms of formation of these observed starting materials for prebiotic chemistry is however not always clear. Also the exact mechanisms of formation of larger molecules in photochemical experiments are largely unclear. This is mostly due to the very complex chemistry going on which involves many different radicals and ions. The creation of radicals and ions can be studied in detail in laboratory simulations. They can be created in a setup mimicking interstellar grain chemistry using slow electrons. There is no free electron radiation in space. What can be found though is a lot of radiation of different sorts. There is electromagnetic radiation (UV light, X-Rays, rays, etc.) and there is particulate radiation as well in the form of high energy ions. This radiation can provide energy that drives chemical reactions in the ice mantles of interstellar dust grains. And while the multitude of different kinds of radiation might be a little confusing, they all have one thing in common: Upon

  11. Power electronics for renewable and distributed energy systems a sourcebook of topologies, control and integration

    CERN Document Server

    Chakraborty, Sudipta; Kramer, William E

    2013-01-01

    While most books approach power electronics and renewable energy as two separate subjects, Power Electronics for Renewable and Distributed Energy Systems takes an integrative approach; discussing power electronic converters topologies, controls and integration that are specific to the renewable and distributed energy system applications. An overview of power electronic technologies is followed by the introduction of various renewable and distributed energy resources that includes photovoltaics, wind, small hydroelectric, fuel cells, microturbines and variable speed generation. Energy storage s

  12. Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Ellis-Gibbings, L.; García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton WV1 1LY (United Kingdom); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-09-07

    We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energy condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.

  13. Radiation processing of natural polymers using low energy electron beam

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2004-01-01

    Radiation processing is widely used in Japan and the economic scale of radiation application amounted to about 71 b$ (ratio relative to GDP: 1.7%) in total. It consisted of 60 b$ (85%) in industry, 10 b$ (14%) in medicine and 1 b$ (1%) in agriculture. Irradiation using gamma-ray from 60 Co and electron beam is commercially used for the sterilization and modification of materials. Utilization of natural polymers by radiation has been investigated for recycling the natural resources and reducing the environmental pollution. Polysaccharides such as chitosan, sodium alginate, carrageenan, cellulose, pectin were easily degraded by irradiation and induced various kinds of biological activities, i.e. anti-bacterial activity, elicitor activity, plant growth promotion, suppression of environmental stress on plants. Radiation degraded chitosan was effective to enhance the growth of plants in tissue culture. Low energy electron beam (EB) irradiation has a variety of applications and good safety. A self-shielded low energy electron accelerator system needs an initial investment much lower than a 60 Co facility. It was demonstrated that the liquid sample irradiation system using low energy EB was effective not only for the preparation of degraded polysaccharides but also for radiation vulcanization of natural rubber latex (RVNRL). Some carbohydrate derivatives, carboxymethylcellulose (CMC), carboxymethyl-starch and carboxymethyl-chitin/chitosan, can be crosslinked under certain radiation condition and produced the biodegradable hydrogel for medical and agricultural use. Treatment of soybean seeds by low energy EB enhanced the growth and the number of rhizobia on the root. (author)

  14. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer

    Science.gov (United States)

    Tiwari, Vivek; Peters, William K.; Jonas, David M.

    2017-10-01

    Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.

  15. Direct observation of children's preferences and activity levels during interactive and online electronic games.

    Science.gov (United States)

    Sit, Cindy H P; Lam, Jessica W K; McKenzie, Thomas L

    2010-07-01

    Interactive electronic games have recently been popularized and are believed to help promote children's physical activity (PA). The purpose of the study was to examine preferences and PA levels during interactive and online electronic games among overweight and nonoverweight boys and girls. Using a modification of the SOFIT, we systematically observed 70 Hong Kong Chinese children (35 boys, 35 girls; 50 nonoverweight, 20 overweight), age 9 to 12 years, during 2 60-minute recreation sessions and recorded their game mode choices and PA levels. During Session One children could play either an interactive or an online electronic bowling game and during Session Two they could play an interactive or an online electronic running game. Children chose to play the games during 94% of session time and split this time between interactive (52%) and online (48%) versions. They engaged in significantly more moderate-to-vigorous physical activity (MVPA) during interactive games than their online electronic versions (70% vs. 2% of game time). Boys and nonoverweight children expended relatively more energy during the interactive games than girls and overweight children, respectively. New-generation interactive games can facilitate physical activity in children, and given the opportunity children may select them over sedentary versions.

  16. Meso-level analysis, the missing link in energy strategies

    International Nuclear Information System (INIS)

    Schenk, Niels J.; Moll, Henri C.; Schoot Uiterkamp, Anton J.M.

    2007-01-01

    Energy is essential for human societies. Energy systems, though, are also associated with several adverse environmental effects. So far societies have been unable to successfully change their energy systems in a way that addresses environmental and health concerns. Lack of policy consensus often resulted in so-called 'stop-go' policies, which were identified as some of the most important barriers regarding successful energy transitions. The lack of policy consensus and coherent long-term strategies may result from a lack of knowledge of energy systems' meso-level dynamics. The meso-level involves the dynamic behaviour of the individual system elements and the coupling of individual technologies, resulting in interdependencies and regimes. Energy systems are at the meso-level characterised by two typical aspects, i.e. dynamics driven by interactions between actors, and heterogeneous characteristics of actors. These aspects give rise to the ineffectiveness of traditional energy policies, which is illustrated with examples from the transport sector and household electricity consumption. We found that analysis of energy systems at the meso-level helps to better understand energy systems. To resolve persistent policy issues, the traditional 'one size fits all' energy policies are not sufficient. In order to tackle the difficult issues, 'redesign of system organisation', 'target group approach', or 'target group induced system re-orientation' are needed

  17. Electron Flux Models for Different Energies at Geostationary Orbit

    Science.gov (United States)

    Boynton, R. J.; Balikhin, M. A.; Sibeck, D. G.; Walker, S. N.; Billings, S. A.; Ganushkina, N.

    2016-01-01

    Forecast models were derived for energetic electrons at all energy ranges sampled by the third-generation Geostationary Operational Environmental Satellites (GOES). These models were based on Multi-Input Single-Output Nonlinear Autoregressive Moving Average with Exogenous inputs methodologies. The model inputs include the solar wind velocity, density and pressure, the fraction of time that the interplanetary magnetic field (IMF) was southward, the IMF contribution of a solar wind-magnetosphere coupling function proposed by Boynton et al. (2011b), and the Dst index. As such, this study has deduced five new 1 h resolution models for the low-energy electrons measured by GOES (30-50 keV, 50-100 keV, 100-200 keV, 200-350 keV, and 350-600 keV) and extended the existing >800 keV and >2 MeV Geostationary Earth Orbit electron fluxes models to forecast at a 1 h resolution. All of these models were shown to provide accurate forecasts, with prediction efficiencies ranging between 66.9% and 82.3%.

  18. EPA ENERGY STAR: Tackling Growth in Home Electronics and Small Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marla Christine; Brown, Richard; Homan, Gregory

    2008-11-17

    Over a decade ago, the electricity consumption associated with home electronics and other small appliances emerged onto the global energy policy landscape as one of the fastest growing residential end uses with the opportunity to deliver significant energy savings. As our knowledge of this end use matures, it is essential to step back and evaluate the degree to which energy efficiency programs have successfully realized energy savings and where savings opportunities have been missed.For the past fifteen years, we have quantified energy, utility bill, and carbon savings for US EPA?s ENERGY STAR voluntary product labeling program. In this paper, we present a unique look into the US residential program savings claimed to date for EPA?s ENERGY STAR office equipment, consumer electronics, and other small household appliances as well as EPA?s projected program savings over the next five years. We present a top-level discussion identifying program areas where EPA?s ENERGY STAR efforts have succeeded and program areas where ENERGY STAR efforts did not successfully address underlying market factors, technology issues and/or consumer behavior. We end by presenting the magnitude of ?overlooked? savings.

  19. Inferring Parametric Energy Consumption Functions at Different Software Levels

    DEFF Research Database (Denmark)

    Liqat, Umer; Georgiou, Kyriakos; Kerrison, Steve

    2016-01-01

    The static estimation of the energy consumed by program executions is an important challenge, which has applications in program optimization and verification, and is instrumental in energy-aware software development. Our objective is to estimate such energy consumption in the form of functions...... on the input data sizes of programs. We have developed a tool for experimentation with static analysis which infers such energy functions at two levels, the instruction set architecture (ISA) and the intermediate code (LLVM IR) levels, and reflects it upwards to the higher source code level. This required...... the development of a translation from LLVM IR to an intermediate representation and its integration with existing components, a translation from ISA to the same representation, a resource analyzer, an ISA-level energy model, and a mapping from this model to LLVM IR. The approach has been applied to programs...

  20. Electrically controlled crossing of energy levels in quantum dots in two-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, Aleksei A.

    2017-05-15

    We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.

  1. Electrically controlled crossing of energy levels in quantum dots in two-dimensional topological insulators

    Science.gov (United States)

    Sukhanov, Aleksei A.

    2017-05-01

    We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.

  2. Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems

    Science.gov (United States)

    Kracke, Frauke; Vassilev, Igor; Krömer, Jens O.

    2015-01-01

    Microbial electrochemical techniques describe a variety of emerging technologies that use electrode–bacteria interactions for biotechnology applications including the production of electricity, waste and wastewater treatment, bioremediation and the production of valuable products. Central in each application is the ability of the microbial catalyst to interact with external electron acceptors and/or donors and its metabolic properties that enable the combination of electron transport and carbon metabolism. And here also lies the key challenge. A wide range of microbes has been discovered to be able to exchange electrons with solid surfaces or mediators but only a few have been studied in depth. Especially electron transfer mechanisms from cathodes towards the microbial organism are poorly understood but are essential for many applications such as microbial electrosynthesis. We analyze the different electron transport chains that nature offers for organisms such as metal respiring bacteria and acetogens, but also standard biotechnological organisms currently used in bio-production. Special focus lies on the essential connection of redox and energy metabolism, which is often ignored when studying bioelectrochemical systems. The possibility of extracellular electron exchange at different points in each organism is discussed regarding required redox potentials and effect on cellular redox and energy levels. Key compounds such as electron carriers (e.g., cytochromes, ferredoxin, quinones, flavins) are identified and analyzed regarding their possible role in electrode–microbe interactions. This work summarizes our current knowledge on electron transport processes and uses a theoretical approach to predict the impact of different modes of transfer on the energy metabolism. As such it adds an important piece of fundamental understanding of microbial electron transport possibilities to the research community and will help to optimize and advance bioelectrochemical

  3. Low energy electron microscopy imaging using Medipix2 detector

    International Nuclear Information System (INIS)

    Sikharulidze, I.; Gastel, R. van; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, S.J. van der

    2011-01-01

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  4. Low energy electron microscopy imaging using Medipix2 detector

    Energy Technology Data Exchange (ETDEWEB)

    Sikharulidze, I., E-mail: irakli@chem.leidenuniv.nl [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Gastel, R. van [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Schramm, S. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); Abrahams, J.P. [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Poelsema, B. [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Tromp, R.M. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Molen, S.J. van der [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands)

    2011-05-15

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  5. Histogram plots and cutoff energies for nuclear discrete levels

    International Nuclear Information System (INIS)

    Belgya, T.; Molnar, G.; Fazekas, B.; Oestoer, J.

    1997-05-01

    Discrete level schemes for 1277 nuclei, from 6 Li through 251 Es, extracted from the Evaluated Nuclear Structure Data File were analyzed. Cutoff energies (U max ), indicating the upper limit of level scheme completeness, were deduced from the inspection of histograms of the cumulative number of levels. Parameters of the constant-temperature level density formula (nuclear temperature T and energy shift U 0 ) were obtained by means of the least square fit of the formula to the known levels below cutoff energy. The results are tabulated for all 1277 nuclei allowing for an easy and reliable application of the constant-temperature level density approach. A complete set of cumulative plots of discrete levels is also provided. (author). 5 figs, 2 tabs

  6. Energy-level alignment at metal-organic and organic-organic interfaces

    NARCIS (Netherlands)

    Veenstra, Sjoerd; Jonkman, H.T.

    2003-01-01

    This article reports on the electronic structure at interfaces found in organic semiconductor devices. The studied organic materials are C-60 and poly (para-phenylenevinylene) (PPV)-like oligomers, and the metals are polycrystalline Au and Ag. To measure the energy levels at these interfaces,

  7. Realistic level densities in fragment emission at high excitation energies

    International Nuclear Information System (INIS)

    Mustafa, M.G.; Blann, M.; Ignatyuk, A.V.

    1993-01-01

    Heavy fragment emission from a 44 100 Ru compound nucleus at 400 and 800 MeV of excitation is analyzed to study the influence of level density models on final yields. An approach is used in which only quasibound shell-model levels are included in calculating level densities. We also test the traditional Fermi gas model for which there is no upper energy limit to the single particle levels. We compare the influence of these two level density models in evaporation calculations of primary fragment excitations, kinetic energies and yields, and on final product yields

  8. Electron detachment energies in high-symmetry alkali halide solvated-electron anions

    Science.gov (United States)

    Anusiewicz, Iwona; Berdys, Joanna; Simons, Jack; Skurski, Piotr

    2003-07-01

    We decompose the vertical electron detachment energies (VDEs) in solvated-electron clusters of alkali halides in terms of (i) an electrostatic contribution that correlates with the dipole moment (μ) of the individual alkali halide molecule and (ii) a relaxation component that is related to the polarizability (α) of the alkali halide molecule. Detailed numerical ab initio results for twelve species (MX)n- (M=Li,Na; X=F,Cl,Br; n=2,3) are used to construct an interpolation model that relates the clusters' VDEs to their μ and α values as well as a cluster size parameter r that we show is closely related to the alkali cation's ionic radius. The interpolation formula is then tested by applying it to predict the VDEs of four systems [i.e., (KF)2-, (KF)3-, (KCl)2-, and (KCl)3-] that were not used in determining the parameters of the model. The average difference between the model's predicted VDEs and the ab initio calculated electron binding energies is less than 4% (for the twelve species studied). It is concluded that one can easily estimate the VDE of a given high-symmetry solvated electron system by employing the model put forth here if the α, μ and cation ionic radii are known. Alternatively, if VDEs are measured for an alkali halide cluster and the α and μ values are known, one can estimate the r parameter, which, in turn, determines the "size" of the cluster anion.

  9. Suppressing recombination in polymer photovoltaic devices via energy-level cascades.

    Science.gov (United States)

    Tan, Zhi-Kuang; Johnson, Kerr; Vaynzof, Yana; Bakulin, Artem A; Chua, Lay-Lay; Ho, Peter K H; Friend, Richard H

    2013-08-14

    An energy cascading structure is designed in a polymer photovoltaic device to suppress recombination and improve quantum yields. By the insertion of a thin polymer interlayer with intermediate energy levels, electrons and holes can effectively shuttle away from each other while being spatially separated from recombination. An increase in open-circuit voltage and short-circuit current are observed in modified devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electron beam pumped KrF lasers for fusion energy

    International Nuclear Information System (INIS)

    Sethian, J.D.; Friedman, M.; Giuliani, J.L. Jr.; Lehmberg, R.H.; Obenschain, S.P.; Kepple, P.; Wolford, M.; Hegeler, F.; Swanekamp, S.B.; Weidenheimer, D.; Welch, D.; Rose, D.V.; Searles, S.

    2003-01-01

    In this paper, we describe the development of electron beam pumped KrF lasers for inertial fusion energy. KrF lasers are an attractive driver for fusion, on account of their demonstrated very high beam quality, which is essential for reducing imprint in direct drive targets; their short wavelength (248 nm), which mitigates the growth of plasma instabilities; and their modular architecture, which reduces development costs. In this paper we present a basic overview of KrF laser technology as well as current research and development in three key areas: electron beam stability and transport; KrF kinetics and laser propagation; and pulsed power. The work will be cast in context of the two KrF lasers at the Naval Research Laboratory, The Nike Laser (5 kJ, single shot), and The Electra Laser (400-700 J repetitively pulsed)

  11. Theory of the chemical effects of high-energy electrons

    International Nuclear Information System (INIS)

    Magee, J.L.; Chatterjee, A.

    1978-01-01

    The general nature of radiation chemical yields arising from electron irradiations is examined. A relationship between the G value of an arbitrary radiation product and the initial electron energy (greater than 20 keV) in the form of an integro-differential equation is derived. G values for the water decomposition products in acid solution are obtained by numerical solution of the equation and the use of a model. A differential equation equivalent to the integro-differential equation for the case of Rutherford scattering is introduced and an approximate analytical solution is found (eq 10). The latter turns out to be in agreement with the numerical solution of the integro-differential equation obtained with the more accurate Moeller cross section. Experimental data for ferrous sulfate oxidation (Fricke dosimeter) are examined and found to be in agreement with the relationships obtained here. Primary yields of the water decomposition products are also given. 4 figures, 2 tables, 35 references

  12. New insights in low-energy electron-fullerene interactions

    Science.gov (United States)

    Msezane, Alfred Z.; Felfli, Zineb

    2018-03-01

    The robust Regge-pole methodology has been used to probe for long-lived metastable anionic formation in Cn (n = 20, 24, 26, 28, 44, 70, 92 and 112) through the calculated electron elastic scattering total cross sections (TCSs). All the TCSs are found to be characterized by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances manifesting metastable anionic formation during the collisions. The energy positions of the anionic ground states resonances are found to match the measured electron affinities (EAs). We also investigated the size-effect through the correlation and polarization induced metastable resonances as the fullerene size varied from C20 through C112. The C20 TCSs exhibit atomic behavior while the C112 TCSs demonstrate strong departure from atomic behavior attributed to the size effect. Surprisingly C24 is found to have the largest EA among the investigated fullerenes making it suitable for use in organic solar cells and nanocatalysis.

  13. Cost analysis of low energy electron accelerator for film curing

    International Nuclear Information System (INIS)

    Ochi, Masafumi

    2003-01-01

    Low energy electron accelerators are recognized as one of the advanced curing means of converting processes for films and papers. In the last three years the price of the accelerator equipment has been greatly reduced. The targeted application areas are mainly processes of curing inks, coatings, and adhesives to make packaging materials. The operating cost analyses were made for electron beam (EB) processes over the conventional ones without EB. Then three new proposals for cost reduction of EB processes are introduced. Also being developed are new EB chemistries such as coatings, laminating adhesives and inks. EB processes give instantaneous cure and EB chemistries are basically non solvent causing less VOC emission to the environment. These developments of both equipment and chemistries might have a potential to change conventional packaging film industries. (author)

  14. On selection rules and inelastic electron scattering at intermediate energies

    International Nuclear Information System (INIS)

    Nuroh, K.

    1986-12-01

    Correlation effects are included in the Bethe-Born theory for the generalized oscillator strength of inelastic scattering of electrons on atoms. The formulation is such as to allow for the calculation of relative line strengths of multiplets. It is used to analyze line strengths of the 4d → 4f transition in La 3+ and Ce 4+ within LS-coupling. The analysis indicates that only singlet states of the intermediate 4d 9 4f configuration are allowed. Calculated line strengths are compared with a recent core electron energy loss spectra of metallic La and tetravalent CeO 2 and there is an overall qualitative agreement between theory and experiment. (author). 11 refs, 4 figs, 2 tabs

  15. New development for low energy electron beam processor

    International Nuclear Information System (INIS)

    Takei, Taro; Goto, Hitoshi; Oizumi, Matsutoshi; Hirakawa, Tetsuya; Ochi, Masafumi

    2003-01-01

    Newly developed low-energy electron beam (EB) processors that have unique designs and configurations compared to conventional ones enable electron-beam treatment of small three-dimensional objects, such as grain-like agricultural products and small plastic parts. As the EB processor can irradiate the products from the whole angles, the uniform EB treatment can be achieved at one time regardless the complex shapes of the product. Here presented are two new EB processors: the first system has cylindrical process zone, which allows three-dimensional objects to be irradiated with one-pass treatment. The second is a tube-type small EB processor, achieving not only its compactor design, but also higher beam extraction efficiency and flexible installation of the irradiation heads. The basic design of each processor and potential applications with them will be presented in this paper. (author)

  16. Electron mobility on the surface of liquid Helium: influence of surface level atoms and depopulation of lowest subbands

    International Nuclear Information System (INIS)

    Grigoriev, P. D.; Dyugaev, A. M.; Lebedeva, E. V.

    2008-01-01

    The temperature dependence of electron mobility is examined. We calculate the contribution to the electron scattering rate from the surface level atoms (SLAs), proposed in [10]. This contribution is substantial at low temperatures T < 0.5, when the He vapor concentration is exponentially small. We also study the effect of depopulation of the lowest energy subband, which leads to an increase in the electron mobility at high temperature. The results explain certain long-standing discrepancies between the existing theory and experiment on electron mobility on the surface of liquid helium

  17. Initial electron energy spectra in water irradiated by photons with energies to 1 GeV

    International Nuclear Information System (INIS)

    Todo, A.S.; Hiromoto, G.; Turner, J.E.; Hamm, R.N.; Wright, H.A.

    1984-02-01

    This work was undertaken to provide basic physical data for use in the dosimetry of high-energy photons. Present and future sources of such photons are described, and the relevant literature is reviewed and summarized. Calculations were performed with a Monte Carlo computer code, PHOEL-3, which is also described. Tables of initial electron and positron energies are presented for monoenergetic photons undergoing single interactions in water. Photon energies to 1 GeV are treated. The code treats explicitly the production of electron-positron pairs, Compton scattering, photoelectric absorption, and the emission of Auger electrons following the occurrence of K-shell vacancies in oxygen. The tables give directly the information needed to specify the absolute single-collision kerma in water, which approximates tissue, at each photon energy. Results for continuous photon energy spectra can be obtained by using linear interpolation with the tables. (Continuous spectra can also be used directly in PHOEL-3.) The conditions under whch first-collision kerma approximate absorbed dose are discussed. A formula is given for estimating bremsstrahlung energy loss, one of the principal differences between kerma and absorbed dose in practical cases. 31 references, 4 figures, 18 tables

  18. Parametric Statistics of Individual Energy Levels in Random Hamiltonians

    OpenAIRE

    Smolyarenko, I. E.; Simons, B. D.

    2002-01-01

    We establish a general framework to explore parametric statistics of individual energy levels in disordered and chaotic quantum systems of unitary symmetry. The method is applied to the calculation of the universal intra-level parametric velocity correlation function and the distribution of level shifts under the influence of an arbitrary external perturbation.

  19. Maximum wind energy extraction strategies using power electronic converters

    Science.gov (United States)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through

  20. Attosecond time-energy structure of X-ray free-electron laser pulses

    Science.gov (United States)

    Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.

    2018-04-01

    The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.

  1. The energy distribution of electrons in radio jets

    Science.gov (United States)

    Tsouros, Alexandros; Kylafis, Nikolaos D.

    2017-07-01

    Context. Black-hole and neutron-star X-ray binaries exhibit compact radio jets, when they are in the so called quiescent, hard, or hard intermediate states. The radio spectrum in these states is flat to slightly inverted, I.e., the spectral index of the observed flux density is in the range 0 ≲ α ≲ 0.5. It is widely accepted that the energy distribution of the electrons, in the rest frame of the jet, is a power law with index in the range 3 ≲ p ≲ 5. Aims: Contrary to what our thinking was decades ago, now we know that the jets originate in the hot, inner flow around black holes and neutron stars. So it is worth investigating the radio spectrum that is emitted by a thermal jet as a function of direction. Methods: As an example, we consider a parabolic jet and, with the assumption of flux freezing, we compute the emitted spectrum in all directions, from radio to near infrared, using either a thermal distribution of electrons or a power-law one. Results: We have found that parabolic jets with a thermal distribution of electrons give also flat to slightly inverted spectra. In particular, for directions along the jet (θ = 0), both distributions of electron energies give α = 0 ± 0.01. The index α increases as the viewing angle θ increases and for directions perpendicular to the jet (θ = π/ 2), the thermal distribution gives α = 0.40 ± 0.05, while the power-law distribution gives α = 0.20 ± 0.05. The break frequency νb, which marks the transition from partially optically thick to optically thin synchrotron emission, is comparable for the power-law and the thermal distributions. Conclusions: Contrary to common belief, it is not necessary to invoke a power-law energy distribution of the electrons in a jet to explain its flat to slightly inverted radio spectrum. A relativistic Maxwellian produces similar radio spectra. Thus, the jet may be the widely invoked "corona" around black holes in X-ray binaries.

  2. Interpretation of diffuse low-energy electron diffraction intensities

    International Nuclear Information System (INIS)

    Saldin, D.K.; Pendry, J.B.; Van Hove, M.A.; Somorjai, G.A.

    1985-01-01

    It is shown that the diffuse low-energy electron diffraction (LEED) that occurs between sharp LEED beams can be used to determine the local bonding configuration near disordered surface atoms. Two approaches to the calculation of diffuse LEED intensities are presented for the case of lattice-gas disorder of an adsorbate on a crystalline substrate. The capabilities of this technique are most similar to those of near-edge extended x-ray absorption fine structure, but avoid the restrictions due to the use of photons

  3. Two-electron photoionization cross sections at high energies

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Krivec, R.; Mandelzweig, V.B.

    2003-01-01

    Double and single electron photoionization cross sections and their ratios at high and ultra-relativistic energies are calculated for H - , He and helium-like ions in ground and excited states including triplet states. The ratios contain shake-off and quasi-free terms. A high precision non-variational wave function is used. The quasi-free mechanism increases the ratios impressively: for He we get 0.0762 instead of 0.0164 in the non-relativistic case. Ratios are inversely proportional to Z 2 , with a factor increasing from 0.094 in the nonrelativistic to 0.595 in the ultra-relativistic limit. (author)

  4. Probing Plasmonic Nanostructures with Electron Energy - Loss Spectroscopy

    DEFF Research Database (Denmark)

    Raza, Søren

    for nonlocal response. The experimental work comprises the use of electron energy-loss spectroscopy (EELS) to excite and study both localized and propagating surface plasmons in metal structures. Following a short introduction, we present the theoretical foundation to describe nonlocal response in Maxwell......, dimer with nanometer-sized gaps, core-shell nanowire with ultrathin metal shell, and a thin metal film. In all cases we compare the nonlocal models with the local-response approximation. Below the plasma frequency, we find that the distance between the induced positive and negative surface charges...

  5. Electron energy loss spectroscopy microanalysis and imaging in the transmission electron microscope: example of biological applications

    International Nuclear Information System (INIS)

    Diociaiuti, Marco

    2005-01-01

    This paper reports original results obtained in our laboratory over the past few years in the application of both electron energy loss spectroscopy (EELS) and electron spectroscopy imaging (ESI) to biological samples, performed in two transmission electron microscopes (TEM) equipped with high-resolution electron filters and spectrometers: a Gatan model 607 single magnetic sector double focusing EEL serial spectrometer attached to a Philips 430 TEM and a Zeiss EM902 Energy Filtering TEM. The primary interest was on the possibility offered by the combined application of these spectroscopic techniques with those offered by the TEM. In particular, the electron beam focusing available in a TEM allowed us to perform EELS and ESI on very small sample volumes, where high-resolution imaging and electron diffraction techniques can provide important structural information. I show that ESI was able to improve TEM performance, due to the reduced chromatic aberration and the possibility of avoiding the sample staining procedure. Finally, the analysis of the oscillating extended energy loss fine structure (EXELFS) beyond the ionization edges characterizing the EELS spectra allowed me, in a manner very similar to the extended X-ray absorption fine structure (EXAFS) analysis of the X-ray absorption spectra, to obtain short-range structural information for such light elements of biological interest as O or Fe. The Philips EM430 (250-300 keV) TEM was used to perform EELS microanalysis on Ca, P, O, Fe, Al and Si. The assessment of the detection limits of this method was obtained working with well-characterized samples containing Ca and P, and mimicking the actual cellular matrix. I applied EELS microanalysis to Ca detection in bone tissue during the mineralization process and to P detection in the cellular membrane of erythrocytes treated with an anti-tumoral drug, demonstrating that the cellular membrane is a drug target. I applied EELS microanalysis and selected area electron

  6. Studies on deep electronic levels in silicon and aluminium gallium arsenide alloys

    International Nuclear Information System (INIS)

    Pettersson, H.

    1993-01-01

    This thesis reports on investigations of the electrical and optical properties of deep impurity centers, related to the transition metals (TMs) Ti, Mo, W, V and Ni, in silicon. Emission rates, capture cross sections and photoionization cross sections for these impurities were determined by means of various Junction Space Charge Techniques (JSCTs), such as Deep Level Transient Spectroscopy (DLTS), dark capacitance transient and photo capacitance transient techniques. Changes in Gibbs free energy as a function of temperature were calculated for all levels. From this temperature dependence, the changes in enthalpy and entropy involved in the electron and hole transitions were deduced. The influence of high electric fields on the electronic levels in chalcogen-doped silicon were investigated using the dark capacitance transient technique. The enhancement of the electron emission from the deep centers indicated a more complex field enhancement model than the expected Poole-Frenkel effect for coulombic potentials. The possibility to determine charge states of defects using the Poole-Frenkel effect, as often suggested, is therefore questioned. The observation of a persistent decrease of the dark conductivity due to illumination in simplified AlGaAs/GaAs high Electron Mobility Transistors (HEMTs) over the temperature range 170K< T<300K is reported. A model for this peculiar behavior, based on the recombination of electrons in the two-dimensional electron gas (2DEG) located at the AlGaAs/GaAs interface with holes generated by a two-step excitation process via the deep EL2 center in the GaAs epilayer, is put forward

  7. Composite Fermi surface in the half-filled Landau level with anisotropic electron mass

    Science.gov (United States)

    Ippoliti, Matteo; Geraedts, Scott; Bhatt, Ravindra

    We study the problem of interacting electrons in the lowest Landau level at half filling in the quantum Hall regime, when the electron dispersion is given by an anisotropic mass tensor. Based on experimental observations and theoretical arguments, the ground state of the system is expected to consist of composite Fermions filling an elliptical Fermi sea, with the anisotropy of the ellipse determined by the competing effects of the isotropic Coulomb interaction and anisotropic electron mass tensor. We test this idea quantitatively by using a numerical density matrix renormalization group method for quantum Hall systems on an infinitely long cylinder. Singularities in the structure factor allow us to map the Fermi surface of the composite Fermions. We compute the composite Fermi surface anisotropy for several values of the electron mass anisotropy which allow us to deduce the functional dependence of the former on the latter. This research was supported by Department of Energy Office of Basic Energy Sciences through Grant No. DE-SC0002140.

  8. 27-Level DC–AC inverter with single energy source

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2012-01-01

    Highlights: ► This paper reports a novel 27-level DC–AC inverter using only single renewable energy source. ► The efficiency of the inverter is very high. The output waveform is almost sinusoidal. ► The cost is low as the number of power switches required is only 12. - Abstract: A novel design of multilevel DC–AC inverter using only single renewable energy source is presented in this paper. The proposed approach enables multilevel output to be realised by a few cascaded H-bridges and a single energy source. As an illustration, a 27-level inverter has been implemented based on three cascaded H-bridges with a single energy source and two capacitors. Using the proposed novel switching strategy, 27 levels can be realized and the two virtual energy sources can be well regulated. Experimental results are included to demonstrate the effectiveness of the proposed inverter.

  9. Radiation processing of liquid with low energy electron accelerator

    International Nuclear Information System (INIS)

    Makuuchi, Keizo

    2003-01-01

    Radiation induced emulsion polymerization, radiation vulcanization of NR latex (RVNRL) and radiation degradation of natural polymers were selected and reviewed as the radiation processing of liquid. The characteristic of high dose rate emulsion polymerization is the occurrence of cationic polymerization. Thus, it can be used for the production of new materials that cannot be obtained by radical polymerization. A potential application will be production of polymer emulsion that can be used as water-borne UV/EB curing resins. The technology of RVNRL by γ-ray has been commercialized. RVNRL with low energy electron accelerator is under development for further vulcanization cost reduction. Vessel type irradiator will be favorable for industrial application. Radiation degradation of polysaccharides is an emerging and promising area of radiation processing. However, strict cost comparison between liquid irradiation with low energy EB and state irradiation with γ-ray should be carried out. (author)

  10. Radiation processing of liquid with low energy electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-02-01

    Radiation induced emulsion polymerization, radiation vulcanization of NR latex (RVNRL) and radiation degradation of natural polymers were selected and reviewed as the radiation processing of liquid. The characteristic of high dose rate emulsion polymerization is the occurrence of cationic polymerization. Thus, it can be used for the production of new materials that cannot be obtained by radical polymerization. A potential application will be production of polymer emulsion that can be used as water-borne UV/EB curing resins. The technology of RVNRL by {gamma}-ray has been commercialized. RVNRL with low energy electron accelerator is under development for further vulcanization cost reduction. Vessel type irradiator will be favorable for industrial application. Radiation degradation of polysaccharides is an emerging and promising area of radiation processing. However, strict cost comparison between liquid irradiation with low energy EB and state irradiation with {gamma}-ray should be carried out. (author)

  11. Radial transport of high-energy runaway electrons in ORMAK

    International Nuclear Information System (INIS)

    Zweben, S.J.; Swain, D.W.; Fleischmann, H.H.

    1978-01-01

    The transport of high-energy runaway electrons near the outside of a low-density ORMAK discharge is investigated by measuring the flux of runaways to the outer limiter during and after an inward shift of the plasma column. The experimental results are interpreted through a runaway confinement model which includes both the classical outward displacement of the runaway orbit with increasing energy and an additional runaway spatial diffusion coefficient which simulates an unspecified source of anomalous transport. Diffusion coefficients in the range D approximately equal to 10 2 -10 4 cms -1 are found under various discharge conditions indicating a significant non-collisional runaway transport near the outside of the discharge, particularly in the presence of MHD instability. (author)

  12. Modulating Pathways for Electron and Energy Transfer Through Molecules

    DEFF Research Database (Denmark)

    Pirrotta, Alessandro

    Energy transport efficiency and electric conductance are molecular properties that motivates the development of optoelectronic materials, energy storage, and electronic devices. Several experimental techniques allow measurement of these properties and regularly, modeling is employed to find...... correlations between chemical structure and molecular properties. This dissertation discusses the interplay between modeling and experiments toward the assessment of new relations between the molecular structure and properties. In particular, it has been shown how simulations can push the development of new...... experimental techniques, demonstrate the potential of already established techniques, and work in synergy with experiments. It is demonstrated how the use of modeling can expand our understanding of how chemical structure affects molecular properties, which will enable us to design molecules with specific...

  13. Wide angle spectrometers for intermadiate energy electron accelerators

    International Nuclear Information System (INIS)

    Leconte, P.

    1982-10-01

    It is shown that improvements of the detector acceptances (in solid angle and momentum bite) is as important as increased duty cycle for coincidence experiments. To have a maximum efficiency and thus to reduce the cost of experiments, it is imperative to develop maximum solid angle systems. This implies an axial symmetry with respect to the incoming beam. At Saclay, we have investigated some of the properties of specific detectors covering up to 90% of 4π steradians for a high energy, 100% duty cycle electron accelerator. The techniques of wide angle spectrometers have already been explored on a large scale in high energy physics. However, in the case of charged particles, such detectors, compared to classical iron dipole spectrometers, present a smaller resolving power and a rather low background rejection. The choice of which of these two solutions is to be used depends on the conditions of the specific experiment

  14. Temperature-dependent surface structure, composition, and electronic properties of the clean SrTiO3(111) crystal face: Low-energy-electron diffraction, Auger-electron spectroscopy, electron energy loss, and ultraviolet-photoelectron spectroscopy studies

    International Nuclear Information System (INIS)

    Lo, W.J.; Somorjai, G.A.

    1978-01-01

    Low-energy-electron diffraction, Auger-electron spectroscopy, electron-energy-loss, and ultraviolet-photoelectron spectroscopies were used to study the structure, composition, and electron energy distribution of a clean single-crystal (111) face of strontium titanate (perovskite). The dependence of the surface chemical composition on the temperature has been observed along with corresponding changes in the surface electronic properties. High-temperature Ar-ion bombardment causes an irreversible change in the surface structure, stoichiometry, and electron energy distribution. In contrast to the TiO 2 surface, there are always significant concentrations of Ti 3+ in an annealed ordered SrTiO 3 (111) surface. This stable active Ti 3+ monolayer on top of a substrate with large surface dipole potential makes SrTiO 3 superior to TiO 2 when used as a photoanode in the photoelectrochemical cell

  15. Measurement of few-electron uranium ions on a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    The high-energy electron beam ion trap, dubbed Super-EBIT, was used to produce, trap, and excite uranium ions as highly charged as fully stripped U 92+ . The production of such highly charged ions was indicated by the x-ray emission observed with high-purity Ge detectors. Moreover, high-resolution Bragg crystal spectromters were used to analyze the x-ray emission, including a detailed measurement of both the 2s 1/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole transitions. Unlike in ion accelerators, where the uranium ions move at relativistic speeds, the ions in this trap are stationary. Thus very precise measurements of the transition energies could be made, and the QED contribution to the transition energies could be measured within less than 1 %. Details of the production of these highly charged ions and their measurement is given

  16. Design and dosimetry of a few leaf electron collimator for energy modulated electron therapy

    International Nuclear Information System (INIS)

    Al-Yahya, Khalid; Verhaegen, Frank; Seuntjens, Jan

    2007-01-01

    Despite the capability of energy modulated electron therapy (EMET) to achieve highly conformal dose distributions in superficial targets it has not been widely implemented due to problems inherent in electron beam radiotherapy such as planning dosimetry accuracy, and verification as well as a lack of systems for automated delivery. In previous work we proposed a novel technique to deliver EMET using an automated 'few leaf electron collimator' (FLEC) that consists of four motor-driven leaves fit in a standard clinical electron beam applicator. Integrated with a Monte Carlo based optimization algorithm that utilizes patient-specific dose kernels, a treatment delivery was incorporated within the linear accelerator operation. The FLEC was envisioned to work as an accessory tool added to the clinical accelerator. In this article the design and construction of the FLEC prototype that match our compact design goals are presented. It is controlled using an in-house developed EMET controller. The structure of the software and the hardware characteristics of the EMET controller are demonstrated. Using a parallel plate ionization chamber, output measurements were obtained to validate the Monte Carlo calculations for a range of fields with different energies and sizes. Further verifications were also performed for comparing 1-D and 2-D dose distributions using energy independent radiochromic films. Comparisons between Monte Carlo calculations and measurements of complex intensity map deliveries show an overall agreement to within ±3%. This work confirms our design objectives of the FLEC that allow for automated delivery of EMET. Furthermore, the Monte Carlo dose calculation engine required for EMET planning was validated. The result supports the potential of the prototype FLEC for the planning and delivery of EMET

  17. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    Energy Technology Data Exchange (ETDEWEB)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  18. Absolute Hydration Free Energy of Proton from First Principles Electronic Structure Calculations

    International Nuclear Information System (INIS)

    Zhan, Chang-Guo; Dixon, David A.

    2001-01-01

    The absolute hydration free energy of the proton, DGhyd298(H+), is one of the fundamental quantities for the thermodynamics of aqueous systems. Its exact value remains unknown despite extensive experimental and computational efforts. We report a first-principles determination of DGhyd298(H+) by using the latest developments in electronic structure theory and massively parallel computers. DGhyd298(H+) is accurately predicted to be -262.4 kcal/mol based on high-level, first-principles solvation-included electronic structure calculations. The absolute hydration free energies of other cations can be obtained by using appropriate available thermodynamic data in combination with this value. The high accuracy of the predicted absolute hydration free energy of proton is confirmed by applying the same protocol to predict DGhyd298(Li+)

  19. Dietary energy level for optimum productivity and carcass ...

    African Journals Online (AJOL)

    user

    2013-08-05

    Aug 5, 2013 ... optimum weights at dietary energy levels of 13.81, 13.23, 13.43 and ... Tadelle & Ogle (2000) reported that energy requirement of ..... The authors would like to acknowledge the National Research Foundation (NRF) and VLIR ...

  20. Electron thermal energy transport research based on dynamical relationship between heat flux and temperature gradient

    International Nuclear Information System (INIS)

    Notake, Takashi; Inagaki, Shigeru; Tamura, Naoki

    2008-01-01

    In the nuclear fusion plasmas, both of thermal energy and particle transport governed by turbulent flow are anomalously enhanced more than neoclassical levels. Thus, to clarify a relationship between the turbulent flow and the anomalous transports has been the most worthwhile work. There are experimental results that the turbulent flow induces various phenomena on transport processes such as non-linearity, transition, hysteresis, multi-branches and non-locality. We are approaching these complicated problems by analyzing not conventional power balance but these phenomena directly. They are recognized as dynamical trajectories in the flux and gradient space and must be a clue to comprehend a physical mechanism of arcane anomalous transport. Especially, to elucidate the mechanism for electron thermal energy transport is critical in the fusion plasma researches because the burning plasmas will be sustained by alpha-particle heating. In large helical device, the dynamical relationships between electron thermal energy fluxes and electron temperature gradients are investigated by using modulated electron cyclotron resonance heating and modern electron cyclotron emission diagnostic systems. Some trajectories such as hysteresis loop or line segments with steep slope which represent non-linear property are observed in the experiment. (author)